
Developer's Guide and Technical Reference
Version 11.0.2180.1635

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketTools™ and SocketWrench™ are trademarks of Catalyst Development Corporation.

 Introduction

The SocketTools Library Edition includes standard Windows dynamic link libraries (DLLs) which can be used
in a wide variety of programming languages such as Visual C++, Visual C#, Visual Basic and Delphi. The
Library Edition is ideal for the developer who requires the high performance, minimum resource utilization
and flexibility of a lower level interface, without the inherent overhead of ActiveX components or the .NET
Framework. The SocketTools Library Edition API has over 950 functions which can be used to develop
applications that meet a wide range of needs. SocketTools covers it all, including uploading and
downloading files, sending and retrieving email, remote command execution, terminal emulation, and
much more.

The SocketTools Library Edition includes support for the industry standard Transport Security Layer (TLS)
and Secure Shell (SSH) protocols which are used to ensure that data exchanged between the local system
and a server is secure and encrypted. The Library Edition implements the major secure protocols such as
HTTPS, FTPS, SFTP, SMTPS, POP3S, IMAPS and more. Your data is protected with TLS 1.2 using 256-bit
encryption and full support for client certificates. SocketTools also includes an FTP and HTTP server API, as
well as a general purpose TCP server API that can be used to create custom server applications. There's no
need for you to understand the details of certificate management, data encryption or how the security
protocols work. All it takes is a few lines of code to enable the security features, and SocketTools handles
the rest.

The following are just some of the features in the SocketTools 11 Library Edition:

Support for Windows 11, Windows Server 2022 and Visual Studio 2022
Standard Windows dynamic link libraries (DLLs) with no external dependencies
A comprehensive API with more than 20 libraries and over 950 functions
Support for both synchronous and asynchronous network connections
Includes libraries that can be used to create custom client and server applications
Provides cloud-based application storage and geographical IP location services
Support for the TLS 1.2 protocol and later with 256-bit AES encryption
Support for both implicit and explicit TLS connections
Support for the SSH protocol and integrated support for SFTP as part of the FTP API
Support for standard and secure proxy servers using FTP and HTTP
Support for using client and server certificates in PKCS #12 format
Thread-safe implementation with full support for multithreaded applications
An extensive Developer's Guide and online Technical Reference
Easy redistribution for any number of applications and end users

Developer's Guide
To help you get started using SocketTools, the new Developer's Guide covers a variety of programming
topics related to SocketTools, as well an overview of each of the libraries included in the product. Even if
you have experience working with previous versions of SocketTools, we recommend that you review the
Developer's Guide. If you are using a language other than Visual C++, you'll also find some very helpful
information about how to make the most of SocketTools in other programming languages such as C#,
Visual Basic and Delphi.

Technical Reference
The Technical Reference provides extensive documentation on all of the functions in each of the
SocketTools libraries. It's here that you'll find information on how a function should be called, what the

arguments are and what options are available. If it is your first time using a particular library, we
recommend that you first read the overview of that library in the Developer's Guide.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SocketTools Licensing Information

The SocketTools Library Edition License Agreement provides you with a single developer license and the
right to redistribute the dynamic link libraries (DLLs) included with this product without any additional
royalties or runtime licensing fees.

Evaluation Licenses
When you install SocketTools, you are given the option of entering a serial number or proceeding with the
installation without a serial number. If you install SocketTools without a serial number, an evaluation
development license will be created which is valid for a period of thirty (30) days from the date of
installation. The product is fully functional during this evaluation period; however the SocketTools libraries
may not be redistributed to third-parties. After the evaluation period has ended, you must either purchase
a development license or remove SocketTools from your computer system.

Runtime Licensing
When you install SocketTools with a serial number, a runtime license key will be automatically generated for
you and stored in a file named csrtkey11.h in the Include folder where you've installed the product. There
are similarly named files for other languages, such as csrtkey11.bas for Visual Basic and csrtkey11.pas for
Delphi. These files define the SocketTools runtime licensing key which must be passed to the Initialize
function in the library that you are using. If you are using a language that does not have a license key
already defined for it, you can create a text file that contains the license key using the License Manager
utility. More information about that utility is provided below.

The runtime license key is a null terminated string that is unique to your licensed copy of SocketTools. The
runtime license key is not the same as your serial number and should only be embedded in your compiled
application. If you provide source code for your product, you cannot include the runtime key with the
source code. The same runtime license key should be used for all of the libraries.

If you install SocketTools with an evaluation license, then the runtime license key will be defined as a null
pointer or empty string. This will allow the libraries to function on a system with a valid evaluation license,
but they will not function on any other system. You must purchase a license and generate a runtime license
key before redistributing an application which uses one or more of the SocketTools libraries.

License Manager
Included with your copy of SocketTools is a License Manager utility. This program enables you to see what
components have been installed and registered on your system, as well as display information about your
SocketTools license. If you need to create a new runtime license key, you can use this utility to do so. Select
License | Header File from the menu and choose the type of file that you wish to create. For more
information about how the License Manager can be used, please refer to the online help file that is
included with the utility.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SocketTools 11 Upgrade Information

This section will help you upgrade an application written using a previous version of the SocketTools Library
Edition. In most cases, the modifications required will be minimal and may only require a few edits and
recompiling the program. However, it is recommended that you review this entire document so that you
understand what changes were made and how those changes can be implemented in your software.

Supported Platforms
SocketTools 11 is supported on Windows 7, Windows Server 2008 R2 and later versions. Earlier versions of
the operating system, including Windows XP and Windows Vista are no longer supported by Microsoft and
cannot be used with SocketTools. We recommend using the lasted release of either Windows 10 or
Windows 11.

Developers who are redistributing applications which target Windows 11 or Windows Server 2022 should
upgrade to ensure compatibility with the platform and current development tools. Secure connections
require TLS 1.2 or later and most services will no longer accept connections from a client using SSL 3.0 or
TLS 1.0.

Development Tools
As standard Windows dynamic link libraries, SocketTools 11 may be used with virtually any programming
language which can call exported functions in a DLL, either by name or by ordinal. Import libraries are
provided for Visual C++ in both x86 and x64 COFF format, and for Borland's C++ compilers in OMF32 and
ELF64 format. Other languages should use the conventions appropriate for calling an exported function,
such as the Declare statement in Visual Basic. Although the libraries may be used with .NET languages, it is
recommended you use the SocketTools .NET Edition if you are creating applications for the .NET
Framework.

SocketTools Header Files
In SocketTools 11 all of the library constants, functions and C++ classes are in a single header file named
cstools11.h. This header file also includes the error codes that are defined in a separate header file named
cserror11.h. There are three special macros that can be defined to control how applications are built using
the SocketTools libraries:

CSTOOLS_NO_LIBRARIES
Visual C++ and Borland C++ supports a pragma which can be used to automatically specify the
names of libraries that the compiler should attempt to link with in order to resolve function calls.
By default, it is not necessary to explicitly specify the names of the SocketTools import libraries to
link to. However, if you wish to explicitly link to specific import libraries, then define this macro
prior to including the cstools11.h header files.

CSTOOLS_NO_NAMESPACE
When compiling a C++ application, the SocketTools functions are defined in a namespace called
SocketTools. This prevents the possibility of conflicts with functions of the same name that may be
used in other libraries. If you prefer the functions to be defined in the global namespace instead,
then define this macro prior to including the cstools11.h header file.

CSTOOLS_NO_CLASSES
When compiling a C++ application, class wrappers for the SocketTools API are automatically
included by default. Defining this macro prevents this, and only the API function prototypes will be
declared. It is important to note that this only affects programs written using C++. The class
wrappers will not be included for standard C programs, regardless if this macro is defined or not.

SocketTools C++ Class Wrappers
The C++ class wrappers for the SocketTools libraries have been moved from a separate file into the

cstools11.h header file, and are now automatically included whenever a C++ program is compiled. The
classes have been designed for compatibility with a variety of C++ compilers; however, there are certain
features which are only available if the application is compiled using the Microsoft Foundation Classes
(MFC) or Active Template Library (ATL). For example, if an application is built using MFC, each class is
derived from CObject and there are additional overloaded methods implemented which support the use of
objects like CString. If the application is built without using MFC, or a different C++ compiler is used, those
methods will not be available.

Upgrading Projects
If you are upgrading from earlier versions, most applications will be source code compatible with the
SocketTools 11 API. In most cases, all you will need to do is install the current version, update the header
file and import library references, and then recompile your application. Note that the library file names
have changed, as have the export function ordinals. If your build projects use the SocketTools10
environment variable to specify the location of the header files and import libraries, you need to change it
to use SocketTools11. This environment variable is automatically defined during the installation process.

The SocketTools 11 libraries are not binary compatible with the earlier versions of the SocketTools libraries
and cannot be used as drop-in replacements. If you have declared functions by ordinal in your application
(something not typically done), those values have changed and must be updated. If you have declared the
exported functions by name, you will be able to reference the new libraries using the same names.

Your runtime license key has changed for SocketTools 11, which will require you to define the new key in
your application when calling the initialization functions for each API. As with previous versions of
SocketTools, you can use the License Manager utility to generate a file which contains the runtime key you
should use. The SocketTools 10 and earlier runtime license keys are not valid for the version 11 libraries
and an error will be returned if an invalid runtime key is specified.

With SocketTools 11, secure connections will use TLS 1.2 or later by default. The libraries will not support
connections to servers which use older, less secure versions of TLS or any version of SSL. They will also no
longer use weaker cipher suites that incorporate insecure algorithms, such as RC4 or MD5. For applications
that require secure connections, it is recommended you use the current build of Windows 10 or Windows
11 with all security updates applied.

It is possible to force the APIs to use earlier versions of TLS for backwards compatibility with older servers.
This is done by explicitly setting the dwProtocol member of the SECURITYCREDENTIALS structure to specify
the protocol version required. However, this is not generally recommended because using an older version
of TLS (or any version of SSL) may cause servers to immediately reject the connection attempt.

The following lists the changes that developers should be aware of when migrating from earlier versions:

The name of the primary header file is cstools11.h and the cserror11.h header file defines the error
code values. The csrtkey11.h header file defines the runtime license key for this version of
SocketTools. The runtime license key is normally generated automatically when SocketTools is
installed with a valid serial number. It can also be generated using the License Manager utility
installed with SocketTools.

When using C or C++, the cstools11.h header file should be included before Windows.h to ensure
that the compiler does not try to include the deprecated Windows Sockets 1.1 header file. Failure to
do so can result in compiler warnings about duplicated macros and function prototypes.

If you are using the Embarcadero C++ compiler, additional checks are imposed to ensure the
SocketTools header files are included before WinInet.h and Vcl.h files. This prevents conflicts
between our APIs and function prototypes defined in those header files.

The name for each of the DLLs and import libraries has been changed with the new version.

Applications written using previous versions of SocketTools must be updated to use the new file
names.

Some constant values have changed and added. This will not impact applications that used the
defined macros, but may impact any application which uses hard-coded numeric values, rather than
constants or macros.

Functions in earlier versions of SocketTools that accepted an IPv4 address as a 32-bit integer value have
changed to use the new INTERNET_ADDRESS structure. If your application stores an IP address in a binary
format, you will need to update that code. It is generally recommended that you store IP addresses in their
string format, and you should allocate at least 40 characters for the string. That will be large enough to
handle both IPv4 and IPv6 addresses.

Most of the networking APIs have an option to force the library to establish an IPv6 network connection. By
default, the libraries will still give preference to using IPv4 for backwards compatibility. Note that using
options which only establish connections using IPv6 may prevent applications from working correctly on
older versions of Windows.

Applications which continue to use SocketTools 10 and earlier libraries can be installed side-by-side with
the version 10 libraries. It is recommended that you redistribute the libraries in the same folder as your
application executable, rather than a shared system folder such as C:\Windows\SysWOW64 or
C:\Windows\System32. It is not recommended that you attempt to use different versions of the libraries
within the same application.

Library File Names
The file names of the dynamic link libraries and import libraries have changed with the new version. The
following table lists the new names. For more information, refer to the Redistribution section.

File Name Import Library Description

csdnsv11.dll csdnsv11.lib Domain Name Service Library

csftpv11.dll csftpv11.lib File Transfer Protocol Library

csftsv11.dll csftsv11.lib File Transfer Server Library

cshtpv11.dll cshtpv11.lib Hypertext Transfer Protocol Library

cshtsv11.dll cshtsv11.lib Hypertext Transfer Server Library

csicmv11.dll csicmv11.lib Internet Control Message Protocol Library

csmapv11.dll csmapv11.lib Internet Message Access Protocol Library

csmsgv11.dll csmsgv11.lib Mail Message Library

csmtpv11.dll csmtpv11.lib Simple Mail Transfer Protocol Library

csncdv11.dll csncdv11.lib File Encoding Library

csnvtv11.dll csnvtv11.lib Terminal Emulation Library

csnwsv11.dll csnwsv11.lib Network News Transfer Protocol Library

cspopv11.dll cspopv11.lib Post Office Protocol Library

csrshv11.dll csrshv11.lib Remote Command Protocol Library

csrssv11.dll csrssv11.lib Syndicated News Feed Library

cstimv11.dll cstimv11.lib Time Protocol Library

cstntv11.dll cstntv11.lib Telnet Protocol Library

cstshv11.dll cstshv11.lib Secure Shell Protocol Library

cstxtv11.dll cstxtv11.lib Text Messaging Library

cswebv11.dll cswebv11.lib Web Services Library

cswhov11.dll cswhov11.lib Whois Protocol Library

cswskv11.dll cswskv11.lib Windows Sockets (SocketWrench) Library

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SocketTools Evaluation License

If you install SocketTools without registering a serial number, the product will be installed with an evaluation
license that is valid for a period of thirty (30) days. During this trial period, the SocketTools libraries are fully
functional and can be used on the development system where the product was installed. If you need to
extend the evaluation period, please contact the Catalyst Development sales office by email at
sales@sockettools.com or by telephone at +1 760-228-9653, Monday through Friday during normal
business hours.

Redistribution Restrictions
When using an evaluation copy of SocketTools, you cannot redistribute the libraries to another system. If
you build an application using an evaluation license, it will function correctly on the development system
but will fail with an error on any system that does not have a license. Once you have purchased a
development license, you should recompile your application before redistributing it to an end-user. If you
need to test your application on another system during the evaluation period, you must install an
evaluation copy of SocketTools on that system.

Runtime Licensing
When you purchase a development license, a runtime license key will be generated for you which will be
included in your applications. This runtime key must be passed to the library's Initialize function in order to
use the product. If SocketTools is installed as an evaluation copy, that runtime license key will be defined as
a NULL pointer or an empty string and the application cannot be redistributed until a valid key is created. If
you have previously installed an evaluation copy of SocketTools and then purchased a license, you can
create the runtime license key using the License Manager utility.

For more information, refer to the Licensing and Library Initialization sections.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SocketTools Library Redistribution

The SocketTools license permits the use of the libraries to build application software and redistribute that
software to end-users. There are no restrictions on the number of products in which the libraries may be
used. However, if SocketTools has been installed with an evaluation license, any products built using its
libraries cannot be redistributed to another system until a licensed copy of the toolkit has been purchased.

System Requirements
SocketTools is supported on Windows 32-bit and 64-bit desktop and server platforms. The minimum
required desktop platform is Windows 7 with Service Pack 1 (SP1) installed. The minimum required server
platform is Windows Server 2008 R2 with Service Pack 1 (SP1) installed. It is recommended that the current
service pack be installed for the operating system, along with the latest Windows updates available from
Microsoft. Some features may require Windows 10 or later versions of the platform. When this is the case, it
will be noted in the documentation.

Windows XP and Windows Vista are no longer supported. SocketTools is designed for Windows 7 as the
minimum operating system version and will not work correctly on earlier versions of Windows. Although
Windows 7 is no longer supported by Microsoft, and Windows 8 has limited support, SocketTools
components will continue to function on those platforms.

Library Redistribution
For applications created using one or more SocketTools libraries, the DLL must be distributed along with
the application. The library has no external dependencies, other than standard Windows libraries that are
part of the base operating system. In particular, the SocketTools libraries do not use the Microsoft
Foundation Classes, nor do they require the Visual C++ Runtime library. The libraries are standard
Windows DLLs and do not require COM registration.

If SocketTools is installed on a 64-bit version of Windows, the 32-bit DLLs are installed in the
C:\Windows\Syswow64 folder and the 64-bit DLLs are installed in the C:\Windows\System32 folder. When
redistributing one or more of the libraries, it is important to make sure that you are selecting the correct
version, which is determined by the development tool used and the target platform. For example, if you are
using Visual Studio 2019 and target the Win32 platform, then you should only redistribute the 32-bit DLL,
regardless if the target system is the 32-bit or 64-bit version of Windows. This is because 32-bit programs
can only reference 32-bit libraries. When the application is installed on 64-bit Windows, it will be executed
by the WoW64 subsystem which provides a 32-bit environment for the application.

Version Information
The SocketTools libraries have information embedded in them which provides version information to an
installation utility. This information called the version resource, specifies the version number as well as other
information about the library. If you are using a third-party or in-house installation program, it is extremely
important that the program knows how to use this information.

For example, if you are deploying an application which uses the File Transfer Protocol library, the setup
program must determine if that library has already been installed on the target system. If it has, it must
compare the version resource information in the two libraries. It should only overwrite the library if the
version that you have included with your application is later than the one installed on the system. An
installation program which overwrites the library without checking the version number may cause the
application to fail unexpectedly on the end user's system.

Installation Directory
It is recommended that you install the SocketTools libraries in the same folder with the application that uses
them. It is not recommended that you install the libraries under the Windows system folder on an end-user
system. If you choose to install the libraries in the Windows system folder, you must ensure that the installer

makes the appropriate registry entries to indicate that they are shared files. Failure to do so can result in
the libraries being removed if the user uninstalls your application, which may cause other applications to
fail.

If your installer package creates a 32-bit executable and you're deploying a 64-bit application, the installer
must be capable of detecting that it is running on a 64-bit system and can disable filesystem redirection to
ensure that the 64-bit libraries are installed in the correct location. Consult the documentation for your
installer to determine if it is 64-bit compatible.

Windows Install Packages
To help simplify deployment, SocketTools includes MSI (Windows Installer) packages you can use to install
the SocketTools libraries on end-user systems. These packages are found in the Redist folder where you've
installed SocketTools.

Package Name Description

cstools11_library_x86.msi SocketTools 11 redistributable libraries for 32-bit applications. This installer is
what developers should use if they are targeting the x86 platform and want
their software to run on both 32-bit and 64-bit versions of Windows.

cstools11_library_x64.msi SocketTools 11 redistributable libraries for 64-bit applications. This installer
should only be used if 64-bit development tools were used to build the
application, and can only be installed on 64-bit versions of Windows.

If you’re redistributing a 32-bit application, then all you need is the x86 installer package. If you’re
redistributing a 64-bit application, then you need the x64 installer package. The installer packages will make
sure the libraries are installed in the correct shared Windows folders and will perform the appropriate
version checking.

If you have your own installer for your software, then you can redistribute those MSI packages with your
installation and use the msiexec command to perform the installation. For example, this would install and
register the 32-bit libraries with no UI displayed:

msiexec /qn /I cstools11_library_x86.msi

For the complete list of command line options for msiexec, refer to the Windows App Development
documentation.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

https://learn.microsoft.com/en-us/windows/win32/msi/command-line-options
https://learn.microsoft.com/en-us/windows/win32/msi/command-line-options

 Technical Support

Catalyst Development is committed to providing quality technical support for our products and we offer
several different support options designed to meet the needs of our customers. Technical support by email
is available for installation, development and redistribution issues related to the purchased product. There
are also paid support options available for customers who require additional assistance.

Standard Support
Registered developers have access to a variety of free technical support resources and we always
encourage developers to review our online documentation and knowledge base to determine if the
question has already been answered.

Frequently Asked Questions
A collection of answers to the most frequently asked questions about a product. General questions
about features, functionality and platform compatibility are answered here. The product FAQ is
also recommended reading for any developer who is evaluating our software.

Knowledge Base
A searchable online database of solutions to hundreds of common technical questions and
problems. The articles provide detailed information, including background information,
workarounds and the availability of updates to resolve the problem. This is the first place that most
developers should check to determine if the question or problem that they're having has already
been addressed.

Online Documentation
A comprehensive collection of online help, tutorials and whitepapers for our products. Our online
help is useful to evaluators who are interested in learning about how our components work and
for developers who would like access to the most current reference material.

Release Notes
Information about the latest changes, improvements and corrections made to the current version
SocketTools. The release notes can reflect changes that affect all SocketTools editions, as well as
updates to a component in a specific edition. If you are upgrading from a previous release, it's
recommended that you review the release notes.

Priority Support
For developers who require additional support, Priority Support offers a guaranteed, priority response to
technical support issues on the same business day. Corrections which require a source code change and/or
documentation change to resolve a problem will be made available as a hotfix at no additional charge, and
whenever there is a new product update or hotfix, you will be automatically notified by email.

Premium Support
For developers who have critical support needs, an annual Premium Support agreement offers priority
email support and a guaranteed four hour response time during business hours. This support option also
includes all of the other benefits of priority support, including hotfixes, source code analysis and assistance
with example code. In addition, Premium Support also includes free upgrades if a new version of the
product is released while your support agreement is active, ensuring that you're always working with the
latest version.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

https://sockettools.com/faq/
https://sockettools.com/knowledgebase/
https://sockettools.com/documentation/
https://sockettools.com/release-notes/

 License Agreement

This License Agreement is a legal agreement between you, either as an individual or a single entity
("Developer"), and Catalyst Development Corporation ("Catalyst") for the software product identified as
"SocketTools Library Edition" ("Software" or "Software Product"). The Software Product includes executable
programs, redistributable modules, controls, and dynamic link libraries ("Components" or "Software
Components"), electronic documentation, and may include associated media and printed materials.

Installing this Software Product on to a hard disk or any other storage device of a computer, or loading any
of the Components into the memory of any computer, constitutes use of the Software and shall
acknowledge your acceptance of the terms and conditions of this License Agreement and your agreement
to bound thereby.

1. GRANT OF LICENSE
Catalyst Development grants you as an individual, a personal, non-exclusive, non-transferable license to
install the Software Product using an authorized serial number. If you are an entity, Catalyst grants you the
right to appoint an individual within your organization to use and administer the Software Product subject
to the same restrictions enforced on individual users. You may not network the Software or otherwise use it
on more than one workstation or computer at the same time. Contact Catalyst for more information
regarding multi-developer site licensing.

You may install the Software Product on one or more workstations or computers expressly for the purposes
of evaluating the performance of the Software for a period of no more than thirty (30) days. If continued
use of the Software is desired after the evaluation period has expired, then the Software Product must be
purchased and/or registered with Catalyst Development for each computer or workstation. The Software
Product must be removed from all unregistered workstations or computers after the evaluation period has
expired.

2. COPYRIGHT
Except for the licenses granted by this agreement, all right, title, and interest in and to the Software Product
(including, but not limited to, all copyrights in any executable programs, modules, controls, libraries,
electronic documentation, text and example programs), any printed materials and copies of the Software
Product are owned by Catalyst Development. The Software Product is protected by copyright laws and
international treaty provisions. Therefore you must treat the Software Product like any other copyrighted
material except that you may (i) make one copy of the Software solely for backup or archival purposes, or
(ii) transfer the Software to a single hard disk, provided you keep the original solely for backup or archival
purposes. You may not copy any printed materials that may accompany the Software Product. All rights
not specifically granted in this Agreement, including Federal and International Copyrights, are reserved by
Catalyst Development.

3. REDISTRIBUTION
(a) In addition to the rights granted in section 1, you are granted the right to use and modify those
portions of the Software designated as "example code" for the sole purposes of designing, developing, and
testing your software product, and to reproduce and distribute the example code, along with any
modifications thereof, only in object code form, provided that you comply with section 3(c).

(b) In addition to the rights granted in section 1, you are granted a non-exclusive, royalty-free right to
reproduce and distribute the object code version of any portion of the Software Product, along with any
modifications thereof, in accordance with the above stated conditions.

(c) If you redistribute the sample code or redistributable components, you agree to: (i) distribute the
redistributables in object code only, in conjunction with and as a part of a software application product
developed by you which adds significant and primary functionality to the Software; (ii) not use Catalyst
Development's name, logo, or trademarks to market your software application product; (iii) include a valid

copyright notice on your software product ; (iv) indemnify, hold harmless, and defend Catalyst
Development from and against any claims or lawsuits, including attorney's fees, that arise or result from the
use or distribution of your software application product; (v) not permit further distribution of the
redistributables by your end user.

4. UPGRADES
If this copy of the Software is an upgrade from an earlier version of the Software, you must possess a valid
full license to a copy of an earlier version of the Software to install and/or use this upgrade copy. You may
continue to use each earlier version copy of the Software to which this upgrade copy relates on your
computer after you receive this upgrade copy, provided that, (i) the upgrade copy and the earlier version
copy are installed and/or used on the same computer only and the earlier version copy is not installed
and/or used on any other computer; (ii) you comply with the terms and conditions of the earlier version's
end user license agreement with respect to the installation and/or use of such earlier version copy; (iii) the
earlier version copy or any copies thereof on any computer are not transferred to another computer unless
all copies of this upgrade copy on such computer are also transferred to such other computer; and (iv) you
acknowledge and agree that any obligation Catalyst may have to support and/or offer support for the
earlier version of the Software may be ended upon availability of the upgrade.

5. LICENSE RESTRICTIONS
You may not rent, lease or transfer the Software. You may not reverse engineer, decompile or disassemble
the Software, except to the extent applicable law expressly prohibits the foregoing restriction. You may not
alter the contents of a hard drive or computer system to enable the use of the evaluation version of the
Software for an aggregate period in excess of the evaluation period for one license. Without prejudice to
any other rights, Catalyst Development may terminate this License Agreement if you fail to comply with the
terms and conditions of the agreement. In such event, you must destroy all copies of the Software Product.

6. CONFIDENTIALITY
(a) The Software contains information or material which is proprietary to Catalyst Development
("Confidential Information"), which is not generally known other than by Catalyst, and which you may
obtain knowledge of through, or as a result of the relationship established hereunder with Catalyst. Without
limiting the generality of the foregoing, Confidential Information includes, but is not limited to, the
following types of information, and other information of a similar nature (whether or not reduced to writing
or still in development): designs, concepts, ideas, inventions, specifications, techniques, discoveries, models,
data, object code, documentation, diagrams, flow charts, research, development, methodology, processes,
procedures, know-how, new product or new technology information, strategies and development plans
(including prospective trade names or trademarks).

(b) Such Confidential Information has been developed and obtained by Catalyst by the investment of
significant time, effort and expense, and provides Catalyst with a significant competitive advantage in its
business.

(c) You agree that you shall not make use of the Confidential Information for your own benefit or for the
benefit of any person or entity other than Catalyst, except for the expressed purposes described in this
section, in accordance with the provisions of this Agreement, and not for any other purpose.

(d) You agree to hold in confidence, and not to disclose or reveal to any person or entity, the Software,
other related documentation, your product Serial Number or any other Confidential Information
concerning the Software other than to such persons as Catalyst shall have specifically agreed in writing to
utilize the Software for the furtherance of the expressed purposes described in this section, in accordance
with the provisions of this Agreement, and not for any other purpose.

(e) You acknowledge the purpose of this section is to protect Catalyst Development's ability to limit the use
of the data and the Software generally to licensees, and to prevent use of Confidential Information
concerning the Software by other developers or vendors of software.

7. CONTINUATION OF SERVICE
Some features of the Software may require the use of remote servers under the control of Catalyst
Development to provide specific services. Catalyst makes no warranty as to the availability of these services
and reserves the right to discontinue these services at any time and without warning. These services may
only be accessed using the Application Programming Interfaces (API) provided by the Software Product
and access is limited to licensees and evaluation users of the Software.

We may suspend or terminate your access to these services without liability if (i) we reasonably believe that
the services are being used (or have been or will be used) in violation of the Agreement, (ii) we reasonably
believe that suspending or terminating your access is necessary to protect our network or our other
customers, or (iii) the suspension or termination is required by law. We will give you reasonable advance
notice of suspension or termination under this section and a chance to cure the grounds on which the
suspension or termination is based, unless we determine, in our reasonable commercial judgment, that an
immediate suspension or termination is necessary to protect Catalyst or its other customers from imminent
and significant operational or security risk.

8. LIMITED WARRANTY
If within thirty days of your purchase of this software product, you become dissatisfied with the Software for
any reason, you may return the software to Catalyst Development (or your dealer, if you did not purchase
it directly from Catalyst) for a refund of your purchase price. To return the Software, you must contact
Catalyst Development and obtain a Return Material Authorization (RMA) number. Catalyst will not accept
returns of opened or installed software without an RMA number. Returns may be subject to the deduction
from your purchase price of a restocking fee and all shipping costs.

CATALYST PROVIDES NO REMEDIES OR WARRANTIES, WHETHER EXPRESS OR IMPLIED, FOR ANY
SAMPLE APPLICATION CODE, TRIAL VERSION AND THE NOT FOR RESALE VERSION OF THE SOFTWARE.
ANY SAMPLE APPLICATION CODE, TRIAL VERSION AND THE NOT FOR RESALE VERSION OF THE
SOFTWARE ARE PROVIDED "AS IS".

CATALYST DISCLAIMS ALL OTHER WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO IMPLIED WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,
WITH RESPECT TO THE SOFTWARE, THE ACCOMPANYING WRITTEN MATERIALS, AND ANY
ACCOMPANYING HARDWARE.

9. LIMITATION OF LIABILITY
IN NO EVENT SHALL CATALYST OR ITS SUPPLIERS BE LIABLE FOR ANY DAMAGES WHATSOEVER
(INCLUDING, WITH LIMITATION, INCIDENTAL, CONSEQUENTIAL, SPECIAL, OR EXEMPLARY DAMAGES OR
LOST PROFITS, BUSINESS INTERRUPTION, OR OTHER PECUNIARY LOSS) ARISING OUT OF THE USE OR
INABILITY OF THIS CATALYST PRODUCT, EVEN IF CATALYST HAS BEEN ADVISED OF SUCH DAMAGES.

APART FROM THE FOREGOING LIMITED WARRANTY, THE SOFTWARE PROGRAMS ARE PROVIDED "AS-
IS", WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED. THE ENTIRE RISK AS TO THE
PERFORMANCE OF THE PROGRAMS IS WITH THE PURCHASER. CATALYST DOES NOT WARRANT THAT
THE OPERATION OF THE PROGRAMS WILL BE UNINTERRUPTED OR ERROR-FREE. CATALYST ASSUMES
NO RESPONSIBILITY OR LIABILITY OF ANY KIND FOR ERRORS IN THE PROGRAMS OR DOCUMENTATION,
OF/FOR THE CONSEQUENCES OF ANY SUCH ERRORS. THE LAWS OF THE STATE OF CALIFORNIA
GOVERN THIS AGREEMENT.

10. GOVERNMENT-RESTRICTED RIGHTS
United States Government Restricted Rights. The Software and related documentation are provided with
RESTRICTED RIGHTS. Use, duplication, or disclosure by the Government is subject to the restrictions set
forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013 or subparagraphs (c)(1) and (2) of the Commercial Computer Software - Restricted Rights at
48 CFR 52.227-19, as applicable. Manufacturer for such purposes is Catalyst Development Corporation,

56925 Yucca Trail #254, Yucca Valley, CA 92284

11. EXPORT CONTROLS
You agree to comply with all relevant regulations, including but not limited to those, of the United States
Department of Commerce and with the United States Export Administration Act to insure that the Software
is not exported in violation of United States law. You acknowledge that the Software is subject to export
regulations and agree that you will not export, re-export, import or transfer the software in violation of any
United States or other applicable laws, whether directly or indirectly, and you will not assist or facilitate
others in doing so. You acknowledge that you have the responsibility to obtain any export classifications
and licenses as may be required to comply with such laws.

12. PROHIBITED DESTINATIONS
The exportation, re-exportation, sale or supply of Catalyst products, software components or
documentation, directly or indirectly, from the United States or by a United States citizen wherever located,
to Cuba, Iran, North Korea, Sudan, Syria, or any other country to which the United States has embargoed
goods, is strictly prohibited without prior authorization by the United States Government. You represent
and warrant that neither the United States Bureau of Export Administration nor any other federal agency
has suspended, revoked or denied your export privileges. Catalyst products, software components or
documentation may not be exported or re-exported to anyone on the United States Treasury Department's
list of Specially Designated Nationals or the United States Department of Commerce Denied Person's List
or Entity List.

13. GOVERNING LAW
This License is governed by the laws of the State of California, without reference to conflict of laws
principles. Any controversy or claim arising out of or relating to this contract, or the breach thereof, shall be
settled by arbitration administered by the American Arbitration Association (“AAA”) under its Commercial
Arbitration Rules, and judgment on the award rendered by the arbitrator(s) may be entered in any court
having jurisdiction thereof. The arbitrator shall be a retired judge or attorney with at least 15 years
commercial law experience and shall be selected either by mutual agreement of the parties or by AAA’s
selection process. The parties shall be entitled to take discovery in accordance with the provisions of the
California Code of Civil Procedure, including but not limited to CCP §1283.05. The arbitration shall be held
in San Bernardino, California and in rendering the award the arbitrator must apply the substantive law of
the State of California.

14. GENERAL PROVISIONS
This License Agreement contains the complete agreement between the parties with respect to the subject
matter hereof, and supersedes all prior or contemporaneous agreements or understandings, whether oral
or written. You agree that any varying or additional terms contained in any purchase order or other written
notification or document issued by you in relation to the Software licensed hereunder shall be of no effect.
The failure or delay of Catalyst to exercise any of its rights under this Agreement or upon any breach of this
Agreement shall not be deemed a waiver of those rights or of the breach.

If any provision of this agreement shall be held by a court of competent jurisdiction to be contrary to law,
that provision will be enforced to the maximum extent permissible, and the remaining provisions of this
agreement will remain in full force and effect.

SocketTools and other trademarks contained in the Software are trademarks or registered trademarks of
Catalyst Development Corporation in the United States and/or other countries. Third party trademarks,
trade names, product names and logos may be the trademarks or registered trademarks of their respective
owners. You may not remove or alter any trademark, trade names, product names, logo, copyright or
other proprietary notices, legends, symbols or labels in the Software.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SocketTools 11

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Catalyst Development Corporation™, SocketTools™ and SocketWrench™ are trademarks of Catalyst
Development Corporation. Microsoft™, Windows™, Visual Basic™ and Visual Studio™ are trademarks or
registered trademarks of Microsoft Corporation.

Portions Copyright © 1993, 1994 The Regents of the University of California.
Portions Copyright © 1989 Massachusetts Institute of Technology.
Portions Copyright © 1995 Tatu Ylonen.
Portions Copyright © 1999, 2000 Neil Provos and Markus Friedl.
Portions Copyright © 1997, 2003 Simon Tatham.
Portions Copyright © 1995, 2005 Jean-loup Gailly and Mark Adler
Portions Copyright © 1991, 1992 RSA Data Security, Inc.

Information in this document is subject to change without notice. No part of this document may be
reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without
the express written permission of Catalyst Development Corporation.

The software described in this document is furnished under a license agreement. The software may be
used only in accordance with the terms of the agreement. It is against the law to copy the software except
as specifically allowed in the license agreement. No part of this document may be reproduced or
transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or
information storage and retrieval systems, for any purpose other than the purchaser's personal use, without
the express written permission of Catalyst Development Corporation.

 SocketTools 11 Library Edition Developers Guide

Introduction
1. Features
2. Getting Started

General Concepts
1. Protocols
2. Transmission Control Protocol
3. User Datagram Protocol
4. Domain Names
5. Service Ports
6. Sockets
7. Handles
8. Security Protocols
9. Digital Certificates

Development Overview
Application Design
Program Structure
Library Initialization
Asynchronous Connections
Secure Connections
Network Input/Output
Event Handling
Error Handling
Debugging Facilities

Language Support
1. Data Types
2. Unicode
3. Visual C++
4. Visual C#
5. Visual Basic .NET
6. Visual Basic 6.0
7. Delphi
8. PowerBASIC

Library Overview
Application Storage
Domain Name Service
File Encoding
File Transfer Protocol
GeoIP Location
Hypertext Transfer Protocol

file:///C|/Projects/cstools11/pdf/guide/library/introduction.html

Internet Control Message Protocol
Internet Message Access Protocol
Mail Message
Network News Transfer Protocol
News Feed
Post Office Protocol
Remote Command Protocol
Simple Mail Transfer Protocol
Telnet Protocol
Terminal Emulation
Text Messaging
Time Protocol
Whois Protocol
Windows Sockets (SocketWrench)

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SocketTools Features

The SocketTools libraries can be used in a wide variety of programming languages, including Visual C++,
Visual C#, Visual Basic.NET and Visual Basic 6.0, as well as C++ Builder, Delphi, Clarion and a variety of
other development environments. Any language which is capable of calling functions exported from a
Windows dynamic link library can take advantage of the SocketTools Library Edition.

Features of the SocketTools Library Edition include:

An efficient architecture designed to reduce the overhead of using other types of components such
as ActiveX controls. The libraries in the SocketTools Library Edition are not COM libraries, but rather
standard Windows dynamic link libraries which have been optimized for high performance and low
resource utilization on the Windows platform.
There are no external dependencies on third party libraries or components, and each DLL is
completely self-contained. We do not require that you redistribute large shared libraries like the
Microsoft Foundation Classes or Visual C++ runtime libraries. Not only does this make redistribution
of your software easier, it can reduce the overall footprint for applications which do not need to use
these libraries themselves.
An interface which is designed for broad-based compatibility with a variety of programming
languages, not just for C or C++ programmers. You won't see functions that only provide complex
interfaces, using data types or structures which are difficult or impossible to represent in other
programming languages. Following the model of the Windows API, the functions use handles
(integer values) to reference client sessions and most data types used as function parameters are
null-terminated strings, integers or byte arrays. In those cases where structures are used, they are
designed to be compatible with most languages. Simply put, if your programming language can call
functions in the Windows API, you can use the SocketTools Library Edition.
A comprehensive design which supports both high-level operations as well as lower-level functions
at the protocol level. For example, the File Transfer Protocol library has functions such as FtpPutFile
and FtpGetFile which allow an application to easily upload and download files in a single function
call. It also includes lower-level functions like FtpOpenFile to open a file on the server and access it
in a fashion similar to traditional file I/O operations.
Support for both synchronous (blocking) and asynchronous (non-blocking) operation depending on
the needs of the application. Asynchronous operation is supported by an event-driven model where
the application is notified of networking events by user-defined messages posted to the message
queue. Event notification can be enabled, disabled, suspended and resumed completely under the
control of the application, giving developers complete freedom in controlling their behavior of their
software. Synchronous operation is also fully supported, enabling developers to easily write
programs in "top down" programming style without the inherent complexity of an event-driven
model.
Support for function callbacks during high-level synchronous operations, such as downloading a file
or sending an email message. This allows an application to make changes to its user interface, such
as updating a progress bar. This enables the developer to take advantage of the simplicity of using
high-level functions without sacrificing the flexibility or features expected by the user.
The Library Edition enables applications to take advantage of complex security features, such as
support for the Secure Sockets Layer (SSL) and Transport Layer Security (TLS) standards and up to
256-bit encryption without requiring any knowledge of data encryption or certificate validation. The
libraries use the Windows CryptoAPI to provide security services, which means that there are no
third-party security libraries that must be installed by your users. Taking advantage of the security
features in the SocketTools Library Edition is as simple as setting a few options when connecting to

the server. The protocol negotiation, data encryption and decryption is handled transparently by the
library. From the perspective of the application developer, it is just as if it were a standard connection
to the server.
Libraries which are thread-safe and optimized for applications which use multiple threads. The
SocketTools libraries fully support multithreaded applications and implement an internal architecture
that insures that client sessions can be safely created and used by multiple threads. Applications can
create worker threads and pass client handles to those threads to perform some function and then
return the handle back to the original owner or simply terminate the connection.

The SocketTools Library Edition includes everything professional software developers need to create
complex programs that take advantage of the standard Internet protocols, enabling developers to focus on
their core application technology rather than the details of how to upload a file or retrieve an email
message from a server.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Getting Started

SocketTools is a large collection of libraries that can be used to create a variety of applications, so deciding
what protocols and libraries you'll need to use will be the first step. SocketTools covers several general
categories, and there is some cross-over between libraries in terms of functionality. We'll cover the most
common programming needs and discuss what protocols should be used. Note that this section doesn't
cover all of the libraries in SocketTools, and more specific information for each library is available within the
toolkit.

One thing you'll discover as you start to use SocketTools is that the API was intentionally designed to be
consistent between many of the libraries. For example, both the File Transfer Protocol and Hypertext
Transfer Protocol libraries can be used to upload and download files, and the functions for both of those
libraries are very similar. Once you've become comfortable working with one of the libraries, you'll find it
very easy to use the other, related libraries.

File Transfers

File Transfer Protocol
Hypertext Transfer Protocol

One of the most common requirements for an application is the ability to upload and download files, either
over the Internet or between systems on a local intranet. There are two core protocols which are used for
file transfers, the File Transfer Protocol (FTP) and the Hypertext Transfer Protocol (HTTP). The decision as to
which protocol to use largely depends on whether or not the program must also perform any type of file
management on the server. Because many of the functions in the FTP and HTTP APIs are similar, you may
wish to use both and simply give your users an option as to which protocol they prefer to use.

If your program needs to upload files or manage the files on the server, we recommend that you use FTP.
In addition to uploading and downloading files, FTP can be used to rename or delete files, create
directories, list the files in a directory and perform a variety of other functions. On the other hand, if you
primarily need to just download files, HTTP can be a better choice. The protocol is simpler and you're less
likely to encounter some of the issues that can arise when using FTP from behind a firewall.

It is also an option to use FTP to upload and manage files and HTTP to download files within the same
program. The important thing to keep in mind is that if you want to use HTTP and need to upload files, you
must make sure that the server has been configured for it. Most web servers do not support the ability to
upload files by default; it requires the administrator to specifically enable that functionality.

World Wide Web

Hypertext Transfer Protocol

If you need to access documents or execute scripts on a web server, you'll want to use the Hypertext
Transfer Protocol (HTTP) library. You can use the library to download files and post data to scripts. The
library also supports the ability to upload files, either using the PUT command or by using the POST
command, which is the same method used when selecting a file to upload using a form. The library can
also be used to execute custom commands, allowing your application to take advantage of features like
WebDAV, a distributed authoring extension to HTTP.

Web Services

Application Storage Service
GeoIP Location Service

Text Messaging Service

SocketTools provides secure services that you can use to store and manage application data, obtain
geographical location information based on an IP address, and send text messages through SMS gateways.
These services use secure, encrypted connections to our servers, and our Web Services library provides a
high-level interface to the underlying RESTful service APIs which are used.

Electronic Mail

Domain Name Services Protocol
Internet Message Access Protocol
Mail Message Library
Post Office Protocol
Simple Mail Transfer Protocol

There are a number of SocketTools libraries which can be used by an application that needs to send email
messages or retrieve them from a user's mailbox. The email related libraries can be broken into three
groups, those that deal primarily with managing and retrieving messages for a user, those which are used
to send messages and those which can be used for either purpose.

The two principal protocols used to manage a user's email are the Post Office Protocol (POP3) and the
Internet Message Access Protocol (IMAP). POP3 is the protocol that the majority of Internet Service
Providers (ISP) use to give their customers access to their messages. It is primarily designed to enable an
application to download the messages from the mail server and store them on the local system. Once all of
the messages have been downloaded, they are deleted from the server. The user's mailbox is essentially
treated as a temporary storage area.

On the other hand, IMAP is designed to allow the application to manage the messages on the server. You
can create new mailboxes, move messages between mailboxes and search for messages. Because IMAP
can be used to access specific parts of a message, it's not necessary to download the entire message if you
just want to read a specific part of it. In terms of the SocketTools APIs, it's useful to think of the functions in
the IMAP library as a superset of those in the POP3 library. You'll find that functions used for accessing
messages are very similar, but the IMAP library contains additional functions for managing mailboxes and
performing operations that are specific to that protocol, such as the ability to search for messages.

To send an email message to someone, the protocol that you'll use is the Simple Mail Transfer Protocol
(SMTP). The SocketTools library supports the standard implementation of this protocol, along with many of
the extensions that have been added since its original design. Extended SMTP (ESMTP) provides features
such as authentication, delivery status notification, secure connections using SSL/TLS and so on. Another
library that you may use is the Domain Name Services (DNS) library, which your application can use to
determine what servers are responsible for accepting mail for a particular user.

Common to both sending and receiving email messages is the need to be able to create and process those
messages. An email message has a specific structure which is defined by a number of standards,
collectively called the Multipurpose Internet Mail Extensions (MIME). The SocketTools Mail Message library
can be used to create messages in the format, as well as parse existing messages so that you application
can access the specific information that it needs. For example, you can use this library to attach files to a
message as well as extract a specific file attachment from a message and store it on the local system.

Terminal Sessions

Rlogin Protocol
Secure Shell Protocol

Telnet Protocol
Terminal Emulation

If you need to establish an interactive terminal session with a server, there are two protocols that you can
use. The most common is the Telnet Protocol; however, there is also the Rlogin protocol which is part of
the Remote Command library. Either of these protocols are typically used in conjunction with the Terminal
Emulation library, which provides ANSI and DEC VT-220 terminal emulation functions. Used together, the
user can login and interact with the server in the same way that they would use a console or character
based terminal.

Newsgroups

File Encoding Library
Mail Message Library
Network News Transfer Protocol

If you need to access newsgroups, the Network News Transfer Protocol will enable you to connect, list,
retrieve and post articles. Because news articles have a format that is very similar to email messages, the
Mail Message library can be used to parse articles that you've downloaded or create new articles to be
posted. If you need to attach a file to the article that you're posting, the File Encoding library can be used
to encode the file using the yEnc encoding algorithm, which has become the de facto standard on
USENET.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 General Concepts

This section of the developer's guide will cover the core networking protocols along with the general
concepts related to Internet programming. Although it is not necessary to understand the lower level
details of network programming in order to use SocketTools, it is useful to be familiar with the basic
concepts and terminology.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Application Protocols

Throughout the documentation, you will see the word "protocols" mentioned. There are two general types
of protocols that will be discussed in this developer's guide. The first type of protocol will be referred to as
networking protocols. They are lower level protocols which define how data is exchanged between two
systems. The two networking protocols that will be discussed are the User Datagram Protocol (UDP) and
the Transmission Control Protocol (TCP).

Then there are what we will call the application protocols, which use the networking protocols to
communicate. Application protocols deal with a specific type of functionality. For example, the File Transfer
Protocol (FTP) is used to upload and download files, while the Simple Mail Transfer Protocol (SMTP) is used
to send email messages. Conceptually, you can think of the networking protocols as defining the rules for
how programs can communicate with one another over the Internet. The application protocols operate at
a higher level, defining the rules for how a specific kind of task can be carried out, such as transferring a file
from one computer to another.

The application protocols are defined in standards documents called RFCs (Request For Comments) which
are maintained by the Internet Engineering Task Force. The following protocols standards are implemented
by the SocketTools components:

RFC Description

792 Internet Control Message Protocol

822 Standard for the Format of ARPA Internet Text Messages

854 Telnet Protocol Specification

868 Time Protocol

954 Nicname/Whois Protocol

959 File Transfer Protocol (FTP)

977 Network News Transfer Protocol

1034 Domain Name Services

1055 Serial Line IP (SLIP)

1282 Rlogin

1288 Finger User Information Protocol

1579 Firewall-Friendly FTP

1661 The Point-to-Point Protocol (PPP)

1738 Uniform Resource Locators

1869 SMTP Service Extensions

1939 Post Office Protocol Version 3

1945 Hypertext Transfer Protocol 1.0

1951 Deflate Compressed Data Format Specification

2045 Multipurpose Internet Mail Extensions (Part One)

2046 Multipurpose Internet Mail Extensions (Part Two)

http://www.ietf.org/rfc/rfc792.txt
http://www.ietf.org/rfc/rfc822.txt
http://www.ietf.org/rfc/rfc854.txt
http://www.ietf.org/rfc/rfc868.txt
http://www.ietf.org/rfc/rfc954.txt
http://www.ietf.org/rfc/rfc959.txt
http://www.ietf.org/rfc/rfc977.txt
http://www.ietf.org/rfc/rfc1034.txt
http://www.ietf.org/rfc/rfc1055.txt
http://www.ietf.org/rfc/rfc1282.txt
http://www.ietf.org/rfc/rfc1288.txt
http://www.ietf.org/rfc/rfc1579.txt
http://www.ietf.org/rfc/rfc1661.txt
http://www.ietf.org/rfc/rfc1738.txt
http://www.ietf.org/rfc/rfc1869.txt
http://www.ietf.org/rfc/rfc1939.txt
http://www.ietf.org/rfc/rfc1945.txt
http://www.ietf.org/rfc/rfc1951.txt
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2046.txt

2047 Multipurpose Internet Mail Extensions (Part Three)

2048 Multipurpose Internet Mail Extensions (Part Three)

2228 FTP Security Extensions

2616 Hypertext Transfer Protocol 1.1

2821 Simple Mail Transfer Protocol (SMTP)

2980 Common NNTP Extensions

3501 Internet Message Access Protocol Version 4

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

http://www.ietf.org/rfc/rfc2047.txt
http://www.ietf.org/rfc/rfc2048.txt
http://www.ietf.org/rfc/rfc2228.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2821.txt
http://www.ietf.org/rfc/rfc2980.txt
http://www.ietf.org/rfc/rfc3501.txt

 Transmission Control Protocol

When two computers wish to exchange information over a network, there are several components that
must be in place before the data can actually be sent and received. Of course, the physical hardware must
exist, which is typically either a network interface card (NIC) or a serial communications port for dial-up
networking connections. Beyond this physical connection, however, computers also need to use a protocol
which defines the parameters of the communication between them. In short, a protocol defines the "rules
of the road" that each computer must follow so that all of the systems in the network can exchange data.
One of the most popular protocols in use today is TCP/IP, which stands for Transmission Control
Protocol/Internet Protocol.

By convention, TCP/IP is used to refer to a suite of protocols, all based on the Internet Protocol (IP). Unlike
a single local network, where every system is directly connected to each other, an internet is a collection of
networks, combined into a single, virtual network. The Internet Protocol provides the means by which any
system on any network can communicate with another as easily as if they were on the same physical
network. Each system, commonly referred to as a host, is assigned a numeric value which can be used to
identify it over the network. These numeric values are known as IP addresses, and are usually represented
as a string value that contains a series of numbers.

There are two versions of TCP/IP and two different IP address formats based on which version of the
protocol is being used. For Internet Protocol v4 (IPv4), addresses are 32 bits wide and are represented by a
sequence of four 8-bit numbers separated by periods. This is called dot-notation and looks something like
192.168.19.64. This is the address format that many developers are familiar with because IPv4 continues to
be the most commonly used version of the protocol. Internet Protocol v6 (IPv6) is the next generation of IP
and it supports a much larger address space as well as a number of other features. IPv6 addresses are 128
bits wide and represented by a sequence of hexadecimal values separated by colons. As expected, this
format is much longer than the simple dot-notation used by IPv4 address. A typical IPv6 address will look
something like fd7c:2f6a:4f4f:ba34::a32, although there are certain shorthand notations that can be used.
SocketTools supports both IPv4 and IPv6, and can automatically determine which version of the protocol
should be used based on the address. Because IPv4 is still widely used, if given a choice between using IPv4
or IPv6, the SocketTools components will choose IPv4 for backwards compatibility whenever possible.
However, an application can choose to exclusively use IPv6 if required.

When a system sends data over the network using the Internet Protocol, it is sent in discrete units called
datagrams, also commonly referred to as packets. A datagram consists of a header followed by
application-defined data. The header contains the addressing information which is used to deliver the
datagram to its destination, much like an envelope is used to address and contain postal mail. And like
postal mail, there is no guarantee that a datagram will actually arrive at its destination. In fact, datagrams
may be lost, duplicated or delivered out of order during their travels over the network. Needless to say, this
kind of unreliability can cause a lot of problems for software developers. What's really needed is a reliable,
straightforward way to exchange data without having to worry about lost packets or mixed data.

To fill this need, the Transmission Control Protocol (TCP) was developed. Built on top of IP, TCP offers a
reliable, full-duplex byte stream which may be read and written to in a fashion similar to reading and
writing a file. The advantages to this are obvious: the application programmer doesn't need to write code
to handle dropped or out-of-order datagrams, and instead can focus on the application itself. And
because the data is presented as a stream of bytes, existing code can be easily adopted and modified to
use TCP.

TCP is known as a connection-oriented protocol. In other words, before two programs can begin to
exchange data they must establish a connection with each other. This is done with a three-way handshake
in which both sides exchange packets and establishes the initial packet sequence numbers. The sequence
number is important because, as mentioned above, datagrams can arrive out of order; this number is used

to ensure that data is received in the order that it was sent. When establishing a connection, one program
must assume the role of the client, and the other the server. The client is responsible for initiating the
connection, while the server's responsibility is to wait, listen and respond to incoming connections. Once
the connection has been established, both sides may send and receive data until the connection is
terminated.

Most of the application protocols which are supported by SocketTools use TCP to communicate over the
Internet or local intranet. However, it is important to remember that it is not necessary for you to
understand how TCP/IP works at the lowest levels in order to use SocketTools. Complex operations such as
performing checksums on packets of data to ensure they arrive intact are handled for you automatically. In
most cases, the SocketTools API provides functions which are similar to what you would use when reading
or writing to a file.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 User Datagram Protocol

Unlike TCP, the User Datagram Protocol (UDP) does not present data as a stream of bytes, nor does it
require that you establish a connection with another program in order to exchange information. Data is
exchanged in discrete units called datagrams, which are similar to IP datagrams. In fact, the only features
that UDP offers over raw IP datagrams are port numbers and an optional checksum.

UDP is sometimes referred to as an unreliable protocol because when a program sends a UDP datagram
over the network, there is no way for it to know that it actually arrived at its destination. This means that the
sender and receiver must typically implement their own application protocol on top of UDP. Much of the
work that TCP does transparently (such as generating checksums, acknowledging the receipt of packets,
retransmitting lost packets and so on) must be performed by the application itself.

With the limitations of UDP, you might wonder why it's used at all. UDP has the advantage over TCP in two
critical areas: speed and packet overhead. Because TCP is a reliable protocol, it goes through great lengths
to insure that data arrives at its destination intact, and as a result it exchanges a fairly high number of
packets over the network. UDP doesn't have this overhead, and is considerably faster than TCP. In those
situations where speed is paramount, or the number of packets sent over the network must be kept to a
minimum, UDP is the solution.

A few of the SocketTools libraries use UDP as the method of communicating with a server. The Domain
Name Services library and the Time Protocol library both use UDP to request information from a server.
The amount of data exchanged is typically very small, and UDP is well suited for those protocols. In
addition, the Internet Control Message Protocol uses a special type of IP datagram in order to determine
information about a server, such as whether it is reachable and the amount of time that it takes to
exchange data with the local system. More information about these protocols will be presented later in the
Developer's Guide.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Domain Names

An application must have several pieces of information to exchange data with a program running on
another system. The first is the Internet Protocol (IP) address of the computer system on which the other
program is running. Although this address is internally represented by a numeric value (either 32 or 127
bits wide), it is typically identified by a logical name called a host name or fully qualified domain name. Host
names are divided into several parts separated by periods, called domains. The structure is hierarchical,
with the top-level domains defining the type of organization that network belongs to, and sub-domains
further identifying the specific network. Everyone who has used a web browser is familiar with host names
such as www.microsoft.com.

In this figure, the top-level domains are "gov" (government agencies), "com" (commercial organizations),
"edu" (educational institutions) and "net" (Internet service providers). The fully qualified domain name is
specified by naming the host and each parent sub-domain above it, separating them with periods. For
example, the fully qualified domain name for the "jupiter" host would be "jupiter.sockettools.com". In other
words, the system "jupiter" is part of the "catalyst" domain (a company's local network) which in turn is part
of the "com" domain (a domain used by all commercial enterprises).

To use a host name instead of an IP address to identify a specific system or network, there must be some
correlation between the two. This is accomplished by one of two means: a local host table or a name
server. A host table is a text file that lists the IP address of a host, followed by the names by which it is
known. A name server is a system which can be presented with a host name and will return that host's IP
address. This approach is advantageous because the host information for the entire network is maintained
in one centralized location, rather than being scattered over every system on the network.

The standard protocol used to convert a host name into an IP address is called the Domain Name Service
(DNS) protocol. All of the SocketTools networking libraries have the ability to automatically convert
between host names and IP addresses, and in most cases they can be used interchangeably. For example,
those functions which require that you specify the name of a server to connect to, you can use either its
host name or its IP address. In addition, SocketTools has a library that specifically supports the Domain
Name Service protocol, enabling your application to send specialized queries to the name server. Later in
the Developer's Guide there will be information about how DNS can be used in a number of different types
of applications.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Service Ports

In addition to the IP address of the server, an application also needs to know how to address the specific
program that it wishes to communicate with. This is accomplished by specifying a service port, a number
between 1 and 65535 that uniquely identifies an application running on the system. A port can be referred
to by its number, or by a name that is associated with that number. Like hostnames, service names are
usually matched to port numbers through a local file, commonly called services. This file lists the logical
service name, followed by the port number and protocol used by the server.

A number of standard service names are used by Internet-based applications and these are referred to as
Well Known Services. These services are defined by a standards document and include common
application protocols used for transferring files, accessing documents on a webserver or sending and
receiving email messages. In most cases, when connecting to a service using the SocketTools libraries, they
will default to the appropriate port number for that server. For example, the File Transfer Protocol library
has default port values for standard and secure connections. Specifying a different port number is only
necessary if you know that the server has been configured to use a non-standard port number.

It is important to remember that a service name or port number is a way to address an application running
on a server. Because a particular service name is used, it doesn't guarantee that the service is available, just
as dialing a telephone number doesn't guarantee that there is someone at home to answer the call.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Sockets

The previous sections described what information a program needs to communicate over a TCP/IP
network. The next step is for the program to create what is called a socket, a communications end-point
that can be likened to a telephone. However, creating a socket by itself doesn't let you exchange
information, just like having a telephone in your house doesn't mean that you can talk to someone by
simply taking it off the hook. You need to establish a connection with the other program, just as you need
to dial a telephone number, and to do this you need the address of the application that you want to
connect to. This address consists of three key parts: the protocol family, Internet Protocol (IP) address and
the service port number.

We've already talked about the IP address and service port, but what's the protocol family? It's a number
which is used to logically designate a group of related protocols. Since the socket interface is general
enough to be used with several different protocols, the protocol family tells the underlying network
software which protocol is being used by the socket. In our case, the Internet Protocol family will always be
used when creating sockets. With the protocol family, IP address of the system and the service port number
for the program that you want to exchange data with, you're ready to establish a connection.

For the most part, it is not necessary for applications which use the SocketTools libraries to directly make
use of the low-level socket interface in order to communicate over the Internet. Instead, SocketTools
provides a higher level of abstraction where a connection is identified using a handle to a client session.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SocketTools Handles

Throughout the documentation for the SocketTools functions, you will see references to handles. Windows
developers are generally familiar with the concept of handles since they are used throughout the Windows
API. In simplest terms, a handle is an unsigned integer value that is used to represent some object in
memory. The actual value of the handle is not important and may refer to the memory address of a
specific object, or it may be an index into a table of objects. When a handle is created, its value is unique
for the life of each object created by the process. It is important that an application never make
assumptions about the specific value of a handle. Handle values may be reused for objects that have been
destroyed, and there is no guarantee that handle values are assigned in any particular order.

In SocketTools, handles are commonly used to refer to client sessions. A session begins when the library is
used to establish a connection with the server and ends when that connection is terminated. The client
handle is defined as an unsigned integer type called HCLIENT and is returned by those functions which
create a new connection. When the connection is terminated, the handle is released, along with any system
resources that were allocated for it. An unused handle is identified by the constant INVALID_CLIENT. If a
function returns this value instead of a valid handle, it indicates that the function has failed. It is important
to note that the handles returned by the SocketTools functions are not necessarily socket handles and
cannot be used interchangeably with the Windows Sockets API or other Windows kernel functions.

When your application targets the x86 platform, SocketTools handles are 32 bits wide. When you target the
x64 platform, the handles are 64 bits wide, however only the lower 32 bits are significant. This means that it
is safe to cast a 64-bit SocketTools handle to a 32-bit integer value and then back to a handle if necessary.
It is recommended that you always use the appropriate handle type in your code, such as HCLIENT.
Assumptions about the width of a handle in your program can lead to portability problems if you ever
decide to create a 64-bit version of your application.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Security Protocols

Security and privacy is a concern for everyone who uses the Internet, and the ability to provide secure
transactions over the Internet has become one of the key requirements for many business applications. The
SocketTools Library Edition has the ability to establish secure connections with servers. Although most of
the technical issues such as data encryption are handled internally by the library, a general understanding
of the standard security protocols is useful when designing your own applications.

When you establish a connection to a server over the Internet (for example, a web server), the data that
you exchange is typically routed over dozens of computer systems until it reaches its destination. Any one
of these systems may monitor and log the data that it forwards, and there is no way for either the sender
or receiver of that data to know if this has been done. Exchanging information over the Internet could be
likened to talking with someone in a public restaurant. Anyone can choose to listen to what you're saying,
and unless they introduce themselves, you have no idea who they are or if they've even heard what you
said.

To ensure that private information can be securely exchanged over the Internet, two basic requirements
must be met: there must be a way to send that information so that only the sender and the receiver can
understand what is being exchanged, and there must be a way for them to determine that they each are in
fact who they claim to be. The solution to the first problem is to use encryption, where a key is used to
encrypt and decrypt the data using a mathematical formula. The second problem is addressed by using
digital certificates. These certificates are issued by a certificate authority (CA), which is a trusted third-party
organization who verifies the individual or company which is issued a certificate are who they claim to be.
These two concepts, encryption and digital certificates, are combined to provide the means to send and
receive secure information over the Internet.

The Secure Sockets Layer (SSL) protocol was originally developed by Netscape as a way to exchange
information securely over the Internet, and is no longer widely used. Improvements to SSL have resulted in
the Transport Layer Security (TLS) protocol, and it has become the the standard for secure communications
over the Internet. Both of these protocols are designed to allow a private exchange of encrypted data
between the sender and receiver, making it unreadable by an intermediate system. Using the restaurant
analogy, it would be as if two people were speaking in a language that only they could understand.
Although someone sitting at the next table could listen in on the conversation, they wouldn't have any idea
what was actually being said.

A secure connection, for example between a web browser and a server, begins with what is called the
handshake phase where the client and server identify themselves. When the client first connects with the
server it sends a block of data to the server and the server responds with its digital certificate, along with its
public key and information about what type of encryption it would like to use. Next, the client generates a
master key and sends this key to the server, which authenticates it. Once the client and server have
completed this exchange, keys are generated which are used to encrypt and decrypt the data that is
exchanged. With the handshake completed, a secure connection between the client and server is
established. SocketTools handles the handshake phase of the secure connection automatically and does
not require any additional programming. If a secure connection cannot be established, an error is returned
and the network connection is closed.

After the handshake phase has completed, the client may choose to examine the digital certificate that has
been returned by the server. The information contained in the certificate includes the date that it was
issued, the date that it expires, information about the organization who issued the certificate (called the
issuer) and to whom the certificate was issued (called the subject of the certificate). The client may also
validate the status of the certificate, determining if it was issued by a trusted certificate authority and was
returned by the same company or individual it was issued to. There may be certain cases where the client
determines that there's a problem with the certificate (for example, if the certificate's common name does

not match the domain name of the server), but chooses to continue communicating with the server. Note
that the connection with the server will still be secure in this case. In other cases, for example if the
certificate has expired, the client may choose to terminate the connection and warn the user.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Digital Certificates

With secure connections, digital certificates are used to exchange public keys for data encryption and to
provide identification information. This information typically includes the organization that was issued the
certificate, its physical location and so on. The certificate itself is used to validate that the public key actually
belongs to the entity it was issued to. The certificate also includes information about the Certification
Authority (CA) who issued the certificate. The CA is responsible for validating the information provided by
that organization, and then digitally signing the certificate. This establishes a relationship between the two
so that when others validate the certificate, they know that it has been issued by a trusted third-party. For
example, let's say that a company wants to implement a secure site so people can order products online.
They would provide information about their company (organizational contacts, financial information and so
on) to a trusted third party organization such as Verisign or Thawte. That organization would then verify
that the information they provided was complete and correct, and then would issue a signed certificate to
them, which they install on their server. When a user connects to their server and checks the certificate,
they see that it was issued by a trusted Certification Authority. In essence, the user is saying that because
they trust the Certificate Authority, and the Certificate Authority trusts the company to whom the certificate
was issued, they will trust the company as well.

To establish this relationship between the Certification Authority and the organization a certificate is issued
to, there needs to be a root certificate which has been signed by the same trusted organization. This serves
as the beginning of the certification path that is used to validate signed certificates. Using the above
example, on the user's system there is a root certificate for Verisign, signed by Verisign. Root certificates are
maintained in the local system's certificate store which is essentially a database of digital certificates. This
database is structured so that different types of certificates can be organized in one central location on the
system, and a standard interface is provided to enumerate and validate these certificates. Certificates are
associated with a store name, allowing them to be easily categorized. For example, root certificates are
stored under the name "Root", while a user's personal certificates (along with their private keys) are stored
under the name "My".

When the Windows operating system is installed, there is a certificate store that contains the root
certificates for the major Certification Authorities. However, there are situations where additional certificates
may need to be added to the system. To facilitate this, there is a tool called CertMgr.exe which allows a
user to install certificates, as well as export or remove certificates from the certificate store. When managing
your system's certificate store, you should take the same care that you do when making changes to the

system registry. Inadvertently removing a certificate could result in errors when attempting to access secure
systems.

In general, the one situation where certificate management becomes important is when you want to
develop your own secure server. This is because your server needs to have a signed certificate to send to
the client in order to establish the secure connection. For general-purpose commercial applications, this
generally means you would need to obtain a certificate that has been signed by a Certification Authority
such as Verisign or Thawte. This certificate would then be installed in the certificate store on the server.
However, for development purposes it may be inconvenient to purchase a certificate. There also may be
situations in which an organization wishes to function as its own Certification Authority and issue certificates
themselves. This allows the organization to control how certificates are managed and can be ideal for
secure applications that are designed for the corporate intranet. A utility for creating self-signed root
certificates and server certificates is included with SocketTools.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SocketTools Development

The SocketTools Library Edition provides a comprehensive collection of over eight hundred functions for
performing a variety of Internet related programming tasks. Although the size of the SocketTools API may
appear daunting, once you begin using the libraries in your own applications you'll find that the various
libraries are designed to work together in a cohesive fashion. After you've familiarized yourself with one
library, the others will become much simpler to use.

Throughout the Developer's Guide there are some general concepts and terminology used that are
essential to understanding how SocketTools works. Each of these concepts is explored in detail, however a
general, broad overview can also be useful when you are just getting started.

Protocols
A protocol, in terms of how the word is used in SocketTools, refers to the rules for how programs
communicate with one another over a network. There are low level networking protocols such as
TCP and UDP, as well as high level application protocols like FTP and HTTP. It can be helpful to
think of a protocol as a sort of language; for two programs to communicate with each other, they
must agree upon a protocol and understand how it is implemented.

Connections
The process of establishing a connection enables one program to communicate with another.
Connection requests are made by client applications, and accepted by server applications. When
the server accepts the connection request, the connection is completed. When you use the
Connect function to successfully establish a connection to a server, a client session is created.
SocketTools uses handles to reference specific sessions, and an application can create multiple
client/server sessions if necessary.

Sessions
A session refers to an active connection between a client and server program. This term is typically
used interchangeably with connection; however in some cases a single session may involve
multiple network connections. For example, the File Transfer Protocol library establishes one
connection, called the command channel, when the client initially connects to the server. However,
when a file is being uploaded or downloaded, a second connection called the data channel is
created just for that transfer. When the transfer completes, the second connection is terminated
while the original command channel connection remains active. Even though there are multiple
connections being made, SocketTools considers it to be a single client session. An active session is
referenced by the handle which the Connect function returns to your program. When the session
is no longer needed, the library's Disconnect function will terminate the connection to the server
and release the resources allocated for that session. After that point, the handle is no longer valid
and cannot be used in subsequent function calls.

Authentication
Many servers require that clients authenticate themselves by providing user names and passwords.
Different application protocols implement several different types of authentication, and some
protocols may support more than one authentication method. The SocketTools API provides one
of two general types of authentication functions, depending on the protocol. For protocols which
require the client to authenticate itself, the libraries will provide a Login function. Examples of this
are FtpLogin and ImapLogin. For protocols where authentication is optional, the libraries will
provide an Authenticate function. Examples of this are HttpAuthenticate and
SmtpAuthenticate. Refer to the technical reference for the specific protocol to determine if
authentication is required.

Events
Developers who use visual programming languages like Visual Basic will find the concept of events
and event handling to be very familiar. In general terms, the SocketTools documentation uses
"event" to refer to a mechanism where the library notifies the client that an operation has
completed, some action has taken place or a change in status has occurred. SocketTools
implements events by posting user-defined messages to the application and/or invoking callback
functions that have been registered by the client. Events can be handled by the client either by
processing the messages in the application's message queue, or by implementing callback
functions and registering those functions with the library. One example of an event is a connection
event, which is generated whenever an asynchronous network connection is completed by the
client. Another example is a progress event, which is generated periodically by the library to
inform the client of its progress as it sends or receives data. To determine what events are
available in a specific library, refer to the documentation for its RegisterEvent function. More
specific information about event handling is provided later in this guide.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Application Design

The SocketTools API is designed to be flexible enough to address the needs of developers who have very
basic needs, as well as those who have more complex requirements. As a result, the functions for a library
can be broken down into two general categories: a high level interface to perform common tasks, and a
lower level interface which provides more control at the expense of being somewhat more complicated
and requiring more coding. For example, consider the Hypertext Transfer Protocol (HTTP) library which has
a variety of high level functions such as HttpGetFile, HttpPostData and so on. Using these functions, your
application can perform the most common tasks for that protocol with a minimum of coding. You don't
need to even understand the basics of how the protocol works, or what the library is doing. The high level
functions allow you to program against the API as though it is a "black box", where you can provide the
input and process the output without concerning yourself with the details of what's going on behind the
scenes.

However, in some cases it's necessary for an application to have more direct control over how the library
operates or to take advantage of features that aren't explicitly supported by one of the higher level APIs. As
an example, the HTTP library also has functions like HttpCommand which enable you to send custom
commands to a web server. Normally, for operations like retrieving a file or posting data to a script, this
isn't necessary. But if your application needs to use WebDAV, a set of extensions to the HTTP protocol to
support distributed web authoring, then the lower level functions like HttpCommand enable you to do
this.

If you are generally new to Internet programming or are just getting started with the SocketTools Library
Edition, we generally recommend that you begin familiarizing yourself with the higher level functions using
a basic synchronous (blocking) connection in a single-threaded application. Once you become more
familiar with how the library works, then you can move on to more complex applications which leverage
the lower level API functions, taking advantage of multithreading, asynchronous networking connections
and so on.

One of the common pitfalls that developers can encounter with a large toolkit like SocketTools is the
inclination to over-design the application from the start, and then become frustrated because they don't
yet have a clear picture of how all the pieces fit together. Start out with a basic design and then as you
become more familiar with how the SocketTools libraries work, expand on it. Developers who are used to
working with the Windows API will find themselves right at home, but even if you are new to Windows
programming, you'll find that developing applications with SocketTools will soon become second nature.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Program Structure

Applications which use the SocketTools libraries will tend to have a similar structure, regardless of the
specific protocol or programming language. While the details vary based on the library being used, the
implementation can be broken down into several general steps:

Initializing the library
Connecting to the server
Authenticating the client
Performing one or more operations
Disconnecting from the server
Uninitializing the library

Initialization prepares the library to be used by your program, and is the first step that must be performed
before you can use any other functions. Next, a connection is established with the server using the
information provided by your program. For example, most of the connection functions require that you
provide a host name, port number, a timeout period for synchronous operations and any additional
options.

When the connection has completed, you will be given a handle to reference that client session; most of
the SocketTools API require that you provide the function with a handle to identify the client session.

If the protocol requires that you authenticate the client in order to use the service, your application needs
to provide this information. Once the client has been authenticated, it can then perform one or more
operations, such as downloading a file, sending an email message and so on.

After you have finished, you disconnect from the server. Finally, before your program terminates, you
uninitialize the library which causes it to perform any necessary housekeeping prior to releasing any system
resources which were allocated on behalf of your program.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Library Initialization

When you begin developing your application using one of the SocketTools libraries, the first thing that you
must do is initialize the library. This is done by calling the Initialize function for that library in your
application's main thread. For example, the File Transfer Protocol library has a function named
FtpInitialize, the Hypertext Transfer Protocol library has a function named HttpInitialize and so on. The
one exception to this is the File Encoding library, which does not require initialization.

The initialization function serves two purposes. It loads the Windows networking libraries required to
establish a connection and it validates the runtime license key that you provide. The runtime license key is a
string of characters which identifies your license to use and redistribute the SocketTools libraries. It is
unique to your product serial number and must be used when redistributing your application to an end-
user.

Developers who are evaluating SocketTools will not have a runtime license key and must pass an empty
string or a null pointer. This will enable the library to load on the development system during the evaluation
period, but will prevent the library from being redistributed to an end-user until a license has been
purchased.

If you install the product with a serial number, the runtime license key will be automatically created for you
during the installation process. If you have installed an evaluation copy of SocketTools and then purchased
a license, the license key can be created using the License Manager utility that was included with
SocketTools. Simply select the License | Header File menu option and select the programming language
that you are using. If your language is not listed, select Text File, which will create a simple text file with your
license key.

The runtime license key is normally stored in the Include folder where you installed SocketTools and is
defined in a file named "csrtkey11" which can be included with your application. For example, C/C++
programmers would use the csrtkey11.h header file while Visual Basic programmers would use the
csrtkey11.bas module. The C++ header file would look something like this:

//
// SocketTools 11
// Copyright 2024 Catalyst Development Corporation
// All rights reserved
//
// This file is licensed to you pursuant to the terms of the
// product license agreement included with the original software
// and is protected by copyright law and international treaties.

#ifndef _INCLUDE_CSRTKEY8_H
#define _INCLUDE_CSRTKEY8_H

#ifndef UNICODE
#define CSTOOLS11_LICENSE_KEY ((LPCSTR)NULL)
#else
#define CSTOOLS11_LICENSE_KEY ((LPCWSTR)NULL)
#endif

#endif /* _INCLUDE_CSRTKEY8_H */

The macro CSTOOLS11_LICENSE_KEY specifies your runtime license key and this is what you would pass as
the first argument to the initialization function. For example, here is how a C program would initialize the
File Transfer Protocol library:

BOOL bInitialized;
bInitialized = FtpInitialize(CSTOOLS11_LICENSE_KEY, NULL);

if (!bInitialized)
{
 TCHAR szError[256];
 DWORD dwError;
 dwError = FtpGetLastError();
 FtpGetErrorString(dwError, szError, 256);
 MessageBox(NULL, szError, NULL, MB_OK|MB_TASKMODAL);
 return;
}

Note that in this case, the key is defined as NULL, which means that a runtime license key has not been
created yet. The FtpInitialize function would succeed when the program was executed on the development
system where the evaluation copy of SocketTools was installed, but would fail on another system. When a
license is purchased and the runtime license key is generated, the csrtkey11.h header file would be
replaced with the actual key value. After re-compiling your program, you would be able to redistribute the
application to other systems.

C++ programmers who are using the class wrappers are not required to explicitly initialize the libraries
because this is done automatically in the class constructor. Review the cstools11.h file which defines all of
the SocketTools classes to see how the constructor initializes the class.

For another example of how you can initialize the libraries, consider the Visual Basic module csrtkey11.bas
which defines the runtime license key:

'
' SocketTools 11 Build 2174
' Copyright 2024 Catalyst Development Corporation
' All rights reserved
'
' This file is licensed to you pursuant to the terms of the
' product license agreement included with the original software
' and is protected by copyright law and international treaties.
'
Public Const CSTOOLS11_LICENSE_KEY As String = ""

This is similar to the C/C++ header file and could either be included with your Visual Basic application or
you could simply copy the string into your application. The equivalent to the C code listed above would
look like this:

Dim bInitialized As Long
bInitialized = FtpInitialize(CSTOOLS11_LICENSE_KEY, 0)

If bInitialized = 0 Then
 Dim strError As String * 256
 Dim dwError As Long
 Dim nLength As Long
 dwError = FtpGetLastError()
 nLength = FtpGetErrorString(dwError, strError, 256)
 MsgBox Left(strError, nLength)
 Exit Sub
End If

In both examples, if the FtpInitialize function fails by returning a value of 0 (False), the program displays a
message box to the user that explains the error and then exits.

An application is only required to call a library's initialization function once, but it must be called for each
library that is used. If both the File Transfer Protocol and Hypertext Transfer Protocol libraries were being
used in the same application, it would be required to call both FtpInitialize and HttpInitialize at the
beginning of the program.

It is safe to call the initialization function more than once, but for each time that it is called, you must call
the Uninitialize function for that library before your program terminates. For example, if you called
FtpInitialize at the beginning of your program, you must call FtpUninitialize before your program ends.
The Uninitialize function performs any necessary housekeeping operations, such as returning memory
allocated for the library back to the operating system. If there are any open connections at the time that
the Uninitialize function is called, they will be aborted. After the library has been uninitialized, you must call
the initialization function again in order to use any of the library's other functions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Synchronous and Asynchronous Sockets

One of the first issues that you'll encounter when developing your application is the difference between
synchronous (blocking) and asynchronous (non-blocking) connections. Whenever you perform some
operation on a socket, it may not be able to complete immediately and return control back to your
program. For example, a read on a socket cannot complete until some data has been sent by the server. If
there is no data waiting to be read, one of two things can happen: the function can wait until some data
has been written on the socket, or it can return immediately with an error that indicates that there is no
data to be read.

The first case is called a synchronous or blocking socket. In other words, the program is "blocked" until the
request for data has been satisfied. When the server does write some data on the socket, the read
operation will complete and execution of the program will resume. The second case is called an
asynchronous or non-blocking socket, and requires that the application recognize the error condition and
handle the situation appropriately.

Programs that use asynchronous sockets typically use one of two methods when sending and receiving
data. The first method is called polling and the program periodically attempts to read or write data from
the socket, typically using a timer. The second method is to use what is called asynchronous event
notification. This means that the program is notified whenever a socket event takes place, and in turn can
respond to that event. For example, if the remote program writes some data to the socket, an event is
generated so that program knows it can read the data from the socket at that point. Events can be in the
form of Windows messages posted to the application's message queue, or as callback functions.

Synchronous Sockets
For historical reasons, the default behavior is for sockets to function synchronously and not return until the
operation has completed. However, blocking sockets in Windows can introduce some special problems in
single-threaded applications. To prevent the program from becoming non-responsive, the blocking
function will enter what is called a "message loop" where it continues to process messages sent to it by
Windows and other applications. Because messages are being processed, this means that the program can
be re-entered at a different point with the blocked operation parked on the program's stack. For example,
consider a program that attempts to read some data from the socket when a button is pressed. Because
no data has been written yet, it blocks and the program goes into a message loop. The user then presses a
different button, which causes code to be executed, which in turn attempts to read data from the socket,
and so on.

To resolve the general problems with blocking sockets, the Windows Sockets standard states that there
may only be one outstanding blocked call per thread of execution. This means that applications that are re-
entered (as in the example above) will encounter errors whenever they try to take some action while a
blocking function is already in progress. If the language supports the creation of threads, it is strongly
recommended that the program create worker threads to perform any socket I/O.

There are significant advantages to using blocking sockets. In most cases, the application design and
implementation is simpler, and raw throughput (the rate at which data is sent and received) is generally
higher with blocking sockets because it does not have to go through an event mechanism to notify the
application of a change in status. If you are using a programming language that supports multithreading,
then the use of synchronous sockets is typically the best choice. However, if your are using an older
language that does not provide support for multithreading, such as Visual Basic 6.0, and your program
needs to establish multiple simultaneous connections, then an asynchronous, event-driven design is more
appropriate.

Asynchronous Sockets
SocketTools facilitates the use of asynchronous sockets by generating events when appropriate. For

example, an event occurs whenever the server writes on the socket, which tells your application that there
is data waiting to be read.

In general, the use asynchronous sockets is preferred when you have a single-threaded application that
must establish multiple, simultaneous connections with a server. In that situation, the use of non-blocking
sockets avoids the restriction that prevents more than one outstanding socket operation in the thread and
can enable the program to remain more responsive to the user. Practically speaking, there are few
languages today that do not support multithreading, so this limitation tends to apply more to the legacy
languages such as Visual Basic 6.0.

Best Practices
If your programming language of choice does support multithreading, it is recommended that you create
worker threads to manage the sockets in your program. This leaves the main thread responsible for
handling the user interface, and the worker threads can handle the network communications. There are
some significant advantages to this approach:

The networking code is generally isolated from the user interface, only requiring that the main UI
thread be notified of the progress of the operation. For example, updating a progress bar control as
the contents of a file is being downloaded. This tends to minimize any clutter in the UI code and
creates a clear separation of functionality that will make the program easier to modify and maintain.
Isolating the networking code in a worker thread ensures that there are no conflicts between other
threads, including the main UI thread. Each thread effectively owns the sockets that it creates, and
those sockets can be used independently of one another without concern about potential conflicts.
Code written using synchronous sockets is typically easier to update, maintain and debug. The
coding style lends itself to a more straight forward, top-down structure and logical errors are usually
easier to find than with code written using asynchronous sockets.
There is less overhead associated with synchronous sockets because no event mechanism is used,
and handlers don't have to be implemented in callback functions. Event notifications that post
messages to hidden window have to be processed through the message queue which is typically
shared by the UI thread.
Polling an asynchronous socket can cause spikes in CPU utilization and is generally not
recommended. Applications which attempt to simulate blocking sockets by creating an
asynchronous socket and then polling it can negatively impact the performance of the application,
and in some cases the overall system.

In summary, there are three general approaches that can be taken when building an application with
regard to blocking or non-blocking sockets:

Use a synchronous (blocking) socket. In this mode, the program will not resume execution until the
socket operation has completed. In a single-threaded application, blocking socket operations can
cause code to be re-entered at a different point, leading to complex interactions (and difficult
debugging) if there are multiple active connections in use by the application. If the programming
language supports multithreading, it is recommended that each connection be isolated within its
own worker thread.
Use an asynchronous (non-blocking) socket, which allows your application to respond to events. For
example, when the server writes data to the socket, an event is generated. Your application can
respond by reading the data from the socket, and perhaps send some data back, depending on the
context of the data received. The code required for managing asynchronous sockets can be more
complex, however it is the best solution for single-threaded applications that must establish
simultaneous connections.
Use a combination of synchronous and asynchronous socket operations. The ability to switch

between blocking and non-blocking modes "on the fly" provides a powerful and convenient way to
perform socket operations under some circumstances. However, switching between blocking and
non-blocking mode can make the application more complex and difficult to debug. It is important to
note that the warning regarding blocking sockets also applies here.

If you decide to use asynchronous sockets in your application, it's important to keep in mind that you must
check the return value from every read and write operation. It is possible that your may not be able to send
or receive all of the data specified at that time. Frequently, developers encounter problems when they write
a program that assumes a given number of bytes can always be written to or read from the socket. In
many cases, the program works as expected when developed and tested on a local area network, but fails
unpredictably when the program is released to a user that has a slower network connection (such as a
serial dial-up connection to the Internet). By always checking the return values of these operations, you
insure that your program will work correctly, regardless of the speed or configuration of the network.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Secure Connections

The SocketTools Library Edition supports the ability to create secure connections using the standard SSH,
SSL and TLS protocols. For those protocols which support them, enabling a secure connection is typically as
simple as specifying an additional option when the Connect function is called. In some cases, certain
protocols have additional options that control how the secure session is established.

Secure SSL/TLS connections may either be implicit or explicit, depending on the protocol. An implicit
connection is one where the client and server begin negotiating the security options as soon as the
connection is established. In most cases, a server which accepts secure implicit connections listens on a port
number that is different from the default port it uses for standard, non-secure connections. An example of
this is the Hypertext Transfer Protocol (HTTP) which accepts standard connections on port 80 and secure
connections on port 443. When a client connects to port 443, the server automatically assumes that the
client wants a secure connection.

On the other hand, an explicit connection requires that the client explicitly specify to the server that it wants
a secure connection. Typically this is done by the client sending a command to the server that causes the
server to begin negotiating with the client to establish a secure session. An example of this is the File
Transfer Protocol, where the client can use the AUTH command to tell the server that it wants a secure
connection. Servers may also support both explicit and implicit secure connections, based on which port
the client connects to. SocketTools supports both implicit and explicit secure connections, and this is also
controlled by the options specified to the library's Connect function.

In addition to establishing a secure connection, the client may be required to provide additional
authentication information to the server in form a client certificate. A secure server may require that the
client provide a certificate in addition to or instead of a username and password. To support this, your
application must create the security credentials for the client and pass those to the Connect function. For
more information, refer to the SECURITYCREDENTIALS structure in the Technical Reference. Additional
information about secure connections and certificates is also available in the Developer's Guide.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Network Input/Output

Each of the SocketTools networking libraries provides functions for sending and/or receiving data from a
server. At the lowest level, this is done by calling the Write function for sending data and the Read function
for receiving data. For example, the File Transfer Protocol library has the functions FtpWrite and FtpRead.
In most cases, these functions exchange data as a stream of bytes without any regard for the actual
content. For developers who are using Unicode, it is important to note that there are no Unicode versions
of these functions. If the data being sent or received is textual, it is your program's responsibility to convert
it into an appropriate format, typically using the MultiByteToWideChar and WideCharToMultiByte
functions that are part of the standard Windows API.

When working at this very low level, it is important to understand how data is exchanged over the network.
Many developers are inclined to think of the data that is sent or received in terms of discrete blocks, or
packets. The expectation is that if they send a certain number of bytes of data in a single write, the server
will receive that number of bytes in a single read. However, this is not how TCP works, and by extension,
not how the SocketTools libraries work with regards to this kind of low level network I/O. The Transmission
Control Protocol (TCP) is called a stream-oriented protocol because data is exchanged between the client
and server as a stream of bytes. While TCP will guarantee that the data will arrive intact, with the bytes
received in the same order that they were written, there is no guarantee that the amount of data received
in a single read operation on the socket will match the amount of data sent by the remote host.

For example, consider a server that sends data to a client in four separate operations, each containing 1024
bytes of data. While it is convenient to think of these as discrete blocks of data, TCP considers it to be a
stream of 4096 bytes. The client may receive that data in a single read on the socket, returning all 4096
bytes. Alternatively, it may read the socket, and only receive the first 1460 bytes; subsequent reads may
return another 1460 bytes, followed by the remaining 1176 bytes. Applications which make assumptions
about the amount of data they can read or write in a single operation may work in some environments,
such as on a local network, but fail on slower connections.

A general rule to use when designing an application using TCP is to consider how the program would
handle the situation where reading n bytes of data only returns a single byte. If the application can
correctly handle this kind of extreme case, then it should function correctly even under adverse network
conditions.

In some situations it may be desirable to design the application to exchange information as discrete
messages or blocks of data. While this isn't directly supported by TCP, it can be implemented on top of the
data stream. There are several methods that can be used to accomplish this, depending on the
requirements of the application:

1. Exchange the data as fixed length structures. This is the simplest approach, and has very
little or no overhead. The client and server can either use predefined values, or negotiate
the size of the data structures when the connection is established.

2. Prefix variable-length data structures with the number of bytes being sent. The length value
could be expressed either as a native integer value, or as a fixed-length string that is
converted to a numeric value by the application. This allows the receiver to read this fixed
length value, and then use that value to determine how many additional bytes must be read
to obtain the complete message or data structure.

3. Prefix the data with a unique byte or byte sequence that would normally not be found in
the data stream. This would be followed by the data itself, with a complete message
received when another unique byte sequence is encountered. Alternatively, a unique byte
sequence could be used to terminate a message. This is the approach that many Internet

application protocols use, such as FTP, SMTP and POP3. Commands are sent as one or
more printable characters, terminated with a carriage-return (CR) and linefeed (LF) byte
sequence that tells the server that a complete command has been received.

4. A combination of the above methods, using unique byte sequences, the message length
and even additional information such as a CRC-32 checksum or MD5 hash to validate the
integrity of the data. This would effectively create an "envelope" around the data being
exchanged, and additional checks could be made to ensure that the data has been received
and processed correctly.

Regardless of the method used, for best performance it is recommended that the application buffer the
data received and then process the data out of that buffer. When using asynchronous (non-blocking)
sockets, the application should read all of the data available on the socket, typically in a loop which adds
the data to the buffer and exiting the loop when there is no more data available at that time.

It is important to keep in mind that all of this is only required if you decide to use the lower level APIs in the
SocketTools libraries. The higher level APIs automatically handle the lower level network I/O for you. For
example, the FtpGetData function will retrieve a file from the server and return the entire contents to your
application in a single function call. When using the high level APIs, the details of how the data is read and
processed is handled by the library and no additional coding is required on your part.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Event Handling

In SocketTools, event notification provides a mechanism for the library to inform the application of a
change in the status of the current session. Events are generally divided into two general categories,
asynchronous network events and status events.

Asynchronous network events occur when a non-blocking connection is established and a network event
occurs, such as a connection completing or data arriving from the server. Status events are used to indicate
a change in status, such as a blocking operation being canceled or the progress of an operation such as a
file transfer.

Asynchronous network events require that the program provide a handle to a window that will receive the
event message and a user-defined message identifier that will be used to identify the event to the
application. Typically the window is an invisible window created specifically for the purpose of processing
events, however it can also be a visible window used by the application such as a form or dialog. If the
window handle refers to a visible window, it is important to remember that if the window is destroyed,
asynchronous event notification will automatically be disabled. In general it is recommended that the
application use a private, invisible window if asynchronous network events are required. To enable event
handling, each of the networking libraries has a function named EnableEvents which accepts a handle to a
window and a unique message identified. There is also a DisableEvents function which will disable event
handling. For example, the Hypertext Transfer Protocol library has functions called HttpEnableEvents and
HttpDisableEvents. Note that if you initially establish an asynchronous connection, it is not necessary to
explicitly call the EnableEvents function for the library since you will already have a non-blocking
connection and events will be posted to the specified window.

In addition to posting event notifications to a window, it is also possible to register an event handler that
will be called by the library whenever the event occurs. In this case, you would use the RegisterEvent
function for the library, where you would specify the event that you wish to register, along with a user-
defined parameter that will be passed to the callback function.

In some cases, it is desirable to suspend event handling for a session. To accomplish this, the libraries have
a function called FreezeEvents which can be used to suspend and resume event handling. While events are
frozen, network events will be queued rather than posted to the notification window. When event handling
is resumed, those events will be fired and event handling will resume normally. It is recommended that
applications freeze event handling when they are performing some action where it would not be desirable
for the event handler to be executed. Examples of where this would be appropriate would be a modal
dialog or a message box, where the user must respond before the application continues executing.

An important consideration when it comes to event handling is that all asynchronous network events are
level triggered. This means that once an event is fired, it will not be fired again until some action is taken by
the application to handle the event. This is most commonly found with events that are generated when the
server sends data to your application, signaling to you that there is data available to be read. Even though
the server may continue sending you more data, another event will not be generated until you read at least
some of the data that has been sent to you. This is done to prevent the application from being flooded
with event notifications. However, failure to handle an event can cause event notification to appear to stall.
If you determine that you cannot handle an event at the time, you must freeze event handling. You can
resume event notification when you are in a position to process events again.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Error Handling

Typically an error is indicated when a SocketTools function either returns a value of zero (false) or -1. When
an error occurs in one of the libraries, the GetLastError function can be used to obtain the error code. The
GetLastError function returns a unsigned 32-bit integer value that is unique to each thread in a given
application. Each library also has it's own private function which will return the last error code for the
current thread. For example, the File Transfer Protocol library has a function called FtpGetLastError.
SocketTools error codes conform to the standard format used by Windows:

The S bitfield is used to refer to the severity of the error. A value of zero specifies success, while a
value of one specifies an error condition.

The R bitfield is reserved for future use by Windows, and must be set to zero. Applications should
not take any action based on the values of these two bits.

The Facility bitfield specifies which group of status codes the error belongs to. The SocketTools
libraries use FACILITY_ITF, which is designated for use by third-party libraries.

The Code bitfield specifies the actual error code. This may correspond to a Windows Sockets
error, or an error that is unique to the SocketTools libraries.

Each of the SocketTools error codes has a matching constant, defined in the header files or modules
provided for your programming language. These constants should always be used for comparison against
the value returned by the GetLastError function.

For each error code, there is a matching description of the error which can be used by the application.
Applications may choose to use these error descriptions when displaying a message box to a user or for
internal logging purposes. To retrieve the description of the error, the FormatMessage function can be
used. Each library also has its own private function to return an error description which may be easier to
use. For example, the File Transfer Protocol library has a function called FtpGetErrorString, the Hypertext
Transfer Protocol library has a function called HttpGetErrorString and so on.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Debugging Facilities

All of the SocketTools networking libraries include a built-in facility for generating debugging output in the
form of a log file that provides information about the internal functions that it is using and the data that is
being exchanged between the client and server. This is commonly referred to in the documentation as
generating a trace log or enabling function logging.

To provide logging functionality for your application, you must redistribute the cstrcv11.dll library along
with those SocketTools libraries you are using in your program. The cstrcv11.dll library is what performs
the actual logging and must be in a directory where it can be loaded by your application. It is
recommended that you either install it in the Windows system directory or the directory where your
application is installed. Note that this is a standard Windows dynamic link library and it does not need to be
registered.

To create a trace log, your application must then call the EnableTrace function in the library. For example,
if you were using the Simple Mail Transfer Protocol library, you would call the function SmtpEnableTrace.
This function requires two arguments: the name of a file that the trace log data will be written to and a
numeric value which specifies the level of the trace. The default level, zero, specifies that general
information about the function calls being made will be logged. The most detailed logging is provided by
specifying a level of four. In that case, all data exchanged between your application and the server is
logged. This provides the most information, however it also generates the largest log files. To disable
logging, use the DisableTrace function for the library, such as SmtpDisableTrace.

There are two important things that you need to consider when enabling trace logging. The first is that the
log file is always appended to, never overwritten by the library. This means that the files can grow to be
very large, particularly with trace that includes all of the data sent and received by your application. You
can use the standard file I/O functions in your language to manage the log file or even write your own data
out to the file. Each time the file is written to, SocketTools will open the file, append the logging data and
then close the file. The libraries will never keep the file open between operations. This is important because
if your application terminates abnormally, it ensures all of the logging data has been written and there are
no open file handles being held by one of the libraries. However, this does incur additional overhead and
can impact the performance of your application. When possible, it is recommended that you enable
logging around the functions that you feel may be part of the problem you're trying to resolve, and then
disable logging when it is no longer required. Simply enabling logging at the beginning of your application
can result in unnecessarily large log files.

If your application uses multiple SocketTools libraries, it is only necessary to enable logging in one of them.
Once enabled, all SocketTools network operations in the current thread will be logged, regardless of which
library was used to enable logging.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Language Support

The SocketTools Library Edition can be used with a wide variety of programming languages and software
development tools for Windows. The majority of the library functions use simple data types such as 16-bit
and 32-bit integers, and null character terminated strings. To determine if your development language is
capable of using the Library Edition, it should support all of the following features:

It needs the ability to load a dynamic-link library (DLL) and call exported functions from that library.
In some cases, as with C or C++, you can use an import library instead of dynamically loading the
library. This allows you to link your program just as you would a standard function library. If the
language does not support the use of import libraries, it must provide a mechanism for declaring a
function and specifying the arguments that will be passed to it.
Languages must call the SocketTools functions using the stdcall calling convention. Parameters are
pushed on to the stack in reverse order (from right to left), and the called function is responsible for
clearing the stack. Note that this is different from the standard C/C++ calling convention in which
the stack is cleared by the calling function, and from the Pascal calling convention in which
arguments are pushed on the stack left to right.
The language must support basic integer data types, including 16-bit, 32-bit and 64-bit integers. The
language must also support a string data type that is represented as an array of bytes, terminated by
a null character (a character with the ASCII value of zero). If a different native string type is used, the
language must provide a means to convert between the native string format and a null-terminated
byte array.
The language must support passing function parameters by value and by reference. When a variable
is "passed by value", a copy of its value is passed to the function on the stack. However, when a
variable is "passed by reference", the memory address of the variable (typically called a pointer) is
passed to the function. In most cases, the functions in the SocketTools library expect integer data to
be passed by value, while string and data structures are passed by reference.
In addition to passing a variable by reference to a function, the language must provide the ability to
allocate a block of memory of arbitrary size and be able to pass its address to a function. For
example, in C there are the malloc() and free() functions, and in Visual Basic there are the Dim and
ReDim statements.
The language must support calling functions which do not return a value. For example, in C and
C++, such functions are declared as void. In Visual Basic, a function which does not return a value is
declared as Sub (a subroutine).

Although not required, it is recommended that the language also support the ability to create user-defined
data structures. For example, in C and C++, the struct keyword is used to define a data structure. In Visual
Basic, the Type statement is used to create user-defined data structures.

Microsoft Visual C++, Visual C#, Visual Basic.NET, Visual Basic 6.0, C++ Builder and Delphi are all examples
of languages which can use the SocketTools Library Edition. If your programming language is capable of
calling native Windows API functions, then you should be able to use SocketTools. Consult your language
technical reference for additional information about how to call functions exported from a standard
Windows dynamic link library.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Data Types

Because various languages handle data types in different ways, the SocketTools libraries have been designed to
primarily use basic data types such as integers and strings. The following is a list of numeric data types that are
used, along with their C++, C# and Visual Basic equivalents.

Description Size Range Win32 API C++ C# VB 6 VB.NET

Byte 1
byte

0 to 255 BYTE uint8_t byte Byte Byte

Boolean 4
bytes

0 is False, 1 or -1 is True BOOL int32_t int Long Integer

Handle 4
bytes

0 to 4,294,967,295 HCLIENT void * IntPtr Long IntPtr

Integer 4
bytes

-2,147,483,648 to
2,147,483,647

INT int32_t int Long Integer

Integer 4
bytes

0 to 4,294,967,295 UINT uint32_t uint Long UInteger

Short
Integer

2
bytes

-32,768 to 32,767 SHORT int16_t short Integer Short

Short
Integer

2
bytes

0 to 65,535 WORD uint16_t ushort Integer UShort

Long
Integer
(32-bit)

4
bytes

-2,147,483,648 to
2,147,483,647

LONG int32_t int Long Integer

Long
Integer
(32-bit)

4
bytes

0 to 4,294,967,295 DWORD uint32_t uint Long UInteger

Long
Integer
(64-bit)

8
bytes

-9,223,372,036,854,775,808
to
9,223,372,036,854,775,807

LONGLONG int64_t long N/A Long

Long
Integer
(64-bit)

8
bytes

0 to
18,446,744,073,709,551,615

ULONGLONG uint64_t ulong N/A ULong

One problem that is frequently encountered when converting function definitions from C or C++ to other
languages is the size of the integer data type. For example, default integer size for Visual Basic 6 is 16-bits on 32-
bit platforms. However, in Visual Basic .NET, as well as languages like Visual C++, the default integer size is 32-bits.
Also, some languages do not support unsigned integer types. In this case, as with Visual Basic, the signed type
should be used instead.

Visual Basic 6.0 does not have a native 64-bit integer type, however a 64-bit value can be represented with a
structure. Most SocketTools APIs which use 64-bit integers either represent them as LARGE_INTEGER or
LONGLONG values. In Visual Basic, the structure would look like this:

Public Type LARGE_INTEGER
 LoPart As Long
 HiPart As Long
End Type

This would contain the lower 32-bit and upper 32-bit values of the 64-bit integer. This same structure is also used
in various Windows API functions. The same approach can also be used with other languages which do not

natively support 64-bit integers, but are capable of passing small structures by value as arguments to functions.

Boolean Data
Boolean parameters present a special problem for two reasons. Firstly, the data types used to represent Boolean
values frequently vary between languages. Secondly, different languages represent the values "true" and "false"
differently. Boolean parameters (declared as BOOL in the function prototypes) should always be passed as 32-bit
signed integers.

It is important to note that in C++ the bool type is an unsigned 8-bit integer and is different than BOOL, which is
a signed 32-bit integer used with SocketTools functions. The .NET languages also have System.Boolean which is
not a numeric value, but rather a structure type where the only values are true or false. The SocketTools function
definitions for Visual Basic and C# use marshaling to change the numeric values used by the SocketTools API to
native .NET boolean types.

If you are passing a Boolean parameter to a function, then "false" should be represented by a value of zero and
"true" as a non-zero value, typically a value of one. When writing code that checks a Boolean flag, or tests a
Boolean return value from a function, it is recommended that you test against a value of zero. For example,
consider the following code in Visual Basic 6.0:

Dim bConnected As Long
bConnected = InetIsConnected(hSocket)
If bConnected = True Then
 ' The socket is connected to a server
Else
 ' The socket is not connected, or the socket handle
 ' may be invalid; call InetGetLastError to check the
 ' error code
End If

In this example, even if the function InetIsConnected was successful, the program would always believe that it
failed because of the explicit test against the value True. This is because the function returns a value of 1 to
indicate success, but Visual Basic defines True as -1. Instead, the code should be written as:

Dim bConnected As Long
bConnected = InetIsConnected(hSocket)
If bConnected <> 0 Then
 ' The socket is connected to a server
Else
 ' The socket is not connected, or the socket handle
 ' may be invalid; call InetGetLastError to check the
 ' error code
End If

In summary, the rule of thumb for dealing with boolean parameters is that they should always be 32-bit integer
values, and you should always compare the boolean against a value of zero, never against a predefined constant
like True.

String Data
String parameters can also present a challenge when calling functions from languages other than C and C++.
Different languages tend to have different internal representations of how string data is stored. The convention
used by the SocketTools libraries is that a string is an array of characters, terminated by a null character (a
character with an ASCII value of zero). The length of the string is not stored in the string data itself, and by
definition, a string cannot contain embedded nulls.

The size of a character depends on whether the ANSI or Unicode version of a function is being called. SocketTools
includes support for both types of strings and which you use generally depends on how you have your project
configured. For example, consider the function InetReadLine which reads a line of text from a socket and returns
it in a string buffer. There are actually two versions of this function, InetReadLineA which uses an 8-bit ANSI string
buffer, and InetReadLineW which accepts a 16-bit Unicode string buffer.

Depending on the language, InetReadLine may be a macro which expands to the appropriate version based on

the project. This is the case for C/C++ projects, where which version of a function is called is determined by the
project settings and whether or not the UNICODE macro is defined. For other languages, one version of the
function will always be used. For example, with Visual Basic 6.0 only the ANSI versions of the functions are defined,
while for C# and Visual Basic .NET only the Unicode version of functions are declared, with marshaling used to
convert them to the native System.String type.

To use functions which require string parameters, the language must be capable of converting between its native
string data type and the null-terminated character array expected by the SocketTools functions. For example,
Object Pascal provides the StrPCopy function. Note that Visual Basic provides implicit conversion between its
native string type and null-terminated strings when a string is passed by value (ByVal) instead of by reference.

If you are unsure of how your language handles null-terminated strings, we recommend that you review the
language's technical reference for information on how to call native Windows API functions. Since the Windows
API also uses null-terminated strings, that same information can be used to determine how to call functions in the
SocketTools libraries.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Unicode

Unicode is a multi-language character set designed to encompass virtually all of the characters used with
computers today. Unicode characters are represented by a 16-bit value on Windows, and differ from other
character sets in two important ways. First, unlike the traditional single-byte (ANSI) character sets, Unicode
is capable of representing significantly more characters in a variety of languages. Second, unlike multi-byte
character sets (where some characters may be one byte in length, while others may be two, three or four
bytes), on Windows the Unicode characters are fixed-width, which can make them easier to work with.

The SocketTools libraries support both the ANSI and Unicode character sets by providing two versions of
each function that either expects a string as an argument (including those functions which pass structures
that contain strings) or returns the address of a string. The functions which use multi-byte strings have a
suffix of "A" (ANSI), while the functions which use Unicode strings have a suffix of "W" (wide). No suffix is
used with functions which expect binary (non-textual) data or only use numeric parameters and return
numeric values.

For example, consider the InetGetLocalName function mentioned in the previous section. If you looked at
the list of exported functions in the library, you would see two functions exported, InetGetLocalNameA
and InetGetLocalNameW. In C and C++, which function is called actually depends on how the application
is being built. That is, if your application is built to use Unicode (in other words, the UNICODE macro is
defined and you are linking with Unicode versions of the standard libraries), then the
InetGetLocalNameW function will be used instead of the InetGetLocalNameA. In other languages, you
may have to explicitly declare which version of the function you wish to use. In Visual Basic, for example,
the Alias keyword must be used with the function declaration to specify the correct name.

Automatic Encoding
When building a project that is configured to use the Unicode character set, SocketTools will automatically
convert strings to UTF-8 encoded text before transmitting that data over the network. This conversion only
occurs with string types, and will not be performed on byte arrays or other types of data that is not
represented as a null terminated string value.

Converting strings to UTF-8 encoding ensures textual data is sent and received in a uniform way that is not
affected by the local system's localization and language settings. Virtually all modern servers on the
Internet today expect text to be exchanged using UTF-8 encoding, and because ASCII characters are
considered a subset of UTF-8, they are not subject to encoding.

Earlier versions of SocketTools always performed Unicode string conversions using the default system code
page, rather than using UTF-8 encoding. This change will not typically affect most applications; however, if
you are using Unicode strings, it is important to keep in mind that this conversion to UTF-8 can change
how data is exchanged over the network. If you want to prevent this automatic UTF-8 encoding, you can
perform the preferred conversion in your code (for example, using the WideCharToMultiByte function)
and then explicitly call the ANSI version of the SocketTools function, rather than the Unicode version.

The Encoding and Compression library includes helper functions that can simplify the process of
performing UTF-8 encoding and decoding. The IsUnicodeText function will analyze a string buffer to
determine if it contains valid Unicode text. The UnicodeDecodeText and UnicodeEncodeText functions
can be used to perform conversions between UTF-8 encoded text, multi-byte and Unicode strings.

Strings and Byte Arrays
Some SocketTools functions require you to use byte arrays instead of strings, regardless of the character
set your project uses. This can create problems when reading and writing Unicode string data. For example,
consider the InetRead and InetWrite functions which are used to read and write data on a socket.
Because character strings and byte arrays are essentially identical when using the ANSI character set, a

C/C++ programmer may try to write code such as this:

LPTSTR lpszData = _T("This is a test, this is only a test");
INT cchData = lstrlen(lpszData);
INT nResult;

nResult = InetWrite(hSocket, lpszData, cchData);

This would work as expected until you change your project to use the Unicode character set. The problem
is that the Unicode string is no longer an array of 8-bit bytes, but is now an array of 16-bit integers. The
Unicode string must be converted to a byte array before passing it to the InetWrite function. One way to
do this is to use the WideCharToMultiByte function:

LPTSTR lpszData _T("This is a test, this is only a test");
INT cchData = lstrlen(lpszData);
LPBYTE lpBuffer;
INT nResult;

#ifdef UNICODE
lpBuffer = (LPBYTE)_alloca((cchData + 1) * 4);

if (lpBuffer == NULL)
{ // Unable to allocate memory
 return;
}}}

cchData = WideCharToMultiByte(CP_UTF8, 0,
 (LPCWSTR)lpszData,
 cchData,
 (LPSTR)lpBuffer,
 ((cchData + 1) * 4),
 NULL, NULL);

if (cchData <= 0)
{
 // Unable to convert the Unicode string
 return;
}
#else
pBuffer = (LPBYTE)lpszData;
#endif

nResult = InetWrite(hSocket, lpBuffer, cchData);

Note that the type of characters being converted may also present a problem to the developer. In this
example, the string is easily converted because it is composed only of characters that are part of the basic
ASCII character set. In most cases it is recommended that you use CP_UTF8 to convert the text to UTF-8.
When converting a string that contains international characters, such as accented vowels, the conversion
using the system code page may result in unprintable characters. For additional information, check your
programming language's technical reference for issues with regards to localization and the use of Unicode.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.>

 Microsoft Visual C++

The SocketTools Library Edition includes import libraries, header files and class wrappers which can be used
with Microsoft Visual C++ 10 and later. If you are using Visual Studio 2010, you should have Service Pack 1
installed. If you are using Visual Studio 2012 or 2013, you should have Update 5 installed. If you are using
Visual Studio 2015, you should have Update 3 installed. For Visual Studio 2017 and later, use the Visual
Studio Installer to ensure that you have the latest updates installed.

To build an application using SocketTools with Visual C++, the first step is to make sure the compiler is
configured correctly to specify the correct paths to the directories where the header files and import
libraries are found. In Visual C++, this is done by selecting Tools | Options from the menu, and then
selecting the Directories tab. In Visual Studio, this is done by selecting Tools | Options from the menu, then
selecting the Projects folder and the VC++ Directories properties page. The path for the include files
should be the Include folder, and the path for the library files should be the Lib folder, found where you
installed SocketTools.

When you install SocketTools, an environment variable named SocketTools11 will be created which
provides the full path to the installation folder. In Visual Studio and other IDEs, you can typically reference
this environment variable rather than hard-coding the path. For example, the include folder would be
$(SocketTools11)\Include. For compatibility with both 32-bit and 64-bit Windows platforms, SocketTools
will be installed in the C:\Program Files (x86)\SocketTools 11.0 Library Edition folder on
64-bit Windows, and C:\Program Files\SocketTools 11.0 Library Edition on 32-bit Windows.

If you are programming in C or C++, you must include the header file cstools11.h in your program. This
file contains all of the macro, type, structure and function prototype definitions used by the SocketTools
libraries. This will also automatically include two other header files which are used by SocketTools. The
cserror11.h header file defines all the error codes, and the csrtkey11.h header defines the runtime license
key which is used to initialize the SocketTools libraries.

When you include the SocketTools header file, it will automatically include windows.h and several other
standard Windows API header files. If you include the Windows header file before you include the
SocketTools header, you will get an error indicating that you must include the SocketTools header file first.
This is because the Windows header file will attempt to include the (now deprecated) winsock.h header by
default. If possible, include the SocketTools header file first and there won't be a need to explicitly include
the Windows header. Alternatively, you can define the macro WIN32_LEAN_AND_MEAN which tells the
Windows header to only include other essential header files. Your application should never explicitly include
either winsock.h or winsock2.h because those are automatically included by the SocketTools header.

If you are using Microsoft Foundation Classes (MFC) with your project, you will need to include afx.h
before you include the SocketTools header file. Also make sure your project has explicitly defined the
_WIN32_WINNT macro to indicate the minimum target platform for your project. If it is undefined, a
warning will be issued and it will default to the highest operating system version supported by the Windows
development kit you have installed.

A collection of classes which encapsulate the SocketTools API are also included as part of the standard
header file. The SocketTools classes can be used with or without the Microsoft Foundation Classes (MFC),
although certain functions are only available if MFC is used. The classes themselves are designed to be
basic wrappers around the API and it is expected that most developers will use them as the base class for
their own classes.

For Visual C++ programmers, there are special macros which are used in the cstools11.h header file which
controls certain behavior:

CSTOOLS_NO_LIBRARIES
Visual C++ supports a pragma which can be used to automatically specify the names of libraries

that the compiler should attempt to link with in order to resolve function calls. By default, it is not
necessary to explicitly specify the names of the SocketTools import libraries to link to. However, if
you wish to explicitly link to specific import libraries, then define this macro prior to including the
cstools11.h header file.

CSTOOLS_NO_NAMESPACE
When compiling a C++ application, the SocketTools functions are defined in a namespace called
SocketTools. This prevents the possibility of conflicts with functions of the same name that may be
used in other libraries. If you prefer the functions to be defined in the global namespace instead,
then define this macro prior to including the cstools11.h header file.

CSTOOLS_NO_CLASSES
When compiling a C++ application, class wrappers for the SocketTools API are normally included
with the function prototypes. Defining this macro prevents the C++ classes from being defined,
limiting the application to using only the standard functions.

These macros are not normally defined, and in most cases they will not be needed. Please note that if for
some reason you modify the header files directly, you should copy the changes to another file using a
different name. Otherwise, when you install an update to the product, the cstools11.h and cserror11.h
header files will be replaced and you will lose your modifications.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Microsoft Visual C#

The SocketTools Library Edition provides a C# module in the Include folder named cstools11.cs which can
be included with your projects. This defines a namespace called SocketTools which contains classes for
each of the libraries, as well as the constants and error codes. It also defines some standard Windows API
functions which can be helpful when using some of the SocketTools functions.

String Arguments
Although the SocketTools libraries are unmanaged code, for the most part you won't have to be
concerned about marshaling data. However, there are a few special considerations that programmers
should be aware of when using the SocketTools API. The first deals with string buffers that are passed by
reference and modified by the function. An example of this would be the HttpGetErrorString function,
which is used to obtain a description of a specific error. In C/C++ you would allocate a character array and
pass it to the function, such as:

TCHAR szError[256];
DWORD dwError;
INT nLength;

dwError = HttpGetLastError();
nLength = HttpGetErrorString(dwError, szError, 256);
MessageBox(NULL, szError, "Error", MB_OK | MB_ICONEXCLAMATION);

In C#, the HttpGetErrorString function declaration uses the StringBuilder class as the string argument. The
equivalent code in C# would be:

StringBuilder strError = new StringBuilder(256);
uint dwError;
int nLength;

dwError = HttpGetLastError();
nLength = HttpGetErrorString(dwError, strError, 256);
MessageBox.Show(strError.ToString(), "Error",
 MessageBoxButtons.OK,
 MessageBoxIcon.Exclamation);

Make certain you use the System.Text namespace which defines the StringBuilder class. Also keep in
mind that if you want to pass a StringBuilder variable to a function that expects a String, you should use
the ToString method.

Byte Array Arguments
A number of SocketTools functions use byte arrays, either as an input argument to the function, or as an
output argument which will contain data when the function returns. An example of this is the HttpGetData
function, which will access a resource on the server and return the contents of that resource in a byte array
passed to the function. For example, the following code in C++ would return the first 1024 bytes of the
index page on a web server:

BYTE byteBuffer[1024];
DWORD dwLength;
INT nResult;

dwLength = sizeof(byteBuffer);
nResult = HttpGetData(hClient,
 "/index.html",
 byteBuffer,
 &dwLength,
 0);

If the function is successful, the byteBuffer array will contain the first 1024 bytes of the index page. In C#,
the equivalent code would look like this:

byte[] byteBuffer = new byte[1024];
uint dwLength;
int nResult;

dwLength = (uint)byteBuffer.Length;
nResult = HttpGetData(hClient,
 "/index.html",
 byteBuffer,
 ref dwLength,
 0);

In C++, byte arrays can be used interchangeably with ANSI strings. However, in C# you will need to use the
System.Text.ASCIIEncoding class to convert a byte array into a string. For example:

String strBuffer = (new ASCIIEncoding()).GetString(byteBuffer, 0,
(int)dwLength);

This would convert the contents of the byte array into a String. Note that you should only do this if the data
returned by the function is actually text. In this example, it is acceptable to do because the byte array
contains the HTML text for the index page.

Global Memory Handles
In addition to using byte arrays, some SocketTools functions can use global memory handles (HGLOBALs)
to exchange large amounts of data. Using the Windows API, global memory handles are allocated by the
GlobalAlloc function, dereferenced by the GlobalLock function and released by the GlobalFree function.
These handles can be used in C# by using the System.Runtime.InteropServices marshaling classes.
There are also some helper functions defined in the SocketTools.Win32 class which can be used to
dereference and release global memory handles.

An application may choose to use a global memory handle instead of a pre-allocated buffer if the amount
of data is very large, or the total amount of data that will be returned is unknown at the time the function is
being called. Consider the call to the HttpGetData function used in the previous example. A pre-allocated
buffer of 1024 bytes was passed to the function, and it copied up to that amount of data into the buffer.
However, what if you wanted the complete page and did not know how large it was? You could attempt to
determine the size of the page that was being requested using the HttpGetFileSize function, and then use
that value to allocate a buffer. However, this incurs additional overhead and it is not always possible to get
the size of a resource on a web server. Another alternative would be to simply allocate a very large buffer,
but this could result in the application allocating large amounts of memory that it doesn't use and you
would still run the risk that it wouldn't be large enough.

The solution for this problem is to use a global memory handle rather than a pre-allocated buffer. Instead
of copying the data into a buffer, the function allocates a global memory handle and stores the contents in
the memory referenced by that handle. When the function returns, it passes the handle back to the caller.
The caller then dereferences the handle to access the memory, and releases the handle when it is no
longer needed. Here is an example of how it would be used in C/C++:

HGLOBAL hgblBuffer = NULL;
DWORD dwLength = 0;
INT nResult;

nResult = HttpGetData(hClient,
 "/index.html",
 &hgblBuffer,
 &dwLength,
 0);

if (nResult != HTTP_ERROR)
{
 LPBYTE lpBuffer = (LPBYTE)GlobalLock(hgblBuffer);

 // Do something with the data and then unlock and
 // release the handle when it is no longer needed

 GlobalUnlock(hgblBuffer);
 GlobalFree(hgblBuffer);
}

Note that the global memory handle is initialized to NULL and the length argument is initialized to zero.
This is important to do because this is how the function knows that it should be returning a global memory
handle instead of copying data into a buffer. If you forget to initialize those arguments, the function will fail
and may cause the application to terminate with a general protection fault.

The equivalent code in C# would look like this:

uint hgblBuffer = 0;
uint dwLength = 0;
int nResult;

nResult = HttpGetData(hClient,
 "/index.html",
 ref hgblBuffer,
 ref dwLength,
 0);

if (nResult != HTTP_ERROR)
{
 IntPtr lpBuffer = Win32.GlobalLock(hgblBuffer);
 String strBuffer = Marshal.PtrToStringAnsi(lpBuffer);

 // Do something with the data and then unlock and
 // release the handle when it is no longer needed

 Win32.GlobalUnlock(hgblBuffer);
 Win32.GlobalFree(hgblBuffer);
}

It is important to remember to unlock and release the global memory handle when you are no longer
using it. Those handles are not managed by the Common Language Runtime (CLR) garbage collector, so if
you forget to release them, the application will have a memory leak.

Because you are dealing directly with memory buffers, the normal safety checks performed by C# are not
available, such as making sure you are not exceeding the bounds of an array. It is recommended that you
always test your code carefully and always save your current project before debugging or executing the
program.

Event Handlers
SocketTools uses events to notify the application when some change in status occurs, such as when data is
available to be read. An event handler is simply a callback function which has a specific set of arguments,
and the address of that function is passed to the RegisterEvent function in the library. However, C#
doesn't permit you to simply pass the address of a function in the same way that you can in C++. Instead,
you need to use what are called delegates. In .NET, a delegate is a reference type that is used to
encapsulate a method that has a specific set of arguments, known as its signature. Although delegates can
seem confusing at first, it is easiest to think of them as function pointers. They're basically used in the same

way that function pointers are used in C++, except that they're type-safe.

The first step to creating an event handler is to create a method in your class which matches the signature
of the callback function defined by the SocketTools event notification function. When the event handler is
called, SocketTools will pass the handle to the client session, an event identifier to specify which event
occurred, an error code value if an error occurred, and the user-defined value that was specified by the
caller when the event was registered. In C++, the callback function would be declared as:

VOID EventHandler(HCLIENT hClient,
 UINT nEventId,
 DWORD dwError,
 DWORD_PTR dwParam)

In C#, the equivalent method would be defined inside the class as:

private void EventHandler(IntPtr hClient,
 uint nEventId,
 uint dwError,
 IntPtr dwParam)

Let's create an event handler that updates a progress bar as a file is being downloaded from an HTTP
server. To do this, we'll create a method called httpEventHandler:

private void httpEventHandler(IntPtr hClient, uint nEventId, uint dwError,
IntPtr dwParam)
{
 switch (nEventId)
 {
 case HTTP_EVENT_PROGRESS:
 {
 HTTPTRANSFERSTATUS httpStatus = new HTTPTRANSFERSTATUS();
 HttpGetTransferStatus(hClient, ref httpStatus);

 progressBar1.Value = (int)((double)(100.0 *
 (double)httpStatus.dwBytesCopied /
 (double)httpStatus.dwBytesTotal));
 }
 break;
 }
}

This event handler checks to see if the event ID indicates that it is a progress event, and if it is, creates a
HTTPTRANSFERSTATUS structure and calls HttpGetTransferStatus to determine the number of bytes
which have been copied so far. This is used to calculate a percentage and a progress bar control is
updated with that value.

Now that the event handler has been written, the next step is to create the event delegate for the method.
For each of the SocketTools networking libraries that support event notification, there is a delegate defined,
such as HttpEventDelegate. The delegate is created using code like this:

HttpEventDelegate httpEventProc = new HttpEventDelegate(httpEventHandler);

The httpEventProc variable is now like a function pointer which can be passed to HttpRegisterEvent in
order to enable notification for that event:

int nResult = HttpRegisterEvent(
 hClient,
 HTTP_EVENT_PROGRESS,
 httpEventProc,
 0);

The first argument to HttpRegisterEvent is the handle to the client session. The second argument is the

event ID for which you want to enable notification, the third argument is the event delegate, and the fourth
argument is a user-defined value. That same value is passed to the event handler as the dwParam
argument.

Your event handler is now registered, and SocketTools will call your event handler during the process of
downloading or uploading a file to notify you of the progress of the transfer.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Microsoft Visual Basic .NET

The SocketTools Library Edition provides a Visual Basic module in the Include folder named cstools11.vb
which can be included with your projects. This defines the constants and functions in the SocketTools
libraries.

String Arguments
An important consideration when using the SocketTools libraries in Visual Basic is how string arguments are
being used by the function. In most cases, the string is provided as input to the function, such as the
hostname or address of a server to establish a connection with. However, in some cases the string is
passed to the function as an output buffer into which the function copies data. For example, the
InetGetLocalName function stores the local host name into a string parameter. A Visual Basic
programmer may write code that looks like this:

Dim strLocalName As String
Dim nLength As Integer

nLength = InetGetLocalName(strLocalName, 256)

Although this code looks correct, it will invariably result in a general protection fault or some other
unpredictable error. The problem is that although the strLocalName variable has been defined, no
memory has been allocated for it. To do this, you need to declare the string as:

Dim strLocalName As String = New String(Chr(0), 256)
Dim nLength As Long

nLength = InetGetLocalName(strLocalName, 256)

This will create a string that is filled with null characters. However, when the function returns the string, it
will be padded with those null characters and they should be removed. The complete example would be
written in Visual Basic as:

Dim strLocalName As String = New String(Chr(0), 256)
Dim nLength As Long

nLength = InetGetLocalName(strLocalName, 256)
strLocalName = Strings.Left(strLocalName, nLength)

Because the function returns the length of the string, the Left method can be used to truncate the string
using that length. However, if the function does not return the string length, you'll need to use the TrimEnd
method to trim the string at the terminating null character, such as:

' Trim string up to the terminating null character
strLocalName = strLocalName.TrimEnd(vbNullChar.ToCharArray())

The first method is more efficient, but requires that the function return the number of characters it copied
into the string. The second method is slightly less efficient, but will work even if the function does not return
the string length.

Byte Array Arguments
A number of SocketTools functions use byte arrays, either as an input argument to the function, or as an
output argument which will contain data when the function returns. An example of this is the HttpGetData
function, which will access a resource on the server and return the contents of that resource in a byte array
passed to the function. For example, the following code in C++ would return the first 1024 bytes of the
index page on a webserver:

BYTE byteBuffer[1024];
DWORD dwLength;

INT nResult;

dwLength = sizeof(byteBuffer);
nResult = HttpGetData(hClient,
 "/index.html",
 byteBuffer,
 &dwLength,
 0);

If the function is successful, the byteBuffer array will contain the first 1024 bytes of the index page. In Visual
Basic.NET, the equivalent code would look like this:

Dim byteBuffer(1024) As Byte
Dim dwLength As Long
Dim nResult As Long

dwLength = UBound(byteBuffer)
nResult = HttpGetData(hClient, _
 "/index.html", _
 byteBuffer(0), _
 dwLength, _
 0)

In C++, byte arrays can be used interchangeably with ANSI strings. However, in Visual Basic.NET you will
need to use the System.Text.Encoding class to convert a byte array into a string. For example:

Dim strBuffer As String
Dim Encoding As System.Text.Encoding = _
 System.Text.Encoding.GetEncoding(1252)

strBuffer = Encoding.GetString(byteBuffer).Substring(0, wwLength)

This would convert the contents of the byte array into a String. Note that you should only do this if the data
returned by the function is actually text. In this example, it is acceptable to do because the byte array
contains the HTML text for the index page. Note that the encoding is also explicitly set to code page 1252
(ISO Latin 1), which ensures that any characters with the high bit set are converted correctly.

Global Memory Handles
In addition to using byte arrays, some SocketTools functions can use global memory handles (HGLOBALs)
to exchange large amounts of data. Using the Windows API, global memory handles are allocated by the
GlobalAlloc function, dereferenced by the GlobalLock function and released by the GlobalFree function.
These handles can be used in Visual Basic.NET with the helper functions defined in the SocketTools
module.

An application may choose to use a global memory handle instead of a pre-allocated buffer if the amount
of data is very large, or the total amount of data that will be returned is unknown at the time the function is
being called. Consider the call to the HttpGetData function used in the previous example. A pre-allocated
buffer of 1024 bytes was passed to the function, and it copied up to that amount of data into the buffer.
However, what if you wanted the complete page and did not know how large it was? You could attempt to
determine the size of the page that was being requested using the HttpGetFileSize function, and then use
that value to allocate a buffer. However, this incurs additional overhead and it is not always possible to get
the size of a resource on a web server. Another alternative would be to simply allocate a very large buffer,
but this could result in the application allocating large amounts of memory that it doesn't use and you
would still run the risk that it wouldn't be large enough.

The solution for this problem is to use a global memory handle rather than a pre-allocated buffer. Instead
of copying the data into a buffer, the function allocates a global memory handle and stores the contents in
the memory referenced by that handle. When the function returns, it passes the handle back to the caller.

The caller then dereferences the handle to access the memory, and releases the handle when it is no
longer needed. Here is an example of how it would be used in C/C++:

HGLOBAL hgblBuffer = NULL;
DWORD dwLength = 0;
INT nResult;

nResult = HttpGetData(hClient,
 "/index.html",
 &hgblBuffer,
 &dwLength,
 0);

if (nResult != HTTP_ERROR)
{
 LPBYTE lpBuffer = (LPBYTE)GlobalLock(hgblBuffer);

 // Do something with the data and then unlock and
 // release the handle when it is no longer needed

 GlobalUnlock(hgblBuffer);
 GlobalFree(hgblBuffer);
}

Note that the global memory handle is initialized to NULL and the length argument is initialized to zero.
This is important to do because this is how the function knows that it should be returning a global memory
handle instead of copying data into a buffer. If you forget to initialize those arguments, the function will fail
and may cause the application to terminate with a general protection fault.

The equivalent code in Visual Basic.NET would look like this:

Dim hgblBuffer As Integer = 0
Dim dwLength As Integer = 0
Dim nResult As Long

nResult = HttpGetData(hClient,
 "/index.html",
 hgblBuffer,
 dwLength,
 0);

If nResult <> HTTP_ERROR Then
 Dim lpBuffer As IntPtr
 Dim byteBuffer() As Byte
 ReDim byteBuffer(dwLength - 1)

 ' Lock the global memory handle and copy the
 ' contents of the buffer into the byte array
 lpBuffer = GlobalLock(hgblBuffer)
 CopyMemory(byteBuffer(0), lpBuffer, dwLength)

 ' Unlock and release the global memory handle
 GlobalUnlock(hgblBuffer)
 GlobalFree(hgblBuffer)

 ' Do something with the data
End If

If you wanted to convert the contents of the global memory buffer into a string, the Marshal class has a
helper function which enables you to do this easily. To use it, you should import

System.Runtime.InteropServices and then use the PtrToStringAnsi method. For example:

If nResult <> HTTP_ERROR Then
 Dim lpBuffer As IntPtr
 Dim strBuffer As String

 ' Lock the global memory handle and use the
 ' PtrToStringAnsi function to return a string
 lpBuffer = GlobalLock(hgblBuffer)
 strBuffer = Marshal.PtrToStringAnsi(lpBuffer)

 ' Unlock and release the global memory handle
 GlobalUnlock(hgblBuffer)
 GlobalFree(hgblBuffer)

 ' Do something with the data
End If

It is important to remember to unlock and release the global memory handle when you are no longer
using it. Those handles are not managed by the Common Language Runtime (CLR) garbage collector, so if
you forget to release them, the application will have a memory leak.

Because you are dealing directly with memory buffers, the normal safety checks performed by Visual Basic
are not available, such as making sure you are not exceeding the bounds of an array. It is recommended
that you always test your code carefully and always save your current project before debugging or
executing the program.

Event Handlers
SocketTools uses events to notify the application when some change in status occurs, such as when data is
available to be read or progress notifications during a file transfer. An event handler is simply a callback
function which has a specific set of arguments, and the address of that function is passed to the
HttpRegisterEvent function in the library. However, Visual Basic .NET doesn't permit you to simply pass
the address of a function in the same way that you can in C++ or Visual Basic 6.0. Instead, you need to use
what are called delegates. In .NET, a delegate is a reference type that is used to encapsulate a method that
has a specific set of arguments, known as its signature. Although delegates can seem confusing at first, it is
easiest to think of them as function pointers. They're basically used in the same way that function pointers
are used in C++, except that they're type-safe.

The first step to creating an event handler is to create a method in your class which matches the signature
of the callback function defined by the SocketTools event notification function. When the event handler is
called, SocketTools will pass the handle to the client session, an event identifier to specify which event
occurred, an error code value if an error occurred, and the user-defined value that was specified by the
caller when the event was registered. In C++, the callback function would be declared as:

VOID EventHandler(HCLIENT hClient,
 UINT nEventId,
 DWORD dwError,
 DWORD_PTR dwParam)

In Visual Basic.NET, the equivalent method would be defined inside the form or class as:

Private Sub EventHandler(ByVal hClient As IntPtr, _
 ByVal nEventId As Integer, _
 ByVal dwError As Integer, _
 ByVal dwParam As IntPtr)

Let's create an event handler that updates a progress bar as a file is being downloaded from an HTTP
server. To do this, we'll create a method called HttpEventHandler:

Private Sub HttpEventHandler(ByVal hClient As IntPtr, _
 ByVal nEventId As Integer, _
 ByVal dwError As Integer, _
 ByVal dwParam As IntPtr)
 Select Case nEventId
 Case HTTP_EVENT_PROGRESS
 Dim httpStatus As HTTPTRANSFERSTATUS
 HttpGetTransferStatus(hClient, httpStatus)
 ProgressBar1.Value = CInt(100.0# * _
 CDbl(httpStatus.dwBytesCopied) / _
 CDbl(httpStatus.dwBytesTotal))
 End Select
End Sub

This event handler checks to see if the event ID indicates that it is a progress event, and if it is, calls
HttpGetTransferStatus to determine the number of bytes that have been copied so far. This is used to
calculate a percentage and a progress bar control is updated with that value.

Now that the event handler has been written, the next step is to create the event delegate for the method.
For each of the SocketTools networking libraries that support event notification, there is a delegate type
defined. The delegate is created using code like this:

Dim httpEventProc As HttpEventDelegate = New HttpEventDelegate(AddressOf
HttpEventHandler)

The httpEventProc variable is now like a function pointer which can be passed to HttpRegisterEvent in
order to enable notification for that event:

nResult = HttpRegisterEvent(_
 hClient, _
 HTTP_EVENT_PROGRESS, _
 httpEventProc, _
 0)

The first argument to HttpRegisterEvent is the handle to the client session. The second argument is the
event ID for which you want to enable notification, the third argument is the event delegate, and the fourth
argument is a user-defined value. That same value is passed to the event handler as the dwParam
argument.

Your event handler is now registered, and SocketTools will call your event handler during the process of
downloading or uploading a file to notify you of the progress of the transfer.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Microsoft Visual Basic 6.0

The SocketTools Library Edition provides a module for Visual Basic 6.0 in the Include folder named
cstools11.bas which can be included with your projects. This defines the constants and functions in the
SocketTools libraries. It is recommended that you install at least Visual Studio 6.0 Service Pack 5 (SP5) for
Visual Basic 6.0.

Note that because this module is very large, Visual Basic may report an error when attempting to compile a
program that uses it. This is a limitation of Visual Basic and doesn't indicate a problem with the module
itself. To resolve the problem, you can copy the declarations that you need into your own private module
and use those instead.

An alternative to using the function declarations in a module is to create a reference to the library in your
project. Although the SocketTools libraries are not ActiveX DLLs, they do contain a type library resource
which defines the constants and functions for that specific library. To create a reference to the library, first
open your current project or create a new project. Then select the Project | References menu option. This
will display a dialog box that lists the currently selected and available references. Click on the browse
button and choose the appropriate library from the Windows system directory. The following libraries can
be referenced:

Library Name Library Description

csdnsv11.dll Domain Name Service

csftpv11.dll File Transfer Protocol

cshtpv11.dll Hypertext Transfer Protocol

csicmv11.dll Internet Control Message Protocol

csmapv11.dll Internet Message Access Protocol

csmsgv11.dll Mail Message

csmtpv11.dll Simple Mail Transfer Protocol

csncdv11.dll File Encoding Library

csnvtv11.dll Terminal Emulation

csnwsv11.dll Network News Transfer Protocol

cspopv11.dll Post Office Protocol

csrshv11.dll Remote Command Protocol

csrssv11.dll News Feed Library

cstimv11.dll Time Protocol

cstntv11.dll Telnet Protocol

cstxtv11.dll Text Message Library

cswhov11.dll Whois Protocol

cswskv11.dll SocketWrench (Windows Sockets)

Note that if you have the SocketTools ActiveX Edition installed, there may be references to the SocketTools
controls included in the list. You do not want to select these since they refer to the ActiveX controls, not the
libraries. Once the library has been referenced, you will be able to use the functions and constants detailed
in the technical reference.

String Arguments
An important consideration when using the SocketTools libraries in Visual Basic is how string arguments are
being used by the function. In most cases, the string is provided as input to the function, such as the
hostname or address of a server to establish a connection with. However, in some cases the string is
passed to the function as an output buffer into which the function copies data. For example, the
InetGetLocalName function stores the local host name into a string parameter. A Visual Basic
programmer may write code that looks like this:

Dim strLocalName As String
Dim nLength As Long

nLength = InetGetLocalName(strLocalName, 256)

Although this code looks correct, it will invariably result in a general protection fault or some other
unpredictable error. The problem is that although the strLocalName variable has been defined, no
memory has been allocated for it. There are two ways this can be done in Visual Basic. One is to declare
the string as fixed-length, such as:

Dim strLocalName As String * 256
Dim nLength As Long

nLength = InetGetLocalName(strLocalName, 256)

The other is to dynamically allocate memory for the string using the String function, such as:

Dim strLocalName As String
Dim nLength As Long

strLocalname = String(256, 0)
nLength = InetGetLocalName(strLocalName, 256)

One final consideration is that string data returned by the function will be null-terminated. Because Visual
Basic strings are managed differently, we need to remove the trailing null characters. The complete
example would be written in Visual Basic as:

Dim strLocalName As String
Dim nLength As Long

strLocalname = String(256, 0)
nLength = InetGetLocalName(strLocalName, 256)
strLocalName = Left(strLocalName, nLength)

Because the function returns the length of the string, the Left function can be used to truncate the string
using that length. However, if the function does not return the string length, you'll need to search for the
terminating null character and trim the string from that position, such as:

' Trim string up to the terminating null character
strLocalName = Left(strLocalName, InStr(strLocalName, Chr(0))–1)

The first method is more efficient, but requires that the function return the number of characters it copied
into the string. The second method is slightly less efficient, but will work even if the function does not return
the string length.

Byte Array Arguments
A number of SocketTools functions use byte arrays, either as an input argument to the function, or as an
output argument which will contain data when the function returns. An example of this is the HttpGetData
function, which will access a resource on the server and return the contents of that resource in a byte array
passed to the function. For example, the following code in C++ would return the first 1024 bytes of the
index page on a webserver:

BYTE byteBuffer[1024];
DWORD dwLength;
INT nResult;

dwLength = sizeof(byteBuffer);
nResult = HttpGetData(hClient,
 "/index.html",
 byteBuffer,
 &dwLength,
 0);

If the function is successful, the byteBuffer array will contain the first 1024 bytes of the index page. In Visual
Basic 6.0, the equivalent code would look like this:

Dim byteBuffer(1024) As Byte
Dim dwLength As Long
Dim nResult As Long

dwLength = UBound(byteBuffer)
nResult = HttpGetData(hClient, _
 "/index.html", _
 byteBuffer(0), _
 dwLength, _
 0)

In C++, byte arrays can be used interchangeably with ANSI strings. However, in Visual Basic you will need
to use the StrConv function to convert a byte array into a string. For example:

Dim strBuffer As String
strBuffer = Left(StrConv(byteBuffer, vbUnicode), dwLength)

This would convert the contents of the byte array into a String. Note that you should only do this if the data
returned by the function is actually text. In this example, it is acceptable to do because the byte array
contains the HTML text for the index page.

Global Memory Handles
In addition to using byte arrays, some SocketTools functions can use global memory handles (HGLOBALs)
to exchange large amounts of data. Using the Windows API, global memory handles are allocated by the
GlobalAlloc function, dereferenced by the GlobalLock function and released by the GlobalFree function.
These handles can be used in Visual Basic with the helper functions defined in the SocketTools module.

An application may choose to use a global memory handle instead of a pre-allocated buffer if the amount
of data is very large, or the total amount of data that will be returned is unknown at the time the function is
being called. Consider the call to the HttpGetData function used in the previous example. A pre-allocated
buffer of 1024 bytes was passed to the function, and it copied up to that amount of data into the buffer.
However, what if you wanted the complete page and did not know how large it was? You could attempt to
determine the size of the page that was being requested using the HttpGetFileSize function, and then use
that value to allocate a buffer. However, this incurs additional overhead and it is not always possible to get
the size of a resource on a web server. Another alternative would be to simply allocate a very large buffer,
but this could result in the application allocating large amounts of memory that it doesn't use and you
would still run the risk that it wouldn't be large enough.

The solution for this problem is to use a global memory handle rather than a pre-allocated buffer. Instead
of copying the data into a buffer, the function allocates a global memory handle and stores the contents in
the memory referenced by that handle. When the function returns, it passes the handle back to the caller.
The caller then dereferences the handle to access the memory, and releases the handle when it is no
longer needed. Here is an example of how it would be used in C/C++:

HGLOBAL hgblBuffer = NULL;
DWORD dwLength = 0;
INT nResult;

nResult = HttpGetData(hClient,
 "/index.html",
 &hgblBuffer,
 &dwLength,
 0);

if (nResult != HTTP_ERROR)
{
 LPBYTE lpBuffer = (LPBYTE)GlobalLock(hgblBuffer);

 // Do something with the data and then unlock and
 // release the handle when it is no longer needed

 GlobalUnlock(hgblBuffer);
 GlobalFree(hgblBuffer);
}

Note that the global memory handle is initialized to NULL and the length argument is initialized to zero.
This is important to do because this is how the function knows that it should be returning a global memory
handle instead of copying data into a buffer. If you forget to initialize those arguments, the function will fail
and may cause the application to terminate with a general protection fault.

To work with the global memory handles used by SocketTools, you will need to define a few standard
functions that are part of the Windows operating system:

Declare Function GlobalLock Lib "kernel32.dll" (_
 ByVal hMem As Long _
) As Long

Declare Function GlobalUnlock Lib "kernel32.dll" (_
 ByVal hMem As Long _
) As Long

Declare Function GlobalFree Lib "kernel32.dll" (_
 ByVal hMem As Long _
) As Long

Declare Sub CopyMemory Lib "kernel32.dll" _
 Alias "RtlMoveMemory" (_
 ByRef lpDestination As Byte, _
 ByVal lpSource As Long, _
 ByVal dwLength As Long)

The GlobalLock function is used to dereference a global memory handle, returning the address in memory
where the data is stored. The GlobalUnlock function is used to unlock a memory handle that was
previously locked with a call to GlobalLock. The GlobalFree function releases the memory back to the
operating system. The CopyMemory function is used to copy the data into a byte array that your program
has allocated.

Because the function declaration for the HttpGetData function expects you to pass a byte array, you will
need to redefine the function in a private module. Note that this declaration will override how the function
is declared if you have referenced the library. The standard function declaration for HttpGetData looks like
this:

Declare Function HttpGetData Lib "cshtpv11.dll" _

 Alias "HttpGetDataA" (_
 ByVal hClient As Long, _
 ByVal lpszResource As String, _
 ByRef lpBuffer As Byte, _
 ByRef lpdwLength As Long, _
 ByVal dwOptions As Long _
) As Long

The new declaration should be modified so that the third argument is changed to a Long passed by
reference:

Declare Function HttpGetData Lib "cshtpv11.dll" _
 Alias "HttpGetDataA" (_
 ByVal hClient As Long, _
 ByVal lpszResource As String, _
 ByRef hgblBuffer As Long, _
 ByRef lpdwLength As Long, _
 ByVal dwOptions As Long _
) As Long

That long integer will contain the global memory handle allocated by the function when it returns. With
these changes, the equivalent code in Visual Basic 6.0 would look like this:

Dim hgblBuffer As Long
Dim dwLength As Long
Dim nResult As Long

hgblBuffer = 0
dwLength = 0

nResult = HttpGetData(hClient,
 "/index.html",
 hgblBuffer,
 dwLength,
 0);

If nResult <> HTTP_ERROR Then
 Dim lpBuffer As Long
 Dim byteBuffer() As Byte
 ReDim byteBuffer(dwLength - 1)

 lpBuffer = GlobalLock(hgblBuffer)
 CopyMemory byteBuffer(0), lpBuffer, dwLength

 Dim strBuffer As String
 strBuffer = StrConv(byteBuffer, vbUnicode)

 GlobalUnlock hgblBuffer
 GlobalFree hgblBuffer
End If

It is important to remember to unlock and release the global memory handle when you are no longer
using it. If you forget to release them, the application will have a memory leak. Because you are dealing
directly with memory buffers, the normal safety checks performed by Visual Basic are not available, such as
making sure you are not exceeding the bounds of an array. Simple mistakes such as passing an incorrect
argument or the wrong buffer size can result in Visual Basic becoming unstable or terminating with a
general protection fault. It is recommended that you always test your code carefully and always save your
current project before debugging or executing the program.

Event Handlers

SocketTools uses events to notify the application when some change in status occurs, such as when data is
available to be read or progress notifications during a file transfer. An event handler is simply a callback
function which has a specific set of arguments, and the address of that function is passed to the
HttpRegisterEvent function in the library. In Visual Basic 6.0, you can use the AddressOf operator to
obtain the address of a public callback function to pass to the function.

The first step to creating an event handler is to create a function which matches the signature of the
callback function defined by the SocketTools event notification function. Your event handler must be
created in a module, not a class or form, and you must declare it as public. When the event handler is
called, SocketTools will pass the handle to the client session, an event identifier to specify which event
occurred, an error code value if an error occurred, and the user-defined value that was specified by the
caller when the event was registered. In C++, the callback function would be declared as:

VOID EventHandler(HCLIENT hClient,
 UINT nEventId,
 DWORD dwError,
 DWORD_PTR dwParam)

In Visual Basic, the equivalent method would be defined as:

Public Sub HttpEventHandler(ByVal hClient As Long, _
 ByVal nEventId As Long, _
 ByVal dwError As Long, _
 ByVal dwParam As Long)

Let's create an event handler that updates a progress bar as a file is being downloaded from an HTTP
server. To do this, we'll create a function called HttpEventHandler:

Public Sub HttpEventHandler(ByVal hClient As Long, _
 ByVal nEventId As Long, _
 ByVal dwError As Long, _
 ByVal dwParam As Long)
 Select Case nEventId
 Case HTTP_EVENT_PROGRESS
 Dim httpStatus As HTTPTRANSFERSTATUS
 HttpGetTransferStatus hClient, httpStatus
 Form1.ProgressBar1.Value = CInt(100# * _
 CDbl(httpStatus.dwBytesCopied) / _
 CDbl(httpStatus.dwBytesTotal))
 End Select
End Sub

This event handler checks to see if the event ID indicates that it is a progress event, and if it is, calls
HttpGetTransferStatus to determine the number of bytes which have been copied so far. This is used to
calculate a percentage and a progress bar control is updated with that value.

Now that the event handler has been written, the next step is to register the event handler with the library:

nResult = HttpRegisterEvent(_
 hClient, _
 HTTP_EVENT_PROGRESS, _
 AddressOf HttpEventHandler, _
 0)

The first argument to HttpRegisterEvent is the handle to the client session. The second argument is the
event ID that you want to enable notification for, the third argument is the address of the event handler,
and the fourth argument is a user-defined value. That same value is passed to the event handler as the
dwParam argument.

Your event handler is now registered, and SocketTools will call your event handler during the process of

downloading or uploading a file to notify you of the progress of the transfer.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Borland Delphi

The SocketTools Library Edition provides a Delphi unit in the Include folder named cstools11.pas which can
be included with your projects. This defines the constants and functions in the SocketTools libraries.

String Arguments
An important consideration when using the SocketTools libraries in Delphi is how string arguments are
being used by the function. In most cases, the string is provided as input to the function, such as the
hostname or address of a server to establish a connection with. However, in some cases the string is
passed to the function as an output buffer into which the function copies data. An example of this would
be the HttpGetErrorString function, which is used to obtain a description of a specific error. In C/C++ you
would allocate a character array and pass it to the function, such as:

VOID ShowError()
{
 TCHAR szError[256];
 DWORD dwError;

 dwError = HttpGetLastError();
 if (dwError > 0)
 {
 HttpGetErrorString(dwError, szError, 256);
 MessageBox(NULL, szError, "Error", MB_OK);
 }
}

Delphi has a type called PAnsiChar which is a pointer to a null terminated array of characters. It was
created primarily as a compatibility type to work with the Windows API and C/C++ dynamic link libraries,
and this is the type that the SocketTools functions use to represent strings. The equivalent code in Delphi
would be:

procedure ShowError;
var
 dwError: LongWord;
 szError: Array [0..255] Of AnsiChar;
begin
 dwError := HttpGetLastError();
 if dwError > 0 then;
 begin
 HttpGetErrorString(dwError, szError, 256);
 ShowMessage(szError);
 end;
end;

Early versions of Delphi had helper functions such as StrNew to help convert and allocate null terminated
strings. However, those functions have been deprecated and in most cases current versions of Delphi will
automatically convert between character arrays and its native String type. There are also a number of
functions available which are designed specifically to work with null terminated strings. Refer to your
language reference for more information about how Delphi uses null terminated strings.

Byte Array Arguments
A number of SocketTools functions use byte arrays, either as an input argument to the function, or as an
output argument which will contain data when the function returns. An example of this is the HttpGetData
function, which will access a resource on the server and return the contents of that resource in a byte array
passed to the function. For example, the following code in C++ would return the first 1024 bytes of the
index page on a web server:

BYTE byteBuffer[1024];
DWORD dwLength;
INT nResult;

dwLength = sizeof(byteBuffer);
nResult = HttpGetData(hClient,
 "/index.html",
 byteBuffer,
 &dwLength,
 0);

If the function is successful, the byteBuffer array will contain the first 1024 bytes of the index page. In
Delphi, the equivalent code would look like this:

var
 nResult: Integer;
 byteBuffer: Array [0..1023] Of Byte;
 dwLength: LongWord;
begin
 dwLength := 1024;
 nResult := HttpGetData(hClient,
 PAnsiChar('/index.html'),
 @byteBuffer,
 dwLength,
 0);
end;

In this example, you will notice that the string was explicitly cast to a null terminated string using PAnsiChar.
This is necessary because the HttpGetData function is overloaded and Delphi will complain that the
function cannot be found if the cast is omitted.

If you wanted to convert the data in the byte array to a String type, you might think that you could do
something like this:

strBuffer := PAnsiChar(@byteBuffer);

This may appear to work, but it would depend on there being a null character to terminate the byte array
and it could result in garbage characters appearing at the end of your string or cause the program to
attempt to read memory that it has not allocated. To convert the byte array into a string, use the following:

SetLength(strBuffer, dwLength);
Move(byteBuffer, strBuffer[1], dwLength);

Note that you should only do this if the data returned by the function is actually text. In this example, it is
acceptable to do because the byte array contains the HTML text for the index page.

Global Memory Handles
In addition to using byte arrays, some SocketTools functions can use global memory handles (HGLOBALs)
to exchange large amounts of data. Using the Windows API, global memory handles are allocated by the
GlobalAlloc function, dereferenced by the GlobalLock function and released by the GlobalFree function.
These handles can be used in Delphi with the helper functions defined in the SocketTools unit.

An application may choose to use a global memory handle instead of a pre-allocated buffer if the amount
of data is very large, or the total amount of data that will be returned is unknown at the time the function is
being called. Consider the call to the HttpGetData function used in the previous example. A pre-allocated
buffer of 1024 bytes was passed to the function, and it copied up to that amount of data into the buffer.
However, what if you wanted the complete page and did not know how large it was? You could attempt to
determine the size of the page that was being requested using the HttpGetFileSize function, and then use
that value to allocate a buffer. However, this incurs additional overhead and it is not always possible to get

the size of a resource on a web server. Another alternative would be to simply allocate a very large buffer,
but this could result in the application allocating large amounts of memory that it doesn't use and you
would still run the risk that it wouldn't be large enough.

The solution for this problem is to use a global memory handle rather than a pre-allocated buffer. Instead
of copying the data into a buffer, the function allocates a global memory handle and stores the contents in
the memory referenced by that handle. When the function returns, it passes the handle back to the caller.
The caller then dereferences the handle to access the memory, and releases the handle when it is no
longer needed. Here is an example of how it would be used in C/C++:

HGLOBAL hgblBuffer = NULL;
DWORD dwLength = 0;
INT nResult;

nResult = HttpGetData(hClient,
 "/index.html",
 &hgblBuffer,
 &dwLength,
 0);

if (nResult != HTTP_ERROR)
{
 LPBYTE lpBuffer = (LPBYTE)GlobalLock(hgblBuffer);

 // Do something with the data and then unlock and
 // release the handle when it is no longer needed

 GlobalUnlock(hgblBuffer);
 GlobalFree(hgblBuffer);
}

Note that the global memory handle is initialized to NULL and the length argument is initialized to zero.
This is important to do because this is how the function knows that it should be returning a global memory
handle instead of copying data into a buffer. If you forget to initialize those arguments, the function will fail
and may cause the application to terminate with a general protection fault.

The equivalent code in Delphi would look like this:

var
 nResult: Integer;
 hgblBuffer: LongWord;
 dwLength: LongWord;
 pszBuffer: PAnsiChar;
begin
 hgblBuffer := 0;
 dwLength := 0;

 nResult := HttpGetData(hClient,
 PChar('/index.html'),
 hgblBuffer,
 dwLength,
 0);

 if nResult <> HTTP_ERROR then
 begin
 pszBuffer := PAnsiChar(GlobalLock(hgblBuffer));

 { Do something with the data and then unlock and
 release the handle when it is no longer needed }

 GlobalUnlock(hgblBuffer);
 GlobalFree(hgblBuffer);
 end;
end;

It is important to remember to unlock and release the global memory handle when you are no longer
using it. If you forget to release them, the application will have a memory leak.

Event Handlers
SocketTools uses events to notify the application when some change in status occurs, such as when data is
available to be read or progress notifications during a file transfer. An event handler is simply a callback
function which has a specific set of arguments, and the address of that function is passed to the
RegisterEvent function in the library.

The first step to creating an event handler is to create a function which matches the signature of the
callback function defined by the SocketTools event notification function. When the event handler is called,
SocketTools will pass the handle to the client session, an event identifier to specify which event occurred, an
error code value if an error occurred, and the user-defined value that was specified by the caller when the
event was registered. In C++, the callback function would be declared as:

VOID EventHandler(HCLIENT hClient,
 UINT nEventId,
 DWORD dwError,
 DWORD_PTR dwParam)

In Delphi, the equivalent function would be defined as:

procedure EventHandler(
 hClient: Integer;
 nEventId: Integer;
 dwError: LongWord;
 dwParam: LongWord); stdcall;

Note that the stdcall has been specified for the function. This is important, because the SocketTools
libraries require the stdcall calling convention, as do any Windows API functions which use callback
functions. Failure to specify the correct calling convention can prevent the callback function from being
invoked or can cause the application to terminate abnormally.

Let's create an event handler that updates a progress bar as a file is being downloaded from an HTTP
server. To do this, we'll create a procedure called HttpEventHandler:

procedure HttpEventHandler(
 hClient: Integer;
 nEventId: Integer;
 dwError: LongWord;
 dwParam: LongWord); stdcall;
var
 httpStatus: HTTPTRANSFERSTATUS;
 nPercent: Integer;
begin
 if nEventId = HTTP_EVENT_PROGRESS then
 begin
 HttpGetTransferStatus(hClient, httpStatus);
 nPercent := Trunc(100.0 * httpStatus.dwBytesCopied /
 httpStatus.dwBytesTotal);
 Form1.ProgressBar1.Position := nPercent;
 end;
end;

This event handler checks to see if the event ID indicates that it is a progress event, and if it is, calls

HttpGetTransferStatus to determine the number of bytes that have been copied so far. This is used to
calculate a percentage and a progress bar control is updated with that value.

Now that the event handler has been written, the next step is to register the event with the library so that it
is called during the transfer. To do this, the HttpRegisterEvent function is called to enable notification for
the progress event:

nResult := HttpRegisterEvent(
 hClient,
 HTTP_EVENT_PROGRESS,
 @HttpEventHandler,
 0);

The first argument to HttpRegisterEvent is the handle to the client session. The second argument is the
event ID for which you want to enable notification, the third argument is the address of the callback
function, and the fourth argument is a user-defined value. That same value is passed to the event handler
as the dwParam argument.

Your event handler is now registered, and SocketTools will call your event handler during the process of
downloading or uploading a file to notify you of the progress of the transfer.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PowerBASIC

The SocketTools Library Edition provides a complete set of function declarations and constants in the
Include folder named cstools11.inc which can be included with your projects. The function declarations and
examples included with SocketTools were developed using PowerBASIC 10.0 and PBForms 2.0. The
function declarations are also compatible with the PowerBASIC 6.0 console compiler.

String Arguments
An important consideration when using the SocketTools libraries in PowerBASIC is how string arguments
are used by the function. In most cases, the string is provided as input to the function, such as the
hostname or address of a server to establish a connection with. However, in some cases the string is
passed to the function as an output buffer into which the function copies data. An example of this would
be the HttpGetErrorString function, which is used to obtain a description of a specific error. In C/C++ you
would allocate a character array and pass it to the function, such as:

VOID ShowError()
{
 TCHAR szError[256];
 DWORD dwError;

 dwError = HttpGetLastError();
 if (dwError > 0)
 {
 HttpGetErrorString(dwError, szError, 256);
 MessageBox(NULL, szError, "Error", MB_OK);
 }
}

PowerBASIC has a string type called STRINGZ which is null terminated, fixed-length string and is
compatible with how strings are passed to the functions in the SocketTools API. Note that earlier versions
of PowerBASIC called them ASCIIZ strings. The equivalent code would be:

SUB ShowError()
 LOCAL szError AS STRINGZ * 256
 LOCAL dwError AS DWORD

 dwError = HttpGetLastError()
 IF dwError <> 0 THEN
 HttpGetErrorString(dwError, szError, SIZEOF(szError))
 MSGBOX szError, %MB_OK OR %MB_ICONEXCLAMATION, "Error"
 END IF
END SUB

It is important to note that you should generally not use STRING types, since those represent variable
length strings.

Byte Array Arguments
A number of SocketTools functions use byte arrays, either as an input argument to the function, or as an
output argument which will contain data when the function returns. An example of this is the HttpGetData
function, which will access a resource on the server and return the contents of that resource in a byte array
passed to the function. For example, the following code in C++ would return the first 1024 bytes of the
index page on a webserver:

BYTE byteBuffer[1024];
DWORD dwLength;
INT nResult;

dwLength = sizeof(byteBuffer);
nResult = HttpGetData(hClient,
 "/index.html",
 byteBuffer,
 &dwLength,
 0);

If the function is successful, the byteBuffer array will contain the first 1024 bytes of the index page. In
PowerBASIC, the equivalent code would look like this:

DIM byteBuffer(1024) AS LOCAL BYTE
LOCAL dwLength AS DWORD
LOCAL nResult AS LONG

dwLength = SIZEOF(byteBuffer)
nResult = HttpGetData(hClient, _
 "/index.html", _
 BYREF byteBuffer(0), _
 dwLength, _
 0)

In this example, you will notice that the byteBuffer array is passed by reference, specifying the first element.
The function will fill the byte array up to the number of bytes specified by the dwLength argument; when
the function returns, dwLength will be updated with the actual number of bytes copied into the buffer.

If you wanted to convert the data in the byte array to a string type, you can terminate the data with a null
character. However, this means that you should reserve a byte in the array. For example:

DIM byteBuffer(1024) AS LOCAL BYTE
LOCAL lpszBuffer AS STRINGZ PTR
LOCAL dwLength AS DWORD
LOCAL nResult AS LONG

dwLength = SIZEOF(byteBuffer) - 1 ' Reserve space for the null
nResult = HttpGetData(hClient, _
 "/index.html", _
 BYREF byteBuffer(0), _
 dwLength, _
 0)

IF nResult <> %HTTP_ERROR THEN
 lpszBuffer = VARPTR(byteBuffer(0))
 CONTROL SET TEXT hDlg, hCtl, @lpszBuffer
END IF

Note that you should only do this if the data returned by the function is actually text. In this example, it is
acceptable to do because the byte array contains the HTML text for the index page.

Global Memory Handles
In addition to using byte arrays, some SocketTools functions can use global memory handles (HGLOBALs)
to exchange large amounts of data. Using the Windows API, global memory handles are allocated by the
GlobalAlloc function, dereferenced by the GlobalLock function and released by the GlobalFree function.
These functions are defined in the WIN32API.INC module that is included with the language.

An application may choose to use a global memory handle instead of a pre-allocated buffer if the amount
of data is very large, or the total amount of data that will be returned is unknown at the time the function is
being called. Consider the call to the HttpGetData function used in the previous example. A pre-allocated
buffer of 1024 bytes was passed to the function, and it copied up to that amount of data into the buffer.
However, what if you wanted the complete page and did not know how large it was? You could attempt to

determine the size of the page that was being requested using the HttpGetFileSize function, and then use
that value to allocate a buffer. However, this incurs additional overhead and it is not always possible to get
the size of a resource on a web server. Another alternative would be to simply allocate a very large buffer,
but this could result in the application allocating large amounts of memory that it doesn't use and you
would still run the risk that it wouldn't be large enough.

The solution for this problem is to use a global memory handle rather than a pre-allocated buffer. Instead
of copying the data into a buffer, the function allocates a global memory handle and stores the contents in
the memory referenced by that handle. When the function returns, it passes the handle back to the caller.
The caller then dereferences the handle to access the memory, and releases the handle when it is no
longer needed. Here is an example of how it would be used in C/C++:

HGLOBAL hgblBuffer = NULL;
DWORD dwLength = 0;
INT nResult;

nResult = HttpGetData(hClient,
 "/index.html",
 &hgblBuffer,
 &dwLength,
 HTTP_TRANSFER_CONVERT);

if (nResult != HTTP_ERROR)
{
 LPBYTE lpBuffer = (LPBYTE)GlobalLock(hgblBuffer);

 // Do something with the data and then unlock and
 // release the handle when it is no longer needed

 GlobalUnlock(hgblBuffer);
 GlobalFree(hgblBuffer);
}

Note that the global memory handle is initialized to NULL and the length argument is initialized to zero.
This is important to do because this is how the function knows that it should be returning a global memory
handle instead of copying data into a buffer. If you forget to initialize those arguments, the function will fail
and may cause the application to terminate with a general protection fault.

The equivalent code in PowerBASIC would look like this:

LOCAL hgblBuffer AS DWORD
LOCAL dwLength AS DWORD
LOCAL pszBuffer AS STRINGZ PTR
LOCAL nResult AS LONG

hgblBuffer = %NULL
dwLength = 0

nResult = HttpGetData(hClient, _
 "/index.html", _
 BYREF hgblBuffer, _
 dwLength, _
 %HTTP_TRANSFER_CONVERT)

IF nResult <> %HTTP_ERROR THEN
 pszBuffer = GlobalLock(hgblBuffer)

 ' Do something with the data and then unlock and
 ' release the handle when it is no longer needed

 GlobalUnlock(hgblBuffer)
 GlobalFree(hgblBuffer)
END IF

It is important to remember to unlock and release the global memory handle when you are no longer
using it. If you forget to release them, the application will have a memory leak.

Event Handlers
SocketTools uses events to notify the application when some change in status occurs, such as when data is
available to be read or progress notifications during a file transfer. An event handler is simply a callback
function which has a specific set of arguments, and the address of that function is passed to the
HttpRegisterEvent function in the library.

The first step to creating an event handler is to create a function which matches the signature of the
callback function defined by the SocketTools event notification function. When the event handler is called,
SocketTools will pass the handle to the client session, an event identifier to specify which event occurred, an
error code value if an error occurred, and the user-defined value that was specified by the caller when the
event was registered. In C++, the callback function would be declared as:

VOID CALLBACK EventHandler(
 HCLIENT hClient,
 UINT nEventId,
 DWORD dwError,
 DWORD_PTR dwParam)

In PowerBASIC, the equivalent function would be defined as:

SUB EventHandler STDCALL (_
 BYVAL hClient AS LONG, _
 BYVAL nEventId AS LONG, _
 BYVAL dwError AS DWORD, _
 BYVAL dwParam AS DWORD)

Note that the STDCALL has been specified for the function. This is important, because the SocketTools
libraries require this calling convention, as do any Windows API functions which use callback functions.
Failure to specify the correct calling convention can prevent the callback function from being invoked or
can cause the application to terminate abnormally.

Let's create an event handler that updates a progress bar as a file is being downloaded from an HTTP
server. To do this, we'll create a subroutine called HttpEventHandler:

SUB HttpEventHandler STDCALL (_
 BYVAL hClient AS LONG, _
 BYVAL nEventId AS LONG, _
 BYVAL dwError AS DWORD, _
 BYVAL dwParam AS DWORD)

 LOCAL httpStatus AS HTTPTRANSFERSTATUS
 LOCAL nPercent AS LONG
 LOCAL hDlg AS DWORD

 hDlg = dwParam ' Dialog with the progress bar control

 IF nEventId = %HTTP_EVENT_PROGRESS THEN
 HttpGetTransferStatus(hClient, httpStatus)
 nPercent = CLNG(100.0 * CDBL(httpStatus.dwBytesCopied) / _
 CDBL(httpStatus.dwBytesTotal))
 CONTROL SEND hDlg, %IDC_PROGRESSBAR1, %PBM_SETPOS, nPercent, 0
 END IF

END SUB

This event handler checks to see if the event ID indicates that it is a progress event, and if it is, calls
HttpGetTransferStatus to determine the number of bytes that have been copied so far. This is used to
calculate a percentage and a progress bar control is updated with that value.

Now that the event handler has been written, the next step is to register the event with the library so that it
is called during the transfer. To do this, the HttpRegisterEvent function is called to enable notification for
the progress event:

nResult = HttpRegisterEvent(_
 hClient, _
 %HTTP_EVENT_PROGRESS, _
 CODEPTR(HttpEventHandler), _
 hDlg);

The first argument to HttpRegisterEvent is the handle to the client session. The second argument is the
event ID for which you want to enable notification, the third argument is the address of the callback
function, and the fourth argument is a user-defined value. That same value is passed to the event handler
as the dwParam argument. To update a progress bar control or any other user interface object, the
dwParam argument would typically be the handle to a dialog.

Your event handler is now registered, and SocketTools will call your event handler during the process of
downloading or uploading a file to notify you of the progress of the transfer.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SocketTools Library Overview

The SocketTools Library Edition includes libraries that implement fourteen standard Internet application
protocols, as well as libraries which provide support for general TCP/IP networking services, encoding and
compressing files, processing email messages and ANSI terminal emulation. The following libraries are
included in the SocketTools Library Edition:

Application Storage
The Web Services library provides a private cloud storage API for uploading and downloading
shared data files which are available to your application. This is primarily intended for use by
developers to store configuration information and other data generated by the application. For
example, you may want to store certain application settings, and the next time a user or
organization installs your software, those settings can be downloaded and restored.

Domain Name Service
The Domain Name Service (DNS) protocol is what applications use to resolve domain names into
Internet addresses, as well as provide other information about a domain, such as the name of the
mail servers which are responsible for receiving email for users in that domain. The DNS library
enables an application to query one or more nameservers directly, without depending on the
configuration of the client system.

Encoding, Compression and Encryption
The Encoding, Compression and Encryption library provides functions for encoding and decoding
binary files, typically attachments to email messages. The process of encoding converts the
contents of a binary file to printable text. Decoding reverses the process, converting a previously
encoded text file back into a binary file. The library supports a number of different encoding
methods, including support for the base64, uucode, quoted-printable and yEnc algorithms. The
library can also be used to encrypt data using AES-256 bit encryption, and compress data in a
user-supplied buffer or in a file.

File Transfer Protocol
The File Transfer Protocol (FTP) library provides functions for uploading and downloading files
from a server, as well as a variety of remote file management functions. In addition to file transfers,
an application can create, rename and delete files and directories, list files and search for files
using wildcards. The library provides both high level functions, such as the ability to transfer
multiple files in a single function call, as well as access to lower level remote file I/O functions. This
API supports secure file transfers using FTPS (FTP+TLS) and SFTP (FTP+SSH).

GeoIP Location
The Web Services library provides an API for obtaining geographical information about the
physical location of the computer system based on its external IP address. This can enable
developers to know where their application is being used, and provide convenience functionality
such as automatically completing a form based on the location of the user.

Hypertext Transfer Protocol
The Hypertext Transfer Protocol (HTTP) library provides an interface for accessing documents and
other types of files on a server. In some ways it is similar to the File Transfer Protocol in that it can
be used to upload and download files; however, the protocol has expanded to also support
remote file management, script execution and distributed authoring over the World Wide Web.
The SocketTools Hypertext Transfer Protocol library implements version 0.9, 1.0 and 1.1 of the
protocol, including features such as support for proxy servers, persistent connections, user-defined
header fields and chunked data.

Internet Control Message Protocol

The Internet Control Message Protocol (ICMP) is commonly used to determine if a server is
reachable and how packets of data are routed to that system. Users are most familiar with this
protocol as it is implemented in the ping and tracert command line utilities. The ping command is
used to check if a system is reachable and the amount of time that it takes for a packet of data to
make a round trip from the local system, to the server and then back again. The tracert command
is used to trace the route that a packet of data takes from the local system to the server, and can
be used to identify potential problems with overall throughput and latency. The library can be
used to build in this type of functionality in your own applications, giving you the ability to send
and receive ICMP echo datagrams in order to perform your own analysis.

Internet Message Access Protocol
The Internet Message Access Protocol (IMAP) is an application protocol which is used to access a
user's email messages which are stored on a mail server. However, unlike the Post Office Protocol
(POP) where messages are downloaded and processed on the local system, the messages on an
IMAP server are retained on the server and processed remotely. This is ideal for users who need
access to a centralized store of messages or have limited bandwidth. For example, traveling
salesmen who have notebook computers or mobile users on a wireless network would be ideal
candidates for using IMAP. The SocketTools IMAP library implements the current standard for this
protocol, and provides functions to retrieve messages, or just certain parts of a message, create
and manage mailboxes, search for specific messages based on certain criteria and so on. The API
is designed as a superset of the Post Office Protocol API, so developers who are used to working
with the POP3 library will find the IMAP library very easy to integrate into an existing application.

Mail Messages
The Mail Message (MIME) library provides an interface for composing and processing email
messages and newsgroup articles which are structured according to the Multipurpose Internet
Mail Extensions (MIME) standard. Using this library, an application can easily create complex
messages which include multiple alternative content types, such as plain text and styled HTML text,
file attachments and customized headers. It is not required that the developer understand the
complex MIME standard; a single function call can be used to create multipart message, complete
with a styled HTML text body and support for international character sets. The Mail Message
library can be easily integrated with the other mail related protocol libraries, making it extremely
easy to create and process MIME formatted messages.

Network News Transfer Protocol
The Network News Transfer Protocol (NNTP) is used with servers that provide news services. This
is similar in functionality to bulletin boards or message boards, where topics are organized
hierarchically into groups, called newsgroups. Users can browse and search for messages, called
news articles, which have been posted by other users. On many servers, they can also post their
own articles which can be read by others. The largest collection of public newsgroups available is
called USENET, a world-wide distributed discussion system. In addition, there are a large number
of smaller news servers. For example, Microsoft operates a news server which functions as a forum
for technical questions and announcements. The SocketTools library provides a comprehensive
interface for accessing newsgroups, retrieving articles and posting new articles. In combination
with the Mail Message library to process the news articles, SocketTools can be used to integrate
newsgroup access with an existing email application, or you can implement your own full-featured
newsgroup client.

News Feeds
The News Feed (RSS) library enables an application to download and process a syndicated news
feed in in standard format. News feeds can be accessed remotely from a web server, or locally as
an XML formatted text file. The source of the feed is determined by the URI scheme that is

specified. If the http or https scheme is specified, then the feed is retrieved from a web server. If
the file scheme is used, the feed is considered to be local and is accessed from the disk or local
network. The News Feed library provides an API that enables you to open a feed by URL and
iterate through each of the items in the feed or search for a specific feed item. The library also
provides a function that can be used to parse a string that contains XML data in RSS format, where
the feed may have been retrieved from other sources such as a database.

Post Office Protocol
The Post Office Protocol (POP3) provides access to a user's new email messages on a mail server.
Functions are provided for listing available messages and then retrieving those messages, storing
them either in files or in memory. Once a user's messages have been downloaded to the local
system, they are typically removed from the server. This is the most popular email protocol used
by Internet Service Providers (ISPs) and the SocketTools library provides a complete interface for
managing a user's mailbox. This library is typically used in conjunction with the Mail Message
library, which is used to process the messages that are retrieved from the server.

Remote Commands
The Remote Command library is used to execute a command on a server and return the output of
that command to the client. The SocketTools library provides an interface to this protocol,
enabling applications to remotely execute a command and process the output. This is most
commonly used with UNIX based servers, although there are implementations of remote
command servers for the Windows operating system. The SocketTools library supports both the
rcmd and rshell remote execution protocols and provides functions which can be used to search
the data stream for specific sequences of characters. This makes it extremely easy to write
Windows applications which serve as light-weight client interfaces to commands being executed
on a UNIX server or another Windows system. The library can also be used to establish a remote
terminal session using the rlogin protocol, which is similar to how the Telnet protocol functions.

Secure Shell Protocol
The Secure Shell (SSH) protocol is used to establish a secure connection with a server which
provides a virtual terminal session for a user. Its functionality is similar to how character based
consoles and serial terminals work, enabling a user to login to the server, execute commands and
interact with applications running on the server. The SSH library provides an API for establishing
the connection and handling the standard I/O functions needed by the program. The library also
provides functions that enable a program to easily scan the data stream for specific sequences of
characters, making it very simple to write light-weight client interfaces to applications running on
the server.

Simple Mail Transfer Protocol
The Simple Mail Transfer Protocol (SMTP) enables applications to deliver email messages to one or
more recipients. The library provides an API for addressing and delivering messages, and
extended features such as user authentication and delivery status notification. Unlike Microsoft's
Messaging API (MAPI) or Collaboration Data Objects (CDO), there is no requirement to have
certain third-party email applications installed or specific types of servers installed on the local
system. The SocketTools library can be used to deliver mail through a wide variety of systems,
from standard UNIX based mail servers to Windows systems running Exchange or Lotus Notes and
Domino. Using the SocketTools library, messages can be delivered directly to the recipient, or they
can be routed through a relay server, such as an Internet Service Provider's mail system. The Mail
Message library can be integrated with this library in order to provide an extremely simple, yet
flexible interface for composing and delivering mail messages.

SocketWrenchy
The SocketWrench library provides a higher-level interface to the Windows Sockets API, designed

to be suitable for programming languages other than C and C++. If needed, function calls can be
intermixed between the SocketWrench and Windows Sockets libraries. In addition, the
SocketWrench supports secure communications using Transport Layer Security (TLS).

Telnet Protocol
The Telnet protocol is used to establish a connection with a server which provides a virtual
terminal session for a user. Its functionality is similar to how character based consoles and serial
terminals work, enabling a user to login to the server, execute commands and interact with
applications running on the server. The Telnet library provides an API for establishing the
connection, negotiating certain options (such as whether characters will be echoed back to the
client) and handling the standard I/O functions needed by the program. The library also provides
functions that enable a program to easily scan the data stream for specific sequences of
characters, making it very simple to write light-weight client interfaces to applications running on
the server. This library can be combined with the Terminal Emulation library to provide complete
terminal emulation services for a standard ANSI or DEC-VT220 terminal.

Terminal Emulation
The Terminal Emulation library provides a comprehensive API for emulating an ANSI or DEC-
VT220 character terminal, with full support for all standard escape and control sequences, color
mapping and other advanced features. The library functions provide both a high level interface for
parsing escape sequences and updating a display, as well as lower level primitives for directly
managing the virtual display, such as controlling the individual display cells, moving the cursor
position and specifying display attributes. This library can be used in conjunction with the Remote
Command or Telnet Protocol library to provide terminal emulation services for an application, or it
can be used independently. For example, this library could also be used to provide emulation
services for a program that provides serial modem connections to a server.

Text Messaging
The Text Message library enables applications to send text messages to mobile devices. It provides
an interface that can be used to obtain information about the wireless service provider that is
associated with the phone number for a smartphone or other mobile device, and can send a
message with a single function call. Messages can be delivered directly to the service provider's
gateway, or can be relayed through a local mail server. With this API, an application can send text
message alerts when certain conditions occur (such as an error) or as a notification mechanism
that's used in addition standard email messages.

Time Protocol
The Time Protocol library provides an interface for synchronizing the local system's time and date
with that of a server. The library enables developers to query a server for the current time and
then update the system clock if desired.

Whois Protocol
The Whois protocol library provides an interface for requesting information about an Internet
domain name. When a domain name is registered, the organization that registers the domain
must provide certain contact information along with technical information such as the primary
name servers for that domain. The Whois protocol enables an application to query a server which
provides that registration information. The SocketTools library provides an API for requesting that
information and returning it to the program so that it can be displayed or processed.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Application Storage Service

The Web Services library provides a private cloud storage API for uploading and downloading shared data
files which are available to your application. This is primarily intended for use by developers to store
configuration information and other data generated by the application. For example, you may want to
store certain application settings, and the next time a user or organization installs your software, those
settings can be downloaded and restored.

The connection to the storage service is always secure, using TLS 1.2 and AES-256 bit encryption. There are
no third-party services you need to subscribe to, and there are no additional usernames or passwords for
you to manage. Access to the service is associated with an account which is created when you purchase a
development license, and the security tokens are bound to the runtime license key used when initializing
the API. You also have the option to compress and encrypt your data you store using the Encoding,
Compression and Encryption APIs.

Terminology
When you get started with the storage API, you'll notice there is some different terminology which is used.
This will provide an overview of that terminology, and compare it to common terms used with traditional
protocols like FTP. When accessing an FTP server, you generally deal with directories, files, names and
types (generally whether the file is binary or text). The storage API has similar concepts, but uses somewhat
different terminology.

Application Identifiers
An application identifier (AppId) is a null terminated string which uniquely identifies your
application. This string, used in conjunction with your runtime license key, is used to generate an
access token. This token is used to access the storage container which contains the data which
you've stored.

It is recommended you use a standard format for the AppId which consists of your company
name, application name and optionally a version number. Some examples of an AppId string
would be:

MyCompany.MyApplication

MyCompany.MyApplication.1

It is important to note with these two example IDs, although they are similar, they reference two
different applications. Objects stored using the first ID will not be accessible using the second ID. If
you want to store objects which should be shared between all versions of the application, it is
recommended you use the first form, without the version number. If you want to store objects
which should only be accessible to a specific version of your application, then it is recommended
you use the second form which includes the version number.

The AppId must only consist of ASCII letters, numbers, the period and underscore character.
Whitespace characters and non-ASCII Unicode characters are not permitted. The maximum length
of the string is 64 characters, including the terminating null character. It is not required for your
application to create a unique AppId. Each storage account has a default internal AppId named
SocketTools.Storage.Default. This AppId is used if a NULL pointer or an empty string is
specified.

Containers
Storage containers are somewhat analogous to directories or folders in a file system, however they
are general purpose and designed to allow you to control how your application accesses the data

that's been stored. There are four container types which are defined by the API, and you can think
of them as types of boxes or file cabinets which you store your data in.

It is important to keep in mind these containers are available to all users of your application, your
program controls who has access to any particular data file. Your users will not be able to
"browse" any of the containers unless you specifically provide that capability by implementing it in
your own code. There is no public access to any of the data which you upload, and our service
does not use an open API accessible by third parties.

WEB_STORAGE_GLOBAL
The global storage container which is available to all users of your application. Any data
stored in this container is available to everyone who uses your software. Unless you have
a specific need to limit access to the data to a specific user or group of users, this is the
recommended container you use to store data.

WEB_STORAGE_DOMAIN
The domain storage container is limited to users in the same local domain, defined either
by the name of the domain or workgroup assigned to the computer system. This can
provide a kind of organization wide storage, but it does depend on the domain being
unique. For example, if you are using domain storage for your application, and you have
multiple customers who have systems part of the default "Workgroup" domain, they
would all share the same container. If the domain or workgroup name changes, then data
stored in the container would no longer be available.

WEB_STORAGE_MACHINE
The local machine storage container is associated with the physical computer system your
application is running on. The machine is identified by unique characteristics of the
system, including the boot volume GUID. Data stored in this container can only be
accessed from the application running on that particular system. If the operating system is
reinstalled, the machine ID will change and data stored in this container would no longer
be available.

WEB_STORAGE_USER
The current user storage container is associated with the current user who is using your
application. The user identifier is based on the Windows Security Identifier (SID) assigned
to the account when it's created. If the user account is deleted, the data stored in this
container will no longer be available to the application. Another user on the same
computer system would not be able to access the data in this container.

If you decide to use anything other than global storage, the data your application stores can be
orphaned if the system configuration or user account changes. It's recommended you store critical
application data and general configuration information using WEB_STORAGE_GLOBAL and use
other non-global storage containers for configuration information which is unique to that system
and/or user which is not critical and can be easily recreated. If you're concerned about protecting
the data you upload to global storage, you can encrypt it prior to storing it.

Objects
Storage objects are similar to files in a file system. They are discrete blocks of data, associated with
a label (name), have attributes and are associated with a particular content type. However, an
object does not need to be an actual file on the local system. For example, you could store an
object which is a string, a pointer to a structure, or any block of memory. You could also just store
a complete file as an object. Unlike files, you cannot perform partial reads of an object or "seek"
into certain parts of a stored object. Of course, you can download an object, either in memory or
to a local file, and perform whatever operations you require on the data.

Labels
Object labels are similar to file names, and are a way to identify a stored object instead of using its
internal object ID. However, there are some important differences. The most significant difference
being labels are case-sensitive, unlike Windows file names. An object with the label "AppConfig" is
considered to be different than one with the label "appconfig". Labels can contain Unicode
characters, but they cannot contain control characters.

You can also use forward slashes or backslash characters in the label, but it's important to note
objects are not stored in a hierarchical structure. Your application can store objects using a folder-
like structure, but it's not something which is enforced by the API.

Media Type
Each object your application stores is associated with a media type (also called a content type)
which identifies the object's data. This uses the standard MIME media type designations, such as
"text/plain" or "application/octet-stream". Your application can explicitly specify the media type
you want to associate with the object, or you can have the API choose for you, based on the
contents of the object and using the label as a hint for what it may contain. For example, if you
create an object with the label "AppConfig.xml" and it contains text, then the API will select
"text/xml" as the default media type.

Initialization
The first step your application must take is to initialize the library and then open a storage container. The
following functions are available for use by your application:

WebInitialize
Initialize the library for the current process. This must be the first function call the application
makes before calling the other service API functions.

WebOpenStorage
Opens a storage container for your application and returns a handle which is used with other
functions.

WebCloseStorage
Close the storage container and release the resources allocated for the session.

WebUninitialize
Release all resources which have been allocated for the current process. This is the last function
call the application should make prior to terminating.

Data Storage
The library provides functions to upload and download to the storage container. You can store local files,
or you can create objects from data in memory. There are also functions which make it easier to store and
retrieve textual data using null terminated strings.

WebGetFile
Download the object data and store in a file on the local system. There is also an extended version
of the function named WebGetFileEx which provides additional options, such as the ability to
retrieve information about the object downloaded in a single function call.

WebGetObject
Download the object data and store it in a memory buffer provided by the caller. The buffer can
either be a pre-allocated block of memory, or reference a global memory handle which will
contain the data when the function returns.

WebGetTextObject

Download the object data and store it in a null terminated string. This function would be used with
data which is only textual, and it may contain Unicode text. If the the Unicode version of the
function is called, the text is automatically converted from UTF-8 encoded to UTF-16 encoded text.

WebPutFile
Upload the the contents of a local file and store it as an object in the current container. There is
also an extended version of the function named WebPutFileEx which provides additional options,
such specifying the object attributes, media type and information about the stored object when
the function returns.

WebPutObject
Upload the object data from a buffer in memory and store it as an object in the current container.
This function would typically be used to store binary data, including compressed or encrypted text.

WebPutTextObject
Upload the contents of a string and store it as an object in the current container. The text is
specified as a null terminated string, and if the Unicode version of the function is used, the text will
be converted and stored as UTF-8 encoded text. The WebGetTextObject function will
automatically convert the text back to UTF-16 encoding when the text object is retrieved from
storage.

Data Management
The data management functions allow you to obtain information about stored objects and perform typical
operations such as copying, renaming and deleting objects from the container.

WebGetObjectInformation
Returns information about a specific object stored in the container. This function populates a
WEB_STORAGE_OBJECT structure which will contains metadata for the object such as its ID, size,
attributes, creation and modification times.

WebGetFirstObject
Enables your application to search for and enumerate objects in a container based on their label
and/or their media type. This function is used in conjunction with the WebGetNextObject function
to list all matching objects in a container.

WebCompareFile
Compares the contents of a local file with the data in a stored object. This function can be used to
determine if the contents of a file have changed since the file was previously stored using the
WebPutFile function.

WebCompareObject
Compares the contents of data in memory with the data in a stored object. This function can be
used to determine if the contents of the buffer have changed since the data was previously stored
using the WebPutObject function.

WebCompareText
Compares the contents of null terminated string with the text in a stored object. This function can
be used to determine if the contents of the string have changed since the data was previously
stored using the WebPutTextObject function. If the Unicode version of this function is used, the
string is automatically converted to use UTF-8 encoding prior to being compared with the
contents of the stored object.

WebCopyObject
Copies the contents of a stored object to a new container, or duplicating the object within the
same container using a different label. Information about the newly created object is returned to
the caller.

WebMoveObject
Moves the contents of a stored object to a new container. Information about the object which has
been moved will be returned to the caller.

WebRenameObject
Changes the label associated with a stored object. The new label for the object cannot already
exist in the same container. If you want to change the label to one already assigned to an existing
object, the object must first be deleted.

WebDeleteObject
Removes the stored object from the container. This operation is immediate and permanent.
Deleted objects cannot be recovered by the application at a later time.

WebGetStorageQuota
Returns information about how much storage space is available. It will populate a
WEB_STORAGE_QUOTA structure which will specify how many bytes of storage you're using and
how many objects you have created. It is important to note accounts created with an evaluation
license have much lower quota limits than a standard account and should be used for testing
purposes only. After the evaluation period has ended, all objects stored using the evaluation
license will be deleted.

WebResetStorage
Resets the storage container and deletes all objects which were stored there. This function resets
the container back to its initial state, deleting all object metadata from the database and removing
all stored data. This operation is immediate and the objects stored in the container are
permanently deleted. They cannot be recovered by your application.

Other Functions
Several additional utility functions are available as part of the storage API, including functions to register
and de-register application identifiers and validate object labels.

WebRegisterAppId
Register a new application identifier (AppId) to be used to access a storage container. It is not
required you create a unique application ID, but it can be helpful to distinguish stored content
between different versions of your applications.

WebUnregisterAppId
Unregister an application identifier which was previously registered by your application. You
should be extremely careful when using this function because it permanently delete all stored
objects created using the AppId value. Internally it revokes the access token granted to your
application and causes the server to expunge all objects in the container associated with the
token.

WebValidateAppId
A utility function which can be used to validate an application identifier, ensuring it is valid and has
been registered.

WebValidateLabel
A utility function which can be used to validate an object label to ensure it does not contain any
invalid characters. This would be primarily used by applications which allow a user to specify the
label names for the objects being stored.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Domain Name Service

The Domain Name Service (DNS) protocol is what applications use to resolve domain names into Internet
addresses, as well as provide other information about a domain, such as the name of the mail servers
which are responsible for receiving email for users in that domain. All of the SocketTools libraries provide
basic domain name resolution functionality, but the Domain Name Services library gives an application
direct control over what servers are queried, the amount of time spent waiting for a response and the type
of information that is returned.

The first step that your application must take is to initialize the library and then create a handle for the
client session. Unlike many of the other libraries, there are no connection related functions because DNS
uses UDP datagrams rather than TCP streams. The following functions are available for use by your
application:

DnsInitialize
Initialize the library and load the Windows Sockets library for the current process. This must be the
first function call that the application makes before calling the other DNS API functions.

DnsCreateHandle
Create a handle that is used by the library to reference the client session. There are two
arguments, a timeout period and a retry count. These values are used together to determine the
total amount of time that the library will take in an attempt to resolve a hostname or IP address.
The default values of 15 seconds and 4 retries are recommended for most applications.

DnsCloseHandle
Release the handle that was previously created by the call to DnsCreateHandle. Any memory
allocated by the library on behalf of the application is released and the datagram socket that was
created is closed.

DnsRegisterServer
Specify a nameserver that the library should use to resolve queries. By default, the library will use
the nameservers that the local host was configured to use. This function enables you to override
that default and specify your own servers, independent of the system's configuration.

DnsUninitialize
Unload the Windows Sockets library and release any resources that have been allocated for the
current process. This is the last function call that the application should make prior to terminating.

Address Conversion
Internet Protocol (IP) addresses can be represented in one of two ways, either as unsigned 32-bit integer
value or as string where each byte of the address is written as an integer value and separated by periods.
For example, the local loopback IP address can either be specified as the string "127.0.0.1" or as the integer
value 16777343. In most cases, using the string form of the address is easier; however, some functions
require that the numeric value be used. The following functions are provided to enable you to convert
between the two formats.

DnsGetAddress
Convert an IP address string in dotted notation into a 32-bit integer value.

DnsFormatAddress
Convert a numeric IP address into a string in dotted notation, copying the result into a buffer that
you provide to the function.

Host Tables
When resolving a host name or IP address, the library will first search the local system's host table, a file

that is used to map host names to addresses. On Windows 95/98 and Windows Me, if the file exists it is
usually found in C:\Windows\hosts. On Windows NT and later versions, it is found in
C:\Windows\system32\drivers\etc\hosts. Note that the file does not have an extension.

DnsGetDefaultHostFile
Return the full path of the file that contains the default host table for the local system. This can be
useful if you wish to temporarily switch between the default host file and another host file specific
to your application.

DnsGetHostFile
Return the full path of the host table that is currently being used by the library. Initially this is the
same as the default host table for the local system.

DnsSetHostFile
Specify a new host table which the library should use to resolve host names and IP addresses. This
can be used by an application to provide its own local cache of host names and addresses in
order to speed up the process of host name resolution.

Host Name Resolution
The library can be used to resolve host names into IP addresses, as well as perform reverse DNS lookups
converting IP addresses into the host names that are assigned to them. The library will search the local
system's host table first, and then perform a nameserver query if required.

DnsGetHostAddress
Resolve a host name into an IP address, returned as a string in dotted notation. The library first
checks the system's local host table, and if the name is not found there, it will perform a
nameserver query for the A (address) record for that host.

DnsGetHostName
Resolve an IP address into a host name. The address is passed as a string in dotted notation, and
the fully qualified host name is returned in a string buffer you provide to the function. The library
first checks the system's local host table, and if the address is not found there, it will perform a
nameserver query for the PTR (pointer) record for that address.

Mail Exchange Records
When a system needs to deliver a mail message to someone, it needs to determine what server is
responsible for accepting mail for that user. This is done by looking up the mail exchange (MX) record for
the domain. For example, if a message was addressed to joe@example.com, to determine the name of the
mail server that would accept mail for that recipient, you would perform an MX record query against the
domain example.com. A domain may have more than one mail server, in which case multiple MX records
will be returned.

DnsEnumMailExchanges
Enumerate all of the mail exchanges for the specified domain. If there are multiple servers, they
may be prioritized so that certain servers are given precedence over the others. This function will
return the highest priority servers first in the list. Refer to the Technical Reference for an example
of how this function can be used.

Advanced Queries
In addition to providing host name and IP address resolution, the library can be used to perform advanced
queries for other types of records.

DnsGetHostInfo
Return additional information about the specified host name. If the name server has been
configured to provide host information for the domain, this function will return that data. Typically

it is used to indicate what hardware and operating system the host uses.

DnsGetHostServices
Return information about the UDP and TCP based services that the host provides. If defined, this
will return a list of service names such as "ftp" and "http". Note that your application should not
depend on this information to be a definitive list of what services a server provides.

DnsGetRecord
Perform a general nameserver query for a specific record type. This function can be used to
perform queries for the common record types such as A and PTR records, as well as for other
record types such as TXT (text) records. Refer to the Technical Reference for more information
about the specific types of records that can be returned.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Encoding, Compression and Encryption

A common requirement for applications which use Internet protocols is the need to encode binary files, as
well as compress data to reduce the bandwidth and time required to send or receive the data. Encoding a
binary file converts the contents of the file into printable characters which can be safely transferred over the
Internet using protocols that only support a subset of 7-bit ASCII characters. This is commonly a restriction
for email, since many mail servers still are not capable of correctly processing messages which contain
control characters, 8-bit data or multi-byte character sequences found in International text.

 To address this problem, the sender encodes and sends the data as part of a message; the recipient then
extracts and decodes the data, with the end result being the same as the original, without any potential
corruption by the mail servers which store and/or forward the message. The File Encoding library supports
several encoding and decoding methods, including standard base64 encoding, quoted-printable encoding
and uuencoding. For applications which access USENET newsgroup, the library also supports the newer
yEnc encoding method which has become a popular method for attaching binary files to a message.

This library also can be used to compress files, reducing their overall size. Two compression algorithms are
supported, the standard deflate algorithm which is commonly used in Zip files, and an algorithm based on
the Burrows-Wheeler Transform (BWT) which can offer improved compression over the deflate algorithm
for some types of files. The developer has control over the type of compression performed, as well as
details such as the level of compression which determines how much memory and CPU time is allocated to
compress the data. Developers can even create their own custom compression formats by creating an
application-specific header block, typically represented by a structure or user-defined type that can be
used to provide information to the program.

Unlike the other SocketTools libraries, there are no initialization functions for this library, and there are no
handles used. All operations are performed either on files or on memory buffers provided by the
application. The library is split into two general areas of functionality. The first group of functions enables
you to encode and decode binary files and the second group enables you to compress and expand data.

Note that if you are interested in using this library for purposes of attaching files to an email message, it is
not necessary that you use these functions. The Mail Message library has the ability to automatically
encode and decode file attachments without requiring that you use the functions in this library. However,
the File Encoding library is useful if you need the ability to encode, compress and/or encrypt data for use in
other applications.

Encoding Types
There are several different encoding types available, with the default being the standard MIME encoding
called Base64. The following encoding methods are supported by the library:

Base64
Base64 encoding works by representing three bytes of data as four printable characters. Each of
the three bytes is converted into four six-bit numbers, and each six-bit number is converted to one
of 64 printable characters (which is where the encoding method gets its name). Base64 is the
default encoding method used by the library and is the standard encoding used for MIME
formatted email messages as well as many other applications.

Quoted-Printable
Quoted-printable encoding is primarily used in email messages, and is best used when the data
being encoded is text which consists primarily of printable characters. Only characters with the
high-bit set or a certain subset of printable characters are actually encoded by representing them
as their hexadecimal value. All other printable characters are passed through unmodified.

Uucode
One of the original encoding methods used for email, it gets its name from two UNIX command-
line utilities called uuencode and uudecode, which were used to encode and decode files. Like
Base64, uuencoding converts three bytes of data into four six-bit numbers, and then a value of 32
is added to ensure that it is printable. Uuencoding also adds some additional characters which are
used to ensure the integrity of the encoded data. This encoding method is still used when posting
files to USENET newsgroups, but has largely been replaced by Base64 when attaching files to
email messages.

yEnc
yEnc is an encoding method that was created specifically for binary newsgroups on USENET.
Because USENET doesn't have the same limitations as email systems in terms of what kind of
characters can be safely used, yEnc only encodes null characters and certain control characters;
the remaining 8-bit data is passed through as is which can significantly reduce the overall size of
the encoded data. yEnc also uses checksums to ensure the integrity of the data and is designed so
that a large file can be split across multiple messages and then recreated.

Data Encoding
Encoding a binary file converts the contents of the file into printable characters which can be safely
transferred over the Internet using protocols that only support a subset of 7-bit ASCII characters. This is
commonly a restriction for email, since many mail servers still are not capable of correctly processing
messages which contain control characters, 8-bit data or multi-byte character sequences found in
International text. To address this problem, the sender encodes and sends the data as part of a message;
the recipient then extracts and decodes the data, with the end result being the same as the original,
without any potential corruption by the mail servers which store and/or forward the message.

EncodeFile
This function encodes a file using the specified encoding method, storing the encoded data in a
new file. An option also allows you to automatically compress the data prior to encoding it in
order to reduce the overall size of the encoded file.

DecodeFile
This function decodes a previously encoded file using the specified encoding method, restoring
the original contents. If the encoded data was compressed, this function can also be used to
automatically expand the data after it has been decoded.

EncodeBuffer
This function encodes a block of data in memory using the specified encoding type. This is similar
to the EncodeFile function, except that instead of using disk files, all of the encoding is done in
memory. As with encoding a file, you can also specify that you want the data to be compressed
prior to being encoded.

DecodeBuffer
This function decodes a previously encoded block of data. This is similar to the DecodeFile
function, except that instead of using disk files, all of the decoding is done in memory. As with
decoding a file, you can also specify that you want compressed data to be automatically expanded
after it has been decoded.

IsUnicodeText
This function can be used to check the contents of a string to ensure that it contains valid UTF-8 or
UTF-16 encoded Unicode text. One of the primary uses of the function is to determine if data
received over the network uses valid UTF-8 character encoding. The UnicodeDecodeText
function can then be used to convert it to UTF-16 or multi-byte text.

UnicodeDecodeText
This function decodes UTF-8 encoded text and returns the decoded text in a string provided by
the caller. It can be used to convert UTF-8 text to UTF-16, or to localized multi-byte text. It is
similar to the MultiByteToWideChar function, but performs some additional checks to ensure the
encoded text is valid and can be safely decoded.

UnicodeEncodeText
This function encodes a multi-byte or Unicode string as UTF-8 encoded text. It is similar to the
WideCharToMultiByte function and ensures Unicode text is normalized prior to being encoded.

Data Compression
In addition to encoding and decoding data, the library can be used to compress data in order to reduce its
size. The compression functions may be used separately, or may be used as part of the process of
encoding a file or a block of data.

CompressFile
This function reduces the size of a file using the standard Deflate algorithm. This is the same
algorithm that is commonly used in Zip archives. Note however, that this does not create a Zip file,
it simply uses the same compression method.

ExpandFile
This function restores the original contents of a file that was previously compressed using the
CompressFile function. Note that this function is not designed to extract files from a Zip archive
or expand data compressed using a different algorithm.

CompressBuffer
This function uses the Deflate algorithm to reduce the size of a block of data. This is similar to the
CompressFile function except that it performs the compression on data in memory rather than in
a disk file.

ExpandBuffer
This function restores the data that was previously compressed using the CompressBuffer
function.

There are some additional functions for compressing files that provide more advanced options such as the
ability to specify the compression type and level, as well as enabling you to create your own custom file
compression formats. Please refer to the Technical Reference for more information.

Data Encryption
There are several functions which provide a simplified interface for encrypting and decrypting data using
the AES-256 Advanced Encryption Standard algorithm.

AesEncryptFile
This function encrypts the contents of a file. A password string can be provided which is used to
generate the encryption key. To encrypt data stored in memory, use the AesEncryptBuffer
function.

AesDecryptFile
This function is used to decrypt the contents of a file that was previously encrypted using
AesEncryptFile.

AesEncryptBuffer
This function is used to encrypt the contents of a buffer in memory. The encrypted data is
returned in a buffer that is provided by the caller. The encrypted data will be in a binary format
which can contain embedded null bytes. If you need to encrypt string values, it's recommended
you use the AesEncryptString function.

AesDecryptBuffer
This function is used to decrypt a buffer in memory that was previously encrypted using
AesEncryptBuffer.

AesEncryptString
This function is used to encrypt a null terminated string and the encrypted data is returned as
base64 encoded text. This is similar to the AesEncryptBuffer function, but it is designed to work
specifically with strings and the encrypted output can be safely stored as a text value by the
application.

AesDecryptString
This function is used to decrypt a string that was previously encrypted using AesEncryptString.

The encryption functions use the Microsoft CryptoAPI and the RSA AES cryptographic provider. This
provider may not be available in some languages, countries or regions. It is important to note the
availability of this provider may also be constrained by cryptography export restrictions imposed by the
United States or other countries.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 File Transfer Protocol

The File Transfer Protocol (FTP) is the most common application protocol used to upload and download
files between a local system and a server. In addition to basic file transfer capabilities, FTP also enables a
client application to perform common file and directory management functions on the server, such as
renaming and deleting files or creating new directories. The SocketTools Library Edition also supports
secure file transfers using SSH (SFTP) and SSL/TLS (FTPS) by simply specifying an option when establishing
the connection.

The first step that your application must take is to initialize the library and then establish a connection. The
following functions are available for use by your application:

FtpInitialize
Initialize the library and load the Windows Sockets library for the current process. This must be the
first function call that the application makes before calling the other FTP API functions.

FtpConnect
Connect to the server, using either a host name or IP address. The function has several options
related to security as well as the general operation of the library. One important option is
FTP_OPTION_PASSIVE, which instructs the library to use passive mode file transfers. If the local
system is behind a firewall or a route which uses Network Address Translation (NAT), it is often
necessary to use this option. This function returns a client handle which is used in subsequent calls
to the library.

FtpProxyConnect
A variation on the standard connection, this function can be used to connect to an FTP server
through a proxy server. The library provides support for a number of standard proxy types, such
as those used by the Gauntlet and InterLock proxy servers. A custom proxy server type is also
supported where your application can send any custom commands required to establish the
connection.

FtpLogin
Authenticate the client session, providing the server with a user name, password and optionally an
account name. It is also possible to use an anonymous (unauthenticated) session by providing
empty strings as the username and password.

FtpDisconnect
Disconnect from the server and release the memory allocated for that client session. After this
function is called, the client handle is no longer valid.

FtpUninitialize
Unload the Windows Sockets library and release any resources that have been allocated for the
current process. This is the last function call that the application should make prior to terminating.

File Transfers
The library provides several functions which can be used to transfer files between the local and server. This
group of functions is high level, meaning that it is not necessary to actually write the code to read and/or
write the file data. The library automatically handles the lower level file I/O and notifies your application of
the status of the transfer by periodically generating progress events.

FtpGetData
This function transfers a file from the server to the local system, storing the file data in memory.
This can be useful if your application needs to perform some operation based on the contents of
the file, but does not need to store the file locally.

FtpGetFile
This function transfers a file from the server and stores it in a file on the local system. This function
is similar to how the GET command works for the command-line FTP client in Windows.

FtpGetMultipleFiles
This function transfers multiple files from the server and stores them in a directory on the local
system. A wildcard may be specified so that only files which a certain name or those that match a
particular file extension are downloaded. This function is similar to how the MGET command works
for the command-line FTP client in Windows.

FtpPutData
This function creates a file on the server containing the data that you provide. This can be useful if
your application wants to upload dynamically created content without having to create a
temporary file on the local system.

FtpPutFile
This function uploads a file from the local system to the server. This function is similar to how the
PUT command works for the command-line FTP client in Windows.

FtpPutMultipleFiles
This function transfers multiple files from the local system to a directory on the server. A wildcard
may be specified so that only files with a certain name or those that match a particular file
extension are uploaded. This function is similar to how the MPUT command works for the
command-line FTP client in Windows.

File Management
In addition to performing file transfers, the File Transfer Protocol library can also perform many of the same
kinds of file management functions on the server as you would on the local system.

FtpDeleteFile
Delete a file from the server. This operation requires that the current user have the appropriate
permissions to delete the file.

FtpRenameFile
Change the name of a file or move a file to a different directory. This operation requires that the
current user have the appropriate permissions to rename the file. If the file is being moved to
another directory, the user must have permission to access that directory.

FtpGetFileStatus
Return status information about the file in the form of a structure. This typically specifies the
ownership, access permissions, size and modification time for the file. It is similar to opening a
directory on the server and reading information about the file, but with less overhead.

FtpGetFileSize
Return the size of a file on the server without actually downloading the contents of the file.

FtpGetFileTime
Return the modification time for the specified file on the server. This can be used by you
application to determine if the file has been changed since the time that you last uploaded or
downloaded the contents.

FtpSetFileTime
Update the modification time for a file on the server. This function requires that the current user
have the appropriate permissions to change the last modification timestamp for the file. Note that
this is not supported on all servers and in some cases may be restricted to specific accounts.

FtpGetFilePermissions

Return the access permissions for a file on the server. This can be used to determine if a file can
be read, modified and/or deleted by the current user. For users who are familiar with UNIX file
permissions, it is the same type which is used by the library.

FtpSetFilePermissions
Change the access permissions for a file. This function is supported on most UNIX based servers,
as well as any other server that supports the site-specific CHMOD command.

Directory Management
The library also provides a set of functions which can be used to access and manage directories or folders,
including the ability to list and search for files, create new directories and remove empty directories from
the server.

FtpOpenDirectory
Open the specified directory on the server. This is the first step in returning a list of files in the
directory. After the directory has been opened, information about the files it contains can be
returned to the application. The directory path may also include wildcards to only return
information about a certain subset of files based on the file name or extension.

FtpGetFirstFile
Return information about the first file in the directory that has been opened. This is similar to how
the Windows API function FindFirstFile works.

FtpGetNextFile
Return information about the next file in the directory that has been opened. This function is called
repeatedly until it indicates that all of the files have been returned. This is similar to how the
Windows API function FindNextFile works.

FtpChangeDirectory
Change the current working directory on the server. This is similar to how the CD command is
used from the command-line to change the current directory in Windows. If a path is not specified
in the file name, the current working directory is where files will be uploaded to and downloaded
from.

FtpCreateDirectory
Create a new directory on the server. This requires that the current user have the appropriate
access permissions in order to create the directory.

FtpRemoveDirectory
Remove an empty directory from the server. This operation requires that the current user have the
appropriate permissions to delete the directory. For safety, it is required that the directory does
not contain any files or subdirectories or the operation will fail.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 GeoIP Location Service

The Web Services library provides an API for obtaining geographical information about the physical
location of the computer system based on its external IP address. This can enable developers to know
where their application is being used, and provide convenience functionality such as automatically
completing a form based on the location of the user.

The connection to the location service is always secure and does not require you subscribe to any third-
party services. The accuracy of this information can vary depending on the location, with the most detailed
information being available for North America. The country and time zone information for all locations is
generally accurate. However, as the location information becomes more precise, details such as city names,
postal codes and specific geographic locations (e.g.: longitude and latitude) may have reduced accuracy.

Software which is designed to protect the privacy of users, such as those which route all Internet traffic
through proxy servers or VPNs, can significantly impact the accuracy of this information. In this case, the
data returned in this structure may reflect the location of the network or proxy server, and not the location
of the person using your application. It is recommended you always request permission from the user
before acquiring their location, have them confirm the location is correct and provide a mechanism for
them to update the information.

Functions
To obtain the location of the local computer system, use the following functions:

WebInitialize
Initialize the library for the current process. This must be the first function call the application
makes before calling the other service API functions.

WebGetLocation
This function populates a WEB_LOCATION structure which contains information about the physical
location of the system. This structure has a number of members which provide details about the
location:

Member Description

szLocationId A string which contains contains a string of
hexadecimal characters which uniquely identifies the
location for this computer system. This value is used
internally by the location service, and may also be
used by the application for its own purposes.

szIPAddress A string which contains the external IP address for the
local system. If the system has been assigned multiple
IP addresses, it reflects the address of the interface
used to establish the connection with the location
server.

nAutonomousSytemNumber An integer which is used to uniquely identify a global
network (autonomous system) which is connected to
the Internet. This value can be used to determine the
ownership of a particular network.

szOrganization A string which identifies the organization associated
with the local system's external IP address. For
residential end-users this is typically the name of their
Internet Service provider, however it may also identify

a private company.

szRegionName A string which identifies a broad geographical area,
such as "North America" or "Southeast Asia".

nRegionCode An integer which identifies the geographical region.
This value corresponds to standard UN M49 region
codes.

szCountryName A string which contains the full name of the country in
which the external IP address is located, such as
"United States". These names will always be in English,
regardless of the current system locale.

szCountryAlpha2 A string which contains the ISO 3166-1 alpha-2 code
assigned to the country. For example, the alpha-2
code for the United States is "US".

szCountryAlpha3 A string which contains the ISO 3166-1 alpha-3 code
assigned to the country. For example, the alpha-3
code for the United States is "USA".

nCountryCode An integer value which identifies the country using the
standard UN country code. For example, the numeric
country code for the United States is 840.

szSubdivision A string which identifies a geopolitical subdivision
within a country. In the United States, this will contain
the full name of the state or commonwealth. In
Canada, this will contain the name of the province or
territory.

szSubdivisionCode A string which is either a two- or three-letter code
which identifies a geopolitical subdivision within the
country. These codes are defined by the ISO 3166-2
standard. For example, the code for the state of
California in the United States is "CA".

szCityName A string which identifies the city at this location. These
names will always be in English, regardless of the
current system locale. If the city name cannot be
determined, this member may contain an empty
string.

szPostalCode A string which contains the postal code associated
with the location. In the United States, this is a 5-digit
numeric code. Local delivery portions of a postal code
(such as the ZIP+4 code in the United States) are not
included.

szCoordinates A string which specifies the location expressed using
the Universal Transverse Mercator (UTM) coordinate
system with the WGS-84 ellipsoid. These coordinates
are commonly used with the Global Positioning
System (GPS).

szTimezone A string which specifies the full time zone name.

These names are defined by the Internet Assigned
Numbers Authority (IANA) and have values like
"America/Los_Angeles" and "Europe/London".

szTzShortName A string which specifies the abbreviated time zone
code. If daylight savings time is used within the time
zone, then this value can change based on whether
or not daylight savings is in effect. If a short time zone
code cannot be determined, a value such as "UTC+9"
may be returned, indicating the number of hours
ahead or behind UTC.

nTimezoneOffset A integer which specifies the number of seconds east
or west of the prime meridian (UTC). A positive value
indicates a time zone which is east of the prime
meridian and a negative value indicates a time zone
which is west of the prime meridian.

dLatitude A real number which specifies the latitude of the
location in decimal format. A positive value indicates a
location which is north of the equator, while a
negative value is a location which is south of the
equator.

dLongitude A real number which specifies the longitude of the
location in decimal format. A positive value indicates a
location which is east of the prime meridian, while a
negative value is a location which is west of the prime
meridian.

stLocalTime A SYSTEMTIME structure which contains information
about the current date and time at the location,
adjusted for its time zone and whether or not it's in
daylight savings time.

WebUninitialize
Release all resources that were allocated for the current process. This is the last function call the
application should make prior to terminating.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Hypertext Transfer Protocol

The Hypertext Transfer Protocol (HTTP) is the most prevalent application protocol used on the Internet
today. It was originally used for document retrieval, and has grown into a complex protocol which supports
file uploading, script execution, file management and distributed web authoring through extensions such as
WebDAV. The SocketTools Hypertext Transfer Protocol library implements version 0.9, 1.0 and 1.1 of the
protocol, including features such as support for proxy servers, persistent connections, user-defined header
fields and chunked data.

File Transfers
Similar to the API used with the File Transfer Protocol library, you can use HTTP to upload and
download files. In addition to the standard method for downloading files, the library supports two
methods for uploading files, using either the PUT or the POST command. When downloading a
file from the server, you can either store the contents in a local file, or you can copy the data into
a memory buffer that you allocate. Similarly, when uploading files, you can either specify a local
file to upload, or you can provide a memory buffer that contains the file data to send to the
server. High level functions such as HttpPutFile and HttpGetFile can be used to transfer files in a
single function call. There are also functions such as HttpOpenFile and HttpCreateFile which
provide lower level file I/O interfaces.

Script Execution
Another common use for HTTP is to execute scripts on the web server. The application can pass
additional data to the script, which is similar in concept to how arguments are passed to a
command that is entered from the command prompt. This typically uses the standard GET and
POST commands, and the resulting output from the script is returned back to the application
where it can be displayed or processed. There are several different functions you can use,
depending on the service you're requesting information from. The HttpPostData function is
general-purpose and can be used with virtually any type of POST request, including submitting
binary data. However, it can require some additional settings such as the content type and
encoding method. The HttpPostJson and HttpPostXml functions are specifically designed for
requests which require JSON or XML payloads, respectively.

Uniform Resource Locators
Anyone who has used a web browser is familiar with the Uniform Resource Locator (URL); it is the
value that is entered as the address of a website. URLs have a specific format which provides
information about the server, the port number and the name of the resource that is being
accessed:

[http|https]://[username : [password] @] hostname [:port] / resource [? parameters]

The first part of the URL identifies the protocol, also known as the scheme, which will be used.
With web servers, this will be either http or https for secure connections. If a username and
password is required for authentication, this can be included in the URL before the name of the
server. Next, there is the name of the server to connect to, optionally followed by a port number. If
no port number is given, then the default port for the protocol will be used. This is followed by the
resource, which is usually a path to a file or script on the server. Parameters to the resource may
also be specified, called the query string, which are typically used as arguments to a script that is
executed on the server.

Understanding how a URL is constructed will help in understanding how the different functions in
the library work together. For example, the server name and port number portion of the URL are
the values passed to the HttpConnect function to establish the connection. The user name and
password values are passed to the HttpAuthenticate function to authenticate the client session.

And the resource name is passed to the HttpGetData or HttpGetFile functions to transfer it to
the local system.

The first step that your application must take is to initialize the library and then establish a connection. The
following functions are available for use by your application:

HttpInitialize
Initialize the library and load the Windows Sockets library for the current process. This must be the
first function call that the application makes before calling the other HTTP API functions.

HttpConnect
Establish a connection to the server. This function will return a handle to a client session which is
used in subsequent calls to the HTTP API.

HttpProxyConnect
A variation on the standard connection, this function can be used to connect to an HTTP server
through a proxy server. The library provides support for standard CERN type proxies as well as
tunneling proxies that are commonly used with secure SSL connections.

HttpAuthenticate
If the server requires the client to authenticate prior to accessing a resource, this function can be
called to provide the user name and password. This is commonly used to restrict access to certain
areas of a website to authenticated users only. Although it is permitted to authenticate
immediately after connecting to a server, it is not required. An application can wait until the server
returns an error indicating that authentication is required to access the resource. It can call this
function at that time, and then re-request the resource. This is how most browsers work. This
function may be called more than once during a session if the client needs to change the current
user name and/or password being used to authenticate access to the server.

HttpDisconnect
Disconnect from the server and release any resources that have been allocated for the client
session. After this function is called, the client handle is no longer valid.

HttpUninitialize
Unload the Windows Sockets library and release any resources that have been allocated for the
current process. This is the last function call that the application should make prior to terminating.

File Transfers
Using an API similar to the File Transfer Protocol library, this library provides several functions which can be
used to transfer files between the local and server. This group of functions is high level, meaning that it is
not necessary to actually write the code to read and/or write the file data. The library automatically handles
the lower level file I/O and notifies your application of the status of the transfer by periodically generating
progress events.

HttpGetData
This function transfers a file from the server to the local system, storing the file data in memory.
This can be useful if your application needs to perform some operation based on the contents of
the file, but does not need to store the file locally.

HttpGetFile
This function transfers a file from the server and stores it in a file on the local system.

HttpPutData
This function creates a file on the server containing the data that you provide. This can be useful if
your application wants to upload dynamically created content without having to create a
temporary file on the local system.

HttpPutFile
This function uploads a file from the local system to the server using the PUT command. Not all
servers support this command, and some may require that the client authenticate prior to calling
this function.

HttpPostFile
This function uploads a file from the local system to the server using the POST command. This
enables your application to upload a file in the same way that a user would when using a form in a
web browser.

File Management
The library can also perform some basic file management functions as well as send custom commands to
the server. Some web servers also provide more advanced document management functions using
WebDAV, an extension to HTTP for distributed document authoring.

HttpGetFileSize
Return the size of a file on the server without actually downloading the contents of the file. It is
important to note that most servers will only return file size information for actual documents
stored on the server, not for dynamically created content generated by scripts or web pages which
use server-side includes.

HttpGetFileTime
Return the modification time for the specified file on the server. This can be used by your
application to determine if the file has been changed since the time that you last uploaded or
downloaded the contents.

HttpDeleteFile
Remove a file from the server. This operation requires that the current user have the appropriate
permissions to delete the file. Not all servers support the use of this command, and it would
typically require that the client authenticate prior to calling this function.

HttpCommand
This function enables the client to send any command directly to the server. This is commonly
used to issue custom commands to servers that are configured to use extensions to the standard
protocol.

Script Execution
The library also provides functions to execute server-side scripts, returning the output back to your
application. Your program can pass additional data to the script, typically either as a query string or as form
data, which is similar in concept to how arguments are passed to a command that is entered from the
command prompt.

HttpGetData
In addition to being used to simply return the contents of a file, this function can also be used to
execute a script on the server and return the output of that script to your program. Arguments to
the script can be specified by passing them as a query string. For example, consider the following
resource which is a PHP script:

/app/test.php?data1=value1&data2=value2

This would specify that the script /app/test.php is to be executed, and two arguments will be
passed to that script: data1=value and data2=value2. The ampersand is used to separate the
arguments, and they are grouped as pairs of values separated by an equal sign. Note that the
actual format and value of the query string depends on how the script is written.

HttpPostData

An alternative method of providing information to a script is to post data to the script. Instead of
the data being part of the resource name itself, posted data is sent separately and is provided as
input to the script. This is the same method that is typically used when a user clicks the Submit
button on a web-based form. This function requires the name of the script and the address of a
buffer that contains the data that will be posted. The resulting output from the script is returned to
the caller in the same way that HttpGetData works.

HttpPostJson and HttpPostXml
These are specialized versions of the HttpPostData function which are designed to work with
JSON and XML payloads. They will automatically set the correct content type and encoding for the
request. If you are using the Unicode version of these functions, they will automatically convert the
payload to standard UTF-8 encoding prior to submitting the data to the server. It is recommended
you use these functions when accessing RESTful API services which expect JSON or XML requests.

HttpSubmitRequest
This is a high-level function which supports either a GET, PUT or POST request in a single function
call. With this function, there is no need to explicitly connect to the server using HttpConnect. The
entire transaction (i.e.: establishing the connection, submitting the request, processing the server
response and then disconnecting) is handled automatically. If your application does not need to
maintain a persistent connection to the server, using this function can eliminate a lot of boilerplate
code which would otherwise be required.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Internet Control Message Protocol

The Internet Control Message Protocol (ICMP) library enables your application to send and receive ICMP
echo datagrams. These are a special type of IP datagram which can be used to determine if a server is
reachable, as well as determine the amount of time it takes for data to be exchanged with the local system.
The ICMP library can also be used to trace the route that data takes from the local system to the server,
which can be useful in determining why a connection to a particular system may be experiencing higher
latency than normal.

The first step that your application must take is to initialize the library and then create a handle for the
client session. Unlike many of the other libraries, there are no connection related functions because ICMP
uses IP datagrams rather than TCP streams. The following functions are available for use by your
application:

IcmpInitialize
Initialize the library and load the Windows Sockets library for the current process. This must be the
first function call that the application makes before calling the other ICMP API functions.

IcmpCreateHandle
This function will return a handle to a client session which is used in subsequent calls to the ICMP
API. It is only required that you call this function if you're using the lower level ICMP functions to
send and receive ICMP echo datagrams. The higher level functions like IcmpEcho and
IcmpTraceRoute do not require a handle.

IcmpCloseHandle
Release the handle that was previously created by the call to IcmpCreateHandle. Any memory
allocated by the library on behalf of the application is released and the datagram socket that was
created is closed.

IcmpUninitialize
Unload the Windows Sockets library and release any resources that have been allocated for the
current process. This is the last function call that the application should make prior to terminating.

Ping and TraceRoute
To determine if a server is reachable, your application can send ICMP echo datagrams. You can also map
the route between the local system and the server by sending a series of echo datagrams to each
intermediate host. This is what the ping.exe and tracert.exe command line utilities do, and you can emulate
that functionality in your own applications.

IcmpEcho
This is the simplest function you can use to send ICMP echo datagrams. Specify the server, the size
of the ICMP datagram you want to send and the number of times you want to send it. The
function will return if the operation was successful along with information such as the average
number of milliseconds it took for the datagram to be returned by the server. Note that it is not
required that you create a handle to use this function.

IcmpTraceRoute
This function will map the route that data packets take from your local system to a server.
Whenever you send data over the Internet, that data is routed from one computer system to
another until it reaches its destination. This function returns statistical information about each
system that the data is routed through, and the latency between that system and the local host.

IcmpSendEcho
This is a lower level function that will send a single ICMP echo datagram. It can be used with
applications that want to have more direct control over the process of how the datagrams are

sent, and is typically used with asynchronous sessions.

IcmpRecvEcho
This is a lower level function that will receive a single ICMP echo reply datagram that was returned
by the server. Typically this is used to receive datagrams that were sent in response to the
IcmpSendEcho function. The IcmpGetTripTime function can be used after the function returns
in order to check the amount of time it took to receive the datagram.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Internet Message Access Protocol

The Internet Message Access Protocol (IMAP) is an application protocol which is used to access a user's
email messages which are stored on a mail server. However, unlike the Post Office Protocol (POP) where
messages are downloaded and processed on the local system, the messages on an IMAP server are
retained on the server and processed remotely. This is ideal for users who need access to a centralized
store of messages or have limited bandwidth. The SocketTools IMAP library implements the current
standard for this protocol, and provides functions to retrieve messages, create and manage mailboxes, and
search for specific messages based on some user-defined search criteria.

The first step your application must take is to initialize the library, then establish a connection to the server
and authenticate the client. The following functions are available for use by your application:

ImapInitialize
Initialize the library and load the Windows Sockets library for the current process. This must be the
first function call that the application makes before calling the other IMAP API functions.

ImapConnect
Establish a connection to the IMAP server. This function will return a handle to a client session
which is used in subsequent calls to the IMAP API.

ImapDisconnect
Disconnect from the IMAP server and release any resources that have been allocated for the client
session. After this function is called, the client handle is no longer valid.

ImapLogin
Authenticate yourself to the server using a username and password. This function should be called
immediately after the connection has been established to the server.

ImapUninitialize
Unload the Windows Sockets library and release any resources that have been allocated for the
current process. This is the last function call the application should make prior to terminating.

Managing Mailboxes
One of the primary differences between the IMAP and POP3 protocol is that IMAP is designed to manage
messages on the mail server, rather than downloading all of the messages and storing them on the local
system. To support this, IMAP allows the client to maintain multiple mailboxes on the server, which are
similar in concept to message folders used by mail client software. A mailbox can contain messages, and in
some cases a mailbox can contain other mailboxes, forming a hierarchy of mailboxes and messages, similar
to directories and files in a filesystem. A special mailbox named INBOX contains new messages for the user,
and additional mailboxes can be created, renamed and deleted as needed. Here are the most important
functions for managing mailboxes:

ImapCheckMailbox
Check the mailbox for any new messages which may have arrived. Because messages are
managed on the server, it is possible for new mail to arrive during the client session.

ImapCreateMailbox
Create a new mailbox on the server with the specified name.

ImapDeleteMailbox
Delete a mailbox from the server. Most servers will only permit a mailbox to be deleted if it does
not contain any mailboxes itself. Unlike deleting a message, which can be undeleted, deleting a
mailbox is permanent.

ImapExamineMailbox

Once the session has been established and authenticated, a mailbox should be selected. This
enables the client to manage the messages in that mailbox. This function selects the specified
mailbox in read-only mode so that messages can be read, but not modified. To select the mailbox
in read-write mode, use the ImapSelectMailbox function.

ImapExpungeMailbox
Remove all of the messages marked for deletion and return updated status information about the
current mailbox.

ImapGetFirstMailbox
This function begins the process of enumerating the available mailboxes on the server, according
to certain criteria provided to the function.

ImapGetNextMailbox
This function returns the next mailbox from the server, based on the criteria specified to the
ImapGetFirstMailbox function. When all the mailboxes have been returned, this function will
return an error indicating that there are no more mailboxes.

ImapRenameMailbox
Renames an existing mailbox. One of the interesting uses of this function is the ability to rename
the special INBOX mailbox. Instead of actually renaming it, it moves all of the messages to the new
mailbox and empties the INBOX.

ImapSelectMailbox
Once the session has been established and authenticated, a mailbox should be selected. Selecting
a mailbox enables the client to manage the messages in that mailbox. This function selects the
specified mailbox in read-write mode so that changes can be made to the mailbox.

ImapUnselectMailbox
This function unselects the currently selected mailbox, and allows the caller to specify if messages
marked for deletion should be expunged (removed) from the mailbox or reset back to an
undeleted state.

Managing Messages
There are functions in the IMAP library for managing messages which enables the application to create,
delete and move messages. To use these functions, a mailbox must be selected, either by calling the
ImapSelectMailbox or ImapExamineMailbox function. Functions which modify the mailbox require that
it be opened in read-write mode. Messages are identified by a number, starting with one for the first
message in the mailbox.

ImapCopyMessage
Copy a message to a specific mailbox.

ImapDeleteMessage
Mark the specified message for deletion. Unlike the POP3 protocol, when a message is deleted on
an IMAP server it can still be accessed. The message will not actually be removed from the
mailbox unless the mailbox is expunged, unselected or the client disconnects from the server.

ImapEnumMessages
Return information about all, or a specific range of, messages on the server.

ImapGetMessageCount
Return the number of messages in the currently selected mailbox.

ImapGetMessageFlags
Return the status flags for a specific message. Messages have a number of flags which can be set
that determines their status in the mailbox. For example, messages can be flagged as answered,

seen (read), recent (new) or deleted.

ImapGetMessageSize
Return the size of the message in bytes.

ImapSetMessageFlags
Set one or more flags for the specified message. Flags can be cleared, added or replaced using
this function.

ImapUndeleteMessage
Remove the deletion flag from the specified message.

Viewing Messages
One of the more powerful features of the IMAP protocol is the ability to precisely select what kinds of
message data you wish to retrieve from the server. It is possible to retrieve only specific headers, or specific
sections of a multipart message. Because IMAP understands MIME formatted messages, it is possible to
only retrieve the textual portion of a message without having to download any attachments that may have
come with it.

ImapGetHeaderValue
This function returns the value for a specified header field in the message. Using this function, it is
not necessary to download and parse the message header. To obtain the value of a header field in
a specific part of a multipart message, use the ImapGetHeaderValueEx function.

ImapOpenMessage
This is a lower level function which opens a message for reading from the server. A more complex
version of this function called ImapOpenMessageEx function allows you to specify the type of
message data that you want, a specific part of a multipart message, and a byte offset into the
message. The application would then call ImapRead to read the contents of the message,
followed by ImapCloseMessage when all the message data has been read. Also see the
ImapGetMessage function, which will return the contents of a message into a memory buffer.

ImapGetMessageParts
This function returns the number of parts in a multipart message and is useful for determining if a
message is a simple message or a MIME formatted message with multiple parts, such as one that
includes file attachments.

Downloading Messages
In some cases, it may be preferable to download a complete message from the server to the local system.
This can be easily done with a single function call.

ImapGetMessage
This function retrieves the specified message and stores it in a buffer provided by the caller; you
can specify the type of message data that you want, a specific part of a multipart message and the
amount of data that you want. For example, it is possible to request that only the first 1500 bytes
of the body of the 3rd part of a multipart message should be returned.

ImapStoreMessage
This function downloads a complete message and stores it as a text file on the local system.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Mail Message

The Mail Message library can be used to create and process messages in the format defined by the
Multipurpose Internet Mail Extensions (MIME) standard. When a message is parsed, it is broken into parts,
each consisting of two sections. The first part is called the header section and it describes the format of the
data and how it should be represented to the user. The second section is the data itself. A typical mail
message without file attachments has one part, with the body of the message being the data. Messages
with attachments have multiple parts, each with a header describing the type of data. The library can be
then used to extract the data from a multipart message and save it to a file on the local system, delete the
part from the message, or add additional parts to the message, such as attaching a file.

The library can also be used to create new multipart messages with alternative content, such a message
with both plain text and styled HTML text. Once a message has been created, files can be attached to the
message and the application can make any other changes that are needed. The library provides complete
access to all headers and content in a multipart message, including the ability to create your own custom
headers and make modifications to specific sections.

The first step that your application must take is to initialize the library, then establish a connection to the
server and authenticate the client. The following functions are available for use by your application:

MimeInitialize
Initialize the library for the current process. This must be the first function call that the application
makes before calling the other MIME API functions.

MimeComposeMessage
Compose a new message using the specified header field values and content. Using this function,
you can create a message with the From, To, Cc and Subject headers already defined, along with
any text for the message. You can also optionally provide both plain and styled HTML text versions
of the message and the function will automatically create a multipart message. The function
returns a handle which can be used by the application to make further modifications, such as
attaching files to the message.

MimeCreateMessage
Create a new, empty message and return a handle which can be used by the application to
reference the message. In most cases, using the MimeComposeMessage function is preferred,
however there may be some situations where the application needs a message handle when the
contents of the message aren't known at the time. For example, parts of a message may be
created dynamically based on the results of several database queries.

MimeDeleteMessage
Releases the memory allocated for the message and destroys the message handle. After this
function returns, the handle is no longer valid. This function should be called when the message is
no longer needed by the application.

MimeUninitialize
Release any resources that have been allocated for the current process. This is the last function call
that the application should make prior to terminating.

Message Headers
Each message has one or more headers fields which provide information about the contents of the
message. For example, the "From" header field specifies the email address of the person who sent the
message. There are a fairly large number of header fields defined by the MIME standard, and applications
can also create their own custom headers if they wish. The library gives the application complete access to
the header fields in a message. Headers can be examined, modified, created or removed from the

message as needed.

MimeGetMessageHeader
This function returns a pointer to a null terminated string which contains the value of the specified
header field in the current message part. For languages like Visual Basic, it is recommended that
you use the MimeGetMessageHeaderEx function instead.

MimeGetMessageHeaderEx
This function copies the value of a header field into a null terminated string buffer that you
provide. This function also allows you to specify the message part in a multipart message. To
return the value of the common header fields such as "From", "To" and "Subject", you should
specify a message part of zero.

MimeGetFirstMessageHeader
This function returns the value of the first header defined in the current message part, copying it
into the string buffer that you provide. This is used in conjunction with the
MimeGetNextMessageHeader function to enumerate all of the headers that have been defined.

MimeGetNextMessageHeader
This function returns the value of the next header defined in the current message part. It should be
called in a loop until it returns a value of zero (False) which indicates that the last message header
has been returned.

MimeSetMessageHeader
Set a message header field to the specified value in the current message part. If the value is a null
pointer or empty string, the message header will be deleted from the message.

MimeSetMessageHeaderEx
Set a message header field to the specified value. This version of the function allows you to also
specify the message part, rather than just using the current message part. To return the value of
the common header fields such as "From", "To" and "Subject", you should specify a message part
of zero. If the value is a null pointer or empty string, the message header will be deleted from the
message.

MimeDeleteMessageHeader
Delete the specified message header from the current message part.

Message Contents
The content or body of a message contains the text that is to be read or processed by the recipient. It may
be a simple, plain text message or it may be more complex, such as a combination of plain and styled
HTML text or the data for a file attachment. The library provides complete access to the contents of the
message, enabling the application to modify, extract, replace or delete specific sections of the message.

MimeGetMessageText
Copy the text from the body of the current message part into a null terminated string buffer. The
offset and length of the text being copied can be specified, which enables you to return just a
portion of the message. For example, it would be possible to return just the first 1K byte of a text
message.

MimeSetMessageText
Set or replaces the text in the body of the current message part. You can specify an offset in this
function, enabling you to replace just portions of the message.

MimeAppendMessageText
Append text to the body of the current message part. Instead of replacing existing text, the new
text will be added to the end of the message.

Multipart Messages
Most typical messages contain a single part, which consists of the message headers followed by the
contents of the message. However, when files are attached to a message or alternative content types such
as HTML are used, a more complex multipart message is required. With a multipart message, the contents
of the message are split into logical sections with each section containing a specific part of the message.
For example, when a file is attached to a message, one part of the message contains the text to be read by
the recipient and another part contains the data for the file.

The first of a multipart message is called part 0, and contains the main header block. This is what defines
the headers that you are most familiar with, such as "From", "To" and "Subject". The body of this message
part is typically a plain text message that indicates that this is a multipart message. This is done for the
benefit of older mail clients that cannot parse MIME messages correctly. Next part, part 1, typically contains
the actual body of the message that would be displayed by the mail client. Additional parts may contain file
attachments and other information. In the case of a multipart message that contains both plain and styled
HTML text versions of a message, part 1 is typically the plain text version of the message while part 2
contains the HTML version. The mail client can then make a decision based on its own configuration as to
which version of the message it displays.

MimeGetMessagePartCount
Return the number of parts in the message. A simple message will contain just one part. This can
be used to determine if the message is a MIME multipart message, with a value greater than one
indicating that it is.

MimeGetMessagePart
Return the current message part. Each message has the concept of a "current message part",
which is the default message part that the other functions will use. When a message is first
created, the current message part is zero. The simplest way to think of message parts is as a zero-
based index into an array into sections of the message.

MimeSetMessagePart
Change the current message part. Once the current message part has been set, it will remain as
the current part until explicitly changed or until a new message part is created.

MimeCreateMessagePart
Create a new, empty message part. If the message was not originally a multipart message, it will
be restructured into one. Otherwise, the new part is simply added to the end of the message. This
function will cause the current message part to change to the new part that was just created.

MimeCreateMessagePartEx
Create a new message part using the specified character set and text. If the message was not
originally a multipart message, it will be restructured into one. Otherwise, the new part is simply
added to the end of the message. This function will cause the current message part to change to
the new part that was just created.

MimeDeleteMessagePart
Delete the message part from the message. If the message part is in the middle of the message, it
will cause the subsequent parts of the message to be reordered. You should not delete part zero
to delete a message; use the MimeDeleteMessage function instead.

Importing Messages
The library can be used to import existing messages, either from memory or from a file. Once the message
has been parsed, the application can examine or modify specific parts of the message. The following
functions are provided to import the contents of a message:

MimeImportMessage

The simplest method of importing a message, this function reads the contents of the specified file
and imports it into the current message. This function is typically called immediately after
MimeCreateMessage to load a file into a new message context.

MimeImportMessageEx
This version of the function enables you to import the message from a file, the system clipboard, a
pointer to a memory buffer or a global memory handle. This is typically used to import messages
that were retrieved using the POP3 or IMAP protocols by passing a pointer to the buffer that
contains the data returned by the server.

Exporting Messages
After a message has been created or modified, it can be exported to a file or to memory. Exporting the
message to a memory buffer is particularly useful when using the library with another one of the
SocketTools libraries. For example, the contents of a message can be exported to memory, and that
memory address can be passed to the Simple Mail Transfer Protocol (SMTP) library for delivery to the
recipient. The following functions are provided to export the contents of a message:

MimeExportMessage
This function exports the current message to a file. When using this function, only certain headers
are exported and they may be reordered. To force all headers to be included in the message or to
preserve the order of the headers, use the extended version of this function.

MimeExportMessageEx
This extended version of the function exports the message to a file, the system clipboard, a
memory buffer or returns a handle to a global memory buffer that contains the message. There
are additional options that enable you to control what headers are exported, and whether the
order the headers were set should be preserved.

File Attachments
In addition to simple text messages, one or more files can be attached to a message. The process of
attaching a file involves creating a multipart message, encoding the contents of the file and then including
that encoded data in the message. The following functions are provided to manage files attached to the
message, as well as attach files to an existing message:

MimeAttachFile
This function attaches the contents of the file to the message. The file will be attached using the
specified encoding algorithm and will become the current message part. If the message is not a
multipart message, it will be converted to one; if it already is a multipart message, the attachment
will be added to the end of the message.

MimeAttachData
This function works in similar fashion to MimeAttachFile, except that instead of the contents of a
file, the data in a memory buffer will be attached to the message. If the message is not a multipart
message, it will be converted to one; if it already is a multipart message, the attachment will be
added to the end of the message.

MimeAttachImage
This function attaches an inline image file to the message. It is similar to the MimeAttachFile
function, except that the image is designed to be referenced as an embedded graphic in an HTML
message. This function will automatically set the correct header values for an inline image
attachment, and enables the developer to specify a content ID which is used in the HTML
message.

MimeGetAttachedFileName
Return the name of a file attachment in the current message part. This function serves two

purposes, to determine if the current message part contains a file attachment, and if so, what file
name should be used when extracting that attachment.

MimeExtractFile
Extract the file attachment in the current message part, storing the contents in a file. The
attachment will automatically be decoded if necessary. This function also recognizes uuencoded
attachments that are embedded directly in the body of the message, rather than using the
standard MIME format.

Mail Addresses
The library has functions which are designed to make it easier to work with email addresses. Addresses are
typically in the format of "user@domain.com" however additional information can be included with the
address, such as the user's name or other comments that aren't part of the address itself. The library can
parse these addresses for you, returning them in a format that is suitable for use with other protocols such
as the SMTP library.

MimeParseAddress
Parse an email address that may include an address without a domain name or comments in the
address, such as the user's name. For example, the From header field may return an address like
"Joe Smith <joe@example.com>"; this function would parse the address and return
"joe@example.com", the actual address for the user.

MimeEnumMessageRecipients
It is common for certain headers to contain multiple addresses separated by a comma. These
addresses may also include comments such as the user's name. This function parses a string and
returns a list of valid addresses. For example, the To header field may contain "Tom Jones
<tom@example.com>, Jerry Lewis <jerry@example.com>"; this function would return
"tom@example.com" and "jerry@example.com" as the two addresses listed.

Message Storage
The library has a collection of functions which makes it simple for an application to store a group of
messages together in a single file, search for and retrieve specific message. The collection of messages is
referred to as a "message store" and messages may either be stored in a plaintext format or in a
compressed binary format.

MimeOpenMessageStore
This function is used to open an existing message store or create a new one. The function returns
a handle which is used to access the messages in the storage file, and must be closed using the
MimeCloseMessageStore function. The storage files may either be plaintext, or stored in a
compressed format. It also supports opening storage files in the UNIX mbox format.

MimeGetStoredMessageCount
This function returns the number of messages that currently in the message store. Each message is
referred to by an integer which is its index into the storage file. The first stored message has a
value of 1, and increments with each additional message in the storage file.

MimeFindStoredMessage
An application can search the message store for messages that match any header value. Searches
can be complete or partial, and may be case-sensitive or case-insensitive. For example, this
function can be used to enumerate all of the messages in the storage file that were sent by a
specific user or match a specific subject.

MimeGetStoredMessage
This function returns a handle to the message in the storage file, and can be used with any of the
other functions in the Mail Message API. The application can also request its own private copy of

the message, which it can modify independently of what is currently in the message store.

MimeStoreMessage
This function stores a new message, specified by its message handle, to the open message store.
Note that the message store must be opened for write access, and this function will always
append the message to the storage file. The new message index is returned to the caller.

MimeDeleteStoredMessage
This function flags a message for deletion from the message store. Once a message has been
flagged for deletion, it may no longer be accessed by the application. When the storage file is
closed, the contents of the deleted message will be removed from the file.

MimeReplaceStoredMessage
This function replaces an existing message in the storage file, overwriting it with the specified
message. Unlike many of the other functions which do not permit the application to reference a
deleted message, this function can be used to replace a previously deleted message.

MimeCloseMessageStore
The message store must be closed when the application has finished accessing it. The storage file
is updated with any changes, all deleted messages are purged and the handle to the open file is
closed. If the storage file is locked for exclusive access, this function will release that lock, allowing
another process to open the file.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Network News Transfer Protocol

The Network News Transfer Protocol (NNTP) library enables applications to access a news server, list the
available newsgroups, retrieve articles and post new articles. It is common for this library to be used in
conjunction with the Mail Message library to construct the articles, since a news article uses the same
general format as an email message.

The first step that your application must take is to initialize the library, then establish a connection to the
server and authenticate the client. The following functions are available for use by your application:

NntpInitialize
Initialize the library and load the Windows Sockets library for the current process. This must be the
first function call that the application makes before calling the other NNTP API functions.

NntpConnect
Establish a connection to the NNTP server. This function will return a handle to a client session
which is used in subsequent calls to the NNTP API.

NntpAuthenticate
Provide a user name and password to authenticate the client session. This should only be used if
required by the server. Not all news servers require authentication, and some only require
authentication when posting articles. If you attempt to perform a function that requires
authentication, an error will be returned that indicates you should authenticate and then retry the
operation.

NntpDisconnect
Disconnect from the NNTP server and release any resources that have been allocated for the
client session. After this function is called, the client handle is no longer valid.

NntpUninitialize
Unload the Windows Sockets library and release any resources that have been allocated for the
current process. This is the last function call that the application should make prior to terminating.

Newsgroups
News articles are posted in hierarchical groups, similar to how files are stored in folders. Each level in the
newsgroup hierarchy is separated by a period, so newsgroup names look like microsoft.public.vc. This is
Microsoft's newsgroup for articles about Visual C++ programming. Additional subgroups are used to
further narrow the topic; for example, there's the microsoft.public.vc.3rdparty newsgroup for third party
tools and components for Visual C++, and the microsoft.public.vc.atl newsgroup which discusses issues
related to the Active Template Library. The NNTP API provides the following functions for accessing
newsgroups on the server:

NntpListGroups
This function requests that the server return a list of all of the newsgroups that are available. If the
function is successful, the application should call the NntpGetFirstGroup function to begin
processing the group list.

NntpListNewGroups
This function is similar to the NntpListGroups function in that it requests the server to return a list
of available newsgroups. However, the application can request that only groups which were
created since a specific date should be returned. This allows the application to maintain a list of
newsgroups on the local system, and then use this function to periodically update that list based
on the date it was last modified.

NntpGetFirstGroup

This function is used in conjunction with the NntpListGroups or NntpListNewGroups functions
to enumerate the newsgroups that are available on the server. Information about the newsgroup
is returned in a structure, including the name of the group, the first available article number and
the last available article in the group.

NntpGetNextGroup
This function is used to return information about the next newsgroup in the list. It should be called
in a loop until it returns zero (False).

NntpSelectGroup
This function is used to select a newsgroup as the current group. Once selected, the application
has access to the articles in that newsgroup.

NntpGetGroupName
Return the name of the currently selected newsgroup.

NntpGetGroupTitle
Return a description of the currently selected newsgroup. Note that not all newsgroups have
associated descriptions, and some servers may not support the extended command which is used
to retrieve the description.

News Articles
News articles are the messages posted to one or more newsgroups. Articles are referenced by their article
number, which is a value assigned by the news server. These articles have a structure that is the same as an
email message, with some slightly different headers. Because of this, you can use the Mail Message API to
parse articles that you retrieve, as well as create new articles to post to the server. The following functions
are used to access and create news articles:

NntpListArticles
This function requests that the server return a list of articles that are available in the current
newsgroup. The application can request that all articles be returned, or only those articles which
fall into a certain range of article numbers.

NntpGetFirstArticle
This is the first function that should be called after the NntpListArticles function. It will return
information about the first article in the list. Article information is returned in a structure which
includes information such as the article ID, size, subject, author and date that the article was
posted.

NntpGetNextArticle
This function returns the information about the next article in the list. It should be called in a loop
until the function returns zero (False).

NntpGetArticleRange
Return the range of articles that are available in the currently selected newsgroup. These are the
first and last valid article numbers that can be used to retrieve an article from the server. It is
important to keep in mind that there is no requirement that articles be stored contiguously with no
gaps in between them. For example, say the first available article number in the newsgroup is 101
and the last available article number is 120; it does not necessarily mean that there are 20
available articles. Articles 112 and 118 may have been removed, in which case your application
would get an error when trying to access them. The inability to access an article within the article
range should not be considered a fatal error; the program should simply move on to the next
message.

NntpGetArticle
Retrieve an article from the server, storing the contents in memory. This can be used to process

the contents of an article without the overhead of storing it in a file on the local system.

NntpStoreArticle
Retrieve an article from the server and store it in a file on the local system.

NntpPostArticle
This function posts an article to one or more newsgroups on the server. A newsgroup article is
similar to an email message, and the MIME API may be used to create the article headers and
body. One important difference is that the message must contain a header named "Newsgroups"
with the value set to the newsgroup or newsgroups that the article should be posted to; multiple
newsgroups should be separated by commas. If this header is not defined, the posting will be
rejected by the server and the function will return an error. You should also be aware that some
servers limit the number of newsgroups that a message can be posted to. When an article is
posted to more than one newsgroup at a time, this is called cross-posting. Current convention
says that an article should not be cross-posted to more than five newsgroups at a time. Also keep
in mind that multi-posting (posting the same article to different newsgroups separately) is
generally discouraged and should never be done on USENET.

Attaching Files
It is possible to attach files to newsgroup articles; however it should only be done if it is considered
appropriate for the group. Many newsgroups have their own acceptable use policies which determine
whether or not file attachments, particularly large binary files, are acceptable. If the newsgroup accepts
attachments, you can use one of several methods for posting files. It is recommended that you use the File
Encoding API to handle the actual encoding of the data.

Uuencode
A uuencoded file attachment is included directly in the body of the message. Because the MIME
API creates a multipart message even when uuencoding is specified, the File Encoding API should
be used to encode the data and then it should be included in the main body of the message.

Base64
A Base64 file attachment has the same structure as what is used by email messages. This requires
that a multipart message be created, with the encoded data attached as a part of the message.
You can use the MIME API to create this kind of message. Note that not all third-party
newsreaders correctly handle multipart messages.

yEnc
A popular encoding method used on USENET is called yEnc. Similar to uuencoded attachments,
the file data is part of the body of the message. The File Encoding API should be used to encode
the data and then it should be included in the main body of the message.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 News Feed Library

Really Simple Syndication (RSS) is a collection of standardized formats that are used to publish information
about content that is frequently changed. A news feed is published in XML format, which contains one or
more items that includes summary text, hyperlinks to source content and additional metadata that is used
to describe the item. News feeds can be used for a variety of purposes, including providing updates for
weblogs, news headlines, video and audio content. RSS can also be used for other purposes, such as a
software updates, where new updates are listed as items in the feed.

News feeds can be accessed remotely from a web server, or locally as an XML formatted text file. The
source of the feed is determined by the URI scheme that is specified. If the http or https scheme is
specified, then the feed is retrieved from a web server. If the file scheme is used, the feed is considered to
be local and is accessed from the disk or local network. The News Feed library provides an API that enables
you to open a feed by URL and iterate through each of the items in the feed or search for a specific feed
item. The API also provides a function that can be used to parse a string that contains XML data in RSS
format, where the feed may have been retrieved from other sources such as a database.

The first step your application must take is to initialize the library, which will load the required system
libraries and initialize the internal data structures that are used. You must call the initialization function
before attempting to call any other function in the library.

RssInitialize
Initialize the library and load the Windows Sockets library for the current process. This must be the
first function call that the application makes before calling the other SMS API functions.

RssUninitialize
Unload the Windows Sockets library and release any resources that have been allocated for the
current process. This is the last function call the application should make prior to terminating.

News Channels
A news feed consists of a channel that contains each of the news feed items. The news channel is
represented in the library by an HCHANNEL handle. This handle is used with the other functions to
reference the specific news feed channel. Information about the news feed, such as the title of the channel
and the date it was last modified, is returned in an RSSCHANNEL structure.

RssOpenFeed
Open the channel by specifying a URL to the resource that contains the news. The URL can
identify a remote feed that is downloaded using the HTTP or HTTPS protocols, or it can be a file
on the local system or network.

RssParseFeed
Parse a string buffer that contains a news feed. This function is similar to the RssOpenFeed
function, however it used to parse a string that contains the news feed. This function would
typically be used when the feed content is obtained from a different source, such as a database or
by using a different protocol. For example, the news feed could be downloaded using the FTP API
and then passed to this function.

RssCloseFeed
This function closes the handle that was allocated by a previous call to the RssOpenFeed or
RssParseFeed function. When the information in a news feed is no longer needed, this function
must be called to release the resources allocated to process the feed. After this function is called,
the handle is no longer valid.

RssValidateFeed
This function is used to validate the contents of a news feed, ensuring that it is structured correctly.

The function will return information about the feed, including the number of news items in the
feed and the date that it was last modified. The news feed can be specified either as a URL to a
remote resource or as a file on the local system or network.

RssStoreFeed
This function is used to store a news feed as a file on the local system. This is typically used to
cache the contents of a news feed or to track the changes made to the feed over time. It is
recommended that the application periodically check the publication date of the feed to ensure
that they have current version.

News Items
News feed items are identified by a numeric value called the item ID. This is used with other functions to
return information about a specific news item. The first item in a news feed has an ID of one and it
increments for each additional item in the feed, although it is recommended that applications treat this an
opaque value. Functions are provided which will return the number of items in a news feed, information
about each item and enable you to easily enumerate each of the items in the feed. Information about a
particular news item is returned in an RSSCHANNELITEM structure.

RssGetItemCount
This function will return the number of news items in the feed.

RssGetFirstItem / RssGetNextItem
These functions are used to enumerate the items in the news feed. Details about each news item is
returned in an RSSCHANNELITEM structure which contains information such as the title,
description and author of the news item.

RssGetItem
This function is used to return information about a specific news item based on the item ID. When
the function returns, it will populate an RSSCHANNELITEM structure. Although this function can
be used to effectively enumerate all of the news feed items by starting with an item ID value of
one, it's recommended that you use the RssGetFirstItem and RssGetNextItem functions instead.
Your application should never make an assumption about the actual value of the item ID because
there's no guarantee that future versions of the library will assign item IDs sequentially. Best
practices dictate that the RssGetItem function should only be called using an item ID that was
previously obtained by a call to either the RssGetFirstItem, RssGetNextItem or RssFindItem
functions.

RssFindItem
This function is used to search the feed channel for a specific item, based either on its GUID, title,
link or publication date. When searching for a specific item, only searches by GUID are guaranteed
to return a unique news item. However, since not all news feeds may provide GUIDs for their news
items, additional search criteria can be used when necessary. If the function is successful, it will
populate an RSSCHANNELITEM structure with information about the news feed item.

RssGetItemText
This function is used to return a copy of the news item description based on the item ID. Internally,
this function calls RssGetItem and then copies the item description to the string buffer that is
provided by the caller. Note that it is the responsibility of the application to display the text in the
appropriate format. Most news feeds will either use plain text or HTML formatted text for the item
description.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Post Office Protocol

The Post Office Protocol (POP3) library enables an application to retrieve a user's mail messages and store
them on the local system. The POP3 API provides support for all of the standard functionality such as listing
and downloading messages, as well as extended features such as the ability to retrieve only the headers for
a message or just specific header values. The library also has functions for changing the user's password
and sending messages if they are supported by the server.

The first step your application must take is to initialize the library, then establish a connection to the server
and authenticate the client. The following functions are available for use by your application:

PopInitialize
Initialize the library and load the Windows Sockets library for the current process. This must be the
first function call the application makes before calling the other POP3 API functions.

PopConnect
Establish a connection to the POP3 server. This function will return a handle to a client session
which is used in subsequent calls to the POP3 API.

PopLogin
Authenticate yourself to the server using a username and password. This function should be called
immediately after the connection has been established to the server. You can specify either the
standard authentication method, or the APOP authentication method if required by the server.

PopDisconnect
Disconnect from the POP3 server and release any resources that have been allocated for the client
session. After this function is called, the client handle is no longer valid.

PopUninitialize
Unload the Windows Sockets library and release any resources that have been allocated for the
current process. This is the last function call the application should make prior to terminating.

Managing Messages
There are functions in the POP3 library for managing messages which enables the application to list, delete
and retrieve messages stored on the server. Messages are identified by a number, starting with one for the
first message in the mailbox. The most typical operation for a POP3 client is to retrieve each message, store
it on the local system and then delete the message from the server. Any processing that is done on the
message would then be done on the local copy.

PopGetMessageCount
Return the number of messages available for retrieval. There are two values the application should
use. One is the number of currently available messages and the other is the last valid message
number. As messages are deleted from the server, the total number of available messages will
decrease; however, the last available message number will remain constant.

PopGetMessageCountEx
An extended version of the PopGetMessageCount function, this function will return the number
of available messages, along with the last available message number and the total size of all
messages in the mailbox.

PopGetMessage
Retrieve a message from the server, storing the contents in memory. This can be used to process
the contents of a message without the overhead of storing it in a file on the local system.

PopStoreMessage
This function downloads a complete message and stores it as a text file on the local system.

 PopDeleteMessage
Mark the message for deletion. When the connection with the server is closed, the message will be
removed from the user's inbox. An important difference between the POP3 and IMAP protocols is
that when a message is marked as deleted on a POP3 server, that message can no longer be
accessed. An attempt to retrieve a message after it has been marked for deletion will result in an
error. The only way to undelete a message once it has been deleted is to terminate the connection
with the server by calling the PopReset function instead of calling PopDisconnect.

PopGetMessageSize
This function returns the size of the message in bytes. One thing to be aware of when using this
function is that some servers will only return approximate message sizes. In addition, because of
the difference between the end-of-line characters on UNIX and Windows systems, the size
reported by the server may not be the actual size of the message when stored on the local
system. Therefore, the application should not depend on this value as an absolute. For example, it
should not use this value to determine the maximum number of bytes to read from the server;
instead, it should read until the server indicates that the end of the message has been reached.

Message Headers
The POP3 API also includes functions which enable the application to access just the headers for a
message. This can be useful if the program doesn't want to incur the overhead of downloading the entire
message contents. The following functions can be used to examine the headers in a message:

PopGetMessageHeaders
This function returns the complete set of headers for the specified message. If your program has
to process multiple header fields, this is the most efficient method to use. It is possible to retrieve
specific header values, however not all servers support that option and it is somewhat slower
because it involves sending individual commands to request each value.

PopGetHeaderValue
This function returns the value for a specific header field in a message. This function does not
require that you parse the message headers; however it does incur additional overhead. It is also
important to note that not all servers support the command that is used to request the header
value. If this function fails with the error that the feature is not supported, you should use the
PopGetMessageHeaders function instead.

PopGetMessageId
This function returns the value of the Message-ID header in the specified message. This is a
unique string that is used to identify the message. Note that it is not the same as the UID value
returned by the POP3 server.

PopGetMessageUid
This function returns the unique ID (UID) that the server has associated with the message. The UID
can be used by an application to track whether or not it has previously viewed the message. Unlike
the message number, which can change between client sessions, the message UID is guaranteed
to be the same value across sessions until the message is deleted.

PopGetMessageSender
This function returns the email address of the person who sent the message. This function requires
that the server support extended POP3 commands. If the server does not support the command
used to retrieve the sender, it will return a value of zero. Applications should not depend on this
function returning a valid address. Typically it is used for informational purposes, such as
displaying the sender to the user as a message is being retrieved.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Remote Command Protocol

The Remote Command protocol enables an application to execute commands on a server, with the output
of the command returned to the client. The SocketTools library actually implements three related protocols:
rexec, rshell and rlogin. The choice of protocols is determined by the port that is selected when a
connection is established.

Rexec
The rexec protocol enables a client application to execute a command on a server. Output from
the command is returned to the client and the connection is closed when the command
terminates. The client connects on port 512 and must provide a user name and password to
authenticate the session.

Rshell
The rshell protocol is similar to rexec in that it enables a client to execute a command on a server.
Output from the command is returned to the client and the connection is closed when the
command terminates. The client connects on port 514 and must provide a user name. The
primary difference between the rexec and rshell protocols is that rshell does not require a
password. Instead, it uses what is called "host equivalence" to determine if the client is permitted
to execute commands as that user. On a UNIX based operating system, host equivalence is
controlled by the /etc/hosts.equiv and the .rhosts file in the user's home directory. These files list
the host names and user names which are permitted to execute commands using the rshell
protocol. Consult your operating system manual pages for more information about how to
configure host equivalence.

Rlogin
The rlogin protocol is similar to Telnet in that it provides an interactive terminal session. The
connection is closed when the user logs out or the shell process on the server is terminated. The
client connects on port 513 and must provide a user name and terminal type. If there is an entry in
the host equivalence tables for the user and local host, then the client will be automatically logged
in and provided with a shell prompt. If there is no host equivalence, the client will be prompted for
a password. The terminal emulation library can be used to provide ANSI or DEC VT-220 emulation
services if needed.

An important consideration when deciding whether to use rexec, rshell or rlogin is how the server is
configured and the type of command being executed. If there is no entry for the local host in the server's
host equivalence tables, then the rexec command should be used instead of rshell.

When using rexec or rshell, it is important to keep in mind that although the command is executed with the
privileges of the specified user, that user is not actually logged in. The user's login script is not executed
and the program will not inherit the user's normal environment as it would during an interactive session. If
you are connecting to a UNIX system, you should not attempt to execute programs which try to put
standard input into raw mode; an example of this would be the vi editor. If you are connecting to a
Windows system, you should not execute a program which uses a graphical interface. Only programs
which read standard input and write to standard output are suitable for use with rexec or rshell.

The first step that your application must take is to initialize the library and then establish a connection. The
following functions are available for use by your application:

RshInitialize
Initialize the library and load the Windows Sockets library for the current process. This must be the
first function call that the application makes before calling the other Remote Command API
functions.

RshExecute

Execute the specified command on the server. The rshell or rexec protocol is selected based on
the port number that is specified. Output from the command will be returned to the client to be
read. When the command terminates, the connection to the server will be closed.

RshLogin
Establish an interactive login session which is similar to how the Telnet protocol works. If there is
no host equivalence with the local host, you will be prompted for a password. Output from the
session will be returned to the client, and when the client logs out the connection will be closed.

RshRead
Read the output generated by the command. Your application would typically call this function in
a loop until all of the data has been read or an error occurs.

RshSearch
Search for a specific sequence of characters in the output returned by the server. The function
returns when the sequence is encountered or when a timeout occurs. The data captured up to the
point where the character sequence was matched is returned to the caller for processing.

RshDisconnect
Disconnect from the server and release the memory allocated for that client session. After this
function is called, the client handle is no longer valid.

RshUninitialize
Unload the Windows Sockets library and release any resources that have been allocated for the
current process. This is the last function call that the application should make prior to terminating.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Secure Shell Protocol

The Secure Shell (SSH) protocol enables an application to establish a secure, interactive terminal session
with a server, or execute commands remotely on the server, with the output of the command returned to
the client. The SocketTools library supports both version 1.0 and 2.0 of the protocol.

The first step that your application must take is to initialize the library, then establish a connection to the
server and authenticate the client. The following functions are available for use by your application:

SshInitialize
Initialize the library and load the Windows Sockets library for the current process. This must be the
first function call the application makes before calling the other SSH API functions.

SshConnect
Establish a connection to the server. This function will return a handle to a client session which is
used in subsequent calls to the SSH API.

SshDisconnect
Disconnect from the server and release any resources that have been allocated for the client
session. After this function is called, the client handle is no longer valid.

SshUninitialize
Unload the Windows Sockets library and release any resources that have been allocated for the
current process. This is the last function call that the application should make prior to terminating.

Connection Options
The SSH protocol has a number of advanced options which can be specified when establishing a
connection. To provide additional information to the connection function, the SSHOPTIONDATA structure
is used. The three most commonly used options specify if the connection will be used for an interactive
terminal session or to execute a command on the server, and if a proxy server should be used when
connecting to the server:

SSH_OPTION_TERMINAL
This option specifies the client session will use terminal emulation and the SSHOPTIONDATA
structure specifies the characteristics of the virtual terminal. This enables the caller to specify the
dimensions of the virtual display (in columns and rows) and the type of terminal that will be
emulated. If this option is omitted, the session will default to a virtual display that is 80 columns, 25
rows.

SSH_OPTION_COMMAND
This option specifies the client session will be used to issue a command that is executed on the
server, and the output will be returned to the caller. If this option is specified, the session will not
be interactive and no pseudo-terminal is created for the client. The szCommandLine member of
the SSHOPTIONDATA structure specifies the command string that will be sent to the server.

SSH_OPTION_PROXYSERVER
This option specifies the client should establish a connection through a proxy server. The two
protocols that are supported are SSH_PROXY_HTTP and SSH_PROXY_TELNET, which specifies the
protocol that the proxy connection is created through. The proxy-related members of the
SSHOPTIONDATA structure should be set to the appropriate values.

Input and Output
Once your application has connected to the server, any output generated by a program on the server will
be sent as data for you to read. Any input to the program is sent by your application and received and
processed by the server. The following functions are used:

SshPeek
Reads any data that has been sent by the server and copies it to the buffer provided by the caller,
but it does not remove the data from the internal receive buffer. This function can be used to
examine the contents of the receive buffer and make decisions about how to process the data.

SshRead
Reads any data that has been sent by the server and copies it to a byte array buffer provided by
your application. If the server closes the connection, the function will return a value of zero and
the client can disconnect from the server at that point.

SshReadLine
Reads a line of text from the server, and returns it as a null terminated string. This function is useful
for reading output from the server one line at a time. The function recognizes both UNIX and
Windows end-of-line conventions, and will cause the application to block until a complete line of
text has been read.

SshWrite
Send data to the server which will be received as input to the program. Your application provides
the function with a byte array buffer that contains the data, and an integer value that specifies the
number of bytes in the buffer.

SshWriteLine
Send data to the server as a line of text, terminated with a carriage-return and newline character.
Note that your application should not specify the end-of-line characters, they are automatically
sent to the server. This function will cause the application to block until the complete line of text
has been written.

Command Processing
The SSH protocol can be used to connect to a server, log in and execute one or more commands, process
the output from those commands and display it to an end-user using a graphical interface. The user never
needs to see or interact with the actual terminal session. The SSH API provides functions which can simplify
this kind of application, reducing the amount of code needed to process the data stream returned by the
server.

SshExecute
This function executes a command on a server and copies the output to a user-specified buffer,
with the exit code for the remote program as the function's return value. This is a convenience
function that enables you to execute a remote command in a single call, without having to write
the code to establish the connection and read the output.

SshGetExitCode
This function returns the exit code for the program that was executing on the server. It should be
called after all of the data has been read and the server has closed the connection, which is
indicated by the SshRead function returning a value of zero.

SshSearch
This function is used to search for a specific character or sequence of characters in the data stream
returned by the server. The library will accumulate all of the data received up to the point where
the character sequence is encountered. This can be used to capture all of the output from a
command, or search for specific results returned by the command as it executes on the server.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Simple Mail Transfer Protocol

The Simple Mail Transfer Protocol (SMTP) enables applications to deliver email messages to one or more
recipients. The library provides an API for addressing and delivering messages, and extended features such
as user authentication and delivery status notification. This library is typically used in conjunction with the
Mail Message library to create the messages, and the Domain Name Service library to determine what
servers are responsible for accepting mail for a specific user.

Mail Exchanges
When a message is delivered to a user, the application must determine what mail server is responsible for
accepting messages for that user. This can be accomplished using the Domain Name Services (DNS)
protocol, a protocol that is most commonly used to resolve host names such as www.microsoft.com into
Internet addresses. This is typically accomplished by sending a request to a nameserver, a computer system
that provides domain name services. In addition to resolving host names, nameservers can also provide
information about those servers which are responsible for accepting mail for a given domain. There can be
multiple servers which process mail for a domain with each server assigned a priority as part of their mail
exchange (MX) record. If there is no mail exchange record for a domain, then the domain name itself is
used.

To deliver a message directly to the recipient, you must examine the recipient address and request the list
of mail exchanges for that user's domain. Using the DNS API, this is done by calling the
DnsEnumMailExchanges function. If the recipient address is joe@example.com, you would want to
enumerate the mail exchanges for the example.com domain. This will give you the name of the servers that
will accept mail for users in that domain. For example, the function may return the host name
mail.example.com as the name of the server which will accept mail for users in the example.com domain.
Note that it is possible that one or more of the mail exchanges for a domain may not be in the recipient
domain itself. In other words, it is possible that smtp.othercorp.net could be returned as a mail exchange
for example.com. This is frequently the case when another organization is forwarding mail for that domain.

Therefore, there are three general steps that you must take when delivering mail directly to the recipient:

1. Parse the address of each recipient in the message. If you are using the MIME API, the
MimeEnumMessageRecipients function can be helpful in extracting all of the recipient addresses.
Everything after the atsign (@) in the address is the domain portion of that address.

2. Perform an MX record lookup using the DNS API function DnsEnumMailExchanges and specifying
the recipient's domain. The function will return the name of the servers responsible for accepting
mail for that user. If there are more than one server, they will be returned in order of their relative
priority, with the highest priority server being returned first. This means that you should attempt to
connect to those servers in the order that they are returned by the function.

3. Attempt to connect to the first server returned by the DnsEnumMailExchanges function. The
connection should be on the default port, and you should not attempt to use any authentication. If
the server accepts the connection, then use the SmtpSendMessage function to deliver the
message. If the connection is rejected or the message is not accepted, attempt to connect to the
next mail exchange server until all servers have been tried.

4. If no mail exchange servers were returned by DnsEnumMailExchanges, or you could not connect
to any of them, attempt to connect to the domain specified in the address using the default port. If
the connection succeeds, then deliver the message. If you cannot connect or the message is not
accepted, then report to the user that the message could not be delivered.

One last important consideration is that many Internet Service Providers now block outbound connections

on port 25 to any mail servers other than their own. If you are unable to establish any connections, either
with the error that the connection was refused or it consistently times out, contact your ISP to determine if
port 25 is being blocked as an anti-spam measure. If this is the case, it will be required that you relay all
messages through their mail servers or use an alternate port number.

Relay Servers
In some situations it may not be possible to send mail directly to the server that accepts mail for a given
domain. The two most common situations are corporate networks which have centralized servers that are
responsible for delivering and forwarding messages, or an Internet Service Provider (ISP) which specifically
blocks access to all mail servers other than their own. This is usually done as either a security measure or as
a means to inhibit users from sending unsolicited commercial email messages. If the standard SMTP port is
being blocked, then any connection attempts will either fail immediately with an error that the server is
unreachable, or the connections will simply time-out. In either case, a relay server must be specified in
order to send email messages.

A relay server is a system which will accept messages addressed to users who may be in a different domain,
and will relay those messages to the appropriate server that does accept mail for the domain. Using a relay
server is generally easier than sending messages directly to the recipient. In order to send a message
through a relay, you need to perform the following steps:

1. Connect to the relay server as you would normally.

2. Authenticate the client to the server. This may or may not be required, depending on how the server
is configured. Some servers may be configured to only require authentication if you are connecting
from an IP address that is not recognized as part of that system's network, for example, if you are
connecting using a different Internet Service Provider. Others may always require authentication.
Check with the server administrator if necessary to determine if and when authentication is required.

3. Use the SmtpSendMessage function to deliver the message to the recipients through the relay
server. If there are multiple recipients, you can use the MIME API to enumerate the recipient
addresses and then pass them to the SmtpSendMessage function.

It is important to note that using a mail server as a relay without the permission of the organization or
individual who owns that server may violate Acceptable Use Policies and/or Terms of Service agreements
with your service provider. Systems which relay messages from anyone, regardless of whether the message
is coming from a recognized domain, are called open relays. Because open relays are often used to send
unsolicited email, many administrators block mail that comes from one. It is recommended that users check
with their network administrators or Internet service providers to determine if access to external mail
servers is restricted and what is the acceptable use policy for relaying messages through their mail servers.

The first step your application must take is to initialize the library, then establish a connection to the server
and authenticate the client if necessary. The following functions are available for use by your application:

SmtpInitialize
Initialize the library and load the Windows Sockets library for the current process. This must be the
first function call that the application makes before calling the other SMTP API functions.

SmtpConnect
Establish a connection to the SMTP server. This function will return a handle to a client session
which is used in subsequent calls to the SMTP API.

SmtpAuthenticate
Authenticate the client session to the server using a username and password. This function should
be called immediately after the connection has been established to the server. This is typically
required if you are attempting to use the mail server as a relay, asking it to forward the message

on to the server that actually accepts email for the recipient. Many Internet Service Providers (ISPs)
require that users authenticate prior to sending mail through their servers. You may need to
contact the server administrator to determine if authentication is required.

SmtpDisconnect
Disconnect from the SMTP server and release any resources that have been allocated for the client
session. After this function is called, the client handle is no longer valid.

SmtpUninitialize
Unload the Windows Sockets library and release any resources that have been allocated for the
current process. This is the last function call the application should make prior to terminating.

Message Delivery
There are two general methods that can be used to deliver messages through the mail server. In most
cases, it can be done with a single function call. However, there are some circumstances where it would be
more appropriate to perform the transaction in stages. The SMTP API supports both methods.

SmtpSendMessage
This is the simplest method for sending an email message through the server. You provide the
sender and recipient addresses, along with the message contents and the function will submit the
message to the server for delivery.

SmtpCreateMessage
This function begins a transaction in which a message is dynamically composed, addressed and
delivered in stages. You provide the sender address and message size to this function, and after it
returns you begin the next stage, which is addressing the message.

SmtpAddRecipient
This function adds a recipient address to the recipient list for the message. This should be called
once for each recipient, as well as for any recipients who are to receive "blind copies" of the
message. A blind copy is when the message is sent to a recipient, but that recipient's address is
not listed in any of the headers of the message; the other recipients will be unaware that the
message was delivered to him. Most servers have a limit of approximately 100 recipients per
message. It is possible that this function will return an error for a specific recipient address; the
address may be malformed or it may not be acceptable for some other reason. This does not
mean that the message will be rejected in its entirety, only that the specified recipient is not
acceptable.

SmtpAppendMessage
This function should be called after all of the recipients have been added. It is used to send the
contents of the message to the server. It is also possible to use the lower level SmtpWrite
function to send data directly to the server, however SmtpAppendMessage is generally easier to
use and can write data from memory, the system clipboard or from a file on disk.

SmtpCloseMessage
This function is called after the entire message has been sent to the server. This terminates the
transaction and the message is submitted for delivery. Note that it is possible for the server to
accept the message up to this point and then reject it at this final step due to some restriction,
such as the message being too large.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SocketWrench

The SocketWrench library provides an interface to the Windows Sockets API. It was designed to be simpler
to use, and to provide functions which eliminate much of the redundant coding common to Windows
Sockets programming. Developers who are working in languages other than C or C++ will find
SocketWrench to be particularly useful because it does not use many of the complex structures that the
Windows Sockets API uses. SocketWrench also supports creating client and server applications which use
the SSL and TLS security protocols without any dependencies on third-party security libraries.

The first step your application must take is to initialize the library. After the library has been initialized, the
application can either take on the role of a client and establish a connection to a server, or become a
server and listen for incoming connections from other clients.

InetInitialize
Initialize the library and load the Windows Sockets library for the current process. This must be the
first function call the application makes before calling the other SocketWrench API functions.

InetConnect
Establish a connection with a server. This function will return a handle to the application which can
be used to send and receive data. When an application calls this function, it will be acting as a
client. For an asynchronous session, use the InetAsyncConnect function.

InetListen
Begin listening for incoming client connections. This function will return a handle which should be
passed to the InetAccept function to accept any clients which establish a connection. When an
application calls this function, it will be acting as a server. For an asynchronous session, use the
InetAsyncListen function.

InetAccept
Accept a connection from a client. This function should only be called if the application has
previously called InetListen. If there is no client waiting to connect at the time this function is
called, it will block until a client connects or the timeout period is reached. For an asynchronous
session, use the InetAsyncAccept function.

InetUninitialize
Unload the Windows Sockets library and release any resources that have been allocated for the
current process. This is the last function call the application should make prior to terminating.

Input and Output
When a TCP connection is established, data is sent and received as a stream of bytes. The following
functions can be used to send and receive data over the socket:

InetRead
Read data from the socket and copy it to the memory buffer provided by the caller. If the server
closes the connection, this function will return zero after all the data has been read. If the function
is successful, it will return the actual number of bytes written.

InetIsReadable
This function is used to determine if there is data available to be read from the socket.

InetWrite
Write data to the socket. If the function succeeds, the return value is the number of bytes actually
written.

InetIsWritable
This function is used to determine if data can be written to the socket. In most cases this will return

a non-zero value (True), unless the internal socket buffers are full.

Server Interface
The library provides a collection of functions which can be used to easily create a scalable, event-driven
multithreaded server application. The server runs on a separate thread in the background, automatically
managing the individual client sessions as servers connect and disconnect from the server. The application
is notified of events through a callback mechanism, where it can respond to notifications such as a client
establishing a connection with the server, or the client sending data to the server. Functions such as
InetRead and InetWrite are used to exchange data with the clients. Because each client session is
managed in its own thread, applications can perform calculations, access database resources and so on
without worrying about interfering with other client sessions or the application's main UI thread.

InetServerStart
This function starts the server, creating the background thread and listening for incoming client
connections on the specified port number. A socket handle is returned to the caller which is used
to query the status of the server and perform other functions such as suspending and restarting
the server.

InetEnumServerClients
This function enables the server application to determine the number of active client sessions, and
obtain socket handles for each client that is connected to the server.

InetServerBroadcast
Broadcasts data to each of the clients that are connected to the server. This can be useful when
the application needs to send the same data to each active client session, such as broadcasting a
shutdown message when the server is about to be terminated.

InetServerThrottle
This function is used to control the maximum number of clients that may connect to the server,
the maximum number of clients that can connect from a single IP address and the rate at which
the server will accept client connections. By default, there are no limits on the number of active
client sessions and connections are accepted immediately. This function can be useful in
preventing denial-of-service attacks where the the attacker attempts to flood the server with
connection attempts.

InetServerSuspend
This function instructs the server to temporarily suspend accepting new client connections. Existing
connections are unaffected, and any incoming client connections are queued until the server is
resumed. It is not recommended that you leave a server in a suspended state for an extended
period of time. Once the connection backlog queue has filled, any subsequent client connections
will be automatically rejected.

InetServerResume
This function instructs the server to resume accepting client connections after it was suspended.
Any pending client connections are accepted after the server has resumed normal operation.

InetServerLock
This function locks the server so that only the current thread may interact with the server and the
client sessions. This will cause all other client threads to go to sleep, waiting for the server to be
unlocked. This should only be used when the server application needs to ensure that no other
client threads are performing a network operation. For general purpose synchronization, it is
recommended that the application create a critical section rather than lock the entire server. If the
server is left in a locked state for an extended period of time, it will cause the server to become
non-responsive. If the application has started multiple servers, only one server can be locked at
any one time.

InetServerUnlock
This function unlocks a server that has been previously locked. The threads which manage the
client sessions will awaken and resume normal execution.

InetServerRestart
This function will terminate all active client connections, close the listening socket and re-create a
new listening socket bound to the same address and port number. The function will return a
socket handle for the new listening socket that should replace the original socket that was
allocated using the InetServerStart function.

InetServerStop
This function will terminate all active client connections, close the listening socket and terminate
the background thread that manages the server. Any incoming client connections will be refused,
and all resources allocated for the server will be released.

Address Conversion
Internet Protocol (IP) addresses can be represented in one of two ways, either as unsigned 32-bit integer
value or as string where each byte of the address is written as an integer value and separated by periods.
For example, the local loopback IP address can either be specified as the string "127.0.0.1" or as the integer
value 16777343. In most cases, using the string form of the address is easier; however, some functions
require that the numeric value be used. The following functions are provided to enable you to convert
between the two formats.

InetGetAddress
Convert an IP address string in dotted notation into a 32-bit integer value.

InetFormatAddress
Convert a numeric IP address into a string in dotted notation, copying the result into a buffer that
you provide to the function.

Host Tables
When resolving a host name or IP address, the library will first search the local system's host table, a file
that is used to map host names to addresses. On Windows 95/98 and Windows Me, if the file exists it is
usually found in C:\Windows\hosts. On Windows NT and later versions, it is found in
C:\Windows\system32\drivers\etc\hosts. Note that the file does not have an extension.

InetGetDefaultHostFile
Return the full path of the file that contains the default host table for the local system. This can be
useful if you wish to temporarily switch between the default host file and another host file specific
to your application.

InetGetHostFile
Return the full path of the host table that is currently being used by the library. Initially this is the
same as the default host table for the local system.

InetSetHostFile
Specify a new host table which the library should use to resolve host names and IP addresses. This
can be used by an application to provide its own local cache of host names and addresses in
order to speed up the process of host name resolution.

Host Name Resolution
The library can be used to resolve host names into IP addresses, as well as perform reverse DNS lookups
converting IP addresses into the host names that are assigned to them. The library will search the local
system's host table first, and then perform a nameserver query if required.

InetGetHostAddress
Resolve a host name into an IP address, returned as a string in dotted notation. The library first
checks the system's local host table, and if the name is not found there, it will perform a
nameserver query for the A (address) record for that host.

InetGetHostName
Resolve an IP address into a host name. The address is passed as a string in dotted notation, and
the fully qualified host name is returned in a string buffer you provide to the function. The library
first checks the system's local host table, and if the address is not found there, it will perform a
nameserver query for the PTR (pointer) record for that address.

Local Host Information
Several functions are provided to return information about the local host, including its fully qualified
domain name, local IP address and the physical MAC address of the primary network adapter.

InetGetLocalName
Return the fully qualified domain name of the local host, if it has been configured. If the system
has not been configured with a domain name, then the machine name is returned instead.

InetGetLocalAddress
Return the IP address of the local host. If a valid socket handle is provided, then the IP address of
the network adapter that was used to establish the connection will be returned. This can be
particularly useful for multihomed systems that have more than one adapter and the application
needs to know which adapter is being used for the connection.

InetGetAdapterAddress
Return the IP or MAC address assigned to a network adapter on the local system.

InetEnumNetworkAddresses
Enumerate the network addresses that are configured for the local host. If the system is
multihomed, then the IP address for each network adapter will be returned.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Telnet Protocol

The Telnet Protocol library enables an application to connect to a Telnet server, which provides an
interactive terminal session similar to how character based consoles and terminals work. The user can login,
enter commands and interact with applications programmatically or in conjunction with the terminal
emulation library.

The first step that your application must take is to initialize the library, then establish a connection to the
server and authenticate the client. The following functions are available for use by your application:

TelnetInitialize
Initialize the library and load the Windows Sockets library for the current process. This must be the
first function call the application makes before calling the other Telnet API functions.

TelnetConnect
Establish a connection to the Telnet server. This function will return a handle to a client session
which is used in subsequent calls to the Telnet API.

TelnetDisconnect
Disconnect from the Telnet server and release any resources that have been allocated for the
client session. After this function is called, the client handle is no longer valid.

TelnetUninitialize
Unload the Windows Sockets library and release any resources that have been allocated for the
current process. This is the last function call that the application should make prior to terminating.

Input and Output
Once connected to the Telnet server, any output generated by a program on the server will be sent as data
for the client to read. Any input to the program is sent by the client and received and processed by the
server. The following functions are used:

TelnetRead
Reads any output that has been generated by the program executing on the server. When the
client first connects, the server typically executes a login program that requests the users
authenticate themselves by entering a user name and password. Once the user has logged in,
they are usually given a command line prompt where they can enter commands to be executed
on the server. If the server closes the connection, the TelnetRead function will indicate that with
an error result and the client can disconnect from the server at that point.

TelnetWrite
Send data to the Telnet server which will be received as input to the program. If the local echo
option is enabled, then the client is also responsible for writing the input data to the display
device, if there is one. If local echo is not enabled, the server will automatically echo back any
characters written as data to be read by the client.

Telnet Modes
Telnet supports several modes of operation and the option negotiation phase, which occurs when a
connection is established, is handled automatically by the library. There are two key modes which affect
how the client session works:

TELNET_MODE_LOCALECHO
If this mode is enabled, it is the responsibility of the client to echo any data that it is sending to the
server. For example, if the character "A" is sent to the server, the application must also send the
character "A" to whatever interface the user is interacting with, such as a terminal emulation
window. The default mode is for this option to be disabled, which means that the server will echo

back any data that is sent to it.

TELNET_MODE_BINARY
If this mode is enabled, the data between the client and server is not buffered and the high bit is
not removed from any characters. If the application is executing a program which uses text mode
windowing features (i.e.: it draws boxes on the display) then this mode must be enabled to ensure
that the client processes the data correctly and it isn't buffered a line at a time. If this mode is
disabled, then the data exchanged between the client and server will be buffered a line at a time
and any 8bit characters will be stripped. This mode is enabled by default.

Command Processing
The Telnet protocol can be used to connect to a server, log in and execute one or more commands,
process the output from those commands and display it to an end-user using a graphical interface. The
user never sees or interacts with the actual terminal session. The Telnet API provides functions which can
simplify this kind of application, reducing the amount of code needed to process the data stream returned
by the server.

TelnetLogin
This function is used to automatically log a user in, using the specific user name and password.
This function is specifically designed for UNIX based servers or Windows servers which emulate the
same basic login sequence.

TelnetSearch
This function is used to search for a specific character or sequence of characters in the data stream
returned by the server. The library will accumulate all of the data received up to the point where
the character sequence is encountered. This can be used to capture all of the output from a
command, or search for specific results returned by the command as it executes on the server.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Terminal Emulation

The Terminal Emulation library provides a virtual terminal interface for emulating an ANSI or DEC VT-220
compatible character-based terminal. It can be used in conjunction with the Telnet API or the Remote
Command API to display the output of commands executed on a server. It can also be used independently
of any other networking library, such as providing emulation services for a serial connection.

The first step your application must take is to initialize the library, and then create a virtual display which is
attached to a window. The following functions are available for use by your application:

NvtInitialize
Initialize the library for the current process. This must be the first function call the application
makes before calling the other emulator API functions.

NvtCreateDisplay
Creates a new virtual display and returns a handle which can be used to reference that display.
When creating the display, you provide a handle to a window the display will draw on, a handle to
a font that will be used to display text characters, the type of emulation and the size of the display.

NvtDestroyDisplay
Destroy the virtual display, releasing the memory allocated for the handle. After this function
returns, the display handle is no longer valid.

NvtUninitialize
Release any resources that have been allocated for the current process. This is the last function call
the application should make prior to terminating.

Display Management
The library provides functions to manage and update the virtual display, including a number of lower level
functions that provide direct access to the display buffer. The most commonly used functions are:

NvtWriteDisplay
This is the most commonly used method of writing to the display. This function will automatically
parse the data being written for escape sequences and update the display appropriately.

NvtUpdateDisplay
This function updates the window attached to the virtual display. This function should be called
whenever a WM_PAINT message is received for that window, indicating that it needs to be
redrawn. The window pain message can be handled in one of two general ways. The simplest is to
just call NvtUpdateDisplay and return. The function will automatically acquire a device context
for the window, redraw the portions of the window that need to be updated, and then release the
device context. If you use this method, you should not call BeginPaint or EndPaint, since that is
being done for you. If you wish to acquire the device context yourself by calling BeginPaint, then
you must call NvtSetDisplayDC to attach the device context to the virtual display. When
NvtUpdateDisplay is called, it will use that device context rather than acquiring one itself. After
the display has been updated and you've called EndPaint, you should call NvtSetDisplayDC
again, passing the function a null handle to detach the display from the device context that you've
created.

NvtRefreshDisplay
Refresh the virtual display, updating the current cursor position and caret. The library will
periodically refresh the display automatically based on its own internal state, but the application
can call this if it wishes to force the display to refresh at that time.

NvtSetDisplayEmulation

This function can be used to change the emulation used by the library. Supported emulation types
are standard ANSI, DEC VT-100 and VT-200. It is also possible to specify that no emulation should
be used, in which case the application is responsible for handling any control or escape sequences
in the data being written to the display.

NvtResetDisplay
This function can be used to change the handle of the window associated with the display, the
font being used and the size of the display. Resetting the display causes the contents of the
display to be cleared.

NvtSetDisplayFont
This function sets the font which is used by the library to draw text on the display window. If you
wish to specify a font name and point size instead of creating a font handle, use the
NvtSetDisplayFontName function instead.

NvtSetDisplayMode
The emulation library has a number of modes which determines how the data is displayed, as well
as controlling aspects of the window itself. This function can be used to enable or disable those
modes as necessary. For the list of available modes, please consult the Technical Reference.

NvtSetDisplayColor
This function controls what colors are used when drawing the background of the display window
as well as the default color of the text. In ANSI and VT-220 emulation, the color of individual
characters can be specified by using escape sequences. Those colors can be modified by changing
the display color map.

NvtSetDisplayColorMap
This function changes the default colors which are used when escape sequences are used to
change the foreground or background color of a character cell. In most cases the default color
map will be appropriate, but applications can change the RGB values associated with an entry in
the color map if needed. For example, the default value for the color gray is at position 8 in the
color map index with an RGB value of 192,192,192. If you wanted to use a darker color, you could
change the RGB value 128,128,128.

Cursor Control
There are a number of lower level functions which enable an application to have direct control over cursor
positioning, clearing the display and so on. In most cases these functions are called automatically by the
library as the result of processing the control and escape sequences found in the data being written to the
display. However, an application can call these functions directly in order to manage the display itself. One
important thing to keep in mind is that the X,Y positions used by these functions refer to the cursor
position in the virtual display and correspond to columns and rows, not pixels.

There is also a slight difference in terminology that you should be aware of when reading the technical
reference documentation. In Windows, the term "cursor" is typically used to refer to the mouse pointer,
while "caret" is used to refer to the blinking marker that is displayed at the current position in the display. In
the documentation for the emulator API, the term "cursor" is used in the same way that it is used for
character based terminals, as the marker for the current position in the display. Therefore, in terms of the
emulation API, you can think of the cursor and the caret as being synonymous.

NvtGetCursorPos
Return the current position of the cursor in the virtual display.

NvtSetCursorPos
Change the current position of the cursor in the virtual display. This function will normalize the X,Y
values to be bound by the size of the display. If a scrolling region has been set, the coordinates

will be bound by that region. The upper left corner of the display is 0,0.

NvtSaveCursor
Saves the current position of the cursor. The cursor position can be restored by calling the
NvtRestoreCursor function.

NvtClearDisplay
Clear the contents of the display. You can clear from the start of the display to the current cursor
position, from the current position to the end of the display or the entire display.

NvtDeleteChar
This function deletes a character from the current cursor position, shifting the remaining
characters on the line to the left.

NvtDeleteLine
This function deletes the line at the current cursor position, shifting the remaining lines in the
display up.

NvtEraseChar
This function erases a character at the current cursor position without affecting the characters that
follow it on the line.

NvtEraseLine
This function erases the line at the current cursor position without affecting the lines that follow it.

NvtInsertChar
Insert a character at the current cursor position, shifting the following characters to the right.

NvtInsertLine
Insert a blank line at the current cursor position, shifting the following lines down.

NvtGetDisplayAttributes
Return the current attributes which have been enabled. Possible attributes are reverse, bold, dim,
underline, hidden and protected. These correspond to the attributes that are commonly used with
character based terminals.

NvtSetDisplayAttributes
Set the default attributes which are used when characters are written to the display. For example,
setting the attribute NVT_ATTRIBUTE_REVERSE would cause all subsequent characters to be
displayed with the foreground and background colors reversed. This would continue until the
display attributes were set back to NVT_ATTRIBUTE_NORMAL.

Function Key Mapping
Another aspect of terminal emulation is how function keys and other special keys are handled by the
application. The emulation library provides functions which will convert Windows virtual key codes into the
escape sequences that are generated by character based terminals.

NvtTranslateMappedKey
This function translates a virtual key code into the escape sequence which should be sent to the
server to emulate pressing that key. For example, if the user presses the F1 key on the keyboard,
this will generate a WM_KEYDOWN event with VK_F1 as the virtual key code. This function will
translate that key code into the three characters escape sequence ESC O P (the ASCII codes 27,
79, 80). That sequence of characters should be sent to the server, which will recognize it as the F1
function key being pressed. It is important to note that the different emulation types have different
key mappings. Therefore, the server must be set to recognize the same type of terminal that you
are emulating. If you have the emulation set as VT-220 but the server thinks that you are
emulating a VT-100, it will not recognize some of the escape sequences correctly.

NvtGetMappedKey
Returns the escape sequence associated with a specific function key or special key. There are a
total of 50 special keys recognized by the emulator. They consist of the F1 through F12 function
keys, the function keys when they are in a shift state, the arrow keys and the keypad keys. Refer to
the technical reference for the complete list.

NvtSetMappedKey
Change the escape sequence associated with a specific function key or special key. Changing this
value will cause NvtTranslateMappedKey to return the new escape sequence when that key is
pressed. This function can also be used to restore the default mapping for a key.

Windows Messages
Because the emulation library is closely tied to a display window, it is important to understand how
Windows messages should be handled. If you are not familiar with how Windows processes messages at
the API level, it is recommended that you review the technical reference material available from Microsoft
on user interface programming. Another excellent resource is "Programming Windows" by Charles Petzold.
If you are a C++ programmer, the equivalent MFC virtual functions will also be listed here.

WM_CREATE
This message is sent when the window is being created, but before it is displayed. This is typically a
good point to call the NvtCreateDisplay function to create the virtual display and attach it to the
window. You can also call NvtSetDisplayMode to set the various display modes, such as whether
you want scrollbars to be shown, what kind of caret should be used and so on. In MFC, this can be
done in the Create method for the window.

WM_DESTROY
This message is sent when a window is being destroyed. The application should call
NvtDestroyDisplay at this point, since the window will no longer exist after the event handler
returns.

WM_PAINT
This message is sent when the window needs to be redrawn. This is where the NvtUpdateDisplay
function should be called. If you are using MFC, the code should be placed in the OnPaint
method.

WM_HSCROLL and WM_VSCROLL
This message is sent when the user interacts with the window's scrollbars. An application should
call the NvtSetDisplayScrollPos function to update the scroll position in the virtual display. In
MFC, this code should be implemented in the OnHScroll and OnVScroll methods.

WM_KEYDOWN
This message is sent when the user presses a key. To determine if the key is mapped to a special
escape sequence that should be sent to the server, call the NvtTranslateMappedKey function. In
MFC, this code should be implemented in the OnKeyDown method.

WM_SETFOCUS and WM_KILLFOCUS
This message is sent when the window acquires or loses focus. You should call
NvtSetDisplayFocus so that the library knows that the input focus has changed. In MFC, this code
should be implemented in the OnSetFocus and OnKillFocus methods.

WM_SIZE
This message is sent when the window size changes. The application should call the
NvtResizeDisplay function so that the virtual display is aware that the window size has changed.
In MFC, this code should be implemented in the OnSize method.

When writing a terminal emulation program, it will also be necessary to handle other Windows messages

such as WM_CHAR to process keys pressed by the user, which should be sent to the server. It is
recommended that you refer to the Terminal sample program which demonstrates how these messages
can be handled by an application. It also serves as a good example of how the Terminal Emulation API can
be used in conjunction with the Telnet API.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Text Message Library

Short Message Service (SMS) is a text messaging service used by mobile communication devices to
exchange brief text messages. Most service providers also provide gateway servers that can be used to
send messages to a wireless device on their network using standard email protocols. The Text Message API
provides functions that can be used to determine the provider associated with a specific telephone number
and send a text message to the device using the provider's mail gateway.

The first step your application must take is to initialize the library, which will load the required system
libraries and initialize the internal data structures that are used. You must call the initialization function
before attempting to call any other function in the library.

SmsInitialize
Initialize the library and load the Windows Sockets library for the current process. This must be the
first function call that the application makes before calling the other SMS API functions.

SmsUninitialize
Unload the Windows Sockets library and release any resources that have been allocated for the
current process. This is the last function call the application should make prior to terminating.

Text Messages
Sending a text message is done with a single function call, with two parameters. The first parameter is a
pointer to a data structure that identifies the service that will be used to send the message. By default,
messages are sent via an SMTP gateway, however the API was designed to be extensible so that additional
methods could be integrated into future versions of the library. For example, a third-party company may
offer a service that allows messages to be sent using HTTP and that can be added as an additional service
type. The second parameter is a pointer to a data structure that contains information about the text
message itself.

SmsSendMessage
This function is used to send the text message. The caller must populate two data structures that
contain information about the service provider and the contents of the message itself. The
SMSSERVICE structure is used to provide information about the service being used to send the
message, and the SMSMESSAGE structure is used to provide the function with information about
the message.

Service Providers
When a service provider is mentioned in the documentation, typically it is referring to the wireless service
provider (also commonly called a "carrier") that is responsible for providing network access for the mobile
device. These are identified by name, such as "Verizon Wireless" and "AT&T Mobility". The library has a
built-in table of known providers in North America, and can return this information to your application.
Note that in some cases, a service provider may also refer to a specific service used to send a text message.

SmsGetProvider
This function returns information about the wireless service provider that is associated with a
specific phone number. This can be used to determine if a phone number is valid, and the default
provider that is responsible for that number. Information about the service provider is returned in
an SMSPROVIDER structure.

SmsEnumProviders
This function enumerates all of the supported wireless service providers and populates an array of
structures that contain information about each provider. Typically this is used to update the user
interface with a list of known service providers, allowing the end-user to select a specific service
provider.

SmsGetFirstProvider and SmsGetNextProvider
These functions are also used to enumerate the supported wireless service providers, but they
return information about a single provider with each function call. They are primarily designed to
be used with languages that don't provide an easy way to work with an array of data structures.
The information that is returned is identical to the SmsEnumProviders function.

Gateway Servers
A gateway server refers to the server that is responsible for accepting the text message and sending it to
the recipient. Currently, this is exclusively used in the context of SMTP gateways where the message is sent
to a mail server operated by the wireless service provider.

SmsGetGateway
This function returns information about the gateway that is responsible for accepting a text
message for a specific phone number and forwarding that message to the mobile device.
Information about the gateway is returned in an SMSGATEWAY structure.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Time Protocol

The Time protocol library enables an application to retrieve the current time from a server, and optionally
synchronize the local system time using that value. The first step that your application must take is to
initialize the library. After the library has been initialized, the application can request the current time from
a system and update the local system clock if necessary.

TimeInitialize
Initialize the library and load the Windows Sockets library for the current process. This must be the
first function call that the application makes before calling the other Time API functions.

GetNetworkTime
Return the current time from a server. The time is expressed as a 32-bit integer value which
represents the number of seconds since midnight, 1 January 1900 UTC.

UpdateLocalTime
Update the local system time with the value returned by GetNetworkTime. This function requires
that the current user have the appropriate permissions to modify the system time or the function
will fail.

TimeUninitialize
Unload the Windows Sockets library and release any resources that have been allocated for the
current process. This is the last function call the application should make prior to terminating.

Time Conversion
Windows applications typically use a structure called SYSTEMTIME to represent date and time values. The
library has two functions which will enable you to convert between the value returned by
GetNetworkTime and the SYSTEMTIME structure.

ConvertNetworkTime
This function will convert the value returned by GetNetworkTime into a SYSTEMTIME structure,
adjusting for the local timezone if required.

ConvertSystemTime
This function will convert a SYSTEMTIME structure into a 32-bit integer value. This value may be
passed to the UpdateLocalTime function to update the local system clock.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Whois Protocol

The Whois protocol library provides an interface for requesting information about an Internet domain
name. When a domain name is registered, the organization that registers the domain must provide certain
contact information along with technical information such as the primary name servers for that domain.
The Whois protocol enables an application to query a server that provides that registration information.
The Whois library provides an API for requesting that information and returning it to the program so it can
be displayed or processed.

The first step your application must take is to initialize the library and then establish a connection. The
following functions are available for use by your application:

WhoisInitialize
Initialize the library and load the Windows Sockets library for the current process. This must be the
first function call the application makes before calling the other Whois API functions.

WhoisConnect
Connect to the server, using either a host name or IP address. This function returns a client handle
which is used in subsequent calls to the library.

WhoisSearch
Perform a search for a specific domain. The server will return the results of the search as a text
document which provides registration information for that domain. It is important to note that
different registrars may use different formats when returning the data, and not all servers return
the same type of information.

WhoisRead
Read the data returned by the server. Your application would typically call this function in a loop
until all of the data has been read or an error occurs.

WhoisDisconnect
Disconnect from the server and release the memory allocated for that client session. After this
function is called, the client handle is no longer valid.

WhoisUninitialize
Unload the Windows Sockets library and release any resources that have been allocated for the
current process. This is the last function call the application should make prior to terminating.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SocketTools Class Library Reference

Domain Name Service Class
File Transfer Protocol Class
File Transfer Queue Class
File Transfer Server Class
Hypertext Transfer Protocol Class
Hypertext Transfer Queue Class
Hypertext Transfer Server Class
Internet Control Message Protocol Class
Internet Message Access Protocol Class
Internet Server Class
Mail Message Class
Message Store Class
Network News Protocol Class
News Feed Class
Post Office Protocol Class
Remote Command Class
Simple Mail Transfer Protocol Class
Secure Shell Protocol Class
SocketWrench Class
Telnet Protocol Class
Terminal Emulation Class
Text Message Class
Time Protocol Class
Web Storage Class
Whois Protocol Class

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Domain Name Service Class Library

Resolve domain names into Internet addresses and return information about a remote host, such
as the servers that are responsible for accepting mail for the domain.

Reference

Class Methods
Constants
Data Structures
Error Codes

Library Information

Class Name CDnsClient

File Name CSDNSV11.DLL

Version 11.0.2180.1635

LibID D0B892B2-2930-4919-BED9-BD494D65BDBB

Import Library CSDNSV11.LIB

Dependencies None

Standards RFC 1034

Overview
The Domain Name Services (DNS) protocol is what applications use to resolve domain names into
Internet addresses as well as provide other information about a domain. All of the SocketTools
libraries provide basic domain name resolution functionality, but the Domain Name Services
library gives an application direct control over what servers are queried, the amount of time spent
waiting for a response and the type of information that is returned.

Requirements
The SocketTools Library Edition libraries are compatible with any programming language which
supports calling functions exported from a standard dynamic link library (DLL). If you are using
Visual C++ 6.0 it is required that you have Service Pack 6 (SP6) installed. You should install all
updates for your development tools and have the current Windows SDK installed. The minimum
recommended version of Visual Studio is Visual Studio 2010.

This library is supported on Windows 7, Windows Server 2008 R2 and later versions of the desktop
and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1) installed as
a minimum requirement. It is recommended that you install the current service pack and all critical
updates available for your version of the operating system.

This product includes both 32-bit and 64-bit libraries. Native 64-bit CPU support requires the 64-
bit version of Windows 7 or later versions of the Windows operating system.

Distribution
When you distribute your application that uses this library, it is recommended that you install the
file in the same folder as your application executable. If you install the library into a shared location
on the system, it is important that you distribute the correct version for the target platform and it
should be registered as a shared DLL. This is a standard Windows dynamic link library, not an

ActiveX component, and does not require COM registration.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Domain Name Service Class Methods

Class Description

CDnsClient Constructor which initializes the current instance of the class

~CDnsClient Destructor which releases resources allocated by the class

Method Description

AttachHandle Attach the specified client handle to this instance of the class

AttachThread Attach the specified client handle to another thread

Cancel Cancel an outstanding nameserver query

DetachHandle Detach the handle for the current instance of this class

DisableTrace Disable logging of network function calls to the trace log

EnableTrace Enable logging of network function calls to a file

EnumHostAliases Enumerate the aliases for the specified host name or address

EnumMailExchanges Return a list of mail exchanges for the specified host name or IP address

FormatAddress Convert a numeric IPv4 address to a string

GetAddress Convert an address string in dotted notation to a numeric IPv4 address

GetAddressFamily Return the address family for the specified IP address

GetDefaultHostFile Return the full path to the default host file on the local system

GetDefaultServicesFile Return the full path to the default services file on the local system

GetErrorString Return a description for the specified error code

GetHandle Return the client handle used by this instance of the class

GetHostAddress Return the IP address of the specified hostname

GetHostByAddress Return a pointer to data for the specified host IP address

GetHostByName Return a pointer to data for the specified host name

GetHostFile Return the name of the current host file

GetHostInfo Return additional information for the specified host

GetHostName Return the host name for the specified IP address

GetHostServices Return a list of services supported by the specified host

GetLastError Return the last error code

GetLocalAddress Return the IP address for the local host

GetLocalDomain Return the local domain name for the current session

GetLocalName Return the local host name

GetMailExchange Return the host that processes mail for the specified domain

GetRecord Return record data for the current host

GetResolverAddress Return address of last nameserver that resolved query

GetResolverOptions Return the current resolver options for the client session

GetRetryCount Get the number of times the query is sent to each server

GetServerAddress Return the address of the specified nameserver

GetServerPort Return the port of the specified nameserver

GetServiceName Return the name of a service assigned to the specified port number

GetServicePort Return the port number assigned to the specified service name

GetTimeout Get the number of seconds until a query times out

HostNameToUnicode Converts the canonical form of a host name to its Unicode version

IsInitialized Determine if the class has been successfully initialized

MatchHostName Match a host name against of list of addresses including wildcards

NormalizeHostName Return the canonical form of a host name

RegisterServer Add a nameserver address to the current session

Reset Reset the current client state

Resolve Resolve a host name into an IP address or an IP address into a host name

SetHostFile Specify the name of an alternate file to use when resolving host names and IP addresses

SetLastError Set the last error code

SetLocalDomain Set the local domain name for the current session

SetResolverOptions Set the resolver options for the client session

SetRetryCount Set the number of times the query is sent to each server

SetTimeout Set the number of seconds until a query times out

ShowError Display a message box with a description of the specified error

UnregisterServer Remove a nameserver address from the current session

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CDnsClient::CDnsClient Method

CDnsClient();

The CDnsClient constructor initializes the class library and validates the license key at runtime.

Remarks
If the constructor fails to validate the runtime license, subsequent methods in this class will fail. If
the product is installed with an evaluation license, then the application will only function on the
development system and cannot be redistributed.

The constructor calls the DnsInitialize function to initialize the library, which dynamically loads
other system libraries and allocates thread local storage. If you are using this class within another
DLL, it is important that you do not create or destroy an instance of the class from within the
DllMain function because it can result in deadlocks or access violation errors. You should not
declare static or global instances of this class within another DLL if it is linked with the C runtime
library (CRT) because it will automatically call the constructors and destructors for static and global
C++ objects and has the same restrictions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
~CDnsClient, IsInitialized, SetResolverOptions

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CDnsClient::~CDnsClient

~CDnsClient();

The CDnsClient destructor releases resources allocated by the current instance of the CDnsClient
object. It also uninitializes the library if there are no other concurrent uses of the class.

Remarks
When a CDnsClient object goes out of scope, the destructor is automatically called to allow the
library to free any resources allocated on behalf of the process. Any pending blocking or
asynchronous calls in this process are canceled without posting any notification messages, and all
handles that were created for the client session are destroyed.

The destructor is not called explicitly by the application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CDnsClient

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CDnsClient::AttachHandle Method

VOID AttachHandle(
 HCLIENT hClient
);

The AttachHandle method attaches the specified client handle to the current instance of the
class.

Parameters
hClient

The handle to the client session that will be attached to the current instance of the class object.

Return Value
None.

Remarks
This method is used to attach a client handle created outside of the class using the SocketTools
API. Once the client handle is attached to the class, the other class member functions may be used
with that client session.

If a client handle already has been created for the class, that handle will be released when the new
handle is attached to the class object. If you want to prevent the previous client session from being
terminated, you must call the DetachHandle method. Failure to release the detached handle may
result in a resource leak in your application.

Note that the hClient parameter is presumed to be a valid client handle and no checks are
performed to ensure that the handle is valid. Specifying an invalid client handle will cause
subsequent method calls to fail.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib

See Also
DetachHandle, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CDnsClient::AttachThread Method

DWORD AttachThread(
 DWORD dwThreadId
);

The AttachThread method attaches the specified client handle to another thread.

Parameters
dwThreadId

The ID of the thread that will become the new owner of the class. A value of zero specifies that
the current thread should become the owner of the class instance.

Return Value
If the method succeeds, the return value is the thread ID of the previous owner. If the method fails,
the return value is DNS_ERROR. To get extended error information, call GetLastError.

Remarks
When a client handle is created, it is associated with the current thread that created it. Normally, if
another thread attempts to perform an operation using that handle, an error is returned since it
does not own the handle. This is used to ensure that other threads cannot interfere with an
operation being performed by the owner thread. In some cases, it may be desirable for one
thread in a client application to create the client handle, and then pass that handle to another
worker thread. The AttachThread method can be used to change the ownership of the handle to
the new worker thread. By preserving the return value from the method, the original owner of the
handle can be restored before the worker thread terminates.

This method should be called by the new thread immediately after it has been created, and if the
new thread does not release the handle itself, the ownership of the handle should be restored to
the parent thread before it terminates. Under no circumstances should AttachThread be used to
forcibly release a handle allocated by another thread while a blocking operation is in progress. To
cancel an operation, use the Cancel method and then release the handle after the blocking
method exits and control is returned to the current thread.

Note that the dwThreadId parameter is presumed to be a valid thread ID and no checks are
performed to ensure that the thread actually exists. Specifying an invalid thread ID will orphan the
client handle used by the class until the destructor is called.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib

See Also
AttachHandle, Cancel

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CDnsClient::Cancel Method

INT Cancel();

The Cancel method cancels any outstanding queries initiated by the client.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
DNS_ERROR. To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetHostByAddress, GetHostByName, GetHostInfo, GetHostServices, GetMailExchange, GetRecord

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CDnsClient::DetachHandle Method

HCLIENT DetachHandle();

The DetachHandle method detaches the client handle associated with the current instance of the
class.

Return Value
This method returns the client handle associated with the current instance of the class object. If
there is no active client session, the value INVALID_CLIENT will be returned.

Remarks
This method is used to detach a client handle created by the class for use with the SocketTools
API. Once the client handle is detached from the class, no other class member functions may be
called. Note that the handle must be explicitly released at some later point by the process or a
resource leak will occur.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib

See Also
AttachHandle, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CDnsClient::DisableTrace Method

BOOL DisableTrace();

The DisableTrace method disables the logging of socket function calls to the trace log.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. A return value of zero indicates an error.
Failure typically indicates that the tracing library cstrcv11.dll cannot be loaded on the local
system.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
EnableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CDnsClient::EnableTrace Method

BOOL EnableTrace(
 LPCTSTR lpszTraceFile,
 DWORD dwTraceFlags
);

The EnableTrace method enables the logging of socket function calls to a file.

Parameters
lpszTraceFile

A pointer to a string which specifies the name of the trace log file. If this parameter is NULL or
an empty string, the default file name cstrace.log is used. The file is stored in the directory
specified by the TEMP environment variable, if it is defined; otherwise, the current working
directory is used.

dwTraceFlags

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

TRACE_INFO All function calls are written to the trace file. This is the default
value.

TRACE_ERROR Only those function calls which fail are recorded in the trace file.

TRACE_WARNING Only those function calls which fail or return values which indicate
a warning are recorded in the trace file.

TRACE_HEXDUMP All functions calls are written to the trace file, plus all the data that
is sent or received is displayed, in both ASCII and hexadecimal
format.

TRACE_PROCESS All function calls in the current process are logged, rather than
only those functions in the current thread. This option is useful for
multithreaded applications that are using worker threads.

Return Value
If the method succeeds, the return value is non-zero. A return value of zero indicates an error.
Failure typically indicates that the tracing library cstrcv11.dll cannot be loaded on the local
system.

Remarks
When trace logging is enabled, the file is opened, appended to and closed for each socket
function call. This makes it possible for an application to append its own logging information,
however care should be taken to ensure that the file is closed before the next network operation is
performed. To limit the size of the log files, enable and disable logging only around those sections
of code that you wish to trace.

Note that the TRACE_HEXDUMP trace level generates very large log files since it includes all of the
data exchanged between your application and the remote host.

Trace method logging is managed on a per-thread basis, not for each client handle. This means
that all SocketTools libraries and components share the same settings in the current thread. If you

are using multiple SocketTools libraries or components in your application, you only need to
enable logging once.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DisableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CDnsClient::EnumHostAliases Method

INT EnumHostAliases(
 LPCTSTR lpszHostName,
 LPTSTR *lpszHostAlias,
 INT nMaxAliases
);

The EnumHostAliases method returns a list of aliases for the specified host name or IP address.

Parameters
lpszHostName

Pointer to the string that contains the hostname to be resolved. If a fully qualified domain name
is not provided, the default local domain will be used. This value may also be an IP address.

lpszHostAlias

Pointer to an array of string pointers which specify one or more host aliases. If the application
needs to store these values, a local copy should be made because they are invalidated when
another host name is resolved.

nMaxAliases

The maximum number of aliases in the array. This parameter must have a value of at least one,
or an error will be returned.

Return Value
If the method succeeds, the return value is the number of host aliases. If the method fails, the
return value is DNS_ERROR. To get extended error information, call GetLastError.

Remarks
The application must never attempt to modify the host aliases or delete any of the values. This
method uses an internal data structure to store the host information and only one copy of this
structure is allocated per thread. The application must copy any information it needs before
issuing any other function calls.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetHostAddress, GetHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CDnsClient::EnumMailExchanges Method

INT EnumMailExchanges(
 LPCTSTR lpszHostName,
 LPTSTR *lpszMailExchanges,
 INT nMaxMailExchanges
);

The EnumMailExchanges method returns a list of mail exchanges for the specified host name or
IP address.

Parameters
lpszHostName

Pointer to the string that contains the hostname or domain name to be queried.

lpszMailExchanges

Pointer to an array of string pointers which specify one or more mail exchanges. If the
application needs to store these values, a local copy should be made because they are
invalidated when another host name is resolved. The list of mail exchange records is sorted in
priority order, from highest (i.e., those whose preference value is smallest) to lowest.

nMaxMailExchanges

The maximum number of mail exchanges in the array. If this parameter is 0, then the method
will return the number of mail exchanges, but the list of mail exchanges will not be output in
lpszMailExchanges.

Return Value
If the method succeeds, the return value is the number of mail exchanges. If the method fails, the
return value is DNS_ERROR. To get extended error information, call GetLastError.

Remarks
The application must never attempt to modify the mail exchange host names or delete any of the
values. This method uses an internal data structure to store the host information and only one
copy of this structure is allocated per thread. The application must copy any information it needs
before issuing any other method calls.

Example
 // Get the number of mail exchanges
 if ((nMX = pClient->EnumMailExchanges(szHostName, NULL, 0)) == DNS_ERROR)
 {
 pClient->ShowError();
 }
 else
 {
 // Allocate memory for the list of mail exchanges
 lpszMailExchanges = (LPTSTR *)LocalAlloc(LPTR, (nMX * sizeof(LPTSTR)));

 // Retrieve the list of mail exchanges
 nMX = pClient->EnumMailExchanges(szHostName, lpszMailExchanges, nMX);

 // Populate a listbox with the mail exchanges
 for (int nIndex = 0; nIndex < nMX; nIndex++)
 pListBox->AddString(*lpszMailExchanges++);

 LocalFree((HLOCAL)lpszMailExchanges);

 }

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetMailExchange

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CDnsClient::FormatAddress Method

INT FormatAddress(
 LPINTERNET_ADDRESS lpAddress,
 LPTSTR lpszAddress,
 INT nMaxLength
);

INT FormatAddress(
 LPINTERNET_ADDRESS lpAddress,
 CString& strAddress
);

The FormatAddress method converts a numeric IPv4 or IPv6 address to a string.

Parameters
lpAddress

A pointer to an INTERNET_ADDRESS structure which specifies the numeric IPv4 or IPv6 address
to be converted into a string.

lpszAddress

A pointer to a null-terminated array of characters which will contain the converted IPv4 address
in dot-notation. This string should be at least 16 characters in length. If the Microsoft
Foundation Classes are being used, the second form of this method may be called where a
CString object is specified instead.

nMaxLength

The maximum number of characters which may be copied in to the string buffer.

Return Value
If the method succeeds, the return value is the length of the string buffer. If the method fails, the
return value is zero. To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetAddress, GetHostAddress, GetHostInfo, GetHostServices, GetMailExchange, GetRecord,
INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CDnsClient::GetAddress Method

INT GetAddress(
 LPCTSTR lpszAddress,
 INT nAddressFamily,
 LPINTERNET_ADDRESS lpAddress
);

The GetAddress method converts an address string to a numeric IPv4 or IPv6 address.

Parameters
lpszAddress

A pointer to a string which specifies an IPv4 address in dotted notation.

nAddressFamily

An integer value which specifies the type of IP address. If this parameter is zero, the address
family will be determined automatically based on the format of the address string. If this
parameter is DNS_ADDRESS_IPV4, the address must be in IPv4 format, and if it is
DNS_ADDRESS_IPV6, the address must be in IPv6 format.

lpAddress

A pointer to an INTERNET_ADDRESS structure that will contain the numeric form of the IPv4 or
IPv6 address in network byte order when the method returns.

Return Value
If the method succeeds, the return value is the address family for the IP address. If the method
fails, the return value is DNS_ERROR. To get extended error information, call GetLastError.

Remarks
This method will only accept a string that is in the proper format for an IP address, and cannot be
used to resolve a host name. To perform host name resolution, use the GetHostAddress method.
To convert a numeric address to an address string, use the FormatAddress method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FormatAddress, GetHostAddress, GetHostInfo, GetHostServices, GetMailExchange, GetRecord,
INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CDnsClient::GetAddressFamily Method

INT GetAddressFamily(
 LPCTSTR lpszAddress
);

The GetAddressFamily method returns the address family for the specified IP address.

Parameters
lpszAddress

A pointer to a string which specifies an IPv4 or IPv6 address.

Return Value
If the method succeeds, the return value is DNS_ADDRESS_IPV4 if the address is in IPv4 format, or
DNS_ADDRESS_IPV6 if the address is in IPv6 format. If the address string is not in a recognized
format, it returns DNS_ADDRESS_UNKNOWN.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DnsGetHostAddress, DnsGetHostInfo, DnsGetHostServices, DnsGetMailExchange, DnsGetRecord

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CDnsClient::GetDefaultHostFile Method

INT GetDefaultHostFile(
 LPTSTR lpszFileName,
 INT nMaxLength
);

INT GetDefaultHostFile(
 CString& strFileName
);

The GetDefaultHostFile method returns the fully qualified path name of the host file on the local
system. The host file is used as a database that maps an IP address to one or more hostnames,
and is used by the GetHostAddress and GetHostName methods. The file is a plain text file, with
each line in the file specifying a record, and each field separated by spaces or tabs. The format of
the file must be as follows:

ipaddress hostname [hostalias ...]

For example, one typical entry maps the name "localhost" to the local loopback IP address. This
would be entered as:

127.0.0.1 localhost

The hash character (#) may be used to specify a comment in the file, and all characters after it are
ignored up to the end of the line. Blank lines are ignored, as are any lines which do not follow the
required format.

Parameters
lpszFileName

Pointer to a string buffer that will contain the fully qualified file name to the default host file. It is
recommended that this buffer be at least MAX_PATH characters in size. This parameter may be
NULL, in which case the method will return the length of the string, not including the
terminating null byte. An alternative version of this method accepts a CString object.

nMaxLength

The maximum number of characters that may be copied to the string buffer.

Return Value
If the function succeeds, the return value is the number of characters copied into the string buffer,
not including the terminating null character. A return value of zero indicates that the default host
file could not be determined for the current platform. To get extended error information, call
GetLastError.

Remarks
This method returns the location of the host file and does not determine if the file actually exists.
The default location for this file is in a protected area of the Windows operating system and can
only be modified by a process with administrative privileges.

The default host file is processed before performing a nameserver lookup when resolving a
hostname into an IP address, or an IP address into a hostname. To specify an alternate local host
file, use the SetHostFile method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)

Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetDefaultServicesFile, GetHostAddress, GetHostFile, GetHostName, SetHostFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CDnsClient::GetDefaultServicesFile Method

INT GetDefaultServicesFile(
 LPTSTR lpszFileName,
 INT nMaxLength
);

INT GetDefaultServicesFile(
 CString& strFileName
);

The GetDefaultServicesFile method returns the fully qualified path name of the services file on
the local system. The services file is used as a database that maps a port number to a service
name, and is used by the GetServiceName and GetServicePort methods. The file is a plain text
file, with each line in the file specifying a record, and each field separated by spaces or tabs. The
format of the file must be as follows:

name port/protocol [alias ...]

For example, one typical entry maps the service name "http" to port 80, the standard port for the
Hypertext Transfer Protocol. This would be entered as:

http 80/tcp www www-http

The hash character (#) may be used to specify a comment in the file, and all characters after it are
ignored up to the end of the line. Blank lines are ignored, as are any lines which do not follow the
required format.

Parameters
lpszFileName

Pointer to a string buffer that will contain the fully qualified path to the default services file. It is
recommended that this buffer be at least MAX_PATH characters in size. This parameter may be
NULL, in which case the function will return the length of the string, not including the
terminating null byte. An alternative version of this method accepts a CString object.

nMaxLength

The maximum number of characters that may be copied to the string buffer.

Return Value
If the method succeeds, the return value is the number of characters copied into the string buffer,
not including the terminating null character. A return value of zero indicates that the default
services file could not be determined for the current platform. To get extended error information,
call GetLastError.

Remarks
This method returns the location of the services file and does not determine if the file actually
exists. The default location for this file is in a protected area of the Windows operating system and
can only be modified by a process with administrative privileges.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetDefaultHostFile, GetServiceName, GetServicePort

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CDnsClient::GetErrorString Method

INT GetErrorString(
 DWORD dwErrorCode,
 LPTSTR lpszDescription,
 INT nMaxLength
);

The GetErrorString method is used to return a description of a specific error code. Typically this is
used in conjunction with the GetLastError method for use with warning dialogs or as diagnostic
messages.

Parameters
dwErrorCode

The last-error code for which a description is returned.

lpszDescription

A pointer to the buffer that will contain a description of the specified error code. This buffer
should be at least 128 characters in length.

nMaxLength

The maximum number of characters that may be copied into the description buffer.

Return Value
If the method succeeds, the return value is the length of the description string. If the method fails,
the return value is 0, meaning that no description exists for the specified error code. Typically this
indicates that the error code passed to the method is invalid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetLastError, SetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CDnsClient::GetHandle Method

HCLIENT GetHandle();

The GetHandle method returns the client handle associated with the current instance of the class.

Return Value
This method returns the client handle associated with the current instance of the class object. If
there is no active client session, the value INVALID_CLIENT will be returned.

Remarks
This method is used to obtain the client handle created by the class for use with the SocketTools
API.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib

See Also
AttachHandle, DetachHandle, IsInitialized

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CDnsClient::GetHostAddress Method

INT GetHostAddress(
 LPCTSTR lpszHostName,
 INT nAddressFamily,
 LPTSTR lpszHostAddress,
 INT nMaxLength
);

INT GetHostAddress(
 LPCTSTR lpszHostName,
 LPTSTR lpszHostAddress,
 INT nMaxLength
);

INT GetHostAddress(
 LPCTSTR lpszHostName,
 INT nAddressFamily,
 CString& strHostAddress
);

INT GetHostAddress(
 LPCTSTR lpszHostName,
 CString& strHostAddress
);

The GetHostAddress method resolves the specified host name, storing the IP address in the
provided buffer.

Parameters
lpszHostName

Pointer to the string that contains the hostname to be resolved. If a fully qualified domain name
is not provided, the default local domain will be used.

nAddressFamily

An integer value which specifies the type of address that should be returned. A value of
DNS_ADDRESS_IPV4 specifies that the IPv4 address for the host should be returned. A value of
DNS_ADDRESS_IPV6 specifies that the IPv6 address for the host should be returned. A value of
DNS_ADDRESS_ANY specifies that if the host only has an IPv6 address, that value should be
returned, otherwise return the IPv4 address for the host. There are alternate versions of this
method which omits the address family, in which case it will default to returning the IPv4
address for the host.

lpszHostAddress

Pointer to the buffer that will contain the IP address, stored as a string in dot notation. This
buffer should be at least 48 characters in length. The format of the address is determined by the
address family specified.

nMaxLength

The maximum length of the string buffer. The maximum length of the buffer must include the
terminating null character.

Return Value
If the method succeeds, the return value is the number of characters copied into the host address
buffer. If the method fails, the return value is DNS_ERROR. To get extended error information, call

GetLastError.

Remarks
The GetHostAddress method may return an address in either IPv4 or IPv6 format, depending on
the address family that is specified and what records exist for the host. If your application does not
support the IPv6 address format, you must specify the nAddressFamily parameter as
DNS_ADDRESS_IPV4 to prevent the possibility of an IPv6 address being returned.

If the nAddressFamily parameter is specified as DNS_ADDRESS_ANY, this function will first check
for an IPv4 address record for the host. If it exists, it will return that address. If the host does not
have an IPv4 address, it will then check for an IPv6 address record and return that address. This
gives preference to IPv4 addresses, but your application should never depend on this behavior. In
the future, this function may change to give preference to IPv6 addresses.

To determine what format an address is in, use the GetAddressFamily method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
EnumHostAliases, GetAddressFamily GetHostName, GetRecord

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CDnsClient::GetHostByAddress Method

LPHOSTENT GetHostByAddress(
 LPVOID lpvAddress,
 INT cbAddress,
 INT nAddressFamily
);

The GetHostByAddress method returns a pointer to a HOSTENT structure which contains the
results of a successful search for the host specified by address parameter.

Parameters
lpvAddress

Pointer to an integer IPv4 address in network byte order.

cbAddress

The length of the address in bytes; this value should always be 4.

nAddressFamily

The type of address being resolved; this value should always be DNS_ADDRESS_IPV4 as defined
in the Windows Sockets header file.

Return Value
If the method succeeds, the return value is a pointer to a HOSTENT structure. If the method fails,
the return value is NULL. To get extended error information, call GetLastError.

Remarks
The application must never attempt to modify this structure or to free any of its components. Only
one copy of this structure is allocated per thread, so the application should copy any information it
needs before issuing any other function calls. To convert an IPv4 address string in dotted notation
to a 32-bit IP address, use the GetAddress method.

This method is included for compatibility with existing applications which already use the
HOSTENT structure. Because this method returns a pointer to a complex structure, it may not be
suitable for some programming languages. There is no Unicode version of the HOSTENT structure
and members will return pointers to ANSI strings even if the application is compiled to use
Unicode.

This method is not compatible with IPv6 addresses. For applications that must support both IPv4
and IPv6 address formats, use the GetHostAddress and GetHostName methods.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetHostAddress, GetHostByName, GetHostInfo, GetHostName, GetHostServices, GetRecord,
GetResolverAddress, RegisterServer

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CDnsClient::GetHostByName Method

LPHOSTENT GetHostByName(
 LPCTSTR lpszHostName
);

The GetHostByName method returns a pointer to a HOSTENT structure which contains the
results of a successful search for the host specified in the name parameter.

Parameters
lpszHostName

Pointer to the string that contains the hostname to be resolved. If a fully qualified domain name
is not provided, the default local domain will be used.

Return Value
If the method succeeds, the return value is a pointer to a HOSTENT structure. If the method fails,
the return value is NULL. To get extended error information, call GetLastError.

Remarks
The application must never attempt to modify this structure or to free any of its components. Only
one copy of this structure is allocated per thread, so the application should copy any information it
needs before issuing any other function calls. This method will automatically resolve an IP address
passed as a string, converting it to numeric form and calling the GetHostByAddress method.

This method is included for compatibility with existing applications which already use the
HOSTENT structure. Because this function returns a pointer to a complex structure, it may not be
suitable for some programming languages. There is no Unicode version of the HOSTENT structure
and members will return pointers to ANSI strings even if the application is compiled to use
Unicode.

This method is not compatible with IPv6 addresses. For applications that must support both IPv4
and IPv6 address formats, use the GetHostAddress and GetHostName methods.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetHostAddress, GetHostByAddress, GetHostInfo, GetHostName, GetHostServices,
GetMailExchange, GetRecord, GetResolverAddress, RegisterServer

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CDnsClient::GetHostFile Method

INT GetHostFile(
 LPTSTR lpszFileName,
 INT nMaxLength
);

INT GetHostFile(
 CString& strFileName
);

The GetHostFile method returns the name of the host file previously set using the SetHostFile
method. The host file is used as a database that maps an IP address to one or more hostnames,
and is used by the GetHostAddress and GetHostName method.

Parameters
lpszFileName

Pointer to a string buffer that will contain the host file name. It is recommended that this buffer
be at least MAX_PATH characters in size. This parameter may be NULL, in which case the
method will return the length of the string, not including the terminating null character.

nMaxLength

The maximum number of characters that may be copied to the string buffer.

Return Value
If the method succeeds, the return value is length of the string. A return value of zero indicates
that no host file has been specified or the method was unable to determine the file name. To get
extended error information, call GetLastError. If the last error is zero, this indicates that no host
file name has been specified for the current thread. If the last error is non-zero, this indicates the
reason that the method failed.

Remarks
This method only returns the name of the host file that is cached in memory for the current
thread. The contents of the file on the disk may have changed after the file was loaded into
memory. To reload the host file or clear the cache, call the SetHostFile method.

If a host file has been specified, it is processed before the default host file when resolving a
hostname into an IP address, or an IP address into a hostname. If the host name or address is not
found, or no host file has been specified, a nameserver lookup is performed.

The host file returned by this method may be different than the default host file for the local
system. To determine the file name for the default host file, use the GetDefaultHostFile method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetDefaultHostFile, GetHostAddress, GetHostName, SetHostFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CDnsClient::GetHostInfo Method

INT GetHostInfo(
 LPCTSTR lpszHostName,
 LPTSTR lpszBuffer,
 INT nMaxLength
);

The GetHostInfo method returns the HINFO record for the specified hostname. This information,
if it is provided, typically specifies the operating system type and hardware platform.

Parameters
lpszHostName

Pointer to the string which specifies the host name that information will be returned for.

lpszBuffer

Pointer to the buffer which will contain the host information returned by the nameserver.

nMaxLength

Maximum number of characters that may be copied into the specified buffer, including the null
character terminator.

Return Value
If the method succeeds, the length of the host information buffer is returned. A return value of
zero indicates that no information is available for the specified host. If the method fails, the return
value is DNS_ERROR. To get extended error information, call GetLastError.

Remarks
Many systems to do not maintain HINFO records for a site since that information can potentially
be used to compromise system security. The information is typically used for administrative
purposes with internal networks.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetHostByAddress, GetHostByName, GetHostServices, GetMailExchange, GetRecord,
GetResolverAddress, RegisterServer

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CDnsClient::GetHostName Method

INT GetHostName(
 LPCTSTR lpszHostAddress,
 LPTSTR lpszHostName,
 INT nMaxLength
);

INT GetHostName(
 LPCTSTR lpszHostAddress,
 CString& strHostName
);

The GetHostName method resolves the specified IP address, storing the fully qualified host name
in the provided buffer.

Parameters
lpszHostAddress

Pointer to a string that specifies an IPv4 or IPv6 formatted address.

lpszHostName

Pointer to the buffer that will contain the fully qualified domain name for the specified host. This
buffer should be at least 64 characters in length.

nMaxLength

The maximum length of the string buffer.

Return Value
If the method succeeds, the return value is the number of characters copied into the host name
buffer. If the method fails, the return value is DNS_ERROR. To get extended error information, call
GetLastError.

Remarks
The GetHostName method first looks to see if there is an entry in the local host file for the
specified IP address, and if one exists, it will return the host name for that address. If you do not
want to use the local host file at all, and only return an host name if a DNS query resolves the
address, use the GetRecord method and specify a record type of DNS_RECORD_PTR.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
EnumHostAliases, GetHostByAddress, GetHostByName, GetHostAddress

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CDnsClient::GetHostServices Method

INT GetHostServices(
 LPCTSTR lpszHostName,
 INT nProtocol,
 LPTSTR lpszBuffer,
 INT nMaxLength
);

The GetHostServices method returns the WKS (Well Known Services) record for the specified
hostname and protocol. This information, if it is provided, typically specifies the names of those
services supported on the host.

Parameters
lpszHostName

Pointer to the string which specifies the host name that information will be returned for.

nProtocol

The protocol for those services that information should be returned about. The following
protocols are recognized:

Value Constant Description

6 DNS_PROTOCOL_TCP Services that use the Transmission Control Protocol
(TCP)

17 DNS_PROTOCOL_UDP Services that use the User Datagram Protocol (UDP)

lpszBuffer

Pointer to the buffer which will contain the host information returned by the nameserver.

nMaxLength

Maximum number of characters that may be copied into the specified buffer, including the null
character terminator.

Return Value
If the method succeeds, the length of the host services buffer is returned. A return value of zero
indicates that no information is available for the specified host. If the method fails, the return value
is DNS_ERROR. To get extended error information, call GetLastError.

Remarks
Many systems to do not maintain complete services records for a site since that information can
potentially be used to compromise system security. An application should not depend on this
information being available for any given record.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetHostByAddress, GetHostByName, GetHostInfo, GetMailExchange, GetRecord,

GetResolverAddress, RegisterServer

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CDnsClient::GetLastError Method

DWORD GetLastError();

DWORD GetLastError(
 CString& strDescription
);

Parameters
strDescription

A string which will contain a description of the last error code value when the method returns. If
no error has been set, or the last error code has been cleared, this string will be empty.

Return Value
The return value is the last error code value for the current thread. Functions set this value by
calling the SetLastError method. The Return Value section of each reference page notes the
conditions under which the method sets the last error code.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. You should call
the GetLastError method immediately when a method's return value indicates that an error has
occurred. That is because some methods call SetLastError(0) when they succeed, clearing the
error code set by the most recently failed method.

Most methods will set the last error code value when they fail; a few methods set it when they
succeed. Function failure is typically indicated by a return value such as FALSE, NULL,
INVALID_CLIENT or DNS_ERROR. Those methods which call SetLastError when they succeed are
noted on the method reference page.

The description of the error code is the same string that is returned by the GetErrorString
method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib

See Also
GetErrorString, SetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CDnsClient::GetLocalAddress Method

INT GetLocalAddress(
 INT nAddressFamily,
 LPTSTR lpszAddress,
 INT nMaxLength
);

The DnsGetLocalAddress method returns the IP address for the local host.

nAddressFamily

An integer value which specifies the type of address that should be returned. A value of
DNS_ADDRESS_IPV4 specifies that the IPv4 address for the host should be returned. A value of
DNS_ADDRESS_IPV6 specifies that the IPv6 address for the host should be returned. A value of
DNS_ADDRESS_ANY specifies that if the host only has an IPv6 address, that value should be
returned, otherwise return the IPv4 address for the host.

lpszAddress

Pointer to the buffer that will contain the IP address, stored as a string in dot notation. This
buffer should be at least 40 characters in length to accommodate both IPv4 and IPv6 addresses.

nMaxLength

The maximum length of the string buffer.

Return Value
If the method succeeds, the return value is the number of characters copied into the host address
buffer. If the method fails, the return value is DNS_ERROR. To get extended error information, call
DnsGetLastError.

Remarks
The GetLocalAddress method may return an address in either IPv4 or IPv6 format, depending on
the address family that is specified and what records exist for the host. If your application does not
support the IPv6 address format, you must specify the nAddressFamily parameter as
DNS_ADDRESS_IPV4 to prevent the possibility of an IPv6 address being returned.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetHostName, GetHostInfo, GetHostServices, GetMailExchange, GetRecord

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CDnsClient::GetLocalDomain Method

INT GetLocalDomain(
 LPTSTR lpszDomain,
 INT nMaxLength
);

The GetLocalDomain method copies the local domain name into the specified buffer. The value
returned is the same value that was set with the SetLocalDomain method. If no local domain
name has been set, an empty string is returned.

Parameters
lpszDomain

Pointer to the buffer that is used to store the local domain name. If no local domain name has
been set, this buffer will be set to zero length.

nMaxLength

The maximum number of bytes to copy into the buffer, including the null character terminator.

Return Value
If the method succeeds, the return value is the length of the domain name string. A return value of
zero indicates that no local domain name has been set. If the method fails, the return value is
DNS_ERROR. To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
RegisterServer, SetLocalDomain

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CDnsClient::GetLocalName Method

INT GetLocalName(
 LPTSTR lpszLocalName,
 INT nMaxLength
);

The GetLocalName method returns the local host name.

Parameters
lpszLocalName

Pointer to a string buffer that will contain the local host name. It is recommended that this
buffer be at least 64 characters in size.

nMaxLength

The maximum number of characters that may be copied to the string buffer.

Return Value
If the method succeeds, the return value is the length of the local host name. If the method fails,
the return value is DNS_ERROR. To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetHostByAddress, GetHostByName, GetHostInfo, GetHostServices, GetMailExchange, GetRecord

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CDnsClient::GetMailExchange Method

INT GetMailExchange(
 LPCTSTR lpszHostName,
 LPINT lpnPreference,
 LPTSTR lpszBuffer,
 INT nMaxLength
);

The GetMailExchange method returns the mail exchange (MX) record information for the
specified domain. This information, if it is provided, identifies a server responsible for processing
mail for the given domain.

Parameters
lpszHostName

Pointer to the string which specifies the host name that information will be returned for.

lpnPreference

Pointer to the integer which will contain the preference for the specified mail exchange host.

lpszBuffer

Pointer to the buffer which will contain the host information returned by the nameserver.

nMaxLength

Maximum number of characters that may be copied into the specified buffer, including the null
character terminator.

Return Value
If the method succeeds, the length of the buffer is returned. A return value of zero indicates that
no information is available for the specified host. If the method fails, the return value is
DNS_ERROR. To get extended error information, call GetLastError.

Remarks
The mail exchange record is typically used by mail delivery agents to determine what system is
responsible for accepting mail addressed to a given domain. This method will return the first MX
record provided by the server. Note that some domains may have multiple mail servers. To
enumerate all of the mail exchange records for a domain, use the EnumMailExchanges method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetHostByAddress, GetHostByName, GetHostInfo, GetHostServices, GetRecord,
GetResolverAddress, RegisterServer, EnumMailExchanges

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CDnsClient::GetRecord Method

INT GetRecord(
 LPCTSTR lpszHostName,
 INT nRecordType,
 LPTSTR lpszBuffer,
 INT nMaxLength
);

INT GetRecord(
 LPCTSTR lpszHostName,
 INT nRecordType,
 CString& strBuffer
);

The GetRecord method returns the specified record information for the given hostname.

Parameters
lpszHostName

Pointer to the string which specifies the host name that information will be returned for.

nRecordType

The record type for the information that should be returned. The following record types are
recognized:

Value Constant Description

0 DNS_RECORD_NONE No record type

1 DNS_RECORD_ADDRESS Host address

2 DNS_RECORD_NS Authoritative nameserver

5 DNS_RECORD_CNAME Canonical name (alias)

6 DNS_RECORD_SOA Start of Authority

11 DNS_RECORD_WKS Well known services

12 DNS_RECORD_PTR Domain name

13 DNS_RECORD_HINFO Host information

14 DNS_RECORD_MINFO Mailbox information

15 DNS_RECORD_MX Mail exchange host

16 DNS_RECORD_TXT Text strings

29 DNS_RECORD_LOC Location information

100 DNS_RECORD_UINFO User information

101 DNS_RECORD_UID User ID

102 DNS_RECORD_GID Group ID

lpszBuffer

Pointer to the buffer which will contain the host information returned by the nameserver.

nMaxLength

Maximum number of characters that may be copied into the specified buffer, including the null
character terminator.

Return Value
If the method succeeds, the length of the information buffer is returned. A return value of zero
indicates that no information for that record is available for the specified host. If the method fails,
the return value is DNS_ERROR. To get extended error information, call GetLastError.

Remarks
The GetRecord method can be used to resolve a host name into an IP address using the record
type DNS_RECORD_ADDRESS. It can also be used to perform a reverse lookup and resolve an IP
address into a host name by using the record type DNS_RECORD_PTR.

To determine the host that serves as the primary or master DNS for a zone, the record name
should be specified as the domain name (e.g.: microsoft.com) and the record type should be
DNS_RECORD_SOA. The value returned will the fully qualified domain name for host.

Note that this method does not reference a local host file when resolving host names or
addresses. If the record lookup fails, this method will return an error even if there's an entry for the
host in the file that has been specified by a call to SetHostFile.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetHostAddress, GetHostName, GetHostInfo, GetHostServices, GetMailExchange,
GetResolverAddress, RegisterServer

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CDnsClient::GetResolverAddress Method

INT GetResolverAddress(
 LPTSTR lpszAddress,
 INT nMaxLength
);

INT GetResolverAddress(
 CString& strAddress
);

The GetResolverAddress returns the address of the nameserver that resolved the last query.

Parameters
lpszAddress

A pointer to a string buffer that will contain the address of the nameserver when the function
returns. This buffer should be large enough to store both IPv4 and IPv6 addresses, with a
minimum length of 40 characters. If this parameter is NULL, it will be ignored.

nMaxLength

The maximum number of characters that can be copied into the string buffer. If this value is
zero, the lpszAddress parameter will be ignored and the function will return the length of the
address.

Return Value
If the method succeeds, the return value is the length of the address, not including the terminating
null character. If the method fails, the return value is DNS_ERROR. To get extended error
information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetHostByAddress, GetHostByName, GetHostInfo, GetHostServices, GetMailExchange, GetRecord,
RegisterServer

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CDnsClient::GetResolverOptions Method

DWORD GetResolverOptions();

The GetResolverOptions method returns the options that have been set for the client session.

Parameters
None.

Return Value
If the method succeeds, the return value is the resolver options set for the client session. If the
client handle is invalid or no resolver options have been specified, the function will return zero.

Remarks
The GetResolverOptions method can be used to determine which resolver options have been
specified for the client session. For a list of the available options, refer to the documentation for
the SetResolverOptions method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib

See Also
CDnsClient, SetResolverOptions

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CDnsClient::GetRetryCount Method

INT GetRetryCount();

The GetRetryCount returns the retry count for the current client session.

Return Value
If the method succeeds, the return value is the retry count. If the method fails, the return value is
DNS_ERROR. To get extended error information, call GetLastError.

Remarks
The retry count determines the amount of time the client will wait for a response from each query,
the effective amount of time the client will wait increases with each nameserver and the total
number of retries specified. For example, two nameservers registered with the client, with a default
of 4 retries per nameserver and a timeout value of 10 seconds, would cause the client to wait a
total of 80 seconds until it returns an error indicating that it was unable to resolve the query.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetTimeout, SetRetryCount, SetTimeout

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CDnsClient::GetServerAddress Method

INT GetServerAddress(
 INT nServer,
 LPTSTR lpszAddress,
 INT nMaxLength
);

INT GetServerAddress(
 INT nServer,
 CString& strAddress
);

The GetServerAddress method returns the address of the specified nameserver.

Parameters
nServer

The index into the client's nameserver table. This index is the same value that is passed to the
RegisterServer method when the nameserver is registered.

lpszAddress

A pointer to a string buffer that will contain the address of the nameserver when the function
returns. This buffer should be large enough to store both IPv4 and IPv6 addresses, with a
minimum length of 40 characters. If this parameter is NULL, it will be ignored.

nMaxLength

The maximum number of characters that can be copied into the string buffer. If this value is
zero, the lpszAddress parameter will be ignored and the function will return the length of the
address.

Return Value
If the method succeeds, the return value is the length of the address, not including the terminating
null character. If the method fails, the return value is DNS_ERROR. To get extended error
information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetResolverAddress, GetServerPort, RegisterServer, UnregisterServer

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CDnsClient::GetServerPort Method

INT GetServerPort(
 INT nServer
);

The GetServerPort method returns the port number registered to the specified nameserver.

Parameters
nServer

The index into the client's nameserver table. This index is the same value that is passed to the
RegisterServer method when the nameserver is registered.

Return Value
If the method succeeds, the return value is the specified port number. If the method fails, the
return value is DNS_ERROR. To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetResolverAddress, GetServerAddress, RegisterServer, UnregisterServer

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CDnsClient::GetServiceName Method

INT GetServiceName(
 INT nServicePort,
 INT nProtocol,
 LPTSTR lpszServiceName,
 INT nMaxLength
);

INT GetServiceName(
 INT nServicePort,
 INT nProtocol,
 CString& strServiceName
);

The GetServiceName method returns the service name assigned to the specified port number.

Parameters
nServicePort

An integer which specifies the port number. This value must be a valid port number in the range
of 1 through 65535.

nProtocol

An integer which specifies the protocol associated with the service. This may be one of the
following values:

Constant Description

DNS_PROTOCOL_ANY Match the first service entry for the specified port number
regardless of the protocol used.

DNS_PROTOCOL_TCP Match a service entry for the specified port number which
uses the TCP protocol.

DNS_PROTOCOL_UDP Match a service entry for the specified port number which
uses the UDP protocol.

lpszServiceName

A pointer to a string buffer which will contain the name of the service assigned to the port
number when the method returns. This parameter cannot be NULL and the buffer must be
large enough to store the complete service name, including the terminating null character. An
alternative version of this method accepts a CString object.

nMaxLength

An integer which specifies the maximum number of characters which can be copied into the
string buffer.

Return Value
If the method succeeds, the return value is the number of characters copied into the string buffer,
not including the terminating null character. If the method fails, the return value is zero. To get
extended error information, call GetLastError.

Remarks
Port numbers can be assigned human readable service names to make them easier to reference.
This method will return the name assigned to the specified port number. If the port number does

not have an assigned name, this method will return zero and the last error code will be set to
ST_ERROR_INVALID_SERVICE_NAME.

Most applications should use DNS_PROTOCOL_ANY to return the service name assigned to a port
number. Services typically use the same name and port number regardless of the protocol used to
establish a connection with them. However, specifying a protocol can enable your application to
determine if the service supports the protocol. For example, calling this method with port number
21 and DNS_PROTOCOL_UDP would result in an error because FTP only supports TCP
connections.

Service names are assigned by the Internet Assigned Numbers Authority (IANA) and the database
of recognized service names can be returned by calling the GetDefaultServicesFile method. The
default location for this file is in a protected area of the Windows operating system and can only
be modified by a process with administrative privileges.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetDefaultHostFile, GetDefaultServicesFile, GetHostFile, GetServicePort

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CDnsClient::GetServicePort Method

INT GetServicePort(
 LPCTSTR lpszServiceName,
 INT nProtocol
);

The GetServicePort method returns the port number assigned to the specified service.

Parameters
lpszServiceName

A pointer to a null terminated string which specifies the service name. Service names are not
case sensitive.

nProtocol

An integer which specifies the protocol associated with the service. This may be one of the
following values:

Constant Description

DNS_PROTOCOL_ANY Match the first service entry for the specified port number
regardless of the protocol used.

DNS_PROTOCOL_TCP Match a service entry for the specified port number which
uses the TCP protocol.

DNS_PROTOCOL_UDP Match a service entry for the specified port number which
uses the UDP protocol.

Return Value
If the method succeeds, the return value is the port number assigned to the service name. If the
method fails, the return value is DNS_ERROR. To get extended error information, call
DnsGetLastError.

Remarks
Port numbers can be assigned human readable service names to make them easier to reference.
This method will return the port number assigned to the specified service name. If the service
name does not exist, this method will return DNS_ERROR and the last error code will be set to
ST_ERROR_INVALID_SERVICE_NAME.

Most applications should use DNS_PROTOCOL_ANY to return the port number assigned to a
service. Services typically use the same name and port number regardless of the protocol used to
establish a connection with them. However, specifying a protocol can enable your application to
determine if the service supports the protocol. For example, calling this method with the service
name "ftp" and DNS_PROTOCOL_UDP would result in an error because FTP only supports TCP
connections.

Service names are assigned by the Internet Assigned Numbers Authority (IANA) and the database
of recognized service names can be returned by calling the GetDefaultServicesFile method. The
default location for this file is in a protected area of the Windows operating system and can only
be modified by a process with administrative privileges.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)

Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetDefaultHostFile, GetDefaultServicesFile, GetHostFile, GetServicePort

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CDnsClient::GetTimeout Method

INT GetTimeout();

The GetTimeout method returns the timeout value for the current client session.

Return Value
If the method succeeds, the return value is the timeout period. If the method fails, the return value
is DNS_ERROR. To get extended error information, call GetLastError.

Remarks
The timeout value determines the amount of time the client will wait for a response from each
query, the effective amount of time the client will wait increases with each nameserver and the
total number of retries specified. For example, two nameservers registered with the client, with a
default of 4 retries per nameserver and a timeout value of 10 seconds, would cause the client to
wait a total of 80 seconds until it returns an error indicating that it was unable to resolve the query.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib

See Also
GetRetryCount, SetRetryCount, SetTimeout

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CDnsClient::HostNameToUnicode Method

INT HostNameToUnicode(
 LPCTSTR lpszHostName,
 LPTSTR lpszUnicodeName,
 INT nMaxLength
);

INT HostNameToUnicode(
 LPCTSTR lpszHostName,
 CString& strUnicodeName
);

The HostNameToUnicode method converts the canonical form of a host name to its Unicode
version.

Parameters
lpszHostName

Pointer to the host name as a null-terminated string. This parameter cannot be a NULL pointer
or a zero length string.

lpszUnicodeName

Pointer to the string buffer that will contain the original Unicode version of the host name,
including the terminating null character. It is recommended that this buffer be at least 256
characters in size. This parameter cannot be a NULL pointer. An alternate version of this method
accepts a reference to a CString object.

nMaxLength

The maximum number of characters that can be copied to the lpszUnicodeName string buffer.
This parameter cannot be zero, and must include the terminating null character.

Return Value
If the method succeeds, the return value is the number of characters copied into the string buffer.
If the method fails, the return value is DNS_ERROR. To get extended error information, call
GetLastError.

Remarks
The HostNameToUnicode method will convert the encoded ASCII version of a host name to its
Unicode version. Although any valid host name is accepted by this method, it is intended to
convert a Punycode encoded host name to its original Unicode character encoding.

If the application is compiled using the Unicode character set, the value returned in
lpszUnicodeName will be a Unicode string using UTF-16 encoding. If the ANSI character set is
used, the value returned will be a Unicode string using UTF-8 encoding. To display a UTF-8
encoded host name, your application will need to convert it to UTF-16 using the
MultiByteToWideChar function.

Although this method performs checks to ensure that the lpszHostName parameter is in the
correct format and does not contain any illegal characters or malformed encoding, it does not
validate the existence of the domain name. To check if the host name exists and has a valid IP
address, use the GetHostAddress method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)

Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetHostAddress, NormalizeHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CDnsClient::IsInitialized Method

BOOL IsInitialized();

The IsInitialized method returns whether or not the class object has been successfully initialized.

Return Value
This method returns a non-zero value if the class object has been successfully initialized. A return
value of zero indicates that the runtime license key could not be validated or the networking
library could not be loaded by the current process.

Remarks
When an instance of the class is created, the class constructor will attempt to initialize the
component with the runtime license key that was created when SocketTools was installed. If the
constructor is unable to validate the license key or load the networking libraries, this initialization
will fail.

If SocketTools was installed with an evaluation license, the application cannot be redistributed to
another system. The class object will fail to initialize if the application is executed on another
system, or if the evaluation period has expired. To redistribute your application, you must
purchase a development license which will include the runtime key that is needed to redistribute
your software to other systems. Refer to the Developer's Guide for more information.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib

See Also
CDnsClient

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CDnsClient::MatchHostName Method

BOOL MatchHostName(
 LPCTSTR lpszHostName,
 LPCTSTR lpszHostMask
 BOOL bResolve
);

The MatchHostName method matches a host name against one more strings that may contain
wildcards.

Parameters
lpszHostName

A pointer to a string which specifies the host name or IP address to match.

lpszHostMask

A pointer to a string which specifies one or more values to match against the host name. The
asterisk character can be used to match any number of characters in the host name, and the
question mark can be used to match any single character. Multiple values may be specified by
separating them with a semicolon.

bResolve

A boolean value which specifies if the host name or IP address should be resolved when
matching the host against the mask string. If this parameter is non-zero, two checks against the
host mask string will be performed; once for the host name specified and once for its IP
address. If this parameter is zero, then the match is made only against the host name string
provided.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The MatchHostName method provides a convenient way for an application to determine if a
given host name matches one or more mask strings which may contain wildcard characters. For
example, the host name could be "www.microsoft.com" and the host mask string could be
"*.microsoft.com". In this example, the method would return a non-zero value indicating the host
name matched the mask. However, if the mask string was "*.net" then the method would return
zero, indicating that there was no match. Multiple mask values can be combined by separating
them with a semicolon; for example, the mask "*.com;*.org" would match any host name in either
the .com or .org top-level domains.

If an internationalized domain name (IDN) is specified, it will be converted internally to an ASCII
string using Punycode encoding. The host mask will be matched against this encoded version of
the host name, not its Unicode version.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetAddress, GetHostAddress, GetHostName, GetLocalAddress

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CDnsClient::NormalizeHostName Method

INT NormalizeHostName(
 LPCTSTR lpszHostName,
 LPTSTR lpszNormalized,
 INT nMaxLength
);

INT NormalizeHostName(
 LPCTSTR lpszHostName,
 CString& strNormalized
);

The NormalizeHostName method returns the canonical form of a host name in the specified
buffer.

Parameters
lpszHostName

Pointer to the host name as a null-terminated string. This parameter cannot be a NULL pointer
or a zero length string.

lpszNormalized

Pointer to the string buffer that will contain the canonical form of the host name, including the
terminating null character. It is recommended that this buffer be at least 256 characters in size.
This parameter cannot be a NULL pointer. An alternate version of this method accepts a
reference to a CString object.

nMaxLength

The maximum number of characters that can be copied to the lpszNormalized string buffer.
This parameter cannot be zero, and must include the terminating null character.

Return Value
If the method succeeds, the return value is the number of characters copied into the string buffer.
If the method fails, the return value is DNS_ERROR. To get extended error information, call
GetLastError.

Remarks
The NormalizeHostName method will remove all leading and trailing whitespace characters from
the host name and fold all upper-case characters to lower-case. If an internationalized domain
name (IDN) containing Unicode characters is passed to this method, it will be converted to an
ASCII compatible format for domain names.

If the application is compiled using the Unicode character set, the host name will be converted
from UTF-16 to UTF-8 and then processed. If you are unsure if an internationalized domain name
will be specified as the host name, it is recommended that you use Unicode.

Although this method performs checks to ensure that the lpszHostName parameter is in the
correct format and does not contain any illegal characters or malformed encoding, it does not
validate the existence of the domain name. To check if the host name exists and has a valid IP
address, use the GetHostAddress method.

It is recommended that you use this method if your application needs to store the host name, and
if accepts a host name as user input. It is not necessary to call this method prior to calling the
other methods that accept a host name as a parameter. They already normalize the host name

and perform checks to ensure it is in the correct format.

If the lpszHostName parameter specifies a valid IPv4 or IPv6 address string instead of a host
name, this method will return a copy of that IP address in the buffer provided by the caller. This
allows the method to be used in cases where a user may input either a host name or IP address.
To determine if the IP address has a corresponding host name, use the GetHostName method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetHostAddress, GetHostName, HostNameToUnicode

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CDnsClient::RegisterServer Method

INT RegisterServer(
 INT nServer,
 LPCTSTR lpszHostAddress,
 INT nPort
);

The RegisterServer method registers a nameserver with the current client session. The
nameserver is used to resolve queries issued by the client, such as returning the IP address for a
given host name. At least one nameserver must be registered by the client before queries are
issued.

Parameters
nServer

The index into the client nameserver table. This index, starting at 0, is used to specify which slot
in the client's nameserver table will be used to store the nameserver information.

lpszHostAddress

A pointer to a string that specifies the IP address of the nameserver to be registered. Note that
hostnames cannot be specified.

nPort

The port number that the specified nameserver is accepting queries on. This value may be set
to zero, in which case it will use the default port value.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
DNS_ERROR. To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetServerAddress, GetServerPort, UnregisterServer

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CDnsClient::Reset Method

INT Reset();

The Reset method resets the current state of the client session. The timeout and retry counts are
set to their default values, the local domain name is cleared and all registered servers are removed
from the client nameserver table.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
DNS_ERROR. To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
RegisterServer, SetLocalDomain, SetRetryCount, SetTimeout, UnregisterServer

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CDnsClient::Resolve Method

BOOL Resolve(
 LPCTSTR lpszRecord,
 LPTSTR lpszResult,
 INT nMaxLength,
 BOOL bHostName
);

BOOL Resolve(
 LPCTSTR lpszRecord,
 LPINTERNET_ADDRESS lpAddress
);

BOOL Resolve(
 LPINTERNET_ADDRESS lpAddress,
 LPTSTR lpszHostName,
 INT nMaxLength
);

BOOL Resolve(
 LPCTSTR lpszRecord,
 CString& strResult,
 BOOL bHostName
);

BOOL Resolve(
 LPINTERNET_ADDRESS lpAddress,
 CString& strHostName
);

The Resolve method resolves the specified host name into an IP address, or an IP address into its
corresponding host name.

Parameters
lpszRecord

Pointer to a string which specifies the record to be resolved. If the bHostName argument is
non-zero, then the record is expected to be a host name; otherwise it is expected to be an IP
address string in dot notation.

lpszResult

Pointer to the buffer that will contain the result of the nameserver query. If the bHostName
argument is non-zero, then the string will contain the host's IP address in dot notation when the
method returns; otherwise, it will contain the host name for the IP address specified in the
lpszRecord argument.

nMaxLength

The maximum number of characters that can be copied into the string buffer.

bHostName

A boolean argument which determines how the record is resolved. If this value is non-zero,
then the lpszRecord argument should specify a host name and the lpszResult buffer will contain
the IP address for that host when the method returns. If this value is zero, then the lpszRecord
argument should specify an IP address and the lpszResult buffer will contain its host name when
the method returns.

lpAddress

A pointer to an INTERNET_ADDRESS structure which specifies the numeric form of an IPv4 or
IPv6 address in network byte order. This can be used with versions of the method that resolve
host names and addresses using the numeric form of the IP address instead of a string.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The Resolve method provides a convenient interface to resolve host names and IP addresses.
Note that this method first looks to see if there is an entry in the local host file for the specified
host name or IP address, and if one exists, it will return that record without querying the name
server.

Example
// Create an instance of the class object
CDnsClient dnsClient;

// Resolve the address of the www.microsoft.com server
CString strHostName = _T("www.microsoft.com");
INTERNET_ADDRESS ipHostAddress;

// If the host name is resolved, then perform a reverse
// lookup on that address to obtain the actual host name
// for that server
if (dnsClient.Resolve(strHostName, &ipHostAddress))
 dnsClient.Resolve(&ipHostAddress, strHostName);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetAddress, FormatAddress, GetHostAddress, GetHostFile, GetHostName, SetHostFile,
INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CDnsClient::SetHostFile Method

INT SetHostFile(
 LPCTSTR lpszFileName
);

The SetHostFile method specifies the name of an alternate file to use when resolving hostnames
and IP addresses. The host file is used as a database that maps an IP address to one or more
hostnames, and is used by the GetHostAddress and GetHostName methods. The file is a plain
text file, with each line in the file specifying a record, and each field separated by spaces or tabs.
The format of the file must be as follows:

ipaddress hostname [hostalias ...]

For example, one typical entry maps the name "localhost" to the local loopback IP address. This
would be entered as:

127.0.0.1 localhost

The hash character (#) may be used to specify a comment in the file, and all characters after it are
ignored up to the end of the line. Blank lines are ignored, as are any lines which do not follow the
required format.

Parameters
lpszFileName

Pointer to a string that specifies the name of the file. If the parameter is NULL, then the current
host file is cleared from the cache and only the default host file will be used to resolve
hostnames and addresses.

Return Value
If the method succeeds, the return value is the number of entries in the host file. A return value of
DNS_ERROR indicates failure. To get extended error information, call GetLastError.

Remarks
This method loads the file into memory allocated for the current thread. If the contents of the file
have changed after the method has been called, those changes will not be reflected when
resolving hostnames or addresses. To reload the host file from disk, call this method again with the
same file name. To remove the alternate host file from memory, specify a NULL pointer as the
parameter.

If a host file has been specified, it is processed before the default host file when resolving a
hostname into an IP address, or an IP address into a hostname. If the host name or address is not
found, or no host file has been specified, a nameserver lookup is performed.

To determine if an alternate host file has been specified, use the GetHostFile method. A return
value of zero indicates that no alternate host file has been cached for the current thread.

A system may have a default host file, which is used to resolve hostnames before performing a
nameserver lookup. To determine the name of this file, use the GetDefaultHostFile method. It is
not necessary to specify this default host file, since it is always used to resolve host names and
addresses.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)

Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetDefaultHostFile, GetHostAddress, GetHostFile, GetHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CDnsClient::SetLastError Method

VOID SetLastError(
 DWORD dwErrorCode
);

The SetLastError method sets the error code for the current thread. This method is typically used
to clear the last error by passing a value of zero as the parameter.

Parameters
dwErrorCode

Specifies the error code for the current thread. A value of zero clears the last error code.

Return Value
None.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. Most methods will
set the last error code value when they fail; a few methods set it when they succeed. Function
failure is typically indicated by a return value such as FALSE, NULL, INVALID_CLIENT or
DNS_ERROR. Those methods which call SetLastError when they succeed are noted on the
method reference page.

Applications can retrieve the value saved by this method by using the GetLastError method. The
use of GetLastError is optional; an application can call the method to determine the specific
reason for a method failure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib

See Also
GetErrorString, GetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CDnsClient::SetLocalDomain Method

INT SetLocalDomain(
 LPCTSTR lpszDomain
);

Parameters
lpszDomain

Pointer to the string which contains the local domain name. This is used as a default value when
a query does not explicitly specify a domain name.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
DNS_ERROR. To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetLocalDomain, GetRetryCount, GetTimeout, Reset, SetRetryCount, SetTimeout

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CDnsClient::SetResolverOptions Method

DWORD SetResolverOptions(
 DWORD dwOptions
);

The SetResolverOptions method changes the resolver options for the client session.

Parameters
hClient

Handle to the client session.

dwOptions

An unsigned integer that specifies one or more resolver options. This parameter is constructed
by using a bitwise operator with any of the following values:

Constant Description

DNS_OPTION_NONE No additional resolver options specified. This is the
default value, and it is recommended that most
applications do not specify additional options unless
the implications of doing so are understood.

DNS_OPTION_PROMOTE Promotes the server that successfully completed the
last query to the first server that will be used to
resolve subsequent queries. This option can improve
performance in some cases where one or more of
the registered servers are non-responsive. This
option takes precedence over the
DNS_OPTION_ROTATE option.

DNS_OPTION_ROTATE Enables a round-robin selection of nameservers
when performing queries. Normally each nameserver
is queried in the same order. This option rotates the
available nameservers so a different server is used
with each query.

DNS_OPTION_AUTHONLY Require the answer from the nameserver to be
authoritative, not from the server's cache. This option
is included for future expansion as most servers do
not support this feature and will ignore it.

DNS_OPTION_PRIMARY Queries are only accepted from the primary
nameserver. This option is included for future
expansion as most servers do not support this
feature and will ignore it.

DNS_OPTION_NORECURSE Disable the sending of recursive queries to the
nameserver. Specifying this option will disable the bit
in the DNS request header that specifies recursion is
desired.

DNS_OPTION_NOSEARCH Disable additional queries of higher domains in the
search list if the host name cannot be resolved. If this
option is specified, and the host name cannot be

resolved using the local domain name an error is
returned immediately. This option is ignored if no
local domain has been specified or if the
DNS_OPTION_NOSUFFIX option has been specified.

DNS_OPTION_NOSUFFIX Disable additional queries using the local domain
name if the host name is not a fully qualified domain
name and cannot be resolved. This option is ignored
if no local domain has been specified.

DNS_OPTION_NONAMECHECK Disable checking the host name for invalid
characters, such as the underscore and control
characters. By default, host names are checked to
ensure they're valid before submitting a query to the
nameserver.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The SetResolverOptions method changes the resolver options for the specified client session,
modifying how nameserver queries are processed. It is recommended that most applications do
not specify any resolver options and use the default behavior. Specifying these options without
understanding how they can affect standard queries can result in unexpected failures. In particular,
caution should be used when specifying the DNS_OPTION_NORECURSE and
DNS_OPTION_NOSEARCH options as they change the normal process of resolving a host name.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib

See Also
CDnsClient, GetResolverOptions

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CDnsClient::SetRetryCount Method

INT SetRetryCount(
 INT nRetries
);

The SetRetryCount method sets the number of attempts that the client will make attempting to
resolve a query. When used in conjunction with the SetTimeout method, it determines the total
amount of time the client will spend attempting to resolve a query.

Parameters
nRetries

The number of attempts the client will make, per nameserver, to resolve a query.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
DNS_ERROR. To get extended error information, call GetLastError.

Remarks
The retry count determines the amount of time the client will wait for a response from each query,
the effective amount of time the client will wait increases with each nameserver and the total
number of retries specified. For example, two nameservers registered with the client, with a default
of 4 retries per nameserver and a timeout value of 10 seconds, would cause the client to wait a
total of 80 seconds until it returns an error indicating that it was unable to resolve the query.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetRetryCount, GetTimeout, SetTimeout

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CDnsClient::SetTimeout Method

INT SetTimeout(
 INT nTimeout
);

The SetTimeout method sets the number of seconds that the client will wait for a response from
a nameserver. The timeout value is used each time a server in the client's nameserver table is
queried. When used in conjunction with the SetRetryCount method, it determines the total
amount of time the client will spend attempting to resolve a query.

Parameters
nTimeout

The number of seconds until the client times out waiting for a response from a nameserver.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
DNS_ERROR. To get extended error information, call GetLastError.

Remarks
The timeout value determines the amount of time the client will wait for a response from each
query, the effective amount of time the client will wait increases with each nameserver and the
total number of retries specified. For example, with two nameservers registered with the client,
with a default of 4 retries per nameserver and a timeout value of 10 seconds, would cause the
client to wait a total of 80 seconds until it returns an error indicating that it was unable to resolve
the query.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib

See Also
GetRetryCount, GetTimeout, SetRetryCount

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CDnsClient::ShowError Method

INT ShowError(
 LPCTSTR lpszAppTitle,
 UINT uType,
 DWORD dwErrorCode
);

The ShowError method displays a message box which describes the specified error.

Parameters
lpszAppTitle

A pointer to a string which specifies the title of the message box that is displayed. If this
argument is NULL or omitted, then the default title of "Error" will be displayed.

uType

An unsigned integer which specifies the type of message box that will be displayed. This is the
same value that is used by the MessageBox function in the Windows API. If a value of zero is
specified, then a message box with a single OK button will be displayed. Refer to that function
for a complete list of options.

dwErrorCode

Specifies the error code that will be used when displaying the message box. If this argument is
zero, then the last error that occurred in the current thread will be displayed.

Return Value
If the method is successful, the return value will be the return value from the MessageBox
function. If the method fails, it will return a value of zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetErrorString, GetLastError, SetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CDnsClient::UnregisterServer Method

INT UnregisterServer(
 INT nServer
);

The UnregisterServer method removes the specified nameserver information from the client.
Unregistering a server prevents the client from using that server to satisfy subsequent DNS
queries.

Parameters
nServer

The index into the client's nameserver table. This index is the same value that is passed to the
RegisterServer method when the nameserver is registered.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
DNS_ERROR. To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetServerAddress, GetServerPort, RegisterServer, Reset

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Domain Name Service Data Structures

HOSTENT
INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HOSTENT Structure

This structure is used by the GetHostByAddress and GetHostByName methods to return
information about a specified host. The application must never attempt to modify this structure or
to free any of its members. There is no Unicode version of this structure, string pointers will always
specify ANSI strings, even if the application is compiled to use Unicode.

Only one copy of this structure is allocated per thread, so the application should copy any
information it needs before issuing any other function calls. This is the same data structure used by
the Windows Sockets API.

typedef struct _HOSTENT
{
 char * h_name;
 char ** h_aliases;
 short h_addrtype;
 short h_length;
 char ** h_addr_list;
} HOSTENT, *LPHOSTENT;

Members
h_name

The fully qualified domain name (FQDN) that caused the nameserver server to return a reply.

h_aliases

A NULL-terminated array of alternate names.

h_addrtype

The type of address being returned.

h_length

The length, in bytes, of each address.

h_addr_list

A NULL-terminated list of addresses for the host. Addresses are returned in network byte order.
The macro h_addr is defined to be h_addr_list[0] for compatibility with older software.

Remarks
This structure is intended to be used with legacy application code which uses a HOSTENT
structure and should not be used with new applications. You cannot use this structure to obtain
information for a host which is assigned an IPv6 address. Applications should use the
GetHostAddress and GetHostName methods which support both IPv4 and IPv6 addresses.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include winsock2.h.

See Also
GetHostAddress, GetHostByAddress, GetHostByName, GetHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 INTERNET_ADDRESS Structure

This structure represents a numeric IPv4 or IPv6 address in network byte order.

typedef struct _INTERNET_ADDRESS
{
 INT ipFamily;
 BYTE ipNumber[16];
} INTERNET_ADDRESS, *LPINTERNET_ADDRESS;

Members
ipFamily

An integer which identifies the type of IP address. It will be one of the following values:

Constant Description

INET_ADDRESS_UNKNOWN The address has not been specified or the bytes in the
ipNumber array does not represent a valid address.
Functions which populate this structure will use this value
to indicate that the address cannot be determined.

INET_ADDRESS_IPV4 Specifies that the address is in IPv4 format. The first four
bytes of the ipNumber array are significant and contains
the IP address. The remaining bytes are not significant
and an application should not depend on them having
any particular value, including zero.

INET_ADDRESS_IPV6 Specifies that the address is in IPv6 format. All bytes in
the ipNumber array are significant. Note that it is
possible for an IPv6 address to actually represent an IPv4
address. This is indicated by the first 10 bytes of the
address being zero.

ipNumber

A byte array which contains the numeric form of the IP address. This array is large enough to
store both IPv4 (32 bit) and IPv6 (128 bit) addresses. The values are stored in network byte
order.

Remarks
The INTERNET_ADDRESS structure is used by some functions to represent an Internet address in
a binary format that is compatible with both IPv4 and IPv6 addresses. Applications that use this
structure should consider it to be opaque, and should not modify the contents of the structure
directly.

For compatibility with legacy applications that expect an IP address to be 32 bits and stored in an
unsigned integer, you can copy the first four bytes of the ipNumber array using the
CopyMemory function or equivalent. Note that if this is done, your application should always
check the ipFamily member first to make sure that it is actually an IPv4 address.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Domain Name Service Constants

Value Constant Description

0 DNS_RECORD_NONE No record type

1 DNS_RECORD_ADDRESS Host address

2 DNS_RECORD_NS Authoritative nameserver

5 DNS_RECORD_CNAME Canonical name (alias)

6 DNS_RECORD_SOA Start of Authority

11 DNS_RECORD_WKS Well known services

12 DNS_RECORD_PTR Domain name

13 DNS_RECORD_HINFO Host information

14 DNS_RECORD_MINFO Mailbox information

15 DNS_RECORD_MX Mail exchange host

16 DNS_RECORD_TXT Text strings

29 DNS_RECORD_LOC Location information

100 DNS_RECORD_UINFO User information

101 DNS_RECORD_UID User ID

102 DNS_RECORD_GID Group ID

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SocketTools Library Error Codes

Value Constant Description

0x80042711 ST_ERROR_NOT_HANDLE_OWNER Handle not owned by the current
thread

0x80042712 ST_ERROR_FILE_NOT_FOUND The specified file or directory does
not exist

0x80042713 ST_ERROR_FILE_NOT_CREATED The specified file could not be created

0x80042714 ST_ERROR_OPERATION_CANCELED The blocking operation has been
canceled

0x80042715 ST_ERROR_INVALID_FILE_TYPE The specified file is a block or
character device, not a regular file

0x80042716 ST_ERROR_INVALID_DEVICE The specified device or address does
not exist

0x80042717 ST_ERROR_TOO_MANY_PARAMETERS The maximum number of function
parameters has been exceeded

0x80042718 ST_ERROR_INVALID_FILE_NAME The specified file name contains
invalid characters or is too long

0x80042719 ST_ERROR_INVALID_FILE_HANDLE Invalid file handle passed to function

0x8004271A ST_ERROR_FILE_READ_FAILED Unable to read data from the
specified file

0x8004271B ST_ERROR_FILE_WRITE_FAILED Unable to write data to the specified
file

0x8004271C ST_ERROR_OUT_OF_MEMORY Out of memory

0x8004271D ST_ERROR_ACCESS_DENIED Access denied

0x8004271E ST_ERROR_INVALID_PARAMETER Invalid argument passed to function

0x8004271F ST_ERROR_CLIPBOARD_UNAVAILABLE The system clipboard is currently
unavailable

0x80042720 ST_ERROR_CLIPBOARD_EMPTY The system clipboard is empty or
does not contain any text data

0x80042721 ST_ERROR_FILE_EMPTY The specified file does not contain
any data

0x80042722 ST_ERROR_FILE_EXISTS The specified file already exists

0x80042723 ST_ERROR_END_OF_FILE End of file

0x80042724 ST_ERROR_DEVICE_NOT_FOUND The specified device could not be
found

0x80042725 ST_ERROR_DIRECTORY_NOT_FOUND The specified directory could not be
found

0x80042726 ST_ERROR_INVALID_BUFFER Invalid memory address passed to

function

0x80042728 ST_ERROR_NO_HANDLES No more handles available to this
process

0x80042733 ST_ERROR_OPERATION_WOULD_BLOCK The specified operation would block
the current thread

0x80042734 ST_ERROR_OPERATION_IN_PROGRESS A blocking operation is currently in
progress

0x80042735 ST_ERROR_ALREADY_IN_PROGRESS The specified operation is already in
progress

0x80042736 ST_ERROR_INVALID_HANDLE Invalid handle passed to function

0x80042737 ST_ERROR_INVALID_ADDRESS Invalid network address specified

0x80042738 ST_ERROR_INVALID_SIZE Datagram is too large to fit in
specified buffer

0x80042739 ST_ERROR_INVALID_PROTOCOL Invalid network protocol specified

0x8004273A ST_ERROR_PROTOCOL_NOT_AVAILABLE The specified network protocol is not
available

0x8004273B ST_ERROR_PROTOCOL_NOT_SUPPORTED The specified protocol is not
supported

0x8004273C ST_ERROR_SOCKET_NOT_SUPPORTED The specified socket type is not
supported

0x8004273D ST_ERROR_INVALID_OPTION The specified option is invalid

0x8004273E ST_ERROR_PROTOCOL_FAMILY Specified protocol family is not
supported

0x8004273F ST_ERROR_PROTOCOL_ADDRESS The specified address is invalid for this
protocol family

0x80042740 ST_ERROR_ADDRESS_IN_USE The specified address is in use by
another process

0x80042741 ST_ERROR_ADDRESS_UNAVAILABLE The specified address cannot be
assigned

0x80042742 ST_ERROR_NETWORK_UNAVAILABLE The networking subsystem is
unavailable

0x80042743 ST_ERROR_NETWORK_UNREACHABLE The specified network is unreachable

0x80042744 ST_ERROR_NETWORK_RESET Network dropped connection on
remote reset

0x80042745 ST_ERROR_CONNECTION_ABORTED Connection was aborted due to
timeout or other failure

0x80042746 ST_ERROR_CONNECTION_RESET Connection was reset by remote
network

0x80042747 ST_ERROR_OUT_OF_BUFFERS No buffer space is available

0x80042748 ST_ERROR_ALREADY_CONNECTED Connection already established with

remote host

0x80042749 ST_ERROR_NOT_CONNECTED No connection established with
remote host

0x8004274A ST_ERROR_CONNECTION_SHUTDOWN Unable to send or receive data after
connection shutdown

0x8004274C ST_ERROR_OPERATION_TIMEOUT The specified operation has timed out

0x8004274D ST_ERROR_CONNECTION_REFUSED The connection has been refused by
the remote host

0x80042750 ST_ERROR_HOST_UNAVAILABLE The specified host is unavailable

0x80042751 ST_ERROR_HOST_UNREACHABLE Remote host is unreachable

0x80042753 ST_ERROR_TOO_MANY_PROCESSES Too many processes are using the
networking subsystem

0x80042755 ST_ERROR_TOO_MANY_THREADS Too many threads have been created
by the current process

0x80042756 ST_ERROR_TOO_MANY_SESSIONS Too many client sessions have been
created by the current process

0x80042762 ST_ERROR_INTERNAL_FAILURE An unexpected internal error has
occurred

0x8004276B ST_ERROR_NETWORK_NOT_READY Network subsystem is not ready for
communication

0x8004276C ST_ERROR_INVALID_VERSION This version of the operating system is
not supported

0x8004276D ST_ERROR_NETWORK_NOT_INITIALIZED The networking subsystem has not
been initialized

0x80042775 ST_ERROR_REMOTE_SHUTDOWN The remote host has initiated a
graceful shutdown sequence

0x80042AF9 ST_ERROR_INVALID_HOSTNAME The specified hostname is invalid or
could not be resolved

0x80042AFA ST_ERROR_HOSTNAME_NOT_FOUND The specified hostname could not be
found

0x80042AFB ST_ERROR_HOSTNAME_REFUSED Unable to resolve hostname, request
refused

0x80042AFC ST_ERROR_HOSTNAME_NOT_RESOLVED Unable to resolve hostname, no
address for specified host

0x80042EE1 ST_ERROR_INVALID_LICENSE The license for this product is invalid

0x80042EE2 ST_ERROR_PRODUCT_NOT_LICENSED This product is not licensed to
perform this operation

0x80042EE3 ST_ERROR_NOT_IMPLEMENTED This function has not been
implemented on this platform

0x80042EE4 ST_ERROR_UNKNOWN_LOCALHOST Unable to determine local host name

0x80042EE5 ST_ERROR_INVALID_HOSTADDRESS Invalid host address specified

0x80042EE6 ST_ERROR_INVALID_SERVICE_PORT Invalid service port number specified

0x80042EE7 ST_ERROR_INVALID_SERVICE_NAME Invalid or unknown service name
specified

0x80042EE8 ST_ERROR_INVALID_EVENTID Invalid event identifier specified

0x80042EE9 ST_ERROR_OPERATION_NOT_BLOCKING No blocking operation in progress on
this socket

0x80042F45 ST_ERROR_SECURITY_NOT_INITIALIZED Unable to initialize security interface
for this process

0x80042F46 ST_ERROR_SECURITY_CONTEXT Unable to establish security context
for this session

0x80042F47 ST_ERROR_SECURITY_CREDENTIALS Unable to open client certificate store
or establish client credentials

0x80042F48 ST_ERROR_SECURITY_CERTIFICATE Unable to validate the certificate
chain for this session

0x80042F49 ST_ERROR_SECURITY_DECRYPTION Unable to decrypt data stream

0x80042F4A ST_ERROR_SECURITY_ENCRYPTION Unable to encrypt data stream

0x80042FA9 ST_ERROR_OPERATION_NOT_SUPPORTED The specified operation is not
supported

0x80042FAA ST_ERROR_INVALID_PROTOCOL_VERSION Invalid application protocol version
specified

0x80042FAB ST_ERROR_NO_SERVER_RESPONSE No data returned from server

0x80042FAC ST_ERROR_INVALID_SERVER_RESPONSE Invalid data returned from server

0x80042FAD ST_ERROR_UNEXPECTED_SERVER_RESPONSE Unexpected response code returned
from server

0x80042FAE ST_ERROR_SERVER_TRANSACTION_FAILED Server transaction failed

0x80042FAF ST_ERROR_SERVICE_UNAVAILABLE The service is currently unavailable

0x80042FB0 ST_ERROR_SERVICE_NOT_READY The service is not ready, try again
later

0x80042FB1 ST_ERROR_SERVER_RESYNC_FAILED Unable to resynchronize with server

0x80042FB2 ST_ERROR_INVALID_PROXY_TYPE Invalid proxy server type specified

0x80042FB3 ST_ERROR_PROXY_REQUIRED Resource must be accessed through
specified proxy

0x80042FB4 ST_ERROR_INVALID_PROXY_LOGIN Unable to login to proxy server using
specified credentials

0x80042FB5 ST_ERROR_PROXY_RESYNC_FAILED Unable to resynchronize with proxy
server

0x80042FB6 ST_ERROR_INVALID_COMMAND Invalid command specified

0x80042FB7 ST_ERROR_INVALID_COMMAND_PARAMETER Invalid command parameter specified

0x80042FB8 ST_ERROR_INVALID_COMMAND_SEQUENCE Invalid command sequence specified

0x80042FB9 ST_ERROR_COMMAND_NOT_IMPLEMENTED Specified command not implemented
on this server

0x80042FBA ST_ERROR_COMMAND_NOT_AUTHORIZED Specified command not authorized
for the current user

0x80042FBB ST_ERROR_COMMAND_ABORTED Specified command was aborted by
the remote host

0x80042FBC ST_ERROR_OPTION_NOT_SUPPORTED The specified option is not supported
on this server

0x80042FBD ST_ERROR_REQUEST_NOT_COMPLETED The current client request has not
been completed

0x80042FBE ST_ERROR_INVALID_USERNAME The specified username is invalid

0x80042FBF ST_ERROR_INVALID_PASSWORD The specified password is invalid

0x80042FC0 ST_ERROR_INVALID_ACCOUNT The specified account name is invalid

0x80042FC1 ST_ERROR_ACCOUNT_REQUIRED Account name has not been specified

0x80042FC2 ST_ERROR_INVALID_AUTHENTICATION_TYPE Invalid authentication protocol
specified

0x80042FC3 ST_ERROR_AUTHENTICATION_REQUIRED User authentication is required

0x80042FC4 ST_ERROR_PROXY_AUTHENTICATION_REQUIRED Proxy authentication required

0x80042FC5 ST_ERROR_ALREADY_AUTHENTICATED User has already been authenticated

0x80042FC6 ST_ERROR_AUTHENTICATION_FAILED Unable to authenticate the specified
user

0x80042FDB ST_ERROR_NETWORK_ADAPTER Unable to determine network adapter
configuration

0x80042FDC ST_ERROR_INVALID_RECORD_TYPE Invalid record type specified

0x80042FDD ST_ERROR_INVALID_RECORD_NAME Invalid record name specified

0x80042FDE ST_ERROR_INVALID_RECORD_DATA Invalid record data specified

0x80042FDF ST_ERROR_CONNECTION_OPEN Data connection already established

0x80042FE0 ST_ERROR_CONNECTION_CLOSED Server closed data connection

0x80042FE1 ST_ERROR_CONNECTION_PASSIVE Data connection is passive

0x80042FE2 ST_ERROR_CONNECTION_FAILED Unable to open data connection to
server

0x80042FE3 ST_ERROR_INVALID_SECURITY_LEVEL Data connection cannot be opened
with this security setting

0x80042FE4 ST_ERROR_CACHED_TLS_REQUIRED Data connection requires cached TLS
session

0x80042FE5 ST_ERROR_DATA_READ_ONLY Data connection is read-only

0x80042FE6 ST_ERROR_DATA_WRITE_ONLY Data connection is write-only

0x80042FE7 ST_ERROR_END_OF_DATA End of data

0x80042FE8 ST_ERROR_REMOTE_FILE_UNAVAILABLE Remote file is unavailable

0x80042FE9 ST_ERROR_INSUFFICIENT_STORAGE Insufficient storage on server

0x80042FEA ST_ERROR_STORAGE_ALLOCATION File exceeded storage allocation on
server

0x80042FEB ST_ERROR_DIRECTORY_EXISTS The specified directory already exists

0x80042FEC ST_ERROR_DIRECTORY_EMPTY No files returned by the server for the
specified directory

0x80042FED ST_ERROR_END_OF_DIRECTORY End of directory listing

0x80042FEE ST_ERROR_UNKNOWN_DIRECTORY_FORMAT Unknown directory format

0x80042FEF ST_ERROR_INVALID_RESOURCE Invalid resource name specified

0x80042FF0 ST_ERROR_RESOURCE_REDIRECTED The specified resource has been
redirected

0x80042FF1 ST_ERROR_RESOURCE_RESTRICTED Access to this resource has been
restricted

0x80042FF2 ST_ERROR_RESOURCE_NOT_MODIFIED The specified resource has not been
modified

0x80042FF3 ST_ERROR_RESOURCE_NOT_FOUND The specified resource cannot be
found

0x80042FF4 ST_ERROR_RESOURCE_CONFLICT Request could not be completed due
to the current state of the resource

0x80042FF5 ST_ERROR_RESOURCE_REMOVED The specified resource has been
permanently removed from this
server

0x80042FF6 ST_ERROR_CONTENT_LENGTH_REQUIRED Request must include the content
length

0x80042FF7 ST_ERROR_REQUEST_PRECONDITION Request could not be completed due
to server precondition

0x80042FF8 ST_ERROR_UNSUPPORTED_MEDIA_TYPE Request specified an unsupported
media type

0x80042FF9 ST_ERROR_INVALID_CONTENT_RANGE Content range specified for this
resource is invalid

0x80042FFA ST_ERROR_INVALID_MESSAGE_PART Message is not multipart or an invalid
message part was specified

0x80042FFB ST_ERROR_INVALID_MESSAGE_HEADER The specified message header is
invalid or has not been defined

0x80042FFC ST_ERROR_INVALID_MESSAGE_BOUNDARY The multipart message boundary has
not been defined

0x80042FFD ST_ERROR_NO_FILE_ATTACHMENT The current message part does not
contain a file attachment

0x80042FFE ST_ERROR_UNKNOWN_FILE_TYPE The specified file type could not be
determined

0x80042FFF ST_ERROR_DATA_NOT_ENCODED The specified data block could not be
encoded

0x80043000 ST_ERROR_DATA_NOT_DECODED The specified data block could not be
decoded

0x80043001 ST_ERROR_FILE_NOT_ENCODED The specified file could not be
encoded

0x80043002 ST_ERROR_FILE_NOT_DECODED The specified file could not be
decoded

0x80043003 ST_ERROR_NO_MESSAGE_TEXT No message text

0x80043004 ST_ERROR_INVALID_CHARACTER_SET Invalid character set specified

0x80043005 ST_ERROR_INVALID_ENCODING_TYPE Invalid encoding type specified

0x80043006 ST_ERROR_INVALID_MESSAGE_NUMBER Invalid message number specified

0x80043007 ST_ERROR_NO_RETURN_ADDRESS No valid return address specified

0x80043008 ST_ERROR_NO_VALID_RECIPIENTS No valid recipients specified

0x80043009 ST_ERROR_INVALID_RECIPIENT The specified recipient address is
invalid

0x8004300A ST_ERROR_RELAY_NOT_AUTHORIZED The specified domain is invalid or
server will not relay messages

0x8004300B ST_ERROR_MAILBOX_UNAVAILABLE Specified mailbox is currently
unavailable

0x8004300C ST_ERROR_MAILBOX_READONLY The selected mailbox cannot be
modified

0x8004300D ST_ERROR_MAILBOX_NOT_SELECTED No mailbox has been selected

0x8004300E ST_ERROR_INVALID_MAILBOX Specified mailbox is invalid

0x8004300F ST_ERROR_INVALID_DOMAIN The specified domain name is invalid
or not recognized

0x80043010 ST_ERROR_INVALID_SENDER The specified sender address is invalid
or not recognized

0x80043011 ST_ERROR_MESSAGE_NOT_DELIVERED Message not delivered to any of the
specified recipients

0x80043012 ST_ERROR_END_OF_MESSAGE_DATA No more message data available to
be read

0x80043013 ST_ERROR_INVALID_MESSAGE_SIZE The specified message size is invalid

0x80043014 ST_ERROR_MESSAGE_NOT_CREATED The message could not be created in
the specified mailbox

0x80043015 ST_ERROR_NO_MORE_MAILBOXES No more mailboxes exist on this
server

0x80043016 ST_ERROR_INVALID_EMULATION_TYPE The specified terminal emulation type
is invalid

0x80043017 ST_ERROR_INVALID_FONT_HANDLE The specified font handle is invalid

0x80043018 ST_ERROR_INVALID_FONT_NAME The specified font name is invalid or
unavailable

0x80043019 ST_ERROR_INVALID_PACKET_SIZE The specified packet size is invalid

0x8004301A ST_ERROR_INVALID_PACKET_DATA The specified packet data is invalid

0x8004301B ST_ERROR_INVALID_PACKET_ID The unique packet identifier is invalid

0x8004301C ST_ERROR_PACKET_TTL_EXPIRED The specified packet time-to-live
period has expired

0x8004301D ST_ERROR_INVALID_NEWSGROUP Invalid newsgroup specified

0x8004301E ST_ERROR_NO_NEWSGROUP_SELECTED No newsgroup selected

0x8004301F ST_ERROR_EMPTY_NEWSGROUP No articles in specified newsgroup

0x80043020 ST_ERROR_INVALID_ARTICLE Invalid article number specified

0x80043021 ST_ERROR_NO_ARTICLE_SELECTED No article selected in the current
newsgroup

0x80043022 ST_ERROR_FIRST_ARTICLE First article in current newsgroup

0x80043023 ST_ERROR_LAST_ARTICLE Last article in current newsgroup

0x80043024 ST_ERROR_ARTICLE_EXISTS Unable to transfer article, article
already exists

0x80043025 ST_ERROR_ARTICLE_REJECTED Unable to transfer article, article
rejected

0x80043026 ST_ERROR_ARTICLE_TRANSFER_FAILED Article transfer failed

0x80043027 ST_ERROR_ARTICLE_POSTING_DENIED Posting is not permitted on this server

0x80043028 ST_ERROR_ARTICLE_POSTING_FAILED Posting is not permitted on this server

0x80043029 ST_ERROR_INVALID_DATE_FORMAT The specified date format is not
recognized

0x8004302A ST_ERROR_FEATURE_NOT_SUPPORTED The specified feature is not supported
on this server

0x8004302B ST_ERROR_INVALID_FORM_HANDLE The specified form handle is invalid or
a form has not been created

0x8004302C ST_ERROR_INVALID_FORM_ACTION The specified form action is invalid or
has not been specified

0x8004302D ST_ERROR_INVALID_FORM_METHOD The specified form method is invalid
or not supported

0x8004302E ST_ERROR_INVALID_FORM_TYPE The specified form type is invalid or
not supported

0x8004302F ST_ERROR_INVALID_FORM_FIELD The specified form field name is
invalid or does not exist

0x80043030 ST_ERROR_EMPTY_FORM The specified form does not contain
any field values

0x80043031 ST_ERROR_MAXIMUM_CONNECTIONS The maximum number of client
connections exceeded

0x80043032 ST_ERROR_THREAD_CREATION_FAILED Unable to create a new thread for the
current process

0x80043033 ST_ERROR_INVALID_THREAD_HANDLE The specified thread handle is no
longer valid

0x80043034 ST_ERROR_THREAD_TERMINATED The specified thread has been
terminated

0x80043035 ST_ERROR_THREAD_DEADLOCK The operation would result in the
current thread becoming deadlocked

0x80043036 ST_ERROR_INVALID_CLIENT_MONIKER The specified moniker is not
associated with any client session

0x80043037 ST_ERROR_CLIENT_MONIKER_EXISTS The specified moniker has been
assigned to another client session

0x80043038 ST_ERROR_SERVER_INACTIVE The specified server is not listening
for client connections

0x80043039 ST_ERROR_SERVER_SUSPENDED The specified server is suspended and
not accepting client connections

0x8004303A ST_ERROR_NO_MESSAGE_STORE No message store has been specified

0x8004303B ST_ERROR_MESSAGE_STORE_CHANGED The message store has changed since
it was last accessed

0x8004303C ST_ERROR_MESSAGE_NOT_FOUND No message was found that matches
the specified criteria

0x8004303D ST_ERROR_MESSAGE_DELETED The specified message has been
deleted

0x8004303E ST_ERROR_FILE_CHECKSUM_MISMATCH The local and remote file checksums
do not match

0x8004303F ST_ERROR_FILE_SIZE_MISMATCH The local and remote file sizes do not
match

0x80043040 ST_ERROR_INVALID_FEED_URL The news feed URL is invalid or
specifies an unsupported protocol

0x80043041 ST_ERROR_INVALID_FEED_FORMAT The internal format of the news feed
is invalid

0x80043042 ST_ERROR_INVALID_FEED_VERSION This version of the news feed is not
supported

0x80043043 ST_ERROR_CHANNEL_EMPTY There are no valid items found in this
news feed

0x80043044 ST_ERROR_INVALID_ITEM_NUMBER The specified channel item identifier is
invalid

0x80043045 ST_ERROR_ITEM_NOT_FOUND The specified channel item could not
be found

0x80043046 ST_ERROR_ITEM_EMPTY The specified channel item does not
contain any data

0x80043047 ST_ERROR_INVALID_ITEM_PROPERTY The specified item property name is
invalid

0x80043048 ST_ERROR_ITEM_PROPERTY_NOT_FOUND The specified item property has not
been defined

0x80043049 ST_ERROR_INVALID_CHANNEL_TITLE The channel title is invalid or has not
been defined

0x8004304A ST_ERROR_INVALID_CHANNEL_LINK The channel hyperlink is invalid or has
not been defined

0x8004304B ST_ERROR_INVALID_CHANNEL_DESCRIPTION The channel description is invalid or
has not been defined

0x8004304C ST_ERROR_INVALID_ITEM_TEXT The description for an item is invalid
or has not been defined

0x8004304D ST_ERROR_INVALID_ITEM_LINK The hyperlink for an item is invalid or
has not been defined

0x8004304E ST_ERROR_INVALID_SERVICE_TYPE The specified service type is invalid

0x8004304F ST_ERROR_SERVICE_SUSPENDED Access to the specified service has
been suspended

0x80043050 ST_ERROR_SERVICE_RESTRICTED Access to the specified service has
been restricted

0x80043051 ST_ERROR_INVALID_PROVIDER_NAME The specified provider name is invalid
or unknown

0x80043052 ST_ERROR_INVALID_PHONE_NUMBER The specified phone number is invalid
or not supported in this region

0x80043053 ST_ERROR_GATEWAY_NOT_FOUND A message gateway cannot be found
for the specified provider

0x80043054 ST_ERROR_MESSAGE_TOO_LONG The message exceeds the maximum
number of characters permitted

0x80043055 ST_ERROR_INVALID_PROVIDER_DATA The request returned invalid or
incomplete service provider data

0x80043056 ST_ERROR_INVALID_GATEWAY_DATA The request returned invalid or
incomplete message gateway data

0x80043057 ST_ERROR_MULTIPLE_PROVIDERS The request has returned multiple
service providers

0x80043058 ST_ERROR_PROVIDER_NOT_FOUND The specified service provider could
not be found

0x80043059 ST_ERROR_INVALID_MESSAGE_SERVICE The specified message is not
supported with this service type

0x8004305A ST_ERROR_INVALID_MESSAGE_FORMAT The specified message format is
invalid

0x8004305B ST_ERROR_INVALID_CONFIGURATION The specified configuration options
are invalid

0x8004305C ST_ERROR_SERVER_ACTIVE The requested action is not permitted
while the server is active

0x8004305D ST_ERROR_SERVER_PORT_BOUND Unable to obtain exclusive use of the
specified local port

0x8004305E ST_ERROR_INVALID_CLIENT_SESSION The specified client identifier is invalid
for this session

0x8004305F ST_ERROR_CLIENT_NOT_IDENTIFIED The specified client has not provided
user credentials

0x80043060 ST_ERROR_INVALID_CLIENT_STATE The requested action cannot be
performed at this time

0x80043061 ST_ERROR_INVALID_RESULT_CODE The specified result code is not valid
for this protocol

0x80043062 ST_ERROR_COMMAND_REQUIRED The specified command is required
and cannot be disabled

0x80043063 ST_ERROR_COMMAND_DISABLED The specified command has been
disabled

0x80043064 ST_ERROR_COMMAND_SEQUENCE The command cannot be processed
at this time

0x80043065 ST_ERROR_COMMAND_COMPLETED The previous command has
completed

0x80043066 ST_ERROR_INVALID_PROGRAM_NAME The specified program name is invalid
or unrecognized

0x80043067 ST_ERROR_INVALID_REQUEST_HEADER The request header contains one or
more invalid values

0x80043068 ST_ERROR_INVALID_VIRTUAL_HOST The specified virtual host name is
invalid

0x80043069 ST_ERROR_VIRTUAL_HOST_NOT_FOUND The specified virtual host does not
exist

0x8004306A ST_ERROR_TOO_MANY_VIRTUAL_HOSTS Too many virtual hosts created for
this server

0x8004306B ST_ERROR_INVALID_VIRTUAL_PATH The specified virtual path name is
invalid

0x8004306C ST_ERROR_VIRTUAL_PATH_NOT_FOUND The specified virtual path does not
exist

0x8004306D ST_ERROR_TOO_MANY_VIRTUAL_PATHS Too many virtual paths created for
this server

0x8004306E ST_ERROR_INVALID_TASK The asynchronous task identifier is

invalid

0x8004306F ST_ERROR_TASK_ACTIVE The asynchronous task has not
finished

0x80043070 ST_ERROR_TASK_QUEUED The asynchronous task has been
queued

0x80043071 ST_ERROR_TASK_SUSPENDED The asynchronous task has been
suspended

0x80043072 ST_ERROR_TASK_FINISHED The asynchronous task has finished

0x80043073 ST_ERROR_INVALID_ACCOUNT_UUID The account unique identifier is
invalid

0x80043074 ST_ERROR_INVALID_ACCOUNT_ID The application account identifier is
invalid

0x80043075 ST_ERROR_INVALID_PRODUCT_ID The product identifier identifier is
invalid

0x80043076 ST_ERROR_INVALID_SERIAL_NUMBER The product serial number is invalid

0x80043077 ST_ERROR_INVALID_APPID The application identifier is invalid

0x80043078 ST_ERROR_INVALID_APIKEY The application key is invalid

0x80043079 ST_ERROR_ACCOUNT_EXISTS The application account identifier
already exists

0x8004307A ST_ERROR_ACCOUNT_NOT_CREATED The application account identifier was
not created

0x8004307B ST_ERROR_ACCOUNT_NOT_FOUND The application account identifier was
not found

0x8004307C ST_ERROR_ACCOUNT_NOT_EXPIRED Access to this account has not expired

0x8004307D ST_ERROR_ACCOUNT_NOT_UPDATED The application account could not be
updated

0x8004307E ST_ERROR_ACCOUNT_EXPIRED Access to this account has expired

0x8004307F ST_ERROR_ACCOUNT_REVOKED Access to this account has been
revoked

0x80043080 ST_ERROR_APIKEY_NOT_CREATED The application key could not be
created

0x80043081 ST_ERROR_APIKEY_NOT_FOUND The application key could not be
found

0x80043082 ST_ERROR_APIKEY_NOT_EXPIRED The application key has not expired

0x80043083 ST_ERROR_APIKEY_NOT_UNIQUE The application key identifier is not
unique

0x80043084 ST_ERROR_APIKEY_NOT_UPDATED They application key could not be
updated

0x80043085 ST_ERROR_APIKEY_NOT_DELETED The application key could not be
deleted

0x80043086 ST_ERROR_APIKEY_EXISTS The application key already exists

0x80043087 ST_ERROR_APIKEY_EXPIRED The application key has expired and
must be refreshed

0x80043088 ST_ERROR_APIKEY_REVOKED The application key has been revoked

0x80043089 ST_ERROR_APIKEY_APPID The application was not found or was
not specified

0x8004308A ST_ERROR_INVALID_TOKEN The access token is invalid or was not
specified

0x8004308B ST_ERROR_TOKEN_NOT_CREATED The access token could not be
created

0x8004308C ST_ERROR_TOKEN_NOT_FOUND The access token could not be found

0x8004308D ST_ERROR_TOKEN_NOT_EXPIRED The access token has not expired

0x8004308E ST_ERROR_TOKEN_NOT_UPDATED The access token was not updated

0x8004308F ST_ERROR_TOKEN_NOT_DELETED The access token could not be
deleted

0x80043090 ST_ERROR_TOKEN_EXPIRED The access token has expired and
must be refreshed

0x80043091 ST_ERROR_TOKEN_REVOKED The access token has been revoked

0x80043092 ST_ERROR_NO_APIKEYS_FOUND No application keys found for this
account

0x80043093 ST_ERROR_NO_TOKENS_FOUND No access tokens found for this
application key

0x80043094 ST_ERROR_NO_TOKENS_REVOKED No access tokens have been revoked

0x80043095 ST_ERROR_INVALID_STORAGE_OBJECT Invalid storage object identifier

0x80043096 ST_ERROR_STORAGE_OBJECT_READONLY The storage object is read-only

0x80043097 ST_ERROR_STORAGE_OBJECT_EXPIRED Access to the storage object has
expired

0x80043098 ST_ERROR_STORAGE_OBJECT_SIZE The storage object size exceeds
storage limits

0x80043099 ST_ERROR_STORAGE_OBJECT_DIGEST The storage object digest is invalid or
cannot be computed

0x8004309A ST_ERROR_STORAGE_OBJECT_EXISTS A storage object with this label
already exists

0x8004309B ST_ERROR_STORAGE_OBJECT_MODIFIED A storage object with this label has
been modified

0x8004309C ST_ERROR_STORAGE_OBJECT_NOT_OWNER The current user is not the storage
object owner

0x8004309D ST_ERROR_STORAGE_OBJECT_NOT_FOUND The specified storage object does not
exist

0x8004309E ST_ERROR_STORAGE_OBJECT_NOT_CREATED The storage object was not created

0x8004309F ST_ERROR_STORAGE_OBJECT_NOT_MODIFIED The storage object was not modified

0x800430A0 ST_ERROR_STORAGE_OBJECT_NOT_RENAMED The storage object was not renamed

0x800430A1 ST_ERROR_STORAGE_FOLDER_EMPTY The storage folder does not contain
any objects

0x800430A2 ST_ERROR_STORAGE_ACCOUNT_QUOTA The storage account has exceeded its
quota

0x800430A3 ST_ERROR_STORAGE_ACCOUNT_LIMIT The storage account has exceeded its
object limit

0x800430A4 ST_ERROR_INVALID_STORAGE_TYPE The specified storage type is invalid

0x800430A5 ST_ERROR_INVALID_STORAGE_PROVIDER The specified storage provider is not
available

0x800430A6 ST_ERROR_INVALID_STORAGE_REGION The specified storage region is not
available

0x800430A7 ST_ERROR_INVALID_STORAGE_FOLDER The storage folder does not exist or
cannot be accessed

0x800430A8 ST_ERROR_INVALID_STORAGE_LABEL The storage object label is invalid or
undefined

0x800430A9 ST_ERROR_INVALID_QUEUE_HANDLE The specified queue handle is invalid
or the queue has been deleted

0x800430AA ST_ERROR_INVALID_QUEUE_FILE The specified file identifier is not valid
for this queue

0x800430AB ST_ERROR_QUEUE_RUNNING The operation cannot be performed
while the queue is running

0x800430AC ST_ERROR_QUEUE_STOPPED The operation cannot be performed
when the queue has stopped

0x800430AD ST_ERROR_QUEUE_EMPTY There are no files in the specified
queue

0x800430AE ST_ERROR_QUEUE_PAUSED The operation cannot be performed
while the queue is paused

0x800430AF ST_ERROR_QUEUE_LOCKED The operation cannot be performed
while the queue is locked

0x800430B0 ST_ERROR_FILE_NOT_QUEUED The specified file cannot be found in
the queue

0x800430B1 ST_ERROR_END_OF_QUEUE There are no more files in the
specified queue

0x800430B2 ST_ERROR_TOO_MANY_FILES The maximum number of files have
been queued for transfer

0x800430B3 ST_ERROR_NO_QUEUED_TRANSFER No queued file transfer is currently in
progress

0x800430B4 ST_ERROR_INVALID_X509_CERTIFICATE The specified X.509 format certificate
is invalid

0x800430B5 ST_ERROR_INVALID_PKCS12_CERTIFICIATE The specified PKCS 12 format
certificate is invalid

0x800430B6 ST_ERROR_INVALID_CIPHER_SUITE The specified cipher suite is invalid or
unavailable

0x800430B7 ST_ERROR_DEPRECATED_CIPHER_SUITE The specified cipher suite is insecure
and has been deprecated

0x800430B8 ST_ERROR_INVALID_CERTIFICATE_CHAIN The certificate chain could not be
validated

0x800430B9 ST_ERROR_INVALID_PRIVATE_KEY The private key for the certificate is
invalid

0x800430BA ST_ERROR_INVALID_API_SESSION The application session identifier is
invalid

0x800430BB ST_ERROR_EXPIRED_API_SESSION The application session identifier has
expired

0x800430BC ST_ERROR_INVALID_API_TOKEN The application token for this session
is invalid

0x800430BD ST_ERROR_EXPIRED_API_TOKEN The application token for this session
has expired

0x800430BE ST_ERROR_INVALID_API_AUTHID The authorization token for this
session is invalid

0x800430BF ST_ERROR_INVALID_API_ENDPOINT The endpoint for the specified
request is invalid

0x800430C0 ST_ERROR_INVALID_API_PAYLOAD The data submitted with the specified
request is invalid

0x800430C1 ST_ERROR_UNKNOWN_SESSION_OWNER The current session owner is unknown
or no longer valid

0x800430C2 ST_ERROR_REVOKED_SESSION_AUTH The authorization token for this
session has been revoked

0x800430C3 ST_ERROR_INVALID_URL_SCHEME The scheme for the specified URL is
invalid or unsupported

0x800430C4 ST_ERROR_INVALID_URL_HOST The host name for the specified URL
is invalid

0x800430C5 ST_ERROR_INVALID_URL_PORT The port number for the specified
URL is invalid

0x800430C6 ST_ERROR_INVALID_URL_PATH The resource path for the specified
URL is invalid

0x800430C7 ST_ERROR_INVALID_CONTENT_TYPE The content type is invalid or not
supported

0x800430C8 ST_ERROR_UNKNOWN_CONTENT_TYPE The content type cannot be

determined

0x800430C9 ST_ERROR_INVALID_CHARSET The specified character set is invalid
or not supported

0x800430CA ST_ERROR_INVALID_CODEPAGE The specified ANSI code page is
invalid or not supported

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

File Transfer Protocol Class Library

Transfer files between a local and server and perform common file management methods on the
server.

Reference

Class Methods
Data Structures
Error Codes

Library Information

Class Name CFtpClient

File Name CSFTPV11.DLL

Version 11.0.2180.1635

LibID 22D6A6CD-4877-4CB9-B223-7149A9040534

Import Library CSFTPV11.LIB

Dependencies None

Standards RFC 959, RFC 1579, RFC 2228

Overview
The File Transfer Protocol (FTP) library provides a comprehensive API which supports both high
level operations, such as uploading or downloading files, as well as a collection of lower-level file
I/O functions. In addition to file transfers, an application can create, rename and delete files and
directories, search for files using wildcards and perform other common file management functions.

Files can be stored on the local file system or in memory, depending on the needs of your
application and multiple file transfers be performed using a single function call. The library can
also be used to manage files on the server and supports many of the common protocol
extensions that can be used to access the remote file system. It understands a number of different
directory listing formats, including those typically used with UNIX and Linux based systems,
Windows server platforms, NetWare servers and VMS systems.

This library supports active and passive mode file transfers, firewall compatibility options, proxy
servers and secure file transfers using the standard TLS 1.2 and SFTP protocols. Secure file
transfers support implicit and explicit TLS sessions, client certificates and up to 256-bit AES
encryption.

Requirements
The SocketTools Library Edition libraries are compatible with any programming language which
supports calling functions exported from a standard dynamic link library (DLL). If you are using
Visual C++ 6.0 it is required that you have Service Pack 6 (SP6) installed. You should install all
updates for your development tools and have the current Windows SDK installed. The minimum
recommended version of Visual Studio is Visual Studio 2010.

This class is supported on Windows 7, Windows Server 2008 R2 and later versions of the desktop
and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1) installed as
a minimum requirement. It is recommended that you install the current service pack and all critical

updates available for your version of the operating system.

This product includes both 32-bit and 64-bit libraries. Native 64-bit CPU support requires the 64-
bit version of Windows 7 or later versions of the Windows operating system.

Distribution
When you distribute your application that uses this library, it is recommended that you install the
file in the same folder as your application executable. If you install the library into a shared location
on the system, it is important that you distribute the correct version for the target platform and it
should be registered as a shared DLL. This is a standard Windows dynamic link library, not an
ActiveX component, and does not require COM registration.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 File Transfer Protocol Class Methods

Class Description

CFtpClient Constructor which initializes the current instance of the class

~CFtpClient Destructor which releases resources allocated by the class

Method Description

Allocate Allocate the specified number of bytes on the server

AttachHandle Attach the specified client handle to this instance of the class

AttachThread Attach the specified client handle to another thread

Cancel Cancel the current blocking operation

ChangeDirectory Change the current working directory on the server

ChangeDirectoryUp Change the current working directory on the server

CloseDirectory Close the open directory on the server

CloseFile Close the current file on the server

Command Send a command to the server

Connect Establish a client connection with a server

ConnectUrl Establish a client connection using the specified URL

CreateDirectory Create the specified directory on the server

CreateSecurityCredentials Create a new security credentials structure

DeleteFile Delete a file from the server

DeleteSecurityCredentials Delete a previously created security credentials structure

DetachHandle Detach the handle for the current instance of this class

DisableEvents Disable event notification

DisableTrace Disable logging of network function calls to the trace log

Disconnect Disconnect the client session from the server

DownloadFile Download a file from the server to the local system

EnableEvents Enable event notification

EnableFeature Enable the specified feature in the client

EnableTrace Enable logging of network function calls to a file

FreezeEvents Suspend and resume event handling by the client

FtpEventProc Callback function that processes events generated by the client

GetActivePorts Return the range of local port numbers used for active transfers

GetAutoFileType Return the file transfer type based on the file extension or content

GetBufferSize Return the size of an internal buffer used during data transfers

GetChannelMode Return the mode for the specified communication channel

file:///C|/Projects/cstools11/pdf/ftp/class/ftpeventproc.html

GetClientQuota Return quota information for the current client session

GetData Copy the contents of a remote file to a local buffer

GetDirectory Get the current working directory on the server

GetDirectoryFormat Get the format which is used by the server to list files

GetErrorString Return a description for the specified error code

GetFeatures Return the features available to the client

GetFile Copy a file from the server to the local system

GetFileList Return an unparsed list of files in a string buffer

GetFileNameEncoding Return the character encoding used when sending a file name to the server

GetFilePermissions Return the access permissions for the specified file

GetFileSize Return the size of a file on the server

GetFileStatus Return file status information from the server

GetFileTime Return the modification time for the specified file on the server

GetFileType Return the default file type for the current session

GetFirstFile Return the first file from the file list returned by the server

GetHandle Return the client handle used by this instance of the class

GetLastError Return the last error code

GetMultipleFiles Copy multiple files from the server to the local system

GetNextFile Return the next file from the file list returned by the server

GetPriority Return the current priority for file transfers

GetProxyType Return the proxy type selected by the client

GetResultCode Return the result code from the previous command

GetResultString Return the result string from the previous command

GetSecurityInformation Return security information about the current client connection

GetServerInformation Get system information about the server

GetServerStatus Return system status of server

GetServerTimeZone Return the timezone offset in seconds for the current server

GetServerType Return the type of operating system the server is running on

GetStatus Return the current client status

GetText Download the contents of a text file to a string buffer

GetTimeout Return the number of seconds until an operation times out

GetTransferStatus Return file transfer statistics

IsBlocking Determine if the current operation is blocked

IsConnected Determine if the client is connected to the server

IsInitialized Determine if the class has been successfully initialized

IsReadable Determine if the client can read data from the data channel

IsWritable Determine if the client can write data to the data channel

Login Login to the server

Logout Logout from the server

MountStructure Mount a structure (filesystem) on the server

OpenDirectory Open the specified directory for reading

OpenFile Open the specified file for reading or writing

ProxyConnect Establish a connection with a proxy server

PutData Create a file on the server using the contents of a local buffer

PutFile Copy a file from the local system to the server

PutMultipleFiles Copy multiple files from the local system to the server

PutText Create a text file on the server from the contents of a string buffer

Read Read data from the server

RegisterEvent Register an event handler for the specified event

RegisterFileType Associate a file name extension with a specific file type

RemoveDirectory Remove a directory from the server

RenameFile Rename a file on the server

Reset Reset the client connection

SetActivePorts Set the range of local port numbers used for active transfers

SetBufferSize Set the size of an internal buffer used during data transfers

SetChannelMode Change the security mode for the specified channel

SetDirectoryFormat Set the format which is used by the server to list files

SetFeatures Set the features which can be used by the client

SetFileMode Set the current file mode

SetFileNameEncoding Set the character encoding type used when sending a file name to the server

SetFilePermissions Set the access permissions for the specified file

SetFileStructure Set the current file data structure

SetFileTime Set the modification time for the specified file on the server

SetFileType Set the default file type for the current session

SetLastError Set the last error code

SetPassiveMode Set the server in passive mode

SetPriority Set the priority for file transfers

SetTimeout Set the number of seconds until an operation times out

ShowError Display a message box with a description of the specified error

UploadFile Upload a file from the local system to the server

ValidateHostName Validate the specified host name and return the resolved IP address

ValidateUrl Check the contents of a string to ensure it represents a valid URL

VerifyFile Compare the contents of a local file against a file stored on the server

Write Write data to the server

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::CFtpClient Method

CFtpClient();

The CFtpClient constructor initializes the class library and validates the license key at runtime.

Remarks
If the constructor fails to validate the runtime license, subsequent methods in this class will fail. If
the product is installed with an evaluation license, then the application will only function on the
development system and cannot be redistributed.

The constructor calls the FtpInitialize function to initialize the library, which dynamically loads
other system libraries and allocates thread local storage. If you are using this class within another
DLL, it is important that you do not create or destroy an instance of the class from within the
DllMain function because it can result in deadlocks or access violation errors. You should not
declare static or global instances of this class within another DLL if it is linked with the C runtime
library (CRT) because it will automatically call the constructors and destructors for static and global
C++ objects and has the same restrictions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
~CFtpClient, IsInitialized

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::~CFtpClient

~CFtpClient();

The CFtpClient destructor releases resources allocated by the current instance of the CFtpClient
object. It also uninitializes the library if there are no other concurrent uses of the class.

Remarks
When a CFtpClient object goes out of scope, the destructor is automatically called to allow the
library to free any resources allocated on behalf of the process. Any pending blocking or
asynchronous calls in this process are canceled without posting any notification messages, and all
handles that were created for the client session are destroyed.

The destructor is not called explicitly by the application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CFtpClient

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::Allocate Method

INT Allocate(
 DWORD dwFileLength,
 DWORD dwRecSize
);

The Allocate method instructs the server to reserve sufficient storage to accommodate the new
file being transferred.

Parameters
dwFileLength

The number of bytes to allocate storage for on the server.

dwRecSize

The maximum record or page size for the file. A value of zero indicates that the file does not
have a record or page structure, and the parameter is ignored.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is FTP_ERROR. To get extended error information, call GetLastError.

Remarks
This method should be called immediately before the OpenFile method.

This method is ignored by those servers which do not require that the maximum size of the file be
declared beforehand. The most common FTP servers running under UNIX and Windows do not
require that file space be pre-allocated.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
OpenFile, SetFileMode, SetFileStructure, SetFileType

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::AttachHandle Method

VOID AttachHandle(
 HCLIENT hClient
);

The AttachHandle method attaches the specified client handle to the current instance of the
class.

Parameters
hClient

The handle to the client session that will be attached to the current instance of the class object.

Return Value
None.

Remarks
This method is used to attach a client handle created outside of the class using the SocketTools
API. Once the client handle is attached to the class, the other class member functions may be used
with that client session.

If a client handle already has been created for the class, that handle will be released when the new
handle is attached to the class object. If you want to prevent the previous client session from being
terminated, you must call the DetachHandle method. Failure to release the detached handle may
result in a resource leak in your application.

Note that the hClient parameter is presumed to be a valid client handle and no checks are
performed to ensure that the handle is valid. Specifying an invalid client handle will cause
subsequent method calls to fail.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
AttachThread, DetachHandle, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::AttachThread Method

DWORD AttachThread(
 DWORD dwThreadId
);

The AttachThread method attaches the specified client handle to another thread.

Parameters
dwThreadId

The ID of the thread that will become the new owner of the handle. A value of zero specifies
that the current thread should become the owner of the client handle.

Return Value
If the method succeeds, the return value is the thread ID of the previous owner. If the method fails,
the return value is FTP_ERROR. To get extended error information, call GetLastError.

Remarks
When a client handle is created, it is associated with the current thread that created it. Normally, if
another thread attempts to perform an operation using that handle, an error is returned since it
does not own the handle. This is used to ensure that other threads cannot interfere with an
operation being performed by the owner thread. In some cases, it may be desirable for one
thread in a client application to create the client handle, and then pass that handle to another
worker thread. The AttachThread method can be used to change the ownership of the handle to
the new worker thread. By preserving the return value from the method, the original owner of the
handle can be restored before the worker thread terminates.

This method should be called by the new thread immediately after it has been created, and if the
new thread does not release the handle itself, the ownership of the handle should be restored to
the parent thread before it terminates. Under no circumstances should AttachThread be used to
forcibly release a handle allocated by another thread while a blocking operation is in progress. To
cancel an operation, use the Cancel method and then release the handle after the blocking
method exits and control is returned to the current thread.

Note that the dwThreadId parameter is presumed to be a valid thread ID and no checks are
performed to ensure that the thread actually exists. Specifying an invalid thread ID will orphan the
client handle used by the class until the destructor is called.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
AttachHandle, Cancel, Connect, DetachHandle, Disconnect, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::Cancel Method

INT Cancel();

The Cancel method cancels any outstanding blocking operation in the client, causing the blocking
method to fail. The application may then retry the operation or terminate the client session.

Parameters
None.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
FTP_ERROR. To get extended error information, call GetLastError.

Remarks
When the Cancel method is called, the blocking method will not immediately fail. An internal flag
is set which causes the blocking operation to exit with an error. This means that the application
cannot cancel an operation and immediately perform some other operation. Instead it must allow
the calling stack to unwind, returning back to the blocking operation before making any further
function calls.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
IsBlocking

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::ChangeDirectory Method

INT ChangeDirectory(
 LPCTSTR lpszDirectory
);

The ChangeDirectory method changes the current working directory for the client session.

Parameters
lpszDirectory

Points to a string that specifies the name of the directory. The file pathing and name
conventions must be that of the server.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is FTP_ERROR. To get extended error information, call GetLastError.

Remarks
This method uses the CWD command to change the current working directory. The user must
have the appropriate permission to access the specified directory.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ChangeDirectoryUp, CloseDirectory, Command, GetDirectory, GetFirstFile, GetNextFile,
GetResultCode, GetResultString, OpenDirectory

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::ChangeDirectoryUp Method

INT ChangeDirectoryUp();

The ChangeDirectoryUp method changes directory to the parent of the current working
directory.

Parameters
None.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is FTP_ERROR. To get extended error information, call GetLastError.

Remarks
This method sends the CDUP command to the server. This command is a special case of the CWD
command, and is included to simplify transferring between directory trees on those operating
systems which have different syntaxes for naming the parent directory. The current user must have
the appropriate permission to access the specified directory.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ChangeDirectory, Command, GetDirectory, GetResultCode, GetResultString

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::CloseDirectory Method

INT CloseDirectory();

The CloseDirectory method closes the data socket connection to the server.

Parameters
None.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is FTP_ERROR. To get extended error information, call GetLastError.

Remarks
This method must be called after all of the file information from the server has been returned.
Because directory information is returned on the data channel, no file transfers can take place
while a directory is being read.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
GetDirectoryFormat, GetFileStatus, GetFirstFile, GetNextFile, OpenDirectory, SetDirectoryFormat

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::CloseFile Method

INT CloseFile();

The CloseFile method flushes the internal client buffers and closes the data socket connection to
the server.

Parameters
None.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is FTP_ERROR. To get extended error information, call GetLastError.

Remarks
If the file is opened for writing, all buffered data is written to the server before the socket is closed.
This may cause the client to block until all of the data can be written. The client application should
not perform any other action until the method returns.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
OpenFile, Read, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::Command Method

INT Command(
 LPCTSTR lpszCommand,
 LPCTSTR lpszParameter
);

The Command method sends a command to the server, and returns the result code back to the
caller. This method is typically used for site-specific commands not directly supported by the API.

Parameters
lpszCommand

The command which will be executed by the server.

lpszParameter

An optional command parameter. If the command requires more than one parameter, then
they should be combined into a single string, with a space separating each parameter. If the
command does not accept any parameters, this value may be NULL.

Return Value
If the method succeeds, the return value is the result code returned by the server. If the method
fails, the return value is FTP_ERROR. To get extended error information, call GetLastError.

Remarks
This method should only be used when the application needs to send a custom, site-specific
command or send a command that is not directly supported by this class. This method should
never be used to issue a command that opens a data channel. If the application needs to
transform data as it is being sent or received, and cannot use the GetFile or PutFile methods,
then use the OpenFile method to open a data channel with the server.

By default, file names which are sent to the server using the Command method are sent as ANSI
characters. If the Unicode version of the function is used, the file name will be converted from
Unicode to ANSI using the current codepage. If the server supports UTF-8 encoded file names, the
SetFileNameEncoding function can be used to specify that file names with non-ASCII characters
should be sent as UTF-8 encoded values. It is important to note that this option is only available if
the server advertises support for UTF-8 and permits that encoding type.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetFile, GetFileNameEncoding, GetResultCode, GetResultString, OpenFile, PutFile,
SetFileNameEncoding

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::Connect Method

BOOL Connect(
 LPCTSTR lpszRemoteHost,
 UINT nRemotePort,
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword,
 UINT nTimeout,
 DWORD dwOptions
);

The Connect method establishes a connection with the specified server.

Parameters
lpszRemoteHost

A pointer to the name of the server to connect to; this may be a fully-qualified domain name or
an IP address.

nRemotePort

The port number the server is listening on. A value of zero specifies that the default port
number should be used. For standard connections, the default port number is 21. For secure
connections, the default port number is 990. If the secure port number is specified, an implicit
SSL/TLS connection will be established by default.

lpszUserName

Points to a string that specifies the user name to be used to authenticate the current client
session. If this parameter is NULL or an empty string, then the login is considered to be
anonymous. Note that anonymous logins are not supported for secure connections using the
SSH protocol.

lpszPassword

Points to a string that specifies the password to be used to authenticate the current client
session. This parameter may be NULL or an empty string if no password is required for the
specified user, or if no username has been specified.

nTimeout

The number of seconds that the client will wait for a response from the server before failing the
current operation.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

FTP_OPTION_PASSIVE This option specifies the client should attempt to
establish the data connection with the server. When
the client uploads or downloads a file, normally the
server establishes a second connection back to the
client which is used to transfer the file data.
However, if the local system is behind a firewall or a
NAT router, the server may not be able to create
the data connection and the transfer will fail. By
specifying this option, it forces the client to establish

an outbound data connection with the server. It is
recommended that applications use passive mode
whenever possible.

FTP_OPTION_FIREWALL This option specifies the client should always use
the host IP address to establish the data connection
with the server, not the address returned by the
server in response to the PASV command. This
option may be necessary if the server is behind a
router that performs Network Address Translation
(NAT) and it returns an unreachable IP address for
the data connection. If this option is specified, it will
also enable passive mode data transfers.

FTP_OPTION_NOAUTH This option specifies the server does not require
authentication, or that it requires an alternate
authentication method. When this option is used,
the client connection is flagged as authenticated as
soon as the connection to the server has been
established. Note that using this option to bypass
authentication may result in subsequent errors
when attempting to retrieve a directory listing or
transfer a file. It is recommended that you consult
the technical reference documentation for the
server to determine its specific authentication
requirements.

FTP_OPTION_KEEPALIVE This option specifies the client should attempt to
keep the connection with the server active for an
extended period of time. It is important to note that
regardless of this option, the server may still choose
to disconnect client sessions that are holding the
command channel open but are not performing file
transfers.

FTP_OPTION_NOAUTHRSA This option specifies that RSA authentication should
not be used with SSH-1 connections. This option is
ignored with SSH-2 connections and should only be
specified if required by the server. This option has
no effect on standard or secure connections using
SSL.

FTP_OPTION_NOPWDNUL This option specifies the user password cannot be
terminated with a null character. This option is
ignored with SSH-2 connections and should only be
specified if required by the server. This option has
no effect on standard or secure connections using
SSL.

FTP_OPTION_NOREKEY This option specifies the client should never attempt
a repeat key exchange with the server. Some SSH
servers do not support rekeying the session, and
this can cause the client to become non-responsive

or abort the connection after being connected for
an hour. This option has no effect on standard or
secure connections using SSL.

FTP_OPTION_COMPATSID This compatibility option changes how the session
ID is handled during public key authentication with
older SSH servers. This option should only be
specified when connecting to servers that use
OpenSSH 2.2.0 or earlier versions. This option has
no effect on standard or secure connections using
SSL.

FTP_OPTION_COMPATHMAC This compatibility option changes how the HMAC
authentication codes are generated. This option
should only be specified when connecting to
servers that use OpenSSH 2.2.0 or earlier versions.
This option has no effect on standard or secure
connections using SSL.

FTP_OPTION_VIRTUALHOST This option specifies the server supports virtual
hosting, where multiple domains are hosted by a
server using the same external IP address. If this
option is enabled, the client will send the HOST
command to the server upon establishing a
connection.

FTP_OPTION_VERIFY This option specifies that file transfers should be
automatically verified after the transfer has
completed. If the server supports the XMD5
command, the transfer will be verified by calculating
an MD5 hash of the file contents. If the server does
not support the XMD5 command, but does support
the XCRC command, the transfer will be verified by
calculating a CRC32 checksum of the file contents. If
neither the XMD5 or XCRC commands are
supported, the transfer is verified by comparing the
size of the file. Automatic file verification is only
performed for binary mode transfers because of the
end-of-line conversion that may occur when text
files are uploaded or downloaded.

FTP_OPTION_TRUSTEDSITE This option specifies the server is trusted. The server
certificate will not be validated and the connection
will always be permitted. This option only affects
connections using either the SSL or TLS protocols.

FTP_OPTION_SECURE This option specifies the client should attempt to
establish a secure connection with the server. This
option is the same as specifying
FTP_OPTION_SECURE_IMPLICIT which immediately
performs the SSL/TLS protocol negotiation when
the connection is established.

FTP_OPTION_SECURE_IMPLICIT This option specifies the client should attempt to

immediately establish secure SSL/TLS connection
with the server. This option is typically used when
connecting to a server on port 990, which is the
default port number used for FTPS.

FTP_OPTION_SECURE_EXPLICIT This option specifies the client should establish a
standard connection to the server and then use the
AUTH command to negotiate an explicit secure
connection. This option is typically used when
connecting to the server on ports other than 990.

FTP_OPTION_SECURE_SHELL This option specifies the client should use the
Secure Shell (SSH) protocol to establish the
connection. This option will automatically be
selected if the connection is established using port
22, the default port for SSH.

FTP_OPTION_SECURE_FALLBACK This option specifies the client should permit the
use of less secure cipher suites for compatibility
with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

FTP_OPTION_TUNNEL This option specifies that a tunneled TCP
connection and/or port-forwarding is being used to
establish the connection to the server. This changes
the behavior of the client with regards to internal
checks of the destination IP address and remote
port number, default capability selection and how
the connection is established. This option also
forces all connections to be outbound and enables
the firewall compatibility features in the client.

FTP_OPTION_KEEPALIVE_DATA This option specifies the client should attempt to
keep the control connection active during a file
transfer. Normally, when a data transfer is in
progress, no additional commands are issued on
the control channel until the transfer completes.
Specifying this option automatically enables the
FTP_OPTION_KEEPALIVE option and forces the
client to continue to issue NOOP commands during
the file transfer. This option only applies to FTP and
FTPS connections and has no effect on connections
using SFTP (SSH).

FTP_OPTION_PREFER_IPV6 This option specifies the client should prefer the use
of IPv6 if the server hostname can be resolved to
both an IPv6 and IPv4 address. This option is
ignored if the local system does not have IPv6
enabled, or when the hostname can only be
resolved to an IPv4 address. If the server hostname
can only be resolved to an IPv6 address, the client
will attempt to establish a connection using IPv6

regardless if this option has been specified.

FTP_OPTION_FREETHREAD This option specifies the handle returned by this
function may be used by any thread, and is not
limited to the thread which created it. The
application is responsible for ensuring that access to
the handle is synchronized across multiple threads.

FTP_OPTION_HIRES_TIMER This option specifies the elapsed time for data
transfers should be returned in milliseconds instead
of seconds. This will return more accurate transfer
times for smaller files being uploaded or
downloaded using fast network connections.

FTP_OPTION_TLS_REUSE This option specifies that TLS session reuse should
be enabled for secure connections. This option is
only supported on Windows 8.1 or Windows Server
2012 R2 and later platforms, and it should only be
used when explicitly required by the server. This
option is not compatible with servers built using
OpenSSL 1.0.2 and earlier versions which do not
provide Extended Master Secret (EMS) support as
outlined in RFC7627.

Return Value
If the method succeeds, the return value is a non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
This method will block the current thread until a connection has been established or the timeout
period has elapsed. To prevent it from blocking the main user interface thread, the application
should create a background worker thread and establish a connection by calling the Connect
method in that thread. If the application requires multiple simultaneous connections, it is
recommended you create a worker thread for each connection.

If the FTP_OPTION_KEEPALIVE option is specified, a background worker thread will be created to
monitor the command channel and periodically send NOOP commands to the server if no
commands have been sent recently. This can prevent the server from terminating the client
connection during idle periods where no commands are being issued. However, it is important to
keep in mind that many servers can be configured to also limit the total amount of time a client
can be connected to the server, as well as the amount of time permitted between file transfers. If
the server does not respond to the NOOP command, this option will be automatically disabled for
the remainder of the client session.

If the FTP_OPTION_SECURE_EXPLICIT option is specified, the client will establish a standard
connection to the server and send the AUTH TLS command to the server. If the server does not
accept this command, it will then send the AUTH SSL command. If both commands are rejected
by the server, an explicit SSL session cannot be established. By default, both the command and
data channels will be encrypted when a secure connection is established. To change this, use the
SetChannelMode method.

The dwOptions argument can be used to specify the threading model that is used by the class
when a connection is established. By default, the client session is initially attached to the thread
that created it. From that point on, until the connection is terminated, only the owner may invoke

methods in that instance of the class. The ownership of the class instance may be transferred from
one thread to another using the AttachThread method.

Specifying the FTP_OPTION_FREETHREAD option enables any thread to call methods in any
instance of the class, regardless of which thread created it. It is important to note that this option
disables certain internal safety checks which are performed by the class and may result in
unexpected behavior unless access to the class instance is synchronized. If one thread calls a
method in the class, it must ensure that no other thread will call another method at the same time
using the same instance.

Example
// Connect to a server using a standard (non-secure) connection on
// the default port. The username and password are not encrypted.

bResult = ftpClient.Connect(lpszRemoteHost,
 FTP_PORT_DEFAULT,
 lpszUserName,
 lpszPassword,
 FTP_TIMEOUT,
 FTP_OPTION_DEFAULT);

// Connect to a server using the default port and then initiate a
// secure connection using the AUTH TLS command

bResult = ftpClient.Connect(lpszRemoteHost,
 FTP_PORT_DEFAULT,
 lpszUserName,
 lpszPassword,
 FTP_TIMEOUT,
 FTP_OPTION_PASSIVE | FTP_OPTION_SECURE_EXPLICIT);

// Connect to a server on port 990 and immediately initiate a
// secure connection as soon as the connection is established

bResult = ftpClient.Connect(lpszRemoteHost,
 FTP_PORT_SECURE,
 lpszUserName,
 lpszPassword,
 FTP_TIMEOUT,
 FTP_OPTION_PASSIVE | FTP_OPTION_SECURE_IMPLICIT);

// Connect to a server on port 22 using the Secure Shell (SFTP)
// protocol to transfer files

bResult = ftpClient.Connect(lpszRemoteHost,
 FTP_PORT_SSH,
 lpszUserName,
 lpszPassword,
 FTP_TIMEOUT,
 FTP_OPTION_SECURE_SHELL);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ConnectUrl, CreateSecurityCredentials, Disconnect, GetSecurityInformation, ProxyConnect,
SetChannelMode

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::ConnectUrl Method

BOOL ConnectUrl(
 LPCTSTR lpszUrl,
 UINT nTimeout,
 DWORD dwOptions
);

The ConnectUrl method establishes a connection with the specified server using a URL.

Parameters
lpszUrl

A pointer to a string which specifies the URL for the server. The URL must follow the
conventions for the File Transfer Protocol and may specify either a standard or secure
connection, alternate port number, username, password and optional working directory.

nTimeout

The number of seconds that the client will wait for a response from the server before failing the
current operation.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

FTP_OPTION_PASSIVE This option specifies the client should attempt to
establish the data connection with the server. When
the client uploads or downloads a file, normally the
server establishes a second connection back to the
client which is used to transfer the file data.
However, if the local system is behind a firewall or a
NAT router, the server may not be able to create
the data connection and the transfer will fail. By
specifying this option, it forces the client to establish
an outbound data connection with the server. It is
recommended that applications use passive mode
whenever possible.

FTP_OPTION_FIREWALL This option specifies the client should always use
the host IP address to establish the data connection
with the server, not the address returned by the
server in response to the PASV command. This
option may be necessary if the server is behind a
router that performs Network Address Translation
(NAT) and it returns an unreachable IP address for
the data connection. If this option is specified, it will
also enable passive mode data transfers.

FTP_OPTION_NOAUTH This option specifies the server does not require
authentication, or that it requires an alternate
authentication method. When this option is used,
the client connection is flagged as authenticated as

soon as the connection to the server has been
established. Note that using this option to bypass
authentication may result in subsequent errors
when attempting to retrieve a directory listing or
transfer a file. It is recommended that you consult
the technical reference documentation for the
server to determine its specific authentication
requirements.

FTP_OPTION_KEEPALIVE This option specifies the client should attempt to
keep the connection with the server active for an
extended period of time. It is important to note that
regardless of this option, the server may still choose
to disconnect client sessions that are holding the
command channel open but are not performing file
transfers.

FTP_OPTION_NOAUTHRSA This option specifies that RSA authentication should
not be used with SSH-1 connections. This option is
ignored with SSH-2 connections and should only be
specified if required by the server. This option has
no effect on standard or secure connections using
SSL.

FTP_OPTION_NOPWDNUL This option specifies the user password cannot be
terminated with a null character. This option is
ignored with SSH-2 connections and should only be
specified if required by the server. This option has
no effect on standard or secure connections using
SSL.

FTP_OPTION_NOREKEY This option specifies the client should never attempt
a repeat key exchange with the server. Some SSH
servers do not support rekeying the session, and
this can cause the client to become non-responsive
or abort the connection after being connected for
an hour. This option has no effect on standard or
secure connections using SSL.

FTP_OPTION_COMPATSID This compatibility option changes how the session
ID is handled during public key authentication with
older SSH servers. This option should only be
specified when connecting to servers that use
OpenSSH 2.2.0 or earlier versions. This option has
no effect on standard or secure connections using
SSL.

FTP_OPTION_COMPATHMAC This compatibility option changes how the HMAC
authentication codes are generated. This option
should only be specified when connecting to
servers that use OpenSSH 2.2.0 or earlier versions.
This option has no effect on standard or secure
connections using SSL.

FTP_OPTION_VIRTUALHOST This option specifies the server supports virtual
hosting, where multiple domains are hosted by a
server using the same external IP address. If this
option is enabled, the client will send the HOST
command to the server upon establishing a
connection.

FTP_OPTION_VERIFY This option specifies that file transfers should be
automatically verified after the transfer has
completed. If the server supports the XMD5
command, the transfer will be verified by calculating
an MD5 hash of the file contents. If the server does
not support the XMD5 command, but does support
the XCRC command, the transfer will be verified by
calculating a CRC32 checksum of the file contents. If
neither the XMD5 or XCRC commands are
supported, the transfer is verified by comparing the
size of the file. Automatic file verification is only
performed for binary mode transfers because of the
end-of-line conversion that may occur when text
files are uploaded or downloaded.

FTP_OPTION_TRUSTEDSITE This option specifies the server is trusted. The server
certificate will not be validated and the connection
will always be permitted. This option only affects
connections using either the SSL or TLS protocols.

FTP_OPTION_SECURE This option specifies the client should attempt to
establish a secure connection with the server. This
option is the same as specifying
FTP_OPTION_SECURE_IMPLICIT which immediately
performs the SSL/TLS protocol negotiation when
the connection is established.

FTP_OPTION_SECURE_IMPLICIT This option specifies the client should attempt to
immediately establish secure SSL/TLS connection
with the server. This option is typically used when
connecting to a server on port 990, which is the
default port number used for FTPS.

FTP_OPTION_SECURE_EXPLICIT This option specifies the client should establish a
standard connection to the server and then use the
AUTH command to negotiate an explicit secure
connection. This option is typically used when
connecting to the server on ports other than 990.

FTP_OPTION_SECURE_SHELL This option specifies the client should use the
Secure Shell (SSH) protocol to establish the
connection. This option will automatically be
selected if the connection is established using port
22, the default port for SSH.

FTP_OPTION_SECURE_FALLBACK This option specifies the client should permit the
use of less secure cipher suites for compatibility

with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

FTP_OPTION_TUNNEL This option specifies that a tunneled TCP
connection and/or port-forwarding is being used to
establish the connection to the server. This changes
the behavior of the client with regards to internal
checks of the destination IP address and remote
port number, default capability selection and how
the connection is established. This option also
forces all connections to be outbound and enables
the firewall compatibility features in the client.

FTP_OPTION_KEEPALIVE_DATA This option specifies the client should attempt to
keep the control connection active during a file
transfer. Normally, when a data transfer is in
progress, no additional commands are issued on
the control channel until the transfer completes.
Specifying this option automatically enables the
FTP_OPTION_KEEPALIVE option and forces the
client to continue to issue NOOP commands during
the file transfer. This option only applies to FTP and
FTPS connections and has no effect on connections
using SFTP (SSH).

FTP_OPTION_PREFER_IPV6 This option specifies the client should prefer the use
of IPv6 if the server hostname can be resolved to
both an IPv6 and IPv4 address. This option is
ignored if the local system does not have IPv6
enabled, or when the hostname can only be
resolved to an IPv4 address. If the server hostname
can only be resolved to an IPv6 address, the client
will attempt to establish a connection using IPv6
regardless if this option has been specified.

FTP_OPTION_FREETHREAD This option specifies the handle returned by this
function may be used by any thread, and is not
limited to the thread which created it. The
application is responsible for ensuring that access to
the handle is synchronized across multiple threads.

FTP_OPTION_HIRES_TIMER This option specifies the elapsed time for data
transfers should be returned in milliseconds instead
of seconds. This will return more accurate transfer
times for smaller files being uploaded or
downloaded using fast network connections.

FTP_OPTION_TLS_REUSE This option specifies that TLS session reuse should
be enabled for secure connections. This option is
only supported on Windows 8.1 or Windows Server
2012 R2 and later platforms, and it should only be
used when explicitly required by the server. This

option is not compatible with servers built using
OpenSSL 1.0.2 and earlier versions which do not
provide Extended Master Secret (EMS) support as
outlined in RFC7627.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The ConnectUrl method is a high-level method that uses an FTP URL to establish a connection
with a server. Unlike the other connection related methods such as Connect, this method does
more than simply connect to the server. It will also authenticate the client session, change the
current working directory and set the default file transfer mode. By default, this method will always
place the client in passive mode, ensuring the broadest compatibility with most servers. The
ValidateUrl method can be used to verify that a URL is valid prior to calling this function.

The URL must be complete, and specify either a standard or secure FTP scheme:

[ftp|ftps|sftp]://[username : password] @] hostname [:port] / [path /
...] [filename]

If no user name and password is provided, then the client session will be authenticated as an
anonymous user. If a path is specified as part of the URL, the method will attempt to change the
current working directory. The paths in an FTP URL are relative to the home directory of the user
account and are not absolute paths starting at the root directory on the server. If a file name is
also specified in the URL, it will be ignored and only the file path will be used. The URL scheme will
always determine if the connection is secure, not the option. In other words, if the "ftp" scheme is
used and the FTP_OPTION_SECURE option is specified, that option will be ignored. To establish a
secure connection, either the "ftps" or "sftp" scheme must be specified.

The ConnectUrl method is designed to provide a simpler, more convenient interface to
establishing a connection with a server. However, complex connections such as those using a
proxy server or a secure connection which uses a client certificate will require the program to use
the lower-level connection methods. If you only need to upload or download a file using a URL,
then refer to the UploadFile and DownloadFile methods.

This method will block the current thread until a connection has been established or the timeout
period has elapsed. To prevent it from blocking the main user interface thread, the application
should create a background worker thread and establish a connection by calling the ConnectUrl
method in that thread. If the application requires multiple simultaneous connections, it is
recommended you create a worker thread for each connection.

The dwOptions argument can be used to specify the threading model that is used by the class
when a connection is established. By default, the client session is initially attached to the thread
that created it. From that point on, until the connection is terminated, only the owner may invoke
methods in that instance of the class. The ownership of the class instance may be transferred from
one thread to another using the AttachThread method.

Specifying the FTP_OPTION_FREETHREAD option enables any thread to call methods in any
instance of the class, regardless of which thread created it. It is important to note that this option
disables certain internal safety checks which are performed by the class and may result in
unexpected behavior unless access to the class instance is synchronized. If one thread calls a
method in the class, it must ensure that no other thread will call another method at the same time
using the same instance.

Example
CFtpClient ftpClient;

if (!ftpClient.ConnectUrl(_T("ftp://ftp.sockettools.com/")))
{
 ftpClient.ShowError();
 return;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Connect, Disconnect, DownloadFile, UploadFile, ValidateUrl

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::CreateDirectory Method

INT CreateDirectory(
 LPCTSTR lpszDirectory
);

The CreateDirectory method creates the specified directory on the server.

Parameters
lpszDirectory

Points to a string that specifies the name of the directory. The file pathing and name
conventions must be that of the server.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is FTP_ERROR. To get extended error information, call GetLastError.

Remarks
This method uses the MKD command to create the directory. The user must have the appropriate
permission to create the specified directory.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ChangeDirectory, GetDirectory, RemoveDirectory

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::CreateSecurityCredentials Method

BOOL CreateSecurityCredentials(
 DWORD dwProtocol,
 DWORD dwOptions,
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword,
 LPCTSTR lpszCertStore,
 LPCTSTR lpszCertName
);

BOOL CreateSecurityCredentials(
 LPCTSTR lpszCertStore,
 LPCTSTR lpszCertName
);

BOOL CreateSecurityCredentials(
 LPCTSTR lpszCertName
);

The CreateSecurityCredentials method establishes the security credentials for the client session.

Parameters
dwProtocol

A bitmask of supported security protocols. This parameter is constructed by using a bitwise
operator with any of the following values:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The
correct protocol is automatically selected, based on
what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.

This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is
supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

SECURITY_PROTOCOL_SSH Either version 1.0 or 2.0 of the Secure Shell protocol
should be used when establishing the connection.
The correct protocol is automatically selected based
on the version of the protocol that is supported by
the server.

SECURITY_PROTOCOL_SSH1 The Secure Shell 1.0 protocol should be used when
establishing the connection. This is an older version
of the protocol which should not be used unless
explicitly required by the server. Most modern SSH
server support version 2.0 of the protocol.

SECURITY_PROTOCOL_SSH2 The Secure Shell 2.0 protocol should be used when
establishing the connection. This is the default
version of the protocol that is supported by most
SSH servers.

dwOptions

A value which specifies one or options. This value should always be zero for connections using
SSH. This member is constructed by using a bitwise operator with any of the following values:

Constant Description

CREDENTIAL_STORE_CURRENT_USER The library will attempt to open a store for
the current user using the certificate store
name provided in this structure. If no options
are specified, then this is the default
behavior.

CREDENTIAL_STORE_LOCAL_MACHINE The library will attempt to open a local
machine store using the certificate store
name provided in this structure. If this option
is specified, the library will always search for a
local machine store before searching for the
store by that name for the current user.

CREDENTIAL_STORE_FILENAME The certificate store name is a file that
contains the certificate and private key that
will be used.

lpszUserName

A pointer to a string which specifies the certificate owner's username. A value of NULL specifies
that no username is required. Currently this parameter is not used and any value specified will
be ignored.

lpszPassword

A pointer to a string which specifies the certificate owner's password. A value of NULL specifies
that no password is required. This parameter is only used if a PKCS #12 (PFX) certificate file is
specified and that certificate has been secured with a password. This value will be ignored the
current user or local machine certificate store is specified.

lpszCertStore

A pointer to a string which specifies the name of the certificate store to open. A certificate store
is a collection of certificates and their private keys, typically organized by how they are used. If
this value is NULL or points to an empty string, the default certificate store "MY" will be used.

Store Name Description

CA Certification authority certificates. These are certificates that are issued by
entities which are entrusted to issue certificates to other individuals or
organizations. Companies such as VeriSign and Thawte act as
certification authorities.

MY Personal certificates and their associated private keys for the current user.
This store typically holds the client certificates used to establish a user's
credentials. This corresponds to the "Personal" store that is displayed by
the certificate manager utility and is the default store used by the library.

ROOT Certificates that have been self-signed by a certificate authority. Root
certificates for a number of different certification authorities such as
VeriSign and Thawte are installed as part of the operating system and
periodically updated by Microsoft.

lpszCertName

A pointer to a null terminated string which specifies the name of the certificate to use. The
function will first search the certificate store for a certificate with a matching "friendly name"; this
is a name for the certificate that is assigned by the user. Note that the name must match
completely, but the comparison is not case sensitive. If no matching certificate is found, the
function will then attempt to find a certificate that has a matching common name (also called
the certificate subject). This comparison is less stringent, and the first partial match will be
returned. If this second search fails, the function will return an error indicating that the certificate
could not be found.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Example
pClient->CreateSecurityCredentials(
 SECURITY_PROTOCOL_DEFAULT,
 0,
 NULL,
 NULL,
 lpszCertStore,
 lpszCertName);

bConnected = pClient->Connect(lpszHostName,
 FTP_PORT_SECURE,
 FTP_TIMEOUT,
 FTP_OPTION_SECURE);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Connect, DeleteSecurityCredentials, GetSecurityInformation, SECURITYCREDENTIALS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::DeleteFile Method

INT DeleteFile(
 LPCTSTR lpszFileName
);

The DeleteFile method deletes the specified file from the server.

Parameters
lpszFileName

Points to a string that specifies the name of the remote file to delete. The file pathing and name
conventions must be that of the server.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is FTP_ERROR. To get extended error information, call GetLastError.

Remarks
The current user must have the appropriate permission to delete the file, or an error will be
returned by the server.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetFile, PutFile, RenameFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::DeleteSecurityCredentials Method

VOID DeleteSecurityCredentials();

The DeleteSecurityCredentials method releases the security credentials for the current session.

Parameters
None.

Return Value
None.

Remarks
This method can be used to release the memory allocated to the client or server credentials after
a secure connection has been terminated. The security credentials are released when the class
destructor is called, so it is normally not required that the application explicitly call this method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CreateSecurityCredentials

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::DetachHandle Method

HCLIENT DetachHandle();

The DetachHandle method detaches the client handle associated with the current instance of the
class.

Parameters
None.

Return Value
This method returns the client handle associated with the current instance of the class object. If
there is no active client session, the value INVALID_CLIENT will be returned.

Remarks
This method is used to detach a client handle created by the class for use with the SocketTools
API. Once the client handle is detached from the class, no other class member functions may be
called. Note that the handle must be explicitly released at some later point by the process or a
resource leak will occur.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
AttachHandle, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::DisableEvents Method

INT DisableEvents();

The DisableEvents method disables the event notification mechanism, preventing subsequent
event notification messages from being posted to the application's message queue.

This method has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Parameters
None.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
FTP_ERROR. To get extended error information, call GetLastError.

Remarks
The DisableEvents method is used to disable event message posting for the specified client
session. Although this will immediately prevent any new events from being generated, it is possible
that messages could be waiting in the message queue. Therefore, an application must be
prepared to handle client event messages after this method has been called.

This method is automatically called if the client has event notification enabled, and the Disconnect
method is called. The same issues regarding outstanding event messages also applies in this
situation, requiring that the application handle event messages that may reference a client handle
that is no longer valid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
EnableEvents, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::DisableTrace Method

BOOL DisableTrace();

The DisableTrace method disables the logging of socket function calls to the trace log.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, a value of zero is
returned.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
EnableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::Disconnect Method

VOID Disconnect();

The Disconnect method terminates the connection with the server, closing the socket and
releasing the memory allocated for the client session.

Parameters
None.

Return Value
None.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
Connect, ProxyConnect

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::DownloadFile Method

BOOL DownloadFile(
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszRemoteFile,
 UINT nTimeout
 DWORD dwOptions
 LPFTPTRANSFERSTATUS lpStatus
 FTPEVENTPROC lpEventProc
 DWORD_PTR dwParam
);

The DownloadFile method downloads the specified file from the server to the local system.

Parameters
lpszLocalFile

A pointer to a string that specifies the file on the local system that will be created, overwritten or
appended to. The file pathing and name conventions must be that of the local host.

lpszRemoteFile

A pointer to a string that specifies the complete URL of the file to be downloaded. The URL
must follow the conventions for the File Transfer Protocol and may specify either a standard or
secure connection, alternate port number, username, password and optional working directory.

nTimeout

The number of seconds that the client will wait for a response before failing the operation. A
value of zero specifies that the default timeout period of sixty seconds will be used.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

FTP_OPTION_PASSIVE This option specifies the client should attempt to
establish the data connection with the server. When
the client uploads or downloads a file, normally the
server establishes a second connection back to the
client which is used to transfer the file data. However,
if the local system is behind a firewall or a NAT
router, the server may not be able to create the data
connection and the transfer will fail. By specifying this
option, it forces the client to establish an outbound
data connection with the server. It is recommended
that applications use passive mode whenever
possible.

FTP_OPTION_FIREWALL This option specifies the client should always use the
host IP address to establish the data connection with
the server, not the address returned by the server in
response to the PASV command. This option may be
necessary if the server is behind a router that
performs Network Address Translation (NAT) and it
returns an unreachable IP address for the data

connection. If this option is specified, it will also
enable passive mode data transfers.

FTP_OPTION_SECURE This option specifies the client should attempt to
establish a secure connection with the server. Note
that the server must support secure connections
using either the SSL or TLS protocol.

FTP_OPTION_SECURE_EXPLICIT This option specifies the client should use the AUTH
command to negotiate an explicit secure connection.
Some servers may only require this when connecting
to the server on ports other than 990.

lpStatus

A pointer to an FTPTRANSFERSTATUS structure which contains information about the status of
the current file transfer. If this information is not required, a NULL pointer may be specified as
the parameter.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the FtpEventProc callback
function. If this parameter is NULL, the callback for the specified event is disabled.

dwParam

A user-defined integer value that is passed to the callback function.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The DownloadFile method provides a convenient way for an application to download a file in a
single method call. Based on the connection information specified in the URL, it will connect to the
server, authenticate the session, change the current working directory if necessary and then
download the file to the local system. The URL must be complete, and specify either a standard or
secure FTP scheme:

[ftp|ftps|sftp]://[username : password] @] hostname [:port] / [path /
...] [filename] [;type=a|i]

If no user name and password is provided, then the client session will be authenticated as an
anonymous user. If a path is specified as part of the URL, the method will attempt to change the
current working directory. Note that the path in an FTP URL is relative to the home directory of the
user account and is not an absolute path starting at the root directory on the server. The URL
scheme will always determine if the connection is secure, not the option. In other words, if the "ftp"
scheme is used and the FTP_OPTION_SECURE option is specified, that option will be ignored. To
establish a secure connection, either the "ftps" or "sftp" scheme must be specified.

The optional "type" value at the end of the file name determines if the file should be downloaded
as a text or binary file. A value of "a" specifies that the file should be downloaded as a text file. A
value of "i" specifies that the file should be downloaded as a binary file. If the type is not explicitly
specified, the file will be downloaded as a binary file.

The lpStatus parameter can be used by the application to determine the final status of the
transfer, including the total number of bytes copied, the amount of time elapsed and other

information related to the transfer process. If this information isn't needed, then this parameter
may be specified as NULL.

The lpEventProc parameter specifies a pointer to a function which will be periodically called during
the file transfer process. This can be used to check the status of the transfer by calling
GetTransferStatus and then update the program's user interface. For example, the callback
function could calculate the percentage for how much of the file has been transferred and then
update a progress bar control. The dwParam parameter is used in conjunction with the event
handler and specifies a user-defined value that is passed to the callback function. One common
use in a C++ program is to pass the this pointer as the value, and then cast it back to an object
pointer inside the callback function. If no event handler is required, then a NULL pointer can be
specified as the value for lpEventProc and the dwParam parameter will be ignored.

The DownloadFile method is designed to provide a simpler interface for downloading a file.
However, complex connections such as those using a proxy server or a secure connection which
uses a client certificate will require the program to establish the connection using Connect and
then use GetFile to download the file.

Example
CFtpClient ftpClient;
CString strLocalFile = _T("c:\\temp\\database.mdb");
CString strFileURL = _T("ftp://ftp.example.com/updates/database.mdb");

// Download the file using the specified URL
if (!ftpClient.DownloadFile(strLocalFile, strFileURL))
{
 ftpClient.ShowError();
 return;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpEventProc, GetFile, GetTransferStatus, UploadFile, FTPTRANSFERSTATUS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/ftp/class/ftpeventproc.html

 CFtpClient::EnableEvents Method

INT EnableEvents(
 HWND hEventWnd,
 UINT uEventMsg
);

The EnableEvents method enables event notifications using Windows messages.

This method has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Applications should use the RegisterEvent method to register an event handler which is invoked
when an event occurs.

Parameters
hEventWnd

Handle to the window which will receive the client notification messages. This parameter must
specify a valid window handle. If a NULL handle is specified, event notification will be disabled.

uEventMsg

The message that is received when a client event occurs. This value must be greater than 1024.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
FTP_ERROR. To get extended error information, call GetLastError.

Remarks
The EnableEvents method is used to request that notification messages be posted to the
specified window whenever a client event occurs. This allows an application to monitor the status
of different client operations, such as a file transfer.

The wParam argument will contain the client handle, the low word of the lParam argument will
contain the event ID, and the high word will contain any error code. If no error has occurred, the
high word will always have a value of zero. The following events may be generated:

Constant Description

FTP_EVENT_CONNECT The control connection to the server has completed. The high word
of the lParam parameter should be checked, since this notification
message will be posted if an error has occurred.

FTP_EVENT_DISCONNECT The server has closed the control connection to the client. The
client should read any remaining data and disconnect.

FTP_EVENT_OPENFILE The data connection to the server has completed. The high word of
the lParam parameter should be checked, since this notification
message will be posted if an error has occurred.

FTP_EVENT_CLOSEFILE The server has closed the data connection to the client. The client
should read any remaining data and close the data channel.

FTP_EVENT_READFILE Data is available to read by the calling process. No additional
messages will be posted until the client has read at least some of

the data. This event is only generated if the client is in
asynchronous mode.

FTP_EVENT_WRITEFILE The client can now write data. This notification is sent after a
connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking
operation. This event is only generated if the client is in
asynchronous mode.

FTP_EVENT_TIMEOUT The network operation has exceeded the specified timeout period.
The client application may attempt to retry the operation, or may
disconnect from the server and report an error to the user.

FTP_EVENT_CANCEL The current operation has been canceled. Under most
circumstances the client should disconnect from the server and re-
connect if needed. After an operation has been canceled, the
server may abort the connection or refuse to accept further
commands from the client.

FTP_EVENT_COMMAND A command has been issued by the client and the server response
has been received and processed. This event can be used to log
the result codes and messages returned by the server in response
to actions taken by the client.

FTP_EVENT_PROGRESS The client is in the process of sending or receiving a file on the data
channel. This event is called periodically during a transfer so that
the client can update any user interface components such as a
status control or progress bar.

FTP_EVENT_GETFILE This event is generated when a file download has completed. If
multiple files are being downloaded, this event will be generated
for each file.

FTP_EVENT_PUTFILE This event is generated when a file upload has completed. If
multiple files are being uploaded, this event will be generated for
each file.

It is not required that the client be placed in asynchronous mode in order to receive command
and progress event notifications. To disable event notification, call the DisableEvents method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
DisableEvents, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::EnableFeature Method

BOOL EnableFeature(
 DWORD dwFeature,
 BOOL bEnable
);

The EnableFeature method enables or disables a specific server feature available to the client.

Parameters
dwFeature

An unsigned integer which specifies the feature to be enabled to disabled for the current client
session. Refer to the documentation for the GetFeatures method for a list of available features.

bEnabled

A boolean flag which specifies if the feature should be enabled or disabled. If the value is non-
zero, the library will attempt to use that feature on the server. If the value is zero, the feature is
disabled. If an application calls a method which requires a specific feature and that feature is
disabled, the method will fail with an error indicating the feature is not supported.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it will return a value of
zero. To get extended error information, call the GetLastError method.

Remarks
The EnableFeature method is used to enable or disable a specific feature for the current session.
When a client connection is first established, features are enabled based on the server type and
the server's response to the FEAT command. However, as the client issues commands to the
server, if the server reports that the command is unrecognized that feature will automatically be
disabled in the client. An application can use the EnableFeature method to control what
commands will be sent to the server, or re-enable a command that was previously disabled.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
GetFeatures, SetFeatures

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::EnableTrace Method

BOOL EnableTrace(
 LPCTSTR lpszTraceFile,
 DWORD dwTraceFlags
);

The EnableTrace method enables the logging of socket function calls to a file.

Parameters
lpszTraceFile

A pointer to a string which specifies the name of the trace log file. If this parameter is NULL or
an empty string, the default file name cstrace.log is used. The file is stored in the directory
specified by the TEMP environment variable, if it is defined; otherwise, the current working
directory is used.

dwTraceFlags

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

TRACE_INFO All function calls are written to the trace file. This is the default
value.

TRACE_ERROR Only those function calls which fail are recorded in the trace file.

TRACE_WARNING Only those function calls which fail or return values which indicate
a warning are recorded in the trace file.

TRACE_HEXDUMP All functions calls are written to the trace file, plus all the data that
is sent or received is displayed, in both ASCII and hexadecimal
format.

TRACE_PROCESS All function calls in the current process are logged, rather than
only those functions in the current thread. This option is useful for
multithreaded applications that are using worker threads.

Return Value
If the method succeeds, the return value is non-zero. A return value of zero indicates an error.
Failure typically indicates that the tracing library cstrcv11.dll cannot be loaded on the local
system.

Remarks
When trace logging is enabled, the file is opened, appended to and closed for each socket
function call. This makes it possible for an application to append its own logging information,
however care should be taken to ensure that the file is closed before the next network operation is
performed. To limit the size of the log files, enable and disable logging only around those sections
of code that you wish to trace.

Note that the TRACE_HEXDUMP trace level generates very large log files since it includes all of the
data exchanged between your application and the server.

Trace method logging is managed on a per-thread basis, not for each client handle. This means
that all SocketTools libraries and components share the same settings in the current thread. If you

are using multiple SocketTools libraries or components in your application, you only need to
enable logging once.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DisableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::EnumFiles Method

INT EnumFiles(
 LPCTSTR lpszDirectory,
 LPCTSTR lpszFileMask,
 DWORD dwOptions,
 LPFTPFILESTATUSEX lpFileList,
 INT nMaxFiles
);

The EnumFiles method populates an array of structures that contain information about the files in
a directory.

Parameters
lpszDirectory

A pointer to a string that specifies the name of a directory on the server. If this parameter is
NULL or points to an empty string, the method will return the files in the current working
directory. This string cannot contain wildcard characters and must specify a valid directory name
that exists on the server.

lpszFileMask

A pointer to a string that specifies a wildcard file mask that is used to return a subset of files in
the directory. If this parameter is NULL or an empty string then all of the files in the directory will
be returned.

dwOptions

An unsigned integer value that specifies one or more options. This parameter can be a
combination of one or more of the following values:

Constant Description

FTP_ENUM_DEFAULT The method will return both regular files and subdirectories.

FTP_ENUM_FILE The method will return only regular files.

FTP_ENUM_DIRECTORY The method will return only subdirectories.

FTP_ENUM_FULLPATH The method will return the full path of the file or
subdirectory.

lpFileList

A pointer to an array of FTPFILESTATUSEX structures which contains information about each of
the files in the specified directory. This parameter cannot be NULL, and the array must be large
enough to store the number of files specified by the nMaxFiles parameter.

nMaxFiles

An integer value that specifies the maximum number of files that should be returned. This value
must be greater than zero and the lpFileList parameter must provide an array that is large
enough to store information about each file.

Return Value
If the method succeeds, the return value is the number of files returned by the method. If the
directory is empty or there are no files that match the specified wildcard file mask, the method will
return zero. If the method fails, the return value is FTP_ERROR. To get extended error information,
call GetLastError.

 Remarks
The EnumFiles method provides a high-level interface for obtaining a list of available files in a
directory on the server in a single function call. This is an alternative to opening a directory and
returning information about each file by calling the GetNextFile method in a loop.

This method temporarily changes the current working directory to the directory specified by the
lpszDirectory parameter. The current working directory will be restored to its original value when
the method returns. The user must have the appropriate permissions to access the directory or
this method will fail.

To obtain information on a subset of files in the directory, you can specify a wildcard file mask. For
FTP and FTPS (SSL) sessions, this value is passed as a parameter to the LIST command and the
server performs the wildcard matching. For SFTP (SSH) sessions the wildcard matching is
performed by the library, and the standard conventions for Windows file wildcards are used.

By default, the szFileName member for each FTPFILESTATUSEX structure will contain the base
file name. If the FTP_ENUM_FULLPATH option is specified, the method will return the full path
name to the file. The library must be able to automatically determine the path delimiter that is
used by the server. This is done by examining how the server identifies itself, the current directory
format and the path the server returns for the current working directory. For example, UNIX based
servers use the forward slash as a path delimiter. If the method cannot determine what the
appropriate path delimiter is, it will ignore this option and return only the base file name.

This method will cause the current thread to block until the file listing completes, a timeout occurs
or the operation is canceled.

Example
LPFTPFILESTATUSEX lpFileList = new FTPFILESTATUSEX[MAXFILECOUNT];

// Return all of the regular files in the current working directory
INT nResult = pClient->EnumFiles(FTP_ENUM_FILE, lpFileList, MAXFILECOUNT);

if (nResult == FTP_ERROR)
{
 DWORD dwError = pClient->GetLastError();
 _tprintf(_T("EnumFiles failed, error 0x%08lx\n"), dwError);
 return;
}

_tprintf(_T("EnumFiles returned %d files\n"), nResult);
for (INT nIndex = 0; nIndex < nResult; nIndex++)
{
 _tprintf(_T("file=\"%s\" size=%I64d\n"), lpFileList[nIndex].szFileName,
 lpFileList[nIndex].uiFileSize);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetFileStatus, GetFirstFile, GetNextFile, OpenDirectory

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::FreezeEvents Method

INT FreezeEvents(
 BOOL bFreeze
);

The FreezeEvents method is used to suspend and resume event handling by the client.

Parameters
bFreeze

A non-zero value specifies that event handling should be suspended by the client. A zero value
specifies that event handling should be resumed.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
FTP_ERROR. To get extended error information, call GetLastError.

Remarks
This method should be used when the application does not want to process events, such as when
a modal dialog is being displayed. When events are suspended, all client events are queued. If
events are re-enabled at a later point, those queued events will be sent to the application for
processing. Note that only one of each event will be generated. For example, if the client has
suspended event handling, and four read events occur, once event handling is resumed only one
of those read events will be posted to the client. This prevents the application from being flooded
by a potentially large number of queued events.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DisableEvents, EnableEvents, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::GetActivePorts Method

INT GetActivePorts(
 UINT * lpnLowPort,
 UINT * lpnHighPort
);

The GetActivePorts method returns the local port numbers used for active mode file transfers.

Parameters
lpnLowPort

Points to an unsigned integer that will contain the low port number when the function returns.

lpnHighPort

Points to an unsigned integer that will contain the high port number when the function returns.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
FTP_ERROR. To get extended error information, call GetLastError.

Remarks
This method is used to determine the default port numbers being used for active mode file
transfers. When using active mode, the client listens for an inbound connection from the server
rather than establishing an outbound connection for the data transfer. In most cases, passive
mode transfers are preferred because they mitigate potential compatibility issues with firewalls and
NAT routers.

If active mode transfers are required, the default port range used when listening for the server
connection is between 1024 and 5000. This is the standard range of ephemeral ports used by the
Windows operating system. However, under some circumstances that range of ports may be too
small, or a firewall may be configured to deny inbound connections on ephemeral ports. In that
case, the SetActivePorts method can be used to specify a different range of port numbers.

While it is technically permissible to assign the low and high port numbers to the same value,
effectively specifying a single active port number, this is not recommended as it can cause the
transfer to fail unexpectedly if multiple file transfers are performed. A minimum range of at least
1000 ports is recommended. For example, if you specify a low port value of 40000 then it is
recommended that the high port value be at least 41000. The maximum port value is 65535.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SetActivePorts, SetPassiveMode

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 GetAutoFileType Method

UINT GetAutoFileType(
 LPCTSTR lpszFileName,
 BOOL bScanFile
);

The GetAutoFileType method returns the file transfer type based on the file extension or content.

Parameters
lpszFileName

A pointer to a null-terminated string which specifies the local path to the file. This parameter
cannot be NULL and cannot specify a local device name or directory.

bScanFile

An optional value which specifies if the contents of the file should be scanned. A value of zero
indicates that only the file extension should be used to determine the file type, while a non-zero
value specifies the contents of the file should be examined if the file type cannot be determined
based on its extension. This parameter value is zero (false) by default.

Return Value
If the method succeeds, the return value is the file transfer type. If the method fails, the return
value is INVALID_FILE_TYPE. To get extended error information, call GetLastError.

Remarks
This method is used to determine the file transfer type to be used when uploading or
downloading files. This method is called internally when FILE_TYPE_AUTO is specified as the
default file type. The return value may be one of the following:

Value Description

FILE_TYPE_ASCII
(1)

The file is a text file using the ASCII character set. For those servers
which mark the end of a line with characters other than a carriage
return and linefeed, it will be converted to the native client format.
This is the file type used for directory listings.

FILE_TYPE_EBCDIC
(2)

The file is a text file using the EBCDIC character set. Local files will
be converted to EBCDIC when sent to the server. Remote files will
be converted to the native ASCII character set when retrieved
from the server. Not all servers support this file type. It is
recommended that you only specify this type if you know that it is
required by the server to transfer data correctly.

FILE_TYPE_IMAGE
(3)

The file is a binary file and no data conversion of any type is
performed on the file. This is the default file type for most data
files and executable programs. If the type of file cannot be
automatically determined, it will always be considered a binary file.
If this file type is specified when uploading or downloading text
files, the native end-of-line character sequences will be preserved.

If the file extension or contents are not recognized, the default file transfer type for the client
session will be returned. This will usually be FILE_TYPE_IMAGE, however this can be changed by
calling the RegisterFileType method. The file type for the current client session can be explicitly

set using the SetFileType method.

If the bScanFile parameter is non-zero, the local file will be opened in a shared reading mode and
up to 4,096 bytes will be examined to determine if it contains binary data. If the file is currently
locked or has been opened exclusively by another process, the file type associated with the file
extension will be returned instead. Text files which contain UTF-16 text will always return a file type
of FILE_TYPE_IMAGE because they can contain non-ASCII characters and/or embedded null
characters.

If the bScanFile parameter is non-zero and the file type cannot be determined based on the file
name extension, the file specified by lpszFileName must exist and be a regular file. If the file does
not exist, an error will be returned and the last error code will be set to
ST_ERROR_FILE_NOT_FOUND. If the bScanFile parameter is zero, no errors will be returned if the
file does not exist, the function will only check the file name extension to determine the file type.
When downloading a file, the bScanFile parameter should normally be zero because the local file
may not exist yet.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetFileType, RegisterFileType, SetFileMode, SetFileStructure, SetFileType

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::GetBufferSize Method

INT GetBufferSize();

The GetBufferSize method returns the size in bytes of an internal buffer that will be used during
data transfers.

Parameters
None.

Return Value
If the method succeeds, the return value is the size of the internal buffer that will be used in data
transfers. If the method fails, the return value is FTP_ERROR. To get extended error information,
call GetLastError.

Remarks
The speed of data transfers, particularly on uploads, may be sensitive to network type and
configuration, and the size of the internal buffer used for data transfers. The default size of this
buffer will result in good performance for a wide range of network characteristics. A larger buffer
will not necessarily result in better performance. For example, a value of 1460, which is the typical
Maximum Transmission Unit (MTU), may be optimal in many situations.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
SetBufferSize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::GetChannelMode Method

INT GetChannelMode(
 INT nChannel
);

The GetChannelMode method returns the mode of the specified communications channel.

Parameters
nChannel

An integer value which specifies which channel to return information for. It may be one of the
following values:

Constant Description

FTP_CHANNEL_COMMAND Return information about the command channel. This is
the communication channel used to send commands to
the server and receive command result and status
information from the server.

FTP_CHANNEL_DATA Return information about the data channel. This is the
communication channel used to send or receive data
during a file transfer.

Return Value
If the method succeeds, the return value is the mode for the specified channel. If the method fails,
it will return FTP_ERROR. To get extended error information, call GetLastError.

Remarks
The GetChannelMode method returns a integer which may be one of the following values:

Constant Description

FTP_CHANNEL_CLEAR The channel is not encrypted. This is the default mode for
both channels when a standard, non-secure connection is
established with the server.

FTP_CHANNEL_SECURE The channel is encrypted. This is the default mode for both
channels when a secure connection is established with the
server.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
SetChannelMode

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::GetClientQuota Method

INT GetClientQuota(
 LPFTPCLIENTQUOTA lpClientQuota
);

The GetClientQuota method returns information about file quotas for the current client session.

Parameters
lpClientQuota

A pointer to an FTPCLIENTQUOTA structure which contains the quota information returned by
the server.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is FTP_ERROR. To get extended error information, call GetLastError.

Remarks
This method uses the XQUOTA command to obtain information for the current client session. If
the server does not support this command, the method will fail.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
GetServerInformation, GetServerType

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::GetData Method

INT GetData(
 LPCTSTR lpszRemoteFile,
 LPBYTE lpBuffer,
 LPDWORD lpdwLength
);

INT GetData(
 LPCTSTR lpszRemoteFile,
 HGLOBAL* lpBuffer,
 LPDWORD lpdwLength
);

INT GetData(
 LPCTSTR lpszRemoteFile,
 LPTSTR lpBuffer,
 DWORD dwMaxLength
);

INT GetData(
 LPCTSTR lpszRemoteFile,
 CString& strBuffer
);

The GetData method transfers the contents of a file on the server to the specified buffer.

Parameters
lpszRemoteFile

A pointer to a string that specifies the file on the server that will be transferred to the local
system. The file naming conventions must be that of the host operating system.

lpBuffer

A pointer to a buffer which will contain the data transferred from the server. In alternate forms
of the method, this argument may also be a pointer to a global memory handle or reference a
CString object.

lpdwLength

A pointer to an unsigned integer which should be initialized to the maximum number of bytes
that can be copied to the buffer specified by the lpBuffer parameter. If the lpBuffer parameter
points to a global memory handle, the length value should be initialized to zero. When the
method returns, this value will be updated with the actual length of the file that was
downloaded.

dwMaxLength

An unsigned integer value which specifies the maximum number of characters can be copied
into the lpBuffer string. This parameter is used with the version of the method that returns the
data in a character array and includes the terminating null character. This value must be greater
than one and the lpBuffer parameter cannot be NULL, otherwise the method will return an
error.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is FTP_ERROR. To get extended error information, call GetLastError.

Remarks
The GetData method is used to download the contents of a remote file into a local buffer. The
method may be used in one of two ways, depending on the needs of the application. The first
method is to pre-allocate a buffer large enough to store the contents of the file. In this case, the
lpBuffer parameter will point to the buffer that was allocated, the value that the lpdwLength
parameter points to should be initialized to the size of that buffer.

The second method that can be used is have the lpBuffer parameter point to a global memory
handle which will contain the file data when the method returns. In this case, the value that the
lpdwLength parameter points to must be initialized to zero. It is important to note that the
memory handle returned by the method must be freed by the application, otherwise a memory
leak will occur. See the example code below.

If the third method or fourth method is used, where the data is returned in a string buffer, the data
may be modified so that the end-of-line character sequence matches the convention used by the
Windows platform (a carriage return character followed by a linefeed). If Unicode is being used,
the data will be converted from a byte array to a Unicode string. An application should only use
these versions of the GetData method if the remote file contains text.

This method will cause the current thread to block until the file transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the FTP_EVENT_PROGRESS event will be
periodically fired, enabling the application to update any user interface controls. Event notification
must be enabled, either by calling EnableEvents, or by registering a callback function using the
RegisterEvent method.

To determine the current status of a file transfer while it is in progress, use the GetTransferStatus
method.

Example
HGLOBAL hgblBuffer = (HGLOBAL)NULL;
LPBYTE lpBuffer = (LPBYTE)NULL;
DWORD cbBuffer = 0;

// Return the file data into block of global memory allocated by
// the GlobalAlloc function; the handle to this memory will be
// returned in the hgblBuffer parameter
nResult = pClient->GetData(lpszRemoteFile, &hgblBuffer, &cbBuffer);

if (nResult != FTP_ERROR)
{
 // Lock the global memory handle, returning a pointer to the
 // contents of the file data
 lpBuffer = (LPBYTE)GlobalLock(hgblBuffer);

 // After the data has been used, the handle must be unlocked
 // and freed, otherwise a memory leak will occur
 GlobalUnlock(hgblBuffer);
 GlobalFree(hgblBuffer);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ChangeDirectory, EnableEvents, GetFile, GetTransferStatus, PutData, PutFile, RegisterEvent,
SetBufferSize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::GetDirectory Method

INT GetDirectory(
 LPTSTR lpszDirectory,
 INT cbDirectory
);

The GetDirectory method copies the current working directory on the server to the specified
buffer.

Parameters
lpszDirectory

Points to a buffer that will contain the name of the current working directory on the server. The
file pathing and name conventions must be that of the server.

cbDirectory

The maximum number of characters that may be copied into the buffer, including the
terminating null-character.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is FTP_ERROR. To get extended error information, call GetLastError.

Remarks
This method sends the PWD command to the server.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ChangeDirectory, CreateDirectory, RemoveDirectory

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::GetDirectoryFormat Method

INT GetDirectoryFormat();

The GetDirectoryFormat method returns an identifier which specifies what format is being used
by the server to list files. By default, the library will automatically determine the appropriate format,
but this value may be overridden by the SetDirectoryFormat method.

Parameters
None.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
FTP_ERROR. To get extended error information, call GetLastError.

Remarks
Refer to the SetDirectoryFormat method for a list of directory format types that are supported
by the library. This method can be used to determine which format was selected by the library
after a file listing has been retrieved.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
CloseDirectory, GetFileStatus, GetFirstFile, GetNextFile, OpenDirectory, SetDirectoryFormat

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::GetErrorString Method

INT GetErrorString(
 DWORD dwErrorCode,
 LPTSTR lpszDescription,
 INT cbDescription
);

INT GetErrorString(
 DWORD dwErrorCode,
 CString& strDescription
);

The GetErrorString method is used to return a description of a specific error code. Typically this is
used in conjunction with the GetLastError method for use with warning dialogs or as diagnostic
messages.

Parameters
dwErrorCode

The error code for which a description is returned.

lpszDescription

A pointer to the buffer that will contain a description of the specified error code. This buffer
should be at least 128 characters in length. An alternate form of the method accepts a CString
variable which will contain the error description.

cbDescription

The maximum number of characters that may be copied into the description buffer.

Return Value
If the method succeeds, the return value is the length of the description string. If the method fails,
the return value is zero, meaning that no description exists for the specified error code. Typically
this indicates that the error code passed to the method is invalid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetLastError, SetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::GetFeatures Method

DWORD GetFeatures();

The GetFeatures method returns the server features available to the client.

Parameters
None.

Return Value
If the method succeeds, the return value is one or more bit flags which specify the features that
are available to the client. If the method fails, it will return zero. Because it is possible that no
features would be enabled, a return value of zero does not always indicate an error. An
application should call GetLastError to determine if an error code has been set.

Remarks
The GetFeatures method returns a value which may be a combination of one or more of the
following bit flags:

Constant Description

FTP_FEATURE_SIZE The server supports the SIZE command to determine the size
of a file. If this feature is not enabled, the library will attempt
to use the MLST or STAT command to determine the file
size.

FTP_FEATURE_STAT The server supports using the STAT command to return
information about a specific file. If this feature is not enabled,
the client may not be able to obtain information about a
specific file such as its size, permissions or modification time.

FTP_FEATURE_MDTM The server supports the MDTM command to obtain
information about the modification time for a specific file.
This command may also be used to set the file time on the
server.

FTP_FEATURE_REST The server supports restarting file transfers using the REST
command. If this feature is not enabled, the client will not be
able to restart file transfers and must upload or download
the complete file.

FTP_FEATURE_SITE The server supports site specific commands using the SITE
command. If this feature is not enabled, no site specific
commands will be sent to the server.

FTP_FEATURE_IDLE The server supports setting the idle timeout period using the
SITE IDLE command to specify the number of seconds that
the client may idle before the server terminates the
connection.

FTP_FEATURE_CHMOD The server supports modifying the permissions of a specific
file using the SITE CHMOD command. If this feature is not
enabled, the client will not be able to set the permissions for
a file.

FTP_FEATURE_AUTH The server supports explicit SSL sessions using the AUTH
command. If this feature is not enabled, the client will only be
able to connect to a secure server that uses implicit SSL
connections. Changing this feature has no effect on
standard, non-secure connections.

FTP_FEATURE_PBSZ The server supports the PBSZ command which specifies the
buffer size used with secure data connections. If this feature
is disabled, it may prevent the client from changing the
protection level on the data channel. Changing this feature
has no effect on standard, non-secure connections.

FTP_FEATURE_PROT The server supports the PROT command which specifies the
protection level for the data channel. If this feature is
disabled, the client will be unable to change the protection
level on the data channel. Changing this feature has no effect
on standard, non-secure connections.

FTP_FEATURE_CCC The server supports the CCC command which returns the
command channel to a non-secure mode. Changing this
feature has no effect on standard, non-secure connections.

FTP_FEATURE_HOST The server supports the HOST command which enables a
client to specify the hostname after establishing a connection
with a server that supports virtual hosting.

FTP_FEATURE_MLST The server supports the MLST command which returns status
information for files. If this feature is enabled, the MLST
command will be used instead of the STAT command.

FTP_FEATURE_MFMT The server supports the MFMT command which is used to
change the last modification time for a file. If this command
is supported, it is used instead of the MDTM command to
change the modification time for a file.

FTP_FEATURE_XCRC The server supports the XCRC command which returns the
CRC-32 checksum for the contents of a specified file. This
command is used for file verification.

FTP_FEATURE_XMD5 The server supports the XMD5 command which returns an
MD5 hash for the contents of a specified file. This command
is used for file verification.

FTP_FEATURE_LANG The server supports the LANG command which sets the
language used for the current client session. Command
responses and file naming conventions will use the specified
language.

FTP_FEATURE_UTF8 The server supports the OPTS UTF-8 command which
specifies UTF-8 encoding when specifying filenames. This
feature is typically used in conjunction with setting the
default language for the client session.

FTP_FEATURE_XQUOTA The server supports the XQUOTA command which returns
quota information for the current client session.

FTP_FEATURE_UTIME The server supports the UTIME command which is used to

change the last modification time for a specified file.

When a client connection is first established, features are enabled based on the server type and
the server's response to the FEAT command. However, as the client issues commands to the
server, if the server reports that the command is unrecognized that feature will automatically be
disabled in the client.

For example, the first time an application calls the GetFileSize method to determine the size of a
file, the library will try to use the SIZE command. If the server reports that the SIZE command is not
available, that feature will be disabled and the library will not use the command again during the
session unless it is explicitly re-enabled. This is designed to prevent the library from repeatedly
sending invalid commands to a server, which may result in the server aborting the connection.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
EnableFeature, SetFeatures

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::GetFile Method

INT GetFile(
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszRemoteFile,
 DWORD dwOptions
 DWORD dwOffset
);

The GetFile method transfers the specified file on the server to the local system.

Parameters
lpszLocalFile

A pointer to a string that specifies the file on the local system that will be created, overwritten or
appended to. The file pathing and name conventions must be that of the local host.

lpszRemoteFile

A pointer to a string that specifies the file on the server that will be transferred to the local
system. The file naming conventions must be that of the host operating system.

dwOptions

An unsigned integer that specifies one or more options. This parameter may be any one of the
following values:

Constant Description

FTP_TRANSFER_DEFAULT This option specifies the default transfer mode should be
used. If the local file exists, it will be overwritten with the
contents of the downloaded file.

FTP_TRANSFER_APPEND This option specifies that if the local file exists, the contents
of file on the server is appended to the local file. If the local
file does not exist, it is created.

dwOffset

A byte offset which specifies where the file transfer should begin. The default value of zero
specifies that the file transfer should start at the beginning of the file. A value greater than zero
is typically used to restart a transfer that has not completed successfully. Note that specifying a
non-zero offset requires that the server support the REST command to restart transfers.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is FTP_ERROR. To get extended error information, call GetLastError.

Remarks
This method will cause the current thread to block until the file transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the FTP_EVENT_PROGRESS event will be
periodically fired, enabling the application to update any user interface controls. Event notification
must be enabled, either by calling EnableEvents, or by registering a callback function using the
RegisterEvent method.

To determine the current status of a file transfer while it is in progress, use the GetTransferStatus
method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ChangeDirectory, EnableEvents, GetMultipleFiles, GetTransferStatus, PutFile, PutMultipleFiles,
RegisterEvent, SetBufferSize, VerifyFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::GetFileList Method

INT GetFileList(
 LPCTSTR lpszDirectory,
 DWORD dwOptions,
 LPTSTR lpszBuffer,
 INT nMaxLength
);

INT GetFileList(
 LPCTSTR lpszDirectory,
 DWORD dwOptions,
 CString& strBuffer
);

The GetFileList method returns an unparsed list of files in the specified directory.

Parameters
lpszDirectory

A pointer to a string that specifies the name of a directory and/or a wildcard file mask. The
format of the directory name must match the file naming conventions of the server. If this
parameter is NULL or points to an empty string, the current working directory will be used.

dwOptions

An unsigned integer that specifies one or more options. This parameter may be any one of the
following values:

Constant Description

FTP_LIST_DEFAULT This option specifies the server should return a complete listing
of files in the specified directory with as much detail as
possible. This typically means that the file size, date, ownership
and access rights will be returned to the client. Information
about the files are returned in lines of text, with each line
terminated by carriage return and linefeed (CRLF) characters.
The exact format of the data returned is specific to the server
operating system.

FTP_LIST_NAMEONLY This option specifies the server should only return a list of file
names, with no additional information about the file. Each file
name is terminated by carriage return and linefeed (CRLF)
characters.

lpszBuffer

A pointer to a string buffer that will contain the list of files when the function returns. This buffer
should be large enough to store the complete file listing and a terminating null character. If the
buffer is smaller than the total amount of data returned by the server, the data will be truncated.
This parameter cannot be NULL.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer, including the terminating null character.

Return Value

 If the function succeeds, the return value is the number of bytes copied into the string buffer, not
including the terminating null character. If the function fails, the return value is FTP_ERROR. To get
extended error information, call FtpGetLastError.

Remarks
The GetFileList method returns a list of files in the specified directory, copying the data to a string
buffer. Unlike the other methods like EnumFiles that parse a directory listing and return
information in an FTPFILESTATUS structure, this method returns the unparsed file list data. The
actual format of the data that is returned depends on the operating system and how the server
implements file listings. For example, UNIX servers typically return the output from the /bin/ls
command.

Some servers may not support file listings for any directory other than the current working
directory. If an error is returned when specifying a directory name, try changing the current
working directory using the ChangeDirectory method and then call this method again, passing
NULL or an empty string as the lpszDirectory parameter.

This method can be particularly useful when the client is connected to a server that returns file
listings in a format that is not recognized by the library. The application can retrieve the unparsed
file listing from the server and parse the contents. Note that if you specify the
FTP_LIST_NAMEONLY option, the data will only contain a list of file names and there will be no
way for the application to know if they represent a regular file or a subdirectory.

This method is supported for both FTP and SFTP (SSH) connections, however the format of the
data may differ depending on which protocol is used. Most UNIX based FTP servers will not list
files and subdirectories that begin with a period, however most SFTP servers will return a list of all
files, even those that begin with a period.

This function will cause the current thread to block until the file listing completes, a timeout occurs
or the operation is canceled.

Example
CString strFileList;

nResult = pClient->GetFileList(NULL, FTP_LIST_DEFAULT, strFileList);

if (nResult != FTP_ERROR)
 pEditCtl->SetWindowText(strFileList);
else
{
 pClient->ShowError();
 return;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CloseDirectory, EnumFiles, GetDirectoryFormat, GetFirstFile, OpenDirectory, GetNextFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::GetFileNameEncoding Method

INT GetFileNameEncoding();

The GetFileNameEncoding method returns an identifier which specifies what type of encoding is
being used when file names are sent to the server.

Parameters
None.

Return Value
If the method succeeds, the return value is the type of encoding that is used. If the method fails,
the return value is FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
Refer to the SetFileNameEncoding method for a list of encoding types that are supported by the
library.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
Command, EnableFeature GetFeatures, SetFileNameEncoding, SetFeatures

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::GetFilePermissions Method

INT GetFilePermissions(
 LPCTSTR lpszFileName,
 LPDWORD lpdwPermissions
);

The GetFilePermissions method returns information about the access permissions for a specific
file on the server.

Parameters
lpszFileName

A pointer to a string which contains the name of the file that the access permissions are to be
returned for. The filename cannot contain any wildcard characters.

lpdwPermissions

A pointer to an unsigned integer which will contain the access permissions for the file when the
method returns. The file permissions are represented as bit flags, and may be one or more of
the following values:

Constant Description

FILE_OWNER_READ The owner has permission to open the file for reading. If the
current user is the owner of the file, this grants the user the
right to download the file to the local system.

FILE_OWNER_WRITE The owner has permission to open the file for writing. If the
current user is the owner of the file, this grants the user the
right to replace the file. If this permission is set for a directory,
this grants the user the right to create and delete files.

FILE_OWNER_EXECUTE The owner has permission to execute the contents of the file.
The file is typically either a binary executable, script or batch
file. If this permission is set for a directory, this may also grant
the user the right to open that directory and search for files in
that directory.

FILE_GROUP_READ Users in the specified group have permission to open the file
for reading. If the current user is in the same group as the file
owner, this grants the user the right to download the file.

FILE_GROUP_WRITE Users in the specified group have permission to open the file
for writing. On some platforms, this may also imply
permission to delete the file. If the current user is in the same
group as the file owner, this grants the user the right to
replace the file. If this permission is set for a directory, this
grants the user the right to create and delete files.

FILE_GROUP_EXECUTE Users in the specified group have permission to execute the
contents of the file. If this permission is set for a directory, this
may also grant the user the right to open that directory and
search for files in that directory.

FILE_WORLD_READ All users have permission to open the file for reading. This
permission grants any user the right to download the file to

the local system.

FILE_WORLD_WRITE All users have permission to open the file for writing. This
permission grants any user the right to replace the file. If this
permission is set for a directory, this grants any user the right
to create and delete files.

FILE_WORLD_EXECUTE All users have permission to execute the contents of the file. If
this permission is set for a directory, this may also grant all
users the right to open that directory and search for files in
that directory.

Return Value
If the method succeeds, the return value is a result code. If the method fails, the return value is
FTP_ERROR. To get extended error information, call GetLastError.

Remarks
This method uses the STAT command to retrieve information about the specified file. On some
systems, the STAT command will not return information on files that contain spaces or tabs in the
filename. In this case, the method will fail and value pointed to by the lpdwPermissions parameter
will be zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetFileStatus, SetFilePermissions

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::GetFileSize Method

INT GetFileSize(
 LPCTSTR lpszFileName,
 LPDWORD lpdwFileSize
);

The GetFileSize method returns the size of the specified file on the server.

Parameters
lpszFileName

Points to a string that specifies the name of the remote file.

lpdwFileSize

Points to an unsigned integer that will contain the size of the specified file in bytes.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is FTP_ERROR. To get extended error information, call GetLastError.

Remarks
This method uses the SIZE command to determine the length of the specified file. Not all servers
implement this command, in which case the method call will fail, and the lpdwFileSize parameter
will be set to zero.

Note that if the file on the server is a text file, it is possible that the value returned by this method
will not match the size of the file when it is downloaded to the local system. This is because
different operating systems use different sequences of characters to mark the end of a line of text,
and when a file is transferred in text mode, the end of line character sequence is automatically
converted to a carriage return-linefeed, which is the convention used by the Windows platform.

Some FTP servers will refuse to return the size of a file if the current file type is set to
FILE_TYPE_ASCII because the size of a text file on the server may not accurately reflect what the
size of the file will be on the local system.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetFileStatus, OpenDirectory

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::GetFileStatus Method

BOOL GetFileStatus(
 LPCTSTR lpszFileName,
 LPFTPFILESTATUS lpFileStatus
);

The GetFileStatus method returns information about a specific file on the server.

Parameters
lpszFileName

A pointer to a string which contains the name of the file that status information will be returned
on. The file name cannot contain any wildcard characters.

lpFileStatus

A pointer to an FTPFILESTATUS structure which contains information about the file returned by
the server.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
This method uses the STAT command to retrieve information about the specified file. Unlike the
GetFirstFile and GetNextFile methods, which read through a file list returned on the data
channel, this method reads the result of a command string. For applications that need information
about a specific file, using this method can be considerably faster than iterating through all of the
files in a given directory. Note that not all servers support using the command in this way.

On some systems, the STAT command will not return information on files that contain spaces or
tabs in the filename. In this case, the FTPFILESTATUS structure members will be empty strings and
zero values.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CloseDirectory, GetDirectoryFormat, GetFirstFile, GetNextFile, GetTransferStatus, OpenDirectory,
SetDirectoryFormat

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::GetFileTime Method

INT GetFileTime(
 LPCTSTR lpszFileName,
 LPSYSTEMTIME lpFileTime,
 BOOL bLocalize
);

The GetFileTime method returns the modification time for the specified file on the server.

Parameters
lpszFileName

Points to a string that specifies the name of the remote file.

lpFileTime

Points to a SYSTEMTIME structure that will be set to the current modification time for the
remote file.

bLocalize

A boolean flag which specifies if the file time is localized to the current timezone. If this value is
non-zero, then the file time is adjusted to that the time is local to the current system. If this
value is zero, the file time is returned in UTC time.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is FTP_ERROR. To get extended error information, call GetLastError.

Remarks
The GetFileTime method can be used to determine the date and time that a file was last modified
on the server. The time may either be localized to the current system, or it may be returned as
UTC time. If you plan on changing the values returned in the SYSTEMTIME structure and then
calling SetFileTime method to modify the file time on the server, you should do not localize the
time.

This method uses the MDTM command to determine the modification time of the specified file. If
the server does not support this command, the method will attempt to use the STAT command to
determine the file modification time.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetFileStatus, OpenDirectory, SetFileTime

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::GetFileType Method

UINT GetFileType();

The GetFileType method returns the default file type for the current client session.

Parameters
None.

Return Value
If the method succeeds, the return value is an integer value that identifies the current file type. If
the method fails, the return value is FTP_ERROR. To get extended error information, call
GetLastError.

Remarks
The GetFileType method will return one of the following values:

Value Description

FILE_TYPE_AUTO The file type should be automatically determined based on the file
name extension. If the file extension is unknown, the file type
should be determined based on the contents of the file. The
library has an internal list of common text file extensions, and
additional file extensions can be registered using the
RegisterFileType method.

FILE_TYPE_ASCII The file is a text file using the ASCII character set. For those servers
which mark the end of a line with characters other than a carriage
return and linefeed, it will be converted to the native client format.
This is the file type used for directory listings.

FILE_TYPE_EBCDIC The file is a text file using the EBCDIC character set. Local files will
be converted to EBCDIC when sent to the server. Remote files will
be converted to the native ASCII character set when retrieved
from the server.

FILE_TYPE_IMAGE The file is a binary file and no data conversion of any type is
performed on the file. This is the default file type for most data
files and executables. If the type of file cannot be automatically
determined, it will always be considered a binary file.

If this method is called when connected to an SFTP (SSH) server, the default file type will always be
FILE_TYPE_IMAGE because SFTP does not differentiate between text files and binary files.

The SetFileType function can be used to change the default file type. To determine the automatic
file type for a specific file based on its extension or contents, use the GetAutoFileType method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also

GetAutoFileType, OpenFile, RegisterFileType, SetFileMode, SetFileStructure, SetFileType,
SetPassiveMode

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::GetFirstFile Method

BOOL GetFirstFile(
 LPFTPFILESTATUS lpFileStatus
);

The GetFirstFile method returns the first file in the directory listing returned by the server after a
call to the OpenDirectory method.

Parameters
lpFileStatus

A pointer to an FTPFILESTATUS structure which contains information about the file returned by
the server.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
This file list information returned by the server is cached by the library, allowing you to use this
method to reposition back to the beginning of the file list.

Example
if (pClient->OpenDirectory() != FTP_ERROR)
{
 FTPFILESTATUS ftpFile;
 BOOL bResult;

 bResult = pClient->GetFirstFile(&ftpFile);
 while (bResult)
 {
 // The ftpFile structure contains information about the file
 bResult = pClient->GetNextFile(&ftpFile);
 }

 pClient->CloseDirectory();
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CloseDirectory, GetDirectoryFormat, GetFileStatus, GetNextFile, OpenDirectory,
SetDirectoryFormat

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::GetHandle Method

HCLIENT GetHandle();

The GetHandle method returns the client handle associated with the current instance of the class.

Parameters
None.

Return Value
This method returns the client handle associated with the current instance of the class object. If
there is no active client session, the value INVALID_CLIENT will be returned.

Remarks
This method is used to obtain the client handle created by the class for use with the SocketTools
API.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
AttachHandle, DetachHandle, IsInitialized

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::GetLastError Method

DWORD GetLastError();

DWORD GetLastError(
 CString& strDescription
);

Parameters
strDescription

A string which will contain a description of the last error code value when the method returns. If
no error has been set, or the last error code has been cleared, this string will be empty.

Return Value
The return value is the last error code value for the current thread. Functions set this value by
calling the SetLastError method. The Return Value section of each reference page notes the
conditions under which the method sets the last error code.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. You should call
the GetLastError method immediately when a method's return value indicates that an error has
occurred. That is because some methods call SetLastError(0) when they succeed, clearing the
error code set by the most recently failed method.

Most methods will set the last error code value when they fail; a few methods set it when they
succeed. Function failure is typically indicated by a return value such as FALSE, NULL,
INVALID_CLIENT or FTP_ERROR. Those methods which call SetLastError when they succeed are
noted on the method reference page.

The description of the error code is the same string that is returned by the GetErrorString
method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
GetErrorString, SetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::GetMultipleFiles Method

INT GetMultipleFiles(
 LPCTSTR lpszLocalDirectory,
 LPCTSTR lpszRemoteDirectory,
 LPCTSTR lpszFileMask
);

The GetMultipleFiles method copies one or more files from the server to the local host, using the
specified wildcard.

Parameters
lpszLocalDirectory

Pointer to a string which specifies the local directory where the files will be copied to. A NULL
pointer or empty string specifies that files should be copied to the current working directory.

lpszRemoteDirectory

Pointer to a string which specifies the remote directory where the files will be copied from. A
NULL pointer or empty string specifies that the files should be copied from the current working
directory on the server.

lpszFileMask

Pointer to a string which specifies the files that are to be copied from the server to the local
system. The file mask should follow the native conventions used for wildcard file matches on the
server.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
FTP_ERROR. To get extended error information, call GetLastError.

Remarks
The GetMultipleFiles method is used to transfer files from the server to the local host which
match a specified wildcard file mask. This method requires that the client be able to automatically
list and parse directory listings from the server, otherwise an error will be returned. All files will be
transferred using the current file type as specified by the SetFileType method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ChangeDirectory, GetFile, PutFile, PutMultipleFiles, SetFileType

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::GetNextFile Method

BOOL GetNextFile(
 LPFTPFILESTATUS lpFileStatus
);

The GetNextFile method returns the next file in the directory listing returned by the server.

Parameters
lpFileStatus

A pointer to an FTPFILESTATUS structure which contains information about the file returned by
the server.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The GetNextFile method returns the next file in the directory listing. If the last file has been
returned, the method will return zero and the client should call the CloseDirectory method to
close the directory.

Example
if (pClient->OpenDirectory() != FTP_ERROR)
{
 FTPFILESTATUS ftpFile;
 BOOL bResult;

 bResult = pClient->GetFirstFile(&ftpFile);
 while (bResult)
 {
 // The ftpFile structure contains information about the file
 bResult = pClient->GetNextFile(&ftpFile);
 }

 pClient->CloseDirectory();
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CloseDirectory, GetDirectoryFormat, GetFileStatus, GetFirstFile, OpenDirectory, SetDirectoryFormat

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::GetPriority Method

INT GetPriority();

The GetPriority method returns a value which specifies the priority of file transfers.

Parameters
None.

Return Value
If the method succeeds, the return value is the current file transfer priority. If the method fails, the
return value is FTP_ERROR. To get extended error information, call GetLastError.

Remarks
The GetPriority method can be used to determine the current priority assigned to file transfers
performed by the client. It may be one of the following values:

Constant Description

FTP_PRIORITY_NORMAL The default priority which balances resource utilization and
transfer speed. It is recommended that most applications use
this priority.

FTP_PRIORITY_BACKGROUND This priority significantly reduces the memory, processor and
network resource utilization for the transfer. It is typically used
with worker threads running in the background when the
amount of time required perform the transfer is not critical.

FTP_PRIORITY_LOW This priority lowers the overall resource utilization for the
transfer and meters the bandwidth allocated for the transfer.
This priority will increase the average amount of time required
to complete a file transfer.

FTP_PRIORITY_HIGH This priority increases the overall resource utilization for the
transfer, allocating more memory for internal buffering. It can
be used when it is important to transfer the file quickly, and
there are no other threads currently performing file transfers at
the time.

FTP_PRIORITY_CRITICAL This priority can significantly increase processor, memory and
network utilization while attempting to transfer the file as
quickly as possible. If the file transfer is being performed in the
main UI thread, this priority can cause the application to appear
to become non-responsive. No events will be generated during
the transfer.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also

SetPriority

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::GetProxyType Method

INT GetProxyType();

The GetProxyType method returns the type of proxy that the client is connected to. By default,
no proxy server is specified and this method returns a value of FTP_PROXY_NONE. For a list of
possible proxy server types, refer to the ProxyConnect method.

Parameters
None.

Return Value
If the method succeeds, the return value identifies the type of proxy that the client is connected to.
If the method fails, the return value is FTP_ERROR. To get extended error information, call
GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Connect, ProxyConnect

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::GetResultCode Method

INT GetResultCode();

The GetResultCode method reads the result code returned by the server in response to a
command. The result code is a three-digit numeric code, and indicates if the operation succeeded,
failed or requires additional action by the client.

Parameters
None.

Return Value
If the method succeeds, the return value is the result code. If the method fails, the return value is
FTP_ERROR. To get extended error information, call GetLastError.

Remarks
Result codes are three-digit numeric values returned by the server. They may be broken down into
the following ranges:

Value Description

100-
199

Positive preliminary result. This indicates that the requested action is being initiated, and
the client should expect another reply from the server before proceeding.

200-
299

Positive completion result. This indicates that the server has successfully completed the
requested action.

300-
399

Positive intermediate result. This indicates that the requested action cannot complete
until additional information is provided to the server.

400-
499

Transient negative completion result. This indicates that the requested action did not
take place, but the error condition is temporary and may be attempted again.

500-
599

Permanent negative completion result. This indicates that the requested action did not
take place.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
Command, GetResultString

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::GetResultString Method

INT GetResultString(
 LPTSTR lpszResult,
 INT cbResult
);

INT GetResultString(
 CString& strResult
);

The GetResultString method returns the last message sent by the server along with the result
code.

Parameters
lpszResult

A pointer to the buffer that will contain the result string returned by the server. An alternate
form of the method accepts a CString argument which will contain the result string returned by
the server.

cbResult

The maximum number of characters that may be copied into the result string buffer, including
the terminating null character.

Return Value
If the method succeeds, the return value is the length of the result string. If a value of zero is
returned, this means that no result string was sent by the server. If the method fails, the return
value is FTP_ERROR. To get extended error information, call GetLastError.

Remarks
The GetResultString method is most useful when an error occurs because the server will typically
include a brief description of the cause of the error. This can then be parsed by the application or
displayed to the user. The result string is updated each time the client sends a command to the
server and then calls GetResultCode to obtain the result code for the operation.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Command, GetResultCode

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::GetSecurityInformation Method

BOOL GetSecurityInformation(
 LPSECURITYINFO lpSecurityInfo
);

The GetSecurityInformation method returns security protocol, encryption and certificate
information about the current client connection.

Parameters
lpSecurityInfo

A pointer to a SECURITYINFO structure which contains information about the current client
connection. The dwSize member of this structure must be initialized to the size of the structure
before passing the address of the structure to this method.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
This method is used to obtain security related information about the current client connection to
the server. It can be used to determine if a secure connection has been established, what security
protocol was selected, and information about the server certificate. Note that a secure connection
has not been established, the dwProtocol structure member will contain the value
SECURITY_PROTOCOL_NONE.

Example
The following example notifies the user if the connection is secure or not:

SECURITYINFO securityInfo;
securityInfo.dwSize = sizeof(SECURITYINFO);

if (pClient->GetSecurityInformation(&securityInfo))
{
 if (securityInfo.dwProtocol == SECURITY_PROTOCOL_NONE)
 {
 MessageBox(NULL, _T("The connection is not secure"),
 _T("Connection"), MB_OK);
 }
 else
 {
 if (securityInfo.dwCertStatus == SECURITY_CERTIFICATE_VALID)
 {
 MessageBox(NULL, _T("The connection is secure"),
 _T("Connection"), MB_OK);
 }
 else
 {
 MessageBox(NULL, _T("The server certificate not valid"),
 _T("Connection"), MB_OK);
 }
 }
}

Requirements

Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Connect, CreateSecurityCredentials, SECURITYINFO

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::GetServerInformation Method

INT GetServerInformation(
 LPTSTR lpszSystemInfo,
 INT nMaxLength
);

The GetServerInformation method returns information about the server, typically including the
operating system type, version and platform.

Parameters
lpszSystemInfo

A pointer to the buffer that will contain the system information returned by the server.

nMaxLength

The maximum number of characters that can be copied into the buffer, including the
terminating null character.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is FTP_ERROR. To get extended error information, call GetLastError.

Remarks
This method sends the SYST command to the server. The first word will identify the type of
operating system. The format for the remaining information depends on the server type. Typically
it is a description of the operating system version and hardware platform.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Connect, GetClientQuota, GetServerStatus, GetServerTimeZone, GetServerType

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::GetServerStatus Method

INT GetServerStatus(
 LPTSTR lpszStatus,
 INT nMaxLength
);

INT GetServerStatus(
 CString& strStatus
);

The GetServerStatus method requests that the server return status information about itself.

Parameters
lpszStatus

A pointer to the buffer that will contain the system status returned by the server. The alternate
form of this method also accepts a CString object which will contain the system status string.

nMaxLength

The maximum number of characters that can be copied into the buffer, including the
terminating null character.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is FTP_ERROR. To get extended error information, call GetLastError.

Remarks
This method sends the STAT command to the server. The format for the information returned
depends on the server type. Typically it is a description of the server platform, version, current user
and file transfer options.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetServerInformation, GetServerType

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::GetServerTimeZone Method

INT GetServerTimeZone(
 LPLONG lpnTimeZone
);

The GetServerTimeZone method returns the timezone for the current server.

Parameters
lpnTimeZone

A pointer to a signed long integer which will contain the timezone offset in seconds.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
This method sends the SITE ZONE command to the server to determine its timezone. The value
returned is expressed as the number of seconds offset from Coordinated Universal Time (UTC). A
positive value specifies a time west of UTC, while a negative value specifies a time east of UTC. For
example, a value of 28800 would specify an offset of 8 hours west of UTC, which is the Pacific
timezone.

The SIZE ZONE command is an extension that is not supported by all servers. If the server
timezone cannot be determined, the method will fail and the value pointed to by the
lpnTimeZone parameter will be zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
GetClientQuota, GetServerInformation, GetServerStatus

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::GetServerType Method

INT GetServerType();

The GetServerType method returns the type of server the client has connected to.

Parameters
None.

Return Value
If the method succeeds, the return value is a numeric value which indicates the server type. If the
method fails, the return value is FTP_ERROR. To get extended error information, call GetLastError.

Remarks
This method sends the SYST command to the server to determine the server type. The following
server types are recognized by the library:

Constant Description

FTP_SERVER_UNKNOWN The server type could not be determined by issuing the
SYST command. The server may not support the command,
or the command may only be allowed when issued by an
authenticated user.

FTP_SERVER_MSDOS The server is running on an MS-DOS based operating
system. The server expects file pathing and naming
conventions according to the standard MS-DOS format and
returns directory listings similar to the output of the DIR
command.

FTP_SERVER_WINDOWS The server is running on a Windows based operating
system. The server expects file pathing and naming
conventions according to the standard Windows long
filename format, and returns directory listings similar to the
output of the DIR command. Note that Windows servers
may be configured to return file and directory information
in a format similar to UNIX systems, in which case the
system may be identified as UNIX even though it is actually
running on a Windows platform.

FTP_SERVER_VMS The server is running on a DEC VMS based operating
system. The server expects file pathing and naming
conventions specific to that operating system. Note that
VMS servers may be configured to return file and directory
information in a format similar to UNIX systems, in which
case the system may be identified as UNIX even though it is
actually running on a VMS platform.

FTP_SERVER_NETWARE The server is running on a NetWare based operating
system. The server expects file pathing and naming
conventions similar to the standard Windows long filename
format, and returns directory listings that are similar to UNIX
systems with the exception of the access and permissions
flags for the file. Note that a NetWare system may return

listings in different formats based on the filesystem and site
specific options specified.

FTP_SERVER_OTHER The server type was not recognized. An attempt will be
made to automatically determine the correct file pathing
and naming conventions used by the server. To obtain a list
of files on the server, it may be necessary to use the
SetDirectoryFormat method to specify the directory listing
format.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
GetClientQuota, GetServerInformation, GetServerStatus, SetDirectoryFormat

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::GetStatus Method

INT GetStatus();

The GetStatus method the current status of the client session.

Parameters
None.

Return Value
If the method succeeds, the return value is the client status code. If the method fails, the return
value is FTP_ERROR. To get extended error information, call GetLastError.

Remarks
The GetStatus method returns a numeric code which identifies the current state of the client
session. The following values may be returned:

Value Constant Description

0 FTP_STATUS_UNUSED No connection has been established.

1 FTP_STATUS_IDLE The client is current idle and not sending or
receiving data.

2 FTP_STATUS_CONNECT The client is establishing a connection with the
server.

3 FTP_STATUS_READ The client is reading data from the server.

4 FTP_STATUS_WRITE The client is writing data to the server.

5 FTP_STATUS_DISCONNECT The client is disconnecting from the server.

6 FTP_STATUS_OPENFILE The client is opening a data connection to the
server.

7 FTP_STATUS_CLOSEFILE The client is closing the data connection to the
server.

8 FTP_STATUS_GETFILE The client is downloading a file from the server.

9 FTP_STATUS_PUTFILE The client is uploading a file to the server.

10 FTP_STATUS_FILELIST The client is retrieving a file listing from the server.

In a multithreaded application, any thread in the current process may call this method to obtain
status information for the specified client session. To obtain status information about a file transfer,
use the GetTransferStatus method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
IsBlocking, IsReadable, IsWritable, GetTransferStatus

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::GetText Method

INT GetText(
 LPCTSTR lpszRemoteFile,
 LPTSTR lpszBuffer,
 INT nMaxLength
);

The GetText method copies the contents of a text file on the server to the specified string buffer.

Parameters
lpszRemoteFile

A pointer to a string that specifies a text file on the server. The file pathing and naming
conventions must be that of the host operating system.

lpszBuffer

A pointer to a string buffer which will contain the contents of the text file when the method
returns. This buffer should be large enough to store the contents of the file, including a
terminating null character. This parameter cannot be NULL.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer. This value must be larger than zero. If this value is smaller than the actual size of
the text file, the data returned will be truncated.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is FTP_ERROR. To get extended error information, call GetLastError.

Remarks
The GetText method is used to download a text file and store the contents in a string buffer. This
method will always set the file type to FILE_TYPE_ASCII before downloading the file, and will
restore the default file type before the method returns. Because binary files can include embedded
null characters, this method should only be used with known text files.

This method has been included as a convenience for applications that need to retrieve relatively
small text files and manipulate the contents as a string. If the Unicode version of this method is
called, the contents of the text file is automatically converted to a Unicode string. If the size of the
file is unknown or the text file is very large, it is recommended that you use the GetData or
GetFile methods.

If you use the GetFileSize method to determine how large the string buffer should be prior to
calling this method, it is important to be aware that the actual number of characters may differ
based on the end-of-line conventions used by the host operating system. For example, if you call
GetFileSize to obtain the size of a text file on a UNIX system, the value will not be large enough
to store the complete file because UNIX uses a single linefeed (LF) character to indicate the end-
of-line, while a Windows system will use a carriage-return and linefeed (CRLF) pair. To
accommodate this difference, you should always allocate extra memory for the string buffer to
store the additional end-of-line characters.

FTP_EVENT_PROGRESS event will be periodically fired, enabling the application to update any user
interface controls. Event notification must be enabled, either by calling EnableEvents, or by
registering a callback function using the RegisterEvent method.

To determine the current status of a file transfer while it is in progress, use the GetTransferStatus
method.

Example
LPTSTR lpszBuffer = (LPTSTR)calloc(MAXFILESIZE, sizeof(TCHAR));

if (lpszBuffer == NULL)
 return;

nResult = pClient->GetText(lpszRemoteFile, lpszBuffer, MAXFILESIZE);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ChangeDirectory, EnableEvents, GetData, GetFile, GetTransferStatus, PutData, PutFile,
RegisterEvent, SetBufferSize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::GetTimeout Method

INT GetTimeout();

The GetTimeout method returns the number of seconds the client will wait for a response from
the server. Once the specified number of seconds has elapsed, the method will fail and return to
the caller.

Parameters
None.

Return Value
If the method succeeds, the return value is the timeout period in seconds. If the method fails, the
return value is FTP_ERROR. To get extended error information, call GetLastError.

Remarks
The timeout value is only used with blocking client connections. A value of zero indicates that the
default timeout period of 20 seconds should be used.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
Connect, IsReadable, IsWritable, Read, SetTimeout, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::GetTransferStatus Method

INT GetTransferStatus(
 LPFTPTRANSFERSTATUS lpStatus
);

INT GetTransferStatus(
 LPFTPTRANSFERSTATUSEX lpStatus
);

The GetTransferStatus method returns information about the current file transfer in progress.

Parameters
lpStatus

A pointer to an FTPTRANSFERSTATUS or FTPTRANSFERSTATUSEX structure which contains
information about the status of the current file transfer.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
FTP_ERROR. To get extended error information, call GetLastError.

Remarks
The GetTransferStatus method returns information about the current file transfer, including the
average number of bytes transferred per second and the estimated amount of time until the
transfer completes. If there is no file currently being transferred, this method will return the status
of the last successful transfer made by the client.

The dwBytesTotal and dwBytesCopied members of the FTPTRANSFERSTATUSEX structure are
declared as unsigned 64-bit integers rather than 32-bit integers. To obtain accurate file transfer
information, this extended version of the structure should be used with files that are larger than
4GiB.

In a multithreaded application, any thread in the current process may call this method to obtain
status information for the specified client session.

If the option FTP_OPTION_HIRES_TIMER has been specified when connecting to the server, the
values of the dwTimeElapsed and dwTimeEstimated members of the FTPTRANSFERSTATUS and
FTPTRANSFERSTATUSEX structure will be in milliseconds instead of seconds. You can use this
option to obtain more accurate elapsed times when uploading or downloading small files over a
fast network connection.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
EnableEvents, GetFileStatus, GetStatus, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::IsBlocking Method

BOOL IsBlocking();

The IsBlocking method is used to determine if the client is currently performing a blocking
operation.

Parameters
None.

Return Value
If the client is performing a blocking operation, the method returns a non-zero value. If the client
is not performing a blocking operation, or the client handle is invalid, the method returns zero.

Remarks
Because a blocking operation can allow the application to be re-entered (for example, by pressing
a button while the operation is being performed), it is possible that another blocking method may
be called while it is in progress. Since only one thread of execution may perform a blocking
operation at any one time, an error would occur. The IsBlocking method can be used to
determine if the client is already blocked, and if so, take some other action (such as warning the
user that they must wait for the operation to complete).

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Cancel, GetStatus, IsConnected, IsInitialized, IsReadable, IsWritable, Read, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::IsConnected Method

BOOL IsConnected();

The IsConnected method is used to determine if the client is currently connected to a server.

Parameters
None.

Return Value
If the client is connected to a server, the method returns a non-zero value. If the client is not
connected, or the client handle is invalid, the method returns zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
GetStatus, IsBlocking, IsInitialized, IsReadable, IsWritable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::IsInitialized Method

BOOL IsInitialized();

The IsInitialized method returns whether or not the class object has been successfully initialized.

Return Value
This method returns a non-zero value if the class object has been successfully initialized. A return
value of zero indicates that the runtime license key could not be validated or the networking
library could not be loaded by the current process.

Remarks
When an instance of the class is created, the class constructor will attempt to initialize the
component with the runtime license key that was created when SocketTools was installed. If the
constructor is unable to validate the license key or load the networking libraries, this initialization
will fail.

If SocketTools was installed with an evaluation license, the application cannot be redistributed to
another system. The class object will fail to initialize if the application is executed on another
system, or if the evaluation period has expired. To redistribute your application, you must
purchase a development license which will include the runtime key that is needed to redistribute
your software to other systems. Refer to the Developer's Guide for more information.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
CFtpClient, IsBlocking, IsConnected

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::IsReadable Method

BOOL IsReadable(
 INT nTimeout,
 LPDWORD lpdwAvail
);

The IsReadable method is used to determine if data is available to be read from the server.

Parameters
nTimeout

Timeout for server response, in seconds. A value of zero specifies that the connection should be
polled without blocking the current thread.

lpdwAvail

A pointer to an unsigned integer which will contain the number of bytes available to read. This
parameter may be NULL if this information is not required.

Return Value
If the client can read data from the server within the specified timeout period, the function returns
a non-zero value. If the client cannot read any data, the method returns zero.

Remarks
On some platforms, this value will not exceed the size of the receive buffer (typically 64K bytes).
Because of differences between TCP/IP stack implementations, it is not recommended that your
application exclusively depend on this value to determine the exact number of bytes available.
Instead, it should be used as a general indicator that there is data available to be read.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
GetStatus, IsBlocking, IsConnected, IsInitialized, IsWritable, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::IsWritable Method

BOOL IsWritable(
 INT nTimeout
);

The IsWritable method is used to determine if data can be written to the server.

Parameters
nTimeout

Timeout for server response, in seconds. A value of zero specifies that the connection should be
polled without blocking the current thread.

Return Value
If the client can write data to the server within the specified timeout period, the method returns a
non-zero value. If the client cannot write any data, the method returns zero.

Remarks
Although this method can be used to determine if some amount of data can be sent to the
remote process it does not indicate the amount of data that can be written without blocking the
client. In most cases, it is recommended that large amounts of data be broken into smaller logical
blocks, typically some multiple of 512 bytes in length.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
GetStatus, IsBlocking, IsConnected, IsInitialized, IsReadable, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::Login Method

INT Login(
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword,
 LPCTSTR lpszAccount
);

The Login method authenticates the specified user in on the server. This method must be called
after the connection has been established, and before attempting to transfer files or perform any
other method on the server.

Parameters
lpszUserName

Points to a string that specifies the user name to be used to authenticate the current client
session. If this parameter is NULL or an empty string, then the login is considered to be
anonymous.

lpszPassword

Points to a string that specifies the password to be used to authenticate the current client
session. This parameter may be NULL or an empty string if no password is required for the
specified user, or if no username has been specified.

lpszAccount

Points to a string that specifies the account name to be used to authenticate the current client
session. This parameter may be NULL or an empty string if no account name is required for the
specified user.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is FTP_ERROR. To get extended error information, call GetLastError.

Remarks
Some public FTP servers support anonymous logins, where a username and password are not
required to access the server. In this case, both the lpszUserName and lpszPassword parameters
can be NULL or specify empty strings. In most cases, access to the server using an anonymous
login is restricted, with clients only having permission to download files. Servers may also restrict
the maximum number of anonymous sessions that may be logged in at one time.

This method should only be used after calling the Logout method, enabling you to log in as
another user during the same session. Not all servers will permit a client to change user credentials
during the same session. In most cases, it is preferable to disconnect from the server and re-
connect using the new credentials rather than using this method.

This method is not supported with secure connections using the SSH protocol.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Connect, Logout, ProxyConnect

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::Logout Method

INT Logout();

The Logout method logs out the user associated with the current client session.

Parameters
None.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is FTP_ERROR. To get extended error information, call GetLastError.

Remarks
The Logout method is used when the client wants to re-authenticate using a new username and
password. Before any further action may be taken, other than disconnecting from the server, the
Login method must be called to re-authenticate the client.

It is not necessary to call this method prior to disconnecting from the server because the user
current user is automatically logged out when the Disconnect method is called.

This method is not supported with secure connections using the SSH protocol.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Connect, Disconnect, Login

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::MountStructure Method

INT MountStructure(
 LPCTSTR lpszFileSystem
);

The MountStructure method mounts a different file system or other directory data structure on
the server.

Parameters
lpszFileSystem

A pointer to a string which specifies the file system to mount on the server.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is FTP_ERROR. To get extended error information, call GetLastError.

Remarks
This method sends the SMNT command to the server, which may not be supported on some
platforms. Use of this command typically requires that the user have administrator privileges on
the server.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CreateDirectory, RemoveDirectory

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::OpenDirectory Method

INT OpenDirectory(
 LPCTSTR lpszDirectory
);

The OpenDirectory method opens the specified directory on the server.

Parameters
lpszDirectory

Pointer to the name of the directory that will be opened. The format of the directory name must
match the filename conventions used by the server. If a NULL pointer or an empty string is
specified, then the current working directory is opened.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is FTP_ERROR. To get extended error information, call GetLastError.

Remarks
The OpenDirectory method opens the specified directory on the server using the LIST command.
The contents of the directory can be read using the GetFirstFile and GetNextFile methods. The
directory listing is returned on the data channel in one of several different formats. The library can
recognize listing formats generated by UNIX, VMS and Windows servers, as well as those of other
servers which emulate one of those common formats. Once the complete directory listing has
been read, the directory must be closed by calling the CloseDirectory method.

Because the directory listing is returned on the data channel, a file transfer cannot be performed
while the directory is in the process of being read by the client. Applications which need to collect
a list of files to download should first open the directory, read the contents and store the file
names in an array. After the directory has been closed, the application can then start transferring
the files to the local system.

Some servers may not support file listings for any directory other than the current working
directory. If an error is returned when specifying a directory name, try changing the current
working directory using the ChangeDirectory method and then call this method again, passing
NULL or an empty string as the lpszDirectory parameter.

To obtain a list of all files in a directory using a single function call, use the EnumFiles method. If
the server lists files in a format that is not recognized by the library, the GetFileList method can be
used to obtain an unparsed file listing from the server.

Example
if (pClient->OpenDirectory() != FTP_ERROR)
{
 FTPFILESTATUS ftpFile;
 BOOL bResult;

 bResult = pClient->GetFirstFile(&ftpFile);
 while (bResult)
 {
 // The ftpFile structure contains information about the file
 bResult = pClient->GetNextFile(&ftpFile);
 }

 pClient->CloseDirectory();
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ChangeDirectory, CloseDirectory, EnumFiles, GetDirectoryFormat, GetFileList, GetFileStatus,
GetFirstFile, GetNextFile, SetDirectoryFormat

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::OpenFile Method

INT OpenFile(
 LPCTSTR lpszFileName,
 DWORD dwOpenMode,
 DWORD dwOffset
);

The OpenFile method creates or opens the specified file on the server.

Parameters
lpszFileName

Points to a string that specifies the name of the remote file to create or open. The file pathing
and name conventions must be that of the server.

dwOpenMode

Specifies the type of access to the file. An application can open a file for reading, create a new
file or append data to an existing file. This parameter should be one of the following values.

Constant Description

FTP_FILE_READ The file is opened for reading on the server. A data channel is
created and the contents of the file are returned to the client.

FTP_FILE_WRITE The file is opened for writing on the server. If the file does not exist,
it will be created. If it does exist, it will be overwritten.

FTP_FILE_APPEND The file is opened for writing on the server. All data will be
appended to the end of the file.

dwOffset

A byte offset which specifies where the file transfer should begin. The default value of zero
specifies that the file transfer should start at the beginning of the file. A value greater than zero
is typically used to restart a transfer that has not completed successfully. Note that specifying a
non-zero offset using FTP requires that the server support the REST command to restart
transfers.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is FTP_ERROR. To get extended error information, call GetLastError.

Remarks
Only one file may be opened at a time for each client session. Attempting to perform an action
such as uploading or downloading another file while a file is currently open will result in an error.
Typically this indicates that the application failed to call the CloseFile method.

It is strongly recommended that most applications use the GetFile or PutFile methods to perform
file transfers. These methods are easier to use, and have internal optimizations that improves the
overall data transfer rate when compared to implementing the file transfer code in your own
application.

When a file is created on the server, the file ownership and access rights are determined by the
server. Some servers may provide a method to change these attributes through site-specific
commands. Refer to the server's operating system documentation for more information about

what commands may be available.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CloseFile, GetFile, GetFileSize, GetFileTime, PutFile, SetFileTime

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::ProxyConnect Method

HCLIENT ProxyConnect(
 UINT nProxyType,
 LPCTSTR lpszProxyHost,
 UINT nProxyPort,
 LPCTSTR lpszProxyUser,
 LPCTSTR lpszProxyPassword,
 LPCTSTR lpszRemoteHost,
 UINT nRemotePort,
 UINT nTimeout,
 DWORD dwOptions
);

The ProxyConnect method establishes a connection through a proxy server.

Parameters
nProxyType

An identifier which specifies the type of proxy server that is being connected to. This value must
be defined as one of the following values:

Constant Description

FTP_PROXY_NONE This value specifies that no proxy server is being used. In this
case, the Connect method is called directly, ignoring the proxy
parameters.

FTP_PROXY_USER This value specifies that the client is not logged into the proxy
server. The USER command is sent in the format
username@ftpsite followed by the password. This is the format
used with the Gauntlet proxy server.

FTP_PROXY_LOGIN This value specifies that the client is logged into the proxy server.
The USER command is then sent in the format username@ftpsite
followed by the password. This is the format used by the
InterLock proxy server.

FTP_PROXY_OPEN This value specifies that the client is not logged into the proxy
server. The OPEN command is sent specifying the host name,
followed by the username and password.

FTP_PROXY_SITE This value specifies that the client is logged into the server. The
SITE command is sent, specifying the host name, followed by the
username and the password.

FTP_PROXY_OTHER This special proxy type specifies that another, undefined proxy
server is being used. The client connects to the proxy host, but
does not attempt to authenticate the client. The application is
responsible for negotiating with the proxy server, typically using
the Command method to send specific command sequences.

lpszProxyHost

A pointer to the name of the proxy server to connect through; this may be a fully-qualified
domain name or an IP address.

lpszProxyPort

The port number the proxy server is listening on; a value of zero specifies that the default port
number should be used.

lpszProxyUser

A pointer to the user name used to authenticate the client on the proxy server. Not all proxy
servers require this information; it is recommended that you consult the proxy server
documentation to determine if a username is required.

lpszProxyPassword

A pointer to the password used to authenticate the client on the proxy server. Not all proxy
servers require this information; it is recommended that you consult the proxy server
documentation to determine if a password is required.

lpszRemoteHost

A pointer to the name of the server to connect to; this may be a fully-qualified domain name or
an IP address.

nRemotePort

The port number the server is listening on; a value of zero specifies that the default port
number should be used. For standard connections, the default port number is 21. For secure
connections, the default port number is 990.

nTimeout

The number of seconds that the client will wait for a response from the server before failing the
current operation.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

FTP_OPTION_PASSIVE This option specifies the client should attempt to
establish the data connection with the server. When
the client uploads or downloads a file, normally the
server establishes a second connection back to the
client which is used to transfer the file data.
However, if the local system is behind a firewall or a
NAT router, the server may not be able to create
the data connection and the transfer will fail. By
specifying this option, it forces the client to establish
an outbound data connection with the server. It is
recommended that applications use passive mode
whenever possible.

FTP_OPTION_FIREWALL This option specifies the client should always use
the host IP address to establish the data connection
with the server, not the address returned by the
server in response to the PASV command. This
option may be necessary if the server is behind a
router that performs Network Address Translation
(NAT) and it returns an unreachable IP address for
the data connection. If this option is specified, it will

also enable passive mode data transfers.

FTP_OPTION_NOAUTH This option specifies the server does not require
authentication, or that it requires an alternate
authentication method. When this option is used,
the client connection is flagged as authenticated as
soon as the connection to the server has been
established. Note that using this option to bypass
authentication may result in subsequent errors
when attempting to retrieve a directory listing or
transfer a file. It is recommended that you consult
the technical reference documentation for the
server to determine its specific authentication
requirements.

FTP_OPTION_VIRTUALHOST This option specifies the server supports virtual
hosting, where multiple domains are hosted by a
server using the same external IP address. If this
option is enabled, the client will send the HOST
command to the server upon establishing a
connection.

FTP_OPTION_VERIFY This option specifies that file transfers should be
automatically verified after the transfer has
completed. If the server supports the XMD5
command, the transfer will be verified by calculating
an MD5 hash of the file contents. If the server does
not support the XMD5 command, but does support
the XCRC command, the transfer will be verified by
calculating a CRC32 checksum of the file contents. If
neither the XMD5 or XCRC commands are
supported, the transfer is verified by comparing the
size of the file. Automatic file verification is only
performed for binary mode transfers because of the
end-of-line conversion that may occur when text
files are uploaded or downloaded.

FTP_OPTION_TRUSTEDSITE This option specifies the server is trusted. The server
certificate will not be validated and the connection
will always be permitted. This option only affects
connections using either the SSL or TLS protocols.

FTP_OPTION_SECURE This option specifies the client should attempt to
establish a secure connection with the server. This
option is the same as specifying
FTP_OPTION_SECURE_IMPLICIT which immediately
performs the SSL/TLS protocol negotiation when
the connection is established.

FTP_OPTION_SECURE_IMPLICIT This option specifies the client should attempt to
immediately establish secure SSL/TLS connection
with the server. This option is typically used when
connecting to a server on port 990, which is the

default port number used for FTPS.

FTP_OPTION_SECURE_EXPLICIT This option specifies the client should establish a
standard connection to the server and then use the
AUTH command to negotiate an explicit secure
connection. This option is typically used when
connecting to the server on ports other than 990.

FTP_OPTION_SECURE_FALLBACK This option specifies the client should permit the
use of less secure cipher suites for compatibility
with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

FTP_OPTION_TUNNEL This option specifies that a tunneled TCP
connection and/or port-forwarding is being used to
establish the connection to the server. This changes
the behavior of the client with regards to internal
checks of the destination IP address and remote
port number, default capability selection and how
the connection is established. This option also
forces all connections to be outbound and enables
the firewall compatibility features in the client.

FTP_OPTION_KEEPALIVE_DATA This option specifies the client should attempt to
keep the control connection active during a file
transfer. Normally, when a data transfer is in
progress, no additional commands are issued on
the control channel until the transfer completes.
Specifying this option automatically enables the
FTP_OPTION_KEEPALIVE option and forces the
client to continue to issue NOOP commands during
the file transfer. This option only applies to FTP and
FTPS connections and has no effect on connections
using SFTP (SSH).

FTP_OPTION_PREFER_IPV6 This option specifies the client should prefer the use
of IPv6 if the server hostname can be resolved to
both an IPv6 and IPv4 address. This option is
ignored if the local system does not have IPv6
enabled, or when the hostname can only be
resolved to an IPv4 address. If the server hostname
can only be resolved to an IPv6 address, the client
will attempt to establish a connection using IPv6
regardless if this option has been specified.

FTP_OPTION_FREETHREAD This option specifies the handle returned by this
function may be used by any thread, and is not
limited to the thread which created it. The
application is responsible for ensuring that access to
the handle is synchronized across multiple threads.

FTP_OPTION_HIRES_TIMER This option specifies the elapsed time for data
transfers should be returned in milliseconds instead

of seconds. This will return more accurate transfer
times for smaller files being uploaded or
downloaded using fast network connections.

FTP_OPTION_TLS_REUSE This option specifies that TLS session reuse should
be enabled for secure connections. This option is
only supported on Windows 8.1 or Windows Server
2012 R2 and later platforms, and it should only be
used when explicitly required by the server. This
option is not compatible with servers built using
OpenSSL 1.0.2 and earlier versions which do not
provide Extended Master Secret (EMS) support as
outlined in RFC7627.

Return Value
If the method succeeds, the return value is a handle to a client session. If the method fails, the
return value is INVALID_CLIENT. To get extended error information, call GetLastError.

Remarks
This method will block the current thread until a connection has been established or the timeout
period has elapsed. To prevent it from blocking the main user interface thread, the application
should create a background worker thread and establish a connection by calling the
ProxyConnect method in that thread. If the application requires multiple simultaneous
connections, it is recommended you create a worker thread for each connection.

The username and password that is used to authenticate the client with the proxy server are not
the same as those used to login to the target server. Once a connection has been established with
the proxy server, the client must call the Login method to actually login to the server and begin a
file transfer.

If the FTP_OPTION_KEEPALIVE option is specified, a background worker thread will be created to
monitor the command channel and periodically send NOOP commands to the server if no
commands have been sent recently. This can prevent the server from terminating the client
connection during idle periods where no commands are being issued. However, it is important to
keep in mind that many servers can be configured to also limit the total amount of time a client
can be connected to the server, as well as the amount of time permitted between file transfers. If
the server does not respond to the NOOP command, this option will be automatically disabled for
the remainder of the client session.

If the FTP_OPTION_SECURE_EXPLICIT option is specified, the client will first send an AUTH TLS
command to the server. If the server does not accept this command, it will then send an AUTH SSL
command. If both commands are rejected by the server, an explicit SSL session cannot be
established. By default, both the command and data channels will be encrypted when a secure
connection is established. To change this, use the SetChannelMode method.

The dwOptions argument can be used to specify the threading model that is used by the class
when a connection is established. By default, the client session is initially attached to the thread
that created it. From that point on, until the connection is terminated, only the owner may invoke
methods in that instance of the class. The ownership of the class instance may be transferred from
one thread to another using the AttachThread method.

Specifying the FTP_OPTION_FREETHREAD option enables any thread to call methods in any
instance of the class, regardless of which thread created it. It is important to note that this option
disables certain internal safety checks which are performed by the class and may result in

unexpected behavior unless access to the class instance is synchronized. If one thread calls a
method in the class, it must ensure that no other thread will call another method at the same time
using the same instance.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Connect, ConnectUrl, CreateSecurityCredentials, Disconnect, GetSecurityInformation, Login

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::PutData Method

INT PutData(
 LPCTSTR lpszRemoteFile,
 LPBYTE lpBuffer,
 DWORD dwLength
);

INT PutData(
 LPCTSTR lpszRemoteFile,
 LPCTSTR lpszBuffer
);

The PutData method transfers the contents of the specified buffer to a file on the server.

Parameters
lpszRemoteFile

A pointer to a string that specifies the file on the server that will be created, overwritten or
appended to. The file naming conventions must be that of the host operating system.

lpBuffer

A pointer to the data that will be copied to the server and stored in the specified file. An
alternate version of the method uses a pointer to a string buffer where all of the bytes will be
written to the server up to, but not including, the terminating null character.

dwLength

The number of bytes to copy from the buffer.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is FTP_ERROR. To get extended error information, call GetLastError.

Remarks
This method will cause the current thread to block until the file transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the FTP_EVENT_PROGRESS event will be
periodically fired, enabling the application to update any user interface controls. Event notification
must be enabled, either by calling EnableEvents, or by registering a callback function using the
RegisterEvent method.

To determine the current status of a file transfer while it is in progress, use the GetTransferStatus
method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ChangeDirectory, EnableEvents, GetData, GetFile, GetTransferStatus, PutFile, RegisterEvent,
SetBufferSize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::PutFile Method

INT PutFile(
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszRemoteFile,
 DWORD dwOptions
 DWORD dwOffset
);

The PutFile method transfers the specified file on the local system to the server.

Parameters
lpszLocalFile

A pointer to a string that specifies the file that will be transferred from the local system. The file
pathing and name conventions must be that of the local host.

lpszRemoteFile

A pointer to a string that specifies the file on the server that will be created, overwritten or
appended to. The file naming conventions must be that of the host operating system.

dwOptions

An unsigned integer that specifies one or more options. This parameter may be any one of the
following values:

Constant Description

FTP_TRANSFER_DEFAULT This option specifies the default transfer mode should be
used. If the remote file exists, it will be overwritten with the
contents of the uploaded file.

FTP_TRANSFER_APPEND This option specifies that if the remote file exists, the
contents of the local file is appended to the remote file. If
the remote file does not exist, it is created.

dwOffset

A byte offset which specifies where the file transfer should begin. The default value of zero
specifies that the file transfer should start at the beginning of the file. A value greater than zero
is typically used to restart a transfer that has not completed successfully. Note that specifying a
non-zero offset requires that the server support the REST command to restart transfers.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is FTP_ERROR. To get extended error information, call GetLastError.

Remarks
This method will cause the current thread to block until the file transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the FTP_EVENT_PROGRESS event will be
periodically fired, enabling the application to update any user interface controls. Event notification
must be enabled, either by calling EnableEvents, or by registering a callback function using the
RegisterEvent method.

To determine the current status of a file transfer while it is in progress, use the GetTransferStatus
method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ChangeDirectory, EnableEvents, GetData, GetFile, GetMultipleFiles, GetTransferStatus, PutData,
PutMultipleFiles, RegisterEvent, SetBufferSize, VerifyFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::PutMultipleFiles Method

INT PutMultipleFiles(
 LPCTSTR lpszLocalDirectory,
 LPCTSTR lpszRemoteDirectory,
 LPCTSTR lpszFileMask
);

The PutMultipleFiles method copies one or more files from the local host to the server, using the
specified wildcard.

Parameters
lpszLocalDirectory

Pointer to a string which specifies the local directory where the files will be copied from. A NULL
pointer or empty string specifies that files should be copied from the current working directory.

lpszRemoteDirectory

Pointer to a string which specifies the remote directory where the files will be copied to. A NULL
pointer or empty string specifies that the files should be copied to the current working directory
on the server.

lpszFileMask

Pointer to a string which specifies the files that are to be copied from the local system to the
server. The file mask should follow the Windows conventions used for wildcard file matches.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
FTP_ERROR. To get extended error information, call GetLastError.

Remarks
The PutMultipleFiles method is used to transfer files from the local host to the server which
match a specified wildcard file mask. All files will be transferred using the current file type as
specified by the SetFileType method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ChangeDirectory, GetFile, GetMultipleFiles, PutFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::PutText Method

INT PutText(
 LPCTSTR lpszRemoteFile,
 LPCTSTR lpszBuffer
);

The PutText method creates a text file on the server using the contents of a string buffer.

Parameters
lpszRemoteFile

A pointer to a string that specifies the text file on the server that will be created or overwritten.
The file pathing and name conventions must be that of the server.

lpszBuffer

A pointer to a string that contains the text that will be stored in the file.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is FTP_ERROR. To get extended error information, call GetLastError.

Remarks
The PutText method is used to create a text file on the server from the contents of a string. If the
specified file already exists on the server, its contents will be overwritten. This method will always
set the file type to FILE_TYPE_ASCII before creating the file, and will restore the default file type
before the method returns.

If the Unicode version of this method is called, the string will be converted to UTF-8 and then
uploaded to the server. If you wish to store the contents of the string as UTF-16 Unicode on the
server, you must set the current file type to FILE_TYPE_IMAGE and use the PutData method. This
method should never be used to upload binary data.

This method will cause the current thread to block until the file transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the FTP_EVENT_PROGRESS event will be
periodically fired, enabling the application to update any user interface controls. Event notification
must be enabled, either by calling EnableEvents, or by registering a callback function using the
RegisterEvent method.

To determine the current status of a file transfer while it is in progress, use the GetTransferStatus
method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ChangeDirectory, EnableEvents, GetText, GetTransferStatus, PutData, PutFile, RegisterEvent,
SetBufferSize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::Read Method

INT Read(
 LPBYTE lpBuffer,
 INT cbBuffer
);

INT Read(
 CString& strBuffer,
 INT cbBuffer
);

The Read method reads the specified number of bytes from the client socket and copies them
into the buffer. The data may be of any type, and is not terminated with a null character.

Parameters
lpBuffer

Pointer to the buffer in which the data will be copied. An alternate form of the method accepts
a CString object which will contain the data returned from the server.

cbBuffer

The maximum number of bytes to read and copy into the specified buffer. This value must be
greater than zero.

Return Value
If the method succeeds, the return value is the number of bytes actually read. A return value of
zero indicates that the server has closed the connection and there is no more data available to be
read. If the method fails, the return value is FTP_ERROR. To get extended error information, call
GetLastError.

Remarks
When Read is called and the client is in non-blocking mode, it is possible that the method will fail
because there is no available data to read at that time. This should not be considered a fatal error.
Instead, the application should simply wait to receive the next asynchronous notification that data
is available.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
EnableEvents, GetData, GetFile, IsBlocking, IsReadable, IsWritable, RegisterEvent, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::RegisterEvent Method

INT RegisterEvent(
 UINT nEventId,
 FTPEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

The RegisterEvent method registers an event handler for the specified event.

Parameters
nEventId

An unsigned integer which specifies which event should be registered with the specified callback
function. One of the following values may be used:

Constant Description

FTP_EVENT_CONNECT The control connection to the server has completed.

FTP_EVENT_DISCONNECT The server has closed the control connection to the client. The
client should read any remaining data and disconnect.

FTP_EVENT_OPENFILE The data connection to the server has completed.

FTP_EVENT_CLOSEFILE The server has closed the data connection to the client. The client
should read any remaining data and close the data channel.

FTP_EVENT_READFILE Data is available to read by the calling process. No additional
messages will be posted until the client has read at least some of
the data. This event is only generated if the client is in
asynchronous mode.

FTP_EVENT_WRITEFILE The client can now write data. This notification is sent after a
connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking
operation. This event is only generated if the client is in
asynchronous mode.

FTP_EVENT_TIMEOUT The network operation has exceeded the specified timeout period.
The client application may attempt to retry the operation, or may
disconnect from the server and report an error to the user.

FTP_EVENT_CANCEL The current operation has been canceled. Under most
circumstances the client should disconnect from the server and re-
connect if needed. After an operation has been canceled, the
server may abort the connection or refuse to accept further
commands from the client.

FTP_EVENT_COMMAND A command has been issued by the client and the server response
has been received and processed. This event can be used to log
the result codes and messages returned by the server in response
to actions taken by the client.

FTP_EVENT_PROGRESS The client is in the process of sending or receiving a file on the data
channel. This event is called periodically during a transfer so that
the client can update any user interface components such as a

status control or progress bar.

FTP_EVENT_GETFILE This event is generated when a file download has completed. If
multiple files are being downloaded, this event will be generated
for each file.

FTP_EVENT_PUTFILE This event is generated when a file upload has completed. If
multiple files are being uploaded, this event will be generated for
each file.

FTP_EVENT_QUEUE This event is generated during a queued file transfer. It only occurs
when a file is being transferred using the CFtpQueue class and the
internal state of the queue has changed. The handle passed to this
event will be a handle to the queue, not a client connection to the
server.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the FtpEventProc callback
function. If this parameter is NULL, the callback for the specified event is disabled.

dwParam

A user-defined integer value that is passed to the callback function. If the application targets the
x86 (32-bit) platform, this parameter must be a 32-bit unsigned integer. If the application
targets the x64 (64-bit) platform, this parameter must be a 64-bit unsigned integer.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
FTP_ERROR. To get extended error information, call GetLastError.

Remarks
The RegisterEvent method associates a callback function with a specific event. The event handler
is an FtpEventProc function that is invoked when the event occurs. Arguments are passed to the
function to identify the client session, the event type and the user-defined value specified when
the event handler is registered. If the event occurs because of an error condition, the error code
will be provided to the handler.

This method is typically used to register an event handler that is invoked while a file is being
uploaded or downloaded. The FTP_EVENT_PROGRESS event will only be generated periodically
during the transfer to ensure the application is not flooded with event notifications. It is
guaranteed that at least one FTP_EVENT_PROGRESS notification will occur at the beginning of the
transfer, and one at the end of the transfer when it has completed.

The callback function specified by the lpEventProc parameter must be declared using the
__stdcall calling convention. This ensures the arguments passed to the event handler are pushed
on to the stack in the correct order. Failure to use the correct calling convention will corrupt the
stack and cause the application to terminate abnormally.

The dwParam parameter is commonly used to identify the class instance which is associated with
the event that has occurred. Applications will cast the this pointer to a DWORD_PTR value when
calling this function, and then the event handler will cast it back to a pointer to the class instance.
This gives the handler access to the class member variables and methods.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)

Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
DisableEvents, EnableEvents, FreezeEvents, GetTransferStatus, FtpEventProc

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/ftp/class/ftpeventproc.html

 CFtpClient::RegisterFileType Method

BOOL RegisterFileType(
 LPCTSTR lpszExtension,
 UINT nFileType
);

The RegisterFileType method associates a file name extension with a specific file type.

Parameters
lpszExtension

A pointer to a null terminated string which specifies the file name extension. If this parameter is
NULL or points to an empty string, the default file type will be changed for the client session.

nFileType

Specifies the type of file associated with the file extension. This parameter can be one of the
following values.

Value Description

FILE_TYPE_ASCII The file is a text file using the ASCII character set. For those servers
which mark the end of a line with characters other than a carriage
return and linefeed, it will be converted to the native client format.
This is the file type used for directory listings.

FILE_TYPE_EBCDIC The file is a text file using the EBCDIC character set. Local files will
be converted to EBCDIC when sent to the server. Remote files will
be converted to the native ASCII character set when retrieved
from the server.

FILE_TYPE_IMAGE The file is a binary image and no data conversion of any type is
performed on the file. This is typically the default file type for data
file transfers. If the type of file that is being transferred is unknown,
this file type should always be used.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The RegisterFileType method is used to associate specific file types with file name extensions.
The library has an internal list of standard text file extensions which it automatically recognizes.
This method can be used to extend or modify that list for the client session.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetAutoFileType, OpenFile, SetFileMode, SetFileStructure, SetFileType, SetPassiveMode

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::RemoveDirectory Method

INT RemoveDirectory(
 LPCTSTR lpszDirectory
);

The RemoveDirectory method removes the specified directory on the server.

Parameters
lpszDirectory

Points to a string that specifies the name of the directory. The file pathing and name
conventions must be that of the server.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is FTP_ERROR. To get extended error information, call GetLastError.

Remarks
This method uses the RMD command to create the directory. The user must have the appropriate
permission to remove the specified directory. Most servers will not permit you to remove a
directory if it contains one or more files.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ChangeDirectory, CreateDirectory, DeleteFile, GetDirectory

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::RenameFile Method

INT RenameFile(
 LPCTSTR lpszOldFileName,
 LPCTSTR lpszNewFileName
);

The RenameFile method renames the specified file on the server. The file must exist, and the
current user must have the appropriate permission to change the file name.

Parameters
lpszOldFileName

Points to a string that specifies the name of the remote file to rename. The file pathing and
name conventions must be that of the server.

lpszNewFileName

Points to a string the specifies the new name for the remote file. The file pathing and name
conventions must be that of the server.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is FTP_ERROR. To get extended error information, call GetLastError.

Remarks
This method causes two separate commands to be sent to the server, RNFR and RNTO. If either
command fails, the method will fail and return an error code.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DeleteFile, GetFile, PutFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::Reset Method

INT Reset();

The Reset method resets the client state and resynchronizes with the server. This method is
typically called after an unexpected error has occurred, or an operation has been canceled.

Parameters
None.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is FTP_ERROR. To get extended error information, call GetLastError.

Remarks
The client cannot be reset while a file transfer is in progress or if the client is in a blocked state. To
abort a file transfer, use the Cancel method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Cancel

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::SetActivePorts Method

INT SetActivePorts(
 UINT nLowPort,
 UINT nHighPort
);

The SetActivePorts method changes the range of local port numbers used for active mode file
transfers.

Parameters
hClient

Handle to the client session.

nLowPort

An unsigned integer that specifies the low port number.

lpnHighPort

An unsigned integer that specifies the high port number.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
This method is used to modify the range of local port numbers used for active mode file transfers.
When using active mode, the client listens for an inbound connection from the server rather than
establishing an outbound connection for the data transfer. In most cases, passive mode transfers
are preferred because they mitigate potential compatibility issues with firewalls and NAT routers.

If active mode transfers are required, the default port range used when listening for the server
connection is between 1024 and 5000. This is the standard range of ephemeral ports used by the
Windows operating system. However, under some circumstances that range of ports may be too
small, or a firewall may be configured to deny inbound connections on ephemeral ports. In that
case, the SetActivePorts method can be used to specify a different range of port numbers.

While it is technically permissible to assign the low and high port numbers to the same value,
effectively specifying a single active port number, this is not recommended as it can cause the
transfer to fail unexpectedly if multiple file transfers are performed. A minimum range of at least
1000 ports is recommended. For example, if you specify a low port value of 40000 then it is
recommended that the high port value be at least 41000. The maximum port value is 65535.

To determine the current range of active port numbers being used, call the GetActivePorts
method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetActivePorts, SetPassiveMode

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::SetBufferSize Method

INT SetBufferSize(
 INT nBufferSize
);

The SetBufferSize method sets the size in bytes of an internal buffer that will be used during data
transfers.

Parameters
nBufferSize

The size of an internal buffer, in bytes. Any value greater than or equal to zero is acceptable. If
nBufferSize is zero, then the default value of 4096 will be used. If nBufferSize is less than 256
bytes, the buffer size will be set to 256. The maximum value of nBufferSize is 1048576 (1Mb).

Return Value
If the method succeeds, the return value is the size of the internal buffer that will be used. If the
method fails, the return value is FTP_ERROR. To get extended error information, call GetLastError.

Remarks
The speed of data transfers, particularly on uploads, may be sensitive to network type and
configuration, and the size of the internal buffer used for data transfers. The default size of this
buffer will result in good performance for a wide range of network characteristics. A larger buffer
will not necessarily result in better performance. For example, a multiple of 1460, which is the
typical Maximum Transmission Unit (MTU), may be optimal in many situations.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetBufferSize, GetData, GetFile, PutData, PutFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::SetChannelMode Method

INT SetChannelMode(
 INT nMode
);

INT SetChannelMode(
 INT nChannel,
 INT nMode
);

The SetChannelMode method changes the security mode for the specified communication
channel.

Parameters
nChannel

An integer value which specifies which channel to return information for. If the first version of
this method is called, then the data channel mode is modified; otherwise, the channel may be
explicitly specified as one of the following values:

Constant Description

FTP_CHANNEL_COMMAND Change information for the command channel. This is
the communication channel used to send commands to
the server and receive command result and status
information from the server.

FTP_CHANNEL_DATA Change information for the data channel. This is the
communication channel used to send or receive data
during a file transfer.

nMode

An integer value which specifies the new mode for the specified channel. It may be one of the
following values:

Constant Description

FTP_CHANNEL_CLEAR Data sent and received on this channel should not be
encrypted.

FTP_CHANNEL_SECURE Data sent and received on this channel should be encrypted.
Specifying this option requires that a secure connection has
already been established with the server.

Return Value
If the method succeeds, the return value is the previous mode for the specified channel. If the
method fails, it will return FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
The SetChannelMode method is used to change the default mode for the specified channel, and
is typically used to control whether or not data is encrypted during a file transfer. If a standard,
non-secure connection has been established with the server, an error will be returned if you
specify the FTP_CHANNEL_SECURE mode for either channel.

If you have established a secure connection and then specify the FTP_CHANNEL_CLEAR mode for

the command channel, the client will send the CCC command to the server to indicate that
commands should no longer be encrypted. If the server does not support this command, an error
will be returned and the channel mode will remain unchanged. Once the command channel has
been changed to clear mode, it cannot be changed back to secure mode. You must disconnect
and re-connect to the server if you want to resume sending commands over an encrypted
channel.

Changing the mode for the data channel requires that the server support the PROT command. If
this command is not supported by the server, the method will fail and the channel mode will
remain unchanged.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
GetChannelMode

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::SetDirectoryFormat Method

INT SetDirectoryFormat(
 INT nFormatId
);

The SetDirectoryFormat method is used to specify the format used by the server when returning
a list of files. The format type is used internally by the library when parsing the file list returned by
the server.

Parameters
nFormatId

An identifier used to specify the format of the file list returned by the server. The following
values are recognized:

Constant Description

FTP_DIRECTORY_AUTO This value specifies that the library should automatically
determine the format of the file lists returned by the
server. It is recommended that most applications use
this value and allow the library to automatically
determine the appropriate file listing format used by
the server.

FTP_DIRECTORY_UNIX This value specifies that the server returns file lists in the
format commonly used by UNIX servers. Note that
many servers can be configured to return file listings in
this format, even if they are not actually a UNIX based
platform. Consult the technical reference
documentation for your server for more information.

FTP_DIRECTORY_MSDOS This value specifies that the server returns file lists in the
format commonly used by MS-DOS based systems.
This includes Windows IIS servers. Long file names will
be returned if supported by the underlying filesystem,
such as NTFS or FAT32.

FTP_DIRECTORY_VMS This value specifies that the server returns file lists in the
format commonly used by VMS servers. Note that VMS
servers can be configured to return a standard UNIX
style listing in additional to the default VMS format.

FTP_DIRECTORY_STERLING_1 This value specifies that the server returns file listings in
a proprietary format used by the Sterling server, which
is used for EDI (Electronic Data Interchange)
applications. This format uses a 13 byte status code.

FTP_DIRECTORY_STERLING_2 This value specifies that the server returns file listings in
a proprietary format used by the Sterling server, which
is used for EDI (Electronic Data Interchange)
applications. This format uses a 10 byte status code.

FTP_DIRECTORY_NETWARE This value specifies that the server returns file listings in
a proprietary format used by NetWare servers. The

format is similar to UNIX style listings except that file
access and permissions are indicated by letter codes
enclosed in brackets. This is the default format selected
if the server identifies itself as a NetWare system.

FTP_DIRECTORY_MLSD This value specifies that the server should return file
listings in a machine-independent format as defined by
RFC 3659. This format specifies file information as a
sequence of name/value pairs, with the same format
being used regardless of the operating system that the
server is hosted on. Note that not all servers support
this format, and some proxy servers may reject the
command even if the remote server supports its use.

Return Value
If the method succeeds, the return value identifies the file list format used by the server. If the
method fails, the return value is FTP_ERROR. To get extended error information, call GetLastError.

Remarks
This method should only be used when the library cannot automatically determine the directory
format returned by the server. To determine the format used by a server after a file list has been
retrieved, use the GetDirectoryFormat method.

The default directory format is determined both by the server's operating system and by analyzing
the format of the data returned by the server. If the library is unable to automatically determine
the format, it will attempt to parse the list of files as though it is a UNIX style listing.

If the FTP_DIRECTORY_MLSD format is specified, the file information returned by the server may
differ from the default output of the LIST command. For example, on a UNIX based FTP server, the
output of the LIST command is typically the same format that is used by the /bin/ls command,
where file names are sorted and hidden files are not listed. However, the MLSD command may
return an unsorted list of files that includes hidden files and directories.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CloseDirectory, GetDirectoryFormat, GetFileStatus, GetFirstFile, GetNextFile, OpenDirectory

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::SetFeatures Method

DWORD SetFeatures(
 DWORD dwFeatures
);

The SetFeatures method specifies the server features available to the client.

Parameters
dwFeatures

An unsigned integer that specifies one or more features. Refer to the documentation for the
GetFeatures method for a list of available features.

Return Value
If the method succeeds, the return value specifies the features that were previously enabled. If the
method fails, it will return zero. Because it is possible that no features were enabled, a return value
of zero does not always indicate an error. An application should call GetLastError to determine if
an error code has been set.

Remarks
The SetFeatures method is used to enable a specific set of features for the current session. When
a client connection is first established, all features are enabled based on the server type and the
server's response to the FEAT command. However, as the client issues commands to the server, if
the server reports that the command is unrecognized that feature will automatically be disabled in
the client. To enable or disable a specific feature, an application can use the EnableFeature
method.

For example, the first time an application calls the GetFileSize method to determine the size of a
file, the library will try to use the SIZE command. If the server reports that the SIZE command is not
available, that feature will be disabled and the library will not use the command again during the
session unless it is explicitly re-enabled. This is designed to prevent the library from repeatedly
sending invalid commands to a server, which may result in the server aborting the connection.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
EnableFeature, GetFeatures

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::SetFileMode Method

INT SetFileMode(
 UINT nMode
);

The SetFileMode method sets the default file transfer mode for the current client session.

Parameters
nMode

Specifies the default type of data transfer mode for files being opened or created on the server.
This parameter can be one of the following values.

Value Description

FILE_MODE_STREAM The data is transmitted as a stream of bytes. This is the
default client transfer mode.

FILE_MODE_BLOCK The data is transmitted as a series of data blocks
preceded by one or more header bytes. This transfer
mode is currently not supported.

FILE_MODE_COMPRESSED The data is transmitted in compressed form. This transfer
mode is currently not supported.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is FTP_ERROR. To get extended error information, call GetLastError.

Remarks
The file transfer mode should be set before a file is opened or created on the server. Once the
transfer mode is set, it is in effect for all files that are subsequently opened or created.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
OpenFile, SetFileStructure, SetFileType, SetPassiveMode

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::SetFileNameEncoding Method

INT SetFileNameEncoding(
 INT nEncoding
);

The SetFileNameEncoding method specifies what type of encoding will be used when file names
are sent to the server.

Parameters
nEncoding

An integer value which specifies the encoding type. It may be one of the following values:

Constant Description

FTP_ENCODING_ANSI File names are sent as 8-bit characters using the default
character encoding for the current codepage. If the Unicode
version of the functions are used, file names are converted
from Unicode to ANSI using the current codepage before
being sent to the server. This is the default encoding type.

FTP_ENCODING_UTF8 File names that contain non-ASCII characters are sent using
UTF-8 encoding. This encoding type is only available on
servers that advertise support for UTF-8 encoding and permit
that encoding type to be enabled by the client.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
The SetFileNameEncoding method can be used to enable UTF-8 encoding of file names, which
provides improved support for the use of international character sets. However, the server must
provide support for UTF-8 encoding by advertising it in response to the FEAT command and it
must support the OPTS command which is used to enable UTF-8 encoding. If the server does not
advertise support for UTF-8, or the OPTS command fails with an error, then this method will fail
with an error and the encoding type will not change.

Although it is possible to use the EnableFeature method to explicitly enable the
FTP_FEATURE_UTF8 feature, this is not recommended. If the server has not advertised support for
UTF-8 encoding in response to the FEAT command, that typically indicates that UTF-8 encoding is
not supported. Attempting to force UTF-8 encoding can result in unpredictable behavior when file
names contain non-ASCII characters.

It is important to note that not all FTP servers support UTF-8 encoding, and in some cases servers
which advertise support for UTF-8 encoding do not implement the feature correctly. For example,
a server may allow a client to enable UTF-8 encoding, but once enabled will not permit the client
to disable it. Some servers may advertise support for UTF-8 encoding, however if the underlying
file system does not support UTF-8 encoded file names, any attempt to upload or download a file
may fail with an error indicating that the file cannot be found or created.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)

Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
Command, EnableFeature GetFeatures, GetFileNameEncoding, SetFeatures

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::SetFilePermissions Method

INT SetFilePermissions(
 LPCTSTR lpszFileName,
 DWORD dwPermissions
);

The SetFilePermissions method returns information about the access permissions for a specific
file on the server.

Parameters
lpszFileName

A pointer to a string which contains the name of the file to be updated. The filename cannot
contain any wildcard characters.

dwPermissions

An unsigned integer which will specify the new access permissions for the file. The file
permissions are represented as bit flags, and may be one or more of the following values
combined with a bitwise Or operator:

Constant Description

FILE_OWNER_READ The owner has permission to open the file for reading. If the
current user is the owner of the file, this grants the user the
right to download the file to the local system.

FILE_OWNER_WRITE The owner has permission to open the file for writing. If the
current user is the owner of the file, this grants the user the
right to replace the file. If this permission is set for a directory,
this grants the user the right to create and delete files.

FILE_OWNER_EXECUTE The owner has permission to execute the contents of the file.
The file is typically either a binary executable, script or batch
file. If this permission is set for a directory, this may also grant
the user the right to open that directory and search for files in
that directory.

FILE_GROUP_READ Users in the specified group have permission to open the file
for reading. If the current user is in the same group as the file
owner, this grants the user the right to download the file.

FILE_GROUP_WRITE Users in the specified group have permission to open the file
for writing. On some platforms, this may also imply
permission to delete the file. If the current user is in the same
group as the file owner, this grants the user the right to
replace the file. If this permission is set for a directory, this
grants the user the right to create and delete files.

FILE_GROUP_EXECUTE Users in the specified group have permission to execute the
contents of the file. If this permission is set for a directory, this
may also grant the user the right to open that directory and
search for files in that directory.

FILE_WORLD_READ All users have permission to open the file for reading. This
permission grants any user the right to download the file to

the local system.

FILE_WORLD_WRITE All users have permission to open the file for writing. This
permission grants any user the right to replace the file. If this
permission is set for a directory, this grants any user the right
to create and delete files.

FILE_WORLD_EXECUTE All users have permission to execute the contents of the file. If
this permission is set for a directory, this may also grant all
users the right to open that directory and search for files in
that directory.

Return Value
If the method succeeds, the return value is a result code. If the method fails, the return value is
FTP_ERROR. To get extended error information, call GetLastError.

Remarks
This method uses the SITE CHMOD command to set the permissions for the file. This command is
typically only supported on servers that are hosted on UNIX based systems. If the command is not
supported, an error will be returned.

Users who are familiar with the UNIX operating system will recognize the chmod command used
to change the file permissions. However, it should be noted that the numeric value used as an
argument to the command is in octal, not decimal. For example, issuing the command chmod
644 filename.txt on a UNIX based system will make the file readable and writable by the owner,
and readable by other users in the owner's group as well as all other users. The value 644 is an
octal value, which is equivalent to the decimal value 420. If you were to mistakenly specify 644 as
the value for the dwPermissions parameter, rather than the decimal value of 420, the permissions
on the file would be incorrect. It is strongly recommended that you use the pre-defined constants
to prevent this sort of error.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetFilePermissions, GetFileStatus

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::SetFileStructure Method

INT SetFileStructure(
 UINT nType
);

The SetFileStructure method sets the default file structure for the current client session, which
indicates what type of file is being opened or created on the server.

Parameters
nType

Specifies the default type of file structure being opened or created on the server. This
parameter can be one of the following values.

Value Description

FILE_STRUCT_NONE The file has no inherent structure and is considered to be a
stream of bytes. This is the default structure for file transfers.

FILE_STRUCT_RECORD The file uses a record structure. This file structure is currently
not supported.

FILE_STRUCT_PAGE The file uses a page structure. This file structure is currently
not supported.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is FTP_ERROR. To get extended error information, call GetLastError.

Remarks
The file structure should be set before a file is opened or created on the server. Once the file type
is set, it is in effect for all files that are subsequently opened or created.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
OpenFile, SetFileMode, SetFileType, SetPassiveMode

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::SetFileTime Method

INT SetFileTime(
 LPCTSTR lpszFileName,
 LPSYSTEMTIME lpFileTime
);

The SetFileTime method sets the modification time for the specified file on the server.

Parameters
lpszFileName

Points to a string that specifies the name of the remote file.

lpFileTime

Points to a SYSTEMTIME structure that specifies the new modification time for the remote file.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is FTP_ERROR. To get extended error information, call GetLastError.

Remarks
The SetFileTime method will change the modification time of a file on the server. The values
specified in the SYSTEMTIME structure are expected to represent UTC time, not time adjusted for
the local system's timezone. If the values do represent the local time, it must be converted to UTC
time prior to calling this method. To populate the SYSTEMTIME structure with the current time, use
the GetSystemTime method.

When connected to an FTP server, this method uses the MDTM command to set the modification
time for the specified file. Not all servers implement this command, in which case the method call
will fail. Note that some servers only support the MDTM command to return, but not change, the
file modification time.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetFileStatus, GetFileTime, OpenDirectory

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::SetFileType Method

INT SetFileType(
 UINT nFileType
);

The SetFileType method sets the default file type for the current client session, which indicates
what type of file is being opened or created on the server.

Parameters
hClient

Handle to the client session.

nFileType

Specifies the default type of file being opened or created on the server. This parameter can be
one of the following values.

Value Description

FILE_TYPE_AUTO
(0)

The file type should be automatically determined based on the file
name extension. If the file extension is unknown, the file type
should be determined based on the contents of the file. The
library has an internal list of common text file extensions, and
additional file extensions can be registered using the
FtpRegisterFileType function.

FILE_TYPE_ASCII
(1)

The file is a text file using the ASCII character set. For those servers
which mark the end of a line with characters other than a carriage
return and linefeed, it will be converted to the native client format.
This is the file type used for directory listings.

FILE_TYPE_EBCDIC
(2)

The file is a text file using the EBCDIC character set. Local files will
be converted to EBCDIC when sent to the server. Remote files will
be converted to the native ASCII character set when retrieved
from the server. Not all servers support this file type. It is
recommended that you only specify this type if you know that it is
required by the server to transfer data correctly.

FILE_TYPE_IMAGE
(3)

The file is a binary file and no data conversion of any type is
performed on the file. This is the default file type for most data
files and executable programs. If the type of file cannot be
automatically determined, it will always be considered a binary file.
If this file type is specified when uploading or downloading text
files, the native end-of-line character sequences will be preserved.

FILE_TYPE_LOCAL
(4)

The file is a binary file that uses the local byte size for the server
platform. On most servers, this file type is considered to be the
same as FILE_TYPE_IMAGE. Not all servers support this file type. It
is recommended that you only specify this type if you know that it
is required by the server to transfer data correctly.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is FTP_ERROR. To get extended error information, call GetLastError.

Remarks
The file type should be set before a file is opened or created on the server. Once the file type is
set, it is in effect for all files that are subsequently opened or created. Some methods, such as
OpenDirectory and GetText, will temporarily change the default file type to FILE_TYPE_ASCII and
then restore the current file type when they return.

Calling this method has no practical effect when connected to an SFTP (SSH) server. They do not
differentiate between text and binary files and the default file type will always be
FILE_TYPE_IMAGE. If your application is uploading or downloading a text file, this difference
between FTP and SFTP is important because the operating system that hosts the server may have
different end-of-line character conventions than the client system. For example, if you download a
text file from a UNIX system using SFTP, the end-of-line is indicated by a single linefeed (LF)
character. However, on the Windows platform, the end-of-line is indicated by a carriage-return
and linefeed sequence (CRLF).

The GetFileType method can be used to determine the current file type. To determine the
transfer file type for a specific file, use the GetAutoFileType method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
GetAutoFileType, GetFileType, OpenFile, RegisterFileType, SetFileMode, SetFileStructure,
SetPassiveMode

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::SetLastError Method

VOID SetLastError(
 DWORD dwErrorCode
);

The SetLastError method sets the last error code for the current thread. This method is typically
used to clear the last error by specifying a value of zero as the parameter.

Parameters
dwErrorCode

Specifies the last error code for the current thread.

Return Value
None.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. Most methods will
set the last error code value when they fail; a few methods set it when they succeed. Function
failure is typically indicated by a return value such as FALSE, NULL, INVALID_CLIENT or
FTP_ERROR. Those methods which call SetLastError when they succeed are noted on the method
reference page.

Applications can retrieve the value saved by this method by using the GetLastError method. The
use of GetLastError is optional; an application can call the method to determine the specific
reason for a method failure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
GetErrorString, GetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::SetPassiveMode Method

INT SetPassiveMode(
 BOOL bPassiveMode
);

The SetPassiveMode method enables or disables passive mode file transfers for the specified
client session.

Parameters
bPassiveMode

A boolean flag which specifies that the client should enter passive mode and establish all
connections with the server to transfer data.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
FTP_ERROR. To get extended error information, call GetLastError.

Remarks
By default, the File Transfer Protocol uses active mode transfers, whereby the data connection is
established from the server back to the local client. However, this can introduce problems for a
client application that is behind a proxy server, firewall or a router which uses Network Address
Translation (NAT). Enabling passive mode transfers instructs the client to create an outbound
connection from the local system to the server for the data connection, similarly to how the
control connection is established.

Not all servers may support passive mode, in which case an error will be returned to the client
when this method is called.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Connect, GetData, GetFile, ProxyConnect, PutData, PutFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::SetPriority Method

INT SetPriority(
 INT nPriority
);

The SetPriority method specifies the priority for file transfers.

Parameters
nPriority

An integer value which specifies the new priority for file transfers. It may be one of the following
values:

Constant Description

FTP_PRIORITY_NORMAL The default priority which balances resource utilization
and transfer speed. It is recommended that most
applications use this priority.

FTP_PRIORITY_BACKGROUND This priority significantly reduces the memory,
processor and network resource utilization for the
transfer. It is typically used with worker threads running
in the background when the amount of time required
perform the transfer is not critical.

FTP_PRIORITY_LOW This priority lowers the overall resource utilization for
the transfer and meters the bandwidth allocated for
the transfer. This priority will increase the average
amount of time required to complete a file transfer.

FTP_PRIORITY_HIGH This priority increases the overall resource utilization
for the transfer, allocating more memory for internal
buffering. It can be used when it is important to
transfer the file quickly, and there are no other threads
currently performing file transfers at the time.

FTP_PRIORITY_CRITICAL This priority can significantly increase processor,
memory and network utilization while attempting to
transfer the file as quickly as possible. If the file transfer
is being performed in the main UI thread, this priority
can cause the application to appear to become non-
responsive. No events will be generated during the
transfer.

Return Value
If the method succeeds, the return value is the previous file transfer priority. If the method fails, the
return value is FTP_ERROR. To get extended error information, call GetLastError.

Remarks
The SetPriority method can be used to control the processor usage, memory and network
bandwidth allocated for file transfers. The default priority balances resource utilization and transfer
speed while ensuring that a single-threaded application remains responsive to the user. Lower
priorities reduce the overall resource utilization at the expense of transfer speed. For example, if

you create a worker thread to download a file in the background and want to ensure that it has a
minimal impact on the process, the FTP_PRIORITY_BACKGROUND value can be used.

Higher priority values increase the memory allocated for the transfers and increases processor
utilization for the transfer. The FTP_PRIORITY_CRITICAL priority maximizes transfer speed at the
expense of system resources. It is not recommended that you increase the file transfer priority
unless you understand the implications of doing so and have thoroughly tested your application. If
the file transfer is being performed in the main UI thread, increasing the priority may interfere with
the normal processing of Windows messages and cause the application to appear to become
non-responsive. It is also important to note that when the priority is set to
FTP_PRIORITY_CRITICAL, normal progress events will not be generated during the transfer.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetPriority

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::SetTimeout Method

INT SetTimeout(
 UINT nTimeout
);

The SetTimeout method sets the number of seconds the client will wait for a response from the
server. Once the specified number of seconds has elapsed, the method will fail and return to the
caller.

Parameters
nTimeout

The number of seconds to wait for a blocking operation to complete.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
FTP_ERROR. To get extended error information, call GetLastError.

Remarks
The timeout value is only used with blocking client connections.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
Connect, GetTimeout, IsReadable, IsWritable, Read, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::ShowError Method

INT ShowError(
 LPCTSTR lpszAppTitle,
 UINT uType,
 DWORD dwErrorCode
);

The ShowError method displays a message box which describes the specified error.

Parameters
lpszAppTitle

A pointer to a string which specifies the title of the message box that is displayed. If this
argument is NULL or omitted, then the default title of "Error" will be displayed.

uType

An unsigned integer which specifies the type of message box that will be displayed. This is the
same value that is used by the MessageBox function in the Windows API. If a value of zero is
specified, then a message box with a single OK button will be displayed. Refer to that function
for a complete list of options.

dwErrorCode

Specifies the error code that will be used when displaying the message box. If this argument is
zero, then the last error that occurred in the current thread will be displayed.

Return Value
If the method is successful, the return value will be the return value from the MessageBox
function. If the method fails, it will return a value of zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetErrorString, GetLastError, SetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::UploadFile Method

BOOL UploadFile(
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszRemoteFile,
 UINT nTimeout
 DWORD dwOptions
 LPFTPTRANSFERSTATUS lpStatus
 FTPEVENTPROC lpEventProc
 DWORD_PTR dwParam
);

The UploadFile method uploads the specified file from the local system to the server.

Parameters
lpszLocalFile

A pointer to a string that specifies the file on the local system that will be uploaded to the
server. The file pathing and name conventions must be that of the local host.

lpszRemoteFile

A pointer to a string that specifies the complete URL of the file that will be created or
overwritten on the server. The URL must follow the conventions for the File Transfer Protocol
and may specify either a standard or secure connection, alternate port number, username,
password and optional working directory.

nTimeout

The number of seconds that the client will wait for a response before failing the operation. A
value of zero specifies that the default timeout period of sixty seconds will be used.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

FTP_OPTION_PASSIVE This option specifies the client should attempt to
establish the data connection with the server. When
the client uploads or downloads a file, normally the
server establishes a second connection back to the
client which is used to transfer the file data. However,
if the local system is behind a firewall or a NAT
router, the server may not be able to create the data
connection and the transfer will fail. By specifying this
option, it forces the client to establish an outbound
data connection with the server. It is recommended
that applications use passive mode whenever
possible.

FTP_OPTION_FIREWALL This option specifies the client should always use the
host IP address to establish the data connection with
the server, not the address returned by the server in
response to the PASV command. This option may be
necessary if the server is behind a router that
performs Network Address Translation (NAT) and it

returns an unreachable IP address for the data
connection. If this option is specified, it will also
enable passive mode data transfers.

FTP_OPTION_SECURE This option specifies the client should attempt to
establish a secure connection with the server. Note
that the server must support secure connections
using either the SSL or TLS protocol.

FTP_OPTION_SECURE_EXPLICIT This option specifies the client should use the AUTH
command to negotiate an explicit secure connection.
Some servers may only require this when connecting
to the server on ports other than 990.

lpStatus

A pointer to an FTPTRANSFERSTATUS structure which contains information about the status of
the current file transfer. If this information is not required, a NULL pointer may be specified as
the parameter.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the FtpEventProc callback
function. If this parameter is NULL, the callback for the specified event is disabled.

dwParam

A user-defined integer value that is passed to the callback function.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The UploadFile method provides a convenient way for an application to upload a file in a single
function call. Based on the connection information specified in the URL, it will connect to the
server, authenticate the session, change the current working directory if necessary and then
upload the file to the server. The URL must be complete, and specify either a standard or secure
FTP scheme:

[ftp|ftps|sftp]://[username : password] @] hostname [:port] / [path /
...] [filename] [;type=a|i]

If no user name and password is provided, then the client session will be authenticated as an
anonymous user. If a path is specified as part of the URL, then function will attempt to change the
current working directory. Note that the path in an FTP URL is relative to the home directory of the
user account and is not an absolute path starting at the root directory on the server. The URL
scheme will always determine if the connection is secure, not the option. In other words, if the "ftp"
scheme is used and the FTP_OPTION_SECURE option is specified, that option will be ignored. To
establish a secure connection, either the "ftps" or "sftp" scheme must be specified.

The optional "type" value at the end of the file name determines if the file should be uploaded as
a text or binary file. A value of "a" specifies that the file should be uploaded as a text file. A value
of "i" specifies that the file should be uploaded as a binary file. If the type is not explicitly specified,
the file will be uploaded as a binary file.

The lpStatus parameter can be used by the application to determine the final status of the

transfer, including the total number of bytes copied, the amount of time elapsed and other
information related to the transfer process. If this information isn't needed, then this parameter
may be specified as NULL.

The lpEventProc parameter specifies a pointer to a function which will be periodically called during
the file transfer process. This can be used to check the status of the transfer by calling
GetTransferStatus and then update the program's user interface. For example, the callback
function could calculate the percentage for how much of the file has been transferred and then
update a progress bar control. The dwParam parameter is used in conjunction with the event
handler and specifies a user-defined value that is passed to the callback function. One common
use in a C++ program is to pass the this pointer as the value, and then cast it back to an object
pointer inside the callback function. If no event handler is required, then a NULL pointer can be
specified as the value for lpEventProc and the dwParam parameter will be ignored.

The UploadFile method is designed to provide a simpler interface for uploading a file. However,
complex connections such as those using a proxy server or a secure connection which uses a
client certificate will require the program to establish the connection using Connect and then use
PutFile to upload the file.

Example
CFtpClient ftpClient;
CString strLocalFile = _T("c:\\temp\\database.mdb");
CString strFileURL =
_T("ftp://update:secret@ftp.example.com/updates/database.mdb");

if (!ftpClient.UploadFile(strLocalFile, strFileURL))
{
 ftpClient.ShowError();
 return;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpEventProc, DownloadFile, GetTransferStatus, PutFile, FTPTRANSFERSTATUS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/ftp/class/ftpeventproc.html

 ValidateHostName Method

BOOL ValidateHostName(
 LPCTSTR lpszHostName,
 LPTSTR lpszAddress,
 INT nMaxLength
);

BOOL ValidateHostName(
 LPCTSTR lpszHostName,
 CString& strAddress
);

The ValidateHostName method determines if the specified host name is valid and returns its IP
address.

Parameters
lpszHostName

A pointer to a null terminated string which specifies the host name. The method will fail If this
parameter is NULL or an empty string.

lpszAddress

A pointer to a string buffer which will contain the IP address of the host. If specified, this string
must be large enough to store the complete IP address, including the terminating null
character. If this parameter is NULL or the nMaxLength parameter is zero, it will be ignored and
the IP address will not be returned. An alternate version of this method accepts a reference to a
CString object if MFC or ATL is used with the project.

nMaxLength

An integer value that specifies the maximum number of characters which can be copied into the
lpszAddress string buffer. The buffer must be large enough to store the complete address.
Because this method can return either an IPv4 or IPv6 address, it is recommended the minimum
length for the buffer to be 46 characters. If this parameter is zero, the lpszAddress parameter
will be ignored.

Return Value
If the method succeeds, the host name is valid and the return value will be non-zero. If the
method fails, the host name could not be resolved to an IP address and the return value will be
zero. To get extended error information, call the GetLastError method.

Remarks
The ValidateHostName method provides a convenient way to determine if a host name is valid
by attempting to resolve the name into an IP address. If the Unicode version of this method is
used, any non-ASCII characters in the host name will be automatically encoded into a compatible
format and then resolved to an IP address. If you are unsure if an internationalized domain name
will be specified as the host name, it is recommended you use the Unicode version.

If the lpszHostName parameter specifies a valid IPv4 or IPv6 address string instead of a host
name, this method will return a copy of that IP address in the buffer provided by the caller. This
allows the method to be used in cases where a user may input either a host name or IP address.

If you wish to validate a complete FTP URL instead of a host name, use the ValidateUrl method.

Requirements

Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ConnectUrl, ValidateUrl

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::ValidateUrl Method

BOOL ValidateUrl(
 LPCTSTR lpszUrl
);

The ValidateUrl method determines if a string represents a valid FTP URL.

Parameters
lpszUrl

A pointer to a string that specifies the URL to validate.

Return Value
If the specified URL is valid and the host name can be resolved to an IP address, the return value is
non-zero. If the method fails, the return value is zero. To get extended error information, call
FtpGetLastError.

Remarks
The ValidateUrl method will check the value of a string to ensure that it represents a complete,
valid URL using either a standard or secure FTP scheme. This method will not establish a
connection with the server to verify that it exists, it will only attempt to resolve the host name to an
IP address. If the remote host is specified as an IP address, this method will check to make sure
that the address is formatted correctly. Note that if you wish to specify an IPv6 address, you must
enclose the address in brackets.

To establish a connection with a server using a URL, use the ConnectUrl method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ConnectUrl, DownloadFile, UploadFile, ValidateHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::VerifyFile Method

BOOL VerifyFile(
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszRemoteFile,
 DWORD dwOptions
);

The VerifyFile method attempts to verify that the contents of a file on the local system are the
same as the specified file on the server.

Parameters
lpszLocalFile

A pointer to a string that specifies the name of file on the local system.

lpszRemoteFile

A pointer to a string that specifies the name of the file on the server.

dwOptions

Specifies the options that may be used when comparing the files. This parameter may be one or
more of the following values:

Value Description

FTP_VERIFY_DEFAULT File verification should use the best option available based on
the available server features. If the server supports the XMD5
command, the class will calculate an MD5 hash of the local file
contents and compare the value with the file on the server. If
the server does not support the XMD5 command, but it does
support the XCRC command, the class will calculate a CRC32
checksum of the local file contents and compare the value with
the file on the server. If the server does not support either the
XMD5 or XCRC commands, the class will compare the size of
the local and remote files.

FTP_VERIFY_SIZE Files are verified by comparing the number of bytes of data in
the local and remote files. This is the least reliable method, and
should only be used if the server does not support either the
XMD5 or XCRC commands.

FTP_VERIFY_CRC32 Files are verified by calculating a CRC32 checksum of the local
file contents and comparing it with the value returned by the
server in response to the XCRC command. This method should
only be used if the server does not support the XMD5
command.

FTP_VERIFY_MD5 Files are verified by calculating an MD5 hash of the local file
contents and comparing it with the value returned by the
server in response to the XMD5 command. This is the preferred
method for performing file verification.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The VerifyFile method will attempt to verify that the contents of the local and remote files are
identical using one of several methods, based on the features that the server supports. Preference
will be given to the most reliable method available, using either an MD5 hash, a CRC32 checksum
or comparing the size of the file, in that order.

It is not recommended that you use this method with text files because of the different end-of-line
conventions used by different operating systems. For example, a text file on a Windows system
uses a carriage-return and linefeed pair to indicate the end of a line of text. However, on a UNIX
system, a single linefeed is used to indicate the end of a line. This can cause the VerifyFile method
to indicate the files are not identical, even though the only difference is in the end-of-line
characters that are used.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DeleteFile, GetFile, PutFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpClient::Write Method

INT Write(
 LPBYTE lpBuffer,
 INT cbBuffer
);

INT Write(
 LPCTSTR lpszBuffer,
 INT cbBuffer
);

The Write method sends the specified number of bytes to the server.

Parameters
lpBuffer

The pointer to the buffer which contains the data that is to be sent to the server. In an alternate
form of the method, the pointer is to a string.

cbBuffer

The number of bytes to send from the specified buffer. This value must be greater than zero,
unless a pointer to a string is passed as the buffer argument. In that case, if the value is -1, all of
the characters in the string, up to but not including the terminating null character, will be sent to
the server.

Return Value
If the method succeeds, the return value is the number of bytes actually written. If the method
fails, the return value is FTP_ERROR. To get extended error information, call GetLastError.

Remarks
The return value may be less than the number of bytes specified by the cbBuffer parameter. In this
case, the data has been partially written and it is the responsibility of the client application to send
the remaining data at some later point. For non-blocking clients, the client must wait for the next
asynchronous notification message before it resumes sending data.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
EnableEvents, IsBlocking, IsReadable, IsWritable, Read, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 File Transfer Protocol Data Structures

FTPCLIENTQUOTA
FTPFILESTATUS
FTPFILESTATUSEX
FTPTRANSFERSTATUS
FTPTRANSFERSTATUSEX
SECURITYCREDENTIALS
SECURITYINFO
SYSTEMTIME

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FTPCLIENTQUOTA Structure

This structure is used by the GetClientQuota method to return information about the file quota for
the current client session.

typedef struct _FTPCLIENTQUOTA
{
 DWORD dwFileCount;
 DWORD dwFileLimit;
 DWORD dwDiskUsage;
 DWORD dwDiskLimit;
} FTPCLIENTQUOTA, *LPFTPCLIENTQUOTA;

Members
dwFileCount

An unsigned integer value which specifies the number of files that the user has created. If file
quotas have not been enabled for the current user, this value will be zero.

dwFileLimit

An unsigned integer value which specifies the maximum number of files that may be created by
the user. If file quotas have not been enabled for the current user, this value will be zero.

dwDiskUsage

An unsigned integer value which specifies the number of bytes of disk storage that has been
allocated by the current user. If file quotas have not been enabled for the current user, this
value will be zero.

dwDiskLimit

An unsigned integer value which specifies the maximum number of bytes of disk storage that
may be allocated by the current user. If file quotas have not been enabled for the current user,
this value will be zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FTPFILESTATUS Structure

This structure is used by the EnumFiles, GetFirstFile and GetNextFile methods to return
information about files on the server.

typedef struct _FTPFILESTATUS
{
 TCHAR szFileName[FTP_MAXFILENAMELEN];
 TCHAR szFileOwner[FTP_MAXOWNERNAMELEN];
 TCHAR szFileGroup[FTP_MAXGROUPNAMELEN];
 BOOL bIsDirectory;
 DWORD dwFileSize;
 DWORD dwFileLinks;
 DWORD dwFileVersion;
 DWORD dwFilePerms;
 SYSTEMTIME stFileDate;
} FTPFILESTATUS, *LPFTPFILESTATUS;

Members
szFileName

A string buffer which contains the name of the file on the server.

szFileOwner

A string buffer which contains the name of the user that owns the file on the server. Note that
not all server types support the concept of file ownership by a user. Some UNIX systems will not
provide this information if an anonymous login was used. For the proprietary Sterling directory
formats, the "mailbox" is stored in this member.

szFileGroup

A string buffer which contains the name of the group that owns the file on the server. Note that
not all server types support the concept of file ownership by a group. For the proprietary
Sterling directory formats, the "batch number" is stored in this member, with the character #
prepended for the format FTP_DIRECTORY_STERLING_2.

bIsDirectory

A boolean flag which specifies if the file is actually a subdirectory.

dwFileSize

The size of the file in bytes on the server. Servers that return file information in an MS-DOS
format will always set this value to zero if the file refers to a subdirectory. If the file is a text file,
the file size on the server may be different than the size on the local host if different end-of-line
character conventions are used. It should be noted that under VMS, the file size is reported in
512 byte blocks, so the size should be considered approximate on that platform.

dwFileLinks

The number of links to the file. Note that not all server types support the concept of file links, in
which case this value will be zero.

dwFileVersion

The number of revisions made to the file. Note that not all server types support the concept of
file versioning, in which case this value will be zero. Currently this value will only be non-zero for
VMS platforms.

dwFilePerms

The permissions associated with the file. This value is actually a combination of bits that specify

the individual permissions for the file owner, group and world (all other users). For those familiar
with UNIX, the file permissions are the same as those used by the chmod command. For the
proprietary Sterling directory formats, a bit map representing the status codes and transfer
protocol of the file is stored in this member.

stFileDate

A SYSTEMTIME structure which specifies the date that the file was created or last modified.

File Permissions

Constant Description

FILE_OWNER_READ The owner has permission to open the file for reading. If the current
user is the owner of the file, this grants the user the right to download
the file to the local system.

FILE_OWNER_WRITE The owner has permission to open the file for writing. If the current
user is the owner of the file, this grants the user the right to replace
the file. If this permission is set for a directory, this grants the user the
right to create and delete files.

FILE_OWNER_EXECUTE The owner has permission to execute the contents of the file. The file is
typically either a binary executable, script or batch file. If this
permission is set for a directory, this may also grant the user the right
to open that directory and search for files in that directory.

FILE_GROUP_READ Users in the specified group have permission to open the file for
reading. If the current user is in the same group as the file owner, this
grants the user the right to download the file.

FILE_GROUP_WRITE Users in the specified group have permission to open the file for
writing. On some platforms, this may also imply permission to delete
the file. If the current user is in the same group as the file owner, this
grants the user the right to replace the file. If this permission is set for
a directory, this grants the user the right to create and delete files.

FILE_GROUP_EXECUTE Users in the specified group have permission to execute the contents
of the file. If this permission is set for a directory, this may also grant
the user the right to open that directory and search for files in that
directory.

FILE_WORLD_READ All users have permission to open the file for reading. This permission
grants any user the right to download the file to the local system.

FILE_WORLD_WRITE All users have permission to open the file for writing. This permission
grants any user the right to replace the file. If this permission is set for
a directory, this grants any user the right to create and delete files.

FILE_WORLD_EXECUTE All users have permission to execute the contents of the file. If this
permission is set for a directory, this may also grant all users the right
to open that directory and search for files in that directory.

Sterling Status Codes
Bits 0-25 correspond to letters of the alphabet, most of which have distinct meanings in the
Sterling formats.

Letter code Bit position Hexadecimal value

A 0 1h

B 1 2h

C 2 4h

n-th letter of alphabet n-1 2 to the (n-1) power

Z 25 2000000h

For the proprietary Sterling directory formats, bits 26-31 represent the transfer protocol associated
with the file:

Protocol Bit position Hexadecimal value Constant

TCP 26 4000000h FTP_STERLING_STATUS_TCP

FTP 27 8000000h FTP_STERLING_STATUS_FTP

BSC 28 10000000h FTP_STERLING_STATUS_BSC

ASC 29 20000000h FTP_STERLING_STATUS_ASC

FTS 30 40000000h FTP_STERLING_STATUS_FTS

other 31 80000000h FTP_STERLING_STATUS_OTHER

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FTPFILESTATUSEX Structure

This structure is used by the EnumFiles, GetFirstFile and GetNextFile methods to return
information about files on the server. This structure is designed for use with extended functions
that support files larger than 4GB.

typedef struct _FTPFILESTATUSEX
{
 TCHAR szFileName[FTP_MAXFILENAMELEN];
 TCHAR szFileOwner[FTP_MAXOWNERNAMELEN];
 TCHAR szFileGroup[FTP_MAXGROUPNAMELEN];
 BOOL bIsDirectory;
 ULARGE_INTEGER uiFileSize;
 DWORD dwFileLinks;
 DWORD dwFileVersion;
 DWORD dwFilePerms;
 DWORD dwFileFlags;
 SYSTEMTIME stFileDate;
} FTPFILESTATUSEX, *LPFTPFILESTATUSEX;

Members
szFileName

A string buffer which contains the name of the file on the server.

szFileOwner

A string buffer which contains the name of the user that owns the file on the server. Note that
not all server types support the concept of file ownership by a user. Some UNIX systems will not
provide this information if an anonymous login was used. For the proprietary Sterling directory
formats, the "mailbox" is stored in this member.

szFileGroup

A string buffer which contains the name of the group that owns the file on the server. Note that
not all server types support the concept of file ownership by a group. For the proprietary
Sterling directory formats, the "batch number" is stored in this member, with the character #
prepended for the format FTP_DIRECTORY_STERLING_2.

bIsDirectory

A boolean flag which specifies if the file is actually a subdirectory.

uiFileSize

The size of the file in bytes on the server. Servers that return file information in an MS-DOS
format will always set this value to zero if the file refers to a subdirectory. If the file is a text file,
the file size on the server may be different than the size on the local host if different end-of-line
character conventions are used. It should be noted that under VMS, the file size is reported in
512 byte blocks, so the size should be considered approximate on that platform.

dwFileLinks

The number of links to the file. Note that not all server types support the concept of file links, in
which case this value will be zero.

dwFileVersion

The number of revisions made to the file. Note that not all server types support the concept of
file versioning, in which case this value will be zero. Currently this value will only be non-zero for
VMS platforms.

dwFilePerms

The permissions associated with the file. This value is actually a combination of bits that specify
the individual permissions for the file owner, group and world (all other users). For those familiar
with UNIX, the file permissions are the same as those used by the chmod command. For the
proprietary Sterling directory formats, a bit map representing the status codes and transfer
protocol of the file is stored in this member.

dwFileFlags

This structure member is reserved for future use.

stFileDate

A SYSTEMTIME structure which specifies the date that the file was created or last modified.

File Permissions

Constant Description

FILE_OWNER_READ The owner has permission to open the file for reading. If the current
user is the owner of the file, this grants the user the right to download
the file to the local system.

FILE_OWNER_WRITE The owner has permission to open the file for writing. If the current
user is the owner of the file, this grants the user the right to replace
the file. If this permission is set for a directory, this grants the user the
right to create and delete files.

FILE_OWNER_EXECUTE The owner has permission to execute the contents of the file. The file is
typically either a binary executable, script or batch file. If this
permission is set for a directory, this may also grant the user the right
to open that directory and search for files in that directory.

FILE_GROUP_READ Users in the specified group have permission to open the file for
reading. If the current user is in the same group as the file owner, this
grants the user the right to download the file.

FILE_GROUP_WRITE Users in the specified group have permission to open the file for
writing. On some platforms, this may also imply permission to delete
the file. If the current user is in the same group as the file owner, this
grants the user the right to replace the file. If this permission is set for
a directory, this grants the user the right to create and delete files.

FILE_GROUP_EXECUTE Users in the specified group have permission to execute the contents
of the file. If this permission is set for a directory, this may also grant
the user the right to open that directory and search for files in that
directory.

FILE_WORLD_READ All users have permission to open the file for reading. This permission
grants any user the right to download the file to the local system.

FILE_WORLD_WRITE All users have permission to open the file for writing. This permission
grants any user the right to replace the file. If this permission is set for
a directory, this grants any user the right to create and delete files.

FILE_WORLD_EXECUTE All users have permission to execute the contents of the file. If this
permission is set for a directory, this may also grant all users the right
to open that directory and search for files in that directory.

Sterling Status Codes
Bits 0-25 correspond to letters of the alphabet, most of which have distinct meanings in the
Sterling formats.

Letter code Bit position Hexadecimal value

A 0 1h

B 1 2h

C 2 4h

n-th letter of alphabet n-1 2 to the (n-1) power

Z 25 2000000h

For the proprietary Sterling directory formats, bits 26-31 represent the transfer protocol associated
with the file:

Protocol Bit position Hexadecimal value Constant

TCP 26 4000000h FTP_STERLING_STATUS_TCP

FTP 27 8000000h FTP_STERLING_STATUS_FTP

BSC 28 10000000h FTP_STERLING_STATUS_BSC

ASC 29 20000000h FTP_STERLING_STATUS_ASC

FTS 30 40000000h FTP_STERLING_STATUS_FTS

other 31 80000000h FTP_STERLING_STATUS_OTHER

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FTPTRANSFERSTATUS Structure

This structure is used by the GetTransferStatus method to return information about a file transfer
in progress.

typedef struct _FTPTRANSFERSTATUS
{
 DWORD dwBytesTotal;
 DWORD dwBytesCopied;
 DWORD dwBytesPerSecond;
 DWORD dwTimeElapsed;
 DWORD dwTimeEstimated;
 TCHAR szLocalFile[FTP_MAXFILENAMELEN];
 TCHAR szRemoteFile[FTP_MAXFILENAMELEN];
} FTPTRANSFERSTATUS, *LPFTPTRANSFERSTATUS;

Members
dwBytesTotal

The total number of bytes that will be transferred. If the file is being copied from the server to
the local host, this is the size of the remote file. If the file is being copied from the local host to
the server, it is the size of the local file. If the file size cannot be determined, this value will be
zero.

dwBytesCopied

The total number of bytes that have been copied.

dwBytesPerSecond

The average number of bytes that have been copied per second.

dwTimeElapsed

The number of seconds that have elapsed since the file transfer started.

dwTimeEstimated

The estimated number of seconds until the file transfer is completed. This is based on the
average number of bytes transferred per second.

szLocalFile

A pointer to a string which specifies the local file that is being copied to or from the server.

szRemoteFile

A pointer to a string which specifies the remote file that is being copied to or from the local
system.

Remarks
If the option FTP_OPTION_HIRES_TIMER has been specified when connecting to the server, the
values returned in the dwTimeElapsed and dwTimeEstimated members will be in milliseconds
instead of seconds. You can use this option to obtain more accurate elapsed times when
uploading or downloading small files over a fast network connection.

If you are uploading or downloading large files which exceed 4GB, you should use the
FTPTRANSFERSTATUSEX structure which uses 64-bit integers for the file size.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)

Header File: cstools11.h

See Also
GetTransferStatus, FTPTRANSFERSTATUSEX

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FTPTRANSFERSTATUSEX Structure

This structure is used by the GetTransferStatus method to return information about a file transfer
in progress. This structure is designed for use with extended functions that support files larger than
4GB.

typedef struct _FTPTRANSFERSTATUSEX
{
 ULARGE_INTEGER dwBytesTotal;
 ULARGE_INTEGER dwBytesCopied;
 DWORD dwBytesPerSecond;
 DWORD dwTimeElapsed;
 DWORD dwTimeEstimated;
 DWORD dwReserved;
 TCHAR szLocalFile[FTP_MAXFILENAMELEN];
 TCHAR szRemoteFile[FTP_MAXFILENAMELEN];
} FTPTRANSFERSTATUSEX, *LPFTPTRANSFERSTATUSEX;

Members
uiBytesTotal

The total number of bytes that will be transferred. If the file is being copied from the server to
the local host, this is the size of the remote file. If the file is being copied from the local host to
the server, it is the size of the local file. If the file size cannot be determined, this value will be
zero.

uiBytesCopied

The total number of bytes that have been copied.

dwBytesPerSecond

The average number of bytes that have been copied per second.

dwTimeElapsed

The number of seconds that have elapsed since the file transfer started.

dwTimeEstimated

The estimated number of seconds until the file transfer is completed. This is based on the
average number of bytes transferred per second.

dwReserved

This structure member is reserved for future use.

szLocalFile

A pointer to a string which specifies the local file that is being copied to or from the server.

szRemoteFile

A pointer to a string which specifies the remote file that is being copied to or from the local
system.

Remarks
If the option FTP_OPTION_HIRES_TIMER has been specified when connecting to the server, the
values returned in the dwTimeElapsed and dwTimeEstimated members will be in milliseconds
instead of seconds. You can use this option to obtain more accurate elapsed times when
uploading or downloading small files over a fast network connection.

Requirements

Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

See Also
GetTransferStatus, FTPTRANSFERSTATUS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SECURITYCREDENTIALS Structure

The SECURITYCREDENTIALS structure specifies the information needed by the library to specify
additional security credentials, such as a client certificate or private key, when establishing a secure
connection.

typedef struct _SECURITYCREDENTIALS
{
 DWORD dwSize;
 DWORD dwProtocol;
 DWORD dwOptions;
 DWORD dwReserved;
 LPCTSTR lpszHostName;
 LPCTSTR lpszUserName;
 LPCTSTR lpszPassword;
 LPCTSTR lpszCertStore;
 LPCTSTR lpszCertName;
 LPCTSTR lpszKeyFile;
} SECURITYCREDENTIALS, *LPSECURITYCREDENTIALS;

Members
dwSize

Size of this structure. If the structure is being allocated dynamically, this member must be set to
the size of the structure and all other unused structure members must be initialized to a value of
zero or NULL.

dwProtocol

A bitmask of supported security protocols. The value of this structure member is constructed by
using a bitwise operator with any of the following values:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The
correct protocol is automatically selected, based on

what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.
This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is
supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

SECURITY_PROTOCOL_SSH Either version 1.0 or 2.0 of the Secure Shell protocol
should be used when establishing the connection.
The correct protocol is automatically selected based
on the version of the protocol that is supported by
the server.

SECURITY_PROTOCOL_SSH1 The Secure Shell 1.0 protocol should be used when
establishing the connection. This is an older version
of the protocol which should not be used unless
explicitly required by the server. Most modern SSH
server support version 2.0 of the protocol.

SECURITY_PROTOCOL_SSH2 The Secure Shell 2.0 protocol should be used when
establishing the connection. This is the default

version of the protocol that is supported by most
SSH servers.

dwOptions

A value which specifies one or options. This value should always be zero for connections using
SSH. This member is constructed by using a bitwise operator with any of the following values:

Constant Description

CREDENTIAL_STORE_CURRENT_USER The library will attempt to open a store for
the current user using the certificate store
name provided in this structure. If no options
are specified, then this is the default
behavior.

CREDENTIAL_STORE_LOCAL_MACHINE The library will attempt to open a local
machine store using the certificate store
name provided in this structure. If this option
is specified, the library will always search for a
local machine store before searching for the
store by that name for the current user.

CREDENTIAL_STORE_FILENAME The certificate store name is a file that
contains the certificate and private key that
will be used.

dwReserved

This structure member is reserved for future use and should always be initialized to zero.

lpszHostName

A pointer to a null terminated string which specifies the hostname that will be used when
validating the server certificate. If this member is NULL, then the server certificate will be
validated against the hostname used to establish the connection.

lpszUserName

A pointer to a null terminated string which identifies the owner of client certificate. Currently this
member is not used by the library and should always be initialized as a NULL pointer.

lpszPassword

A pointer to a null terminated string which specifies the password needed to access the
certificate. Currently this member is only used if the CREDENTIAL_STORE_FILENAME option has
been specified. If there is no password associated with the certificate, then this member should
be initialized as a NULL pointer.

lpszCertStore

A pointer to a null terminated string which specifies the name of the certificate store to open. A
certificate store is a collection of certificates and their private keys, typically organized by how
they are used. If this value is NULL or points to an empty string, the default certificate store "MY"
will be used.

Store
Name

Description

CA
Certification authority certificates. These are certificates that are issued by entities
which are entrusted to issue certificates to other individuals or organizations.
Companies such as VeriSign and Thawte act as certification authorities.

MY

Personal certificates and their associated private keys for the current user. This
store typically holds the client certificates used to establish a user's credentials.
This corresponds to the "Personal" store that is displayed by the certificate
manager utility and is the default store used by the library.

ROOT
Certificates that have been self-signed by a certificate authority. Root certificates
for a number of different certification authorities such as VeriSign and Thawte are
installed as part of the operating system and periodically updated by Microsoft.

lpszCertName

A pointer to a null terminated string which specifies the name of the certificate to use. The
library will first search the certificate store for a certificate with a matching "friendly name"; this is
a name for the certificate that is assigned by the user. Note that the name must match
completely, but the comparison is not case sensitive. If no matching certificate is found, the
library will then attempt to find a certificate that has a matching common name (also called the
certificate subject). This comparison is less stringent, and the first partial match will be returned.
If this second search fails, the library will return an error indicating that the certificate could not
be found. If the SECURITY_PROTOCOL_SSH protocol has been specified, this member should
be NULL.

lpszKeyFile

A pointer to a null terminated string which specifies the name of the file which contains the
private key required to establish the connection. This member is only used for SSH connections
and should always be NULL when establishing a secure connection using SSL or TLS.

Remarks
A client application only needs to create this structure if the server requires that the client provide
a certificate as part of the process of negotiating the secure session. If a certificate is required,
note that it must have a private key associated with it. Attempting to use a certificate that does not
have a private key will result in an error during the connection process indicating that the client
credentials could not be established.

If you are using a local certificate store, with the certificate and private key stored in the registry,
you can explicitly specify whether the certificate store for the current user or the local machine (all
users) should be used. This is done by prefixing the certificate store name with "HKCU:" for the
current user, or "HKLM:" for the local machine. For example, a certificate store name of
"HKLM:MY" would specify the personal certificate store for the local machine, rather than the
current user. If neither prefix is specified, then it will default to the certificate store for the current
user. You can manage these certificates using the CertMgr.msc Microsoft Management Console
(MMC) snap-in.

It is possible to load the certificate from a file rather than from current user's certificate store. The
dwOptions member should be set to CREDENTIAL_STORE_FILENAME and the lpszCertStore
member should specify the name of the file that contains the certificate and its private key. The file
must be in Private Information Exchange (PFX) format, also known as PKCS #12. These certificate
files typically have an extension of .pfx or .p12. Note that if a password was specified when the
certificate file was created, it must be provided in the lpszPassword member or the library will be
unable to access the certificate.

Note that the lpszUserName and lpszPassword members are values which are used to access the
certificate store or private key file. They are not the credentials which are used when establishing
the connection with the remote host or authenticating the client session.

The TLS 1.1 and TLS 1.2 protocols are only supported on Windows 7, Windows Server 2008 R2

and later versions of the platform. If these options are specified and the application is running on
Windows XP or Windows Vista, the protocol version will be downgraded to TLS 1.0 for backwards
compatibility with those platforms.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SECURITYINFO Structure

This structure contains information about a secure connection that has been established with a
server.

typedef struct _SECURITYINFO
{
 DWORD dwSize;
 DWORD dwProtocol;
 DWORD dwCipher;
 DWORD dwCipherStrength;
 DWORD dwHash;
 DWORD dwHashStrength;
 DWORD dwKeyExchange;
 DWORD dwCertStatus;
 SYSTEMTIME stCertIssued;
 SYSTEMTIME stCertExpires;
 LPCTSTR lpszCertIssuer;
 LPCTSTR lpszCertSubject;
 LPCTSTR lpszFingerprint;
} SECURITYINFO, *LPSECURITYINFO;

Members
dwSize

Specifies the size of the data structure. This member must always be initialized to
sizeof(SECURITYINFO) prior to passing the address of this structure to the function. Note that
if this member is not initialized, an error will be returned indicating that an invalid parameter has
been passed to the function.

dwProtocol

A numeric value which specifies the protocol that was selected to establish the secure
connection. One of the following values will be returned:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be

used when establishing a secure connection. The
correct protocol is automatically selected, based on
what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.
This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is
supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

SECURITY_PROTOCOL_SSH1 The Secure Shell 1.0 protocol should be used. This
protocol has been deprecated and is no longer
widely used. It is not recommended that this
protocol be used when establishing secure
connections. This protocol can only be specified
when connecting to an SSH server and is not
supported with any other application protocol.

SECURITY_PROTOCOL_SSH2 The Secure Shell 2.0 protocol should be used. This is
the most commonly used version of the protocol. It
is recommended that this version of the protocol be

used unless the server explicitly requires the client to
use an earlier version. This protocol can only be
specified when connecting to an SSH server and is
not supported with any other application protocol.

dwCipher

A numeric value which specifies the cipher that was selected when establishing the secure
connection. One of the following values will be returned:

Constant Description

SECURITY_CIPHER_RC2 The RC2 block cipher was selected. This is a variable
key length cipher which supports keys between 40 and
128 bits, in 8-bit increments.

SECURITY_CIPHER_RC4 The RC4 stream cipher was selected. This is a variable
key length cipher which supports keys between 40 and
128 bits, in 8-bit increments.

SECURITY_CIPHER_RC5 The RC5 block cipher was selected. This is a variable
key length cipher which supports keys up to 2040 bits,
in 8-bit increments.

SECURITY_CIPHER_DES The DES (Data Encryption Standard) block cipher was
selected. This is a fixed key length cipher, using 56-bit
keys.

SECURITY_CIPHER_DES3 The Triple DES block cipher was selected. This cipher
encrypts the data three times using different keys,
effectively providing a 168-bit length key.

SECURITY_CIPHER_DESX A variant of the DES block cipher which XORs an extra
64-bits of the key before and after the plaintext has
been encrypted, increasing the key size to 184 bits.

SECURITY_CIPHER_AES The Advanced Encryption Standard cipher (also known
as the Rijndael cipher) is a fixed block size cipher which
use a key size of 128, 192 or 256 bits. This cipher is
supported on Windows XP SP3 and later versions of
the operating system.

SECURITY_CIPHER_SKIPJACK The Skipjack block cipher was selected. This is a fixed
key length cipher, using 80-bit keys.

SECURITY_CIPHER_BLOWFISH The Blowfish block cipher was selected. This is a
variable key length cipher up to 448 bits, using a 64-bit
block size.

dwCipherStrength

A numeric value which specifies the strength (the length of the cipher key in bits) of the cipher
that was selected. Typically this value will be 128 or 256. 40-bit and 56-bit key lengths are
considered weak encryption, and subject to brute force attacks. 128-bit and 256-bit key lengths
are considered to be secure, and are the recommended key length for secure communications.

dwHash

A numeric value which specifies the hash algorithm which was selected. One of the following

values will be returned:

Constant Description

SECURITY_HASH_MD5 The MD5 algorithm was selected. Its use has been
deprecated and is no longer considered to be
cryptographically secure.

SECURITY_HASH_SHA1 The SHA-1 algorithm was selected. Its use has been
deprecated and is no longer considered to be
cryptographically secure.

SECURITY_HASH_SHA256 The SHA-256 algorithm was selected.

SECURITY_HASH_SHA384 The SHA-384 algorithm was selected.

SECURITY_HASH_SHA512 The SHA-512 algorithm was selected.

dwHashStrength

A numeric value which specifies the strength (the length in bits) of the message digest that was
selected.

dwKeyExchange

A numeric value which specifies the key exchange algorithm which was selected. One of the
following values will be returned:

Constant Description

SECURITY_KEYEX_RSA The RSA public key algorithm was selected.

SECURITY_KEYEX_KEA The Key Exchange Algorithm (KEA) was selected. This is an
improved version of the Diffie-Hellman public key algorithm.

SECURITY_KEYEX_DH The Diffie-Hellman key exchange algorithm was selected.

SECURITY_KEYEX_ECDH The Elliptic Curve Diffie-Hellman key exchange algorithm was
selected. This is a variant of the Diffie-Hellman algorithm
which uses elliptic curve cryptography. This key exchange
algorithm is only supported on Windows XP SP3 and later
versions of the operating system.

dwCertStatus

A numeric value which specifies the status of the certificate returned by the secure server. This
member only has meaning for connections using the SSL or TLS protocols. One of the following
values will be returned:

Constant Description

SECURITY_CERTIFICATE_VALID The certificate is valid.

SECURITY_CERTIFICATE_NOMATCH The certificate is valid, but the domain name
does not match the common name in the
certificate.

SECURITY_CERTIFICATE_EXPIRED The certificate is valid, but has expired.

SECURITY_CERTIFICATE_REVOKED The certificate has been revoked and is no
longer valid.

SECURITY_CERTIFICATE_UNTRUSTED The certificate or certificate authority is not

trusted on the local system.

SECURITY_CERTIFICATE_INVALID The certificate is invalid. This typically indicates
that the internal structure of the certificate has
been damaged.

stCertIssued

A structure which contains the date and time that the certificate was issued by the certificate
authority. If the issue date cannot be determined for the certificate, the SYSTEMTIME structure
members will have zero values. This member only has meaning for connections using the SSL or
TLS protocols.

stCertExpires

A structure which contains the date and time that the certificate expires. If the expiration date
cannot be determined for the certificate, the SYSTEMTIME structure members will have zero
values. This member only has meaning for connections using the SSL or TLS protocols.

lpszCertIssuer

A pointer to a string which contains information about the organization that issued the
certificate. This string consists of one or more comma-separated tokens. Each token consists of
an identifier, followed by an equal sign and a value. If the certificate issuer could not be
determined, this member may be NULL. This member only has meaning for connections using
the SSL or TLS protocols.

lpszCertSubject

A pointer to a string which contains information about the organization that the certificate was
issued to. This string consists of one or more comma-separated tokens. Each token consists of
an identifier, followed by an equal sign and a value. If the certificate subject could not be
determined, this member may be NULL. This member only has meaning for connections using
the SSL or TLS protocols.

lpszFingerprint

A pointer to a string which contains a sequence of hexadecimal values that uniquely identify the
server. This member is only used when a connection has been established using the Secure
Shell (SSH) protocol.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SYSTEMTIME Structure

The SYSTEMTIME structure represents a date and time using individual members for the month,
day, year, weekday, hour, minute, second, and millisecond.

typedef struct _SYSTEMTIME
{
 WORD wYear;
 WORD wMonth;
 WORD wDayOfWeek;
 WORD wDay;
 WORD wHour;
 WORD wMinute;
 WORD wSecond;
 WORD wMilliseconds;
} SYSTEMTIME, *LPSYSTEMTIME;

Members
wYear

Specifies the current year. The year value must be greater than 1601.

wMonth

Specifies the current month. January is 1, February is 2 and so on.

wDayOfWeek

Specifies the current day of the week. Sunday is 0, Monday is 1 and so on.

wDay

Specifies the current day of the month

wHour

Specifies the current hour.

wMinute

Specifies the current minute

wSecond

Specifies the current second.

wMilliseconds

Specifies the current millisecond.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include windows.h.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

File Transfer Queue Class Library

Manage a queue which will perform file transfers in the background.

Reference

Class Methods
Data Structures
Error Codes

Library Information

Class Name CFtpQueue

File Name CSFTPV11.DLL

Version 11.0.2180.1635

LibID 22D6A6CD-4877-4CB9-B223-7149A9040534

Import Library CSFTPV11.LIB

Dependencies None

Standards RFC 959, RFC 1579, RFC 2228

Overview
The File Transfer Queue class library provides a high-level interface to uploading and downloading
a collection of files. Queued file transfers are performed in a background worker thread, with
optional event notifications to inform the application about the current state of the queue and the
files being processed.

A file may be queued for upload or download, and both uploads and downloads may be included
in the same queue. Multiple instances of this class may be created to transfer multiple files at the
same time. This class supports the same options available to individual file transfers using the
CFtpClient class.

This class supports active and passive mode file transfers, firewall compatibility options, proxy
servers and secure file transfers using the standard TLS 1.2 and SFTP protocols. Secure file
transfers support implicit and explicit TLS sessions, client certificates and up to 256-bit AES
encryption.

Requirements
The SocketTools Library Edition libraries are compatible with any programming language which
supports calling functions exported from a standard dynamic link library (DLL). If you are using
Visual C++ 6.0 it is required that you have Service Pack 6 (SP6) installed. You should install all
updates for your development tools and have the current Windows SDK installed. The minimum
recommended version of Visual Studio is Visual Studio 2010.

This class is supported on Windows 7, Windows Server 2008 R2 and later versions of the desktop
and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1) installed as
a minimum requirement. It is recommended that you install the current service pack and all critical
updates available for your version of the operating system.

This product includes both 32-bit and 64-bit libraries. Native 64-bit CPU support requires the 64-
bit version of Windows 7 or later versions of the Windows operating system.

Distribution
When you distribute your application that uses this library, it is recommended that you install the
file in the same folder as your application executable. If you install the library into a shared location
on the system, it is important that you distribute the correct version for the target platform and it
should be registered as a shared DLL. This is a standard Windows dynamic link library, not an
ActiveX component, and does not require COM registration.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 File Transfer Queue Class Methods

Class Description

CFtpQueue Constructor which initializes the current instance of the class

~CFtpQueue Destructor which releases resources allocated by the class

Method Description

AddFile Add a file to the transfer queue

AttachHandle Attach the specified client handle to this instance of the class

Cancel Cancel the specified queued file transfer

Clear Remove all files from the transfer queue

DetachHandle Detach the handle for the current instance of this class

DisableTrace Disable logging of socket function calls to the trace log

EnableTrace Enable logging of socket function calls to a file

EnumFiles Enumerate queued files based on the specified criteria

FindFile Find a specific file in the queue

FtpEventProc Callback function that processes events generated during queued transfers

GetClient Return a handle to the active client session during a queued file transfer

GetCount Return the number of files queued for transfer

GetErrorString Return a description for the specified error code

GetFile Return information about the specified file

GetFirstFile Return information about the first file in the transfer queue

GetHandle Return a handle for the queue

GetLastError Return the last error code

GetNextFile Return information about the next file in the transfer queue

GetStatus Return the current status of the file transfer queue

GetTransferStatus Return information about the file being currently transferred

IsEmpty Determine if the current file transfer queue is empty

IsIdle Determine if the queue manager is currently idle

IsInitialized Determine if the class has been successfully initialized

RegisterFileType Associate a file name extension with a specific file type

RemoveFile Remove a file from the transfer queue

Reset Reset the internal state of file transfers in the queue

Resume Resume the transfer of files after queue processing has been paused

SetLastError Set the last error code

ShowError Display a message box with a description of the specified error

file:///C|/Projects/cstools11/pdf/ftpqft/class/ftpeventproc.html

Start Begin transferring files in the queue

Stop Stop transferring files in the queue

Suspend Pause the transfer of files in the queue

Wait Wait for the transfer of all queued files to complete

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpQueue::CFtpQueue Method

CFtpQueue();

CFtpQueue(
 UINT nMaxFiles,
 UINT nTimeout,
 DWORD dwOptions
);

The CFtpQueue constructor initializes the class library and validates the license key at runtime.

Parameters
nMaxFiles

An unsigned integer which specifies the maximum number of files which can be added to the
queue. The constant INFINITE can be used to specify that there is no fixed limit to the number
of files in the queue.

nTimeout

An unsigned integer which specifies the default timeout for all queued file transfers. If this value
is zero, a reasonable default timeout period will be used. This timeout period is used when a file
is added to the queue without providing a timeout period for that specific file transfer. If a
timeout period is specified for a particular file, it will override this value.

dwOptions

An unsigned integer value which specifies one or more default options for all queued files. This
parameter is constructed by using a bitwise operator and can be any of the options used with
the CFtpClient::Connect method. If transfer options are specified for a particular file, it will
override this value. The most common options are:

Constant Description

FTP_OPTION_DEFAULT Default options should be used for queued file
transfers. This is the same as specifying that all file
transfers should use passive mode when establishing
a data connection with the server. It is recommended
most applications use passive mode to prevent
potential compatibility issues with certain types of
firewalls and routers which use Network Address
Translation (NAT).

FTP_OPTION_PASSIVE This option specifies queued transfers should attempt
to establish the data connection with the server. If the
local system is behind a firewall or a NAT router, the
server may not be able to establish a data connection
back to the client and the transfer will fail. This option
forces the client to establish an outbound data
connection with the server. It is recommended that
applications use passive mode whenever possible.

FTP_OPTION_FIREWALL This option specifies queued transfers should always
use the host IP address to establish the data
connection with the server, not the address returned
by the server in response to the PASV command.

This option may be necessary if the server is behind a
router that performs Network Address Translation
(NAT) and it returns an unreachable IP address for
the data connection. If this option is specified, it will
also enable passive mode data transfers.

FTP_OPTION_SECURE This option specifies queued file transfers should
attempt to establish a secure connection with the
server by default. This option is the same as
specifying FTP_OPTION_SECURE_IMPLICIT which
immediately performs the SSL/TLS protocol
negotiation when the connection is established.

FTP_OPTION_SECURE_IMPLICIT This option specifies queued file transfers should
attempt to immediately establish secure SSL/TLS
connection with the server by default. This option is
typically used when connecting to a server on port
990, which is the default port number used for FTPS.

FTP_OPTION_SECURE_EXPLICIT This option specifies queued file transfers should
establish a standard connection to the server and
then use the AUTH command to negotiate an explicit
secure connection. This option is typically used when
connecting to the server on ports other than 990.

FTP_OPTION_SECURE_SHELL This option specifies queued file transfers should use
the Secure Shell (SSH) protocol to establish the
connection by default. This option will automatically
be selected if the connection is established using port
22, the default port for SSH.

Remarks
If the constructor fails to validate the runtime license, subsequent methods in this class will fail. If
the product is installed with an evaluation license, then the application will only function on the
development system and cannot be redistributed.

If the nMaxFiles parameter is INFINITE, memory will be dynamically allocated on the process heap
with no limit to the number of files which can be queued. If there is a logic error which causes the
application to recursively add files to the queue, or repeatedly queue the same file, this can result
in virtual memory being exhausted for the process. You can avoid this by specifying a reasonable
maximum queue size, which will cause the AddFile method to fail if that limit is exceeded.

When called without any parameters, the constructor will create a queue with no file limit, default
options and a default timeout period. The memory allocated for the queue will be released when
the class destructor is invoked.

The constructor calls the FtpInitialize function to initialize the library, which dynamically loads
other system libraries and allocates thread local storage. If you are using this class within another
DLL, it is important that you do not create or destroy an instance of the class from within the
DllMain function because it can result in deadlocks or access violation errors. You should not
declare static or global instances of this class within another DLL if it is linked with the C runtime
library (CRT) because it will automatically call the constructors and destructors for static and global
C++ objects and has the same restrictions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
~CFtpQueue, IsInitialized, CFtpClient::Connect

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpQueue::~CFtpQueue

~CFtpQueue();

The CFtpQueue destructor releases resources allocated by the current instance of the
CFtpQueue object. It also uninitializes the library if there are no other concurrent uses of the class.

Remarks
When a CFtpQueue object goes out of scope, the destructor is automatically called to allow the
library to free any resources allocated on behalf of the process. Any pending blocking or
asynchronous calls in this process are canceled without posting any notification messages, and all
handles that were created for the client session are destroyed.

The destructor is not called explicitly by the application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
CFtpQueue

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpQueue::AddFile Method

DWORD AddFile(
 DWORD dwQueueMode,
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszRemoteFile,
 DWORD dwOptions,
 UINT nFileType,
 UINT nTimeout
);

DWORD AddFile(
 DWORD dwQueueMode,
 LPCTSTR lpszHostName,
 UINT nHostPort,
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword,
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszRemoteFile,
 DWORD dwOptions,
 UINT nFileType,
 UINT nTimeout
);

The AddFile method adds a new file to the queue with additional transfer options.

Parameters
dwQueueMode

An integer value which specifies if the file should be downloaded from the server or uploaded
to the server. This parameter must be one of the following options and cannot have a value of
zero.

Constant Description

FTP_QUEUE_DOWNLOAD The file should be queued for downloading from
the server to the local system.

FTP_QUEUE_UPLOAD The file should be queued for uploading from the
local system to the server.

lpszHostName

A pointer to the name of the server to establish a connection with. This may be a fully-qualified
domain name or an IP address. If this parameter is NULL or points to an empty string, the
lpszRemoteFile parameter must specify a complete URL which identifies the server as well as the
path to the remote file.

nHostPort

The port number which should be used when establishing the connection. A value of zero
specifies that the default port number should be used. For standard connections, the default
port number is 21. For secure connections, the default port number is 990. If this parameter is
zero and a URL is specified with the lpszRemoteFile parameter, the port number included in the
URL will be used as the default value.

lpszUserName

Points to a null terminated string which specifies the user name to be used to authenticate the

connection. If this parameter is NULL or an empty string, then the login is considered to be
anonymous. Note that anonymous logins are not supported for secure connections using the
SSH protocol.

lpszPassword

Points to a null terminated string which specifies the password to be used to authenticate the
current client session. This parameter may be NULL or an empty string if no password is
required for the specified user, or if no username has been specified.

lpszLocalFile

A pointer to a null terminated string which specifies the name of the local file to be queued for
transfer. This parameter cannot be NULL or point to an empty string. If the file is being queued
for an upload, the file must exist on the local system or the method will fail. If the file is being
downloaded, it will be created or replaced on the local system.

lpszRemoteFile

A pointer to a null terminated string which specifies the name of the file on the server. If the file
is being downloaded, the file must exist on the server or the transfer will fail. If the file is being
uploaded, the file will be created or replaced on the server. This parameter may specify a
complete URL. Note that any values you specify as arguments to this method will override the
values specified in the URL. If you want to use a URL as the remote file name, the
lpszHostName parameter should be NULL and the nHostPort parameter should be zero.

dwOptions

An unsigned integer value which specifies one or more options. This parameter is constructed
by using a bitwise operator and can be any of the options used with the FtpClient::Connect
method. If this value is zero, the default options for the queue will be used. The most common
options are:

Constant Description

FTP_OPTION_PASSIVE This option specifies the file transfer should attempt
to establish the data connection with the server. If the
local system is behind a firewall or a NAT router, the
server may not be able to establish a data connection
back to the client and the transfer will fail. This option
forces the client to establish an outbound data
connection with the server. It is recommended that
applications use passive mode whenever possible.

FTP_OPTION_FIREWALL This option specifies the file transfer should always
use the host IP address to establish the data
connection with the server, not the address returned
by the server in response to the PASV command.
This option may be necessary if the server is behind a
router that performs Network Address Translation
(NAT) and it returns an unreachable IP address for
the data connection. If this option is specified, it will
also enable passive mode data transfers.

FTP_OPTION_SECURE This option specifies the file transfer should attempt
to establish a secure connection with the server by
default. This option is the same as specifying
FTP_OPTION_SECURE_IMPLICIT which immediately

performs the SSL/TLS protocol negotiation when the
connection is established.

FTP_OPTION_SECURE_IMPLICIT This option specifies the file transfer should attempt
to immediately establish secure SSL/TLS connection
with the server by default. This option is typically used
when connecting to a server on port 990, which is
the default port number used for FTPS.

FTP_OPTION_SECURE_EXPLICIT This option specifies the file transfer should establish
a standard connection to the server and then use the
AUTH command to negotiate an explicit secure
connection. This option is typically used when
connecting to the server on ports other than 990.

FTP_OPTION_SECURE_SHELL This option specifies the file transfer should use the
Secure Shell (SSH) protocol to establish the
connection by default. This option will automatically
be selected if the connection is established using port
22, the default port for SSH.

nFileType

An integer value which specifies the type of file being transferred. It can be one of the following
values:

Value Description

FILE_TYPE_AUTO The file type should be automatically determined based on the file
name extension. If the file extension is unknown, the file type
should be determined based on the contents of the file. The
library has an internal list of common text file extensions, and
additional file extensions can be registered using the
RegisterFileType method.

FILE_TYPE_ASCII The file is a text file using the ASCII character set. For those servers
which mark the end of a line with characters other than a carriage
return and linefeed, it will be converted to the native client format.
This is the file type used for directory listings.

FILE_TYPE_EBCDIC The file is a text file using the EBCDIC character set. Local files will
be converted to EBCDIC when sent to the server. Remote files will
be converted to the native ASCII character set when retrieved
from the server. Not all servers support this file type. It is
recommended that you only specify this type if you know that it is
required by the server to transfer data correctly.

FILE_TYPE_IMAGE The file is a binary file and no data conversion of any type is
performed on the file. This is the default file type for most data
files and executable programs. If the type of file cannot be
automatically determined, it will always be considered a binary file.
If this file type is specified when uploading or downloading text
files, the native end-of-line character sequences will be preserved.

FILE_TYPE_LOCAL The file is a binary file that uses the local byte size for the server
platform. On most servers, this file type is considered to be the

same as FILE_TYPE_IMAGE. Not all servers support this file type. It
is recommended that you only specify this type if you know that it
is required by the server to transfer data correctly.

nTimeout

The number of seconds to wait for a response from the server before failing the file transfer. If
this value is zero, the default timeout period for the queue will be used.

lpvReserved

A reserved parameter which should always be NULL.

Return Value
If the method succeeds, the return value is a unique identifier which corresponds to the queued
file. If the method fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
This method will add a file to the current transfer queue. If successful, the value returned is a
unique integer which identifies that file in the queue. To obtain information about the queued file,
you can call the GetFile method and provide this return value as the dwFileId parameter. To
remove a file from the queue, use the RemoveFile method.

Files can only be added to the queue when in an idle or paused state. If you attempt to add a file
to the queue while the queue manager is transferring files, the method will fail. To determine the
current state of the queue, call the GetStatus method

There are no fixed limits to the number of files which can be queued for transfer. To release the
memory allocated for the queue, call the Clear method. To determine the current status of the
queue, including how many file transfers have been queued and how many are pending
completion, call the GetStatus method.

If the local file name includes environment variables enclosed in percentage (%) symbols, those
values will automatically be expanded based on the environment variables defined for the current
user using the ExpandEnvironmentStrings function in the Windows API. Note that environment
variable names are not case-sensitive.

This method will not immediately begin the process of uploading or downloading the file. It will
only add the transfer request to the current queue. The file transfers are managed by a
background worker thread which is created when the Start method is called.

Example
// Create a new queue
CFtpQueue pQueue = new CFtpQueue();

if (!pQueue->IsInitialized())
 return;

// Add a file to the queue
DWORD dwFileId = pQueue->AddFile(
 FTP_QUEUE_DOWNLOAD,
 lpszHostName,
 FTP_PORT_DEFAULT,
 lpszUserName,
 lpszPassword,
 lpszLocalFile,
 lpszRemoteFile);

// Display information about the queued file
if (dwFileId != 0)
{
 FTPQUEUEDFILE queuedFile;

 if (pQueue->GetFile(dwFileId, &queuedFile))
 {
 switch (queuedFile.dwMode)
 {
 case FTP_QUEUE_DOWNLOAD:
 _tprintf(_T("%u: Download \"%s\" to \"%s\"\n"),
 dwFileId,
 queuedFile.szRemoteFile,
 queuedFile.szLocalFile);
 break;

 case FTP_QUEUE_UPLOAD:
 _tprintf(_T("%u: Upload \"%s\" to \"%s\"\n"),
 dwFileId,
 queuedFile.szLocalFile,
 queuedFile.szRemoteFile);
 break;
 }
 }
}

// Start the queued file transfers and wait for it to complete
if (pQueue->Start())
{
 pQueue->Wait(INFINITE);
 pQueue->Stop();
}

// Remove all files from the queue
delete pQueue;

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CFtpQueue, ~CFtpQueue, FindFile, FtpGetFile, GetFirstFile, GetNextFile, RemoveFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/ftpqft/class/ftpgetfile.html

 CFtpQueue::AttachHandle Method

VOID AttachHandle(
 HQUEUE hQueue
);

The AttachHandle method attaches the specified queue handle to the current instance of the
class.

Parameters
hQueue

A handle to the queue.

Return Value
None.

Remarks
This method is used to attach a queue handle created outside of the class using the SocketTools
API. Once the handle is attached to the class, the other class member functions may be used with
that queue.

If a handle already has been created for the class, that handle will be released when the new
handle is attached to the class object. If you want to prevent the previous queue from being
destroyed, you must call the DetachHandle method. Failure to release the detached handle may
result in a resource leak in your application.

Note that the hQueue parameter is presumed to be a valid queue handle and no checks are
performed to ensure that the handle is valid. Specifying an invalid queue handle will cause
subsequent method calls to fail.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
DetachHandle, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpQueue::Cancel Method

BOOL Cancel(
 DWORD dwFileId
);

The Cancel method cancels the specified file transfer.

Parameters
dwFileId

An optional unsigned integer value which uniquely identifies the file in the queue. If this
parameter is omitted or the value is zero, the method will cancel the current file transfer in
progress. If queue transfers have been suspended, this parameter cannot be zero.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it will return zero. To get
extended error information, call GetLastError.

Remarks
When this method is called, the queued file transfer may not immediately stop. An internal flag is
set which causes the file transfer to exit with an error and the queue manager will begin
processing the next file in the queue. If the queue is in an idle state, this method will fail.

It is permitted to call the Cancel method from within a queue event handler to cancel the current
file transfer. In this case, the dwFileId parameter should be zero. If you specify a file which has not
been transferred, it will be flagged as canceled and skipped by the queue manager when
processing the queue. If you specify a file which has already been processed, this method will fail.

A canceled file transfer is also considered a failed transfer. When you call GetStatus after a
queued file transfer is canceled, the dwFailedFiles member of the FTPQUEUESTATUS structure will
be incremented to reflect this change. You can determine the status of an individual file transfer by
calling the GetFile method and checking the value of the dwQueueFlags member of the
FTPQUEUEDFILE structure.

The Reset method can be used to reset the state of previously canceled transfers.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
Cancel, GetFile, GetStatus, Reset, Resume, Start, Suspend, Stop

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpQueue::Clear Method

BOOL Clear();

The Clear method removes all files from the queue.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it will return zero. To get
extended error information, call GetLastError.

Remarks
This method can only be called when the queue is in an idle state. An error will be returned if the
method is called while the queue manager is paused or actively transferring files in the queue. To
determine the current state of the queue, call the GetStatus method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
Cancel, GetStatus, Reset, Resume, Start, Stop, Suspend

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpQueue::DetachHandle Method

HQUEUE DetachHandle();

The DetachHandle method detaches the queue handle associated with the current instance of
the class.

Parameters
None.

Return Value
This method returns the queue handle associated with the current instance of the class object. If
an error occurs, the value INVALID_QUEUE will be returned.

Remarks
This method is used to detach a queue handle created by the class for use with the SocketTools
API. Once the handle is detached from the class, no other class member functions may be called.
Note that the handle must be explicitly released at some later point by the process or a resource
leak will occur.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
AttachHandle, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpQueue::DisableTrace Method

BOOL DisableTrace();

The DisableTrace method disables the logging of socket function calls to the trace log.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, a value of zero is
returned.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
EnableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpQueue::EnableTrace Method

BOOL EnableTrace(
 LPCTSTR lpszTraceFile,
 DWORD dwTraceFlags
);

The EnableTrace method enables the logging of network function calls to a file.

Parameters
lpszTraceFile

A pointer to a string which specifies the name of the trace log file. If this parameter is NULL or
an empty string, the default file name cstrace.log is used. The file is stored in the directory
specified by the TEMP environment variable, if it is defined; otherwise, the current working
directory is used.

dwTraceFlags

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

TRACE_INFO All function calls are written to the trace file. This is the default
value.

TRACE_ERROR Only those function calls which fail are recorded in the trace file.

TRACE_WARNING Only those function calls which fail or return values which indicate
a warning are recorded in the trace file.

TRACE_HEXDUMP All functions calls are written to the trace file, plus all the data that
is sent or received is displayed, in both ASCII and hexadecimal
format.

TRACE_PROCESS All function calls in the current process are logged, rather than
only those functions in the current thread. This option is useful for
multithreaded applications that are using worker threads. This
option is always selected for the CFtpQueue class.

Return Value
If the method succeeds, the return value is non-zero. A return value of zero indicates an error.
Failure typically indicates that the tracing library cstrcv11.dll cannot be loaded on the local
system.

Remarks
When trace logging is enabled, the file is opened, appended to and closed for each socket
function call. This makes it possible for an application to append its own logging information,
however care should be taken to ensure that the file is closed before the next network operation is
performed. To limit the size of the log files, enable and disable logging only around those sections
of code that you wish to trace.

Note that the TRACE_HEXDUMP trace level generates very large log files since it includes all of the
data exchanged between your application and the server.

Trace method logging is managed on a per-thread basis, not for each client handle. This means

that all SocketTools libraries and components share the same settings in the current thread. If you
are using multiple SocketTools libraries or components in your application, you only need to
enable logging once.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DisableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpQueue::EnumFiles Method

LONG EnumFiles(
 LPCTSTR lpszFileMask,
 DWORD dwQueueMode,
 DWORD dwExcludeFiles,
 LPDWORD lpFileList,
 LONG nMaxFiles
);

The EnumFiles method returns a list of files in the current transfer queue.

Parameters
lpszFileMask

A pointer to a null terminated string which specifies a file name which can include wildcards.
Only those files which match this value will be enumerated. The character '?' will match against
any single character, and '*' will match any number of characters. If this parameter is NULL or
points to an empty string, all eligible files in the queue will be matched.

dwQueueMode

An unsigned integer value which specifies if the file name should be matched against
downloaded files, uploaded files or all files in the queue. Only those files which match the queue
mode will be enumerated. This is a bitmask which may be one or more of the following values:

Constant Description

FTP_QUEUE_ALL Match the file name to all files in the queue.

FTP_QUEUE_DOWNLOAD Match file names which are queued for download.

FTP_QUEUE_UPLOAD Match file names which are queued for upload.

FTP_QUEUE_LOCAL Match against the local file name instead of the
remote file name.

dwExcludeFiles

An unsigned integer value which specifies which files to exclude from the enumeration. If this
value is zero, no files will be excluded; otherwise, this value is constructed by using a bitwise
operator with any of the following values:

Constant Description

FTP_QUEUE_FLAG_NONE No files should be excluded.

FTP_QUEUE_FLAG_COMPLETED Exclude files which have been transferred. This flag is
set after a queued file has been uploaded or
downloaded successfully.

FTP_QUEUE_FLAG_FAILED Exclude files which where not successfully uploaded
or downloaded. This flag is set when an error occurs,
either when establishing a connection with the server
or during the file transfer.

FTP_QUEUE_FLAG_CANCELED Exclude files which were canceled during the file
transfer. This flag is only set when the Cancel
method has been called and a queued file is in the

process of being uploaded or downloaded.

lpFileList

A pointer to an array of unsigned integer values which will contain the unique file identifiers for
each matching file in the queue. This parameter must specify an array large enough to store all
of the file identifiers, otherwise the method will fail with a ST_ERROR_BUFFER_TOO_SMALL
error. If this parameter is NULL, the method will return the number of matching files.

nMaxFiles

An integer value which specifies the maximum number of file identifiers which can be copied
into the lpFileList array. If the lpFileList parameter is not NULL, this value must be greater than
zero.

Return Value
If the method succeeds, the return value is the number of matching files. If the queue is empty or
there are no matching files, this method will return zero. If the method fails, the return value is
FTP_ERROR. To get extended error information, call GetLastError.

Remarks
This method populates an array of unique file identifiers which can be used to obtain information
about the files in the current queue. The values returned in the lpFileList array can be used in
conjunction with the GetFile method. This provides an alternative to using the GetFirstFile and
GetNextFile methods.

The application should not make any assumptions about the value of the file identifiers returned
by this method. They should be considered opaque values which are only guaranteed to uniquely
identify a file in the transfer queue. In particular, there is no guarantee that the file identifiers will
be sequential and they should not be used as index values into an array.

Example
// Get the total number of files in the queue
LONG nFiles = pQueue->GetCount();

// Display information about the queued files
if (nFiles > 0)
{
 DWORD *pdwFileList = new DWORD[nFiles];
 nFiles = pQueue->EnumFiles(NULL, FTP_QUEUE_ALL, FTP_QUEUE_FLAG_NONE,
pdwFileList, nFiles);

 for (LONG nIndex = 0; nIndex < nFiles; nIndex++)
 {
 FTPQUEUEDFILE queuedFile;

 if (pQueue->GetFile(pdwFileList[nIndex], &queuedFile) == FALSE)
 break;

 switch (queuedFile.dwMode)
 {
 case FTP_QUEUE_DOWNLOAD:
 _tprintf(_T("%u: Download \"%s\" to \"%s\"\n"),
 queuedFile.dwFileId,
 queuedFile.szRemoteFile,
 queuedFile.szLocalFile);
 break;

 case FTP_QUEUE_UPLOAD:
 _tprintf(_T("%u: Upload \"%s\" to \"%s\"\n"),
 queuedFile.dwFileId,
 queuedFile.szLocalFile,
 queuedFile.szRemoteFile);
 break;
 }
 }

 delete pdwFileList;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AddFile, FindFile, GetFile, GetFirstFile, GetNextFile, RemoveFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpQueue::FindFile Method

DWORD FindFile(
 LPCTSTR lpszFileName,
 DWORD dwQueueMode,
 DWORD dwExcludeFiles
);

The FindFile method finds a file in the transfer queue which matches the search criteria.

Parameters
lpszFileName

A pointer to a null terminated string which specifies the name of the file to search for. The string
may contain the wildcard character '?' to match against any single character, and '*' will match
any number of characters. This parameter cannot be NULL or point to an empty string.

dwQueueMode

An unsigned integer value which specifies if the file name should be matched against
downloaded files, uploaded files or all files in the queue. This is a bitmask which may be one or
more of the following values:

Constant Description

FTP_QUEUE_ALL Match the file name to all files in the queue.

FTP_QUEUE_DOWNLOAD Match file names which are queued for download.

FTP_QUEUE_UPLOAD Match file names which are queued for upload.

FTP_QUEUE_LOCAL Match against the local file name instead of the
remote file name.

dwExcludeFiles

An unsigned integer value which specifies which files to exclude from the search. If this value is
zero, no files will be excluded from the search; otherwise, this value is constructed by using a
bitwise operator with any of the following values:

Constant Description

FTP_QUEUE_FLAG_NONE No files should be excluded from the search.

FTP_QUEUE_FLAG_COMPLETED Exclude files which have been transferred. This flag is
set after a queued file has been uploaded or
downloaded successfully.

FTP_QUEUE_FLAG_FAILED Exclude files which where not successfully uploaded
or downloaded. This flag is set when an error occurs,
either when establishing a connection with the server
or during the file transfer.

FTP_QUEUE_FLAG_CANCELED Exclude files which were canceled during the file
transfer. This flag is only set when the Cancel
method has been called and a queued file is in the
process of being uploaded or downloaded.

Return Value

 If the method succeeds, the return value is a unique identifier for the file. To obtain information
about the file, call the GetFile method. If the method fails, the return value is zero. To get
extended error information, call GetLastError.

Remarks
This method returns a unique file identifier for the first file which matches the specified file name in
the queue. If the lpszFileName parameter includes wildcard characters, this method will return the
first file in the queue which matches the name. File name matches are not case-sensitive, even
when matching against remote file names on servers which use case-sensitive naming, such as
UNIX based servers.

To perform more complex searches based on the file name, or to find multiple files, you can use
the GetFirstFile and GetNextFile methods to iterate through all queued files.

Example
// Find a local file in the download queue
DWORD dwFileId = pQueue->FindFile(lpszFileName,
 FTP_QUEUE_DOWNLOAD | FTP_QUEUE_LOCAL,
 FTP_QUEUE_FLAG_NONE);

// Display information about the queued file
if (dwFileId != 0)
{
 FTPQUEUEDFILE queuedFile;

 if (pQueue->GetFile(dwFileId, &queuedFile))
 {
 switch (queuedFile.dwMode)
 {
 case FTP_QUEUE_DOWNLOAD:
 _tprintf(_T("%u: Download \"%s\" to \"%s\"\n"),
 dwFileId,
 queuedFile.szRemoteFile,
 queuedFile.szLocalFile);
 break;

 case FTP_QUEUE_UPLOAD:
 _tprintf(_T("%u: Upload \"%s\" to \"%s\"\n"),
 dwFileId,
 queuedFile.szLocalFile,
 queuedFile.szRemoteFile);
 break;
 }
 }
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AddFile, EnumFiles, GetFile, GetFirstFile, GetNextFile, RemoveFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpQueue::GetClient Method

HCLIENT GetClient();

The GetClient method returns a handle to the current client session.

Parameters
None.

Return Value
If the method succeeds, the return value a handle to a client session. If the method fails, it will
return INVALID_CLIENT. To get extended error information, call GetLastError.

Remarks
The GetClient method returns the handle to a client session which may be used with other
methods. A valid handle will only be returned if the queue manager is currently uploading or
downloading a file. If the queue is active but there are no file transfers in progress at the time this
method is called, it will fail and set the last error code to ST_ERROR_NO_QUEUED_TRANSFER.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
CFtpQueue, ~CFtpQueue, GetTransferStatus, Resume, Start, Stop, Suspend

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpQueue::GetCount Method

LONG GetCount();

The GetCount method returns the total number of files which have been queued for transfer.

Parameters
None.

Return Value
If the method succeeds, the return value is the number of files in the queue. If the method fails, it
will return FTP_ERROR. To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
CFtpQueue, ~CFtpQueue, EnumFiles, GetStatus, GetFile, GetFirstFile, GetNextFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpQueue::GetErrorString Method

INT GetErrorString(
 DWORD dwErrorCode,
 LPTSTR lpszDescription,
 INT cbDescription
);

INT GetErrorString(
 DWORD dwErrorCode,
 CString& strDescription
);

The GetErrorString method is used to return a description of a specific error code. Typically this is
used in conjunction with the GetLastError method for use with warning dialogs or as diagnostic
messages.

Parameters
dwErrorCode

The error code for which a description is returned.

lpszDescription

A pointer to the buffer that will contain a description of the specified error code. This buffer
should be at least 128 characters in length. An alternate form of the method accepts a CString
variable which will contain the error description.

cbDescription

The maximum number of characters that may be copied into the description buffer.

Return Value
If the method succeeds, the return value is the length of the description string. If the method fails,
the return value is zero, meaning that no description exists for the specified error code. Typically
this indicates that the error code passed to the method is invalid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetLastError, SetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpQueue::GetFile Method

BOOL GetFile(
 LPCTSTR lpszFileName,
 LPFTPQUEUEDFILE lpFileInfo
);

BOOL GetFile(
 DWORD dwFileId,
 LPFTPQUEUEDFILE lpFileInfo
);

The GetFile method returns information about the specified file in the transfer queue.

Parameters
lpszFileName

A pointer to a null terminated string which specifies the name of the file in the queue. The name
should always be the name of the remote file to search for.

dwFileId

An unsigned integer value which uniquely identifies the file in the queue. This value cannot be
zero.

lpFileInfo

A pointer to a FTPQUEUEDFILE structure which will contain information about the file. This
parameter cannot be NULL.

Return Value
If the method succeeds, the return value is non-zero. If the file identifier is not valid or the file has
been removed from the queue, the return value is zero. To get extended error information, call
FtpGetLastError.

Remarks
The file identifier can be obtained by several different methods, including EnumFiles and
GetStatus, which provides information about the current file being processed in the queue. Do
not make any assumptions about the value of the identifier. Although the value is guaranteed to
be unique for the specified queue, it is not guaranteed that file identifiers will be assigned in
sequential order.

If you call the version of this method which accepts a file name, it will use the FindFile method to
obtain the file ID for the first file name which matches a remote file in the queue. This approach is
only recommended if you know that the queued file names will be unique.

Example
// Get the number of files in the queue
LONG nFiles = pQueue->GetCount();

// Display information about the queued files
if (nFiles > 0)
{
 DWORD *pdwFileList = new DWORD[nFiles];

 nFiles = pQueue->EnumFiles(pdwFileList, nFiles);

 for (LONG nIndex = 0; nIndex < nFiles; nIndex++)

 {
 FTPQUEUEDFILE queuedFile;

 if (pQueue->GetFile(pdwFileList[nIndex], &queuedFile) == FALSE)
 break;

 switch (queuedFile.dwMode)
 {
 case FTP_QUEUE_DOWNLOAD:
 _tprintf(_T("%u: Download \"%s\" to \"%s\"\n"),
 queuedFile.dwFileId,
 queuedFile.szRemoteFile,
 queuedFile.szLocalFile);
 break;

 case FTP_QUEUE_UPLOAD:
 _tprintf(_T("%u: Upload \"%s\" to \"%s\"\n"),
 queuedFile.dwFileId,
 queuedFile.szLocalFile,
 queuedFile.szRemoteFile);
 break;
 }
 }

 delete pdwFileList;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
EnumFiles, GetStatus, GetFile, GetFirstFile, GetNextFile, GetStatus

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpQueue::GetFirstFile Method

DWORD GetFirstFile(
 DWORD dwQueueMode,
 DWORD dwExcludeFiles,
 LPFTPQUEUEDFILE lpFileInfo
);

The FtpGetFirstFile method returns information about the first file in the transfer queue.

Parameters
dwQueueMode

An unsigned integer value which specifies if the file name should be matched against
downloaded files, uploaded files or all files in the queue. It may be one of the following values:

Constant Description

FTP_QUEUE_ALL Return information about all files in the queue.

FTP_QUEUE_DOWNLOAD Return information for files which are queued for
download.

FTP_QUEUE_UPLOAD Return information for files which are queued for
upload.

dwExcludeFiles

An unsigned integer value which specifies which files to exclude from the search. If this value is
zero, no files will be excluded from the search; otherwise, this value is constructed by using a
bitwise operator with any of the following values:

Constant Description

FTP_QUEUE_FLAG_NONE No files should be excluded.

FTP_QUEUE_FLAG_COMPLETED Exclude files which have been transferred. This flag is
set after a queued file has been uploaded or
downloaded successfully.

FTP_QUEUE_FLAG_FAILED Exclude files which where not successfully uploaded
or downloaded. This flag is set when an error occurs,
either when establishing a connection with the server
or during the file transfer.

FTP_QUEUE_FLAG_CANCELED Exclude files which were canceled during the file
transfer. This flag is only set when the Cancel
method has been called and a queued file is in the
process of being uploaded or downloaded.

lpFileInfo

A pointer to a FTPQUEUEDFILE structure which will contain information about the file. This
parameter cannot be NULL.

Return Value
If the method succeeds, the return value is an unsigned integer with a non-zero value which
uniquely identifies the file in the queue. If there are no queued files which match the specified

parameters, or the method fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
This method returns information about the first file in the current transfer queue. It is used in
conjunction with the GetNextFile method to obtain information about all queued files.

Example
// List all files in a file transfer queue
FTPQUEUEDFILE queuedFile;
DWORD dwFileId;

dwFileId = pQueue->GetFirstFile(FTP_QUEUE_ALL, FTP_QUEUE_FLAG_NONE,
&queuedFile);

while (dwFileId != 0)
{
 switch (queuedFile.dwQueueMode)
 {
 case FTP_QUEUE_DOWNLOAD:
 _tprintf(_T("%u: download \"%s\" to \"%s\"\n"),
 queuedFile.dwFileId,
 queuedFile.szRemoteFile,
 queuedFile.szLocalFile);
 break;

 case FTP_QUEUE_UPLOAD:
 _tprintf(_T("%u: upload \"%s\" to \"%s\"\n"),
 queuedFile.dwFileId,
 queuedFile.szRemoteFile,
 queuedFile.szLocalFile);
 break;
 }

 dwFileId = pQueue->GetNextFile(&queuedFile);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AddFile, EnumFiles, FindFile, GetFile, GetNextFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpQueue::GetHandle Method

HQUEUE GetHandle();

The GetHandle method returns the queue handle associated with the current instance of the
class.

Parameters
None.

Return Value
This method returns the queue handle associated with the current instance of the class object. If
an error occurs, the value INVALID_QUEUE will be returned.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
AttachHandle, DetachHandle, IsInitialized

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpQueue::GetLastError Method

DWORD GetLastError();

DWORD GetLastError(
 CString& strDescription
);

Parameters
strDescription

A string which will contain a description of the last error code value when the method returns. If
no error has been set, or the last error code has been cleared, this string will be empty.

Return Value
The return value is the last error code value for the current thread. Functions set this value by
calling the SetLastError method. The Return Value section of each reference page notes the
conditions under which the method sets the last error code.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. You should call
the GetLastError method immediately when a method's return value indicates that an error has
occurred. That is because some methods call SetLastError(0) when they succeed, clearing the
error code set by the most recently failed method.

Most methods will set the last error code value when they fail; a few methods set it when they
succeed. Function failure is typically indicated by a return value such as FALSE, NULL,
INVALID_CLIENT or FTP_ERROR. Those methods which call SetLastError when they succeed are
noted on the method reference page.

The description of the error code is the same string that is returned by the GetErrorString
method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
GetErrorString, SetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpQueue::GetNextFile Method

DWORD GetNextFile(
 LPFTPQUEUEDFILE lpFileInfo
);

The GetNextFile method returns information about the next file in the transfer queue.

Parameters
lpFileInfo

A pointer to a FTPQUEUEDFILE structure which will contain information about the file. This
parameter cannot be NULL.

Return Value
If the method succeeds, the return value is an unsigned integer with a non-zero value which
uniquely identifies the file in the queue. If there are no additional queued files which match the
exclusion criteria specified with the call to GetFirstFile, the return value is zero. To get extended
error information, call GetLastError.

Remarks
This method returns information about the next file in the current transfer queue after an initial call
to GetFirstFile. To obtain a list of all matching files in the queue, call this method repeatedly until
it returns a value of zero. When information about the last file in the queue has been returned, the
last error code will be set to ST_ERROR_END_OF_QUEUE.

Example
// List all files in a file transfer queue
FTPQUEUEDFILE queuedFile;
DWORD dwFileId;

dwFileId = pQueue->GetFirstFile(FTP_QUEUE_ALL, FTP_QUEUE_FLAG_NONE,
&queuedFile);

while (dwFileId != 0)
{
 switch (queuedFile.dwQueueMode)
 {
 case FTP_QUEUE_DOWNLOAD:
 _tprintf(_T("%u: download \"%s\" to \"%s\"\n"),
 queuedFile.dwFileId,
 queuedFile.szRemoteFile,
 queuedFile.szLocalFile);
 break;

 case FTP_QUEUE_UPLOAD:
 _tprintf(_T("%u: upload \"%s\" to \"%s\"\n"),
 queuedFile.dwFileId,
 queuedFile.szRemoteFile,
 queuedFile.szLocalFile);
 break;
 }

 dwFileId = pQueue->GetNextFile(&queuedFile);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AddFile, EnumFiles, FindFile, GetFile, GetFirstFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpQueue::GetStatus Method

INT GetStatus(
 LPFTPQUEUESTATUS lpQueueStatus
);

The GetStatus method returns information about the specified file in the transfer queue.

Parameters
lpQueueStatus

A pointer to a FTPQUEUESTATUS structure which will contain information about the current
state of the file transfer queue. If this parameter is NULL, the method will ignore the parameter
and only return the current status of the queue.

Return Value
If the method succeeds, the return value is the current queue status. If the method fails, the return
value is FTP_ERROR. To get extended error information, call FtpGetLastError. The following status
values may be returned:

Constant Description

FTP_QUEUE_STATUS_IDLE The file transfer queue is idle and no files are being
uploaded or downloaded. This state is returned before
FtpStartQueue has been called or after
FtpStopQueue has been called. The queue will also
automatically enter an idle state after the last file
transfer has completed and the queue manager thread
exits.

FTP_QUEUE_STATUS_ACTIVE The queue manager is active and files are currently
being uploaded or downloaded.

FTP_QUEUE_STATUS_PAUSED The queue manager is active although file transfers are
currently paused. The queue enters this state after the
FtpSuspendQueue method is called and resumes file
transfers after the FtpResumeQueue method is called.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
CFtpQueue, ~CFtpQueue, Cancel, Reset, Resume, Start, Suspend, Stop, Wait

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpQueue::GetTransferStatus Method

INT GetTransferStatus(
 LPFTPTRANSFERSTATUS lpStatus
);

INT GetTransferStatus(
 LPFTPTRANSFERSTATUSEX lpStatus
);

The GetTransferStatus method returns information about the current file transfer in progress.

Parameters
lpStatus

A pointer to an FTPTRANSFERSTATUS or FTPTRANSFERSTATUSEX structure which contains
information about the status of the current file transfer.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
FTP_ERROR. To get extended error information, call GetLastError.

Remarks
The GetTransferStatus method returns information about the current file transfer, including the
average number of bytes transferred per second and the estimated amount of time until the
transfer completes. This method would typically be called from within a callback function in
response to an FTP_EVENT_PROGRESS event notification.

The dwBytesTotal and dwBytesCopied members of the FTPTRANSFERSTATUSEX structure are
declared as unsigned 64-bit integers rather than 32-bit integers. To obtain accurate file transfer
information, this extended version of the structure should be used with files that are larger than
4GiB.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CFtpQueue, ~CFtpQueue, FtpEventProc, GetClient, Start, Stop

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/ftpqft/class/ftpeventproc.html

 CFtpQueue::IsEmpty Method

BOOL IsEmpty();

The IsEmpty method determines if the current queue is empty.

Parameters
None.

Return Value
If no files have been added to the queue, the return value is non-zero. If one or more files have
been added to the queue, the method will return zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
AddFile Clear GetFile, IsIdle, RemoveFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpQueue::IsIdle Method

BOOL IsIdle();

The IsIdle method determines if the queue is idle.

Parameters
None.

Return Value
If the queue is idle and no files are being transferred, this method returns a non-zero value. If the
queue manager is currently transferring files, the return value is zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
AddFile Cancel, Clear IsEmpty, Reset, Resume, Start, Stop, Suspend, Wait

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpQueue::IsInitialized Method

BOOL IsInitialized();

The IsInitialized method returns whether or not the class object has been successfully initialized.

Return Value
This method returns a non-zero value if the class object has been successfully initialized. A return
value of zero indicates that the runtime license key could not be validated or the networking
library could not be loaded by the current process.

Remarks
When an instance of the class is created, the class constructor will attempt to initialize the
component with the runtime license key that was created when SocketTools was installed. If the
constructor is unable to validate the license key or load the networking libraries, this initialization
will fail.

If SocketTools was installed with an evaluation license, the application cannot be redistributed to
another system. The class object will fail to initialize if the application is executed on another
system, or if the evaluation period has expired. To redistribute your application, you must
purchase a development license which will include the runtime key that is needed to redistribute
your software to other systems. Refer to the Developer's Guide for more information.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
CFtpQueue, ~CFtpQueue, Clear GetClient, GetHandle Reset, Resume, Start, Stop, Suspend

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpQueue::RegisterFileType Method

BOOL RegisterFileType(
 LPCTSTR lpszExtension,
 UINT nFileType
);

The RegisterFileType method associates a file name extension with a specific file type.

Parameters
lpszExtension

A pointer to a null terminated string which specifies the file name extension. If this parameter is
NULL or points to an empty string, the default file type will be changed for the client session.

nFileType

Specifies the type of file associated with the file extension. This parameter can be one of the
following values.

Value Description

FILE_TYPE_ASCII The file is a text file using the ASCII character set. For those servers
which mark the end of a line with characters other than a carriage
return and linefeed, it will be converted to the native client format.
This is the file type used for directory listings.

FILE_TYPE_EBCDIC The file is a text file using the EBCDIC character set. Local files will
be converted to EBCDIC when sent to the server. Remote files will
be converted to the native ASCII character set when retrieved
from the server.

FILE_TYPE_IMAGE The file is a binary image and no data conversion of any type is
performed on the file. This is typically the default file type for data
file transfers. If the type of file that is being transferred is unknown,
this file type should always be used.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The RegisterFileType method is used to associate specific file types with file name extensions.
The class has an internal list of standard text file extensions which it automatically recognizes. This
method can be used to extend or modify that global list. Registered file types are shared by all
queues created by the application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also

AddFile, FindFile, GetFile, RemoveFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpQueue::RemoveFile Method

BOOL RemoveFile(
 DWORD dwFileId
);

BOOL RemoveFile(
 LPCTSTR lpszFileName
);

The RemoveFile method removes the specified file from the queue.

Parameters
dwFileId

An unsigned integer value which uniquely identifies the file in the queue. This value cannot be
zero.

lpszFileName

A pointer to a null terminated string which specifies the name of the file to remove. If this
version of the method is called, this parameter cannot be NULL or point to an empty string. The
file name may include wildcard characters if you wish to remove multiple files. The character '?'
will match against any single character, and '*' will match any number of characters.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it will return zero. To get
extended error information, call FtpGetLastError.

Remarks
Files can only be removed from the queue when in an idle or paused state. If you attempt to
remove a file while the queue manager is in the process of uploading or download files, the
method will fail.

The file identifier can be obtained by several different methods, including EnumFiles and
GetStatus, which provides information about the current file being processed in the queue. Do
not make any assumptions about the value of the identifier. Although the value is guaranteed to
be unique for the specified queue, it is not guaranteed that file identifiers will be assigned in
sequential order.

If you call this method using a file name, the EnumFiles method will be used to enumerate all
remote file names which match and remove them from the queue. File name matches are not
case-sensitive, even when matching against file names on servers which use case-sensitive
naming, such as UNIX based servers.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
AddFile Clear IsEmpty, Reset, Resume, Start, Stop, Suspend

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpQueue::Reset Method

BOOL Reset(
 UINT nResetMode
);

The Reset method resets the state of all file transfers in the current queue.

Parameters
dwOptions

An integer value which specifies which files should be reset in the queue. It may be one of the
following values:

Constant Description

FTP_QUEUE_RESET_ALL All files in the queue should be reset to their initial
state.

FTP_QUEUE_RESET_COMPLETED All files in the queue which have been successfully
transferred will be reset to their initial state.

FTP_QUEUE_RESET_FAILED All files in the queue which were not transferred will
be reset to their initial state.

FTP_QUEUE_RESET_CANCELED All files in the queue which were canceled will be
reset to their initial state.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
When the Start method is called multiple times, it will not attempt to transfer files which have
already been successfully copied, and it will not attempt to re-transfer files if the previous transfer
failed. This method resets queued files back to their initial state, prior to when the queue manager
attempted to perform the transfer. The most common use would be to call the method with the
FTP_QUEUE_RESET_FAILED mode and then call Start to retry failed or canceled file transfers.

Because canceled file transfers are also considered failed transfers, specifying
FTP_QUEUE_RESET_FAILED will reset queued files which either encountered an error during the
transfer or were explicitly canceled by calling the Cancel method. The
FTP_QUEUE_RESET_CANCELED option will only reset the state of queued file transfers which were
canceled.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
AddFile Cancel, Clear, IsEmpty, Resume, Start, Stop, Suspend, Wait

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpQueue::Resume Method

BOOL Resume();

The Resume method resumes transfers in the queue.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it will return zero. To get
extended error information, call GetLastError.

Remarks
This method signals the queue manager to resume processing files in the transfer queue after the
Suspend method has been called. This method will fail if the queue is in an idle (stopped) state,
and will be ignored if the queue manager is already transferring files. The GetStatus method can
be called to obtain the current status of the queue.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
Cancel, Clear, GetStatus, Start, Stop, Suspend, Wait

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpQueue::SetLastError Method

VOID SetLastError(
 DWORD dwErrorCode
);

The SetLastError method sets the last error code for the current thread. This method is typically
used to clear the last error by specifying a value of zero as the parameter.

Parameters
dwErrorCode

Specifies the last error code for the current thread.

Return Value
None.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. Most methods will
set the last error code value when they fail; a few methods set it when they succeed. Failure is
typically indicated by a return value such as FALSE, NULL, INVALID_QUEUE or FTP_ERROR. Those
methods which call SetLastError when they succeed are noted on the method reference page.

Applications can retrieve the value saved by this method by calling the GetLastError method. The
use of GetLastError is optional; an application can use the method to determine the specific
reason for a failure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
GetErrorString, GetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpQueue::ShowError Method

INT ShowError(
 LPCTSTR lpszAppTitle,
 UINT uType,
 DWORD dwErrorCode
);

The ShowError method displays a message box which describes the specified error.

Parameters
lpszAppTitle

A pointer to a string which specifies the title of the message box that is displayed. If this
argument is NULL or omitted, then the default title of "Error" will be displayed.

uType

An unsigned integer which specifies the type of message box that will be displayed. This is the
same value that is used by the MessageBox function in the Windows API. If a value of zero is
specified, then a message box with a single OK button will be displayed. Refer to that function
for a complete list of options.

dwErrorCode

Specifies the error code that will be used when displaying the message box. If this argument is
zero, then the last error that occurred in the current thread will be displayed.

Return Value
If the method is successful, the return value will be the return value from the MessageBox
function. If the method fails, it will return a value of zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetErrorString, GetLastError, SetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpQueue::Start Method

BOOL Start(
 DWORD dwQueueMode,
 FTPEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

The Start method begins transferring files in the queue.

Parameters
dwQueueMode

An unsigned integer which specifies which files in the queue should be transferred. It may be
one of the following values:

Constant Description

FTP_QUEUE_ALL All files in the queue should be transferred.

FTP_QUEUE_DOWNLOAD Transfer only those files which have been queued
for download.

FTP_QUEUE_UPLOAD Transfer only those files which have been queued
for upload.

lpEventProc

Specifies the procedure-instance address of an application defined callback function. For more
information about the callback method, see the description of the FtpEventProc callback
method. If this parameter is NULL, there will be no callback notifications.

dwParam

A user-defined integer value that is passed to the callback method. If the application targets the
x86 (32-bit) platform, this parameter must be a 32-bit unsigned integer. If the application
targets the x64 (64-bit) platform, this parameter must be a 64-bit unsigned integer.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it will return zero. To get
extended error information, call GetLastError.

Remarks
Queued file transfers are performed asynchronously using a background worker thread. If you
provide the address to an event callback function, that method will always be invoked in the
context of the queue manager thread. You must ensure that any access to global or static
variables are synchronized, otherwise the results may be unpredictable. It is recommended that
you do not declare any static variables within the callback function itself and you should avoid
calling any methods which could cause the thread to block. For example, you should not attempt
to establish other network connections from within the event handler.

If your application has a graphical user interface, you should never attempt to directly modify a UI
control from within the callback method. Controls should only be modified by the same UI thread
that created their window. One common approach to address this issue is to post a user-defined
message to the main window to signal that the user interface needs to be updated. The message
handler would then process the user-defined message and update the user interface as needed.

The callback function specified by the lpEventProc parameter must be declared using the
__stdcall calling convention. This ensures the arguments passed to the event handler are pushed
on to the stack in the correct order. Failure to use the correct calling convention will corrupt the
stack and cause the application to terminate abnormally.

The dwParam parameter is commonly used to identify the class instance which is associated with
the event that has occurred. Applications will cast the this pointer to a DWORD_PTR value when
calling this function, and then the event handler will cast it back to a pointer to the class instance.
This gives the handler access to the class member variables and methods.

The Wait method can be used to wait for the queue manager to complete processing the transfer
queue.

Example
// Create a new queue
CFtpQueue *pQueue = new CFtpQueue();

// Add a file to the queue
pQueue->AddFile(lpszLocalFile, lpszRemoteFile);

// Start the queued file transfers and wait for it to complete
if (pQueue->Start(FTP_QUEUE_ALL))
{
 pQueue->Wait(INFINITE);
 pQueue->Stop();
}

// Remove all files from the queue
delete pQueue;

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
CFtpQueue, ~CFtpQueue, Cancel, Clear, GetStatus, Resume, Stop, Suspend, Wait

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpQueue::Stop Method

BOOL Stop();

The Stop method stops tranfering queued files.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it will return zero. To get
extended error information, call GetLastError.

Remarks
When the Stop method is called and there is a file transfer in progress, it will not immediately stop
the upload or download of the file. Instead, the queue manager is signaled to stop processing
additional files in the queue after the transfer has completed. To wait for the current transfer to
complete, call the Wait method.

It is permitted to call the Stop method from within a queue event handler. In this case, the current
file transfer will complete and the queue manager will terminate.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
Cancel, Clear, GetStatus, Resume, Start, Suspend, Wait

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpQueue::Suspend Method

BOOL Suspend();

The Suspend method pauses all file transfers for the queue.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it will return zero. To get
extended error information, call GetLastError.

Remarks
If there is a file transfer in progress when this method is called, the transfer will complete normally.
The queue manager will enter a suspended state after the transfer has completed and before it
begins processing the next file in the queue.

It is permitted to call the Suspend method from within a queue event handler. In this case, the
current file transfer will complete and the queue manager will stop processing additional files in
the queue until it is resumed or stopped.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
Cancel, Clear, GetStatus, Resume, Start, Stop, Wait

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpQueue::Wait Method

BOOL WINAPI FtpWaitForQueue(
 DWORD dwMilliseconds,
 LPDWORD lpdwElapsed,
 LPDWORD lpdwError
);

BOOL WINAPI FtpWaitForQueue(
 DWORD dwMilliseconds
);

The Wait method waits for the specified queue to complete the file transfers.

Parameters
dwMilliseconds

An unsigned integer value which specifies the number of milliseconds to wait for the queue to
complete processing. If this value is zero, the method will return immediately. If this value is
INFINITE (0xFFFFFFFF), the method will block indefinitely until all files in the queue have been
processed.

lpdwElapsed

A pointer to an unsigned integer which will contain the number of milliseconds the queue
manager has been active when the method returns. If this information is not needed, this
parameter can omitted or it can be NULL. If this parameter is not NULL, it will always be
initialized to a value of zero.

lpdwError

A pointer to an unsigned integer which will contain the last error code set if a file transfer has
failed or was canceled. If this information is not needed, this parameter can be omitted or NULL.
If this parameter is not NULL, it will always be initialized to a value of zero.

Return Value
If the method succeeds, the return value is non-zero, which means the queue manager has
completed transferring all queued files. If the method fails, or the timeout period elapses, it will
return zero. To get extended error information, call GetLastError.

Remarks
This method will cause the current thread to block until either the queue manager has completed
processing all files in the queue, or until the specified number of milliseconds have elapsed. It is
important to note that Windows messages will not be processed during this time. If you call this
method within the main UI thread, it can potentially cause the application to become non-
responsive. To determine the current state of the queue without blocking the current thread, call
the GetStatus method.

If the dwMilliseconds parameter is non-zero and file transfers have not completed within the
specified amount of time, the method will return zero and the last error code will be set to
ST_ERROR_OPERATION_TIMEOUT.

If an event callback function has been specified when starting the queue, you should never call this
method within the event handler. Attempting to do so can potentially create a situation which will
cause the application to become non-responsive. The method will return zero if it determines it's
being called within the context of the queue manager thread and will set the last error code to
ST_ERROR_THREAD_DEADLOCK.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
Cancel, Clear, GetStatus, Resume, Start, Stop, Suspend

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 File Transfer Queue Data Structures

FTPQUEUEDFILE
FTPQUEUESTATUS
FTPTRANSFERSTATUS
FTPTRANSFERSTATUSEX
SYSTEMTIME

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FTPQUEUEDFILE Structure

This structure is used by the GetFile, GetFirstFile and GetNextFile methods to return information
about a file in the transfer queue.

typedef struct _FTPQUEUEDFILE
{
 DWORD dwFileId;
 DWORD dwQueueMode;
 DWORD dwQueueFlags;
 DWORD dwTimeElapsed;
 DWORD dwLastError;
 ULARGE_INTEGER uiBytesCopied;
 TCHAR szLocalFile[FTP_MAXFILENAMELEN];
 TCHAR szRemoteFile[FTP_MAXURLPATHLEN];
} FTPQUEUEDFILE, *LPFTPQUEUEDFILE;

Members
dwFileId

An unsigned integer which specifies a unique identifier for the queued file. The application
should not make any assumptions about the value of the file identifiers. They should be
considered opaque values which are only guaranteed to uniquely identify a file in the transfer
queue. In particular, there is no guarantee that the file identifiers will be sequential and they
should not be used as index values into an array.

dwQueueMode

An unsigned integer value which specifies how the file was queued for transfer. It may be one of
the following values:

Constant Description

FTP_QUEUE_DOWNLOAD The file was queued for download.

FTP_QUEUE_UPLOAD The file was queued for upload.

dwQueueFlags

An unsigned integer which specifies one or more bitflags which provides information about the
status of the file transfer. It may be one or more of the following values:

Constant Description

FTP_QUEUE_FLAG_NONE The file is pending transfer in queue.

FTP_QUEUE_FLAG_COMPLETED The file has been transferred successfully. If this
flag is set, no errors were encountered during the
upload or download.

FTP_QUEUE_FLAG_FAILED The file transfer failed. If this flag is set, the
dwError member of this structure will contain the
error code associated with the failed transfer.

FTP_QUEUE_FLAG_CANCELED The file transfer was canceled. This flag is only set
when the Cancel method has been called and a
queued file is in the process of being uploaded or
downloaded.

dwTimeElapsed

An unsigned integer which specifies the number of milliseconds required to complete the
transfer. This value will be zero unless the file has been transferred successfully.

dwLastError

An unsigned integer which specifies the last error code for a failed transfer. If the file was
transferred successfully, this value will be zero.

uiBytesCopied

A value which specifies the number of bytes which were copied during the file transfer. The
ULARGE_INTEGER type is a union of a structure and a 64-bit value which can be used on both
32-bit and 64-bit systems. For languages other than C/C++ you can define this structure
member as an unsigned 64-bit integer type.

szLocalFile

A null terminated string which specifies the full path to the local file being transferred.

szRemoteUrl

A null terminated string which specifies the complete URL to the remote file being transferred.

Remarks
It is possible that the szLocalFile and szRemoteFile structure members will be different than the
values passed to the AddFile method. Those values are normalized, with any relative paths
converted to absolute paths. Internationalized domain names will be encoded and the URL paths
will be collapsed, removing any extraneous path information. For example, if the remote file name
is specified as ftp://ftp.server.tld/folder1/../folder2/filename.txt it would be
normalized as ftp://ftp.server.tld/folder2/filename.txt.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AddFile, GetFile, GetFirstFile, GetNextFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FTPQUEUESTATUS Structure

This structure is used by the GetStatus method to return information about the current status of
the file transfer queue.

typedef struct _FTPQUEUESTATUS
{
 DWORD dwStatus;
 DWORD dwThreadId;
 DWORD dwQueuedFiles;
 DWORD dwPendingFiles;
 DWORD dwCopiedFiles;
 DWORD dwFailedFiles;
 DWORD dwTimeElapsed;
 DWORD dwCurrentFile;
 DWORD dwLastError;
 ULARGE_INTEGER uiBytesCopied;
 ULARGE_INTEGER uiBytesTotal;
} FTPQUEUESTATUS, *LPFTPQUEUESTATUS;

Members
dwStatus

An unsigned integer which specifies the current status of the queue. It can be one of the
following values:

Constant Description

FTP_QUEUE_STATUS_IDLE The file transfer queue is idle and no files are being
uploaded or downloaded. This state is returned before
the Start method has been called or after the Stop
method has been called. The queue will also
automatically enter an idle state after the last file
transfer has completed and the queue manager thread
exits.

FTP_QUEUE_STATUS_ACTIVE Files in the queue are being uploaded or downloaded.
The dwCurrentFile member of this structure identifies
the file which is currently being transferred.

FTP_QUEUE_STATUS_PAUSED File transfers are currently paused. The queue enters
this state after the Suspend method is called and
resumes file transfers after the Resume method is
called.

dwThreadId

An unsigned integer which specifies the thread ID for the queue manager which is performing
the file transfers. All file transfers are performed asynchronously in a background worker thread.
If this structure member is zero, the queue is idle and not performing file transfers. The
application should not use the thread ID to obtain a handle to suspend or terminate the thread.
This can potentially result in unexpected behavior or instability within the application.

dwQueuedFiles

An unsigned integer which specifies the total number of queued files. This value includes
pending and completed file transfers.

dwPendingFiles

An unsigned integer which specifies the number of files which are queued to be transferred.

dwCopiedFiles

An unsigned integer which specifies the number of files which have been successfully
transferred. This value reflects the total number of files which have the
FTP_QUEUE_FLAG_COMPLETED status.

dwFailedFiles

An unsigned integer which specifies the number of files which have failed to transfer or the file
transfer has been canceled. This value reflects the total number of files which have the
FTP_QUEUE_FLAG_FAILED status.

dwTimeElapsed

An unsigned integer which specifies the total amount of time, in milliseconds, the queue
manager has been active performing a file transfer. If the queue is idle, this value will reflect the
total run time for the previously active queue. A value of zero indicates the queue was never
active or the queue state has been reset with a call to the Reset method.

dwCurrentFile

An unsigned integer which specifies the unique identifier for the current file being transferred. If
no file transfer is in progress, this member will have a value of zero. If the value is non-zero, it
can be passed to the GetFile method to obtain information about the queued file.

dwLastError

An unsigned integer which specifies the last error code for a failed file transfer. If there have
been no errors, this value will be zero.

uiBytesCopied

A value which specifies the number of bytes which were copied during the current or last
transfer. The ULARGE_INTEGER type is a union of a structure and a 64-bit value which can be
used on both 32-bit and 64-bit systems. For languages other than C/C++ you can define this
structure member as an unsigned 64-bit integer type.

uiBytesTotal

A value which specifies the total number of bytes which were copied during the current queue
run. The ULARGE_INTEGER type is a union of a structure and a 64-bit value which can be used
on both 32-bit and 64-bit systems. For languages other than C/C++ you can define this
structure member as an unsigned 64-bit integer type.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
GetFile, GetStatus, Cancel, Reset, Resume, Start, Stop, Suspend

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FTPTRANSFERSTATUS Structure

This structure is used by the GetTransferStatus method to return information about a file transfer
in progress.

typedef struct _FTPTRANSFERSTATUS
{
 DWORD dwBytesTotal;
 DWORD dwBytesCopied;
 DWORD dwBytesPerSecond;
 DWORD dwTimeElapsed;
 DWORD dwTimeEstimated;
 TCHAR szLocalFile[FTP_MAXFILENAMELEN];
 TCHAR szRemoteFile[FTP_MAXFILENAMELEN];
} FTPTRANSFERSTATUS, *LPFTPTRANSFERSTATUS;

Members
dwBytesTotal

The total number of bytes that will be transferred. If the file is being copied from the server to
the local host, this is the size of the remote file. If the file is being copied from the local host to
the server, it is the size of the local file. If the file size cannot be determined, this value will be
zero.

dwBytesCopied

The total number of bytes that have been copied.

dwBytesPerSecond

The average number of bytes that have been copied per second.

dwTimeElapsed

The number of seconds that have elapsed since the file transfer started.

dwTimeEstimated

The estimated number of seconds until the file transfer is completed. This is based on the
average number of bytes transferred per second.

szLocalFile

A pointer to a string which specifies the local file that is being copied to or from the server.

szRemoteFile

A pointer to a string which specifies the remote file that is being copied to or from the local
system.

Remarks
If the option FTP_OPTION_HIRES_TIMER has been specified when connecting to the server, the
values returned in the dwTimeElapsed and dwTimeEstimated members will be in milliseconds
instead of seconds. You can use this option to obtain more accurate elapsed times when
uploading or downloading small files over a fast network connection.

If you are uploading or downloading large files which exceed 4GB, you should use the
FTPTRANSFERSTATUSEX structure which uses 64-bit integers for the file size.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)

Header File: cstools11.h

See Also
GetTransferStatus, FTPTRANSFERSTATUSEX

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FTPTRANSFERSTATUSEX Structure

This structure is used by the GetTransferStatus method to return information about a file transfer
in progress. This structure is designed for use with extended functions that support files larger than
4GB.

typedef struct _FTPTRANSFERSTATUSEX
{
 ULARGE_INTEGER dwBytesTotal;
 ULARGE_INTEGER dwBytesCopied;
 DWORD dwBytesPerSecond;
 DWORD dwTimeElapsed;
 DWORD dwTimeEstimated;
 DWORD dwReserved;
 TCHAR szLocalFile[FTP_MAXFILENAMELEN];
 TCHAR szRemoteFile[FTP_MAXFILENAMELEN];
} FTPTRANSFERSTATUSEX, *LPFTPTRANSFERSTATUSEX;

Members
uiBytesTotal

The total number of bytes that will be transferred. If the file is being copied from the server to
the local host, this is the size of the remote file. If the file is being copied from the local host to
the server, it is the size of the local file. If the file size cannot be determined, this value will be
zero.

uiBytesCopied

The total number of bytes that have been copied.

dwBytesPerSecond

The average number of bytes that have been copied per second.

dwTimeElapsed

The number of seconds that have elapsed since the file transfer started.

dwTimeEstimated

The estimated number of seconds until the file transfer is completed. This is based on the
average number of bytes transferred per second.

dwReserved

This structure member is reserved for future use.

szLocalFile

A pointer to a string which specifies the local file that is being copied to or from the server.

szRemoteFile

A pointer to a string which specifies the remote file that is being copied to or from the local
system.

Remarks
If the option FTP_OPTION_HIRES_TIMER has been specified when connecting to the server, the
values returned in the dwTimeElapsed and dwTimeEstimated members will be in milliseconds
instead of seconds. You can use this option to obtain more accurate elapsed times when
uploading or downloading small files over a fast network connection.

Requirements

Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

See Also
GetTransferStatus, FTPTRANSFERSTATUS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SYSTEMTIME Structure

The SYSTEMTIME structure represents a date and time using individual members for the month,
day, year, weekday, hour, minute, second, and millisecond.

typedef struct _SYSTEMTIME
{
 WORD wYear;
 WORD wMonth;
 WORD wDayOfWeek;
 WORD wDay;
 WORD wHour;
 WORD wMinute;
 WORD wSecond;
 WORD wMilliseconds;
} SYSTEMTIME, *LPSYSTEMTIME;

Members
wYear

Specifies the current year. The year value must be greater than 1601.

wMonth

Specifies the current month. January is 1, February is 2 and so on.

wDayOfWeek

Specifies the current day of the week. Sunday is 0, Monday is 1 and so on.

wDay

Specifies the current day of the month

wHour

Specifies the current hour.

wMinute

Specifies the current minute

wSecond

Specifies the current second.

wMilliseconds

Specifies the current millisecond.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include windows.h.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

File Transfer Protocol Server Class

Implements a server that enables the application to send and receive files using the File Transfer
Protocol.

Reference

Data Members
Class Methods
Event Handlers
Data Structures
Error Codes

Library Information

File Name CSFTSV11.DLL

Version 11.0.2180.1635

LibID 263021C1-CB49-4122-9D4B-244AA9EFF668

Import Library CSFTSV11.LIB

Dependencies None

Standards RFC 959, RFC 1579, RFC 2228

Overview
This library provides an interface for implementing an embedded, lightweight server that can be
used to exchange files with a client using the standard File Transfer Protocol. The server can
accept connections from any third-party application or a program developed using the
SocketTools FTP client API.

The application specifies an initial server configuration and then responds to events that are raised
by the API when the client sends a request to the server. An application may implement only
minimal handlers for most events, in which case the default actions are performed for most
standard FTP commands. However, an application may also use the event mechanism to filter
specific commands or to extend the protocol by providing custom implementations of existing
commands or add entirely new commands.

The server supports active and passive mode file transfers, has compatibility options for NAT
router and firewall support, and provides support for secure file transfers using explicit TLS. Secure
connections require a valid security certificate to be installed on the system.

Requirements
The SocketTools Library Edition libraries are compatible with any programming language which
supports calling functions exported from a standard dynamic link library (DLL). If you are using
Visual C++ 6.0 it is required that you have Service Pack 6 (SP6) installed. You should install all
updates for your development tools and have the current Windows SDK installed. The minimum
recommended version of Visual Studio is Visual Studio 2010.

This library is supported on Windows 7, Windows Server 2008 R2 and later versions of the desktop
and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1) installed as
a minimum requirement. It is recommended that you install the current service pack and all critical

updates available for your version of the operating system.

This class provides an implementation of a multithreaded server which should only be used with
languages that support the creation of multithreaded applications. It is important that you do not
attempt to link against static libraries which were not built with support for threading.

This product includes both 32-bit and 64-bit libraries. Native 64-bit CPU support requires the 64-
bit version of Windows 7 or later versions of the Windows operating system.

Distribution
When you distribute your application that uses this library, it is recommended that you install the
file in the same folder as your application executable. If you install the library into a shared location
on the system, it is important that you distribute the correct version for the target platform and it
should be registered as a shared DLL. This is a standard Windows dynamic link library, not an
ActiveX component, and does not require COM registration.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer Public Data Members

Member Variables Description

m_dwOptions Options specified when creating an instance of the server

m_nAuthFail The maximum number of user authentication failures permitted per client
session

m_nAuthTime The maximum number of seconds a client has to successfully authenticate
the session

m_nExecTime The maximum number of seconds that the server will permit an external
command to execute

m_nIdleTime The maximum number of seconds a client can be idle before the server
terminates the session

m_nLogFormat The format used by the server to log client activity

m_nLogLevel The level of detail included in the server log file

m_nMaxClients The maximum number of active client sessions accepted by the server

m_nMaxClientsPerAddress The maximum number of clients per IP address accepted by the server

m_nMaxGuests The maximum number of anonymous client sessions accepted by the server

m_nMaxPort The maximum port number used by the server for passive data connections

m_nMinPort The minimum port number used by the server for passive data connections

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::m_dwOptions

DWORD m_dwOptions;

The default options used when starting an instance of the server.

Remarks
The m_dwOptions data member is a public variable that specifies the default options that should
be used when starting an instance of the server. This variable can be modified directly or by calling
the SetOptions method. For a list of available server options, see Server Option Constants.
Changing the value of this data member does not have an effect on an active instance of the
server.

See Also
CFtpServer, GetOptions, SetOptions

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/ftpsrv/class/optionconst.html

 CFtpServer::m_nAuthFail

UINT m_nAuthFail;

The maximum number of user authentication failures permitted per client session.

Remarks
The m_nAuthFail data member is a public variable that specifies the maximum number of user
authentication attempts that are permitted until the server terminates the client connection. A
value of zero specifies that the default configuration limit of 3 authentication attempts per login
should be allowed. The maximum number of authentication attempts is 10. Changing the value of
this data member does not have an effect on an active instance of the server.

See Also
CFtpServer

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::m_nAuthTime

UINT m_nAuthTime;

The maximum number of seconds a client has to successfully authenticate the session.

Remarks
The m_nAuthTime data member is a public variable that specifies the maximum number of
seconds that a client session must authenticate itself. A value of zero specifies the default value of
60 seconds. If the value is non-zero, the minimum value is 20 seconds and the maximum value is
300 seconds (5 minutes). This value is used to ensure that a client has successfully authenticated
itself within a limited period of time.

This time limit prevents a potential denial-of-service attack against the server where clients
establish connections and hold them open without authentication. In conjunction with the
m_nAuthFail data member, this also limits the ability of a client to attempt to probe the server for
valid username and password combinations. Changing the value of this data member does not
have an effect on an active instance of the server.

See Also
CFtpServer

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::m_nExecTime

UINT m_nExecTime;

The maximum number of seconds that the server will permit an external command to execute.

Remarks
The m_nExecTime data member is a public variable that specifies the maximum number of
seconds that an external program is permitted to run on the server. External programs are
registered using the RegisterProgram method, and are executed by the client sending the SITE
EXEC command to the server. If this value is zero, the default timeout period of 5 seconds will be
used. The minimum execution time is 1 second and the maximum time limit is 30 seconds.
Changing the value of this data member does not have an effect on an active instance of the
server.

See Also
CFtpServer, RegisterProgram

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::m_nIdleTime

UINT m_nIdleTime;

The maximum number of seconds a client can be idle before the server terminates the session.

Remarks
The m_nIdleTime data member is a public variable that specifies the maximum number of
seconds that a client session may be idle before the server closes the control connection to the
client. A value of zero specifies the default value of 900 seconds (15 minutes). If the value is non-
zero, the minimum value is 60 seconds and the maximum value is 7200 seconds (2 hours). This
value is used to initialize the default idle timeout period for each client session. A client may
request that the server change the idle timeout period for its session by sending the SITE IDLE
command. The server determines if a client is idle based on the time the last command was issued
and whether or not a file transfer is in progress. Changing the value of this data member does not
have an effect on an active instance of the server.

See Also
CFtpServer, RegisterProgram

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::m_nLogFormat

UINT m_nLogFormat;

The format used when updating the server log file.

Remarks
The m_nLogFormat data member is a public variable that specifies the format of the log file that
is created or updated by the server. It may be one of the following values:

Constant Description

FTP_LOGFILE_NONE
(0)

This value specifies that the server should not create or
update a log file.

FTP_LOGFILE_COMMON
(1)

This value specifies that the log file should use the common
log format that records a subset of information in a fixed
format. This log format usually only provides information
about file transfers.

FTP_LOGFILE_EXTENDED
(2)

This value specifies that the log file should use the standard
W3C extended log file format. This is an extensible format
that can provide additional information about the client
session.

By default, logging is not enabled for the server. Changing the value of this data member does
not have an effect on an active instance of the server. To change the format, level of detail or
default log file name, use the SetLogFile method.

See Also
CFtpServer, GetLogFile, SetLogFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::m_nLogLevel

UINT m_nLogLevel;

The level of detail included in the server log file.

Remarks
The m_nLogLevel data member is a public variable that specifies the level of detail that should
generated in the log file. The minimum value is 1 and the maximum value is 10. If the
m_nLogFormat data member specifies a valid log file format and this value is zero, a default level
of detail will be selected based on the format.

The common log file format generally contains less information by default, only logging the data
transfers between the client and server. The W3C extended log file format defaults to a higher
level of detail that includes additional information about the client session. The higher the level of
detail, the larger the log file will be.

By default, logging is not enabled for the server. Changing the value of this data member does
not have an effect on an active instance of the server. To change the format, level of detail or
default log file name, use the SetLogFile method.

See Also
CFtpServer, GetLogFile, SetLogFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::m_nMaxClients

UINT m_nMaxClients;

The maximum number of clients that are permitted to connect to the server.

Remarks
The m_nMaxClients data member is a public variable that specifies the maximum number of
clients that are permitted to establish a connection with the server. After this limit is reached, the
server will reject additional connections until the number of active clients drops below this
threshold. A value of zero specifies that there is no fixed limit on the active number of client
connections. Changing the value of this data member does not have an effect on an active
instance of the server. To change the maximum number of clients on an active server, use the
Throttle method.

The actual number of client connections that can be accepted depends on the amount of memory
available to the server process. Sockets are allocated from the non-paged memory pool, so the
actual number of sockets that can be created system-wide depends on the amount of physical
memory that is installed. If the server will be accessible over the Internet, it is recommended that
you limit the maximum number of client connections to a reasonable value.

See Also
CFtpServer, Throttle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::m_nMaxClientsPerAddress

UINT m_nMaxClientsPerAddress;

The maximum number of clients that are permitted to connect to the server from a single IP
address.

Remarks
The m_nMaxClientsPerAddress data member is a public variable that specifies the maximum
number of clients that are permitted to establish a connection with the server from a single IP
address. After this limit is reached, the server will will reject additional connections until the
number of active clients drops below this threshold. A value of zero specifies that there is no limit
on the active number of client connections per IP address. Changing the value of this data
member does not have an effect on an active instance of the server. To change the maximum
number of clients on an active server, use the Throttle method.

See Also
CFtpServer, Throttle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::m_nMaxGuests

UINT m_nMaxGuests;

The maximum number of anonymous users that are permitted to connect to the server.

Remarks
The m_nMaxGuests data member is a public variable that specifies the maximum number of
anonymous users that are permitted to establish a connection with the server. After this limit is
reached, the server will send an error response indicating that the server is unavailable, and then
immediately terminate the session. Unlike the limit on the total number of client connections, this
limit is only checked after the client has requested authentication and has logged in as an
anonymous user. Changing the value of this data member does not have an effect on an active
instance of the server.

See Also
CFtpServer

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::m_nMaxPort

UINT m_nMaxPort;

The maximum port number used by the server for passive data connections.

Remarks
The m_nMaxPort data member is a public variable that specifies the maximum range of port
numbers that will be used with passive data connections. A value of zero specifies the default
value of 65535 should be used. The minimum value of this member is 5000 and the maximum
value is 65535. If the value is non-zero, it must be greater than the value of the m_nMinPort data
member. Changing the value of this data member does not have an effect on an active instance
of the server.

See Also
CFtpServer

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::m_nMinPort

UINT m_nMinPort;

The minimum port number used by the server for passive data connections.

Remarks
The m_nMinPort data member is a public variable that specifies the minimum range of port
numbers that will be used with passive data connections. A value of zero specifies that the default
value of 30000 should be used. The minimum value of this member is 5000 and the maximum
value is 65535. If the value is non-zero, it must be less than the value of the m_nMaxPort data
member. Changing the value of this data member does not have an effect on an active instance
of the server.

See Also
CFtpServer

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer Methods

Class Description

CFtpServer Constructor which initializes the current instance of the class

~CFtpServer Destructor which releases resources allocated by the class

Method Description

AddVirtualUser Add a new virtual user for the specified server

AsyncNotify Enable or disable asynchronous notification of changes in server status

AttachHandle Attach the specified server handle to this instance of the class

AuthenticateClient Authenticate the client and assign access rights for the session

ChangeClientDirectory Change the current working directory for the client session

DeleteVirtualUser Delete a virtual user from the specified server

DetachHandle Detach the server handle from the current instance of this class

DisableCommand Disable a specific server command

DisableTrace Disable the logging of network function calls

DisconnectClient Disconnect the specific client session, closing the control channel and
aborting any file transfer

EnableClientAccess Enable or disable access rights for the specified client session

EnableCommand Enable a specific server command

EnableTrace Enable logging of network function calls to a file

EnumClients Returns a list of active client connections established with the server

GetActiveClient Return the client ID for the active client session associated with the current
thread

GetAddress Return the IP address for the server

GetClientAccess Return the access rights that have been granted to the client session

GetClientAddress Return the IP address of the specified client session

GetClientCredentials Return the credentials for the specified client session

GetClientDirectory Return the current working directory for a client session

GetClientFileType Return the current file type used for transfers by the specified client

GetClientHomeDirectory Return the home directory for an authenticated client session

GetClientIdentity Return the identity of the specified client session

GetClientIdleTime Return the idle timeout period for the specified client

GetClientLocalPath Return the full local path for the specified virtual path

GetClientServer Return the handle to the server that created the specified client session

GetClientThreadId Returns the thread ID associated with the specified client session

GetClientUserName Return the user name associated with the specified client session

GetClientVirtualPath Return the virtual path for a local file on the server

GetCommandFile Return the full path to the local file name or directory specified by the client

GetCommandLine Return the complete command line issued by the client

GetCommandName Return the name of the last command issued by the client

GetCommandParam Return the value of the specified parameter for the command issued by the
client

GetCommandParamCount Return the number of parameters to the current command issued by the
client

GetCommandResult Return the result code and a description of the last command processed by
the server

GetCommandUsage Return the number of times a specific command has been issued by all
clients

GetDirectory Return the full path to the root directory assigned to the specified server

GetHandle Return the server handle associated with the class instance

GetIdentity Return the identity and version information for the specified server

GetLastError Return information about the last server error that occurred

GetLogFile Return the current log file format and full path for the file

GetMemoryUsage Return the amount of memory allocated for the server and all client sessions

GetName Return the host name assigned to the server or specified client session

GetOptions Return the options specified for this instance of the server

GetPriority Return the current priority assigned to the specified server

GetProgramExitCode Return the exit code of the last program executed by the client

GetProgramName Return the name of the last program executed by the client

GetProgramOutput Return a copy of the standard output from the last program executed by
the client

GetProgramText Return a copy of the standard output from the last program in a string
buffer

GetRenamedFile Return the original name of a file being renamed by the client

GetStackSize Return the initial size of the stack allocated for threads created by the server

GetTransferInfo Return information about the current file transfer for the client session

GetUuid Return the UUID assigned to the specified server

IsActive Determine if the server has been started

IsClientAnonymous Determine if the specified client has authenticated as an anonymous user

IsClientAuthenticated Determine if the specified client session has been authenticated

IsCommandEnabled Determine if the specified command is currently enabled or disabled

IsInitialized Determine if the class has been successfully initialized

IsListening Determine if the server is listening for client connections

PreProcessEvent Filter server events before being processed by the default event handler

RegisterProgram Register a program for use with the SITE EXEC command

RenameServerLogFile Rename or delete the current log file being updated by the server

Restart Restart the server, terminating all active client sessions

Resume Resume accepting client connections on the specified server

SendResponse Send a result code and optional message to the client in response to a
command

SetAddress Change the IP address that the server will use with passive data connections

SetCertificate Set the name of the certificate to be used with secure connections.

SetClientAccess Change the access rights associated with the specified client session

SetClientFileType Change the current file type used for transfers by the specified client

SetClientIdentity Change the identity string associated with the specified client session

SetClientIdleTime Change the idle timeout period for the specified client session

SetCommandFile Change the name of the local file or directory that is the target of the
current command

SetDirectory Specify the local directory that will be used as the server root directory

SetLastError Set the last error code for the specified server session

SetLogFile Change the current log format, level of detail and file name

SetIdentity Change the identity and version information for the specified server

SetName Change the hostname assigned to the server or specified client session

SetOptions Change the options specified for this instance of the server

SetPriority Change the priority assigned to the specified server

SetStackSize Change the initial size of the stack allocated for threads created by the
server

SetUuid Assign a UUID to be associated with this instance of the server

Start Start the server and begin accepting client connections

Stop Stop the server and terminate all active client connections

Suspend Suspend accepting client connections on the specified server

Throttle Limit the number of active client connections, connections per address and
connection rate

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::~CFtpServer

~CFtpServer();

The CFtpServer destructor releases resources allocated by the current instance of the CFtpServer
object. It also uninitializes the library if there are no other concurrent uses of the class.

Remarks
When a CFtpServer object goes out of scope, the destructor is automatically called to allow the
library to free any resources allocated on behalf of the process. Any pending blocking or
asynchronous calls in this process are canceled without posting any notification messages, and all
handles that were created for the client session are destroyed.

The destructor is not called explicitly by the application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CFtpServer

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::AddVirtualUser Method

BOOL AddVirtualUser(
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword,
 DWORD dwUserAccess,
 LPCTSTR lpszDirectory
);

Add a new virtual user for the specified server.

Parameters
lpszUserName

A pointer to a string which specifies the user name. The maximum length of a username is 63
characters and it is recommended that names be limited to alphanumeric characters.
Whitespace, control characters and certain symbols such as path delimiters and wildcard
characters are not permitted. If an invalid character is included in the name, the method will fail
with an error indicating the username is invalid. This parameter cannot be NULL and the name
must be at least three characters in length. Usernames are not case sensitive.

lpszPassword

A pointer to a string which specifies the user password. The maximum length of a password is
63 characters and is limited to printable characters. Whitespace and control characters are not
permitted. If an invalid character is included in the password, the method will fail with an error
indicating the password is invalid. This parameter cannot be NULL and must be at least one
character in length. Passwords are case sensitive.

dwUserAccess

An integer value which specifies the access clients will be given when authenticated as this user.
For a list of user access permissions, see User Access Constants.

lpszDirectory

A pointer to a string which specifies the directory that will be the virtual user's home directory. If
the server was started in multi-user mode, this directory will be relative to the user directory
created by the server, otherwise it will be relative to the server root directory. If the directory
does not exist, it will be created the first time that the virtual user successfully logs in to the
server. If this parameter is NULL or an empty string, a default home directory will be created for
the virtual user.

Return Value
If the method succeeds, the return value is non-zero. If the username or password contain invalid
characters, the method will return zero. If the method fails, the last error code will be updated to
indicate the cause of the failure.

Remarks
The AddVirtualUser method adds a virtual user that is associated with the specified virtual host.
When a client connects with the server and provides authentication credentials, the server will
check if the username has been created using this method. If a match is found, the client access
rights will be updated.

If you wish to modify the information for a user, it is not necessary to delete the username first. If
this method is called with a username that already exists, that record is replaced with the values
passed to this method. You cannot use this method to create a virtual user named "anonymous".

file:///C|/Projects/cstools11/pdf/ftpsrv/class/useraccess.html
file:///C|/Projects/cstools11/pdf/ftpsrv/class/useraccess.html

The virtual users created by this method exist only as long as the server is active. If you wish to
maintain a persistent database of users and passwords, you are responsible for its implementation
based on the requirements of your specific application. For example, a simple implementation
would be to store the user information in a local XML or INI file and then read that configuration
file after the server has started, calling this method for each user that is listed.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DeleteVirtualUser

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::AsyncNotify Method

BOOL AsyncNotify(
 HWND hWnd,
 UINT uMsg
);

Enable or disable asynchronous notification of changes in server status.

Parameters
hWnd

A handle to the window whose window procedure will receive the notification message.

uMsg

The user-defined message that will be sent to the notification window.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call the GetLastError method.

Remarks
The AsyncNotify method is used by an application to enable or disable asynchronous
notifications. The message window is typically the main UI window and these notifications are used
signal to the application that it should update the user interface. If the hWnd parameter is not
NULL, it must specify a valid window handle and the user-defined message must have a value of
WM_USER or higher. The application cannot specify a notification message that is reserved by the
operating system. The pseudo-handle HWND_BROADCAST cannot be specified as the
notification window. If the hWnd parameter is NULL, notifications for the specified server will be
disabled.

When asynchronous notifications are enabled for a server, the server will post the user-defined
message to the window whenever there is a change in status or after a client has connected or
disconnected from the server. The wParam message parameter will contain the notification
message and the lParam message parameter will contain the handle to the server or the client ID.
The following notification messages are defined:

Constant Description

FTP_NOTIFY_STARTUP This notification is sent when the server has started and is
preparing to accept client connections. This notification is
only sent once, and only if asynchronous notifications are
enabled immediately after the Start method is called. This
message will not be sent once the server has begun
accepting client connections or when notification
messages are disabled and then subsequently re-enabled
at a later time. The lParam message parameter will
specify the handle to the server.

FTP_NOTIFY_LISTEN This notification is sent when the server is listening for
client connections. This notification message may be sent
to the application multiple times over the lifetime of the
server. If the server was suspended, this notification will be
sent after the application calls the Resume method to

resume accepting client connections. The lParam
message parameter will specify the handle to the server.

FTP_NOTIFY_SUSPEND This notification is sent when the server suspends
accepting new connections because the application has
called the Suspend method. This notification message
may be sent to the application multiple times over the
lifetime of the server. The lParam message parameter will
specify the handle to the server.

FTP_NOTIFY_RESTART This notification is sent when the server is restarted using
the Restart method. Note that the server socket handle
provided by the lParam message parameter will specify
the new socket handle of the restarted server instance,
not the original socket handle. The lParam message
parameter will specify the handle to the server.

FTP_NOTIFY_CONNECT This notification is sent when the server accepts a client
connection and the thread that manages the client
session has begun processing network events for that
client. This message notification will not be sent if the
client connection is rejected by the server. The lParam
message parameter will specify the unique ID of the client
that connected to the server.

FTP_NOTIFY_DISCONNECT This notification is sent when the client disconnects from
the server and the client socket has been closed. This
notification message may not occur for each client session
that is forced to terminate as the result of the server
being stopped using the Stop method. The lParam
message parameter will specify the unique ID of the client
that disconnected from the server.

FTP_NOTIFY_SHUTDOWN This notification is sent when the server thread is in the
process of terminating. At the time the application
processes this notification message, the server handle in
lParam will reference the defunct server and cannot be
used with other server methods. The lParam message
parameter will specify the handle to the server.

If asynchronous notifications are enabled, you should never use those notifications as a
replacement for an event handler. When an event occurs, the callback function that handles the
event is invoked in the context of the thread that manages the client session. The application
should exchange data with the client within that event handler and not in response to a
notification message. These notification messages should only be used to update the application
UI in response to changes in the status of the server.

The FTP_NOTIFY_CONNECT and FTP_NOTIFY_DISCONNECT notifications are different from the
other server notifications because the lParam message parameter does not specify the server
handle, but rather the unique client ID associated with the session that connected to or
disconnected from the server. Use the GetClientServer method to obtain a handle to the server
that created the client session. Note that at the time the application processes the
FTP_NOTIFY_DISCONNECT notification message, the client session will have already terminated.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cstools11.h.
Import Library: csftsv11.lib

See Also
GetClientServer, Start

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::AttachHandle Method

VOID AttachHandle(
 HSERVER hServer
);

The AttachHandle method attaches the specified server handle to the current instance of the
class.

Parameters
hServer

The handle to the server that will be attached to the current instance of the class object.

Return Value
None.

Remarks
This method is used to attach a server handle created outside of the class using the SocketTools
API. Once the client handle is attached to the class, the other class member functions may be used
with that server.

If a server handle already has been created for the class, that handle will be released when the
new handle is attached to the class object. This will cause the server to stop and all client sessions
will be terminated immediately. If you want to prevent the previous server from being stopped,
you must call the DetachHandle method prior to attaching a new handle to the class instance.

Note that the hServer parameter is presumed to be a valid server handle and no checks are
performed to ensure that the handle references an active server. Specifying an invalid server
handle will cause subsequent method calls to fail.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
DetachHandle, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::AuthenticateClient Method

BOOL AuthenticateClient(
 UINT nClientId,
 DWORD dwUserAccess,
 BOOL bCreateHome,
 LPCTSTR lpszDirectory
);

Authenticate the client and assign access rights for the session.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

dwUserAccess

An unsigned integer which specifies one or more user access rights. For a list of user access
rights that can be granted to the client, see User Access Constants.

bCreateHome

An integer value that specifics if the server should create the home directory for the
authenticated client if it does not already exist. If this value is non-zero, the home directory will
be created. If value is zero, the home directory will not be created and if it does not exist, this
function will fail.

lpszDirectory

A pointer to a string that specifies the home directory for the user. If an absolute path is
specified, it will be relative to the server root directory. If a relative path is specified, it will be a
subdirectory of the home directory for the server instance. If this parameter is NULL or an
empty string, a home directory will be assigned based on the server home directory and the
user name.

Return Value
If the the client session could be authenticated, the return value is non-zero. If the client ID does
not specify a valid client session, or the client has already been authenticated, this method will
return zero.

Remarks
The AuthenticateClient method is used to authenticate a specific client session, typically in
response to an OnAuthenticate event that indicates a client has requested authentication. This
method is also used internally to automatically grant the appropriate access rights to local user
and anonymous client sessions.

It is recommended that most applications specify FTP_ACCESS_DEFAULT as the dwUserAccess
value for a client session, since this allows the server automatically grant the appropriate access
based on the server configuration options for normal and anonymous users. If the server is going
to be publicly accessible or third-party FTP clients will be used to access the server, you should
always grant the FTP_ACCESS_LIST permission to clients. Many client applications will not function
correctly if they are unable to obtain a list of files in the user's home directory.

If FTP_ACCESS_RESTRICTED is specified and the server was started in multi-user mode, the client
session will be effectively locked to its home directory and cannot navigate to the server root
directory. By default, restricted client sessions are also limited to only downloading files and

file:///C|/Projects/cstools11/pdf/ftpsrv/class/useraccess.html

requesting directory listings. If a client session is not restricted, the client can access files outside of
its home directory. Regardless of this option, a client cannot access files outside of the server root
directory.

If FTP_ACCESS_RESTRICTED or FTP_ACCESS_ANONYMOUS is specified, the client session will be
authenticated in a restricted mode and the access rights for the session will persist until the client
disconnects from the server. Unlike regular users, the access rights for a restricted client cannot be
changed by the server at a later point. This restriction is designed to prevent the inadvertent
granting of rights to an untrusted client that could compromise the security of the server.

If the lpszDirectory parameter is NULL or an empty string and the server has been started in
multi-user mode, each user is assigned their own home directory based on their username. If the
server has not been started in multi-user mode, then the default home directory will be the server
root directory and is shared by all users. The GetClientHomeDirectory method will return the full
path to the home directory for an authenticated client.

If the FTP_ACCESS_EXECUTE permission is granted to the client session, it can execute external
programs using the SITE EXEC command. Because the program is executed in the context of the
server process, it is recommended that you limit access to this functionality and ensure that the
programs being executed do not introduce any security risks to the operating system. This
permission is never granted by default, and the SITE EXEC command will return an error if the
client session is anonymous, regardless of whether this permission is granted or not.

This method is should only be used for custom authentication schemes and is not necessary if you
have used the AddVirtualUser method to create virtual users.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AddVirtualUser, ChangeClientDirectory, GetClientCredentials, GetClientDirectory, OnAuthenticate

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::CFtpServer Method

CFtpServer();

The CFtpServer constructor initializes the class library and validates the license key at runtime.

Remarks
If the constructor fails to validate the runtime license, subsequent methods in this class will fail. If
the product is installed with an evaluation license, then the application will only function on the
development system and cannot be redistributed.

The constructor calls the FtpServerInitialize function to initialize the library, which dynamically
loads other system libraries and allocates thread local storage. If you are using this class within
another DLL, it is important that you do not create or destroy an instance of the class from within
the DllMain method because it can result in deadlocks or access violation errors. You should not
declare static or global instances of this class within another DLL if it is linked with the C runtime
library (CRT) because it will automatically call the constructors and destructors for static and global
C++ objects and has the same restrictions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
~CFtpServer, IsInitialized

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::ChangeClientDirectory Method

BOOL ChangeClientDirectory(
 UINT nClientId,
 LPCTSTR lpszDirectory
);

Change the current working directory for the specified client.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpszDirectory

A pointer to a string which specifies the new current working directory for the client session. If
this parameter is NULL or an empty string, the current working directory will be changed to the
client home directory. If this parameter is not NULL, it must specify a directory that exists and is
accessible by the server process.

Return Value
If the current working directory was changed, the return value is non-zero. If the client ID does not
specify a valid client session, or the directory is invalid, this method will return zero.

Remarks
The ChangeClientDirectory method will change the current working directory for the specified
client session. This method is called internally when the client sends the CWD or CDUP commands,
however it may be explicitly used by the application to change the client's working directory in
response to a server event.

This method cannot be used to change the current working directory for a client to an arbitrary
directory outside of the server root directory. If the lpszDirectory parameter specifies a relative
path (i.e.: a path that does not begin with a drive letter or leading path delimiter) then the new
working directory will be relative to the current working directory. If an absolute path is specified,
the absolute path must include the complete path to either the server root directory or the user's
home directory, based on the permissions granted to the client session. If a path outside of the
server root directory is specified, this method will fail with an access denied error.

Use caution when calling this method to override the directory specified by the client when it
sends the CWD or CDUP commands. If your application changes the current working directory to
one not specified by the client, it may cause unpredictable behavior in the client application
because the actual path of the current working directory will not match the directory that was
requested.

If this method is used to change the current working directory in response to the CWD command,
you should not call the GetCommandParam method and pass the command parameter as an
argument to this method. You must use the GetCommandFile method to obtain the directory
name provided by the client prior to calling this method.

The application should never call the SetCurrentDirectory function in the Windows API to change
the current directory for the process to the working directory of a client session. Because the
server is multithreaded and each client session is managed in its own thread, an application using
this library should avoid using relative paths.

Requirements

Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetClientDirectory, GetClientHomeDirectory, GetCommandFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::DeleteVirtualUser Method

BOOL DeleteVirtualUser(
 UINT nHostId,
 LPCTSTR lpszUserName
);

Remove a virtual user from the specified host.

Parameters
nHostId

An integer value which identifies the virtual host. This parameter is reserved for future use and
must always have a value of zero.

lpszUserName

A pointer to a string which specifies the user that will be removed. This parameter cannot be a
NULL pointer or an empty string.

Return Value
If the method succeeds, the return value is non-zero. If the virtual host ID does not specify a valid
host, the method will return zero. If the method fails, the last error code will be updated to
indicate the cause of the failure.

Remarks
This method removes a virtual user that was created by a previous call to the AddVirtualUser
method. This method will not match partial usernames and wildcard characters cannot be used to
delete multiple users. Usernames are not case sensitive. You cannot use this method to delete the
"anonymous" user.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AddVirtualUser

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::DetachHandle Method

HSERVER DetachHandle();

The DetachHandle method detaches the server handle associated with the current instance of
the class.

Parameters
None.

Return Value
This method returns the server handle associated with the current instance of the class object. If
there is no active server, the value INVALID_SERVER will be returned.

Remarks
This method is used to detach a server handle created by the class for use with the SocketTools
API. Once the server handle is detached from the class, no other class member functions may be
called.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
AttachHandle, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::DisableCommand Method

BOOL DisableCommand(
 LPCTSTR lpszCommand
);

Disable a specific server command.

Parameters
lpszCommand

A pointer to a NULL terminated string that specifies the name of the command to be enabled
or disabled. The command name is not case-sensitive, but the value must otherwise match the
exact name. Partial matches are not recognized by this method. This parameter cannot be
NULL.

Return Value
If the method succeeds, the return value is non-zero. If the command is not recognized, the
method will return zero. If the method fails, the GetLastError method will return more information
about the last error that has occurred.

Remarks
The DisableCommand method is used to disable access to a specific command on the server.
When a command is disabled, it will also disable any corresponding feature related to that
command. For example, if the MDTM command is disabled and a client issues the FEAT command
to request a list of supported features, the command will no longer be listed. This method is
typically used to disable certain commands for compatibility with older client software. The
IsCommandEnabled method can be used to determine if a command is enabled or not.

The command name provided to this method must match the commands defined in RFC 959 or
related protocol standards. It is important to distinguish between commands recognized by an
FTP server and the commands that client programs may use. For example, the standard Windows
FTP command line program provides commands such as GET and PUT to download and upload
files. However, those are not the actual commands sent to a server. Instead, the corresponding
server commands issued by a client application would bet RETR (retrieve) and STOR (store). Refer
to File Transfer Protocol Commands for a complete list of server commands.

Some commands cannot be disabled because they are required to perform essential server
functions. For example, the USER and PASS commands are required to perform client
authentication and therefore cannot be disabled. If you attempt to disable a required command,
this method will return zero and the last error code will be set to
ST_ERROR_COMMAND_REQUIRED. Because this method affects all clients connected to the
server, it should not be used to limit access to certain commands for specific clients. Instead, either
assign the client the appropriate permissions using the AuthenticateClient method, or use an
event handler to filter the commands.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

file:///C|/Projects/cstools11/pdf/ftpsrv/class/commands.html
file:///C|/Projects/cstools11/pdf/ftpsrv/class/commands.html

See Also
AuthenticateClient, EnableCommand, IsCommandEnabled

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::DisableTrace Method

BOOL DisableTrace();

Disable the logging of network function calls.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
EnableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::DisconnectClient Method

BOOL DisconnectClient(
 UINT nClientId
);

Close the control connection for the specified client and release the resources allocated for the
session

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

Return Value
If the method succeeds, the return value is non-zero. If the client ID does not specify a valid client
session, the method will return zero.

Remarks
The DisconnectClient method will close the control channel, disconnecting the client from the
server and terminating the client session thread. Resources that we allocated for the client, such as
memory and open handles, will be released back to the operating system. If the client was in the
process of transferring a file, the transfer will be aborted. This performs the same operation as if
the client sent the QUIT command to the server.

This method sends an internal control message that notifies the server that this session should be
terminated. When the session thread is signaled that it should terminate, it will abort any active file
transfers and begin to release the resources allocated for that session. To ensure that the client
session terminates gracefully, there may be a brief period of time where the session thread is still
active after this method has returned.

After this method returns, the application should never use the same client ID with another
method. Client IDs are unique to the session over the lifetime of the server, and are not reused.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
Restart, Stop

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::EnableClientAccess Method

BOOL EnableClientAccess(
 UINT nClientId,
 DWORD dwUserAccess,
 BOOL bEnable
);

Enable or disable access rights for the specified client session.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

dwUserAccess

An unsigned integer which specifies an access right to enable or disable. For a list of user access
rights that can be granted to the client, see User Access Constants.

bEnable

An integer value which specifies if permission should be granted or revoked for the specified
access right. If this value is non-zero, permission is granted to the client to perform the action
specified by the dwUserAccess parameter. If this value is zero, that permission is revoked.

Return Value
If the method succeeds, the return value is non-zero. If the client ID does not specify a valid client
session, the method will return zero. This method can only be used with authenticated clients. If
the client session has not been authenticated, the return value will be zero.

Remarks
The EnableClientAccess method is used to enable or disable access to specific functionality by
the client. The method can only change a single access right and cannot be used to enable or
disable multiple access rights in a single method call. To change multiple user access rights for the
client, use the SetClientAccess method.

This method cannot be used to change the access rights for a restricted or anonymous user.
Those rights are granted when the client session is authenticated and will persist until the client
disconnects from the server. This restriction is designed to prevent the inadvertent granting of
rights to an untrusted client that could compromise the security of the server.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
AuthenticateClient, GetClientAccess, SetClientAccess

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/ftpsrv/class/useraccess.html

 CFtpServer::EnableCommand Method

BOOL EnableCommand(
 LPCTSTR lpszCommand
);

Enable a specific server command.

Parameters
lpszCommand

A pointer to a NULL terminated string that specifies the name of the command to be enabled
or disabled. The command name is not case-sensitive, but the value must otherwise match the
exact name. Partial matches are not recognized by this method. This parameter cannot be
NULL.

Return Value
If the method succeeds, the return value is non-zero. If the command is not recognized, the
method will return zero. If the method fails, the GetLastError method will return more information
about the last error that has occurred.

Remarks
The EnableCommand method is used to enable access to a specific command on the server.
When a command is enabled, it will also enable any corresponding feature related to that
command. For example, if the MDTM command is enabled and a client issues the FEAT command
to request a list of supported features, the command will be included in the list. The
IsCommandEnabled method can be used to determine if a command is enabled or not.

The command name provided to this method must match the commands defined in RFC 959 or
related protocol standards. It is important to distinguish between commands recognized by an
FTP server and the commands that client programs may use. For example, the standard Windows
FTP command line program provides commands such as GET and PUT to download and upload
files. However, those are not the actual commands sent to a server. Instead, the corresponding
server commands issued by a client application would bet RETR (retrieve) and STOR (store). Refer
to File Transfer Protocol Commands for a complete list of server commands.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AuthenticateClient, DisableCommand, IsCommandEnabled

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/ftpsrv/class/commands.html
file:///C|/Projects/cstools11/pdf/ftpsrv/class/commands.html

 CFtpServer::EnableTrace Method

BOOL EnableTrace(
 LPCTSTR lpszTraceFile,
 DWORD dwTraceFlags
);

Enable the logging of network function calls to a file.

Parameters
lpszTraceFile

A pointer to a string that specifies the name of the log file. If this parameter is NULL or points to
an empty string, a log file is created in the temporary directory for the current user.

dwTraceFlags

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

TRACE_DEFAULT
(0)

All function calls are written to the trace file. This is the default
value.

TRACE_ERROR
(1)

Only those function calls which fail are recorded in the trace file.

TRACE_WARNING
(2)

Only those function calls which fail, or return values which indicate
a warning, are recorded in the trace file.

TRACE_HEXDUMP
(4)

All functions calls are written to the trace file, plus all the data that
is sent or received is displayed, in both ASCII and hexadecimal
format.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
When trace logging is enabled, the log file is opened, appended to and closed for each socket
function call. Using the same file name, you can do the same in your application to add additional
information to the file if needed. This can provide an application-level context for the entries made
by the library. Make sure that the file is closed after the data has been written. If a file name is not
specified by the caller, a file named cstrace.log will be created in the temporary directory for the
current user.

The TRACE_HEXDUMP option can produce very large files, since all data that is being sent and
received by the application is logged. To reduce the size of the file, you can enable and disable
logging around limited sections of code that you wish to analyze.

To redistribute an application that includes this debug logging functionality, the cstrcv11.dll
library must be included as part of the installation package. This library provides the trace logging
features, and if it is not available the EnableTrace method will fail. Note that this is a standard
Windows DLL and does not need to be registered, it only needs to be redistributed with your
application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DisableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::EnumClients Method

INT EnumClients(
 UINT * lpClients,
 INT nMaxClients
);

Return a list of active client connections established with the server.

Parameters
lpClients

Pointer to an array of unsigned integers which will contain client IDs that uniquely identifies each
client when the method returns. If this parameter is NULL, then the method will return the
number of active client connections established with the server.

nMaxClients

Maximum number of client IDs to be returned in the lpClients array. If the lpClients parameter
is NULL, this parameter should have a value of zero.

Return Value
If the method succeeds, the return value is the number of active client connections to the server. If
the method fails, the return value is FTP_ERROR. To get extended error information, call
GetLastError.

Remarks
If the nMaxClients parameter is less than the number of active client connections, the method will
fail and the last error code will be set to the error ST_ERROR_BUFFER_TOO_SMALL. To dynamically
determine the number of active connections, call the method with the lpClients parameter with a
value of NULL, and the nMaxClients parameter with a value of zero.

Example
// Populate a listbox with all of the users connected to the server
pListBox->ResetContent();

INT nClients = pFtpServer->EnumClients();
if (nClients > 0)
{
 UINT *pIdList = new UINT[nClients];

 nClients = pFtpServer->EnumClients(pIdList, nClients);
 if (nClients == FTP_ERROR)
 {
 // Unable to obtain list of connected clients
 return;
 }

 for (INT nIndex = 0; nIndex < nClients; nIndex++)
 {
 CString strUserName;

 if (pFtpServer->GetClientUserName(pIdList[nIndex], strUserName))
 pListBox->AddString(strUserName);
 }

 // Free the memory allocated for the client IDs

 delete pIdList;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
GetClientAddress, GetClientDirectory, GetClientUserName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::GetActiveClient Method

UINT GetActiveClient();

Return the client ID for the active client session associated with the current thread.

Parameters
None.

Return Value
If the method succeeds, the return value is the unique ID associated with the client session for the
current thread. If there is no client session active on the current thread, the return value is zero.

Remarks
The GetActiveClient method is used to obtain the client ID associated with the current thread.
This means this method will only return a client ID if it is called within an event handler or a
method called by an event handler. If this method is called by a function that is not executing
within the context of an event handler it will return a value of zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
EnumClients

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::GetAddress Method

INT GetAddress(
 UINT nClientId,
 LPTSTR lpszAddress,
 INT nMaxLength
);

INT GetAddress(
 UINT nClientId,
 CString& strAddress
);

Return the IP address of the server.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session. This value may be zero.

lpszAddress

A pointer to a string buffer that will contain the server IP address, terminated with a null
character. To accommodate both IPv4 and IPv6 addresses, this buffer should be at least 46
characters in length. This parameter cannot be NULL. An alternate version of this method
accepts a CString object if it is available.

nMaxLength

An integer value that specifies the maximum number of characters can be copied into the string
buffer, including the terminating null character. This value must be greater than zero. If the
buffer size is too small, the method will fail.

Return Value
If the method succeeds, the return value is the number of characters copied into the string buffer,
not including the terminating null character. If either the client ID is invalid, or the buffer is not
large enough to store the complete address, the method will return a value of zero.

Remarks
This method will return the IP address assigned to the specified server as a printable string. If the
nClientId parameter has a value of zero, this method will return the IP address assigned to the
local system. If the FTP_SERVER_NATROUTER option was specified when the server was started,
this method will return the external IP address assigned to the system. If the nClientId parameter
specifies a valid client session, this method will return the IP address that the client used to
establish the connection with the server. To determine the IP address assigned to the client, use
the GetClientAddress method.

The format and length of IPv4 and IPv6 address strings are very different. An IPv4 address string
looks like "192.168.0.20", while an IPv6 address string can look something like
"fd7c:2f6a:4f4f:ba34::a32". If your application checks for the format of these address strings, it
needs to be aware of the differences. You also need to make sure that you're providing enough
space to display or store an address to avoid buffer overruns.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)

Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetClientAddress, GetName, SetAddress

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::GetClientAccess Method

BOOL GetClientAccess(
 UINT nClientId,
 DWORD& dwUserAccess
);

Return the access rights that have been granted to the client session.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

dwUserAccess

An unsigned integer which specifies one or more access rights for the client session. For a list of
user access rights that can be granted to the client, see User Access Constants.

Return Value
If the method succeeds, the return value is non-zero. If the client ID does not specify a valid client
session, the method will return zero. This method can only be used with authenticated clients. If
the client session has not been authenticated, the return value will be zero.

Remarks
The GetClientAccess method is used to obtain all of the access rights that are currently granted
to an authenticated client session. The EnableClientAccess method can be used to enable or
disable specific permissions, and the SetClientAccess method can change multiple access rights
at once.

Example
DWORD dwUserAccess = 0;

// Check if the client is a restricted user
if (pFtpServer->GetClientAccess(nClientId, dwUserAccess))
{
 if (dwUserAccess & FTP_ACCESS_RESTRICTED)
 {
 std::cout << "Client authenticated as a restricted user\n";
 return;
 }
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
AuthenticateClient, EnableClientAccess, SetClientAccess

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/ftpsrv/class/useraccess.html

 CFtpServer::GetClientAddress Method

INT GetClientAddress(
 UINT nClientId,
 LPTSTR lpszAddress,
 INT nMaxLength
);

INT GetClientAddress(
 UINT nClientId,
 CString& strAddress
);

Return the IP address of the specified client session.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpszAddress

A pointer to a string buffer that will contain the client IP address, terminated with a null
character. To accommodate both IPv4 and IPv6 addresses, this buffer should be at least 46
characters in length. This parameter cannot be NULL. An alternate version of this method
accepts a CString object if it is available.

nMaxLength

An integer value that specifies the maximum number of characters can be copied into the string
buffer, including the terminating null character. This value must be greater than zero. If the
buffer size is too small, the method will fail.

Return Value
If the method succeeds, the return value is the number of characters copied into the string buffer,
not including the terminating null character. If the client ID is invalid, or the buffer is not large
enough to store the complete address, the method will return a value of zero.

Remarks
The format and length of IPv4 and IPv6 address strings are very different. An IPv4 address string
looks like "192.168.0.20", while an IPv6 address string can look something like
"fd7c:2f6a:4f4f:ba34::a32". If your application checks for the format of these address strings, it
needs to be aware of the differences. You also need to make sure that you're providing enough
space to display or store an address to avoid buffer overruns.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetClientDirectory, GetClientUserName

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::GetClientCredentials Method

BOOL GetClientCredentials(
 UINT nClientId,
 LPFTPCLIENTCREDENTIALS lpCredentials
);

BOOL GetClientCredentials(
 UINT nClientId,
 CString& strUserName,
 CString& strPassword
);

Return the user credentials for the specified client session.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpCredentials

A pointer to an FTPCLIENTCREDENTIALS structure that will contain information about the user
when the method returns. This parameter cannot be NULL.

strUserName

A string that will contain the user name when the method returns. This version of the method is
only available for MFC and ATL based projects that define the CString object.

strPassword

A string that will contain the user password when the method returns. This version of the
method is only available for MFC and ATL based projects that define the CString object.

Return Value
If the user credentials for the client session are available, the return value is non-zero. If the client
ID does not specify a valid client session, or the client has not requested authentication, this
method will return zero.

Remarks
The GetClientCredentials method is used to obtain the username and password that was
provided by the client when it requested authentication. Typically this method is used in an event
handler to validate the credentials provided by the client. If the credentials are considered valid,
the event handler would then call the AuthenticateClient method to specify that the session has
been authenticated.

If the default event handler is used, the OnAuthenticate method will be invoked with the user
credentials passed to the handler as arguments.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also

AuthenticateClient, OnAuthenticate, FTPCLIENTCREDENTIALS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::GetClientDirectory Method

INT GetClientDirectory(
 UINT nClientId,
 LPTSTR lpszDirectory,
 INT nMaxLength
);

INT GetClientDirectory(
 UINT nClientId,
 CString& strDirectory
);

Returns the current working directory for the specified client session.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpszDirectory

A pointer to a string buffer that will contain the current working directory for the specified client
session, terminated with a null character. This buffer should be at least MAX_PATH characters in
length. This parameter cannot be NULL. An alternate version of this method accepts a CString
object if it is available.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer, including the terminating null character. This value must be larger than zero or the
method will fail.

Return Value
If the method succeeds, the return value is the number of characters copied into the string buffer,
not including the terminating null character. If the client ID does not specify a valid client session,
the method will return zero.

Remarks
This method returns the full path to the current working directory for the specified client session.
For example, if the server root directory is C:\ProgramData\MyServer and the current working
directory for the client is /Research/Documents, this method will return
C:\ProgramData\MyServer\Research\Documents as the current working directory for the client
session.

It is important to note that the current working directory for client sessions is virtual, and does not
reflect the current working directory for the server process. To change the current working
directory for a client, use the ChangeClientDirectory method.

This method should only be used with client sessions that have been authenticated.
Unauthenticated clients are not assigned a current working directory and this method will return
zero, with the last error code set to ST_ERROR_AUTHENTICATION_REQUIRED.

To convert a full path to the virtual path for a specific client session, use the GetClientVirtualPath
method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)

Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ChangeClientDirectory, GetClientHomeDirectory, GetClientVirtualPath,

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::GetClientFileType Method

BOOL GetClientFileType(
 UINT nClientId,
 UINT& nFileType
);

Return the current file type used for transfers by the specified client.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpnFileType

An unsigned integer value that will contain the current file type used by the client for data
transfers.

Return Value
If the method succeeds, the return value is non-zero. If the client ID does not specify a valid client
session, the method will return zero.

Remarks
The GetClientFileType method will return the current file type that has been specified by the
client sending the TYPE command to the server. The file type determines if there is any conversion
performed on the data that is being exchanged between the client and server. The following file
types are supported:

Value Description

FILE_TYPE_ASCII
(1)

The file is a text file using the ASCII character set. For those clients which use
a different end-of-line character sequence, the text file has been converted
to the local format which uses the carriage return (CR) and linefeed (LF)
characters.

FILE_TYPE_IMAGE
(3)

The file is a binary file and no data conversion of any type has been
performed on the file. This is the default file type for most data files and
executable programs. If the client specified this file type when appending to
a text file, the file will contain the end-of-line sequences used by its native
operating system.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
SetClientFileType

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::GetClientHomeDirectory Method

INT GetClientHomeDirectory(
 UINT nClientId,
 LPTSTR lpszDirectory,
 INT nMaxLength
);

INT GetClientHomeDirectory(
 UINT nClientId,
 CString& strDirectory
);

Returns the home directory for the specified client session.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpszDirectory

A pointer to a string buffer that will contain the home directory for the specified client session,
terminated with a null character. This buffer should be at least MAX_PATH characters in length.
This parameter cannot be NULL. An alternate version of this method accepts a CString object if
it is available.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer, including the terminating null character. This value must be larger than zero or the
method will fail.

Return Value
If the method succeeds, the return value is the number of characters copied into the string buffer,
not including the terminating null character. If the client ID does not specify a valid client session,
the method will return zero.

Remarks
This method returns the full path to the home working directory assigned to the specified client
session. This will be the same path to the home directory specified when the AuthenticateClient
method was used to authenticate the client session. If a home directory was not explicitly assigned
when the client was authenticated, then this method returns the default home directory that was
created for the client, or the server root directory if the FTP_SERVER_MULTIUSER option was not
specified when the server was started.

This method should only be used with client sessions that have been authenticated.
Unauthenticated clients are not assigned a home directory and this method will return zero, with
the last error code set to ST_ERROR_AUTHENTICATION_REQUIRED.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AuthenticateClient, ChangeClientDirectory, GetClientDirectory, GetClientVirtualPath

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::GetClientIdentity Method

INT GetClientIdentity(
 UINT nClientId,
 LPTSTR lpszIdentity,
 INT nMaxLength
);

INT GetClientIdentity(
 UINT nClientId,
 CString& strIdentity
);

Return the identity of the specified client session.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpszIdentity

A pointer to a string buffer that will contain the identity of the client when the method returns,
terminated with a null character. This parameter cannot be NULL. It is recommended that this
buffer be at least 32 characters in length. An alternate version of this method accepts a CString
object if it is available.

nMaxLength

An integer value that specifies the maximum number of characters can be copied into the string
buffer, including the terminating null character. This value must be greater than zero. If the
buffer size is too small, the method will fail.

Return Value
If the method succeeds, the return value is the number of characters copied into the string buffer,
not including the terminating null character. If the client ID is invalid, or the buffer is not large
enough to store the complete path, the method will return a value of zero. If the client did not
identify itself, this method will return zero.

Remarks
The GetClientIdentity method returns the string that the client used to identify itself to the server.
The client may use either the CLNT or CSID command to identify itself. Although the CLNT
command is considered to be deprecated, it is supported for backwards compatibility with older
clients. The identity string does not have any standard format and is used for informational
purposes only and does not affect the operation of the server in any way. Not all clients identify
themselves, in which case this method will return zero and the lpszIdentity string buffer will be set
to an empty string.

If the client does identify itself, it typically uses the name of the client application that was used to
establish the connection. The application may choose to assign an identity to a client session for its
own internal purposes using the SetClientIdentity method, regardless of whether the client
identifies itself.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)

Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetIdentity, SetClientIdentity, SetIdentity

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::GetClientIdleTime Method

UINT GetClientIdleTime(
 UINT nClientId,
 UINT * lpnElapsed
);

Return the idle timeout period for the specified client session.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpnElapsed

An optional pointer to an unsigned integer value that will contain the number of seconds the
client session has been idle. This parameter may be NULL or omitted if this information is not
required.

Return Value
If the method succeeds, the return value is client idle timeout period in seconds. If the client ID
does not specify a valid client session, the method will return zero.

Remarks
The GetClientIdleTime method will return the number of seconds that the client may remain idle
before being automatically disconnected by the server. The idle time of a client session is based
on the last time a command was issued to the server or when a file data transfer completed. The
server will never disconnect a client that is in the process of uploading or downloading a file,
regardless of the idle timeout period.

The default idle timeout period for a client is 900 seconds (15 minutes), however the server can be
configured to use a different value and individual clients can request the timeout period be
changed by sending the IDLE command to the server. For a client to be able to change its own
timeout period, it must be granted the FTP_ACCESS_IDLE permission. The minimum timeout
period for a client is 60 seconds, the maximum is 7200 seconds (2 hours). An application can
change the timeout period for a specific client session using the SetClientIdleTime method.

It is important to note that the idle timeout period only affects authenticated clients.
Unauthenticated clients use a different internal timer that limits the amount of time they can
remain connected to the server before successfully authenticating with a valid username and
password. By default, the authentication timeout period is 60 seconds and is set when the server is
started; it cannot be changed for an individual client session.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
SetClientIdleTime

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::GetClientLocalPath Method

INT GetClientLocalPath(
 UINT nClientId,
 LPCTSTR lpszVirtualPath,
 LPTSTR lpszLocalPath,
 INT nMaxLength,
);

INT GetClientLocalPath(
 UINT nClientId,
 LPCTSTR lpszVirtualPath,
 CString& strLocalPath
);

Return the full local path for a virtual filename or directory on the server.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpszVirtualPath

A pointer to a string that specifies an virtual path on the server. This parameter cannot be NULL.

lpszLocalPath

A pointer to a string buffer that will contain the full local path, terminated with a null-character.
This buffer should be at least MAX_PATH characters to accommodate the complete path. This
parameter cannot be NULL. An alternate version of this method accepts a CString object if it is
available.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer, including the terminating null character. This value must be greater than zero.

Return Value
If the method succeeds, the return value is the number of characters copied into the string buffer,
not including the terminating null character. If the client ID does not specify a valid client session,
the method will return zero. If the string buffer is not large enough to contain the complete path,
this method will return zero and the last error code will be set to ST_ERROR_BUFFER_TOO_SMALL.

Remarks
The GetClientLocalPath method takes a virtual path and returns the full path to the specified file
or directory on the local system. The virtual path may be absolute or relative to the current
working directory for the client session. This method will recognize a tilde at the beginning of the
path to specify the client home directory.

To obtain the virtual path for a local file or directory, use the GetClientVirtualPath method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetClientVirtualPath

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::GetClientServer Method

HSERVER HttpGetClientServer(
 UINT nClientId
);

The GetClientServer method returns a handle to the server that created the specified client
session.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

Return Value
If the method succeeds, the return value is the handle to the server that created the client session.
If the method fails, the return value is INVALID_SERVER. To get extended error information, call
the GetLastError method.

Remarks
The GetClientServer method returns the handle to the server that created the client session and
is typically used within a notification message handler. If the server is in the process of shutting
down, or the client session thread is terminating, this method will fail and return INVALID_SERVER
indicating that the session ID is invalid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cstools11.h.
Import Library: csftsv11.lib

See Also
AsyncNotify

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::GetClientThreadId Method

DWORD GetClientThreadId(
 UINT nClientId
);

Returns the thread ID associated with the specified client session.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

Return Value
If the method succeeds, the return value is a thread ID. If the method fails, the return value is zero.
To get extended error information, call the GetLastError method.

Remarks
The GetClientThreadId method returns a thread ID that can be used to identify the thread that is
managing the client session. The thread ID can be used with other Windows API functions such as
OpenThread. Exercise caution when using thread-related functions, interfering with the normal
operation of the thread can have unexpected results. You should never use this method to obtain
a thread handle and then call the TerminateThread function to terminate a client session. This will
prevent the thread from releasing the resources that were allocated for the session and can leave
the server in an unstable state. To terminate a client session, use the DisconnectClient method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
EnumClients, GetActiveClient

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::GetClientUserName Method

INT GetClientUserName(
 UINT nClientId,
 LPTSTR lpszUserName,
 INT nMaxLength
);

INT GetClientUserName(
 UINT nClientId,
 CString& strUserName
);

Return the user name associated with the specified client session.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

strUserName

A pointer to a string buffer that will contain the user name associated with the client session.
This buffer must be large enough to store the complete user name, including the terminating
null character. This parameter cannot be NULL. An alternate version of this method accepts a
CString object if it is available.

Return Value
If the method succeeds, the return value is non-zero. If the client ID does not specify a valid client
session, or the client has not authenticated itself, the method will return zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AuthenticateClient, GetClientAccess, GetClientHomeDirectory

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::GetClientVirtualPath Method

INT GetClientVirtualPath(
 UINT nClientId,
 LPCTSTR lpszLocalPath,
 LPTSTR lpszVirtualPath,
 INT nMaxLength,
);

INT GetClientVirtualPath(
 UINT nClientId,
 LPCTSTR lpszLocalPath,
 CString& strVirtualPath
);

Return the virtual path for a local file on the server.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpszLocalPath

A pointer to a string that specifies an absolute path on the local system. This parameter cannot
be NULL.

lpszVirtualPath

A pointer to a string buffer that will contain the virtual path, terminated with a null-character.
This buffer should be at least MAX_PATH characters to accommodate the complete path. This
parameter cannot be NULL. An alternate version of this method accepts a CString object if it is
available.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer, including the terminating null character. This value must be greater than zero.

Return Value
If the method succeeds, the return value is the number of characters copied into the string buffer,
not including the terminating null character. If the client ID does not specify a valid client session,
the method will return zero. If the string buffer is not large enough to contain the complete path,
this method will return zero and the last error code will be set to ST_ERROR_BUFFER_TOO_SMALL.

Remarks
A virtual path for the client is either relative to the server root directory, or the client home
directory if the client was authenticated as a restricted user. These virtual paths are what the client
will see as an absolute path on the server. For example, if the server was configured to use
"C:\ProgramData\MyServer" as the root directory, and the lpszLocalPath parameter was specified
as "C:\ProgramData\MyServer\Documents\Research", this method would return the virtual path to
that directory as "/Documents/Research".

If the client session was authenticated as a restricted user, then the virtual path is always relative to
the client home directory instead of the server root directory. This is because restricted users are
isolated to their own home directory and any subdirectories. For example, if restricted user "John"
has a home directory of "C:\ProgramData\MyServer\Users\John" and the lpszLocalPath
parameter was specified as "C:\ProgramData\MyServer\Users\John\Accounting\Projections.pdf"

this method would return the virtual path as "/Accounting/Projections.pdf".

If the lpszLocalPath parameter specifies a file or directory outside of the server root directory, this
method will return zero and the last error code will be set to ST_ERROR_INVALID_FILE_NAME. This
method can only be used with authenticated clients. If the nClientId parameter specifies a client
session that has not been authenticated, this method will return zero and the last error code will
be ST_ERROR_AUTHENTICATION_REQUIRED.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetCommandFile, GetClientLocalPath

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::GetCommandFile Method

INT GetCommandFile(
 UINT nClientId,
 LPTSTR lpszFileName,
 INT nMaxLength
);

INT GetCommandFile(
 UINT nClientId,
 CString& strFileName
);

Get the full path to the local file name or directory specified by the client

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpszFileName

A pointer to a string buffer that will contain the full path to a file name or directory specified by
the client when it issued a command. The string buffer will be null terminated and must be large
enough to store the complete file path. This parameter cannot be NULL. An alternate version of
this method accepts a CString object if it is available.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer. It is recommended that the buffer be at least MAX_PATH characters in size. If the
maximum length specified is smaller than the actual length of the full path, this method will fail.

Return Value
An integer value which specifies the number of characters copied into the buffer, not including the
terminating null character. If the method fails, the return value will be zero and the GetLastError
method can be used to retrieve the last error code. If the last error code is returned as a value of
zero, this means that the command issued by the client accepts a file name as an argument, but
the client did not specify one.

Remarks
The GetCommandFile method is used to obtain the full path to a local file name or directory
specified by the client as an argument to a standard FTP command. For example, if the client
sends the RETR command to the server, this method will return the complete path to the local file
that the client wants to download. This method will only work with those standard commands that
perform some action on a file or directory.

This method should always be used to obtain the file name for a command that performs a file or
directory operation. The GetCommandParam method will return the actual command parameter,
but the file name will typically be relative to the user home directory or server root directory, and
cannot be passed directly to a Windows API function. The GetCommandFile method normalizes
the path provided by the client and ensures that it specifies a file or directory name in the correct
location.

To change the file or directory name that is the target of the current command, use the
SetCommandFile method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetClientDirectory, GetClientHomeDirectory, GetCommandLine, GetCommandParam,
SetCommandFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::GetCommandLine Method

INT GetCommandLine(
 UINT nClientId,
 LPTSTR lpszCmdLine,
 INT nMaxLength
);

INT GetCommandLine(
 UINT nClientId,
 CString& strCmdLine
);

Return the complete command line issued by the client.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpszCmdLine

A pointer to a string buffer that will contain the command, including all arguments. The string
buffer will be null terminated and must be large enough to store the complete command line. If
this parameter is NULL, the method will return the length of the command line. An alternate
version of this method accepts a CString object if it is available.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer. The internal limit on the maximum length of a command is 1024 characters. If the
maximum length specified is smaller than the actual length of the complete command, this
method will fail.

Return Value
An integer value which specifies the number of characters copied into the buffer, not including the
terminating null character. If the method fails, the return value will be zero and the GetLastError
method can be used to retrieve the last error code. If the last error code has a value of zero then
no command has been issued by the client.

Remarks
The GetCommandLine method is used to obtain the command that was issued by the client, and
is commonly used inside the OnCommand and OnResult event handlers to pre-process and
post-process client commands, respectively. When the method returns, the string buffer provided
by the caller will contain the complete command, including all command parameters. Any
extraneous whitespace will be removed, however quoted parameters will be retained as-is.

To obtain a specific parameter to a command, use the GetCommandParam method. The
GetCommandParamCount method will return the number of command parameters that were
provided by the client. If the command sent by the client is used to perform an action on a file or
directory, the GetCommandFile method should be called to obtain the full path to the specified
file rather than using the value of the command parameter.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)

Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetCommandFile, GetCommandParam, OnCommand, OnResult

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::GetCommandName Method

INT GetCommandName
 UINT nClientId,
 LPTSTR lpszCommand,
 INT nMaxLength
);

INT GetCommandName
 UINT nClientId,
 CString& strCommand
);

Return the name of the last command issued by the client.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpszCommand

A pointer to a string buffer that will contain the command name. The string buffer will be null
terminated and must be large enough to store the complete command name. If this parameter
is NULL, the method will only return the length of the current command in characters, not
including the terminating null character. An alternate version of this method accepts a CString
object if it is available.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer, including the terminating null character. If the maximum length specified is smaller
than the actual length of the parameter, this method will fail. If the lpszCommand parameter is
NULL, this value should be zero.

Return Value
An integer value which specifies the number of characters copied into the buffer, not including the
terminating null character. If the method fails, the return value will be zero and the GetLastError
method can be used to retrieve the last error code. If the last error code is returned as a value of
zero, this means that no command has been issued by the client.

Remarks
The GetCommandName method is used to obtain the name of the last command that was
issued by the client. The command name returned by this method will always be capitalized,
regardless of how it was sent by the client. This method is typically used inside the OnCommand
and OnResult event handlers to pre-process and post-process client commands, respectively.

The GetCommandParam method can be used to return the value of individual command
parameters specified by the client. The GetComandLine method can be used to obtain the
complete command line issued by the client.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

Unicode: Implemented as Unicode and ANSI versions.

See Also
GetCommandFile, GetCommandLine, GetCommandParam, OnCommand, OnResult

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::GetCommandParam Method

INT GetCommandParam
 UINT nClientId,
 INT nParam,
 LPTSTR lpszParam,
 INT nMaxLength
);

INT GetCommandParam
 UINT nClientId,
 INT nParam,
 CString& strParam
);

Return the value of the specified command parameter from the last command issued by the client.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

nParam

An integer value which specifies the command parameter. A value of zero specifies the
command itself, while values greater than zero specify a particular parameter. This method will
fail if this value is less than zero or greater than the number of parameters available.

lpszParam

A pointer to a string buffer that will contain the command parameter. The string buffer will be
null terminated and must be large enough to store the complete parameter value. If this
parameter is NULL, the method will only return the length of the specified parameter in
characters, not including the terminating null character. An alternate version of this method
accepts a CString object if it is available.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer, including the terminating null character. The internal limit on the maximum length
of a command is 1024 characters. If the maximum length specified is smaller than the actual
length of the parameter, this method will fail. If the lpszParam parameter is NULL, this value
should be zero.

Return Value
An integer value which specifies the number of characters copied into the buffer, not including the
terminating null character. If the method fails, the return value will be zero and the GetLastError
method can be used to retrieve the last error code. If the last error code is returned as a value of
zero, this means that no command has been issued by the client.

Remarks
The GetCommandParam method is used to obtain a specific parameter for the last command
that was issued by the client. If the parameter was surrounded in quotes, those quotes will be
included in the value returned by this method. This method is typically used inside the
OnCommand and OnResult event handlers to pre-process and post-process client commands,
respectively.

The GetCommandParamCount method will return the number of command parameters that

were provided by the client. If the command sent by the client is used to perform an action on a
file or directory, the GetCommandFile method should be called to obtain the full path to the
specified file rather than using the value of the command parameter. To obtain the complete
command line, use the GetCommandLine method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetCommandFile, GetCommandLine, GetCommandName, GetCommandParamCount,
OnCommand, OnResult

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::GetCommandParamCount Method

INT GetCommandParamCount
 UINT nClientId
);

Return the number of command parameters for the last command issued by the client.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

Return Value
An integer value which specifies the number of parameters that were specified in the last
command issued by the client. If the command did not include any parameters, this method will
return zero. If the client has not issued a command, or the client session ID is invalid, this method
will return -1.

Remarks
The GetCommandParamCount method is used to determine the number of parameters
specified in the last client command, and the maximum value that may be passed as the
parameter index to the GetCommandParam method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
GetCommandLine, GetCommandName, GetCommandParam

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::GetCommandResult Method

INT GetCommandResult(
 UINT nClientId,
 LPTSTR lpszResult,
 INT nMaxLength
);

INT GetCommandResult(
 UINT nClientId,
 CString& strResult
);

Return the result code and description for the last command issued by the client.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpszResult

A pointer to a string buffer that will contain the description of the result code. The string buffer
will be null terminated up to the maximum number of characters specified by the caller. This
parameter can be NULL if this information is not required. An alternate version of this method
accepts a CString object if it is available.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer. If the lpszResult parameter is NULL, this value should be zero.

Return Value
An integer value which specifies the result code for the last command issued by the client. A return
value of zero indicates that the command has not completed and there is no result code available.

Remarks
The GetCommandResult method is used to determine the result of the last command that was
issued by the client and is typically called in the OnResult event handler. This method should only
be called after a command has been processed or the SendResponse method has been called.

The result code is a three-digit integer value that indicates the success or failure of a command.
Whenever a client sends a command to the server, the server must respond with this numeric
code, and optionally a text message that further describes the result. The text message may be a
single line, or it may span multiple lines, with each line of text terminated by a carriage return and
linefeed. Result codes are generally broken down into the following categories:

Result Code Description

100-199 Result codes in this range indicate that the requested action is being initiated, and
the client should expect another reply from the server before proceeding. This is
normally used with file transfers, indicating to the client that the data transfer has
started.

200-299 Result codes in this range indicate that the server has successfully completed the
requested action. One exception is the 202 result code which indicates that the
command is not implemented, but the client should not consider this to be an
error condition.

300-399 Result codes in this range indicate that the requested action cannot complete
until additional information is provided to the server. This is normally used with
commands that require a specific sequence to complete. For example, the server
will send the 331 result code in response to the USER command, which tells the
client that it must send the PASS command to complete the authentication
process.

400-499 Result codes in this range indicate that the requested action did not take place,
but the error condition is temporary and may be attempted again. This error
response is usually the result of a failed authentication attempt or a file transfer
that could not complete.

500-599 Result codes in this range indicate that the requested action did not take place
and the failure is permanent. The client should not attempt to send the command
again. This error response is usually the result of an invalid command name, a
syntax error or the client not having the appropriate access rights to a resource.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SendResponse, OnResult

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::GetCommandUsage Method

UINT GetCommandUsage(
 LPCTSTR lpszCommand
);

Return the number of times a specific command has been issued by all clients.

Parameters
lpszCommand

A pointer to a string that specifies a command name. The name is not case-sensitive, but must
match a valid server command exactly. This parameter cannot be NULL.

Return Value
If the method succeeds, the return value is the number of times the command has been issued by
all clients since the server was started. If the command name is invalid, or the command has never
been issued, the return value will be zero.

Remarks
The command name provided to this method must match the commands defined in RFC 959 or
related protocol standards. It is important to distinguish between commands recognized by an
FTP server and the commands that client programs may use. For example, the standard Windows
FTP command line program provides commands such as GET and PUT to download and upload
files. However, those are not the actual commands sent to a server. Instead, the corresponding
server commands issued by a client application would bet RETR (retrieve) and STOR (store). Refer
to File Transfer Protocol Commands for a complete list of server commands.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
EnableCommand, GetCommandLine, GetCommandResult

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/ftpsrv/class/commands.html
file:///C|/Projects/cstools11/pdf/ftpsrv/class/commands.html

 CFtpServer::GetDirectory Method

INT GetDirectory(
 LPTSTR lpszDirectory,
 INT nMaxLength
);

INT GetDirectory(
 CString& strDirectory
);

Return the full path to the root directory assigned to the specified server.

Parameters
lpszDirectory

A pointer to a string buffer that will contain the server root directory, terminated with a null
character. It is recommended that this buffer be at least MAX_PATH characters in length. This
parameter cannot be NULL. An alternate version of this method accepts a CString object if it is
available.

nMaxLength

An integer value that specifies the maximum number of characters can be copied into the string
buffer, including the terminating null character. This value must be greater than zero. If the
buffer size is too small, the method will fail.

Return Value
If the method succeeds, the return value is the number of characters copied into the string buffer,
not including the terminating null character. If the buffer is not large enough to store the complete
path, the method will return a value of zero.

Remarks
The GetDirectory method will return the full path to the root directory assigned to the server
instance. The root directory may be specified as part of the server configuration, or if no directory
is specified by the application, the current working directory will be used and this method can be
used to obtain the full path to the directory. When the application specifies a root directory, it may
use environment variables such as %AppData% in the path. This method will return the fully
resolved path name, with all environment variables expanded.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetIdentity, GetName, SetDirectory

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::GetHandle Method

HSERVER GetHandle();

The GetHandle method returns the server handle associated with the current instance of the
class.

Parameters
None.

Return Value
This method returns the server handle associated with the current instance of the class object. If
the server is inactive, the value INVALID_SERVER will be returned.

Remarks
This method is used to obtain the server handle created by the class for use with the SocketTools
API.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
IsInitialized

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::GetIdentity Method

INT GetIdentity(
 LPTSTR lpszIdentity,
 INT nMaxLength
);

INT GetIdentity(
 CString& strIdentity
);

Return the identity of the specified server.

Parameters
lpszIdentity

A pointer to a string buffer that will contain the identity of the server when the method returns,
terminated with a null character. This parameter cannot be NULL. It is recommended that this
buffer be at least 32 characters in length. An alternate version of this method accepts a CString
object if it is available.

nMaxLength

An integer value that specifies the maximum number of characters can be copied into the string
buffer, including the terminating null character. This value must be greater than zero. If the
buffer size is too small, the method will fail.

Return Value
If the method succeeds, the return value is the number of characters copied into the string buffer,
not including the terminating null character. If the buffer is not large enough to store the complete
path, the method will return a value of zero.

Remarks
The GetIdentity method returns the identity string that was specified as part of the server
configuration. It is used for informational purposes only and does not affect the operation of the
server. Typically the string specifies the name of the application and a version number, and is
displayed whenever a client establishes its initial connection to the server. The SetIdentity method
can be used to change the identity string associated with the server.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetClientIdentity, SetClientIdentity, SetIdentity

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::GetLastError Method

DWORD GetLastError(
 LPTSTR lpszError,
 INT nMaxLength
);

DWORD GetLastError(
 CString& strError
);

DWORD GetLastError();

Return the last server error code and a description of the error.

Parameters
lpszError

A pointer to a string buffer that will contain a description of the error. If the error description is
not needed, this parameter may be NULL. An alternate version of this method accepts a
CString object if it is available.

nMaxLength

An integer that specifies the maximum number of characters that can be copied into the error
string buffer, including the terminating null character. If the lpszError parameter is NULL, this
value should be zero.

Return Value
An unsigned integer value that specifies the last error that occurred. A value of zero indicates that
there was no error.

Remarks
Error codes are unsigned 32-bit values which are private to each server. You should call the
GetLastError method immediately when a method's return value indicates that an error has
occurred. That is because some methods clear the last error code when they succeed.

It is important to note that the error codes returned by this method are different than the
command result codes that are defined in RFC 959, the standard protocol specification for FTP.
This method is used to determine reason that an API function has failed, and should not be used
to determine if a command issued by the client was successful. The SendResponse method is
used to send result codes to the client, and the GetCommandResult method can be used to
determine the result of the last command sent by the client.

Most methods will set the last error code value when they fail; a few methods set it when they
succeed. Failure is typically indicated by a return value such as FALSE, NULL, INVALID_SERVER or
FTP_ERROR. Those methods which clear the last error code when they succeed are noted on their
reference page.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetCommandResult, SendResponse, SetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::GetLogFile Method

BOOL GetLogFile(
 UINT * lpnLogFormat,
 UINT * lpnLogLevel,
 LPTSTR lpszFileName,
 INT nMaxLength
);

BOOL GetLogFile(
 UINT * lpnLogFormat,
 UINT * lpnLogLevel,
 CString& strFileName
);

BOOL GetLogFile(
 CString& strFileName
);

Return the current log file format and the full path to the file.

Parameters
lpnLogFormat

A pointer to an integer value that will contain the log file format being used when the method
returns. If this information is not needed, this parameter may be NULL. The following formats
are supported:

Constant Description

FTP_LOGFILE_NONE
(0)

This value specifies that the server should not create or
update a log file.

FTP_LOGFILE_COMMON
(1)

This value specifies that the log file should use the common
log format that records a subset of information in a fixed
format. This log format usually only provides information
about file transfers.

FTP_LOGFILE_EXTENDED
(2)

This value specifies that the log file should use the standard
W3C extended log file format. This is an extensible format
that can provide additional information about the client
session.

lpnLogLevel

A pointer to an integer value that will contain the level of detail the server uses when generating
the log file. The minimum value is 1 and the maximum value is 10. If this information is not
needed, this parameter may be NULL.

lpszFileName

A pointer to a string buffer that will contain the full path to the log file. This parameter may be
NULL if this information is not required. An alternate version of this method accepts a CString
object if it is available.

nMaxLength

An integer that specifies the maximum number of characters that can be copied into the file
name string, including the terminating null character. If the lpszFileName parameter is NULL,

this value should be zero.

Return Value
An integer value which specifies the current log file format. Refer to the FTPSERVERCONFIG
structure definition for a list of supported log file formats. If logging has not been enabled, this
method will return a value of zero.

Remarks
If the server is configured with logging enabled, but a log file name is not explicitly provided, then
the server will automatically generate one. This method can be used to get the full path to the
current log file along with the format that is being used to record client session data. Normally the
log file is held open by the server thread while it is active, however you can call the
RenameServerLogFile method to explicitly rename or delete the log file.

To change the name of the log file, the log file format or level of detail, use the SetLogFile
method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
RenameServerLogFile, SetLogFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 GetMemoryUsage Method

SIZE_T GetMemoryUsage();

Return the amount of memory allocated for the server and all client sessions.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero and specifies the amount of memory
allocated by the server. If the server is inactive or cannot be locked, the return value is zero. Call
the GetLastError method to determine the cause of the failure.

Remarks
This method returns the amount of memory allocated by the server and all active client sessions. It
enumerates all of memory allocations made by the server process and client session threads and
returns the total number of bytes allocated for the server process. This value reflects the amount
of memory explicitly allocated by this library and does not reflect the total working set size of the
process, or memory allocated by any other libraries. To determine the working set size for the
process, refer to the Win32 GetProcessWorkingSetSize and GetProcessMemoryInfo functions.

This method forces the server into a locked state, and all client sessions will block until the method
returns. Because this method enumerates all heaps allocated for the server process, it can be an
expensive operation, particularly when there are a large number of active clients connected to the
server. Frequent use of this method can significantly degrade the performance of the server. It is
primarily intended for use as a debugging tool to determine if memory usage is the result of an
increase in active client sessions. If the value returned by the method remains reasonably constant,
but the amount of memory allocated for the process continues to grow, it could indicate a
memory leak in some other area of the application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetStackSize, SetStackSize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::GetName Method

INT GetName(
 UINT nClientId,
 LPTSTR lpszHostName,
 INT nMaxLength
);

INT GetName(
 UINT nClientId,
 CString& strHostName
);

Return the host name assigned to the specified server.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session. This value may be zero.

lpszHostName

A pointer to a string buffer that will contain the server host name, terminated with a null
character. It is recommended that this buffer be at least 64 characters in length. This parameter
cannot be NULL. An alternate version of this method accepts a CString object if it is available.

nMaxLength

An integer value that specifies the maximum number of characters can be copied into the string
buffer, including the terminating null character. This value must be greater than zero. If the
buffer size is too small, the method will fail.

Return Value
If the method succeeds, the return value is the number of characters copied into the string buffer,
not including the terminating null character. If the client ID is invalid or the buffer is not large
enough to store the complete hostname, the method will return a value of zero.

Remarks
This method will return the host name assigned to the specified server. If the nClientId parameter
has a value of zero, the method will return the default host name that was specified as part of the
server configuration. If no host name was explicitly assigned to the server, then it will return the
local system name. If the nClientId parameter specifies a client session, then it this method will
return the host name that the client used to establish the connection. If the client sends the HOST
command to the server, this method will return the host name provided by the client.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetAddress

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::GetOptions Method

DWORD GetOptions();

Return the options specified for this instance of the server.

Parameters
None.

Return Value
The current server options. For a list of available options, see Server Option Constants

Remarks
The GetOptions method returns the default options for the current instance of the server. To
change the server options, use the SetOptions method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
SetOptions

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/ftpsrv/class/optionconst.html

 CFtpServer::GetPriority Method

INT GetPriority();

Return the current priority assigned to the specified server.

Parameters
None.

Return Value
If the method succeeds, the return value is the priority for the specified server. If the method fails,
the return value is FTP_PRIORITY_INVALID. To get extended error information, call the
GetLastError method.

Remarks
The GetPriority method can be used to determine the current priority assigned to the server. It
will return one of the following values:

Constant Description

FTP_PRIORITY_BACKGROUND
(0)

This priority significantly reduces the memory, processor and
network resource utilization for the server. It is typically used
with lightweight services running in the background that are
designed for few client connections. The server thread will be
assigned a lower scheduling priority and will be frequently
forced to yield execution to other threads.

FTP_PRIORITY_LOW
(1)

This priority lowers the overall resource utilization for the server
and meters the processor utilization for the server thread. The
server thread will be assigned a lower scheduling priority and
will occasionally be forced to yield execution to other threads.

FTP_PRIORITY_NORMAL
(2)

The default priority which balances resource and processor
utilization. This is the priority that is initially assigned to the
server when it is started, and it is recommended that most
applications use this priority.

FTP_PRIORITY_HIGH
(3)

This priority increases the overall resource utilization for the
server and the thread will be given higher scheduling priority. It
is not recommended that this priority be used on a system with
a single processor.

FTP_PRIORITY_CRITICAL
(4)

This priority can significantly increase processor, memory and
network utilization. The server thread will be given higher
scheduling priority and will be more responsive to client
connection requests. It is not recommended that this priority be
used on a system with a single processor.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cstools11.h.
Import Library: csftsv11.lib

See Also
SetPriority, Start

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::GetProgramExitCode Method

BOOL GetProgramExitCode(
 UINT nClientId,
 DWORD& dwExitCode
);

Return the exit code of the last program executed by the client.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

dwExitCode

An unsigned integer that will contain the program exit code when the method returns.

Return Value
If the method succeeds, the return value is non-zero. If the client ID does not specify a valid client
session, the method will return zero.

Remarks
The GetProgramExitCode method returns the exit code of a registered program that was
executed by the client using the SITE EXEC command. By convention, most programs return an
exit code in the range of 0-255, with an exit code of zero indicating success. The exit code is
commonly used by custom programs to communicate status information back to the server
application.

Permission to use the SITE EXEC is not granted to authenticated users by default, and is limited to
only those programs which are explicitly registered with the server. Exercise caution when allowing
a client to execute a program on the server because this can expose the server to significant
security risks. The programs that are registered for use with the SITE EXEC command should be
thoroughly tested before being deployed on the server and should only be console programs that
write to standard output.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
GetProgramName, GetProgramOutput, RegisterProgram

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::GetProgramName Method

INT GetProgramName(
 UINT nClientId,
 LPTSTR lpszProgramName,
 INT nMaxLength
);

INT GetProgramName(
 UINT nClientId,
 CString& strProgramName
);

Return the name of the last program executed by the client.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpszProgramName

A pointer to a string buffer that will contain the name of the last program executed by the client.
This parameter cannot be NULL and should be at least 32 characters in size. An alternate
version of this method accepts a CString object if it is available.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer, including the terminating null character. This parameter must have a value greater
than zero.

Return Value
If the method succeeds, the return value is the length of the command name. If the client ID does
not specify a valid client session, the method will return zero. If the client has not executed any
programs, this method will return zero.

Remarks
The GetProgramName method returns the name of the last program that was executed by the
client using the SITE EXEC command. The name that is returned is the alias assigned to the
program, not the full path to the executable file. The server application would typically use this
method in an event handler when processing the FTP_CLIENT_EXECUTE event to determine which
program has been executed on behalf of the client. The GetProgramExitCode method will return
the program's exit code and the GetProgramOutput method can be used to obtain a copy of
the output generated by the program.

Permission to use the SITE EXEC is not granted to authenticated users by default, and is limited to
only those programs which are explicitly registered with the server. Exercise caution when allowing
a client to execute a program on the server because this can expose the server to significant
security risks. The programs that are registered for use with the SITE EXEC command should be
thoroughly tested before being deployed on the server and should only be console programs that
write to standard output.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)

Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetProgramExitCode, GetProgramOutput, OnExecute, RegisterProgram

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::GetProgramOutput Method

DWORD GetProgramOutput(
 UINT nClientId,
 LPBYTE lpBuffer,
 DWORD dwBufferSize
);

Return a copy of the standard output from the last program executed by the client.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpBuffer

A pointer to a buffer that will contain the output from the last program executed by the client. If
this parameter is NULL, the method will return the number of bytes of data that was output by
the program. Note that this output is not null terminated.

dwBufferSize

The maximum number of bytes that can be copied into the buffer. If the lpBuffer parameter is
NULL, this value should be zero.

Return Value
If the method succeeds, the return value is the number of bytes copied into the specified buffer. If
the client ID does not specify a valid client session, the method will return zero. If the client has not
executed any programs, the return value will be zero.

Remarks
The GetProgramOutput method is used to obtain a copy of the output generated by the
program executed using the SITE EXEC command. To determine the number of bytes of output
available to read, call this method with the lpBuffer parameter as NULL and the dwBufferSize
parameter with a value of zero. The return value will be the number of bytes of data that was
output by the program. It should be noted that for Unicode builds, the buffer is a byte array, not
an array of characters, and will not be null terminated.

This method returns the raw output from the command which may contain escape sequences,
control characters and embedded nulls. When the application processes the output returned by
this method, it should never coerce the buffer pointer to an LPTSTR value because there is no
guarantee that the data will be null-terminated. To obtain the output from the command as a
string, use the GetProgramText method.

Example
LPBYTE lpBuffer = NULL; // A pointer to the output buffer
DWORD cbBuffer = 0; // Number of bytes in the output buffer

// Determine the number of bytes in the output buffer
cbBuffer = pFtpServer->GetProgramOutput(nClientId, NULL, 0);

if (cbBuffer > 0)
{
 // Allocate memory for the buffer
 lpBuffer = new BYTE[cbBuffer + 1];

 // Copy the program output to the buffer
 cbBuffer = pFtpServer->GetProgramOutput(nClientId, lpBuffer, cbBuffer + 1);
}

// Free the memory allocated for the buffer when finished
if (lpBuffer != NULL)
{
 delete lpBuffer;
 lpBuffer = NULL;
 cbBuffer = 0;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
GetProgramExitCode, GetProgramName, GetProgramText, OnExecute, RegisterProgram

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::GetProgramText Method

INT GetProgramText(
 UINT nClientId,
 LPTSTR lpszBuffer,
 INT nMaxLength
);

INT GetProgramText(
 UINT nClientId,
 CString& strBuffer
);

Return a copy of the standard output from the last program in a string buffer.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpszBuffer

A pointer to a buffer that will contain the output from the last program executed by the client as
a string. If this parameter is NULL, the method will return the number of bytes of characters that
was output by the program, not including a terminating null character. An alternate version of
this method accepts a CString object if it is available.

nMaxLength

The maximum number of bytes that can be copied into the buffer. If the lpszBuffer parameter is
NULL, this value should be zero.

Return Value
If the method succeeds, the return value is the number of characters copied into the specified
string buffer, not including the terminating null character. If the client ID does not specify a valid
client session, the method will return zero. If the client has not executed any programs, the return
value will be zero.

Remarks
The GetProgramText method is used to obtain a copy of the output generated by the program
executed using the SITE EXEC command. To determine the number of characters of output
available to read, call this method with the lpszBuffer parameter as NULL and the nMaxLength
parameter with a value of zero. The return value will be the number of characters that were output
by the program. If the application dynamically allocates the string buffer, make sure that it
allocates an extra character for the terminating null character.

This method will only return textual output from the command and any non-printable control
characters and the escape character will be replaced with a space. To obtain the unfiltered output
from the last command that was executed, use the GetProgramOutput method.

Example
CString strBuffer;

if (pFtpServer->GetProgramText(nClientId, strBuffer) > 0)
 pEditCtrl->SetWindowText(strBuffer);

Requirements

Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetProgramExitCode, GetProgramName, GetProgramOutput, OnExecute, RegisterProgram

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::GetRenamedFile Method

INT GetRenamedFile(
 UINT nClientId,
 LPTSTR lpszFileName,
 INT nMaxLength
);

INT GetRenamedFile(
 UINT nClientId,
 CString& strFileName
);

Return the original name of a file being renamed by the client.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpszFileName

A pointer to a string buffer that will contain the full path of the last file or directory that was
renamed. It is recommended that this buffer be at least MAX_PATH characters in size. The value
of this parameter cannot be NULL. An alternate version of this method accepts a CString object
if it is available.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer, including the terminating null characters. This parameter must have a value larger
than zero.

Return Value
If the method succeeds, the return value is the length of the file or directory path, not including
the terminating null character. If the client ID does not specify a valid client session, the method
will return zero. If the client has not renamed a file or directory, this method will return zero.

Remarks
When a client wishes to rename a file or directory, it must send two commands in sequence to the
server. The first command is RNFR (rename from) which specifies the original name of the file or
directory to be renamed. The second command is RNTO (rename to) and must be sent
immediately after the RNFR command and specifies the new name for the file or directory. The
GetRenamedFile method will return the full path of the local file or directory that was specified by
the RNFR command. Typically this method is used by an event handler that processes the
OnCommand event to determine the original path name.

This method is only guaranteed to return a meaningful value when called within the context of the
OnCommand event handler. Calling this method outside of the event handler will return the path
of the last renamed file, but there is no way to determine at what point the client issued the
command to rename a file or directory. To obtain the new file or directory name, the
GetCommandFile method should be called from within the event handler.

The RNFR and RNTO commands can also be used to move a file or directory to a new location.
For example, they could be used to move a file from one directory to another. An application
should never make the assumption that the paths of the original and new file will be the same.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetCommandFile, OnCommand

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::GetStackSize Method

DWORD GetStackSize();

Return the initial size of the stack allocated for threads created by the server.

Parameters
None.

Return Value
If the method succeeds, the return value is the amount of memory that will be allocated for the
stack in bytes. If the method fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
The GetStackSize method returns the initial amount of memory that is committed to the stack for
each thread created by the server. By default, the stack size for each thread is set to 256K for 32-
bit processes and 512K for 64-bit processes.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cstools11.h
Import Library: csftsv11.lib

See Also
SetStackSize, Start

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::GetTransferInfo Method

BOOL GetTransferInfo(
 UINT nClientId,
 LPFTPSERVERTRANSFER lpTransferInfo
);

Return information about the current file transfer for the client session.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpTransferInfo

A pointer to an FTPSERVERTRANSFER structure that will contain information about the last file
transfer. This parameter cannot be NULL, and the dwSize member of the structure must be
initialized to specify the structure size prior to calling this method.

Return Value
If the method succeeds, the return value is non-zero. If the client ID does not specify a valid client
session, the method will return zero. This method should only be called after the client has issued
the APPE, RETR, STOR or STOU commands to initiate a file transfer, otherwise the return value will
be zero.

Remarks
The GetTransferInfo method is used to obtain information about the last file transfer that was
performed by the client. This method is typically called within an event handler to determine how
many bytes of data were transferred, the type of file and the full path to the file on the local
system.

If the default event handler is used, the OnDownload and OnUpload methods will be invoked
with information about the transfer passed as arguments to the handler.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetCommandResult, OnDownload, OnUpload, FTPSERVERTRANSFER

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::GetUuid Method

INT GetUuid(
 LPTSTR lpszHostUuid,
 INT nMaxLength
);

INT GetUuidString(
 CString& strHostUuid
);

Return the UUID assigned to the server as a printable string.

Parameters
lpszHostUuid

A pointer to a string buffer that will contain the server UUID, terminated with a null character. It
is recommended that this buffer be at least 40 characters in length. This parameter cannot be
NULL. An alternate version of this method accepts a CString object if it is available.

nMaxLength

An integer value that specifies the maximum number of characters can be copied into the string
buffer, including the terminating null character. This value must be greater than zero. If the
buffer size is too small, the method will fail.

Return Value
If the method succeeds, the return value is the number of characters copied into the string buffer,
not including the terminating null character. If the buffer is not large enough to store the complete
UUID string, the method will return a value of zero.

Remarks
The GetUuid method returns the Universally Unique Identifier (UUID) that has been assigned to
the server. The UUID may either be generated by the application and assigned as part of the
server configuration, or an ephemeral UUID may be automatically generated when the server is
started.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SetUuid

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::IsActive Method

BOOL IsActive();

Determine if the server has been started.

Return Value
This method returns a non-zero value if the server has been started. If the server is stopped this
method will return zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
CFtpServer, IsListening, Start, Stop

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::IsClientAnonymous Method

BOOL IsClientAnonymous(
 UINT nClientId
);

Determine if the specified client has authenticated as an anonymous user.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

Return Value
If the client session has been authenticated, this method will return a non-zero value, otherwise it
will return zero. If the client ID is valid, and the client session has been authenticated, this method
will clear the last error code.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
AuthenticateClient, GetClientCredentials, IsClientAuthenticated

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::IsClientAuthenticated Method

BOOL IsClientAuthenticated(
 UINT nClientId
);

Determine if the specified client session has been authenticated.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

Return Value
If the client session has been authenticated, this method will return a non-zero value, otherwise it
will return zero. If the client ID is valid, this method will clear the last error code.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
AuthenticateClient, GetClientCredentials, IsClientAnonymous

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::IsCommandEnabled Method

BOOL IsCommandEnabled(
 LPCTSTR lpszCommand
);

Determine if a specific server command has been enabled or disabled.

Parameters
lpszCommand

A pointer to a NULL terminated string that specifies the name of the command. The command
name is not case-sensitive, but the value must otherwise match the exact command name.
Partial matches are not recognized by this method. This parameter cannot be NULL.

Return Value
If the command is enabled, this method will return a non-zero value. If the command is disabled
or the command name does not match a supported command, this method will return zero.

Remarks
The IsCommandEnabled method is used to determine whether a specific command is enabled.
Typically this method is used in an event handler to make sure the command issued by a client is
recognized by the server and enabled for use. Commands can be enabled using the
EnableCommand method and disabled using the DisableCommand method.

This method does not account for the permissions granted to a specific client session. Clients are
assigned access rights when they are authenticated using the AuthenticateClient method, and
certain commands can be limited by the permissions granted to the client. For example, even
though the STOR command is enabled, a client must have the FTP_ACCESS_WRITE permission to
use the command to upload a file to the server. For a list of access rights, see User Access
Constants.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AuthenticateClient, DisableCommand, EnableCommand, GetCommandName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/ftpsrv/class/useraccess.html
file:///C|/Projects/cstools11/pdf/ftpsrv/class/useraccess.html

 CFtpServer::IsInitialized Method

BOOL IsInitialized();

The IsInitialized method returns whether or not the class object has been successfully initialized.

Return Value
This method returns a non-zero value if the class object has been successfully initialized. A return
value of zero indicates that the runtime license key could not be validated or the networking
library could not be loaded by the current process.

Remarks
When an instance of the class is created, the class constructor will attempt to initialize the
component with the runtime license key that was created when SocketTools was installed. If the
constructor is unable to validate the license key or load the networking libraries, this initialization
will fail.

If SocketTools was installed with an evaluation license, the application cannot be redistributed to
another system. The class object will fail to initialize if the application is executed on another
system, or if the evaluation period has expired. To redistribute your application, you must
purchase a development license which will include the runtime key that is needed to redistribute
your software to other systems. Refer to the Developer's Guide for more information.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
CFtpServer

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::IsListening Method

BOOL IsListening();

The IsListening method returns whether or not the server is listening for client connections.

Return Value
This method returns a non-zero value if the server has been started and is listening for client
connections. If the server is stopped or has been suspended this method will return zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
CFtpServer, Start, Stop

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::PreProcessEvent Method

virtual LONG PreProcessEvent(
 HSERVER hServer,
 UINT nClientId,
 UINT nEventId,
 DWORD dwError,
 BOOL& bHandled
);

A virtual method that is invoked for each event generated by the server.

Parameters
hServer

The server handle. The application should treat this as an opaque value that is only valid as long
as the server is active. This value should not be stored by the application and the handle value
will change if the server is restarted.

nClientId

An unsigned integer which uniquely identifies the client that has issued a request to the server.
This value is guaranteed to be unique to the client session throughout the life of the server and
is never reused. The application should never make assumptions about the order in which IDs
are allocated to the client sessions.

nEventId

An unsigned integer which specifies which event occurred. For a list of events, see Server Event
Constants.

dwError

An unsigned integer which specifies any error that occurred. If no error occurred, then this
parameter will be zero.

bHandled

An integer which specifies if the event has been handled by the application. If this parameter is
set to a non-zero value, the default event handler will not be invoked for the event.

Return Value
The method should return a value of zero to indicate that the default event handler should be
invoked for the event. If the method returns a non-zero value, this value is passed back to the
event dispatcher and the default handler will not be invoked.

Remarks
The PreProcessEvent method is invoked for each event that is generated, prior to the default
handler for that event. To implement an event handler, the application should create a class
derived from the CFtpServer class, and then override this method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

file:///C|/Projects/cstools11/pdf/ftpsrv/class/eventconst.html
file:///C|/Projects/cstools11/pdf/ftpsrv/class/eventconst.html

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::RegisterProgram Method

BOOL RegisterProgram(
 LPCTSTR lpszCommandName,
 LPCTSTR lpszProgramFile
);

BOOL RegisterProgram(
 LPCTSTR lpszCommandName,
 LPCTSTR lpszProgramFile,
 LPCTSTR lpszParameters,
 LPCTSTR lpszDirectory,
);

Register a program for use with the SITE EXEC command.

Parameters
lpszCommandName

A pointer to a string which specifies the name of the site specific command. This is the name
that is passed to the SITE EXEC command and does not need to match the actual name of the
executable file on the local system. The maximum length of the command name is 32
characters. This parameter cannot be NULL.

lpszProgramFile

A pointer to a string that specifies the full path to the executable program. This parameter
cannot be NULL.

lpszParameters

A pointer to a string that specifies additional parameters for the program. If the program does
not require any command line parameters, this value may be NULL or point to an empty string.

lpszDirectory

A pointer to a string that specifies the current working directory for the program. If this
parameter is NULL or points to an empty string, the server will use the current working directory
of the client that issues the SITE EXEC command.

Return Value
If the method succeeds, the return value is non-zero. If the client ID does not specify a valid client
session, the method will return zero.

Remarks
The RegisterProgram method registers an executable program for use with the SITE EXEC
command. Because this can present a significant security risk to the server, clients are not given
permission to use this command by default. A client must be explicitly granted permission to use
SITE EXEC by including FTP_ACCESS_EXECUTE as one of the permissions when authenticating the
client session with the AuthenticateClient method or creating a virtual user using the
AddVirtualUser method.

To give the server complete control over what programs can be executed using SITE EXEC, the
program must be registered with the server and referenced by an alias specified by the
lpszCommandName parameter. The maximum length of a program name is 31 characters and it
must be at least 3 characters in length. The name must only consist of alphanumeric characters
and the first character of the program name cannot be numeric. The program name is not case-
sensitive, however convention is to use upper-case characters. If a program name is specified that

already has been registered, it will be updated with the new information provided by this method.

The lpszProgramFile string specifies file name of the program that will be executed. You should
not install any executable programs in the server root directory or its subdirectories. A client
should never have the ability to directly access the executable file itself. It is permitted to have
multiple command names that reference the same executable file. The only requirement is that the
command names be unique. The program name may contain environment variables surrounded
by % symbols. For example, %ProgramFiles% would be expanded to the C:\Program Files
folder.

It is important to note that the program specified by lpszProgramFile must be an executable file,
not a script or batch file. If the program name does not contain a directory path, then the
standard Windows pathing rules will be used when searching for an executable file that matches
the given name. It is recommended that you always provide a full path to the executable file.

The lpszParameters string is used to define optional command line parameters that will be
included with the command. This string can contain placeholders that are replaced by additional
parameters specified by the client when it sends the SITE EXEC command. First replacement
parameter is %1, the second is %2 and so on.

The executable program that is registered using this method must be a console application that
writes to standard output. Programs that write directly to a console, or programs written to use a
Windows user interface are not supported and will yield unpredictable results. In most cases, those
programs that do not use standard input and output will be forcibly terminated by the server. If
the program attempts to read from standard input, it will immediately encounter an end-of-file
condition. Programs executed by the SITE EXEC command have no input; it is similar to a program
that has its input redirected from the NUL: device. If the program must process a file on the server,
the local file name should be passed as a command line parameter.

The output from the program will be redirected back to the client control channel. The output
should be textual, with each line of text terminated by a carriage return and linefeed (CRLF).
Programs that write binary data to standard output, particular data with embedded nulls, will yield
unpredictable results and are not supported. To ensure that the program output conforms to the
protocol standard, any non-printable characters will be replaced with a space and each line of
output will be prefixed by a single space. The server application can obtain a copy of the output
from the last command by calling the GetProgramOutput method.

If the server is running on a system with User Account Control (UAC) enabled and does not have
elevated privileges, do not register a program that requires elevated privileges or has a manifest
that specifies the requestedExecutionLevel as requiring administrative privileges.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetProgramExitCode, GetProgramName, GetProgramOutput

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::RenameServerLogFile Method

BOOL RenameServerLogFile(
 LPCTSTR lpszFileName
);

Rename or delete the current log file being updated by the server.

Parameters
lpszFileName

A pointer to a string that specifies the file name the current log file should be renamed to. If this
parameter is NULL or an empty string, the current log file will be deleted.

Return Value
If the method succeeds, the return value is non-zero. If logging is not currently enabled for the
server, this method will return zero.

Remarks
The RenameServerLogFile method is used to rename or delete the current log file. Note that this
does not change the current log file name or disable logging by the server. It only changes the file
name of the current log file, or removes the log file if the lpszFileName parameter is NULL. This
can be useful if you want your server to perform log file rotation, archiving the current log file. By
renaming the current log file, the server will automatically create a new log file with original file
name.

This method must be used to rename or delete the current log file while logging is active because
the server holds an open handle on the file. The application should not use the GetLogFile
method to obtain the log file name and then use the MoveFileEx or DeleteFile Windows API
functions with that file.

To disable logging, use the SetLogFile method and specify the logging format as
FTP_LOGFILE_NONE.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetLogFile, SetLogFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::Restart Method

BOOL Restart();

Restart the server, terminating all active client sessions.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The Restart method will restart the specified server, terminating all active client sessions. If the
method is unable to restart the server for any reason, the server thread is terminated. The server
retains all of the configuration parameters from the previous instance, however the statistical
information (such as the number of clients, files transferred, etc.) will be reset.

If an application calls this method from within an event handler, the active client session (the client
for which the event handler was invoked) may not get a disconnect notification. It is
recommended that this method only be called by the same thread that created the server using
the Start method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
Start, Stop

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::Resume Method

BOOL Resume();

Resume accepting client connections.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The Resume method instructs the server to resume accepting new client connections after the
Suspend method has been called.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
Restart, Start, Stop, Suspend, Throttle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::SendResponse Method

BOOL SendResponse(
 UINT nClientId,
 UINT nResultCode,
 LPCTSTR lpszMessage
);

Send a result code and message to the client in response to a command.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

nResultCode

An unsigned integer value which specifies the result code.

lpszMessage

A pointer to a string which specifies a message to be sent to the client. If this parameter is NULL
or points to an empty string, a default message associated with the result code will be used.

Return Value
If the result code and message text was sent to the client, the return value is non-zero. If the client
ID does not specify a valid client session, or the result code is invalid, this method will return zero.

Remarks
The SendResponse method is used to respond to a command issued by the client. Command
responses are normally handled by the server as a normal part of processing a command and this
method is only used if the application has implemented custom commands or wishes to modify
the standard responses sent by the server. The message may be a maximum of 2048 characters
and may include embedded carriage-return and linefeed characters. If no message is specified,
then a default message will be sent based on the result code.

Result codes must be three digits (in the range of 100 through 999) and although this method will
support the use of non-standard result codes, it is recommended that the client application use
the standard codes defined in RFC 959 whenever possible. The use of non-standard result codes
may cause problems with FTP clients that expect specific result codes in response to a particular
command. For more information, refer to the GetCommandResult method.

This method should only be called once in response to a command sent by the client. If a result
code has already been sent in response to a command and this method is called, it will fail and
return a value of zero. This is necessary because sending multiple result codes in response to a
single command may cause unpredictable behavior by the client.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetCommandResult

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::SetAddress Method

BOOL SetAddress(
 LPCTSTR lpszAddress
);

Change the IP address that the server will use with passive data connections.

Parameters
lpszAddress

A pointer to a string that specifies the IP address that the server should use for passive mode
data transfers. This parameter cannot be NULL.

Return Value
If the method succeeds, the return value is non-zero. If either the server handle or the IP address
is invalid the method will return a value of zero.

Remarks
The SetAddress method changes the IP address that the server will use when a client transfers a
file using a passive mode data connection. In passive mode, the server will create a second passive
(listening) socket that will accept an incoming connection from the client. The server sends the IP
address and port number allocated for that socket to the client, and the client establishes the data
connection to the server using that address. The IP address that the server sends to the client is
normally the same as the IP address that the client used to establish the control connection,
however if the server is located behind a router that performs Network Address Translation (NAT),
the IP address reported to the client may not be usable.

This method enables your application to set the external IP address for the server to a specific
value, rather than the server attempting to automatically discover its own external address. If you
wish to set the external address for the server manually, call the Start method without the
FTP_SERVER_EXTERNAL option and then call this method to set the external IP address to the
desired value.

This method will not change the IP address the server is using to listen for client connections. The
only way to change the listening IP address is to stop and restart the server using the new address.
This method only changes the IP address that is reported to clients when a passive data
connection is used. Incorrect use of this method can prevent the client from establishing a data
connection to the server. The address must be in the same address family as the local address that
the server was started with. For example, if the server was started using an IPv4 address, the IP
address passed to this method cannot be an IPv6 address.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetAddress, GetName

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::SetCertificate Method

BOOL SetCertificate(
 DWORD dwProtocol,
 LPCTSTR lpszCertStore,
 LPCTSTR lpszCertName,
 LPCTSTR lpszPassword
);

BOOL SetCertificate(
 LPCTSTR lpszCertName,
 LPCTSTR lpszPassword
);

Set the name of the certificate to be used with secure connections.

Parameters
dwProtocol

An unsigned integer that specifies the security protocols to be used when establishing a secure
connection with the client. This parameter may be one or more of the following values:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default selection of security protocols will be
used when establishing a connection. The TLS 1.2,
TLS 1.1 and TLS 1.0 protocols will be negotiated
with the server, in that order of preference. This
option will always request the latest version of the
preferred security protocols and is the
recommended value.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Note
that SSL 2.0 has been deprecated and will never be
used unless the server does not support version 3.0.

SECURITY_PROTOCOL_TLS The TLS 1.0, 1.1 or 1.2 protocol should be used
when establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, SSL will be
excluded from the list of supported protocols. This
may be necessary for some servers that reject any
attempt to use the older SSL protocol and require
that only TLS be used.

lpszCertStore

A pointer to a string which specifies the name of certificate store. This may be the name of the
certificate store in registry, or it may specify the name of a file that contains the certificate and

its private key.

lpszCertName

A pointer to a string which specifies the common name for the certificate that will be used.
Typically this will be the fully qualified domain name for the server.

lpszPassword

An optional pointer to a string which specifies the certificate owner's password. A value of NULL
specifies that no password is required. This parameter is only required if the lpszCertStore
parameter specifies a certificate file in PKCS #12 format that is password protected.

Return Value
If the method succeeds, the return value is non-zero. If the client ID does not specify a valid client
session, the method will return zero.

Remarks
The SetCertificate method will create the security credentials required for the server to accept
secure connections and enable security options for the server. This method will not validate the
certificate information provided by the application. If the certificate does not exist, or does not
have a private key associated with it, the client will be unable to establish a secure connection.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetOptions, SetOptions

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::SetClientAccess Method

BOOL SetClientAccess(
 UINT nClientId,
 DWORD dwUserAccess
);

Change the access rights associated with the specified client session.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

dwUserAccess

An unsigned integer which specifies one or more user access rights. For a list of user access
rights that can be granted to the client, see User Access Constants.

Return Value
If the method succeeds, the return value is non-zero. If the client ID does not specify a valid client
session, the method will return zero. This method can only be used with authenticated clients. If
the client session has not been authenticated, the return value will be zero.

Remarks
The SetClientAccess method can change the access rights for an authenticated client session.
This method can only be used after the AuthenticateClient method has been used to grant the
initial set of access rights to the client. The EnableClientAccess method can be used to grant or
revoke a specific permission for the client session.

The dwUserAccess parameter has a value of FTP_ACCESS_DEFAULT, then default permissions will
be granted to the client session. A normal client cannot be changed to a restricted or anonymous
client using this method. If the FTP_ACCESS_RESTRICTED or FTP_ACCESS_ANONYMOUS access
flags are specified, this method will fail.

This method cannot be used to change the access rights for a restricted or anonymous user.
Those rights are granted when the client session is authenticated and will persist until the client
disconnects from the server. This restriction is designed to prevent the inadvertent granting of
rights to an untrusted client that could compromise the security of the server.

Example
DWORD dwUserAccess = 0;

// Allow the client to execute programs using SITE EXEC
if (pFtpServer->GetClientAccess(nClientId, dwUserAccess))
{
 if (! (dwUserAccess & FTP_ACCESS_ANONYMOUS))
 pFtpServer->SetClientAccess(nClientId, dwUserAccess |
FTP_ACCESS_EXECUTE);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

file:///C|/Projects/cstools11/pdf/ftpsrv/class/useraccess.html

See Also
AuthenticateClient, EnableClientAccess, GetClientAccess

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::SetClientFileType Method

BOOL SetClientFileType(
 UINT nClientId,
 UINT nFileType
);

Change the current file type used for transfers by the specified client.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

nFileType

Specifies the type of file that will be uploaded or downloaded. This parameter determines
whether subsequent file transfers require any data conversion and may be one of the following
values.

Value Description

FILE_TYPE_ASCII
(1)

The file is a text file using the ASCII character set. For those clients
which use a different end-of-line character sequence, the text file
has been converted to the local format which uses the carriage
return (CR) and linefeed (LF) characters.

FILE_TYPE_IMAGE
(3)

The file is a binary file and no data conversion of any type has been
performed on the file. This is the default file type for most data files
and executable programs. If the client specified this file type when
appending to a text file, the file will contain the end-of-line
sequences used by its native operating system.

Return Value
If the method succeeds, the return value is non-zero. If the client ID does not specify a valid client
session, the method will return zero.

Remarks
The SetClientFileType method will change the default file type that is used for subsequent
transfers by the client. If the file type is set to FILE_TYPE_ASCII then the server will automatically
convert any end-of-line character sequences to match the format used by the local system. For
example, if the client is connecting from a UNIX based system, the server will convert a single
linefeed character to a carriage return (CR) and linefeed (LF) sequence. If the file type is set to
FILE_TYPE_IMAGE, then no conversion is performed.

This method can be used to override the file type specified by filtering the TYPE command issued
by the client. For example, it could be used to force file transfers to use a specific type based on
the file extension, regardless of the type specified by the client. To determine the current file type
set by the client, use the GetClientFileType method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
GetClientFileType

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::SetClientIdentity Method

BOOL SetClientIdentity(
 UINT nClientId,
 LPCTSTR lpszIdentity
);

Change the identity of the specified client session.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpszIdentity

A pointer to a string that identifies the client. If this parameter is NULL or specifies an empty
string, the current identity for the client is cleared. The maximum length of the identity string is
64 characters, including the terminating null character.

Return Value
If the method succeeds, the return value is non-zero. If the client ID is invalid, the method will
return a value of zero.

Remarks
The SetClientIdentity method associates a string value with the client that can be used to identify
the session. The identity string does not have any standard format and is used for informational
purposes only. Typically it is used to identify the client application that was used to establish the
connection. Changing the client identity has no effect on the operation of the server. To obtain the
identity string currently associated with the client, use the GetClientIdentity method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetClientIdentity, GetIdentity, SetIdentity

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::SetClientIdleTime Method

UINT SetClientIdleTime(
 UINT nClientId,
 UINT nTimeout
);

Change the idle timeout period for the specified client session.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

nTimeout

An unsigned integer value that specifies the number of seconds that the client may remain idle.
If this value is zero, the default idle timeout period for the server will be used.

Return Value
If the method succeeds, the return value is the previous client idle timeout period in seconds. If the
client ID does not specify a valid client session, the method will return zero.

Remarks
The SetClientIdleTime method is will change the number of seconds that the client may remain
idle before being automatically disconnected by the server. The minimum timeout period for a
client is 60 seconds, the maximum is 7200 seconds (2 hours). The idle time of a client session is
based on the last time a command was issued to the server or when a data transfer completed.

If the value INFINITE is specified as the timeout period, the client activity timer will be refreshed,
extending the idle timeout period for the session. This is typically done inside an OnTimeout
event handler to prevent the client from being disconnected due to inactivity.

To obtain the current idle timeout period for a client, along with the amount of time the client has
been idle, use the GetClientIdleTime method.

This timeout period only affects authenticated clients. Unauthenticated clients use a different
internal timer that limits the amount of time they can remain connected to the server and that
value cannot be changed for individual client sessions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
GetClientIdleTime

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::SetCommandFile Method

BOOL SetCommandFile(
 UINT nClientId,
 LPCTSTR lpszFileName
);

Change the name of the local file or directory that is the target of the current command.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpszFileName

A pointer to a string that specifies the new file name. This parameter may be NULL to specify
that the original file or directory name should be used.

Return Value
If the method succeeds, the return value is non-zero. If the client ID does not specify a valid client
session, the method will return zero.

Remarks
The SetCommandFile method is used by the application to change the target file or directory
name for the current command from within the OnCommand event handler. This can be used to
effectively redirect the client to use a different file than the one that was actually requested. For
example, if the client issues the RETR command to download a file from the server, this method
can be used to redirect the command to use a different file name. To obtain the full path to the
file or directory that is the target of the current command, use the GetCommandFile method.

The lpszFileName parameter specifies the path to the new file or directory name. If the path is
absolute, then it will be used as-is . If the path is relative, it will be relative to the current working
directory for the client session. The full path to this file is not limited to the server root directory or
its subdirectory, it can specify a file anywhere on the local system. If this parameter is a NULL
pointer, or points to an empty string, then the server will revert to using the actual file or directory
name specified by the command. This enables the application to effectively undo a previous call to
this method to change the target file name.

Typically this method would be used to redirect a client to a file or directory that it may not
normally have access to. Exercise caution when using this method to provide access to data that is
stored outside of the server root directory. Incorrect use of this method could expose the server to
security risks or cause unpredictable behavior by client applications.

This method should only be called within the context of the OnCommand event handler, and only
for those commands that perform an action on a file or directory. If the current command does
not target a file or directory, this method will return zero and the last error code will be set to
ST_ERROR_INVALID_COMMAND. To obtain the name of the current command issued by the
client, use the GetCommandName method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

Unicode: Implemented as Unicode and ANSI versions.

See Also
GetCommandFile GetCommandLine, GetCommandName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::SetDirectory Method

BOOL SetDirectory(
 LPCTSTR lpszDirectory
);

Specify the local directory that will be used as the server root directory.

Parameters
lpszDirectory

A pointer to a string that specifies the root directory for the server. If this parameter is NULL or a
zero-length string, the server will use the current working directory as the root directory.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it will return zero.

Remarks
The SetDirectory method specifies the path to the local directory that should be used as the root
document directory for the server.

It is recommended that you always specify an absolute path for the server root directory. If the
path includes environment variables surrounded by percent (%) symbols, they will be automatically
expanded.

If you have configured the server to permit clients to upload files, you must ensure that your
application has permission to create files in the directory that you specify. A recommended
location for the server root directory would be a subdirectory of the %ALLUSERSPROFILE%
directory. Using the environment variable ensures that your server will work correctly on different
versions of Windows. If the root directory does not exist at the time that the server is started, it will
be created.

You cannot change the server root directory after the server has started. To change the root
directory, you must stop the server using the Stop method and then start another instance of the
server with a configuration that specifies the new directory.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetDirectory

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::SetIdentity Method

BOOL SetIdentity(
 LPCTSTR lpszIdentity
);

Change the identity of the specified server.

Parameters
lpszIdentity

A pointer to a string that identifies the server. If this parameter is NULL or specifies an empty
string, the current identity for the server is reset to a default value. The maximum length of the
identity string is 64 characters, including the terminating null character.

Return Value
If the method succeeds, the return value is non-zero, otherwise it will return a value of zero.

Remarks
The SetClientIdentity method changes a string value used by the server to identify itself to
clients. The identity string does not have any standard format and is used for informational
purposes only. Typically it consists of the application name and a version number. Changing the
server identity has no effect on the operation of the server. To obtain the identity string currently
associated with the server, use the GetIdentity method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetClientIdentity, SetClientIdentity, GetIdentity

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::SetLastError Method

VOID SetLastError(
 DWORD dwError
);

Set the last error code for the specified server session.

Parameters
dwError

An unsigned integer that specifies an error code.

Return Value
None.

Remarks
Error codes are unsigned 32-bit values which are private to each server session. Most methods will
set the last error code value when they fail; a few methods set it when they succeed. Function
failure is typically indicated by a return value such as FALSE, NULL, INVALID_SERVER or
FTP_ERROR.

If the dwError parameter is specified with a value of zero, this effectively clears the error code for
the last method that failed. Those methods which clear the last error code when they succeed are
noted on their reference page.

Applications can retrieve the value saved by this method by calling the GetLastError method to
determine the specific reason for failure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
GetCommandResult, GetLastError, SendResponse

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::SetLogFile Method

BOOL SetLogFile(
 UINT nLogFormat,
 UINT nLogLevel,
 LPCTSTR lpszFileName
);

Change the current log format, level of detail and file name.

Parameters
nLogFormat

An integer value that specifies the format used when creating or updating the server log file.
The following formats are supported:

Constant Description

FTP_LOGFILE_NONE
(0)

This value specifies that the server should not create or
update a log file.

FTP_LOGFILE_COMMON
(1)

This value specifies that the log file should use the common
log format that records a subset of information in a fixed
format. This log format usually only provides information
about file transfers.

FTP_LOGFILE_EXTENDED
(2)

This value specifies that the log file should use the standard
W3C extended log file format. This is an extensible format
that can provide additional information about the client
session.

nLogLevel

An integer value that specifies the level of detail that should generated in the log file. The
minimum value is 1 and the maximum value is 10. If this parameter is zero, it is the same as
specifying a log file format of FTP_LOGFILE_NONE and will disable logging by the server.

lpszFileName

A pointer to a string that specifies the name of the log file that should be created or appended
to. If the server was configured with logging enabled and this parameter is NULL or an empty
string, the current log file name will not be changed. If the log file does not exist, it will be
created. If it does exist, the contents of the log file will be appended to.

Return Value
If the method succeeds, the return value is non-zero. If the one of the parameters are invalid, the
method will return zero.

Remarks
The SetLogFile method can be used to change the current log file name, the format of the log file
or the level of detail recorded in the log file. In some situations it may be desirable to delete the
current log file contents when changing the format or ensure that a new log file is created. To do
this, combine the nLogFormat parameter with the constant FTP_LOGFILE_DELETE.

The higher the value of the nLogLevel parameter, the greater the level of detail that is recorded by
the server. A log level of 1 instructs the server to only record file transfers, while a level of 10
instructs the server to record all commands processed by the server. Because a higher level of

logging detail can negatively impact the performance of the server, it is recommended that you
do not exceed a level of 5 for most applications. A log level of 10 should only be used for
debugging purposes.

Example
UINT nLogFormat = FTP_LOGFILE_NONE;
UINT nLogLevel = 0;
UINT nNewLevel = 5;
BOOL bChanged = FALSE;

// Change the level of detail for the current log file if logging
// has been enabled and the current level is a lower value

if (pFtpServer->GetLogFile(&nLogFormat, &nLogLevel, NULL, 0))
{
 if (nLogFormat != FTP_LOGFILE_NONE && nLogLevel < nNewLevel)
 bChanged = pFtpServer->SetLogFile(nLogFormat, nNewLevel, NULL);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetLogFile, RenameServerLogFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::SetName Method

BOOL SetName(
 UINT nClientId,
 LPCTSTR lpszHostName
);

Change the host name assigned to the specified server or client session.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session. This value may be zero.

lpszHostName

A pointer to a string that specifies the new host name assigned to the server or client session. If
this value is NULL or points to an empty string, the current host name will be changed to use
the default host name.

Return Value
If the method succeeds, the return value is non-zero. If the client ID is invalid, or the buffer is not
large enough to store the complete hostname, the method will return a value of zero.

Remarks
This method will change the host name assigned to the specified client session. If the nClientId
parameter has a value of zero, the method will change default host name that was assigned to the
server as part of the server configuration. If the nClientId parameter specifies a valid client session
and the lpszHostName parameter is NULL, the host name associated with the client session will be
changed to the current host name assigned to the server.

When a client connects to the server, it can specify the host name that it used to establish the
connection by sending the HOST command. This is typically used with virtual hosting, where one
server may accept client connections for multiple domains. The GetName method will return the
host name specified by the client, and SetName can be used by the application to either explicitly
assign a different host name to the client session, or override the host name provided by the
client.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetAddress, GetName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::SetOptions Method

BOOL SetOptions(
 DWORD dwOptions
);

Sets the default options for this instance of the server.

Parameters
dwOptions

An unsigned integer which specifies one or more options. For a list of available options, see
Server Option Constants.

Return Value
If the method is successful, it will return a non-zero value, otherwise it will return a value of zero.

Remarks
The SetOptions method changes the default options for the current instance of the server. This
method cannot be used to change the options for an active instance of the server. If the server is
active, it must be stopped before calling this method. To get the current options, use the
GetOptions method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
GetOptions

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/ftpsrv/class/optionconst.html

 CFtpServer::SetPriority Method

INT SetPriority(
 INT nPriority
);

Change the priority assigned to the specified server.

Parameters
nPriority

An integer value which specifies the new priority for the server. It may be one of the following
values:

Constant Description

FTP_PRIORITY_BACKGROUND
(0)

This priority significantly reduces the memory,
processor and network resource utilization for the
server. It is typically used with lightweight services
running in the background that are designed for few
client connections. The server thread will be assigned a
lower scheduling priority and will be frequently forced
to yield execution to other threads.

FTP_PRIORITY_LOW
(1)

This priority lowers the overall resource utilization for
the server and meters the processor utilization for the
server thread. The server thread will be assigned a
lower scheduling priority and will occasionally be
forced to yield execution to other threads.

FTP_PRIORITY_NORMAL
(2)

The default priority which balances resource and
processor utilization. This is the priority that is initially
assigned to the server when it is started, and it is
recommended that most applications use this priority.

FTP_PRIORITY_HIGH
(3)

This priority increases the overall resource utilization
for the server and the thread will be given higher
scheduling priority. It is not recommended that this
priority be used on a system with a single processor.

FTP_PRIORITY_CRITICAL
(4)

This priority can significantly increase processor,
memory and network utilization. The server thread will
be given higher scheduling priority and will be more
responsive to client connection requests. It is not
recommended that this priority be used on a system
with a single processor.

Return Value
If the method succeeds, the return value is the previous priority assigned to the server. If the
method fails, the return value is FTP_PRIORITY_INVALID. To get extended error information, call
the GetLastError method.

Remarks
The SetPriority method can be used to change the current priority assigned to the specified

server. Client connections that are accepted after this method is called will inherit the new priority
as their default priority. Previously existing client connections will not be affected by this method.

Higher priority values increase the thread priority and processor utilization for each client session.
You should only change the server priority if you understand the impact it will have on the system
and have thoroughly tested your application. Configuring the server to run with a higher priority
can have a negative effect on the performance of other programs running on the system.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cstools11.h.
Import Library: csftsv11.lib

See Also
GetPriority, Start

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::SetStackSize Method

BOOL SetStackSize(
 DWORD dwStackSize
);

Change the initial size of the stack allocated for threads created by the server.

Parameters
dwStackSize

The amount of memory that will be committed to the stack for each thread created by the
server. If this value is zero, a default stack size will be used.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The SetStackSize method changes the initial amount of memory that is committed to the stack
for each thread created by the server. By default, the stack size for each thread is set to 256K for
32-bit processes and 512K for 64-bit processes. Increasing or decreasing the stack size will only
affect new threads that are created by the server, it will not affect those threads that have already
been created to manage active client sessions. It is recommended that most applications use the
default stack size.

You should not change this value unless you understand the impact that it will have on your
system and have thoroughly tested your application. Increasing the initial commit size of the stack
will remove pages from the total system commit limit, and every page of memory that is reserved
for stack cannot be used for any other purpose.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cstools11.h
Import Library: csftsv11.lib

See Also
GetStackSize, Start

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::SetUuid Method

BOOL SetUuid(
 LPCTSTR lpszHostUuid
);

Assign a UUID to the current instance of the server.

Parameters
lpszHostUuid

A pointer to a string that specifies the server UUID, terminated with a null character. This value
can be used when storing information about the server, and should be generated using a utility
such as uuidgen which is included with Visual Studio. This parameter may be NULL or point to
an empty string, in which case a temporary UUID will be randomly generated for the server.

Return Value
If the method succeeds, the return value is non-zero, otherwise the method return a value of zero.

Remarks
The SetUuid method assigns a Universally Unique Identifier (UUID) to the server. The UUID may
either be generated by the application and assigned as part of the server configuration, or an
ephemeral UUID may be automatically generated when the server is started. This method cannot
be used to change the UUID after the server has been started. To determine the UUID assigned to
an active server instance, use the GetUuid method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetUuid

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::Start Method

BOOL Start(
 LPCTSTR lpszLocalHost,
 UINT nLocalPort,
 DWORD dwOptions
);

BOOL Start(
 LPCTSTR lpszLocalHost,
 UINT nLocalPort
);

BOOL Start(
 UINT nLocalPort
);

The Start method begins listening for client connections on the specified local address and port
number. The server is started in its own thread and manages the client sessions independently of
the calling thread. All interaction with the server and its client sessions takes place inside the class
event handlers.

Parameters
lpszLocalHost

A pointer to a string which specifies the local hostname or IP address address that the server
should be bound to. If this parameter is omitted or specifies a NULL pointer an appropriate
address will automatically be used. If a specific address is used, the server will only accept client
connections on the network interface that is bound to that address.

nLocalPort

The port number the server should use to listen for client connections. If a value of zero is
specified, the server will use the standard port number 21 to listen for connections, or port 990
if the server is configured to use implicit SSL. The port number used by the application must be
unique and multiple instances of a server cannot use the same port number. It is recommended
that a port number greater than 5000 be used for private, application-specific implementations.

dwOptions

An unsigned integer value that specifies one or more options to be used when creating an
instance of the server. For a list of the available options, see Server Option Constants. If this
parameter is omitted, the default options for the server instance will be used.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
In most cases, the lpszLocalHost parameter should be omitted or a NULL pointer. On a
multihomed system, this will enable the server to accept connections on any appropriately
configured network adapter. Specifying a hostname or IP address will limit client connections to
that particular address. Note that the hostname or address must be one that is assigned to the
local system, otherwise an error will occur.

If an IPv6 address is specified as the local address, the system must have an IPv6 stack installed
and configured, otherwise the method will fail.

file:///C|/Projects/cstools11/pdf/ftpsrv/class/optionconst.html

To listen for connections on any suitable IPv4 interface, specify the special dotted-quad address
"0.0.0.0". You can accept connections from clients using either IPv4 or IPv6 on the same socket by
specifying the special IPv6 address "::0", however this is only supported on Windows 7 and
Windows Server 2008 R2 or later platforms. If no local address is specified, then the server will only
listen for connections from clients using IPv4. This behavior is by design for backwards
compatibility with systems that do not have an IPv6 TCP/IP stack installed.

The handle returned by this method references the listening socket that was created when the
server was started. The service is managed in another thread, and all interaction with the server
and active client connections are performed inside the event handlers. To disconnect all active
connections, close the listening socket and terminate the server thread, call the Stop method.

The host UUID that is defined as part of the server configuration should be generated using the
uuidgen utility that is included with the Windows SDK. You should not use the UUID that is
provided in the example code, it is for demonstration purposes only. If no host UUID is specified in
the server configuration, an ephemeral UUID will be generated automatically when the server is
started.

Example
CFtpServer *pFtpServer = new CFtpServer();

// Initialize the server configuration
pFtpServer->SetName(_T("server.company.com"));
pFtpServer->SetUuid(_T("10000000-1000-1000-1000-100000000000"));
pFtpServer->SetDirectory(_T("%ProgramData%\\MyProgram\\Server"));
pFtpServer->SetLogFile(FTP_LOGFILE_EXTENDED, 5,
_T("%ProgramData%\\MyProgram\\Server.log"));
pFtpServer->SetOptions(FTP_SERVER_LOCALUSER | FTP_SERVER_UNIXMODE);

// Start the server
pFtpServer->Start(FTP_PORT_DEFAULT);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
EnumClients, Restart, Stop

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::Stop Method

BOOL Stop();

Stop the server, terminating all active client sessions and releasing the resources that were
allocated for the server.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it will return a value of
zero.

Remarks
The Stop method instructs the server to stop accepting client connections, disconnects all active
client connections and terminates the thread that is managing the server session. The handle is no
longer valid after the server has been stopped and should no longer be used. Note that it is
possible that the actual handle value may be re-used at a later point when a new server is started.
An application should always consider the server handle to be opaque and never depend on it
being a specific value.

If an application calls this method from within an event handler, the active client session (the client
for which the event handler was invoked) may not get a disconnect notification. It is
recommended that this method only be called by the same thread that created the server using
the Start method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
Restart, Start

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::Suspend Method

BOOL Suspend();

Suspend the server and reject new client connections.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The Suspend method instructs the server to suspend accepting new client connections. Any
incoming client connections will be rejected with an error message indicating that the server is
currently unavailable. To resume accepting client connections, call the Resume method.
Suspending the server will have no effect on clients that have already established a connection
with the server.

It is recommended that you only suspend a server if absolutely necessary, and only for brief
periods of time. If you want to limit the number of active client connections or control the
connection rate for clients, use the Throttle method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
Restart, Resume, Start, Stop, Throttle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::Throttle Method

BOOL Throttle(
 UINT nMaxClients,
 UINT nMaxClientsPerAddress,
 UINT nMaxGuests,
 DWORD dwConnectionRate
);

The Throttle method limits the number of active client connections, connections per address and
connection rate.

Parameters
nMaxClients

A value which specifies the maximum number of clients that may connect to the server. A value
of zero specifies that there is no fixed limit to the number of client connections. A value of -1
specifies that the maximum number of clients should not be changed.

nMaxClientsPerAddress

A value which specifies the maximum number of clients that may connect to the server from the
same IP address. A value of zero specifies that there is no fixed limit to the number of client
connections per address. By default, there is a limit of four client connections per address. A
value of -1 specifies that the maximum number of clients should not be changed.

nMaxGuests

An integer value which specifies the maximum number of guest users that may login to the
server. A value of zero disables guest logins and requires that all clients authenticate with a valid
username and password. A value of -1 specifies that the maximum number of guest users
should not be changed.

dwConnectionRate

A value which specifies a restriction on the rate of client connections, limiting the number of
connections that will be accepted within that period of time. A value of zero specifies that there
is no restriction on the rate of client connections. The higher this value, the fewer the number of
connections that will be accepted within a specific period of time. By default, there is no limit on
the client connection rate. A value of -1 specifies that the connection rate should not be
changed.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The Throttle method is used to limit the number of connections and the connection rate to
minimize the potential impact of a large number of client connections over a short period of time.
This can be used to protect the server from a client application that is malfunctioning or a
deliberate denial-of-service attack in which the attacker attempts to flood the server with
connection attempts.

If the maximum number of client connections or maximum number of connections per address is
exceeded, the server will reject subsequent connection attempts until the number of active client
sessions drops below the specified threshold. Note that adjusting these values lower than the
current connection limits will not affect clients that have already connected to the server. For

example, if the Start method is called with the maximum number of clients set to 100, and then
Throttle is called lowering that value to 75, no existing client connections will be affected by the
change. However, the server will not accept any new connections until the number of active clients
drops below 75.

Increasing the connection rate value will force the server to slow down the rate at which it will
accept incoming client connection requests. For example, setting this parameter to a value of 1000
would limit the server to accepting one client connection every second, while a value of 250 would
allow the server to accept four client connections per second. Note that significantly increasing the
amount of time the server must wait to accept client connections can exceed the connection
backlog queue, resulting in client connections being rejected.

It is recommended that you always specify conservative connection limits for your server
application based on expected usage. Allowing an unlimited number of client connections can
potentially expose the system to denial-of-service attacks and should never be done for servers
that are accessible over the Internet.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
Restart, Resume, Start, Suspend

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer Event Handlers

Method Description

OnAuthenticate The client requested authentication

OnCommand The client issued a command to the server

OnConnect The client established a connection to the server

OnDisconnect The client has disconnected from the server

OnDownload The client has downloaded a file from the server

OnError The server encountered an error while handling a client request

OnExecute The client has executed an external program on the server

OnLogin The client has successfully authenticated the session

OnLogout The client has logged out or reinitialized the session

OnResult The command issued by the client has been processed by the server

OnTimeout The client has exceeded the maximum allowed idle time

OnUpload The client has uploaded a file to the server

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::OnAuthenticate Method

virtual void OnAuthenticate(
 UINT nClientId,
 LPCTSTR lpszHostName,
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword
);

A virtual method that is invoked after the client has requested authentication.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpszHostName

A pointer to a string that specifies the host name that the client used to establish the
connection.

lpszUserName

A pointer to a string that specifies the user name provided by the client.

lpszPassword

A pointer to a string that specifies the cleartext user password provided by the client.

Return Value
None.

Remarks
The OnAuthenticate event handler is invoked when the client has requested authentication by
sending the USER and PASS command to the server. To implement an event handler, the
application should create a class derived from the CFtpServer class, and then override this
method.

The event handler can call the AuthenticateClient method to authenticate the client session. To
reject an authentication attempt because of an invalid user name or password, the handler should
call the SendResponse method and specify a result code of 430.

If the client session is not authenticated, the server will perform its default authentication process.
If the FTP_SERVER_ANONYMOUS configuration option has been specified, and the client has
logged in as an anonymous user, the session will be authenticated as a restricted user. If the
FTP_SERVER_LOCALUSER configuration option has been specified, the user name and password is
checked against the local user database. If the credentials are valid, the session will be
authenticated as a regular user. If neither the FTP_SERVER_ANONYMOUS or
FTP_SERVER_LOCALUSER options were specified, the default action is to reject all authentication
attempts.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SendResponse, OnLogin, OnLogout

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::OnCommand Method

virtual void OnCommand(
 UINT nClientId,
 LPCTSTR lpszCommand
);

A virtual method that is invoked after the client has sent a command to the server.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpszCommand

A pointer to a string that specifies the command issued by the client. The command name will
always be capitalized. For a complete list of commands supported by the server, see Server
Commands.

Return Value
None.

Remarks
The OnCommand event handler is invoked after the client has sent a command to the server, but
before the command has been processed. To implement an event handler, the application should
create a class derived from the CFtpServer class, and then override this method.

This event handler is invoked for all commands issued by the client, including invalid or disabled
commands. If the event handler processes the command, it must call the SendResponse method
to send a success or error response back to the client. If this is not done, the server will perform
the default processing for the command.

Although this event handler will provide the command name, the full command line can be
obtained by using the GetCommandLine method. Individual command parameters can be
obtained by using the GetCommandParam and GetCommandParamCount methods.

It is not necessary to use this event handler to disable a command. The EnableCommand method
can be used to enable or disable specific commands, and the IsCommandEnabled method can
be used to determine if a command is enabled.

If this event handler is used to implement a custom command, it is recommended that you use the
IsClientAuthenticated method to determine whether or not the client session has been
authenticated. Unless there is a specific need for the custom command to be used before a client
has logged in, the application should not take any action and send a 530 result code back to the
client indicating authentication is required.

Example
VOID CMyFtpServer::OnCommand(UINT nClientId, LPCTSTR lpszCommand)
{
 // Implement a custom command named TIME that will return the local time
 if (lstrcmp(lpszCommand, _T("TIME")) == 0)
 {
 // The command should not have any parameters
 if (GetCommandParamCount(nClientId) > 0)
 {
 SendResponse(nClientId, FTP_REPLY_BADARG);

file:///C|/Projects/cstools11/pdf/ftpsrv/class/commands.html
file:///C|/Projects/cstools11/pdf/ftpsrv/class/commands.html

 return;
 }

 if (IsClientAuthenticated(nClientId))
 {
 CString strTime = CTime::GetCurrentTime().Format(_T("%Y-%m-%d
%H:%M:%S"));
 SendResponse(nClientId, FTP_REPLY_CMDOK, strTime);
 }
 else
 {
 // The client has not logged in, return an error
 SendResponse(nClientId, FTP_REPLY_NOLOGIN);
 }
 }
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DisconnectClient, EnableCommand, IsCommandEnabled, OnDisconnect, SendResponse

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::OnConnect Method

virtual void OnConnect(
 UINT nClientId,
 LPCTSTR lpszAddress
);

A virtual method that is invoked after the client has connected to the server.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpszAddress

A pointer to a string that specifies the IP address of the client. This address may either be in IPv4
or IPv6 format, depending on how the server was configured and the address the client used to
establish the connection.

Return Value
None.

Remarks
The OnConnect event handler is invoked after the client has connected to the server. To
implement an event handler, the application should create a class derived from the CFtpServer
class, and then override this method.

This event only occurs after the server has checked the active client limits and the TLS handshake
has been performed, if security has been enabled. If the server has been suspended, or the limit
on the maximum number of client sessions has been exceeded, the server will terminate the client
session prior to this event handler being invoked.

If this event handler is not implemented, the server will perform the default action of accepting the
connection and sending a standard greeting to the client. If you want your application to send a
custom greeting to the client when it connects, call the SendResponse method, specifying a result
code of 220 and a message of your choice.

To reject a connection, call the SendResponse method to send an error response to the client.
Typically the result code value would be 421 to indicate that the server will not accept the
connection. Next, call the DisconnectClient method to terminate the client session.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DisconnectClient, OnDisconnect, SendResponse

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::OnDisconnect Method

virtual void OnDisconnect(
 UINT nClientId
);

A virtual method that is invoked immediately before the client is disconnected from the server.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

Return Value
None.

Remarks
The OnDisconnect event handler is invoked immediately before the client is disconnected from
the server. To implement an event handler, the application should create a class derived from the
CFtpServer class, and then override this method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
OnConnect, OnLogout

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::OnDownload Method

virtual void OnDownload(
 UINT nClientId,
 LPCTSTR lpszFileName,
 DWORD dwTimeElapsed,
 ULARGE_INTEGER uiBytesCopied
);

A virtual method that is invoked after the client has successfully downloaded a file from the server.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpszFileName

A pointer to a string that specifies the local path name of the file that was downloaded from the
server. The path will always include the disk volume or share name, and the path delimiter will
always be the backslash character.

dwTimeElased

An unsigned integer value that specifies the number of milliseconds that it took to complete the
file transfer.

uiBytesCopied

An unsigned 64-bit integer value that specifies the number of bytes of data that was
downloaded by the client.

Return Value
None.

Remarks
The OnDownload event handler is invoked after the client has successfully downloaded a file
from the server using the RETR command. To implement an event handler, the application should
create a class derived from the CFtpServer class, and then override this method.

The ULARGE_INTEGER structure is actually a union that is used to represent a 64-bit value. If the
compiler has built-in support for 64-bit integers, use the QuadPart member to access the 64-bit
integer value. Otherwise, use the LowPart and HighPart members to access the value.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
OnCommand, OnUpload

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::OnError Method

virtual void OnConnect(
 UINT nClientId,
 UINT nEventId,
 DWORD dwError
);

A virtual method that is invoked when the server encounters an error while handling a client
request.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

nEventId

An unsigned integer which identifies the client event that was being processed when the error
occurred. For a list of event identifiers, see Server Event Constants.

dwError

An unsigned integer value that specifies the error code.

Return Value
None.

Remarks
The OnError event handler is invoked whenever an error occurs while an event is being processed
by the server. To implement an event handler, the application should create a class derived from
the CFtpServer class, and then override this method.

It is important to note that this event is not raised for every error that occurs. The event only
occurs when another event is being processed and an unhandled error occurs that must be
reported back to the server application. The following are some common situations in which this
event handler may be invoked:

A network error occurs when the client connection is being accepted by the server. This
could be the result of an aborted connection or some other lower-level failure reported by
the networking subsystem on the server.

The server is configured to use implicit SSL but cannot obtain the security credentials
required to create the security context for the session. Usually this indicates that the server
certificate cannot be found, or the certificate does not have a private key associated with it.
It could also indicate a general problem with the cryptographic subsystem where the client
and server could not successfully negotiate a cipher suite.

A network error occurs when attempting to process a command issued by the client. This
usually indicates that the connection to the client has been aborted, either because the
client is not acknowledging the data that has been exchanged with the server, or the client
has terminated abnormally. This event will not occur if the client terminates the connection
normally.

In most situations where this event handler is invoked, the error is not recoverable and the only
action that can be taken is to terminate the client session.

file:///C|/Projects/cstools11/pdf/ftpsrv/class/eventconst.html

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
OnConnect, OnCommand

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::OnExecute Method

virtual void OnExecute(
 UINT nClientId,
 LPCTSTR lpszProgram,
 DWORD dwExitCode
);

A virtual method that is invoked after the client has successfully executed an external program on
the server.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpszProgram

A pointer to a string that specifies the name of the program that was executed. This is the
registered program name, and not a full path to the executable and its command arguments.

dwExitCode

An unsigned integer that specifies the exit code that was returned by the program.

Return Value
None.

Remarks
The OnExecute event handler is invoked after the client has successfully executed an external
program using the SITE EXEC command. To implement an event handler, the application should
create a class derived from the CFtpServer class, and then override this method.

This event will only be generated if the client has the FTP_ACCESS_EXECUTE permission. Clients
are not granted this permission by default, and must be explicitly permitted to execute external
programs. If the client does have this permission, it can only execute specific programs that have
been registered by the server application using the RegisterProgram method.

The GetProgramOutput method can be used to obtain the unfiltered output from the external
command, while the GetProgramText method will return filtered output from the program that
contains only printable text characters.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetProgramOutput, GetProgramText, RegisterProgram

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::OnLogin Method

virtual void OnLogin(
 UINT nClientId,
 LPCTSTR lpszUserName,
 LPCTSTR lpszDirectory,
 LPCTSTR dwUserAccess
);

A virtual method that is invoked after the client has successfully authenticated the session.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpszUserName

A pointer to a string that specifies the user name.

lpszDirectory

A pointer to a string that specifies the full path to the home directory for the client. The path will
always include the disk volume or share name, and the path delimiter will always be the
backslash character.

dwUserAccess

An unsigned integer which specifies one or more access rights for the client session. For a list of
user access rights that can be granted to the client, see User Access Constants.

Return Value
None.

Remarks
The OnLogin event handler is invoked after the client has successfully authenticated itself using
the USER and PASS commands. To implement an event handler, the application should create a
class derived from the CFtpServer class, and then override this method.

To convert the home directory path to a virtual path name that is relative to the server root
directory, use the GetClientVirtualPath method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AddVirtualUser, AuthenticateClient, OnAuthenticate, OnLogout

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/ftpsrv/library/useraccess.html

 CFtpServer::OnLogout Method

virtual void OnLogout(
 UINT nClientId,
 LPCTSTR lpszUserName
);

A virtual method that is invoked after the client has logged out or reinitialized the session.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpszUserName

A pointer to a string that specifies the user name.

Return Value
None.

Remarks
The OnLogout event handler is invoked after the client has successfully logged out using the
QUIT command or reinitialized the session using the REIN command. To implement an event
handler, the application should create a class derived from the CFtpServer class, and then
override this method.

The application should not depend on this event handler always being invoked when a client is
disconnected from the server. This event only occurs when the client sends the QUIT or REIN
commands and will not be invoked if the client connection is aborted or disconnected for some
other reason, such as exceeding the idle timeout period. If the application needs to update data
structures or perform some cleanup when a client disconnects, that should be done in the
OnDisconnect event handler.

The application should not call the DisconnectClient method in the handler for this event
because the client is either in the process of disconnecting or expects that it can submit new
credentials to the server.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
OnConnect, OnDisconnect, OnLogin

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::OnResult Method

virtual void OnResult(
 UINT nClientId,
 LPCTSTR lpszCommand,
 UINT nResultCode
);

A virtual method that is invoked after the server has processed a command issued by the client.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpszCommand

A pointer to a string that specifies the command that was issued by the client. This value
contains only the command and not the additional parameters that may have been specified.

nResultCode

An integer value that specifies the result code that was sent to the client.

Return Value
None.

Remarks
The OnResult event handler is invoked after the server has processed a command issued by the
client. To implement an event handler, the application should create a class derived from the
CFtpServer class, and then override this method.

To obtain the complete command line, use the GetCommandLine method, or use the
GetCommandParam method to get the value of specific command parameters. If the application
requires the text message that was sent to the client along with the result code, use the
GetCommandResult method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetCommandLine, GetCommandParam, GetCommandResult, OnCommand

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::OnTimeout Method

virtual void OnTimeout(
 UINT nClientId,
 UINT nIdleTime,
 UINT nElapsed
);

A virtual method that is invoked after the client has exceeded the maximum allowed idle time.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

nIdleTime

An unsigned integer value that specifies the current idle timeout period for the client in seconds.

nElapsed

An unsigned integer value that specifies the number of seconds that the client has been idle.

Return Value
None.

Remarks
The OnTimeout event handler is invoked after the client has has exceeded the maximum allowed
idle time. To implement an event handler, the application should create a class derived from the
CFtpServer class, and then override this method.

This event handler will be invoked prior to the client being disconnected from the server. This
event will never occur during a file transfer or directory listing. The SetClientIdleTime method can
be used to change or refresh the idle timeout period for the session.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
GetClientIdleTime, OnCommand, OnResult, SetClientIdleTime

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer::OnUpload Method

virtual void OnUpload(
 UINT nClientId,
 LPCTSTR lpszFileName,
 DWORD dwTimeElapsed,
 ULARGE_INTEGER uiBytesCopied
);

A virtual method that is invoked after the client has successfully uploaded a file to the server.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpszFileName

A pointer to a string that specifies the local path name of the file that was uploaded to the
server. The path will always include the disk volume or share name, and the path delimiter will
always be the backslash character.

dwTimeElased

An unsigned integer value that specifies the number of milliseconds that it took to complete the
file transfer.

uiBytesCopied

An unsigned 64-bit integer value that specifies the number of bytes of data that was uploaded
by the client.

Return Value
None.

Remarks
The OnUpload event handler is invoked after the client has successfully uploaded a file to the
server using the APPE, STOR or STOU command. To implement an event handler, the application
should create a class derived from the CFtpServer class, and then override this method.

The ULARGE_INTEGER structure is actually a union that is used to represent a 64-bit value. If the
compiler has built-in support for 64-bit integers, use the QuadPart member to access the 64-bit
integer value. Otherwise, use the LowPart and HighPart members to access the value.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
OnCommand, OnDownload

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CFtpServer Data Structures

FTPCLIENTCREDENTIALS
FTPSERVERTRANSFER

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FTPCLIENTCREDENTIALS Structure

The FTPCLIENTCREDENTIALS structure defines the credentials used to authenticate a specific
user.

typedef struct _FTPCLIENTCREDENTIALS
{
 DWORD dwSize;
 DWORD dwFlags;
 TCHAR szHostName[FTP_MAXHOSTNAME];
 TCHAR szUserName[FTP_MAXUSERNAME];
 TCHAR szPassword[FTP_MAXPASSWORD];
} FTPCLIENTCREDENTIALS, *LPFTPCLIENTCREDENTIALS;

Members
dwSize

An unsigned integer value that specifies the size of the structure.

dwFlags

An unsigned integer value reserved for future use. This member will always be initialized to a
value of zero.

szHostName

A pointer to a string that specifies the server host name.

szUserName

A pointer to a string that specifies the user name.

szPassword

A pointer to a string that specifies the user password.

Remarks
When an instance of this structure is passed to the GetClientCredentials method, this member
must be initialized to the size of the structure and all other members must be initialized with a
value of zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetClientCredentials

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FTPSERVERTRANSFER Structure

The FTPSERVERTRANSFER structure provides information about the last file transfer performed
by a client.

typedef struct _FTPSERVERTRANSFER
{
 DWORD dwSize;
 DWORD dwReserved;
 DWORD dwFileAccess;
 DWORD dwTimeElapsed;
 ULARGE_INTEGER uiBytesCopied;
 TCHAR szFileName[MAX_PATH];
} FTPSERVERTRANSFER, *LPFTPSERVERTRANSFER;

Members
dwSize

An unsigned integer value that specifies the size of the structure.

dwReserved

An unsigned integer value that is reserved for future use. This value will always be zero.

dwFileAccess

An unsigned integer value that specifies the how the local file was accessed. It can be one of the
following values:

Constant Description

FTP_FILE_READ
(0)

The file was opened for reading. This mode indicates that the client
issued the RETR command to download the contents of a file from
the server to the client system. The szFileName member specifies
the name of the local file on the server that was downloaded by
the client.

FTP_FILE_WRITE
(1)

The file was opened for writing. This mode indicates that the client
issued the STOR or STOU command to upload the contents of a
file from the client system to server. The szFileName member
specifies the name of the local file on the server that was created
by the client. If a file already existed with the name name, it was
replaced.

FTP_FILE_APPEND
(2)

The file was opened for writing. This mode indicates the client
issued the APPE command to upload the contents of a file from
the client system and append the data to a file on the server. If the
file did not exist, then it was created. The szFileName member
specifies the name of the local file that was appended to or
created by the client.

dwTimeElapsed

The amount of time that it took for the file transfer to complete in milliseconds. This value is
limited to the resolution of the system timer, which is typically in the range of 10 to 16
milliseconds. This value may be zero if the transfer occurred over a local network or on the
same host using a loopback address.

uiBytesCopied

A 64-bit integer value that specifies the total number of bytes copied during the file transfer.
This value is represented by a ULARGE_INTEGER union which provides support for those
programming languages that do not have intrinsic support for 64-bit integers. For more
information, refer to the Windows SDK documentation. The application should not make the
assumption that this is the actual size of the file. If the client specified a restart offset using the
REST command, this value would only represent the number of bytes transferred from that byte
offset, not the total file size.

szFileName

A pointer to a string value that will contain the full path to the local file that was transferred. The
dwFileAccess member determines whether the file name represents a file that was downloaded
by the client, or uploaded from the client and stored on the server.

Remarks
When an instance of this structure is passed to the GetTransferInfo method, the dwSize member
must be initialized to the size of the structure, otherwise the method will fail with an error
indicating that the parameter is invalid. All other members should be initialized to a value of zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetTransferInfo

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Hypertext Transfer Protocol Class Library

Transfer files between the local system and a web server, execute scripts and perform remote file
management functions.

Reference

Class Methods
Data Structures
Error Codes

Library Information

Class Name CHttpClient

File Name CSHTPV11.DLL

Version 11.0.2180.1635

LibID 1EE620E7-5A9E-4DC3-8403-9153F19C51D9

Import Library CSHTPV11.LIB

Dependencies None

Standards RFC 1945, RFC 2616, RFC 7230, RFC 7540

Overview
The Hypertext Transfer Protocol (HTTP) is a lightweight, stateless application protocol that is used
to access resources on web servers, as well as send data to those servers for processing. The
library provides direct, low-level access to the server and the commands that are used to retrieve
resources (i.e.: documents, images, etc.). The library also provides a simple interface for
downloading resources to the local host, similar to how the FTP library can be used to download
files.

In a typical session, the library is used to establish a connection, send a request (to download a
resource, post data for processing, etc.), read the data returned by the server and then disconnect.
It is the responsibility of the client to process the data returned by the server, depending on the
type of resource that was requested.

This class supports secure, encrypted file transfers using TLS 1.2 and later versions of the protocol.

Requirements
The SocketTools Library Edition libraries are compatible with any programming language which
supports calling functions exported from a standard dynamic link library (DLL). If you are using
Visual C++ 6.0 it is required that you have Service Pack 6 (SP6) installed. You should install all
updates for your development tools and have the current Windows SDK installed. The minimum
recommended version of Visual Studio is Visual Studio 2010.

This library is supported on Windows 7, Windows Server 2008 R2 and later versions of the desktop
and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1) installed as
a minimum requirement. It is recommended that you install the current service pack and all critical
updates available for your version of the operating system.

This product includes both 32-bit and 64-bit libraries. Native 64-bit CPU support requires the 64-
bit version of Windows 7 or later versions of the Windows operating system.

Distribution
When you distribute your application that uses this library, it is recommended that you install the
file in the same folder as your application executable. If you install the library into a shared location
on the system, it is important that you distribute the correct version for the target platform and it
should be registered as a shared DLL. This is a standard Windows dynamic link library, not an
ActiveX component, and does not require COM registration.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Hypertext Transfer Protocol Class Methods

Class Description

CHttpClient Constructor which initializes the current instance of the class

~CHttpClient Destructor which releases resources allocated by the class

Method Description

AddField Append the form field and its value to the current form

AddFile Append the contents of the file to the current form

AddHeaders Add one or more request headers for the current client session

AttachHandle Attach the specified client handle to this instance of the class

AttachThread Attach the specified client handle to another thread

Authenticate Specify authentication information for restricted resources

Cancel Cancel the current blocking operation

ClearForm Remove all defined fields from the current form

CloseFile Close the file opened on the server

Command Send a command to the server

Connect Connect to the specified server

ConnectUrl Establish a client connection using the specified URL

CreateFile Create or replace a file on the server

CreateForm Create a new form to submit to the server

CreateSecurityCredentials Create a new security credentials structure

DeleteFile Remove a file from the server

DeleteField Delete the form field and its value from the current form

DeleteHeaders Delete all of the response or request headers for the current session

DeleteSecurityCredentials Delete a previously created security credentials structure

DestroyForm Destroy the current form and free the memory allocated for it

DetachHandle Detach the handle for the current instance of this class

DisableEvents Disable asynchronous event notification

DisableTrace Disable logging of network function calls to the trace log

Disconnect Disconnect from the current server

DownloadFile Download a file from the server to the local system

EnableCompression Enable or disable support for data compression

EnableEvents Enable asynchronous event notification

EnableTrace Enable logging of network function calls to a file

FreezeEvents Suspend asynchronous event processing

GetBearerToken Return the current OAuth 2.0 bearer token for the client session

GetContentType Return the content type for the current resource

GetCookie Return information about the specified cookie

GetData Copy the specified resource to a local buffer

GetDefaultUserAgent Return the default user agent strring included with requests

GetEncodingType Determines which content encoding option is enabled

GetErrorString Return a description for the specified error code

GetFile Copy a file from the server to the local system

GetFileSize Return the size of a file on the server

GetFileTime Return the date and time a file on the server was last modified

GetFirstCookie Return the first cookie set by the server

GetFirstHeader Return the name and value of the first request or response header field

GetFormProperties Return the properties of the specified form

GetHandle Return the client handle used by this instance of the class

GetHeader Return the value of the specified response header field

GetLastError Return the last error code

GetNextCookie Return the next cookie set by the server

GetNextHeader Return the name and value of the next request or response header field

GetOption Return the enabled/disabled state of a specified option

GetPriority Return the current priority for file transfers

GetRedirectUrl Return the URL for a redirected resource

GetResourceUrl Return the URL for the current resource

GetResultCode Return the result code from the previous command

GetResultString Return the result string from the previous command

GetSecurityInformation Return security information about the current client connection

GetStatus Return the current client status

GetText Download the contents of a text file or resource to a string buffer

GetTimeout Return the number of seconds until an operation times out

GetTransferStatus Return data transfer statistics

HttpEventProc Callback method that processes events generated by the client

IsBlocking Determine if the client is blocked, waiting for information

IsConnected Determine if the client is connected to the server

IsInitialized Determine if the class has been successfully initialized

IsReadable Determine if data can be read from the server

file:///C|/Projects/cstools11/pdf/http/class/httpeventproc.html

IsWritable Determine if data can be written to the server

OpenFile Open a file on the server for reading

PatchData Submits JSON or XML patch data to the server and returns the response

PostData Post data from a local buffer to the server and returns the response

PostFile Submit the contents of a local file to the server

PostJson Post JSON formatted data to the server and returns the response

PostXml Post XML formatted data to the server and returns the response

ProxyConnect Establish a connection with the specified proxy server

PutData Create a file on the server using the contents of a local buffer

PutFile Copy a file from the local system to the server

PutText Create a text file on the server from the contents of a string buffer

Read Read data from the server

RegisterEvent Register an event callback function

SetBearerToken Set the value of the OAuth 2.0 bearer token for the client session

SetContentType Set the content type for the request

SetCookie Set the value of the specified cookie

SetDefaultUserAgent Set the default user agent string included with requests

SetEncodingType Specifies the type of encoding to be applied to data submitted to the server

SetFormProperties Modify the properties of the current form

SetHeader Set the value of a request header field

SetLastError Set the last error code

SetOption Enable or disable the specified option

SetPriority Set the priority for file transfers

SetTimeout Set the number of seconds until an operation times out

ShowError Display a message box with a description of the specified error

SubmitForm Submit the current form to the server for processing

SubmitRequest Submit a request to the server and return the response

UploadFile Upload a file from the local system to the server

ValidateHostName Validate the specified host name and return the resolved IP address

ValidateUrl Check the contents of a string to ensure it represents a valid URL

VerifyFile Compare the size of a local file against a file stored on the server

Write Write data to the server

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/http/class/setcontenttype.html

 CHttpClient::CHttpClient

CHttpClient();

The CHttpClient constructor initializes the class library and validates the license key at runtime.

Remarks
If the constructor fails to validate the runtime license, subsequent methods in this class will fail. If
the product is installed with an evaluation license, then the application will only function on the
development system and cannot be redistributed.

The constructor calls the HttpInitialize function to initialize the library, which dynamically loads
other system libraries and allocates thread local storage. If you are using this class within another
DLL, it is important that you do not create or destroy an instance of the class from within the
DllMain function because it can result in deadlocks or access violation errors. You should not
declare static or global instances of this class within another DLL if it is linked with the C runtime
library (CRT) because it will automatically call the constructors and destructors for static and global
C++ objects and has the same restrictions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
~CHttpClient, IsInitialized

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::~CHttpClient

~CHttpClient();

The CHttpClient destructor releases resources allocated by the current instance of the
CHttpClient object. It also uninitializes the library if there are no other concurrent uses of the
class.

Remarks
When a CHttpClient object goes out of scope, the destructor is automatically called to allow the
library to free any resources allocated on behalf of the process. Any pending blocking or
asynchronous calls in this process are canceled without posting any notification messages, and all
handles that were created for the client session are destroyed.

The destructor is not called explicitly by the application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CHttpClient

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::AddField Method

INT AddField(
 LPCTSTR lpszFieldName,
 LPVOID lpFieldData,
 DWORD cbFieldData
);

INT AddField(
 LPCTSTR lpszFieldName,
 LPCTSTR lpszFieldData
);

The AddField method adds a new field to the current form.

Parameters
lpszFieldName

A pointer to a string which specifies the name of the field to add to the form. If this parameter is
NULL or points to an empty string, then a default field name will be assigned.

lpFieldData

A pointer to the form field data. Typically this will either by a pointer to an array of bytes or a
string which specifies the value for the form field. If no data is to be associated with the form
field, then this argument may be NULL.

cbFieldData

An unsigned integer value which specifies the number of bytes of data in the form field. If this
value is 0xFFFFFFFF (-1) then it is assumed that the lpFieldData parameter is a pointer to a null-
terminated string. If lpFieldData is NULL, this value must be zero.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
HTTP_ERROR. To get extended error information, call GetLastError.

Remarks
The AddField method is used to add a field and its associated value to a form created using the
CreateForm method. If the field name has already been added to the form, the previous value is
deleted and replaced by the new value.

Example
CString strResult;
INT nResult = 0;

pClient->CreateForm(_T("/login.php"), HTTP_METHOD_POST, HTTP_FORM_ENCODED);
pClient->AddField(_T("UserName"), lpszUserName);
pClient->AddField(_T("Password"), lpszPassword);

nResult = pClient->SubmitForm(strResult);
pClient->DestroyForm();

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AddFile, ClearForm, CreateForm, DeleteField, SubmitForm

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::AddFile Method

INT AddFile(
 LPCTSTR lpszFieldName,
 LPCTSTR lpszFileName
);

The AddFile method adds the contents of a file to the specified form.

Parameters
lpszFieldName

A pointer to a string which specifies the name of the field to add to the form. If this parameter is
NULL or points to an empty string, then a default field name will be assigned.

lpszFileName

A pointer to a string which specifies the name of the file. The contents of the file will be added
to the form data that is submitted to the server.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
HTTP_ERROR. To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AddField, ClearForm, CreateForm, DeleteField, PostFile, SubmitForm

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 AddHeaders Method

BOOL AddHeaders(
 LPCTSTR lpszHeaderList
);

The AddHeaders method adds one or more request headers for the current client session.

Parameters
lpszHeaderList

Points to a null-terminated string which specifies one or more header values which should be
set for the current client session. This parameter cannot be NULL.

Return Value
If the method succeeds, the return value is non-zero. If a connection has not been established
with a server, or the header list contains invalid values, this method returns a value of zero. To get
extended error information, call the GetLastError method.

Remarks
The AddHeaders method enables your application to set one or more header values by
providing a list of name/value pairs separated by a colon. Multiple header values may be provided
by separating them with a newline character. This method is similar to calling the SetHeader
method for each value. When the list of header values is parsed, extraneous whitespace is ignored;
however, if the header list contains invalid text (for example, a missing colon separating a header
name from its value) the method will fail and an error will be returned.

Exercise caution when providing a header list created directly from user input, such as a list of
values input using a textbox control. Any header values which have been previously set by your
application can be overridden by this method and may yield unpredictable results. If the service
you are using requires a custom authorization header, such as an API token or other user
credentials, allowing users to directly modify request header values this way can present a security
risk.

Example
// Define a list of header values which should be included with the
// request submitted to the server
LPCTSTR lpszHeaderList = _T("X-API-Token: 99d2fe39-0246-4efa-98e0-
4d775579fa5d\n") \
 _T("X-API-UserId: someuser@domain.tld\n") \
 _T("X-API-Version: 1.1\n")

if (!pClient->AddHeaders(lpszHeaderList))
{
 // Unable to add the headers for this client session
 return;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetFirstHeader, GetHeader, GetNextHeader, SetHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::AttachHandle Method

VOID AttachHandle(
 HCLIENT hClient
);

The AttachHandle method attaches the specified client handle to the current instance of the
class.

Parameters
hClient

The handle to the client session that will be attached to the current instance of the class object.

Return Value
None.

Remarks
This method is used to attach a client handle created outside of the class using the SocketTools
API. Once the client handle is attached to the class, the other class member functions may be used
with that client session.

If a client handle already has been created for the class, that handle will be released when the new
handle is attached to the class object. If you want to prevent the previous client session from being
terminated, you must call the DetachHandle method. Failure to release the detached handle may
result in a resource leak in your application.

Note that the hClient parameter is presumed to be a valid client handle and no checks are
performed to ensure that the handle is valid. Specifying an invalid client handle will cause
subsequent method calls to fail.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
AttachThread, DetachHandle, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::AttachThread Method

DWORD AttachThread(
 DWORD dwThreadId
);

The AttachThread method attaches the specified client handle to another thread.

Parameters
dwThreadId

The ID of the thread that will become the new owner of the handle. A value of zero specifies
that the current thread should become the owner of the client handle.

Return Value
If the method succeeds, the return value is the thread ID of the previous owner. If the method fails,
the return value is HTTP_ERROR. To get extended error information, call GetLastError.

Remarks
When a client handle is created, it is associated with the current thread that created it. Normally, if
another thread attempts to perform an operation using that handle, an error is returned since it
does not own the handle. This is used to ensure that other threads cannot interfere with an
operation being performed by the owner thread. In some cases, it may be desirable for one
thread in a client application to create the client handle, and then pass that handle to another
worker thread. The AttachThread method can be used to change the ownership of the handle to
the new worker thread. By preserving the return value from the method, the original owner of the
handle can be restored before the worker thread terminates.

This method should be called by the new thread immediately after it has been created, and if the
new thread does not release the handle itself, the ownership of the handle should be restored to
the parent thread before it terminates. Under no circumstances should AttachThread be used to
forcibly release a handle allocated by another thread while a blocking operation is in progress. To
cancel an operation, use the Cancel method and then release the handle after the blocking
method exits and control is returned to the current thread.

Note that the dwThreadId parameter is presumed to be a valid thread ID and no checks are
performed to ensure that the thread actually exists. Specifying an invalid thread ID will orphan the
client handle used by the class until the destructor is called.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
AttachHandle, Cancel, Connect, DetachHandle, Disconnect, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::Authenticate Method

INT Authenticate(
 UINT nAuthType,
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword
);

INT Authenticate(
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword
);

Parameters
nAuthType

An unsigned integer value which specifies the method to be used when authenticating the
client. If this argument is not specified, then basic authentication will be used. The following
values are recognized.

Constant Description

HTTP_AUTH_NONE No client authentication should be performed. The
lpszUserName and lpszPassword parameters are ignored and
current authentication settings are cleared.

HTTP_AUTH_BASIC The Basic authentication scheme should be used. This option is
supported by all servers that support at least version 1.0 of the
protocol. The user credentials are not encrypted and Basic
authentication should not be used over standard (non-secure)
connections. Most web services which use Basic authentication
require the connection to be secure.

HTTP_AUTH_BEARER The Bearer authentication scheme should be used. This
authentication method does not require a user name and the
lpszPassword parameter must specify the OAuth 2.0 bearer
token issued by the service provider. If the access token has
expired, the request will fail with an authorization error. This
function will not automatically refresh an expired token.

lpszUserName

A pointer to a string that specifies the username used to authenticate the client session. This
parameter may be NULL or an empty string if a user name is not required for the specified
authentication type.

lpszPassword

A pointer to a string that specifies the password used to authenticate the client session.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
HTTP_ERROR. To get extended error information, call GetLastError.

Remarks
This method will set the Authorization request header for the client session using the
credentials provided by the caller. This method will always override any custom

Authorization
header value that may have been previously set using the SetRequestHeader method.

If both the lpszUserName and lpszPassword parameters are NULL pointers or specify zero length
strings, the current authentication type will always be set to HTTP_AUTH_NONE regardless of the
value of the nAuthType parameter. This effectively clears the current user credentials for the client
session.

If the web service requires OAuth 2.0 authentication, it is recommended you use the
SetBearerToken method to specify the access token.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Connect, GetBearerToken, SetBearerToken, SetHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::Cancel Method

INT Cancel();

The Cancel method cancels any outstanding blocking operation in the client, causing the blocking
method to fail. The application may then retry the operation or terminate the client session.

Parameters
None.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
HTTP_ERROR. To get extended error information, call GetLastError.

Remarks
When the Cancel method is called, the blocking method will not immediately fail. An internal flag
is set which causes the blocking operation to exit with an error. This means that the application
cannot cancel an operation and immediately perform some other operation. Instead it must allow
the calling stack to unwind, returning back to the blocking operation before making any further
function calls.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
IsBlocking

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::ClearForm Method

VOID ClearForm();

The ClearForm method clears the current form, removing all fields.

Parameters
None.

Return Value
None.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
AddField, AddFile, CreateForm, DeleteField, DestroyForm, SubmitForm

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::CloseFile Method

INT CloseFile();

The CloseFile method flushes the internal client buffers and closes the previously opened file on
the server.

Parameters
None.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is HTTP_ERROR. To get extended error information, call GetLastError.

Remarks
If the file is opened for writing, all buffered data is written to the server before the file is closed.
This may cause the client to block until all of the data can be written. The client application should
not perform any other action until the method returns.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
Command, OpenFile, Read, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::Command Method

INT Command(
 LPCTSTR lpszCommand,
 LPCTSTR lpszResource,
 LPBYTE lpParameter,
 DWORD cbParameter
);

INT Command(
 LPCTSTR lpszCommand,
 LPCTSTR lpszResource,
 LPCTSTR lpszParameter
);

The Command method sends a command to the server, and returns the result code back to the
caller. This method is typically used for extended commands not directly supported by the API.

Parameters
lpszCommand

A pointer to a string which specifies the command to be executed by the server. The following
table lists the standard commands recognized by most HTTP servers. Other commands may
also be used, such as those extensions used by WebDAV to edit and manage files on a server.

Command Description

GET Return the contents of the specified resource. This command is recognized
by all servers.

HEAD Return only header information for the specified resource. This command
is recognized by servers that support at least version 1.0 of the protocol.

POST Post data to the specified resource. This command is recognized by
servers that support at least version 1.0 of the protocol.

PUT Create or replace the specified resource on the server. This command is
recognized by servers that support at least version 1.0 of the protocol. Not
all servers support this command.

DELETE Delete the specified resource from the server. This command is
recognized by servers that support at least version 1.1 of the protocol. Not
all servers support this command.

lpszResource

A pointer to a string which specifies the resource to be used with the command. This can be the
name of a file, an executable script or any other valid resource name recognized by the server.
Resource names must be absolute and include the complete path to the resource.

lpParameter

A pointer to a byte array which contains data that is to be passed to the command as one or
more parameters. Typically this is used to pass additional information to a script that executes
on the server. The data is encoded according to the encoding type specified for the client
session. If the resource does not require any parameters, this value should be NULL.

cbParameter

Specifies the number of bytes stored in the parameter buffer. If the resource does not require

any parameters, this value should be zero.

Return Value
If the method succeeds, the return value is the result code returned by the server. If the method
fails, the return value is HTTP_ERROR. To get extended error information, call GetLastError.

Remarks
Not all servers support all of the listed commands, and some commands may require specific
changes to the server configuration. In particular, the PUT and DELETE commands typically require
that configuration changes be made by the site administrator. All servers will support the use of
the GET command, and all servers that support at least version 1.0 of the protocol will support the
POST command.

If the lpszResource parameter specifies a path that contains reserved or restricted characters, such
as a space, it will automatically be URL encoded by the library.

It is permissible to include a query string in the resource name specified by the lpszResource
parameter. Query strings begin with a question mark, and then are followed by one or more
name/value pairs separated by an equal sign. For example, the following resource includes a
query string:

/cgi-bin/test.cgi?field1=value1&field2=value2

In this case, the query string is "?field1=value1&field2=value2". If the query string contains
reserved or restricted characters, such as spaces, then it will be automatically URL encoded prior to
being sent to the server. If additional resource data is specified in the lpParameter argument
along with a query string in the resource name, the action taken by the library depends on the
command being sent. If the command is a POST or PUT command, then query string is included
with command request to the server and the parameter data is sent separately. For example, if the
POST command was used, the script running on the server would see that both query data and
form data has been provided to it. However, if any other command is specified, the parameter
data is simply appended to the query string.

The lpParameter argument is used to pass additional information to the server when a resource is
requested. This is most commonly used to provide information to scripts, similar to how
arguments are used when executing a program from the command line. Unless the POST
command is being executed, the data in the buffer will automatically be encoded using the current
encoding mechanism specified for the client. By default, the data is URL encoded, which means
that any spaces and non-printable characters are converted to printable characters before
submitted to the server. The type of encoding that is performed can be set by calling the
SetEncodingType method. Although the default encoding is appropriate for most applications,
those that submit XML formatted data may need to change the encoding type.

Only one request may be in progress at one time for each client session. Use the CloseFile
method to terminate the request after all of the data has been read from the server.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also

GetResultCode, GetResultString

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::Connect Method

BOOL Connect(
 LPCTSTR lpszRemoteHost,
 UINT nRemotePort,
 UINT nTimeout,
 DWORD dwOptions,
 DWORD dwVersion
);

The Connect method is used to establish a connection with the specified server.

Parameters
lpszRemoteHost

A pointer to the name of the server to connect to. This may be a fully-qualified domain name or
an IP address.

nRemotePort

The port number the server is listening on. A value of zero specifies that the default port
number should be used. For standard connections, the default port number is 80. For secure
connections, the default port number is 443.

nTimeout

The number of seconds that the client will wait for a response from the server before failing the
current operation.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

HTTP_OPTION_NOCACHE This instructs the server to not return a cached
copy of the resource. When connected to an
HTTP 1.0 or earlier server, this directive may be
ignored.

HTTP_OPTION_KEEPALIVE This instructs the server to maintain a persistent
connection between requests. This can improve
performance because it eliminates the need to
establish a separate connection for each resource
that is requested. If the server does not support
the keep-alive option, the client will automatically
reconnect when each resource is requested.
Although it will not provide any performance
benefits, this allows the option to be used with all
servers.

HTTP_OPTION_REDIRECT This option specifies the client should
automatically handle resource redirection. If the
server indicates that the requested resource has
moved to a new location, the client will close the
current connection and request the resource from
the new location. Note that it is possible that the

redirected resource will be located on a different
server.

HTTP_OPTION_PROXY This option specifies the client should use the
default proxy configuration for the local system. If
the system is configured to use a proxy server,
then the connection will be automatically
established through that proxy; otherwise, a direct
connection to the server is established. The local
proxy configuration can be changed in the system
settings or control panel.

HTTP_OPTION_ERRORDATA This option specifies the client should return the
content of an error response from the server,
rather than returning an error code. Note that this
option will disable automatic resource redirection,
and should not be used with
HTTP_OPTION_REDIRECT.

HTTP_OPTION_NOUSERAGENT This option specifies the client should not include
a User-Agent header with any requests made
during the session. The user agent is a string
which is used to identify the client application to
the server. An application can provide its own
custom user agent value using the SetHeader
method.

HTTP_OPTION_HTTP2 This option specifies the client should establish a
HTTP/2 connection with the server. If a
connection cannot be established using HTTP/2
the client will attempt to connect using an earlier
version of the protocol. The value of the
dwVersion parameter will be ignored when this
option is used.

HTTP_OPTION_TUNNEL This option specifies that a tunneled TCP
connection and/or port-forwarding is being used
to establish the connection to the server. This
changes the behavior of the client with regards to
internal checks of the destination IP address and
remote port number, default capability selection
and how the connection is established.

HTTP_OPTION_TRUSTEDSITE This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option
only affects connections using either the SSL or
TLS protocols.

HTTP_OPTION_SECURE This option specifies the client should attempt to
establish a secure connection with the server.
Note that the server must support secure
connections using either the SSL or TLS protocol.
The client will default to using TLS 1.2 or later for

secure connections.

HTTP_OPTION_SECURE_FALLBACK This option specifies the client should permit the
use of less secure cipher suites for compatibility
with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

HTTP_OPTION_PREFER_IPV6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be resolved
to both an IPv6 and IPv4 address. This option is
ignored if the local system does not have IPv6
enabled, or when the hostname can only be
resolved to an IPv4 address. If the server
hostname can only be resolved to an IPv6
address, the client will attempt to establish a
connection using IPv6 regardless if this option has
been specified.

HTTP_OPTION_FREETHREAD This option specifies that this instance of the class
may be used by any thread, and is not limited to
the thread which created it. The application is
responsible for ensuring that access to the class
instance is synchronized across multiple threads.

HTTP_OPTION_HIRES_TIMER This option specifies the elapsed time for data
transfers should be returned in milliseconds
instead of seconds. This will return more accurate
transfer times for smaller amounts of data over
fast network connections.

dwVersion

The requested protocol version used when sending requests to the server. The high word
should specify the major version, and the low word should specify the minor version number.
The HTTPVERSION macro can be used to create a version value and the following values are
defined:

Constant Description

HTTP_VERSION_DEFAULT The client should use the default protocol version for this
session. This is the same as specifying HTTP_VERSION_11
and is recommended to ensure the broadest compatibility
with most servers.

HTTP_VERSION_09 The client should use the original one-line protocol which
includes no version number and no request header block.
This version has been deprecated and should only be used
with legacy servers which do not support the protocol
standard. This version of the protocol does not support
virtual hosts and is not supported by most modern web
services.

HTTP_VERSION_10 The client should use the HTTP/1.0 protocol standard
originally defined in RFC 1945. This version of the protocol

supports the use of request header blocks, however it does
not support persistent connections or chunked data and
has limited cache control mechanisms.

HTTP_VERSION_11 The client should use the HTTP/1.1 protocol standard
defined in RFC 2616 and RFC 7230. This is the most widely
used version of the protocol and is the default for client
connections. It is recommended most applications use this
version.

HTTP_VERSION_20 The client should use the HTTP/2 protocol standard
defined in RFC 7540. This protocol version is a significant
change from previous versions and can provide improved
performance with header compression and optimizing how
requests are serviced. If the client or server does not
support HTTP/2, the client will automatically attempt to use
an earlier version of the protocol.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
This method will block the current thread until a connection has been established or the timeout
period has elapsed. To prevent it from blocking the main user interface thread, the application
should create a background worker thread and establish a connection by calling the Connect
method in that thread. If the application requires multiple simultaneous connections, it is
recommended you create a worker thread for each connection.

The dwOptions argument can be used to specify the threading model that is used by the class
when a connection is established. By default, the client session is initially attached to the thread
that created it. From that point on, until the connection is terminated, only the owner may invoke
methods in that instance of the class. The ownership of the class instance may be transferred from
one thread to another using the AttachThread method.

Specifying the HTTP_OPTION_FREETHREAD option enables any thread to call methods in any
instance of the class, regardless of which thread created it. It is important to note that this option
disables certain internal safety checks which are performed by the class and may result in
unexpected behavior unless access to the class instance is synchronized. If one thread calls a
method in the class, it must ensure that no other thread will call another method at the same time
using the same instance.

If the HTTP_OPTION_KEEPALIVE option is specified and the server does not support persistent
connections, the client will automatically reconnect when each resource is requested. Although it
will not provide any performance benefits, this allows the option to be used with all servers. This
option is automatically enabled when using HTTP/2.

Applications should use HTTP_VERSION_DEFAULT as the value for the dwVersion parameter. This
will default to an appropriate version for the Windows platform and ensures the broadest
compatibility with most servers. If your application specifies HTTP_VERSION_20, a secure
connection using TLS 1.2 will always be used. The miniumum required platform for HTTP/2
support is Windows 10 (Version 1903) or Windows Server 2019. Earlier versions of the Schannel
SSP do not support the features required for a secure HTTP/2 connection.

If your application requests a HTTP/2 connection and the server only accepts earlier versions of
the protocol, the client will attempt to automatically downgrade the request to HTTP/1.1. If a
connection using an earlier version of the protocol cannot be established, the method will fail and
return a value of zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ConnectUrl, Disconnect, IsConnected, ProxyConnect

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::ConnectUrl Method

BOOL ConnectUrl(
 LPCTSTR lpszUrl,
 UINT nTimeout,
 DWORD dwOptions
);

The ConnectUrl method establishes a connection with the specified server using a URL.

Parameters
lpszUrl

A pointer to a string which specifies the URL for the server. The URL must follow the
conventions for the Hypertext Transfer Protocol and may specify either a standard or secure
connection, alternate port number, username, password and optional working directory.

nTimeout

The number of seconds that the client will wait for a response from the server before failing the
current operation.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

HTTP_OPTION_NOCACHE This instructs the server to not return a cached
copy of the resource. When connected to an
HTTP 1.0 or earlier server, this directive may be
ignored.

HTTP_OPTION_KEEPALIVE This instructs the server to maintain a persistent
connection between requests. This can improve
performance because it eliminates the need to
establish a separate connection for each resource
that is requested.

HTTP_OPTION_REDIRECT This option specifies the client should
automatically handle resource redirection. If the
server indicates that the requested resource has
moved to a new location, the client will close the
current connection and request the resource from
the new location. Note that it is possible that the
redirected resource will be located on a different
server.

HTTP_OPTION_PROXY This option specifies the client should use the
default proxy configuration for the local system. If
the system is configured to use a proxy server,
then the connection will be automatically
established through that proxy; otherwise, a direct
connection to the server is established. The local
proxy configuration can be changed in the system
settings or control panel.

HTTP_OPTION_ERRORDATA This option specifies the client should return the
content of an error response from the server,
rather than returning an error code. Note that this
option will disable automatic resource redirection,
and should not be used with
HTTP_OPTION_REDIRECT.

HTTP_OPTION_NOUSERAGENT This option specifies the client should not include
a User-Agent header with any requests made
during the session. The user agent is a string
which is used to identify the client application to
the server. An application can provide its own
custom user agent value using the SetHeader
method.

HTTP_OPTION_HTTP2 This option specifies the client should attempt a
HTTP/2 connection with the server. If a
connection cannot be established using HTTP/2
the client will attempt to connect using an earlier
version of the protocol.

HTTP_OPTION_TUNNEL This option specifies that a tunneled TCP
connection and/or port-forwarding is being used
to establish the connection to the server. This
changes the behavior of the client with regards to
internal checks of the destination IP address and
remote port number, default capability selection
and how the connection is established.

HTTP_OPTION_TRUSTEDSITE This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option
only affects connections using either the SSL or
TLS protocols.

HTTP_OPTION_SECURE This option specifies the client should attempt to
establish a secure connection with the server.
Note that the server must support secure
connections using either the SSL or TLS protocol.
The client will default to using TLS 1.2 or later for
secure connections.

HTTP_OPTION_SECURE_FALLBACK This option specifies the client should permit the
use of less secure cipher suites for compatibility
with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

HTTP_OPTION_FREETHREAD This option specifies that this instance of the class
may be used by any thread, and is not limited to
the thread which created it. The application is
responsible for ensuring that access to the class
instance is synchronized across multiple threads.

HTTP_OPTION_HIRES_TIMER This option specifies the elapsed time for data
transfers should be returned in milliseconds
instead of seconds. This will return more accurate
transfer times for smaller files being uploaded or
downloaded using fast network connections.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The ConnectUrl method uses an HTTP URL to establish a connection with a server. The URL must
be in the following format:

[http|https]://[username : password] @] hostname [:port] / [path / ...]
[filename]

If no user name and password is provided, then the client session will be authenticated as an
anonymous user. The URL scheme will always determine if the connection is secure, not the
option. In other words, if the "http" scheme is used and the HTTP_OPTION_SECURE option is
specified, that option will be ignored. To establish a secure connection, the "https" scheme must
be specified. The ValidateUrl method can be used to verify that a URL is valid prior to calling this
method.

The ConnectUrl method is designed to provide a simpler, more convenient interface to
establishing a connection with a server. However, complex connections such as those using a
specific proxy server or a secure connection which uses a client certificate will require the program
to use the lower-level connection methods. If you only need to upload or download a file using a
URL, then refer to the UploadFile and DownloadFile methods.

This method will block the current thread until a connection has been established or the timeout
period has elapsed. To prevent it from blocking the main user interface thread, the application
should create a background worker thread and establish a connection by calling the ConnectUrl
method in that thread. If the application requires multiple simultaneous connections, it is
recommended you create a worker thread for each connection.

The dwOptions argument can be used to specify the threading model that is used by the class
when a connection is established. By default, the client session is initially attached to the thread
that created it. From that point on, until the connection is terminated, only the owner may invoke
methods in that instance of the class. The ownership of the class instance may be transferred from
one thread to another using the AttachThread method.

Specifying the HTTP_OPTION_FREETHREAD option enables any thread to call methods in any
instance of the class, regardless of which thread created it. It is important to note that this option
disables certain internal safety checks which are performed by the class and may result in
unexpected behavior unless access to the class instance is synchronized. If one thread calls a
method in the class, it must ensure that no other thread will call another method at the same time
using the same instance.

If the HTTP_OPTION_KEEPALIVE option is specified and the server does not support persistent
connections, the client will automatically reconnect when each resource is requested. Although it
will not provide any performance benefits, this allows the option to be used with all servers. This
option is automatically enabled when using HTTP/2.

If your application specifies the HTTP_OPTION_HTTP2 option, a secure connection using TLS 1.2

or later will always be used. The miniumum required platform for HTTP/2 support is Windows 10
(Version 1903) or Windows Server 2019. Earlier versions of Windows do not support the features
required for a secure HTTP/2 connection. If the server only accepts earlier versions of the protocol,
the client will attempt to automatically downgrade the request to HTTP/1.1. If a connection using
an earlier version of the protocol cannot be established, the function will fail and return
INVALID_CLIENT.

Example
CHttpClient httpClient;

if (!httpClient.ConnectUrl(_T("http://sockettools.com/")))
{
 httpClient.ShowError();
 return;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Connect, Disconnect, DownloadFile, UploadFile, ValidateUrl

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::CreateFile Method

INT CreateFile(
 LPCTSTR lpszRemoteFile,
 DWORD dwFileLength
);

The CreateFile method creates the specified file on the server.

Parameters
lpszRemoteFile

Points to a string that specifies the name of the file being created on the server. The client must
have the appropriate access rights to create the file or an error will be returned.

dwFileLength

Specifies the length of the file that will be created on the server. This value must be greater than
zero.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is HTTP_ERROR. To get extended error information, call GetLastError.

Remarks
The CreateFile method uses the PUT command to create the file. The server must support this
command and the user must have the appropriate permission to create the specified file. If this
method is successful, the client should then use the Write method to send the contents of the file
to the server. Once all of the data has been written, the CloseFile method should be called to
close the file and complete the operation. Note that this method is typically only accepted by
servers that support version 1.1 of the protocol or later.

When using Write to send the contents of the file to the server, it is recommended that the data
be written in logical blocks that are no larger than 8,192 bytes in size. Attempting to write very
large amounts of data in a single call can either cause the thread to block or, in the case of an
asynchronous connection, return an error if the internal buffers cannot accommodate all of the
data. To send the entire contents of a file in a single method call, use the PutData method instead
of calling CreateFile.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CloseFile, OpenFile, PutData, PutFile, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::CreateForm Method

BOOL CreateForm(
 LPCTSTR lpszAction,
 UINT nFormMethod,
 UINT nFormType
);

The CreateForm method creates a new form for use with the other form-related functions.

Parameters
lpszAction

A pointer to a string which specifies the name of the resource that the form data will be
submitted to. Typically this is the name of a script that is executed on the server.

nFormMethod

An unsigned integer value which specifies how the form data will be submitted to the server.
This parameter may be one of the following values:

Constant Description

HTTP_METHOD_DEFAULT The form data should be submitted using the default
method, using the GET command.

HTTP_METHOD_GET The form data should be submitted using the GET
command. This method should be used when the amount
of form data is relatively small. If the total amount of form
data exceeds 2048 bytes, it is recommended that the POST
method be used instead.

HTTP_METHOD_POST The form data should be submitted using the POST
command. This is the preferred method of submitting
larger amounts of form data. If the total amount of form
data exceeds 2048 bytes, it is recommended that the POST
method be used.

nFormType

An unsigned integer value which specifies the type of form and how the data will be encoded
when it is submitted to the server. This parameter may be one of the following values:

Constant Description

HTTP_FORM_DEFAULT The form data should be submitted using the default
encoding method.

HTTP_FORM_ENCODED The form data should be submitted as URL encoded values.
This is typically used when the GET method is used to
submit the data to the server.

HTTP_FORM_MULTIPART The form data should be submitted as multipart form data.
This is typically used when the POST method is used to
submit a file to the server. Note that the script must
understand how to process multipart form data if this form
type is specified.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The CreateForm method is used to create a new form that will be populated with values and then
submitted to the server for processing. When the form is no longer needed, it should be
destroyed using the DestroyForm function.

Example
CString strResult;
INT nResult = 0;

pClient->CreateForm(_T("/login.php"), HTTP_METHOD_POST, HTTP_FORM_ENCODED);
pClient->AddField(_T("UserName"), lpszUserName);
pClient->AddField(_T("Password"), lpszPassword);

nResult = pClient->SubmitForm(strResult);
pClient->DestroyForm();

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AddField, AddFile, ClearForm, DeleteField, DestroyForm, SubmitForm

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::CreateSecurityCredentials Method

BOOL CreateSecurityCredentials(
 DWORD dwProtocol,
 DWORD dwOptions,
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword,
 LPCTSTR lpszCertStore,
 LPCTSTR lpszCertName
);

BOOL CreateSecurityCredentials(
 LPCTSTR lpszCertStore,
 LPCTSTR lpszCertName
);

BOOL CreateSecurityCredentials(
 LPCTSTR lpszCertName
);

The CreateSecurityCredentials method establishes the security credentials for the client session.

Parameters
dwProtocol

A bitmask of supported security protocols. This parameter is constructed by using a bitwise
operator with any of the following values:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The
correct protocol is automatically selected, based on
what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.

This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is
supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

dwOptions

A value which specifies one or options. This member is constructed by using a bitwise operator
with any of the following values:

Constant Description

CREDENTIAL_STORE_CURRENT_USER The library will attempt to open a store for
the current user using the certificate store
name provided in this structure. If no options
are specified, then this is the default
behavior.

CREDENTIAL_STORE_LOCAL_MACHINE The library will attempt to open a local
machine store using the certificate store
name provided in this structure. If this option
is specified, the library will always search for a
local machine store before searching for the

store by that name for the current user.

CREDENTIAL_STORE_FILENAME The certificate store name is a file that
contains the certificate and private key that
will be used.

lpszUserName

A pointer to a string which specifies the certificate owner's username. A value of NULL specifies
that no username is required. Currently this parameter is not used and any value specified will
be ignored.

lpszPassword

A pointer to a string which specifies the certificate owner's password. A value of NULL specifies
that no password is required. This parameter is only used if a PKCS #12 (PFX) certificate file is
specified and that certificate has been secured with a password. This value will be ignored the
current user or local machine certificate store is specified.

lpszCertStore

A pointer to a string which specifies the name of the certificate store to open. A certificate store
is a collection of certificates and their private keys, typically organized by how they are used. If
this value is NULL or points to an empty string, the default certificate store "MY" will be used.

Store Name Description

CA Certification authority certificates. These are certificates that are issued by
entities which are entrusted to issue certificates to other individuals or
organizations. Companies such as VeriSign and Thawte act as
certification authorities.

MY Personal certificates and their associated private keys for the current user.
This store typically holds the client certificates used to establish a user's
credentials. This corresponds to the "Personal" store that is displayed by
the certificate manager utility and is the default store used by the library.

ROOT Certificates that have been self-signed by a certificate authority. Root
certificates for a number of different certification authorities such as
VeriSign and Thawte are installed as part of the operating system and
periodically updated by Microsoft.

lpszCertName

A pointer to a null terminated string which specifies the name of the certificate to use. The
function will first search the certificate store for a certificate with a matching "friendly name"; this
is a name for the certificate that is assigned by the user. Note that the name must match
completely, but the comparison is not case sensitive. If no matching certificate is found, the
function will then attempt to find a certificate that has a matching common name (also called
the certificate subject). This comparison is less stringent, and the first partial match will be
returned. If this second search fails, the function will return an error indicating that the certificate
could not be found.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Example

pClient->CreateSecurityCredentials(
 SECURITY_PROTOCOL_DEFAULT,
 0,
 NULL,
 NULL,
 lpszCertStore,
 lpszCertName);

bConnected = pClient->Connect(lpszHostName,
 HTTP_PORT_SECURE,
 HTTP_TIMEOUT,
 HTTP_OPTION_SECURE);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Connect, DeleteSecurityCredentials, GetSecurityInformation, SECURITYCREDENTIALS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::DeleteField Method

INT DeleteField(
 LPCTSTR lpszFieldName
);

The DeleteField method deletes the specified field from the current form.

Parameters
lpszFieldName

Points to a string that specifies the name of the field to delete.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
HTTP_ERROR. To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AddField, AddFile, ClearForm, CreateForm, SubmitForm

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::DeleteFile Method

INT DeleteFile(
 LPCTSTR lpszFileName
);

The DeleteFile method deletes the specified file from the server.

Parameters
lpszFileName

Points to a string that specifies the name of the remote file to delete. The file pathing and name
conventions must be that of the server.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is HTTP_ERROR. To get extended error information, call GetLastError.

Remarks
This method uses the DELETE command to delete the specified file from the server. The server
must be configured to support this command, and client must have the appropriate permission to
delete the file, or an error will be returned.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetFile, PutFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::DeleteHeaders Method

BOOL DeleteHeaders(
 UINT nHeaderType
);

Delete all of the response or request headers for the current session.

Parameters
nHeaderType

Specifies the type of header to delete. It may be one of the following values:

Constant Description

HTTP_HEADERS_REQUEST Delete all of the request headers that have been set for
the next request sent to the server. This will clear all of
the header values that were set using the
SetRequestHeader method.

HTTP_HEADERS_RESPONSE Delete all of the headers that were set in response to the
previous request. A call to the GetResponseHeader
method to obtain a specific header value will fail after
this method returns.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The DeleteHeaders method will release the memory allocated for the request or response
headers for the current session. This method is typically used to clear all of the current request
headers so that the application may create a new set of headers when a persistent connection is
being used. The memory allocated for the request and response headers is normally released
when the session handle is closed by calling the Disconnect method.

Whenever a request for a resource is sent to the server, the response headers from the previous
request are automatically cleared. It is not necessary for an application to call the DeleteHeaders
method to delete the response headers prior to each request.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
GetFirstHeader, GetNextHeader, GetHeader, SetHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::DeleteSecurityCredentials Method

VOID DeleteSecurityCredentials();

The DeleteSecurityCredentials method releases the security credentials for the current session.

Parameters
None.

Return Value
None.

Remarks
This method can be used to release the memory allocated to the client or server credentials after
a secure connection has been terminated. The security credentials are released when the class
destructor is called, so it is normally not required that the application explicitly call this method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CreateSecurityCredentials

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::DestroyForm Method

VOID DestroyForm();

The DestroyForm method destroys the current form, releasing the memory allocated for it.

Parameters
None.

Return Value
None.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
AddField, AddFile, ClearForm, CreateForm, DeleteField, SubmitForm

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::DetachHandle Method

HCLIENT DetachHandle();

The DetachHandle method detaches the client handle associated with the current instance of the
class.

Parameters
None.

Return Value
This method returns the client handle associated with the current instance of the class object. If
there is no active client session, the value INVALID_CLIENT will be returned.

Remarks
This method is used to detach a client handle created by the class for use with the SocketTools
API. Once the client handle is detached from the class, no other class member functions may be
called. Note that the handle must be explicitly released at some later point by the process or a
resource leak will occur.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
AttachHandle, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::DisableEvents Method

INT DisableEvents();

The DisableEvents method disables the event notification mechanism, preventing subsequent
event notification messages from being posted to the application's message queue.

This method has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Parameters
None.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
HTTP_ERROR. To get extended error information, call GetLastError.

Remarks
The DisableEvents method is used to disable event message posting for the specified client
session. Although this will immediately prevent any new events from being generated, it is possible
that messages could be waiting in the message queue. Therefore, an application must be
prepared to handle client event messages after this method has been called.

This method is automatically called if the client has event notification enabled, and the Disconnect
method is called. The same issues regarding outstanding event messages also applies in this
situation, requiring that the application handle event messages that may reference a client handle
that is no longer valid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
EnableEvents, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::DisableTrace Method

BOOL DisableTrace();

The DisableTrace method disables the logging of socket function calls to the trace log.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, a value of zero is
returned.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
EnableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::Disconnect Method

VOID Disconnect();

The Disconnect method terminates the connection with the server, closing the socket and
releasing the memory allocated for the client session.

Parameters
None.

Return Value
None.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
Connect

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::DownloadFile Method

BOOL DownloadFile(
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszRemoteFile,
 UINT nTimeout
 DWORD dwOptions
 LPHTTPTRANSFERSTATUS lpStatus
 HTTPEVENTPROC lpEventProc
 DWORD_PTR dwParam
);

The DownloadFile method downloads the specified file from the server to the local system.

Parameters
lpszLocalFile

A pointer to a string that specifies the file on the local system that will be created, overwritten or
appended to. The file pathing and name conventions must be that of the local host.

lpszRemoteFile

A pointer to a string that specifies the complete URL of the file to be downloaded. The URL
must follow the conventions for the File Transfer Protocol and may specify either a standard or
secure connection, alternate port number, username, password and optional working directory.

nTimeout

The number of seconds that the client will wait for a response before failing the operation. A
value of zero specifies that the default timeout period of sixty seconds will be used.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

HTTP_OPTION_NOCACHE This instructs the server to not return a cached
copy of the resource. When connected to an
HTTP 1.0 or earlier server, this directive may be
ignored.

HTTP_OPTION_REDIRECT This option specifies the client should
automatically handle resource redirection. If the
server indicates that the requested resource has
moved to a new location, the client will close the
current connection and request the resource from
the new location. Note that it is possible that the
redirected resource will be located on a different
server.

HTTP_OPTION_PROXY This option specifies the client should use the
default proxy configuration for the local system. If
the system is configured to use a proxy server,
then the connection will be automatically
established through that proxy; otherwise, a direct
connection to the server is established. The local

proxy configuration can be changed using the
system Control Panel.

HTTP_OPTION_NOUSERAGENT This option specifies the client should not include
a User-Agent header with any requests made
during the session. The user agent is a string
which is used to identify the client application to
the server. If this option is not specified, a default
user agent string will be included with the request.

HTTP_OPTION_HTTP2 This option specifies the client should attempt a
HTTP/2 connection with the server. If a
connection cannot be established using HTTP/2
the client will attempt to connect using an earlier
version of the protocol.

HTTP_OPTION_TUNNEL This option specifies that a tunneled TCP
connection and/or port-forwarding is being used
to establish the connection to the server. This
changes the behavior of the client with regards to
internal checks of the destination IP address and
remote port number, default capability selection
and how the connection is established.

HTTP_OPTION_TRUSTEDSITE This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option
only affects connections using either the SSL or
TLS protocols.

HTTP_OPTION_SECURE This option specifies the client should attempt to
establish a secure connection with the server.
Note that the server must support secure
connections using either the SSL or TLS protocol.
The client will default to using TLS 1.2 or later for
secure connections.

HTTP_OPTION_SECURE_FALLBACK This option specifies the client should permit the
use of less secure cipher suites for compatibility
with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

HTTP_OPTION_PREFER_IPV6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be resolved
to both an IPv6 and IPv4 address. This option is
ignored if the local system does not have IPv6
enabled, or when the hostname can only be
resolved to an IPv4 address. If the server
hostname can only be resolved to an IPv6
address, the client will attempt to establish a
connection using IPv6 regardless if this option has
been specified.

HTTP_OPTION_HIRES_TIMER This option specifies the elapsed time for data
transfers should be returned in milliseconds
instead of seconds. This will return more accurate
transfer times for smaller amounts of data over
fast network connections.

lpStatus

A pointer to an HTTPTRANSFERSTATUS structure which contains information about the status of
the current file transfer. If this information is not required, a NULL pointer may be specified as
the parameter.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the EventProc callback function.
If this parameter is NULL, the callback for the specified event is disabled.

dwParam

A user-defined integer value that is passed to the callback function.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The DownloadFile method provides a convenient way for an application to download a file in a
single method call. Based on the connection information specified in the URL, it will connect to the
server, authenticate the session and then download the file to the local system. The URL must be
complete, and specify either a standard or secure HTTP scheme:

[http|https]://[username : password] @] hostname [:port] / [path / ...]
[filename]

If no user name and password is provided, then the client session will be authenticated as an
anonymous user. The URL scheme will always determine if the connection is secure, not the
option. In other words, if the "http" scheme is used and the HTTP_OPTION_SECURE option is
specified, that option will be ignored. To establish a secure connection, the "https" scheme must
be specified.

If your application requests a HTTP/2 connection and the server only accepts earlier versions of
the protocol, the client will attempt to automatically downgrade the request to HTTP/1.1. If a
connection using an earlier version of the protocol cannot be established, the method will fail and
return a value of zero.

The lpStatus parameter can be used by the application to determine the final status of the
transfer, including the total number of bytes copied, the amount of time elapsed and other
information related to the transfer process. If this information isn't needed, then this parameter
may be specified as NULL.

The lpEventProc parameter specifies a pointer to a function which will be periodically called during
the file transfer process. This can be used to check the status of the transfer by calling
GetTransferStatus and then update the program's user interface. For example, the callback
function could calculate the percentage for how much of the file has been transferred and then
update a progress bar control. The dwParam parameter is used in conjunction with the event
handler and specifies a user-defined value that is passed to the callback function. One common
use in a C++ program is to pass the this pointer as the value, and then cast it back to an object

pointer inside the callback function. If no event handler is required, then a NULL pointer can be
specified as the value for lpEventProc and the dwParam parameter will be ignored.

The DownloadFile method is designed to provide a simpler interface for downloading a file.
However, complex connections such as those using a specific proxy server or a secure connection
which uses a client certificate will require the program to establish the connection using Connect
and then use GetFile to download the file.

Example
CHttpClient httpClient;
CString strLocalFile = _T("c:\\temp\\database.mdb");
CString strFileURL = _T("http://www.example.com/updates/database.mdb");

// Download the file using the specified URL
if (!httpClient.DownloadFile(strLocalFile, strFileURL))
{
 httpClient.ShowError();
 return;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetFile, GetTransferStatus, HttpEventProc, UploadFile, HTTPTRANSFERSTATUS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/http/class/httpeventproc.html

 CHttpClient::EnableCompression Method

INT EnableCompression(
 BOOL bEnable
);

The EnableCompression method enables or disables support for data compression.

Parameters
bEnable

An optional boolean value which specifies if data compression should be enabled or disabled. A
non-zero value enables compression, while a value of zero will disable compression. If this
parameter is omitted, compression will be enabled.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
HTTP_ERROR. To get extended error information, call HttpGetLastError.

Remarks
The HttpEnableCompression method is used to indicate to the server whether or not it is
acceptable to compress the data that is returned to the client. If compression is enabled, the client
will advertise that it will accept compressed data by setting the Accept-Encoding request header.
The server will decide whether a resource being requested can be compressed. If the data is
compressed, the library will automatically expand the data before returning it to the caller.

Enabling compression does not guarantee that the data returned by the server will actually be
compressed, it only informs the server that the client is willing to accept compressed data.
Whether or not a particular resource is compressed depends on the server configuration, and the
server may decide to only compress certain types of resources, such as text files. Disabling
compression informs the server that the client is not willing to accept compressed data; this is the
default.

If the SetHeader method is used to explicitly set the Accept-Encoding header to request
compressed data and compression is not enabled, the library will not attempt to automatically
expand the data returned by the server. In this case, the raw compressed data will be returned to
the caller and the application is responsible for processing it. This behavior is by design to
maintain backwards compatibility with previous versions of the library that did not have internal
support for compression.

To determine if the server compressed the data returned to the client, use the GetHeader
method to get the value of the Content-Encoding header. If the header is defined, the value
specifies the compression method used, otherwise the data was not compressed.

Enabling compression is only meaningful when downloading files from a server that supports file
compression. It has no effect on file uploads.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also

GetData, GetFile, GetHeader, GetText, SetHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::EnableEvents Method

INT EnableEvents(
 HWND hEventWnd,
 UINT uEventMsg
);

The EnableEvents method enables event notifications using Windows messages.

This method has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Applications should use the RegisterEvent method to register an event handler which is invoked
when an event occurs.

Parameters
hEventWnd

Handle to the window which will receive the client notification messages. This parameter must
specify a valid window handle. If a NULL handle is specified, event notification will be disabled.

uEventMsg

The message that is received when a client event occurs. This value must be greater than 1024.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
HTTP_ERROR. To get extended error information, call GetLastError.

Remarks
The EnableEvents method is used to request that notification messages be posted to the
specified window whenever a client event occurs. This allows an application to monitor the status
of different client operations, such as a file transfer.

The wParam argument will contain the client handle, the low word of the lParam argument will
contain the event ID, and the high word will contain any error code. If no error has occurred, the
high word will always have a value of zero. The following events may be generated:

Constant Description

HTTP_EVENT_CONNECT The connection to the server has completed. The high word of
the lParam parameter should be checked, since this notification
message will be posted if an error has occurred.

HTTP_EVENT_DISCONNECT The server has closed the connection to the client. The client
should read any remaining data and disconnect.

HTTP_EVENT_READ Data is available to read by the calling process. No additional
messages will be posted until the client has read at least some of
the data. This event is only generated if the client is in
asynchronous mode.

HTTP_EVENT_WRITE The client can now write data. This notification is sent after a
connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking

operation. This event is only generated if the client is in
asynchronous mode.

HTTP_EVENT_TIMEOUT The network operation has exceeded the specified timeout
period. The client application may attempt to retry the operation,
or may disconnect from the server and report an error to the
user.

HTTP_EVENT_CANCEL The current operation has been canceled. Under most
circumstances the client should disconnect from the server and
re-connect if needed. After an operation has been canceled, the
server may abort the connection or refuse to accept further
commands from the client.

HTTP_EVENT_COMMAND A command has been issued by the client and the server
response has been received and processed. This event can be
used to log the result codes and messages returned by the server
in response to actions taken by the client.

HTTP_EVENT_PROGRESS The client is in the process of sending or receiving a file on the
data channel. This event is called periodically during a transfer so
that the client can update any user interface components such as
a status control or progress bar.

It is not required that the client be placed in asynchronous mode in order to receive command
and progress event notifications. To disable event notification, call the DisableEvents method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
DisableEvents, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::EnableTrace Method

BOOL EnableTrace(
 LPCTSTR lpszTraceFile,
 DWORD dwTraceFlags
);

The EnableTrace method enables the logging of socket function calls to a file.

Parameters
lpszTraceFile

A pointer to a string which specifies the name of the trace log file. If this parameter is NULL or
an empty string, the default file name cstrace.log is used. The file is stored in the directory
specified by the TEMP environment variable, if it is defined; otherwise, the current working
directory is used.

dwTraceFlags

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

TRACE_INFO All function calls are written to the trace file. This is the default
value.

TRACE_ERROR Only those function calls which fail are recorded in the trace file.

TRACE_WARNING Only those function calls which fail or return values which indicate
a warning are recorded in the trace file.

TRACE_HEXDUMP All functions calls are written to the trace file, plus all the data that
is sent or received is displayed, in both ASCII and hexadecimal
format.

TRACE_PROCESS All function calls in the current process are logged, rather than
only those functions in the current thread. This option is useful for
multithreaded applications that are using worker threads.

Return Value
If the method succeeds, the return value is non-zero. A return value of zero indicates an error.
Failure typically indicates that the tracing library cstrcv11.dll cannot be loaded on the local
system.

Remarks
When trace logging is enabled, the file is opened, appended to and closed for each socket
function call. This makes it possible for an application to append its own logging information,
however care should be taken to ensure that the file is closed before the next network operation is
performed. To limit the size of the log files, enable and disable logging only around those sections
of code that you wish to trace.

Note that the TRACE_HEXDUMP trace level generates very large log files since it includes all of the
data exchanged between your application and the server.

Logging is managed on a per-thread basis, not for each client handle. This means that all
SocketTools libraries and components share the same settings in the current thread. If you are

using multiple SocketTools libraries or components in your application, you only need to enable
logging once.

When logging is enabled for HTTP/2 client sessions, it is normal to see HTTP/1.1 in the request
and server response. HTTP/2 is a binary protocol and the request and response header blocks
emulate a standard HTTP/1.1 text response for backwards compatibility. Applications running on
the server should work in the same way regardless of which protocol version is selected, however
it is possible to check the server environment to determine which version of HTTP was used with
the request.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DisableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::FreezeEvents Method

INT FreezeEvents(
 BOOL bFreeze
);

The FreezeEvents method is used to suspend and resume event handling by the client.

Parameters
bFreeze

A non-zero value specifies that event handling should be suspended by the client. A zero value
specifies that event handling should be resumed.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
HTTP_ERROR. To get extended error information, call GetLastError.

Remarks
This method should be used when the application does not want to process events, such as when
a modal dialog is being displayed. When events are suspended, all client events are queued. If
events are re-enabled at a later point, those queued events will be sent to the application for
processing. Note that only one of each event will be generated. For example, if the client has
suspended event handling, and four read events occur, once event handling is resumed only one
of those read events will be posted to the client. This prevents the application from being flooded
by a potentially large number of queued events.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DisableEvents, EnableEvents, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::GetBearerToken Method

INT GetBearerToken(
 LPTSTR lpszBearerToken,
 INT nMaxLength
);

INT GetBearerToken(
 CString& strBearerToken
);

The GetBearerToken method returns the OAuth 2.0 bearer token used to authenticate the client
session with a web service.

Parameters
lpszBearerToken

A pointer to a string buffer which will contain the bearer token when the method returns. The
string will be null terminated and the the buffer must be large enough to accommodate the
entire bearer token or the method will fail. This parameter cannot be a NULL pointer. An
alternate version of this method accepts a CString object.

nMaxLength

The maximum number of characters that may be copied into the string buffer. This value must
be greater than zero.

Return Value
If the method succeeds, the return value is the length of the bearer token string. A return value of
zero indicates that no bearer token has been specified. If the method fails, the return value is
HTTP_ERROR. To get extended error information, call GetLastError.

Remarks
This method returns the bearer token which was previously set by a call to SetBearerToken.
Bearer tokens can be very long strings and do not contain any human readable information. For
Google services, these tokens are usually about 180 characters in length. For Microsoft services,
their bearer tokens are typically 1,200 characters in length. It is recommended that you provide a
buffer size of at least 2,000 characters.

Your application should not store the bearer tokens provided by a web service. These tokens are
short-lived and typically only valid for about an hour. If the token has expired, the authorization to
access the resource will fail and it must be refreshed. The refresh tokens used to acquire a new
bearer token should be stored and they are typically valid for a period of months.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Authenticate, SetBearerToken

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::GetCookie Method

BOOL GetCookie(
 LPCTSTR lpszCookieName,
 LPTSTR lpszCookieValue,
 INT nCookieValue,
 LPTSTR lpszCookiePath,
 INT nCookiePath,
 LPTSTR lpszCookieDomain,
 INT nCookieDomain,
 LPSYSTEMTIME lpCookieExpires,
 LPDWORD lpdwCookieFlags
);

BOOL GetCookie(
 LPCTSTR lpszCookieName,
 CString& strCookieValue,
 CString& strCookiePath,
 CString& lpszCookieDomain,
 LPSYSTEMTIME lpCookieExpires,
 LPDWORD lpdwCookieFlags
);

BOOL GetCookie(
 LPCTSTR lpszCookieName,
 CString& strCookieValue
);

The GetCookie method returns information about a cookie set by the server.

Parameters
lpszCookieName

A pointer to a string which specifies the name of the cookie to return information about.

lpszCookieValue

A pointer to a string buffer that will contain the value of the cookie. If this information is not
required, a NULL pointer may be specified.

nCookieValue

The maximum number of characters that may be copied into the buffer specified by the
lpszCookieValue parameter, including the terminating null character.

lpszCookiePath

A pointer to a string buffer that will contain the cookie path. If this information is not required, a
NULL pointer may be specified.

nCookiePath

The maximum number of characters that may be copied into the buffer specified by the
lpszCookiePath parameter, including the terminating null character.

lpszCookieDomain

A pointer to a string buffer that will contain the cookie domain. If this information is not
required, a NULL pointer may be specified.

nCookieDomain

The maximum number of characters that may be copied into the buffer specified by the

lpszCookieDomain parameter, including the terminating null character.

lpCookieExpires

A pointer to a SYSTEMTIME structure which specifies the date and time that the cookie expires.
If this information is not required, a NULL pointer may be specified.

lpdwCookieFlags

One or more bit flags which specify status information about the cookie. A value of zero
indicates that there are no special status flags for the cookie. This parameter may be NULL if the
information is not required. The following values are currently defined:

Constant Description

HTTP_COOKIE_SECURE This flag specifies that the cookie should only be provided to
the server if the connection is secure.

HTTP_COOKIE_SESSION This flag specifies that the cookie should only be used for the
current application session and should not be stored
permanently on the local system.

Return Value
If the method succeeds, the return value is non-zero. If the specified cookie does not exist or
method fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
The Hypertext Transfer Protocol uses special tokens called "cookies" to maintain persistent state
information between requests for a resource. These cookies are exchanged between the client and
server by setting specific header fields. When a server wants the client to use a cookie, it will
include a header field named Set-Cookie in the response header when the client requests a
resource. The client can then take this cookie and store it, either temporarily in memory or
permanently in a file on the local system. The next time that the client requests a resource from
that server, it can send the cookie back to the server by setting the Cookie header field. The
GetCookie method searches for a cookie set by the server in the Set-Cookie header field. The
SetCookie method creates or modifies the Cookie header field for the next resource requested by
the client.

There are two general types of cookies that are used by servers. Session cookies exist only for the
duration of the client session; they are stored in memory and not saved in any kind of permanent
storage. When the client application terminates, session cookies are deleted and no longer used.
Persistent cookies are stored on the local system and are used by the client until their expiration
time. It is the responsibility of the client application to store persistent cookies; applications may
use a flat text file, a database or any other storage method available.

In addition to the cookie name and value, the server may return additional information about the
cookie which the client should use to determine if it should send the cookie back to the server:

The cookie path specifies a path for the resources where the cookie should be used. For
example, a path of "/" indicates that the cookie should be provided for all resources
requested from the server. A path of "/data" would mean that the cookie should be
included if the resource is found in the /data folder or a sub-folder, such as
/data/projections.asp. However, the cookie would not be provided if the resource
/info/status.asp was requested, since it is not in the /data path.

The cookie domain specifies the domain for which the cookie should be used. Matches
are made by comparing the name of the server against the domain name specified in the

cookie. If the domain is example.com, then any server in the example.com domain would
match; for example, both shipping.example.com and orders.example.com would match
the domain value. However, if the cookie domain was orders.example.com, then the
cookie would only be sent if the resource was requested from orders.example.com, not if
the resource was located on shipping.example.com or www.example.com.

The cookie expiration specifies the date and time that the cookie should be deleted and
no longer sent when a resource is requested from the server. This is only valid for
persistent cookies, since session cookies are automatically deleted when the client
application terminates. The time is always expressed as Coordinated Universal Time.

The cookie flags provide additional information about the cookie. In some cases, a cookie
should only be submitted to the server if the resource is requested using a secure
connection. In this case, the bit flag HTTP_COOKIE_SECURE will be set.

It is the responsibility of the client application to determine if a cookie meets the criteria required
to be submitted to the server. If the application wishes to send the cookie, it can use the
SetCookie method and specify the cookie name and value.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
GetFirstCookie, GetNextCookie, GetHeader, SetCookie, SetHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 GetContentType Method

INT GetContentType(
 LPTSTR lpszContentType,
 INT nMaxLength
);

The GetContentType method returns the content type for the current resource.

Parameters
hClient

Handle to the client session.

lpszContentType

A pointer to a buffer which will contain the MIME content type of the resource returned by the
web server. The buffer must be large enough to contain the entire content type string including
the terminating null character. This parameter is optional and may be NULL if the information is
not required.

nMaxLength

An integer value which specifies the maximum number of characters which can be copied into
the buffer. If the lpszContentType parameter is NULL, this value must be zero.

Return Value
If the method succeeds, the value indicates the type of resource returned by the server. If the
method fails, the return value is HTTP_ERROR. To get extended error information, call
GetLastError.

Constant Description

HTTP_CONTENT_UNKNOWN The content type for the resource could not be
determined. This can occur if the content type returned
by the server does not match a known value, such as
an experimental or non-standard content type.

HTTP_CONTENT_BINARY Application specific binary data which doesn't explicitly
fall into any of the other standard MIME types. The
most common type for binary data is application/octet-
stream which can represent any type of data. Other
examples are application/pdf and application/zip.

HTTP_CONTENT_TEXT Textual data which can include plain text, HTML
documents, XML, comma-separated value (CSV) data
or any other human readable text formats. Examples
are text/plain and text/html.

HTTP_CONTENT_AUDIO Audio data which can include MEPG audio and
Windows Media formats. Examples are audio/mpeg,
audio/mp4 and audio/x-ms-wma.

HTTP_CONTENT_IMAGE Image data which can include GIF, JPEG and PNG
image formats. Examples are image/gif and
image/jpeg.

HTTP_CONTENT_MESSAGE A content type which specifies the response includes

other messages, typically email messages in a standard
MIME format. This content type is not commonly used
with web services.

HTTP_CONTENT_MULTIPART A content type which includes multiple types of data in
a single response. The payload will typically be
encoded text and the contents will need to be decoded
to extract any binary data included in the message.

HTTP_CONTENT_VIDEO Video data which can include MP4 movies or Window
Media format video. Examples are video/mp4 and
video/x-ms-wmv.

HTTP_CONTENT_FONT Font data which can include TrueType and OpenType
fonts. Examples are font/tff and font/otf.

HTTP_CONTENT_MODEL Model data for 3D objects and scenes, such as those
used with the Virtual Reality Modeling Language
(VRML). Examples are model/3mf and model/vrml.

Remarks
This method does not examine the contents of the payload returned by the server and only
returns a value based on the Content-Type response header. If the web server does not recognize
the data format of the resource it is returning, it should identify it as application/octet-stream
and the content type would be returned as HTTP_CONTENT_BINARY. However, some servers
incorrectly return unrecognized formats as text/plain, causing the payload to be identified as
human-readable text rather than binary data.

Some servers will return a content type of text/plain for JSON responses and others will use the
IANA standard type of application/json. To ensure consistency with these two content types, this
method will always return MIME_CONTENT_TEXT for JSON responses.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
GetHeader, SetContentType, SetHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/http/class/setcontenttype.html

 CHttpClient::GetData Method

INT GetData(
 LPCTSTR lpszResource,
 LPBYTE lpBuffer,
 LPDWORD lpdwLength,
 DWORD dwOptions
);

INT GetData(
 LPCTSTR lpszResource,
 HGLOBAL* lpBuffer,
 LPDWORD lpdwLength,
 DWORD dwOptions
);

INT GetData(
 LPCTSTR lpszResource,
 LPTSTR lpBuffer,
 DWORD dwMaxLength
);

INT GetData(
 LPCTSTR lpszResource,
 CString& strBuffer,
 DWORD dwOptions
);

The GetData method requests a resource from the server and copies the data to the specified
buffer.

Parameters
lpszResource

A pointer to a string that specifies the resource that will be transferred to the local system. This
may be the name of a file on the server, or it may specify the name of a script that will be
executed and the output returned to the caller. This string may specify a valid URL for the
current server that the client is connected to.

lpBuffer

A pointer to a byte buffer which will contain the data transferred from the server, or a pointer to
a global memory handle which will reference the data when the method returns.

lpdwLength

A pointer to an unsigned integer which should be initialized to the maximum number of bytes
that can be copied to the buffer specified by the lpvBuffer parameter. If the lpvBuffer
parameter points to a global memory handle, the length value should be initialized to zero.
When the method returns, this value will be updated with the actual length of the file that was
downloaded.

dwMaxLength

An unsigned integer value which specifies the maximum number of characters can be copied
into the lpBuffer string. This parameter is used with the version of the method that returns the
data in a character array and includes the terminating null character. This value must be greater
than one and the lpBuffer parameter cannot be NULL, otherwise the method will return an
error.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

HTTP_TRANSFER_DEFAULT The default transfer mode. The resource data is
downloaded to the local system exactly as it is stored
on the server. If you are requesting a text-based
resource, the data may use a different end-of-line
character sequence. For example, the end-of-line
character may be a single linefeed character instead of
a carriage return and linefeed pair.

HTTP_TRANSFER_CONVERT If the resource being downloaded from the server is
textual, the data is automatically converted so that the
end of line character sequence is compatible with the
Windows platform. Individual carriage return or
linefeed characters are converted to carriage
return/linefeed character sequences.

HTTP_TRANSFER_COMPRESS This option informs the server that the client is willing
to accept compressed data. If the server supports
compression for the specified resource, then the data
will be automatically expanded before being returned
to the caller. This option is selected by default if
compression has been enabled using the
EnableCompression method.

HTTP_TRANSFER_ERRORDATA This option causes the client to accept error data from
the server if the request fails. If this option is specified,
an error response from the server will not cause the
method to fail. Instead, the response is returned to the
client and the method will succeed. If this option is
used, your application should call
HttpGetResultCode to obtain the HTTP status code
returned by the server. This will enable you to
determine if the operation was successful.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is HTTP_ERROR. To get extended error information, call GetLastError.

Remarks
The GetData method is used to retrieve a resource from the server and copy it into a local buffer.
The method may be used in one of two ways, depending on the needs of the application. The first
method is to pre-allocate a buffer large enough to store the contents of the file. In this case, the
lpBuffer parameter will point to the buffer that was allocated, the value that the lpdwLength
parameter points to should be initialized to the size of that buffer.

The second method that can be used is have the lpBuffer parameter point to a global memory
handle which will contain the file data when the method returns. In this case, the value that the
lpdwLength parameter points to must be initialized to zero. It is important to note that the

memory handle returned by the method must be freed by the application, otherwise a memory
leak will occur. See the example code below.

If the third method or fourth method is used, where the data is returned in a string buffer, the data
may be modified so that the end-of-line character sequence matches the convention used by the
Windows platform (a carriage return character followed by a linefeed). If Unicode is being used,
the data will be converted from a byte array to a Unicode string. An application should only use
these versions of the GetData method if the resource or remote file contains text.

If compression has been enabled and the server returns compressed data, it will be automatically
expanded before being returned to the caller. This will result in a difference between the value
returned in the lpdwLength parameter, which contains the actual number of bytes copied into the
buffer, and the values reported by GetTransferStatus. For example, if the server returns 5,000
bytes of compressed data that expands into 15,000 bytes, this function will return 15,000 as the
number of bytes copied into the buffer. However, the GetTransferStatus method will return the
content length as the original 5,000 bytes of compressed data. For this reason, you should always
use the value returned in the lpdwLength parameter to determine the amount of data that has
been copied into the buffer.

This method will cause the current thread to block until the file transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the HTTP_EVENT_PROGRESS event will be
periodically fired, enabling the application to update any user interface controls. Event notification
must be enabled, either by calling EnableEvents, or by registering a callback function using the
RegisterEvent method.

To determine the current status of a file transfer while it is in progress, use the GetTransferStatus
method.

Example
HGLOBAL hgblBuffer = (HGLOBAL)NULL;
LPBYTE lpBuffer = (LPBYTE)NULL;
DWORD cbBuffer = 0;

// Return the file data into block of global memory allocated by
// the GlobalAlloc function; the handle to this memory will be
// returned in the hgblBuffer parameter
nResult = pClient->GetData(lpszResource, &hgblBuffer, &cbBuffer);

if (nResult != HTTP_ERROR)
{
 // Lock the global memory handle, returning a pointer to the
 // resource data
 lpBuffer = (LPBYTE)GlobalLock(hgblBuffer);

 // After the data has been used, the handle must be unlocked
 // and freed, otherwise a memory leak will occur
 GlobalUnlock(hgblBuffer);
 GlobalFree(hgblBuffer);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetFile, GetText, GetTransferStatus, PostData, PutData, PutFile, SubmitRequest

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 GetDefaultUserAgent Method

INT GetDefaultUserAgent(
 LPTSTR lpszUserAgent,
 INT nMaxLength
);

INT GetDefaultUserAgent(
 CString& strUserAgent
);

The GetDefaultUserAgent method returns the default user agent string which is included with all
requests.

Parameters
lpszUserAgent

A pointer to a buffer which will contain the default user agent string when the method returns.
The buffer must be large enough to contain the entire user agent string including the
terminating null character. This parameter cannot be NULL. An alternate form of the method
accepts a CString variable which will contain the user agent.

nMaxLength

An integer value which specifies the maximum number of characters which can be copied into
the buffer.

Return Value
If the method succeeds, the return value is the number of characters copied into the string buffer.
If the method fails, the return value is HTTP_ERROR. To get extended error information, call
HttpGetLastError.

Remarks
When you submit a request to the server, a header named User-Agent is automatically defined
which identifies your application. It typically uses a format where you have a product name and
version number separated by a slash. There can be multiple products listed in the user agent
string, with additional optional information enclosed in parenthesis.

A server uses the user agent to determine what type of client has issued the request, including
what operating system and browser version was used. The HttpGetDefaultUserAgent method
returns a copy of that default value. The value of the user agent string depends on which version
of Windows the client is running on and whether the process is 32-bit or 64-bit. For example, a
64-bit application will typically return a value like this:

Mozilla/5.0 (Windows NT 6.2; Win64; x64) Chrome/114.0.0.0
Safari/537.36 SocketTools/11.0

Some web services check the value of the user agent string to determine if a compatible client is
being used to issue the request. The default value is designed to emulate a common browser, but
some services may require you change the user agent to use a specific value or include certain
product names and versions.

You can change the value of the user agent string in one of two ways. You can use the SetHeader
method to set the User-Agent header to a specific value for a client session, or you can use
SetDefaultUserAgent to set the default user agent string for all requests. If you use SetHeader
to change the user agent string for a client session, it will always override the default value.

To prevent any user agent string from being included with a request, include the
HTTP_OPTION_NOUSERAGENT option when connecting to the server or use SetOption to
enable that option after a connection has been established.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetDefaultUserAgent, SetDefaultUserAgent, SetOption, SetHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::GetEncodingType Method

INT GetEncodingType();

The GetEncodingType method determines which content-encoding option is enabled.

Parameters
None.

Return Value
If the method succeeds, the return value is one of the following values:

Value Constant Description

HTTP_ENCODING_NONE No encoding will be applied to the content of a
request and no default content type will be specified.
This encoding type should be used with REST APIs and
other services which expect XML or JSON request
payloads.

HTTP_ENCODING_URL Non-printable and extended ASCII characters will be
encoded so they can be safely used with URLs and
form data. Encoded characters will be represented by a
percent symbol prefix, followed by a two digit
hexadecimal value which represents the ASCII
character code. This encoding is typically used with
web services which process HTML form data.

HTTP_ENCODING_XML This encoding is identical to URL encoding, except
spaces are not encoded. It is used with legacy web
services which expect form data in an XML format and
cannot process encoded whitespace. This encoding
should not be specified for services which use REST
APIs.

If the method fails, the return value is HTTP_ERROR. To get extended error information, call
GetLastError.

Remarks
The default encoding type is HTTP_ENCODING_URL which is used for submitting data to services
which expect HTML form data using the HttpPostData or HttpSubmitForm functions.

When submitting a JSON or XML request to a service using a REST API, your application should
use HTTP_ENCODING_NONE and set the appropriate content type for the request payload. The
HTTP_ENCODING_XML encoding type should only be used if the server expects URL encoded
form data. The PostJson and PostXml methods will automatically set the correct encoding and
content type for those requests.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetContentType, PostData, PostJson, PostXml, SetEncodingType, SubmitForm

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::GetErrorString Method

INT GetErrorString(
 DWORD dwErrorCode,
 LPTSTR lpszDescription,
 INT cbDescription
);

INT GetErrorString(
 DWORD dwErrorCode,
 CString& strDescription
);

The GetErrorString method is used to return a description of a specific error code. Typically this is
used in conjunction with the GetLastError method for use with warning dialogs or as diagnostic
messages.

Parameters
dwErrorCode

The error code for which a description is returned.

lpszDescription

A pointer to the buffer that will contain a description of the specified error code. This buffer
should be at least 128 characters in length. An alternate form of the method accepts a CString
variable which will contain the error description.

cbDescription

The maximum number of characters that may be copied into the description buffer.

Return Value
If the method succeeds, the return value is the length of the description string. If the method fails,
the return value is zero, meaning that no description exists for the specified error code. Typically
this indicates that the error code passed to the method is invalid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetLastError, SetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::GetFile Method

INT GetFile(
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszRemoteFile,
 DWORD dwOptions
);

The GetFile method downloads the specified file on the server to the local system.

Parameters
lpszLocalFile

A pointer to a string that specifies the file on the local system that will be created, overwritten or
appended to. The file pathing and name conventions must be that of the local host.

lpszRemoteFile

A pointer to a string that specifies the resource on the server. This may be the name of a file on
the server, or it may specify the name of a script that will be executed and the output returned
to the caller. This string may specify a valid URL for the current server that the client is
connected to.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

HTTP_TRANSFER_DEFAULT The default transfer mode. The resource data is
downloaded to the local system exactly as it is stored
on the server. If you are requesting a text-based
resource, the data may use a different end-of-line
character sequence. For example, the end-of-line
character may be a single linefeed character instead of
a carriage return and linefeed pair.

HTTP_TRANSFER_CONVERT If the resource being downloaded from the server is
textual, the data is automatically converted so that the
end of line character sequence is compatible with the
Windows platform. Individual carriage return or
linefeed characters are converted to carriage
return/linefeed character sequences.

HTTP_TRANSFER_COMPRESS This option informs the server that the client is willing
to accept compressed data. If the server supports
compression for the specified resource, then the data
will be automatically expanded before being returned
to the caller. This option is selected by default if
compression has been enabled using the
EnableCompression method.

HTTP_TRANSFER_ERRORDATA This option causes the client to accept error data from
the server if the request fails. If this option is specified,
an error response from the server will not cause the
method to fail. Instead, the response is returned to the

client and the method will succeed. If this option is
used, your application should call
HttpGetResultCode to obtain the HTTP status code
returned by the server. This will enable you to
determine if the operation was successful.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is HTTP_ERROR. To get extended error information, call GetLastError.

Remarks
Enabling compression does not guarantee that the data returned by the server will actually be
compressed, it only informs the server that the client is willing to accept compressed data.
Whether or not a particular resource is compressed depends on the server configuration, and the
server may decide to only compress certain types of resources, such as text files. To determine if
the server compressed the data returned to the client, use the GetHeader method to get the
value of the Content-Encoding header after this function returns. If the header is defined, the
value specifies the compression method used, otherwise the data was not compressed.

This method will cause the current thread to block until the file transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the HTTP_EVENT_PROGRESS event will be
periodically fired, enabling the application to update any user interface controls. Event notification
must be enabled, either by calling EnableEvents, or by registering a callback function using the
RegisterEvent method.

To determine the current status of a file transfer while it is in progress, use the GetTransferStatus
method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
EnableCompression, EnableEvents, GetData, GetText, GetTransferStatus, PostData, PutData,
PutFile, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::GetFileSize Method

INT GetFileSize(
 LPCTSTR lpszFileName,
 LPDWORD lpdwFileSize
);

The GetFileSize method returns the size of the specified file on the server.

Parameters
lpszFileName

Points to a string that specifies the name of the remote file.

lpdwFileSize

Points to an unsigned integer that will contain the size of the specified file in bytes.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is HTTP_ERROR. To get extended error information, call GetLastError.

Remarks
This method uses the HEAD command to retrieve header information about the file without
downloading the contents of the file itself. This requires that the server support at least version 1.0
of the protocol standard, or an error will be returned.

The server may not return a file size for some resources. This is typically the case with scripts that
generate dynamic content because the server has no way of determining the size of the output
generated by the script without actually executing it. The server may also not provide a file size for
HTML documents which use server side includes (SSI) because that content is also dynamically
created by the server. If the request to the server was successful and the file exists, but the server
does not return a file size, the method will succeed but the file size returned to the caller will be
zero.

When a request is made to the server for information about the file, the library will attempt to
keep the connection alive, even if the HTTP_OPTION_KEEPALIVE option has not been specified for
the session. This allows an application to request the file size and then download the file without
having to write additional code to re-establish the connection. However, it is possible that the
attempt to keep the connection open will fail. In that case, an error will be returned and the client
handle will no longer be valid. If this happens, the lpdwFileSize parameter may still contain a valid
value. If the library was able to determine the file size, but was not able to maintain the connection
to the server, the returned file size will be greater than zero even if the method returns an error.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Command, GetFileTime, VerifyFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::GetFileTime Method

INT GetFileTime(
 LPCTSTR lpszFileName,
 LPSYSTEMTIME lpFileTime,
 BOOL bLocalize
);

The GetFileTime method returns the modification time for the specified file on the server.

Parameters
lpszFileName

Points to a string that specifies the name of the remote file.

lpFileTime

Points to a SYSTEMTIME structure that will be set to the current modification time for the
remote file.

bLocalize

A boolean flag which specifies if the file time is localized to the current timezone. If this value is
non-zero, then the file time is adjusted to that the time is local to the current system. If this
value is zero, the file time is returned in UTC time.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is HTTP_ERROR. To get extended error information, call GetLastError.

Remarks
The GetFileTime method can be used to determine the date and time that a file was last modified
on the server. The time may either be localized to the current system, or it may be returned as
UTC time.

This method uses the HEAD command to retrieve header information about the file without
downloading the contents of the file itself. This requires that the server support at least version 1.0
of the protocol standard, or an error will be returned.

The server may not return a modification time for some resources. If the request to the server was
successful and the file exists, but the server does not return a modification time, the method will
succeed but all of the members of the SYSTEMTIME structure will be zero.

When a request is made to the server for information about the file, the library will attempt to
keep the connection alive, even if the HTTP_OPTION_KEEPALIVE option has not been specified for
the session. This allows an application to request the modification time and then download the file
without having to write additional code to re-establish the connection. However, it is possible that
the attempt to keep the connection open will fail. In that case, an error will be returned and the
client handle will no longer be valid. If this happens, the SYSTEMTIME structure may still contain a
valid value. If the library was able to determine the modification time, but was not able to maintain
the connection to the server, the members of the SYSTEMTIME structure will specify a valid date
and time.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Command, GetFileSize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::GetFirstCookie Method

BOOL GetFirstCookie(
 LPTSTR lpszCookieName,
 LPINT lpnNameLen,
 LPTSTR lpszCookieValue,
 LPINT lpnValueLen
);

BOOL GetFirstCookie(
 CString& strCookieName,
 CString& lpszCookieValue
);

The GetFirstCookie method returns the first cookie set by the server.

Parameters
lpszCookieName

A pointer to a string buffer which will contain the name of the first cookie set by the server.

lpnNameLen

A pointer to an integer which specifies the maximum number of characters which may be
copied into the buffer, including the terminating null character. When the method returns, this
value is updated to specify the actual length of the cookie name string.

lpszCookieValue

A pointer to a string buffer which will contain the name of the first cookie value set by the
server. If the cookie value is not required, this parameter may be NULL.

lpnValueLen

A pointer to an integer which specifies the maximum number of characters which may be
copied into the buffer, including the terminating null character. When the method returns, this
value is updated to specify the actual length of the cookie value string. If the lpszCookieValue
parameter is NULL, this parameter should also be NULL.

Return Value
If the method succeeds, the return value is non-zero. If there are no cookies or the method fails,
the return value is zero. To get extended error information, call GetLastError.

Remarks
The GetFirstCookie method is used to enumerate the cookies set by the server after a resource
has been requested. To get information about a specific cookie, use the GetCookie method.

Example
CString strCookieName;
CString strCookieValue;
BOOL bResult;

// Get the first cookie set by the server
bResult = pClient->GetFirstCookie(strCookieName, strCookieValue);

while (bResult)
{
 // The strCookieName and strCookieValue strings contain the

 // the name and value for a cookie set by the server

 // Get the next cookie set by the server
 bResult = pClient->GetNextCookie(strCookieName, strCookieValue);
};

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
GetCookie, GetNextCookie, GetHeader, SetCookie, SetHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::GetFirstHeader Method

BOOL GetFirstHeader(
 LPTSTR lpszHeader,
 LPINT lpcchHeader
 LPTSTR lpszValue,
 LPINT lpcchValue
);

BOOL GetFirstHeader(
 CString& strHeader,
 CString& strValue
);

The GetFirstHeader method returns the name and value of the first response header.

Parameters
lpszHeader

A pointer to a string buffer that will contain the name of the header field when the method
returns.

lpcchHeader

A pointer to an integer which specifies the maximum number of characters which may be
copied into the buffer, including the terminating null character. When the method returns, this
value is updated to specify the actual length of the header name string.

lpszValue

A pointer to a string buffer that will contain the name of the header value when the method
returns.

lpcchValue

A pointer to an integer which specifies the maximum number of characters which may be
copied into the buffer, including the terminating null character. When the method returns, this
value is updated to specify the actual length of the header value string.

Return Value
If the method succeeds, the return value is non-zero. If the header field does not exist or the client
handle is invalid, the method returns a value of zero. To get extended error information, call
GetLastError.

Remarks
Use this method together with GetNextHeader to enumerate all request or response headers.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetHeader, GetNextHeader, SetHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::GetFormProperties Method

INT GetFormProperties(
 LPHTTPFORMPROPERTIES lpFormProp
);

The GetFormProperties function returns information about the current form.

Parameters
lpFormProp

Points to a HTTPFORMPROPERTIES structure which will contain information about the current
form.

Return Value
If the method succeeds, the return value is zero. If the function fails, the return value is
HTTP_ERROR. To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CreateForm, SetFormProperties, SubmitForm, HTTPFORMPROPERTIES

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::GetHandle Method

HCLIENT GetHandle();

The GetHandle method returns the client handle associated with the current instance of the class.

Parameters
None.

Return Value
This method returns the client handle associated with the current instance of the class object. If
there is no active client session, the value INVALID_CLIENT will be returned.

Remarks
This method is used to obtain the client handle created by the class for use with the SocketTools
API.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
AttachHandle, DetachHandle, IsInitialized

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::GetHeader Method

BOOL GetHeader(
 LPCTSTR lpszHeader,
 LPTSTR lpszValue,
 INT nMaxLength
);

BOOL GetHeader(
 LPCTSTR lpszHeader,
 CString& strValue
);

The GetHeader method returns the value of the specified response header field.

Parameters
lpszHeader

Pointer to a string which specifies the header value to be returned.

lpszValue

Pointer to a buffer which will contain the null-terminated string value of the specified header
field. This may also be a CString object which will contain the value of the header field when
the function returns.

nMaxLength

Maximum number of characters that may be copied into the buffer, including the terminating
null character.

Return Value
If the method succeeds, the return value is non-zero. If the header field does not exist or the client
handle is invalid, the method returns a value of zero. To get extended error information, call
GetLastError.

Remarks
When a resource is returned by the server, it consists of three parts. The first part consists of a
single line that indicates the result of the request. The second part is one or more header fields
which provides specific information about the resource, such as its size in bytes. The third part
consists of the resource data itself, such as the HTML document or image data. For example, this is
what the response to a request for a simple HTML document can look like:

HTTP/1.0 200 OK
Date: Mon, 5 Jan 2004 20:18:33 GMT
Content-Type: text/html
Last-Modified: Mon, 5 Jan 2004 19:34:19 GMT
Content-Length: 115

<html>
<head>
<title>Simple Document</title>
</head>
<body>
This is a simple HTML document.
<body>
</html>

The first line consists of the protocol version, a numeric response code and some text describing

the result. The subsequent lines are the header, which is similar to the headers used in email
messages. For example, the Date field specifies the date the resource was requested, the Content-
Type field specifies what type of resource was requested, and the Content-Length field specifies
the size of the resource in bytes. The end of the header block is indicated by an empty line (two
carriage-return/linefeed sequences), and is followed by the resource itself, in this case a simple
HTML document.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetCookie, GetFirstCookie, GetFirstHeader, GetNextCookie, GetNextHeader, SetHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::GetLastError Method

DWORD GetLastError();

DWORD GetLastError(
 CString& strDescription
);

Parameters
strDescription

A string which will contain a description of the last error code value when the method returns. If
no error has been set, or the last error code has been cleared, this string will be empty.

Return Value
The return value is the last error code value for the current thread. Functions set this value by
calling the SetLastError method. The Return Value section of each reference page notes the
conditions under which the method sets the last error code.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. You should call
the GetLastError method immediately when a method's return value indicates that an error has
occurred. That is because some methods call SetLastError(0) when they succeed, clearing the
error code set by the most recently failed method.

Most methods will set the last error code value when they fail; a few methods set it when they
succeed. Function failure is typically indicated by a return value such as FALSE, NULL,
INVALID_CLIENT or HTTP_ERROR. Those methods which call SetLastError when they succeed are
noted on the method reference page.

The description of the error code is the same string that is returned by the GetErrorString
method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
GetErrorString, SetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::GetFirstCookie Method

DWORD GetNextCookie(
 LPTSTR lpszCookieName,
 LPINT lpnNameLen,
 LPTSTR lpszCookieValue,
 LPINT lpnValueLen
);

DWORD GetNextCookie(
 CString& strCookieName,
 CString& strCookieValue
);

The GetNextCookie method returns the next cookie set by the server.

Parameters
lpszCookieName

A pointer to a string buffer which will contain the name of the first cookie set by the server.

lpnNameLen

A pointer to an integer which specifies the maximum number of characters which may be
copied into the buffer, including the terminating null character. When the method returns, this
value is updated to specify the actual length of the cookie name string.

lpszCookieValue

A pointer to a string buffer which will contain the name of the first cookie value set by the
server. If the cookie value is not required, this parameter may be NULL.

lpnValueLen

A pointer to an integer which specifies the maximum number of characters which may be
copied into the buffer, including the terminating null character. When the method returns, this
value is updated to specify the actual length of the cookie value string. If the lpszCookieValue
parameter is NULL, this parameter should also be NULL.

Return Value
If the method succeeds, the return value is non-zero. If there are no more cookies or the method
fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
The GetNextCookie method is used to enumerate the cookies set by the server after a resource
has been requested. To get information about a specific cookie, use the GetCookie method.

Example
CString strCookieName;
CString strCookieValue;
BOOL bResult;

// Get the first cookie set by the server
bResult = pClient->GetFirstCookie(strCookieName, strCookieValue);

while (bResult)
{
 // The strCookieName and strCookieValue strings contain the
 // the name and value for a cookie set by the server

 // Get the next cookie set by the server
 bResult = pClient->GetNextCookie(strCookieName, strCookieValue);
};

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
GetCookie, GetFirstCookie, GetHeader, SetCookie, SetHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::GetNextHeader Method

BOOL GetNextHeader(
 LPTSTR lpszHeader,
 LPINT lpcchHeader,
 LPTSTR lpszValue,
 LPINT lpcchValue
);

BOOL GetNextHeader(
 CString& strHeader,
 CString& strValue
);

The GetNextHeader method returns the name and value of the next response header.

Parameters
lpszHeader

A pointer to a string buffer that will contain the name of the header field when the method
returns.

lpcchHeader

A pointer to an integer which specifies the maximum number of characters which may be
copied into the buffer, including the terminating null character. When the method returns, this
value is updated to specify the actual length of the header name string.

lpszValue

A pointer to a string buffer that will contain the name of the header value when the method
returns.

lpcchValue

A pointer to an integer which specifies the maximum number of characters which may be
copied into the buffer, including the terminating null character. When the method returns, this
value is updated to specify the actual length of the header value string.

Return Value
If the method succeeds, the return value is non-zero. If the header field does not exist or the client
handle is invalid, the method returns a value of zero. To get extended error information, call
GetLastError.

Remarks
Use this method iteratively after GetFirstHeader to enumerate all request or response headers.

Unlike the GetHeader method, which returns a single header name and value, the
GetFirstHeader and GetNextHeader methods will return multiple headers that have the same
common name.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetHeader, GetFirstHeader, SetHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::GetOption Method

INT GetOption(
 DWORD dwOption,
 LPBOOL lpbEnabled
);

The GetOption method determines whether a specified HTTP option is enabled.

Parameters
dwOption

An unsigned integer which specifies the option that is to be checked. It may be one of the
following values:

Constant Description

HTTP_OPTION_NOCACHE This instructs the server to not return a cached
copy of the resource. When connected to an
HTTP 1.0 or earlier server, this directive may be
ignored.

HTTP_OPTION_KEEPALIVE This instructs the server to maintain a persistent
connection between requests. This can improve
performance because it eliminates the need to
establish a separate connection for each resource
that is requested.

HTTP_OPTION_REDIRECT This option specifies the client should
automatically handle resource redirection. If the
server indicates that the requested resource has
moved to a new location, the client will close the
current connection and request the resource from
the new location. Note that it is possible that the
redirected resource will be located on a different
server.

HTTP_OPTION_ERRORDATA This option specifies the client should return the
content of an error response from the server,
rather than returning an error code. Note that this
option will disable automatic resource redirection,
and should not be used with
HTTP_OPTION_REDIRECT.

HTTP_OPTION_NOUSERAGENT This option specifies the client should not include
a User-Agent header with any requests made
during the session. The user agent is a string
which is used to identify the client application to
the server.

HTTP_OPTION_TUNNEL This option specifies that a tunneled TCP
connection and/or port-forwarding is being used
to establish the connection to the server. This
changes the behavior of the client with regards to
internal checks of the destination IP address and

remote port number, default capability selection
and how the connection is established.

HTTP_OPTION_TRUSTEDSITE This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option
only affects connections using either the SSL or
TLS protocols.

HTTP_OPTION_SECURE This option specifies the client should attempt to
establish a secure connection with the server.
Note that the server must support secure
connections using either the SSL or TLS protocol.
The client will default to using TLS 1.2 or later for
secure connections.

HTTP_OPTION_SECURE_FALLBACK This option specifies the client should permit the
use of less secure cipher suites for compatibility
with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

HTTP_OPTION_PREFER_IPV6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be resolved
to both an IPv6 and IPv4 address. This option is
ignored if the local system does not have IPv6
enabled, or when the hostname can only be
resolved to an IPv4 address. If the server
hostname can only be resolved to an IPv6
address, the client will attempt to establish a
connection using IPv6 regardless if this option has
been specified.

HTTP_OPTION_FREETHREAD This option specifies the handle returned by this
function may be used by any thread, and is not
limited to the thread which created it. The
application is responsible for ensuring that access
to the handle is synchronized across multiple
threads.

HTTP_OPTION_HIRES_TIMER This option specifies the elapsed time for data
transfers should be returned in milliseconds
instead of seconds. This will return more accurate
transfer times for smaller amounts of data over
fast network connections.

lpbEnabled

A pointer to an integer which will be set to a non-zero value when the method returns if the
specified option has been enabled. If the option has not been enabled, a zero value will be
returned in the variable.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
HTTP_ERROR. To get extended error information, call GetLastError. Note that the value returned

in the lpbEnabled parameter is only valid if the method succeeds.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
Connect, SetOption

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::GetPriority Method

INT GetPriority();

The GetPriority method returns a value which specifies the priority of file transfers.

Parameters
None.

Return Value
If the method succeeds, the return value is the current file transfer priority. If the method fails, the
return value is HTTP_ERROR. To get extended error information, call GetLastError.

Remarks
The GetPriority method can be used to determine the current priority assigned to file transfers
performed by the client. It may be one of the following values:

Constant Description

HTTP_PRIORITY_NORMAL The default priority which balances resource utilization and
transfer speed. It is recommended that most applications use
this priority.

HTTP_PRIORITY_BACKGROUND This priority significantly reduces the memory, processor and
network resource utilization for the transfer. It is typically used
with worker threads running in the background when the
amount of time required perform the transfer is not critical.

HTTP_PRIORITY_LOW This priority lowers the overall resource utilization for the
transfer and meters the bandwidth allocated for the transfer.
This priority will increase the average amount of time required
to complete a file transfer.

HTTP_PRIORITY_HIGH This priority increases the overall resource utilization for the
transfer, allocating more memory for internal buffering. It can
be used when it is important to transfer the file quickly, and
there are no other threads currently performing file transfers
at the time.

HTTP_PRIORITY_CRITICAL This priority can significantly increase processor, memory and
network utilization while attempting to transfer the file as
quickly as possible. If the file transfer is being performed in
the main UI thread, this priority can cause the application to
appear to become non-responsive. No events will be
generated during the transfer.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also

SetPriority

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 GetRedirectUrl Method

INT GetRedirectUrl(
 LPTSTR lpszResource,
 INT nMaxLength
);

INT GetRedirectUrl(
 CString& strResource
);

The GetRedirectUrl method returns the URL for a redirected resource.

Parameters
lpszResource

A pointer to a string buffer which will contain the URL of the redirected resource when the
method returns. The string will be null terminated and the the buffer must be large enough to
accommodate the entire URL or the method will fail. This parameter cannot be a NULL pointer.
An alternate form of the method accepts a CString variable which will contain the URL.

nMaxLength

The maximum number of characters that may be copied into the string buffer. This value must
be greater than zero.

Return Value
If the method succeeds, the return value is the length of the URL. A return value of zero indicates
that the request was not redirected. If the method fails, the return value is HTTP_ERROR. To get
extended error information, call GetLastError.

Remarks
This method returns the complete URL for a request which has been redirected to a different
resource. This is useful for applications which do not wish to use automatic redirection and instead
prefer to handle the redirection by establishing a new connection by passing this value to the
ConnectUrl method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ConnectUrl, GetHeader GetResourceUrl,

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 GetResourceUrl Method

INT GetResourceUrl(
 LPTSTR lpszResource,
 INT nMaxLength
);

INT GetResourceUrl(
 CString& strResource
);

The GetResourceUrl method returns the URL for the current request.

Parameters
lpszResource

A pointer to a string buffer which will contain the URL of the current resource when the method
returns. The string will be null terminated and the the buffer must be large enough to
accommodate the entire URL or the method will fail. This parameter cannot be a NULL pointer.
An alternate form of the method accepts a CString variable which will contain the URL.

nMaxLength

The maximum number of characters that may be copied into the string buffer. This value must
be greater than zero.

Return Value
If the method succeeds, the return value is the length of the URL. If the method fails, the return
value is HTTP_ERROR. To get extended error information, call GetLastError.

Remarks
This method returns the URL for the current request which has been submitted to the server. This
can be useful for applications which need to compose a URL for display or logging purposes,
combining the connection information and resource path provided to methods such as GetData
or PostData.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ConnectUrl, GetData, GetRedirectUrl, PostData

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::GetResultCode Method

INT GetResultCode();

The GetResultCode method reads the result code returned by the server in response to a
command. The result code is a three-digit numeric code, and indicates if the operation succeeded,
failed or requires additional action by the client.

Parameters
None.

Return Value
If the method succeeds, the return value is the result code. If the method fails, the return value is
HTTP_ERROR. To get extended error information, call GetLastError.

Remarks
Result codes are three-digit numeric values returned by the server. They may be broken down into
the following ranges:

Value Description

100-
199

Positive preliminary result. This indicates that the requested action is being initiated, and
the client should expect another reply from the server before proceeding.

200-
299

Positive completion result. This indicates that the server has successfully completed the
requested action.

300-
399

Positive intermediate result. This indicates that the requested action cannot complete
until additional information is provided to the server.

400-
499

Transient negative completion result. This indicates that the requested action did not
take place, but the error condition is temporary and may be attempted again.

500-
599

Permanent negative completion result. This indicates that the requested action did not
take place.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
Command, GetResultString

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::GetResultString Method

INT GetResultString(
 LPTSTR lpszResult,
 INT cbResult
);

INT GetResultString(
 CString& strResult
);

The GetResultString method returns the last message sent by the server along with the result
code.

Parameters
lpszResult

A pointer to the buffer that will contain the result string returned by the server. An alternate
form of the method accepts a CString argument which will contain the result string returned by
the server.

cbResult

The maximum number of characters that may be copied into the result string buffer, including
the terminating null character.

Return Value
If the method succeeds, the return value is the length of the result string. If a value of zero is
returned, this means that no result string was sent by the server. If the method fails, the return
value is HTTP_ERROR. To get extended error information, call GetLastError.

Remarks
The GetResultString method is most useful when an error occurs because the server will typically
include a brief description of the cause of the error. This can then be parsed by the application or
displayed to the user. The result string is updated each time the client sends a command to the
server and then calls GetResultCode to obtain the result code for the operation.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Command, GetResultCode

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::GetSecurityInformation Method

BOOL GetSecurityInformation(
 LPSECURITYINFO lpSecurityInfo
);

The GetSecurityInformation method returns security protocol, encryption and certificate
information about the current client connection.

Parameters
lpSecurityInfo

A pointer to a SECURITYINFO structure which contains information about the current client
connection. The dwSize member of this structure must be initialized to the size of the structure
before passing the address of the structure to this method.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
This method is used to obtain security related information about the current client connection to
the server. It can be used to determine if a secure connection has been established, what security
protocol was selected, and information about the server certificate. Note that a secure connection
has not been established, the dwProtocol structure member will contain the value
SECURITY_PROTOCOL_NONE.

Example
The following example notifies the user if the connection is secure or not:

SECURITYINFO securityInfo;
securityInfo.dwSize = sizeof(SECURITYINFO);

if (pClient->GetSecurityInformation(&securityInfo))
{
 if (securityInfo.dwProtocol == SECURITY_PROTOCOL_NONE)
 {
 MessageBox(NULL, _T("The connection is not secure"),
 _T("Connection"), MB_OK);
 }
 else
 {
 if (securityInfo.dwCertStatus == SECURITY_CERTIFICATE_VALID)
 {
 MessageBox(NULL, _T("The connection is secure"),
 _T("Connection"), MB_OK);
 }
 else
 {
 MessageBox(NULL, _T("The server certificate not valid"),
 _T("Connection"), MB_OK);
 }
 }
}

Requirements

Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Connect, CreateSecurityCredentials, SECURITYINFO

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::GetStatus Method

INT GetStatus();

The GetStatus method the current status of the client session.

Parameters
None.

Return Value
If the method succeeds, the return value is the client status code. If the method fails, the return
value is HTTP_ERROR. To get extended error information, call GetLastError.

Remarks
The GetStatus method returns a numeric code which identifies the current state of the client
session. The following values may be returned:

Value Constant Description

0 HTTP_STATUS_UNUSED No connection has been established.

1 HTTP_STATUS_IDLE The client is current idle and not sending or
receiving data.

2 HTTP_STATUS_CONNECT The client is establishing a connection with the
server.

3 HTTP_STATUS_READ The client is reading data from the server.

4 HTTP_STATUS_WRITE The client is writing data to the server.

5 HTTP_STATUS_DISCONNECT The client is disconnecting from the server.

6 HTTP_STATUS_GETDATA The client is downloading data from the server.

7 HTTP_STATUS_PUTDATA The client is uploading data to the server.

8 HTTP_STATUS_POSTDATA The client is posting data to a script on the
server.

In a multithreaded application, any thread in the current process may call this method to obtain
status information for the specified client session. To obtain status information about a file transfer,
use the GetTransferStatus method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
IsBlocking, IsInitialized, IsReadable, IsWritable, GetTransferStatus

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::GetText Method

INT GetText(
 LPCTSTR lpszResource,
 LPTSTR lpszBuffer,
 INT nMaxLength
);

The GetText method copies the contents of a text file on the server, or the text output from a
script, to the specified string buffer.

Parameters
lpszResource

A pointer to a string that specifies the resource that will be transferred to the local system. This
may be the name of a file on the server, or it may specify the name of a script that will be
executed and the output returned to the caller. This string may specify a valid URL for the
current server that the client is connected to.

lpszBuffer

A pointer to a string buffer which will contain the contents of the text file when the method
returns. This buffer should be large enough to store the contents of the file, including a
terminating null character. This parameter cannot be NULL.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer. This value must be larger than zero. If this value is smaller than the actual size of
the text file, the data returned will be truncated.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is HTTP_ERROR. To get extended error information, call GetLastError.

Remarks
The GetText method is used to download a text file or retrieve the text output from a script and
store the contents in a string buffer. Because binary data can include embedded null characters
which would truncate the string, this method should only be used with text files or script output
that is known to be textual. For example, it is safe to use this method when a resource returns
HTML or XML data, but should not be used if it returns an image or executable file.

This method has been included as a convenience for applications that need to retrieve relatively
small amounts of textual data and manipulate the contents as a string. If the Unicode version of
this method is called, the text is automatically converted to a Unicode string. If the maximum
amount of data being returned is unknown or the amount of text is very large, it is recommended
that you use the GetData or GetFile methods.

If you use the GetFileSize method to determine how large the string buffer should be prior to
calling this method, it is important to be aware that the actual number of characters may differ
based on the end-of-line conventions used by the host operating system. For example, if you call
GetFileSize to obtain the size of a text file on a UNIX system, the value will not be large enough
to store the complete file because UNIX uses a single linefeed (LF) character to indicate the end-
of-line, while a Windows system will use a carriage-return and linefeed (CRLF) pair. To
accommodate this difference, you should always allocate extra memory for the string buffer to
store the additional end-of-line characters.

HTTP_EVENT_PROGRESS event will be periodically fired, enabling the application to update any
user interface controls. Event notification must be enabled, either by calling EnableEvents, or by
registering a callback function using the RegisterEvent method.

To determine the current status of a file transfer while it is in progress, use the GetTransferStatus
method.

Example
LPTSTR lpszBuffer = (LPTSTR)calloc(MAXFILESIZE, sizeof(TCHAR));

if (lpszBuffer == NULL)
 return;

nResult = pHttpClient->GetText(lpszRemoteFile, lpszBuffer, MAXFILESIZE);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshttpv10.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
EnableEvents, GetData, GetFile, GetTransferStatus, PutData, PutFile, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::GetTimeout Method

INT GetTimeout();

The GetTimeout method returns the number of seconds the client will wait for a response from
the server. Once the specified number of seconds has elapsed, the method will fail and return to
the caller.

Parameters
None.

Return Value
If the method succeeds, the return value is the timeout period in seconds. If the method fails, the
return value is HTTP_ERROR. To get extended error information, call GetLastError.

Remarks
The timeout value is only used with blocking client connections. A value of zero indicates that the
default timeout period of 20 seconds should be used.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
Connect, IsReadable, IsWritable, Read, SetTimeout, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::GetTransferStatus Method

INT GetTransferStatus(
 LPHTTPTRANSFERSTATUS lpStatus
);

INT GetTransferStatus(
 LPHTTPTRANSFERSTATUSEX lpStatus
);

The GetTransferStatus method returns information about the current data transfer in progress.

Parameters
lpStatus

A pointer to an HTTPTRANSFERSTATUS or HTTPTRANSFERSTATUSEX structure which
contains information about the status of the current data transfer.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
HTTP_ERROR. To get extended error information, call GetLastError.

Remarks
The GetTransferStatus method returns information about the current data transfer, including the
average number of bytes transferred per second and the estimated amount of time until the
transfer completes. If there is no data currently being transferred, this method will return the status
of the last successful data transfer made by the client.

In a multithreaded application, any thread in the current process may call this method to obtain
status information for the specified client session.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
EnableEvents, GetStatus, RegisterEvent, HTTPTRANSFERSTATUS, HTTPTRANSFERSTATUSEX

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::IsBlocking Method

BOOL IsBlocking();

The IsBlocking method is used to determine if the client is currently performing a blocking
operation.

Parameters
None.

Return Value
If the client is performing a blocking operation, the method returns a non-zero value. If the client
is not performing a blocking operation, or the client handle is invalid, the method returns zero.

Remarks
Because a blocking operation can allow the application to be re-entered (for example, by pressing
a button while the operation is being performed), it is possible that another blocking method may
be called while it is in progress. Since only one thread of execution may perform a blocking
operation at any one time, an error would occur. The IsBlocking method can be used to
determine if the client is already blocked, and if so, take some other action (such as warning the
user that they must wait for the operation to complete).

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Cancel, GetStatus, IsConnected, IsInitialized, IsReadable, IsWritable, Read, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::IsConnected Method

BOOL IsConnected();

The IsConnected method is used to determine if the client is currently connected to a server.

Parameters
None.

Return Value
If the client is connected to a server, the method returns a non-zero value. If the client is not
connected, or the client handle is invalid, the method returns zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
GetStatus, IsBlocking, IsInitialized, IsReadable, IsWritable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::IsInitialized Method

BOOL IsInitialized();

The IsInitialized method returns whether or not the class object has been successfully initialized.

Return Value
This method returns a non-zero value if the class object has been successfully initialized. A return
value of zero indicates that the runtime license key could not be validated or the networking
library could not be loaded by the current process.

Remarks
When an instance of the class is created, the class constructor will attempt to initialize the
component with the runtime license key that was created when SocketTools was installed. If the
constructor is unable to validate the license key or load the networking libraries, this initialization
will fail.

If SocketTools was installed with an evaluation license, the application cannot be redistributed to
another system. The class object will fail to initialize if the application is executed on another
system, or if the evaluation period has expired. To redistribute your application, you must
purchase a development license which will include the runtime key that is needed to redistribute
your software to other systems. Refer to the Developer's Guide for more information.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
CHttpClient, IsBlocking, IsConnected

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::IsReadable Method

BOOL IsReadable(
 INT nTimeout,
 LPDWORD lpdwAvail
);

The IsReadable method is used to determine if data is available to be read from the server.

Parameters
nTimeout

Timeout for server response, in seconds. A value of zero specifies that the connection should be
polled without blocking the current thread.

lpdwAvail

A pointer to an unsigned integer which will contain the number of bytes available to read. This
parameter may be NULL if this information is not required.

Return Value
If the client can read data from the server within the specified timeout period, the method returns
a non-zero value. If the client cannot read any data, the method returns zero.

Remarks
On some platforms, this value will not exceed the size of the receive buffer (typically 64K bytes).
Because of differences between TCP/IP stack implementations, it is not recommended that your
application exclusively depend on this value to determine the exact number of bytes available.
Instead, it should be used as a general indicator that there is data available to be read.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
GetStatus, IsBlocking, IsConnected, IsInitialized, IsWritable, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::IsWritable Method

BOOL IsWritable(
 INT nTimeout
);

The IsWritable method is used to determine if data can be written to the server.

Parameters
nTimeout

Timeout for server response, in seconds. A value of zero specifies that the connection should be
polled without blocking the current thread.

Return Value
If the client can write data to the server within the specified timeout period, the method returns a
non-zero value. If the client cannot write any data, the method returns zero.

Remarks
Although this method can be used to determine if some amount of data can be sent to the
remote process it does not indicate the amount of data that can be written without blocking the
client. In most cases, it is recommended that large amounts of data be broken into smaller logical
blocks, typically some multiple of 512 bytes in length.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
GetStatus, IsBlocking, IsConnected, IsInitialized, IsReadable, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::OpenFile Method

INT OpenFile(
 LPCTSTR lpszFileName
);

The OpenFile method opens the specified file on the server.

Parameters
lpszFileName

Points to a string that specifies the name of the remote file to open.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is HTTP_ERROR. To get extended error information, call GetLastError.

Remarks
Only one file may be opened at a time for each client session. Use the CloseFile method to close
the file on the server.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CloseFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::PatchData Method

INT PatchData(
 LPCTSTR lpszResource,
 LPCTSTR lpszPatchData,
 LPBYTE lpResult,
 LPDWORD lpcbResult,
 DWORD dwOptions
);

INT PatchData(
 LPCTSTR lpszResource,
 LPCTSTR lpszPatchData,
 HGLOBAL* lpResult,
 LPDWORD lpcbResult,
 DWORD dwOptions
);

INT PatchData(
 LPCTSTR lpszResource,
 LPCTSTR lpszPatchData,
 CString& strResult,
 DWORD dwOptions
);

The PatchData method submits patch data to the server and returns the result in a buffer
provided by the caller.

Parameters
hClient

Handle to the client session.

lpszResource

A pointer to a string that specifies the resource name that the patch data will be submitted to.
Typically this is the name of a script on the server.

lpszPatchData

A pointer to a string that specifies the patch data that will be submitted to the server.

lpvResult

A pointer to a byte buffer which will contain the data returned by the server, or a pointer to a
global memory handle which will reference the data when the method returns. An alternate
version of this method accepts a CString object which will contain the server response.

lpcbResult

A pointer to an unsigned integer which should be initialized to the maximum number of bytes
that can be copied to the buffer specified by the lpvResult parameter. If the lpvResult
parameter points to a global memory handle, the length value should be initialized to zero.
When the method returns, this value will be updated with the actual number of bytes of data
that was returned.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

HTTP_PATCH_DEFAULT The default patch mode. The contents of the buffer will be
submitted without encoding. The data returned by the
server is copied to the result buffer exactly as it is returned
from the server.

HTTP_PATCH_CONVERT If the data being returned from the server is textual, it is
automatically converted so that the end of line character
sequence is compatible with the Windows platform.
Individual carriage return or linefeed characters are
converted to carriage return/linefeed character sequences.
Note that this option does not have any effect on the form
data being submitted to the server, only on the data
returned by the server.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is HTTP_ERROR. To get extended error information, call GetLastError.

Remarks
The PatchData method is used to submit XML or JSON formatted patch data to a service, and
then returns a copy of the response from the server into a local buffer. This method will not
perform any encoding and will not automatically define the type of patch data being submitted.
Your application is responsible for specifying the content type for the patch data, and ensuring
that the XML or JSON data that is being submitted to the server is formatted correctly.

This method sends a PATCH command to the server, which is similar to a POST or PUT request. It
is used to make partial updates to a resource, rather than creating or replacing it entirely. The
format of the patch data is specific to the service being used. If the resource being patched does
not exist, the behavior is defined by the server. If enough information is provided, it may choose to
create the resource just as if a PUT command was used, or it may return an error.

Your application should use the SetHeader method to define the Content-Type header prior to
calling the PatchData method. One of the most common formats used is the JSON Merge Patch
which is defined in RFC 7396. The value for the Content-Type header for this patch format is
"application/merge-patch+json". Refer to your service API documentation to determine what
patch formats are acceptable, along with any additional header values that must be defined.

The method may be used in one of two ways, depending on the needs of the application. The first
approach is to pre-allocate a buffer large enough to store the resulting output of the script. In this
case, the lpvResult parameter will point to the buffer that was allocated by the client and the value
that the lpcbResult parameter points to should be initialized to the size of that buffer.

The second approach is to have the lpvResult parameter point to a global memory handle which
will contain the data when the method returns. In this case, the value that the lpcbResult
parameter points to must be initialized to zero. It is important to note that the memory handle
returned by the method must be freed by the application, otherwise a memory leak will occur. See
the example code below.

This method will cause the current thread to block until the post completes, a timeout occurs or
the operation is canceled. During the transfer, the HTTP_EVENT_PROGRESS event will be
periodically fired, enabling the application to update any user interface controls. Event notification
must be enabled, either by calling EnableEvents, or by registering a callback function using the
RegisterEvent method.

To determine the current status of the transaction while it is in progress, use the
GetTransferStatus method.

Example
HGLOBAL hgblBuffer = (HGLOBAL)NULL;
LPBYTE lpBuffer = (LPBYTE)NULL;
DWORD cbBuffer = 0;

// Store the script output into block of global memory allocated by
// the GlobalAlloc function; the handle to this memory will be
// returned in the hgblBuffer parameter. Since the output from the
// script is textual, the HTTP_PATCH_CONVERT option is used

nResult = lpClient->PatchData(lpszResource,
 lpszPatchData,
 &hgblBuffer,
 &cbBuffer,
 HTTP_PATCH_CONVERT);

if (nResult != HTTP_ERROR)
{
 // Lock the global memory handle, returning a pointer to the
 // output data from the script
 lpBuffer = (LPBYTE)GlobalLock(hgblBuffer);

 // After the data has been used, the handle must be unlocked
 // and freed, otherwise a memory leak will occur
 GlobalUnlock(hgblBuffer);
 GlobalFree(hgblBuffer);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
EnableEvents, GetData, GetTransferStatus, PostData, PostJson, PostXml, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::PostData Method

INT PostData(
 LPCTSTR lpszResource,
 LPBYTE lpBuffer,
 DWORD cbBuffer,
 LPBYTE lpResult,
 LPDWORD lpcbResult,
 DWORD dwOptions
);

INT PostData(
 LPCTSTR lpszResource,
 LPBYTE lpBuffer,
 DWORD cbBuffer,
 HGLOBAL* lpResult,
 LPDWORD lpcbResult,
 DWORD dwOptions
);

INT PostData(
 LPCTSTR lpszResource,
 LPCTSTR lpszBuffer,
 CString& strResult,
 DWORD dwOptions
);

The PostData method submits the contents of the specified buffer to a script on the server and
returns the result in a buffer provided by the caller.

Parameters
lpszResource

A pointer to a string that specifies the resource that the data will be posted to on the server.
Typically this is the name of an executable script. This string may specify a valid URL for the
current server that the client is connected to.

lpBuffer

A pointer to the data that will be provided to the script. This parameter may be NULL if the
script does not require any additional data from the client. In an alternate form of the method,
this may point to a string which contains the data to be posted.

cbBuffer

The number of bytes to copy from the buffer. If the lpBuffer parameter is NULL, this value
should be zero.

lpResult

A pointer to a byte buffer which will contain the data returned by the server, or a pointer to a
global memory handle which will reference the data when the method returns. An alternate
version of this method accepts a CString object which will contain the server response.

lpcbResult

A pointer to an unsigned integer which should be initialized to the maximum number of bytes
that can be copied to the buffer specified by the lpvBuffer parameter. If the lpvResult
parameter points to a global memory handle, the length value should be initialized to zero.
When the method returns, this value will be updated with the actual number of bytes of data

that was returned.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

HTTP_POST_DEFAULT The default post mode. The contents of the buffer are
encoded and sent as standard form data. The data
returned by the server is copied to the result buffer exactly
as it is returned from the server.

HTTP_POST_CONVERT If the data being returned from the server is textual, it is
automatically converted so that the end of line character
sequence is compatible with the Windows platform.
Individual carriage return or linefeed characters are
converted to carriage return/linefeed character sequences.
Note that this option does not have any effect on the form
data being submitted to the server, only on the data
returned by the server.

HTTP_POST_MULTIPART The contents of the buffer being sent to the server consists
of multipart form data and will be sent as-is without any
encoding.

HTTP_POST_ERRORDATA This option causes the client to accept error data from the
server if the request fails. If this option is specified, an error
response from the server will not cause the method to fail.
Instead, the response is returned to the client and the
method will succeed.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is HTTP_ERROR. To get extended error information, call GetLastError.

Remarks
The PostData method is used to submit data to a script that executes on the server and then
copy the output from that script into a local buffer. If you are submitting XML formatted data to
the server, it is recommended that you use the PostXml method to ensure that the correct
content type and encoding is automatically selected.

The method may be used in one of two ways, depending on the needs of the application. The first
method is to pre-allocate a buffer large enough to store the resulting output of the script. In this
case, the lpvResult parameter will point to the buffer that was allocated by the client and the value
that the lpcbResult parameter points to should be initialized to the size of that buffer.

The second method that can be used is have the lpvResult parameter point to a global memory
handle which will contain the data when the method returns. In this case, the value that the
lpcbResult parameter points to must be initialized to zero. It is important to note that the memory
handle returned by the method must be freed by the application, otherwise a memory leak will
occur. See the example code below.

It is common for servers to return additional information about a failed request in their response
to the client. If you need to process this information, use the HTTP_POST_ERRORDATA option

which causes the error message to be returned in the lpvResult buffer provided by the caller. If
this option is used, your application should call GetResultCode to obtain the HTTP status code
returned by the server. This will enable you to determine if the operation was successful.

This method will cause the current thread to block until the post completes, a timeout occurs or
the operation is canceled. During the transfer, the HTTP_EVENT_PROGRESS event will be
periodically fired, enabling the application to update any user interface controls. Event notification
must be enabled, either by calling EnableEvents, or by registering a callback function using the
RegisterEvent method.

To determine the current status of a file transfer while it is in progress, use the GetTransferStatus
method.

Example
HGLOBAL hgblBuffer = (HGLOBAL)NULL;
LPBYTE lpBuffer = (LPBYTE)NULL;
DWORD cbBuffer = 0;

// Store the script output into block of global memory allocated by
// the GlobalAlloc function; the handle to this memory will be
// returned in the hgblBuffer parameter. Since the output from the
// script is textual, the HTTP_POST_CONVERT option is used

nResult = lpClient->PostData(lpszResource,
 lpParameters,
 cbParameters,
 &hgblBuffer,
 &cbBuffer,
 HTTP_POST_CONVERT);

if (nResult != HTTP_ERROR)
{
 // Lock the global memory handle, returning a pointer to the
 // output data from the script
 lpBuffer = (LPBYTE)GlobalLock(hgblBuffer);

 // After the data has been used, the handle must be unlocked
 // and freed, otherwise a memory leak will occur
 GlobalUnlock(hgblBuffer);
 GlobalFree(hgblBuffer);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetData, GetTransferStatus, PostJson, PostXml, PutData, SubmitRequest

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::PostFile Method

INT PostFile(
 LPCTSTR lpszFileName,
 LPCTSTR lpszResource,
 LPCTSTR lpszFieldName
);

The PostFile method posts the contents of the specified file to a script executed on the server.

Parameters
lpszFileName

A pointer to a string that specifies the file that will be transferred from the local system. The file
pathing and name conventions must be that of the local host.

lpszResource

A pointer to a string that specifies the resource on the server that the file data will be posted to.
Typically this is the name of a script that is responsible for processing and storing the file data.

lpszFieldName

A pointer to a string that corresponds to the form field name that the script expects. If this
parameter is NULL or an empty string, a default field name of "File1" is used.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is HTTP_ERROR. To get extended error information, call GetLastError.

Remarks
The PostFile method is similar to the PutFile method in that it can be used to upload the
contents of a local file to a server. However, instead of using the PUT command, the POST
command is used to send the file data to a script that is executed on the server. This method has
the advantage of not requiring any special configuration settings on the server, however it does
require that the script be able to process multipart/form-data as defined in RFC 2388.

To support uploading files from a form on a webpage, the FILE input type is used along with the
action that specifies the script that will accept the file data and process it. For example, the HTML
code could look like this:

<form action="/cgi-bin/upload.cgi" method="post" enctype="multipart/form-
data">
<input type="file" name="datafile" size="20">
<input type="submit">
</form>

In this example, the script /cgi-bin/upload.cgi is responsible for processing the file data that is
posted by the client, and the form field name "datafile" is used. The user can select a file, and
when the Submit button is clicked, the file data is posted to the script. To simulate this using the
PostFile method, the lpszFileName parameter should be set to the name of the local file that will
be posted to the server. The lpszResource parameter should be the name of the script, in this case
"/cgi-bin/upload.cgi". The lpszFieldName parameter should be specified as the string "datafile" to
match the name of the field used by the form.

Note that the PostFile method always submits the file contents as multipart/form-data with the
content type set to application/octet-stream. The script that accepts the posted data must be able
to parse the multipart header block and correctly process 8-bit data. If the script assumes that the

data will be posted using a specific encoding type such as base64 then the file data may not be
accepted or may be corrupted by the script.

This method will cause the current thread to block until the file transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the HTTP_EVENT_PROGRESS event will be
periodically fired, enabling the application to update any user interface controls. Event notification
must be enabled, either by calling EnableEvents, or by registering a callback function using the
RegisterEvent method.

To determine the current status of a file transfer while it is in progress, use the GetTransferStatus
method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
EnableEvents, GetData, GetFile, GetTransferStatus, PostData, PutData, PutFile, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::PostJson Method

INT PostJson(
 LPCTSTR lpszResource,
 LPCTSTR lpszJsonData,
 LPBYTE lpResult,
 LPDWORD lpcbResult,
 DWORD dwOptions
);

INT PostJson(
 LPCTSTR lpszResource,
 LPCTSTR lpszJsonData,
 HGLOBAL* lpResult,
 LPDWORD lpcbResult,
 DWORD dwOptions
);

INT PostJson(
 LPCTSTR lpszResource,
 LPCTSTR lpszJsonData,
 CString& strResult,
 DWORD dwOptions
);

The PostJson method submits JSON formatted data to a script on the server and returns the
result in a buffer provided by the caller.

Parameters
lpszResource

A pointer to a string that specifies the resource that the data will be posted to on the server.
Typically this is the name of an executable script.

lpszJsonData

A pointer to a string that specifies the JSON data that will be submitted to the server.

lpResult

A pointer to a byte buffer which will contain the data returned by the server, or a pointer to a
global memory handle which will reference the data when the method returns. An alternate
version of this method accepts a CString object which will contain the server response.

lpcbResult

A pointer to an unsigned integer which should be initialized to the maximum number of bytes
that can be copied to the buffer specified by the lpvResult parameter. If the lpvResult
parameter points to a global memory handle, the length value should be initialized to zero.
When the method returns, this value will be updated with the actual number of bytes of data
that was returned.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

HTTP_POST_DEFAULT The default post mode. The contents of the buffer will be
submitted without encoding and should use the standard

JSON format. The data returned by the server is copied to
the result buffer exactly as it is returned from the server.

HTTP_POST_CONVERT If the data being returned from the server is textual, it is
automatically converted so that the end of line character
sequence is compatible with the Windows platform.
Individual carriage return or linefeed characters are
converted to carriage return/linefeed character sequences.
Note that this option does not have any effect on the form
data being submitted to the server, only on the data
returned by the server.

HTTP_POST_ERRORDATA This option causes the client to accept error data from the
server if the request fails. If this option is specified, an error
response from the server will not cause the method to fail.
Instead, the response is returned to the client and the
method will succeed.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is HTTP_ERROR. To get extended error information, call GetLastError.

Remarks
The PostJson method is used to submit JSON formatted data to a script that executes on the
server and then copy the output from that script into a local buffer. This function automatically
sets the correct content type and encoding required for submitting JSON data to a server,
however it does not parse the JSON data itself to ensure that it is well-formed. Your application is
responsible for ensuring that the JSON data that is being submitted to the server is formatted
correctly.

The method may be used in one of two ways, depending on the needs of the application. The first
method is to pre-allocate a buffer large enough to store the resulting output of the script. In this
case, the lpvResult parameter will point to the buffer that was allocated by the client and the value
that the lpcbResult parameter points to should be initialized to the size of that buffer.

The second method that can be used is have the lpvResult parameter point to a global memory
handle which will contain the data when the method returns. In this case, the value that the
lpcbResult parameter points to must be initialized to zero. It is important to note that the memory
handle returned by the method must be freed by the application, otherwise a memory leak will
occur. See the example code below.

If the content type for the request has not been explicitly specified, it will be automatically updated
by this function to use the "application/json" content type. You can override the default content
type for the request by calling the SetHeader method prior to calling this method. Most servers
require you to explicitly specify what type of data is being submitted by the client and will reject
requests which do not correctly identify the content type.

It is common for servers to return additional information about a failed request in their response
to the client. If you need to process this information, use the HTTP_POST_ERRORDATA option
which causes the error message to be returned in the lpvResult buffer provided by the caller. If
this option is used, your application should call GetResultCode to obtain the HTTP status code
returned by the server. This will enable you to determine if the operation was successful.

This method will cause the current thread to block until the post completes, a timeout occurs or

the operation is canceled. During the transfer, the HTTP_EVENT_PROGRESS event will be
periodically fired, enabling the application to update any user interface controls. Event notification
must be enabled, either by calling EnableEvents, or by registering a callback function using the
RegisterEvent method.

To determine the current status of a file transfer while it is in progress, use the GetTransferStatus
method.

Example
HGLOBAL hgblBuffer = (HGLOBAL)NULL;
LPBYTE lpBuffer = (LPBYTE)NULL;
DWORD cbBuffer = 0;

// Store the script output into block of global memory allocated by
// the GlobalAlloc function; the handle to this memory will be
// returned in the hgblBuffer parameter. Since the output from the
// script is textual, the HTTP_POST_CONVERT option is used
nResult = lpClient->PostJson(lpszResource,
 lpszJsonData,
 &hgblBuffer,
 &cbBuffer,
 HTTP_POST_CONVERT);

if (nResult != HTTP_ERROR)
{
 // Lock the global memory handle, returning a pointer to the
 // output data from the script
 lpBuffer = (LPBYTE)GlobalLock(hgblBuffer);

 // After the data has been used, the handle must be unlocked
 // and freed, otherwise a memory leak will occur
 GlobalUnlock(hgblBuffer);
 GlobalFree(hgblBuffer);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetData, GetTransferStatus, PostData, PostXml, PutData, SubmitRequest

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::PostXml Method

INT PostXml(
 LPCTSTR lpszResource,
 LPCTSTR lpszXmlData,
 LPBYTE lpResult,
 LPDWORD lpcbResult,
 DWORD dwOptions
);

INT PostXml(
 LPCTSTR lpszResource,
 LPCTSTR lpszXmlData,
 HGLOBAL* lpResult,
 LPDWORD lpcbResult,
 DWORD dwOptions
);

INT PostXml(
 LPCTSTR lpszResource,
 LPCTSTR lpszXmlData,
 CString& strResult,
 DWORD dwOptions
);

The PostXml method submits XML formatted data to a script on the server and returns the result
in a buffer provided by the caller.

Parameters
lpszResource

A pointer to a string that specifies the resource that the data will be posted to on the server.
Typically this is the name of an executable script.

lpszXmlData

A pointer to a string that specifies the XML data that will be submitted to the server.

lpResult

A pointer to a byte buffer which will contain the data returned by the server, or a pointer to a
global memory handle which will reference the data when the method returns. An alternate
version of this method accepts a CString object which will contain the server response.

lpcbResult

A pointer to an unsigned integer which should be initialized to the maximum number of bytes
that can be copied to the buffer specified by the lpvResult parameter. If the lpvResult
parameter points to a global memory handle, the length value should be initialized to zero.
When the method returns, this value will be updated with the actual number of bytes of data
that was returned.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

HTTP_POST_DEFAULT The default post mode. The contents of the buffer will be
submitted without encoding and should use the standard

XML format. The data returned by the server is copied to
the result buffer exactly as it is returned from the server.

HTTP_POST_CONVERT If the data being returned from the server is textual, it is
automatically converted so that the end of line character
sequence is compatible with the Windows platform.
Individual carriage return or linefeed characters are
converted to carriage return/linefeed character sequences.
Note that this option does not have any effect on the form
data being submitted to the server, only on the data
returned by the server.

HTTP_POST_ERRORDATA This option causes the client to accept error data from the
server if the request fails. If this option is specified, an error
response from the server will not cause the method to fail.
Instead, the response is returned to the client and the
method will succeed.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is HTTP_ERROR. To get extended error information, call GetLastError.

Remarks
The PostXml method is used to submit XML formatted data to a script that executes on the server
and then copy the output from that script into a local buffer. This function automatically sets the
correct content type and encoding required for submitting XML data to a server, however it does
not parse the XML data itself to ensure that it is well-formed. Your application is responsible for
ensuring that the XML data that is being submitted to the server is formatted correctly.

The method may be used in one of two ways, depending on the needs of the application. The first
method is to pre-allocate a buffer large enough to store the resulting output of the script. In this
case, the lpvResult parameter will point to the buffer that was allocated by the client and the value
that the lpcbResult parameter points to should be initialized to the size of that buffer.

The second method that can be used is have the lpvResult parameter point to a global memory
handle which will contain the data when the method returns. In this case, the value that the
lpcbResult parameter points to must be initialized to zero. It is important to note that the memory
handle returned by the method must be freed by the application, otherwise a memory leak will
occur. See the example code below.

If the content type for the request has not been explicitly specified, it will be automatically updated
by this function to use the "text/xml" content type. You can override the default content type for
the request by calling the SetHeader method prior to calling this method. Most servers require
you to explicitly specify what type of data is being submitted by the client and will reject requests
which do not correctly identify the content type.

It is common for servers to return additional information about a failed request in their response
to the client. If you need to process this information, use the HTTP_POST_ERRORDATA option
which causes the error message to be returned in the lpvResult buffer provided by the caller. If
this option is used, your application should call GetResultCode to obtain the HTTP status code
returned by the server. This will enable you to determine if the operation was successful.

This method will cause the current thread to block until the post completes, a timeout occurs or
the operation is canceled. During the transfer, the HTTP_EVENT_PROGRESS event will be

periodically fired, enabling the application to update any user interface controls. Event notification
must be enabled, either by calling EnableEvents, or by registering a callback function using the
RegisterEvent method.

To determine the current status of a file transfer while it is in progress, use the GetTransferStatus
method.

Example
HGLOBAL hgblBuffer = (HGLOBAL)NULL;
LPBYTE lpBuffer = (LPBYTE)NULL;
DWORD cbBuffer = 0;

// Store the script output into block of global memory allocated by
// the GlobalAlloc function; the handle to this memory will be
// returned in the hgblBuffer parameter. Since the output from the
// script is textual, the HTTP_POST_CONVERT option is used

nResult = lpClient->PostXml(lpszResource,
 lpszXmlData,
 &hgblBuffer,
 &cbBuffer,
 HTTP_POST_CONVERT);

if (nResult != HTTP_ERROR)
{
 // Lock the global memory handle, returning a pointer to the
 // output data from the script
 lpBuffer = (LPBYTE)GlobalLock(hgblBuffer);

 // After the data has been used, the handle must be unlocked
 // and freed, otherwise a memory leak will occur
 GlobalUnlock(hgblBuffer);
 GlobalFree(hgblBuffer);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetData, GetTransferStatus, PostData, PostJson, PutData, SubmitRequest

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::ProxyConnect Method

BOOL ProxyConnect(
 UINT nProxyType,
 LPCTSTR lpszProxyHost,
 UINT nProxyPort,
 LPCTSTR lpszProxyUser,
 LPCTSTR lpszProxyPassword,
 LPCTSTR lpszRemoteHost,
 UINT nRemotePort,
 UINT nTimeout,
 DWORD dwOptions,
 DWORD dwVersion
);

BOOL ProxyConnect(
 LPCTSTR lpszRemoteHost,
 UINT nRemotePort,
 UINT nTimeout,
 DWORD dwOptions,
 DWORD dwVersion
);

The ProxyConnect method is used to establish a connection through a proxy server.

Parameters
nProxyType

An unsigned integer which specifies the type of proxy that the client is connecting to. The
supported proxy server types are as follows:

Constant Description

HTTP_PROXY_NONE A direct connection will be established with the server.
When this value is specified the proxy parameters are
ignored.

HTTP_PROXY_STANDARD A standard connection is established through the specified
proxy server, and all resource requests will be specified
using a complete URL. This proxy type should be used with
standard connections.

HTTP_PROXY_SECURE A secure connection is established through the specified
proxy server. This proxy type should be used with secure
connections and the HTTP_OPTION_SECURE option should
also be set via the dwOptions parameter.

HTTP_PROXY_WINDOWS The configuration options for the current system should be
used. If the system is configured to use a proxy server, then
the connection will be automatically established through
that proxy; otherwise, a direct connection to the server is
established. These settings are the same proxy server
settings configured in Windows.

lpszProxyHost

A pointer to a string which specifies the proxy server host name or IP address. This argument is

ignored if the proxy type is set to HTTP_PROXY_NONE or HTTP_PROXY_WINDOWS and no
proxy configuration has been specified for the local system.

nProxyPort

The port number that the proxy server is listening for connections on. A value of zero specifies
that the default port number 80 should be used. Note that in most cases, a proxy server is not
configured to use the default port. This argument is ignored if the proxy type is set to
HTTP_PROXY_NONE or HTTP_PROXY_WINDOWS and no proxy configuration has been
specified for the local system.

lpszProxyUser

A pointer to a string which specifies the user name that will be used to authenticate the client
session to the proxy server. If the server does not require user authentication, then a NULL
pointer may be passed in this argument.

lpszProxyPassword

A pointer to a string which specifies the password that will be used to authenticate the client
session to the proxy server. If the server does not require user authentication, then a NULL
pointer may be passed in this argument.

lpszRemoteHost

A pointer to a string which specifies the name of the server to connect to through the proxy
server. This may be a fully-qualified domain name or an IP address.

nRemotePort

The port number the server is listening on. A value of zero specifies that the default port
number should be used. For standard connections, the default port number is 80. For secure
connections, the default port number is 443.

nTimeout

The number of seconds that the client will wait for a response from the server before failing the
current operation.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

HTTP_OPTION_NOCACHE This instructs the server to not return a cached
copy of the resource. When connected to an
HTTP 1.0 or earlier server, this directive may be
ignored.

HTTP_OPTION_KEEPALIVE This instructs the server to maintain a persistent
connection between requests. This can improve
performance because it eliminates the need to
establish a separate connection for each resource
that is requested.

HTTP_OPTION_REDIRECT This option specifies the client should
automatically handle resource redirection. If the
server indicates that the requested resource has
moved to a new location, the client will close the
current connection and request the resource from
the new location. Note that it is possible that the

redirected resource will be located on a different
server.

HTTP_OPTION_ERRORDATA This option specifies the client should return the
content of an error response from the server,
rather than returning an error code. Note that this
option will disable automatic resource redirection,
and should not be used with
HTTP_OPTION_REDIRECT.

HTTP_OPTION_NOUSERAGENT This option specifies the client should not include
a User-Agent header with any requests made
during the session. The user agent is a string
which is used to identify the client application to
the server. An application can provide its own
custom user agent value using the SetHeader
method.

HTTP_OPTION_HTTP2 This option specifies the client should attempt a
HTTP/2 connection with the server. If a
connection cannot be established using HTTP/2
the client will attempt to connect using an earlier
version of the protocol. The value of the
dwVersion parameter will be ignored when this
option is used.

HTTP_OPTION_TUNNEL This option specifies that a tunneled TCP
connection and/or port-forwarding is being used
to establish the connection to the server. This
changes the behavior of the client with regards to
internal checks of the destination IP address and
remote port number, default capability selection
and how the connection is established.

HTTP_OPTION_SECURE This option specifies the client should attempt to
establish a secure connection with the server.
Note that the server must support secure
connections using either the SSL or TLS protocol.

HTTP_OPTION_SECURE_FALLBACK This option specifies the client should permit the
use of less secure cipher suites for compatibility
with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

HTTP_OPTION_PREFER_IPV6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be resolved
to both an IPv6 and IPv4 address. This option is
ignored if the local system does not have IPv6
enabled, or when the hostname can only be
resolved to an IPv4 address. If the server
hostname can only be resolved to an IPv6
address, the client will attempt to establish a
connection using IPv6 regardless if this option has

been specified.

HTTP_OPTION_FREETHREAD This option specifies the handle returned by this
function may be used by any thread, and is not
limited to the thread which created it. The
application is responsible for ensuring that access
to the handle is synchronized across multiple
threads.

HTTP_OPTION_HIRES_TIMER This option specifies the elapsed time for data
transfers should be returned in milliseconds
instead of seconds. This will return more accurate
transfer times for smaller amounts of data over
fast network connections.

dwVersion

The requested protocol version used when sending requests to the server. The high word
should specify the major version, and the low word should specify the minor version number.
The HTTPVERSION macro can be used to create a version value and the following values are
defined:

Constant Description

HTTP_VERSION_DEFAULT The client should use the default protocol version for this
session. This is the same as specifying HTTP_VERSION_11
and is recommended to ensure the broadest compatibility
with most servers.

HTTP_VERSION_09 The client should use the original one-line protocol which
includes no version number and no request header block.
This version has been deprecated and should only be used
with legacy servers which do not support the protocol
standard. This version of the protocol does not support
virtual hosts and is not supported by most modern web
services.

HTTP_VERSION_10 The client should use the HTTP/1.0 protocol standard
originally defined in RFC 1945. This version of the protocol
supports the use of request header blocks, however it does
not support persistent connections or chunked data and
has limited cache control mechanisms.

HTTP_VERSION_11 The client should use the HTTP/1.1 protocol standard
defined in RFC 2616 and RFC 7230. This is the most widely
used version of the protocol and is the default for client
connections. It is recommended most applications use this
version.

HTTP_VERSION_20 The client should use the HTTP/2.0 protocol standard
defined in RFC 7540. This protocol version is a significant
change from previous versions and can provide improved
performance with header compression and optimizing how
requests are serviced.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
This method will block the current thread until a connection has been established or the timeout
period has elapsed. To prevent it from blocking the main user interface thread, the application
should create a background worker thread and establish a connection by calling the
ProxyConnect method in that thread. If the application requires multiple simultaneous
connections, it is recommended you create a worker thread for each connection.

If the HTTP_PROXY_WINDOWS proxy type is specified, then the proxy configuration for the local
system is used. If no proxy server has been defined, then the proxy-related parameters will be
ignored and the function will establish a connection directly to the server. The second form of the
ProxyConnect method always uses the the system configuration to determine if the connection
should be made through a proxy server, which is why there are no parameters such as the proxy
type or proxy server name.

The dwOptions argument can be used to specify the threading model that is used by the library
when a connection is established. By default, the handle is initially attached to the thread that
created it. From that point on, until the it is released, only the owner may call functions using that
handle. The ownership of the handle may be transferred from one thread to another using the
HttpAttachThread function.

Specifying the HTTP_OPTION_FREETHREAD option enables any thread to call any function using
the handle, regardless of which thread created it. It is important to note that this option disables
certain internal safety checks which are performed by the library and may result in unexpected
behavior unless access to the handle is synchronized. If one thread calls a function in the library, it
must ensure that no other thread will call another function at the same time using the same
handle.

If the HTTP_OPTION_KEEPALIVE option is specified and the server does not support persistent
connections, the client will automatically reconnect when each resource is requested. Although it
will not provide any performance benefits, this allows the option to be used with all servers. This
option is automatically enabled when using HTTP/2.

Applications should use HTTP_VERSION_DEFAULT as the value for the dwVersion parameter. This
will default to an appropriate version for the Windows platform and ensures the broadest
compatibility with most servers. If your application specifies HTTP_VERSION_20, a secure
connection using TLS 1.2 will always be used. The miniumum required platform for HTTP/2
support is Windows 10 (Version 1903) or Windows Server 2019. Earlier versions of the Schannel
SSP do not support the features required for a secure HTTP/2 connection.

If your application requests a HTTP/2 connection and the server only accepts earlier versions of
the protocol, the client will attempt to automatically downgrade the request to HTTP/1.1. If a
connection using an earlier version of the protocol cannot be established, the method will fail and
return a value of zero.

Example
CHttpClient *pClient = new CHttpClient();

// Establish a connection using the default proxy server
// configuration for the local system

if (pClient->ProxyConnect(strHostName) == FALSE)

{
 pClient->ShowError();
 return;
}

// Retrieve the resource from the server and store it
// in the string buffer

nResult = pClient->GetData(strResource, strBuffer);

if (nResult == HTTP_ERROR)
 pClient->ShowError();

pClient->Disconnect();
delete pClient;

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Connect, ConnectUrl, Disconnect, IsConnected

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::PutData Method

INT PutData(
 LPCTSTR lpszRemoteFile,
 LPBYTE lpBuffer,
 DWORD dwLength
);

INT PutData(
 LPCTSTR lpszRemoteFile,
 LPCTSTR lpszBuffer
);

The PutData method copies the contents of the specified buffer and stores it in a file on the
server.

Parameters
lpszRemoteFile

A pointer to a string that specifies the file on the server that will be created. This string may
specify a valid URL for the current server that the client is connected to.

lpBuffer

A pointer to a buffer which will contain the data to be transferred from the client and stored in a
file on the server. In an alternate form of the method, this may be a null terminated string.

dwLength

The number of bytes to copy from the buffer.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is HTTP_ERROR. To get extended error information, call GetLastError.

Remarks
The PutData method is used to store the contents of the specified buffer in a file on the server.
Not all servers permit files to be created using this method, and some may require that specific
configuration changes be made to the server in order to support this functionality. Consult your
server's technical reference documentation to see if it supports the PUT command, and if so, what
must be done to enable it. It may be required that the client authenticate itself using the
Authenticate method prior to uploading the data.

This method will cause the current thread to block until the file transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the HTTP_EVENT_PROGRESS event will be
periodically fired, enabling the application to update any user interface controls. Event notification
must be enabled, either by calling EnableEvents, or by registering a callback function using the
RegisterEvent method.

To determine the current status of a transfer while it is in progress, use the GetTransferStatus
method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

Unicode: Implemented as Unicode and ANSI versions.

See Also
EnableEvents, GetData, GetFile, GetTransferStatus, PostData, PutFile, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::PutFile Method

INT PutFile(
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszRemoteFile
);

The PutFile method transfers the specified file on the local system to the server.

Parameters
lpszLocalFile

A pointer to a string that specifies the file that will be transferred from the local system. The file
pathing and name conventions must be that of the local host.

lpszRemoteFile

A pointer to a string that specifies the file on the server that will be created, overwritten or
appended to. The file naming conventions must be that of the host operating system.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is HTTP_ERROR. To get extended error information, call GetLastError.

Remarks
The PutFile method is used to transfer a file from the local system to a server. Not all servers
permit files to be uploaded and some may require that specific configuration changes be made to
the server in order to support this functionality. Consult your server's technical reference
documentation to see if it supports the PUT command, and if so, what must be done to enable it.
It may be required that the client authenticate itself using the Authenticate method prior to
uploading the file.

This method will cause the current thread to block until the file transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the HTTP_EVENT_PROGRESS event will be
periodically fired, enabling the application to update any user interface controls. Event notification
must be enabled, either by calling EnableEvents, or by registering a callback function using the
RegisterEvent method.

To determine the current status of a file transfer while it is in progress, use the GetTransferStatus
method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
EnableEvents, GetData, GetFile, GetTransferStatus, PostData, PostFile, PutData, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::PutText Method

INT PutText(
 LPCTSTR lpszRemoteFile,
 LPCTSTR lpszBuffer
);

The PutText method creates a text file on the server using the contents of a string buffer.

Parameters
lpszRemoteFile

A pointer to a string that specifies the text file on the server that will be created or overwritten.
This string may specify a valid URL for the current server that the client is connected to.

lpszBuffer

A pointer to a string that contains the text that will be stored in the file.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is HTTP_ERROR. To get extended error information, call GetLastError.

Remarks
The PutText method is used to create a text file on the server from the contents of a string. If the
specified file already exists on the server, its contents will be overwritten. Not all servers permit files
to be created using this method, and some may require that specific configuration changes be
made to the server in order to support this functionality. Consult your server's technical reference
documentation to see if it supports the PUT command, and if so, what must be done to enable it.
It may be required that the client authenticate itself using the Authenticate method prior to
uploading the data.

If the Unicode version of this method is called, the string will be converted to ASCII and then
uploaded to the server. If you wish to store the contents of the string as Unicode on the server,
you must use the PutData method. This method should never be used to upload binary data.

This method will cause the current thread to block until the file transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the HTTP_EVENT_PROGRESS event will be
periodically fired, enabling the application to update any user interface controls. Event notification
must be enabled, either by calling EnableEvents, or by registering a callback function using the
RegisterEvent method.

To determine the current status of a file transfer while it is in progress, use the GetTransferStatus
method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshttpv10.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
EnableEvents, GetText, GetTransferStatus, PutData, PutFile, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::Read Method

INT Read(
 LPBYTE lpBuffer,
 INT cbBuffer
);

INT Read(
 CString& strBuffer,
 INT cbBuffer
);

The Read method reads the specified number of bytes from the client socket and copies them
into the buffer. The data may be of any type, and is not terminated with a null character.

Parameters
lpBuffer

Pointer to the buffer in which the data will be copied. An alternate form of this method allows a
CString variable to be passed and data read from the socket will be returned in that string.

cbBuffer

The maximum number of bytes to read and copy into the specified buffer. This value must be
greater than zero.

Return Value
If the method succeeds, the return value is the number of bytes actually read. A return value of
zero indicates that the server has closed the connection and there is no more data available to be
read. If the method fails, the return value is HTTP_ERROR. To get extended error information, call
GetLastError.

Remarks
When Read is called and the client is in non-blocking mode, it is possible that the method will fail
because there is no available data to read at that time. This should not be considered a fatal error.
Instead, the application should simply wait to receive the next asynchronous notification that data
is available.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
EnableEvents, IsBlocking, IsReadable, IsWritable, RegisterEvent, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::RegisterEvent Method

INT RegisterEvent(
 UINT nEventId,
 HTTPEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

The RegisterEvent method registers an event handler for the specified event.

Parameters
nEventId

An unsigned integer which specifies which event should be registered with the specified callback
function. One of the following values may be used:

Constant Description

HTTP_EVENT_CONNECT The connection to the server has completed.

HTTP_EVENT_DISCONNECT The server has closed the connection to the client. The client
should read any remaining data and disconnect.

HTTP_EVENT_READ Data is available to read by the calling process. No additional
messages will be posted until the client has read at least some of
the data. This event is only generated if the client is in
asynchronous mode.

HTTP_EVENT_WRITE The client can now write data. This notification is sent after a
connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking
operation. This event is only generated if the client is in
asynchronous mode.

HTTP_EVENT_TIMEOUT The network operation has exceeded the specified timeout
period. The client application may attempt to retry the operation,
or may disconnect from the server and report an error to the
user.

HTTP_EVENT_CANCEL The current operation has been canceled. Under most
circumstances the client should disconnect from the server and
re-connect if needed. After an operation has been canceled, the
server may abort the connection or refuse to accept further
commands from the client.

HTTP_EVENT_COMMAND A command has been issued by the client and the server
response has been received and processed. This event can be
used to log the result codes and messages returned by the server
in response to actions taken by the client.

HTTP_EVENT_PROGRESS The client is in the process of sending or receiving a file on the
data channel. This event is called periodically during a transfer so
that the client can update any user interface components such as
a status control or progress bar.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the HttpEventProc callback
function. If this parameter is NULL, the callback for the specified event is disabled.

dwParam

A user-defined integer value that is passed to the callback function. If the application targets the
x86 (32-bit) platform, this parameter must be a 32-bit unsigned integer. If the application
targets the x64 (64-bit) platform, this parameter must be a 64-bit unsigned integer.

Remarks
The RegisterEvent method associates a callback function with a specific event. The event handler
is an HttpEventProc function that is invoked when the event occurs. Arguments are passed to the
function to identify the client session, the event type and the user-defined value specified when
the event handler is registered. If the event occurs because of an error condition, the error code
will be provided to the handler.

This method is typically used to register an event handler that is invoked while a resource is being
retrieved or data is being submitted to the server. The HTTP_EVENT_PROGRESS event will only be
generated periodically during the transfer to ensure the application is not flooded with event
notifications. It is guaranteed that at least one HTTP_EVENT_PROGRESS notification will occur at
the beginning of the transfer, and one at the end of the transfer when it has completed.

The callback function specified by the lpEventProc parameter must be declared using the
__stdcall calling convention. This ensures the arguments passed to the event handler are pushed
on to the stack in the correct order. Failure to use the correct calling convention will corrupt the
stack and cause the application to terminate abnormally.

The dwParam parameter is commonly used to identify the class instance which is associated with
the event that has occurred. Applications will cast the this pointer to a DWORD_PTR value when
calling this function, and then the event handler will cast it back to a pointer to the class instance.
This gives the handler access to the class member variables and methods.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
HTTP_ERROR. To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
DisableEvents, EnableEvents, FreezeEvents, GetTransferStatus HttpEventProc,

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/http/class/httpeventproc.html

 CHttpClient::SetBearerToken Method

INT SetBearerToken(
 LPTSTR lpszBearerToken
);

The SetBearerToken method sets the OAuth 2.0 bearer token used to authenticate the client
session with a web service.

Parameters
lpszBearerToken

A pointer to a null terminated string buffer which contains the bearer token used to authorize
client requests. If this parameter is NULL or a zero length string, the current bearer token will be
cleared and no client authentication will be performed.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
HTTP_ERROR. To get extended error information, call GetLastError.

Remarks
Using OAuth 2.0 requires you to understand the process of how to request the bearer (access)
token. Obtaining a bearer token requires registering your application with the web service
provider, getting a unique client ID associated with your application and then requesting the token
using the appropriate scope for the service. Obtaining the initial token will typically involve
interactive confirmation on the part of the user, requiring they grant permission to your
application to access the service.

Your application should not store a bearer token for later use. They have a relatively short lifespan,
typically about an hour, and are designed to be used with that session. You should specify offline
access as part of the OAuth 2.0 scope if necessary and store the refresh token provided by the
service. The refresh token has a much longer validity period and can be used to obtain a new
bearer token when needed.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Authenticate, GetBearerToken, SetHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::SetCookie Method

BOOL SetCookie(
 LPCTSTR lpszCookieName,
 LPCTSTR lpszCookieValue
);

The SetCookie method sends the specified cookie to the server when a resource is requested.

Parameters
lpszCookieName

Pointer to a string which specifies the name of the cookie that will be sent to the server when
the next resource is requested.

lpszCookieValue

Pointer to a string which specifies the value of the cookie. To delete a cookie that has been
previously set, this parameter should be NULL or point to an empty string.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The SetCookie method submits the cookie name and value to the server when a resource is
requested or data is posted to a script. For more information about cookies and how they are
used, refer to the GetCookie method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
GetCookie, GetFirstCookie, GetNextCookie, SetHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SetDefaultUserAgent Method

INT SetDefaultUserAgent(
 LPCTSTR lpszUserAgent
);

The SetDefaultUserAgent method sets the default user agent string which is included with all
requests.

Parameters
lpszUserAgent

A pointer to a null terminated string which specifies the new default user agent string. If this
parameter is NULL or an empty string, the client will revert to using the default user agent string
defined when the library was first initialized.

Return Value
If the method succeeds, the return value is the number of characters copied into the string buffer.
If the method fails, the return value is HTTP_ERROR. To get extended error information, call
HttpGetLastError.

Remarks
The SetDefaultUserAgent method changes the default user agent string which is included with
each request made by the client. This default value is global and changing it will change the
default user agent for all client sessions in all threads created by the process.

The user agent string should use a format with the product name and version number separated
by a slash. There can be multiple products listed in the user agent string separated by spaces, with
additional optional information enclosed in parenthesis. For example, a valid user agent string for
an application named "MyProgram" could look like this:

MyProgram/1.0 (Win32)

Some web services check the value of the user agent string to determine if a compatible client is
being used to issue the request. The default value used by SocketTools is designed to emulate a
common browser, but some services may require you change the user agent to use a specific
value or include certain product names and versions.

To change the user agent string for a specific client session, use the SetHeader method to set a
value for the User-Agent header. To get the current value of the default user agent string, use
the GetDefaultUserAgent method.

To prevent any user agent string from being included with a request, include the
HTTP_OPTION_NOUSERAGENT option when connecting to the server or use SetOption to
enable that option after a connection has been established.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetDefaultUserAgent, SetOption, SetHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::SetEncodingType Method

INT SetEncodingType(
 INT nEncodingType
);

The SetEncodingType method specifies the type of encoding to be applied to the content of a
HTTP request.

Parameters
nEncodingType

Specifies the content encoding type; currently-supported values are:

Constant Description

HTTP_ENCODING_NONE No encoding will be applied to the content of a request
and no default content type will be specified. This encoding
type should be used with REST APIs and other services
which expect XML or JSON request payloads.

HTTP_ENCODING_URL Non-printable and extended ASCII characters will be
encoded so they can be safely used with URLs and form
data. Encoded characters will be represented by a percent
symbol prefix, followed by a two digit hexadecimal value
which represents the ASCII character code. This encoding is
typically used with web services which process HTML form
data.

HTTP_ENCODING_XML This encoding is identical to URL encoding, except spaces
are not encoded. It is used with legacy web services which
expect form data in an XML format and cannot process
encoded whitespace. This encoding should not be specified
for services which use REST APIs.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
HTTP_ERROR. To get extended error information, call GetLastError.

Remarks
The SetEncodingType method explicitly sets the type of encoding used when optional parameter
data is submitted with a request for a resource. If an encoding type is specified, and the content
type for the request payload has not been defined, it will default to application/x-www-form-
urlencoded.

When submitting a JSON or XML request to a service using a REST API, your application should
use HTTP_ENCODING_NONE and set the appropriate content type for the request payload. The
HTTP_ENCODING_XML encoding type should only be used if the server expects URL encoded
form data. The PostJson and PostXml methods will automatically set the correct encoding and
content type for those requests.

If an application specifies HTTP_ENCODING_NONE, parameter data is not encoded and no
content type header will created by default. The client application can specify the content type by
calling the SetContentType method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetEncodingType, PostData, PostJson, PostXml, SetContentType, SubmitForm

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/http/class/setcontenttype.html

 CHttpClient::SetFormProperties Method

INT SetFormProperties(
 LPHTTPFORMPROPERTIES lpFormProp
);

The SetFormProperties function updates the properties of the current form.

Parameters
lpFormProp

Points to a HTTPFORMPROPERTIES structure which specifies the new properties for the current
form.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
HTTP_ERROR. To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CreateForm, GetFormProperties, SubmitForm, HTTPFORMPROPERTIES

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::SetHeader Method

BOOL SetHeader(
 LPCTSTR lpszHeader,
 LPCTSTR lpszValue
);

The SetHeader method sets the value of the specified request header field.

Parameters
lpszHeader

Points to a string which specifies the request header field name.

lpszValue

Points to a string which specifies the value of the request header field.

Return Value
If the method succeeds, the return value is non-zero. If the client handle is invalid, the method
returns a value of zero. To get extended error information, call GetLastError.

Remarks
The SetHeader method defines a header field and value that is submitted to the server when a
resource is requested. If the header field has already been defined, it will be replaced by the new
value. There are a number of header fields which are automatically created by the library, and
others that are conditionally created depending on whether or not certain options are specified.
The following header fields are automatically created by the library:

Header Field Description

Accept This header specifies the types of resources that are acceptable
to the client. By default, all resource data types are accepted by
the client.

Authorization This header is automatically created if the client uses the
Authenticate method to authenticate a client session.

Connection This header determines if the connection is maintained after a
resource has been requested, or if the connection should be
immediately closed. The value of this header depends on
whether the HTTP_OPTION_KEEPALIVE option has been
specified.

Content-Length This header defines the length of the data that is being posted to
the server or the size of a file being uploaded to the server.

Content-Type This header defines the content type for data posted to the
server. This header is created if URL encoding is specified. The
specific type of encoding used can be set by calling the
SetEncodingType method.

Host This header specifies the name of the server that the client has
connected to. This is automatically generated when any resource
is requested.

Pragma This header is used to control caching performed by the server. If

the option HTTP_OPTION_NOCACHE has been specified, this
header will automatically be defined with the value "no-cache".

Proxy-Authorization This header is automatically created if a proxy connection has
been established and a username and password is required to
authenticate the client session.

Request headers are generated by methods that send resource requests. In some cases, header
values are supplied by the requesting method only if the application has not previously defined
the header. For others, the requesting method overrides what the application may have defined.

If you use this method to set the Authorization header to a custom value for this client session,
you must not call the Authenticate method. The Authenticate method will always override any
custom Authorization header value and replace it with the credentials token generated from the
username and password provided.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Authenticate, GetFirstHeader, GetHeader, GetNextHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::SetLastError Method

VOID SetLastError(
 DWORD dwErrorCode
);

The SetLastError method sets the last error code for the current thread. This method is typically
used to clear the last error by specifying a value of zero as the parameter.

Parameters
dwErrorCode

Specifies the last error code for the current thread.

Return Value
None.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. Most methods will
set the last error code value when they fail; a few methods set it when they succeed. Function
failure is typically indicated by a return value such as FALSE, NULL, INVALID_CLIENT or
HTTP_ERROR. Those methods which call SetLastError when they succeed are noted on the
method reference page.

Applications can retrieve the value saved by this method by using the GetLastError method. The
use of GetLastError is optional; an application can call the method to determine the specific
reason for a method failure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
GetErrorString, GetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::SetOption Method

INT SetOption(
 DWORD dwOption,
 BOOL bEnabled
);

The SetOption method enables or disables the specified option.

Parameters
hClient

Handle to the client session.

dwOption

An unsigned integer which specifies one of the following options:

Constant Description

HTTP_OPTION_NOCACHE This instructs the server to not return a cached copy
of the resource. When connected to an HTTP 1.0 or
earlier server, this directive may be ignored.

HTTP_OPTION_KEEPALIVE This instructs the server to maintain a persistent
connection between requests. This can improve
performance because it eliminates the need to
establish a separate connection for each resource
that is requested. If the server does not support the
keep-alive option, the client will automatically
reconnect when each resource is requested.
Although it will not provide any performance
benefits, this allows the option to be used with all
servers.

HTTP_OPTION_REDIRECT This option specifies the client should automatically
handle resource redirection. If the server indicates
that the requested resource has moved to a new
location, the client will close the current connection
and request the resource from the new location.
Note that it is possible that the redirected resource
will be located on a different server.

HTTP_OPTION_NOUSERAGENT This option specifies the client should not include a
User-Agent header with any requests made during
the session. The user agent is a string which is used
to identify the client application to the server.

HTTP_OPTION_ERRORDATA This option specifies the client should return the
content of an error response from the server, rather
than returning an error code. Note that this option
will disable automatic resource redirection, and
should not be used with HTTP_OPTION_REDIRECT.

HTTP_OPTION_FREETHREAD This option specifies the handle returned by this
function may be used by any thread, and is not

limited to the thread which created it. The application
is responsible for ensuring that access to the handle
is synchronized across multiple threads.

HTTP_OPTION_HIRES_TIMER This option specifies the elapsed time for data
transfers should be returned in milliseconds instead
of seconds. This will return more accurate transfer
times for smaller amounts of data over fast network
connections.

bEnabled

An integer value which determines if the option should be enabled or disabled. A non-zero
value specifies that the option should be enabled, while a zero value specifies that the option
should be disabled.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
HTTP_ERROR. To get extended error information, call GetLastError.

Remarks
The SetOption method can only enable or disable the options listed above. Other options are
only available when the connection is initially established. For example, you cannot use this
function to enable security options or switch to using HTTP/2 after the connection has been made.

If you use HTTP_OPTION_FREETHREAD to permit any thread to reference a client handle allocated
in another thread, your application is responsible for ensuring it does not attempt to submit
requests using the same handle on different threads at the same time. If two different threads
attempt to perform an operation using the same handle, there is no guarantee as to which thread
will complete the operation first.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
Connect, GetOption, ProxyConnect

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::SetPriority Method

INT SetPriority(
 INT nPriority
);

The SetPriority method specifies the priority for file transfers.

Parameters
nPriority

An integer value which specifies the new priority for file transfers. It may be one of the following
values:

Constant Description

HTTP_PRIORITY_NORMAL The default priority which balances resource
utilization and transfer speed. It is recommended that
most applications use this priority.

HTTP_PRIORITY_BACKGROUND This priority significantly reduces the memory,
processor and network resource utilization for the
transfer. It is typically used with worker threads
running in the background when the amount of time
required perform the transfer is not critical.

HTTP_PRIORITY_LOW This priority lowers the overall resource utilization for
the transfer and meters the bandwidth allocated for
the transfer. This priority will increase the average
amount of time required to complete a file transfer.

HTTP_PRIORITY_HIGH This priority increases the overall resource utilization
for the transfer, allocating more memory for internal
buffering. It can be used when it is important to
transfer the file quickly, and there are no other
threads currently performing file transfers at the time.

HTTP_PRIORITY_CRITICAL This priority can significantly increase processor,
memory and network utilization while attempting to
transfer the file as quickly as possible. If the file
transfer is being performed in the main UI thread,
this priority can cause the application to appear to
become non-responsive. No events will be generated
during the transfer.

Return Value
If the method succeeds, the return value is the previous file transfer priority. If the method fails, the
return value is HTTP_ERROR. To get extended error information, call GetLastError.

Remarks
The SetPriority method can be used to control the processor usage, memory and network
bandwidth allocated for file transfers. The default priority balances resource utilization and transfer
speed while ensuring that a single-threaded application remains responsive to the user. Lower
priorities reduce the overall resource utilization at the expense of transfer speed. For example, if

you create a worker thread to download a file in the background and want to ensure that it has a
minimal impact on the process, the HTTP_PRIORITY_BACKGROUND value can be used.

Higher priority values increase the memory allocated for the transfers and increases processor
utilization for the transfer. The HTTP_PRIORITY_CRITICAL priority maximizes transfer speed at the
expense of system resources. It is not recommended that you increase the file transfer priority
unless you understand the implications of doing so and have thoroughly tested your application. If
the file transfer is being performed in the main UI thread, increasing the priority may interfere with
the normal processing of Windows messages and cause the application to appear to become
non-responsive. It is also important to note that when the priority is set to
HTTP_PRIORITY_CRITICAL, normal progress events will not be generated during the transfer.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetPriority

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::SetTimeout Method

INT SetTimeout(
 UINT nTimeout
);

The SetTimeout method sets the number of seconds the client will wait for a response from the
server. Once the specified number of seconds has elapsed, the method will fail and return to the
caller.

Parameters
nTimeout

The number of seconds to wait for a blocking operation to complete.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
HTTP_ERROR. To get extended error information, call GetLastError.

Remarks
The timeout value is only used with blocking client connections.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
Connect, GetTimeout, IsReadable, IsWritable, Read, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::ShowError Method

INT ShowError(
 LPCTSTR lpszAppTitle,
 UINT uType,
 DWORD dwErrorCode
);

The ShowError method displays a message box which describes the specified error.

Parameters
lpszAppTitle

A pointer to a string which specifies the title of the message box that is displayed. If this
argument is NULL or omitted, then the default title of "Error" will be displayed.

uType

An unsigned integer which specifies the type of message box that will be displayed. This is the
same value that is used by the MessageBox method in the Windows API. If a value of zero is
specified, then a message box with a single OK button will be displayed. Refer to that method
for a complete list of options.

dwErrorCode

Specifies the error code that will be used when displaying the message box. If this argument is
zero, then the last error that occurred in the current thread will be displayed.

Return Value
If the method is successful, the return value will be the return value from the MessageBox
function. If the method fails, it will return a value of zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetErrorString, GetLastError, SetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::SubmitForm Method

INT SubmitForm(
 LPBYTE lpResult,
 LPDWORD lpcbResult,
 DWORD dwOptions
);

INT SubmitForm(
 HGLOBAL* lpResult,
 LPDWORD lpcbResult,
 DWORD dwOptions
);

INT SubmitForm(
 CString& strResult,
 DWORD dwOptions
);

The SubmitForm method submits the contents of the current form to a script on the server and
returns the result in a buffer provided by the caller.

Parameters
lpResult

A pointer to a byte buffer which will contain the data returned by the server, or a pointer to a
global memory handle which will reference the data when the function returns.

lpcbResult

A pointer to an unsigned integer which should be initialized to the maximum number of bytes
that can be copied to the buffer specified by the lpvBuffer parameter. If the lpvResult parameter
points to a global memory handle, the length value should be initialized to zero. When the
function returns, this value will be updated with the actual number of bytes of data that was
returned.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

HTTP_SUBMIT_DEFAULT The default post mode. The contents of the buffer are
encoded and sent as standard form data. The data returned
by the server is copied to the result buffer exactly as it is
returned from the server.

HTTP_SUBMIT_CONVERT If the data being returned from the server is textual, it is
automatically converted so that the end of line character
sequence is compatible with the Windows platform.
Individual carriage return or linefeed characters are
converted to carriage return/linefeed character sequences.
Note that this option does not have any effect on the form
data being submitted to the server, only on the data
returned by the server.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is HTTP_ERROR. To get extended error information, call GetLastError.

Remarks
The SubmitForm method is used to submit form data to a script that executes on the server and
then copy the output from that script into a local buffer. The method may be used in one of two
ways, depending on the needs of the application. The first method is to pre-allocate a buffer large
enough to store the resulting output of the script. In this case, the lpvResult parameter will point
to the buffer that was allocated by the client and the value that the lpcbResult parameter points to
should be initialized to the size of that buffer.

The second method that can be used is have the lpvResult parameter point to a global memory
handle which will contain the data when the function returns. In this case, the value that the
lpcbResult parameter points to must be initialized to zero. It is important to note that the memory
handle returned by the function must be freed by the application, otherwise a memory leak will
occur. See the example code below.

This method will cause the current thread to block until the post completes, a timeout occurs or
the operation is canceled. During the transfer, the HTTP_EVENT_PROGRESS event will be
periodically fired, enabling the application to update any user interface controls. Event notification
must be enabled, either by calling EnableEvents, or by registering a callback function using the
RegisterEvent function.

To determine the current status of a transaction while it is in progress, use the GetTransferStatus
function.

Example
CString strResult;
INT nResult = 0;

pClient->CreateForm(_T("/login.php"), HTTP_METHOD_POST, HTTP_FORM_ENCODED);
pClient->AddField(_T("UserName"), lpszUserName);
pClient->AddField(_T("Password"), lpszPassword);

nResult = pClient->SubmitForm(strResult);
pClient->DestroyForm();

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AddField, AddFile, ClearForm, CreateForm, DeleteField, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SubmitRequest Method

INT SubmitRequest(
 DWORD dwRequestType,
 LPCTSTR lpszResource,
 LPHTTPCONNECTION lpConnection,
 LPCVOID lpvRequest,
 DWORD dwRequestLength,
 LPVOID lpvResponse,
 LPDWORD lpdwResponseLength
);

The SubmitRequest method provides a high-level interface for submitting requests to a web
service.

Parameters
dwRequestType

An unsigned integer which specifies the type of request being submitted to the server. It may be
one of the following values:

Constant Description

HTTP_METHOD_DEFAULT
(0)

Perform a default request action based on the value of
parameters passed to this method. If there is no request
payload, the action will default to HTTP_METHOD_GET,
otherwise it will default to HTTP_METHOD_POST. It is
generally recommended that you explicitly specify the
request method; however, this default value can be useful
if your application does not know if a payload will be
included with the request at the time the method is called.

HTTP_METHOD_GET
(1)

Use the GET method when submitting the request to the
server. If this action is used, the lpvRequest and
dwRequestLength parameters will be ignored. The buffer
specified by the lpvResponse parameter will contain the
server's response to the request.

HTTP_METHOD_POST
(2)

Use the POST method when submitting the request to the
server. The payload specified by the lpvRequest parameter
will be included with the request and the buffer specified
by the lpvResponse parameter will contain the server's
response to the request.

HTTP_METHOD_PUT
(3)

Use the PUT method when submitting the request to the
server. The payload specified by the lpvRequest parameter
will be included with the request. This method is typically
used with persistent storage on the server, such as
uploading the contents of a file. If the lpvResponse
parameter is not NULL, it will contain any response from
the server after the operation has completed.

lpszResource

A pointer to a null-terminated string which specifies the complete URL for the resource. Both

standard and secure connections are supported, and query parameters may be included with
the URL. This parameter cannot be NULL and must specify an absolute (fully qualified) URI
which begins with either http:// or https://.

lpConnection

A pointer to a HTTPCONNECTION structure which contains additional information about the
client connection. This structure is required if your application must connect through a proxy
server or when authentication is required to access a resource. This parameter can be NULL, in
which case default values will be used when establishing the connection.

lpvRequest

A pointer to a buffer which contains the payload data submitted to the server as part of the
request. This parameter may point to a byte buffer or a null-terminated string. If there is no
payload required for the request this parameter may be NULL. If the Unicode version of this
method is called and the request buffer contains text, it will be automatically converted to UTF-8
prior to submitting the data to the server. If the dwRequestLength parameter is -1, the payload
will always be processed as a null-terminated string and the method will fail if the buffer does
not contain text characters.

dwRequestLength

An unsigned integer which specifies the size of the request payload. If the payload contains text,
this should specify the number of characters in the buffer. If the payload contains binary data,
this value should specify the number of bytes in the buffer. If the lpvRequest parameter points
to a null-terminated string, this value can be -1 and the length of the payload will be
determined automatically. If the Unicode version of this method is called and the length is -1,
the request payload will be UTF-8 encoded prior to being submitted to the server.

lpvResponse

A pointer to a byte buffer which will contain the data returned by the server, or a pointer to a
global memory handle which will reference the data when the method returns. This parameter
may be NULL if the response data is not required. If this parameter is NULL, the
lpdwResponseLength parameter must also be NULL. If a response buffer is provided, the data
will always be returned as a byte stream, even when the Unicode version of this method is
called. If the server returns a text payload, it will typically be UTF-8 encoded and the application
can convert the text to Unicode using the MultiByteToWideChar method.

lpdwResponseLength

A pointer to an unsigned integer which should be initialized to the maximum number of bytes
that can be copied to the buffer specified by the lpvResponse parameter. If the lpvResponse
parameter points to a global memory handle, the length value should be initialized to zero.
When the method returns, this value will be updated with the actual number of bytes of data
that was returned. If the lpvResponse parameter is not NULL, this parameter cannot be NULL.

Return Value
If the method succeeds, the return value is the server status code. If the method fails, the return
value is HTTP_ERROR. To get extended error information, call the GetLastError method. The
application should always check the return value to determine if the request was successful. If the
server returns a 4xx or 5xx status code, this indicates the request was not accepted and the
response buffer will typically contain information about the cause of the failure.

Remarks
The SubmitRequest method provides a single high-level interface for submitting requests to a
web server and returning the server's response. This method is entirely self-contained and does

not require a client session handle. The current thread will block until the method returns and will
not generate event notifications. If you need to download a large file from a web server and want
progress updates, it is recommended you use the DownloadFile method.

If the service you are using requires authentication, you will need to allocate a
HTTPCONNECTION structure and set the appropriate member values to specify the
authentication method and user credentials. This structure also allows you to provide additional
information, such as additional request header values, a custom timeout period and additional
connection options.

When the lpvRequest parameter is not NULL, the contents of the buffer will be examined to
determine if it contains text or binary data. If the dwRequestLength parameter is -1, the
lpvRequest parameter is always considered to be a pointer a null-terminated string, with the
length calculated by counting the number of characters up to the terminating null character. If the
request payload is text, the method will also attempt to determine if the payload looks like XML or
JSON and will automatically set the appropriate content type. The application can explicitly
provide a MIME content type by setting the lpszContentType member of the
HTTPCONNECTION structure.

Example
// Submit an XML payload to the server and return the response in a global
// memory buffer allocated by the method
LPCTSTR lpszResource = _T("https://www.example.com/postxml");
LPCTSTR lpszRequest = _T("<?xml version=\"1.0\" encoding=\"utf-8\"?>\r\n") \
 _T("<test>\r\n") \
 _T(" <data param=\"A\">Value1</data>\r\n") \
 _T(" <data param=\"B\">Value2</data>\r\n") \
 _T("</test>\r\n");

// Provide additional connection information which includes user credentials
// and a custom header which includes an API token for the service; note that
// we need to initialize the dwSize member of the structure
HTTPCONNECTION httpConnection = { 0, };
httpConnection.dwSize = sizeof(httpConnection);
httpConnection.nAuthType = HTTP_AUTH_BASIC;
httpConnection.lpszUserName = _T("userid");
httpConnection.lpszPassword = _T("secret");
httpConnection.lpszContentType = _T("application/xml");
httpConnection.lpszHeaders = _T("X-API-Token: 99d2fe39-0246-4efa-98e0-
4d775579fa5d");

// Declare the global memory handle which will contain the server response
// and initialize the length to 0, which tells the API that a HGLOBAL handle
// is being used rather than a pointer to a pre-allocated buffer
CHttpClient httpClient;
HGLOBAL hgblResponse = NULL;
DWORD dwLength = 0;

INT nResult = httpClient.SubmitRequest(
 HTTP_METHOD_POST,
 lpszResource,
 &httpConnection,
 lpszRequest,
 (DWORD)-1,
 &hgblResponse,
 &dwLength);

if (nResult != HTTP_ERROR && hgblResponse != NULL)
{
 LPBYTE lpBuffer = (LPBYTE)GlobalLock(hgblResponse);

 // The lpBuffer variable points to the data returned by the server and
 // the application is responsible for freeing the global memory handle

 GlobalUnlock(hgblResponse);
 GlobalFree(hgblResponse);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DownloadFile, GetData, PostData, PostJson, PostXml, UploadFile, HTTPCONNECTION

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/http/class/httpconnection.html

 CHttpClient::UploadFile Method

BOOL UploadFile(
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszRemoteFile,
 UINT nTimeout
 DWORD dwOptions
 LPHTTPTRANSFERSTATUS lpStatus
 HTTPEVENTPROC lpEventProc
 DWORD_PTR dwParam
);

The UploadFile method uploads the specified file from the local system to the server.

Parameters
lpszLocalFile

A pointer to a string that specifies the file on the local system that will be uploaded to the
server. The file pathing and name conventions must be that of the local host.

lpszRemoteFile

A pointer to a string that specifies the complete URL of the file that will be created or
overwritten on the server. The URL must follow the conventions for the File Transfer Protocol
and may specify either a standard or secure connection, alternate port number, username,
password and optional working directory.

nTimeout

The number of seconds that the client will wait for a response before failing the operation. A
value of zero specifies that the default timeout period of sixty seconds will be used.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

HTTP_OPTION_NOCACHE This instructs the server to not return a cached
copy of the resource. When connected to an
HTTP 1.0 or earlier server, this directive may be
ignored.

HTTP_OPTION_REDIRECT This option specifies the client should
automatically handle resource redirection. If the
server indicates that the requested resource has
moved to a new location, the client will close the
current connection and request the resource from
the new location. Note that it is possible that the
redirected resource will be located on a different
server.

HTTP_OPTION_PROXY This option specifies the client should use the
default proxy configuration for the local system. If
the system is configured to use a proxy server,
then the connection will be automatically
established through that proxy; otherwise, a direct

connection to the server is established. The local
proxy configuration can be changed using the
system Control Panel.

HTTP_OPTION_NOUSERAGENT This option specifies the client should not include
a User-Agent header with any requests made
during the session. The user agent is a string
which is used to identify the client application to
the server. If this option is not specified, a default
user agent string will be included with the request.

HTTP_OPTION_HTTP2 This option specifies the client should attempt a
HTTP/2 connection with the server. If a
connection cannot be established using HTTP/2
the client will attempt to connect using an earlier
version of the protocol.

HTTP_OPTION_TUNNEL This option specifies that a tunneled TCP
connection and/or port-forwarding is being used
to establish the connection to the server. This
changes the behavior of the client with regards to
internal checks of the destination IP address and
remote port number, default capability selection
and how the connection is established.

HTTP_OPTION_TRUSTEDSITE This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option
only affects connections using either the SSL or
TLS protocols.

HTTP_OPTION_SECURE This option specifies the client should attempt to
establish a secure connection with the server.
Note that the server must support secure
connections using either the SSL or TLS protocol.
The client will default to using TLS 1.2 or later for
secure connections.

HTTP_OPTION_SECURE_FALLBACK This option specifies the client should permit the
use of less secure cipher suites for compatibility
with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

HTTP_OPTION_PREFER_IPV6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be resolved
to both an IPv6 and IPv4 address. This option is
ignored if the local system does not have IPv6
enabled, or when the hostname can only be
resolved to an IPv4 address. If the server
hostname can only be resolved to an IPv6
address, the client will attempt to establish a
connection using IPv6 regardless if this option has
been specified.

HTTP_OPTION_HIRES_TIMER This option specifies the elapsed time for data
transfers should be returned in milliseconds
instead of seconds. This will return more accurate
transfer times for smaller amounts of data over
fast network connections.

lpStatus

A pointer to an HTTPTRANSFERSTATUS structure which contains information about the status of
the current file transfer. If this information is not required, a NULL pointer may be specified as
the parameter.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the HttpEventProc callback
function. If this parameter is NULL, the callback for the specified event is disabled.

dwParam

A user-defined integer value that is passed to the callback function.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The UploadFile method provides a convenient way for an application to upload a file in a single
function call. Based on the connection information specified in the URL, it will connect to the
server, authenticate the session and then upload the file to the server. The URL must be complete,
and specify either a standard or secure HTTP scheme:

[http|https]://[username : password] @] hostname [:port] / [path / ...]
[filename]

If no user name and password is provided, then the client session will be authenticated as an
anonymous user. If a path is specified as part of the URL, then function will attempt to change the
current working directory. Note that the path in an HTTP URL is relative to the home directory of
the user account and is not an absolute path starting at the root directory on the server. The URL
scheme will always determine if the connection is secure, not the option. In other words, if the
"http" scheme is used and the HTTP_OPTION_SECURE option is specified, that option will be
ignored. To establish a secure connection, the "https" scheme must be specified.

Not all web servers permit files to be uploaded and some may require that specific configuration
changes be made to the server in order to support this functionality. Consult your server's
technical reference documentation to see if it supports the PUT command, and if so, what must be
done to enable it. It may be required that the URL specify a username and password to upload a
file.

If your application requests a HTTP/2 connection and the server only accepts earlier versions of
the protocol, the client will attempt to automatically downgrade the request to HTTP/1.1. If a
connection using an earlier version of the protocol cannot be established, the method will fail and
return a value of zero.

The lpStatus parameter can be used by the application to determine the final status of the
transfer, including the total number of bytes copied, the amount of time elapsed and other
information related to the transfer process. If this information isn't needed, then this parameter
may be specified as NULL.

The lpEventProc parameter specifies a pointer to a function which will be periodically called during
the file transfer process. This can be used to check the status of the transfer by calling
GetTransferStatus and then update the program's user interface. For example, the callback
function could calculate the percentage for how much of the file has been transferred and then
update a progress bar control. The dwParam parameter is used in conjunction with the event
handler and specifies a user-defined value that is passed to the callback function. One common
use in a C++ program is to pass the this pointer as the value, and then cast it back to an object
pointer inside the callback function. If no event handler is required, then a NULL pointer can be
specified as the value for lpEventProc and the dwParam parameter will be ignored.

The UploadFile method is designed to provide a simpler interface for uploading a file. However,
complex connections such as those using a proxy server or a secure connection which uses a
client certificate will require the program to establish the connection using Connect and then use
PutFile to upload the file. If the server does not support the PUT command, you may be able to
upload files using the PostFile method. Refer to that method for more information.

Example
CHttpClient httpClient;
CString strLocalFile = _T("c:\\temp\\database.mdb");
CString strFileURL =
_T("http://update:secret@www.example.com/updates/database.mdb");

if (!httpClient.UploadFile(strLocalFile, strFileURL))
{
 httpClient.ShowError();
 return;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DownloadFile, GetTransferStatus, HttpEventProc, PostFile, PutFile, HTTPTRANSFERSTATUS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/http/class/httpeventproc.html

 ValidateHostName Method

BOOL ValidateHostName(
 LPCTSTR lpszHostName,
 LPTSTR lpszAddress,
 INT nMaxLength
);

BOOL ValidateHostName(
 LPCTSTR lpszHostName,
 CString& strAddress
);

The ValidateHostName method determines if the specified host name is valid and returns its IP
address.

Parameters
lpszHostName

A pointer to a null terminated string which specifies the host name. The method will fail If this
parameter is NULL or an empty string.

lpszAddress

A pointer to a string buffer which will contain the IP address of the host. If specified, this string
must be large enough to store the complete IP address, including the terminating null
character. If this parameter is NULL or the nMaxLength parameter is zero, it will be ignored and
the IP address will not be returned. An alternate version of this method accepts a reference to a
CString object if MFC or ATL is used with the project.

nMaxLength

An integer value that specifies the maximum number of characters which can be copied into the
lpszAddress string buffer. The buffer must be large enough to store the complete address.
Because this method can return either an IPv4 or IPv6 address, it is recommended the minimum
length for the buffer to be 46 characters. If this parameter is zero, the lpszAddress parameter
will be ignored.

Return Value
If the method succeeds, the host name is valid and the return value will be non-zero. If the
method fails, the host name could not be resolved to an IP address and the return value will be
zero. To get extended error information, call the GetLastError method.

Remarks
The ValidateHostName method provides a convenient way to determine if a host name is valid
by attempting to resolve the name into an IP address. If the Unicode version of this method is
used, any non-ASCII characters in the host name will be automatically encoded into a compatible
format and then resolved to an IP address. If you are unsure if an internationalized domain name
will be specified as the host name, it is recommended you use the Unicode version.

If the lpszHostName parameter specifies a valid IPv4 or IPv6 address string instead of a host
name, this method will return a copy of that IP address in the buffer provided by the caller. This
allows the method to be used in cases where a user may input either a host name or IP address.

If you wish to validate a complete HTTP URL instead of a host name, use the ValidateUrl method.

Requirements

Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ConnectUrl, ValidateUrl

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::ValidateUrl Method

BOOL CHttpClient::ValidateUrl(
 LPCTSTR lpszUrl
);

The ValidateUrl method determines if a string represents a valid HTTP URL.

Parameters
lpszUrl

A pointer to a string that specifies the URL to validate.

Return Value
If the specified URL is valid and the host name can be resolved to an IP address, the return value is
non-zero. If the method fails, the return value is zero. To get extended error information, call
HttpGetLastError.

Remarks
The ValidateUrl method will check the value of a string to ensure that it represents a complete,
valid URL using either a standard or secure HTTP scheme. This method will not establish a
connection with the server to verify that it exists, it will only attempt to resolve the host name to an
IP address. If the remote host is specified as an IP address, this method will check to make sure
that the address is formatted correctly. Note that if you wish to specify an IPv6 address, you must
enclose the address in brackets.

To establish a connection with a server using a URL, use the ConnectUrl method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ConnectUrl, DownloadFile, UploadFile, ValidateHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::VerifyFile Method

BOOL VerifyFile(
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszRemoteFile
);

The VerifyFile method attempts to verify that the size of a file on the local system is the same as
the specified file on the server.

Parameters
lpszLocalFile

A pointer to a string that specifies the name of file on the local system.

lpszRemoteFile

A pointer to a string that specifies the name of the file on the server.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The VerifyFile method will attempt to verify that the contents of the local and remote files are
identical by comparing the size of the files. This method is provided for compatibility with the File
Transfer Protocol API, and should not be considered a reliable method for comparing files. Web
servers may not consistently return file size information for dynamically created content such as
HTML pages which use server-side includes.

It is not recommended that you use this method with text files because of the different end-of-line
conventions used by different operating systems. For example, a text file on a Windows system
uses a carriage-return and linefeed pair to indicate the end of a line of text. However, on a UNIX
system, a single linefeed is used to indicate the end of a line. This can cause the VerifyFile method
to indicate the files are not identical, even though the only difference is in the end-of-line
characters that are used.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DeleteFile, GetFile, GetFileSize, PutFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpClient::Write Method

INT Write(
 LPBYTE lpBuffer,
 INT cbBuffer
);

INT Write(
 LPCTSTR lpszBuffer
 INT cbBuffer
);

The Write method sends the specified number of bytes to the server.

Parameters
lpBuffer

The pointer to the buffer which contains the data that is to be sent to the server. In an alternate
form of the method, the pointer is to a string.

cbBuffer

The number of bytes to send from the specified buffer. This value must be greater than zero,
unless a pointer to a null-terminated string is passed as the buffer argument. In that case, if the
value is -1, all of the characters in the string, up to but not including the terminating null
character, will be sent to the server.

Return Value
If the method succeeds, the return value is the number of bytes actually written. If the method
fails, the return value is HTTP_ERROR. To get extended error information, call GetLastError.

Remarks
The return value may be less than the number of bytes specified by the cbBuffer parameter. In this
case, the data has been partially written and it is the responsibility of the client application to send
the remaining data at some later point. For non-blocking clients, the client must wait for the next
asynchronous notification message before it resumes sending data.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
EnableEvents, IsBlocking, IsReadable, IsWritable, Read, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Hypertext Transfer Protocol Data Structures

HTTPCONNECTION
HTTPFORMPROPERTIES
HTTPTRANSFERSTATUS
HTTPTRANSFERSTATUSEX
SECURITYCREDENTIALS
SECURITYINFO
SYSTEMTIME

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/http/class/httpconnection.html

 HTTPFORMPROPERTIES Structure

This structure is used by the GetFormProperties and SetFormProperties methods to return and
modify the properties of the specified form.

typedef struct _HTTPFORMPROPERTIES
{
 UINT nFormMethod;
 UINT nFormType;
 LPCTSTR lpszFormAction;
 DWORD dwReserved1;
 DWORD dwReserved2;
} HTTPFORMPROPERTIES, *LPHTTPFORMPROPERTIES;

Members
nFormMethod

An unsigned integer value which specifies how the form data will be submitted to the server. It
may be one of the following values:

Constant Description

HTTP_METHOD_GET The form data should be submitted using the GET command.
This method should be used when the amount of form data is
relatively small. If the total amount of form data exceeds 2048
bytes, it is recommended that the POST method be used
instead.

HTTP_METHOD_POST The form data should be submitted using the POST command.
This is the preferred method of submitting larger amounts of
form data. If the total amount of form data exceeds 2048
bytes, it is recommended that the POST method be used.

nFormType

An unsigned integer value which specifies the type of form and how the data will be encoded
when it is submitted to the server. It may be one of the following values:

Constant Description

HTTP_FORM_ENCODED The form data should be submitted as URL encoded values.
This is typically used when the GET method is used to
submit the data to the server.

HTTP_FORM_MULTIPART The form data should be submitted as multipart form data.
This is typically used when the POST method is used to
submit a file to the server. Note that the script must
understand how to process multipart form data if this form
type is specified.

lpszFormAction

A pointer to a string which specifies the name of the resource that the form data will be
submitted to. Typically this is the name of a script that is executed on the server.

dwReserved1

A reserved structure member.

dwReserved2

A reserved structure member.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

See Also
CreateForm, GetFormProperties, SetFormProperties, SubmitForm

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HTTPTRANSFERSTATUS Structure

This structure is used by the GetTransferStatus method to return information about a data
transfer in progress.

typedef struct _HTTPTRANSFERSTATUS
{
 DWORD dwBytesTotal;
 DWORD dwBytesCopied;
 DWORD dwBytesPerSecond;
 DWORD dwTimeElapsed;
 DWORD dwTimeEstimated;
} HTTPTRANSFERSTATUS, *LPHTTPTRANSFERSTATUS;

Members
dwBytesTotal

The total number of bytes that will be transferred. If the data is being downloaded from the
server to the local host, this is the size of the requested resource. If the data is being uploaded
from the local host to the server, it is the size of the local file or memory buffer. If the size of the
resource cannot be determined, this value will be zero.

dwBytesCopied

The total number of bytes that have been copied.

dwBytesPerSecond

The average number of bytes that have been copied per second.

dwTimeElapsed

The number of seconds that have elapsed since the file transfer started.

dwTimeEstimated

The estimated number of seconds until the data transfer is completed. This is based on the
average number of bytes transferred per second.

Remarks
If the option HTTP_OPTION_HIRES_TIMER has been specified when connecting to the server, the
values returned in the dwTimeElapsed and dwTimeEstimated members will be in milliseconds
instead of seconds. You can use this option to obtain more accurate elapsed times when
uploading or downloading small amounts of data over a fast network connection.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

See Also
EnableEvents, GetTransferStatus, RegisterEvent, HTTPTRANSFERSTATUSEX

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HTTPTRANSFERSTATUSEX Structure

This structure is used by the GetTransferStatus method to return information about a data
transfer in progress. This structure is designed for use with extended functions that support files
larger than 4GB.

typedef struct _HTTPTRANSFERSTATUSEX
{
 ULARGE_INTEGER uiBytesTotal;
 ULARGE_INTEGER uiBytesCopied;
 DWORD dwBytesPerSecond;
 DWORD dwTimeElapsed;
 DWORD dwTimeEstimated;
} HTTPTRANSFERSTATUSEX, *LPHTTPTRANSFERSTATUSEX;

Members
uiBytesTotal

The total number of bytes that will be transferred. If the data is being downloaded from the
server to the local host, this is the size of the requested resource. If the data is being uploaded
from the local host to the server, it is the size of the local file or memory buffer. If the size of the
resource cannot be determined, this value will be zero.

uiBytesCopied

The total number of bytes that have been copied.

dwBytesPerSecond

The average number of bytes that have been copied per second.

dwTimeElapsed

The number of seconds that have elapsed since the file transfer started.

dwTimeEstimated

The estimated number of seconds until the data transfer is completed. This is based on the
average number of bytes transferred per second.

Remarks
If the option HTTP_OPTION_HIRES_TIMER has been specified when connecting to the server, the
values returned in the dwTimeElapsed and dwTimeEstimated members will be in milliseconds
instead of seconds. You can use this option to obtain more accurate elapsed times when
uploading or downloading small amounts of data over a fast network connection.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

See Also
EnableEvents, GetTransferStatus, RegisterEvent, HTTPTRANSFERSTATUS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SECURITYCREDENTIALS Structure

The SECURITYCREDENTIALS structure specifies the information needed by the library to specify
additional security credentials, such as a client certificate or private key, when establishing a secure
connection.

typedef struct _SECURITYCREDENTIALS
{
 DWORD dwSize;
 DWORD dwProtocol;
 DWORD dwOptions;
 DWORD dwReserved;
 LPCTSTR lpszHostName;
 LPCTSTR lpszUserName;
 LPCTSTR lpszPassword;
 LPCTSTR lpszCertStore;
 LPCTSTR lpszCertName;
 LPCTSTR lpszKeyFile;
} SECURITYCREDENTIALS, *LPSECURITYCREDENTIALS;

Members
dwSize

Size of this structure. If the structure is being allocated dynamically, this member must be set to
the size of the structure and all other unused structure members must be initialized to a value of
zero or NULL.

dwProtocol

A bitmask of supported security protocols. The value of this structure member is constructed by
using a bitwise operator with any of the following values:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The
correct protocol is automatically selected, based on

what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.
This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is
supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

dwOptions

A value which specifies one or options. This member is constructed by using a bitwise operator
with any of the following values:

Constant Description

CREDENTIAL_STORE_CURRENT_USER The library will attempt to open a store for
the current user using the certificate store
name provided in this structure. If no options
are specified, then this is the default
behavior.

CREDENTIAL_STORE_LOCAL_MACHINE The library will attempt to open a local
machine store using the certificate store

name provided in this structure. If this option
is specified, the library will always search for a
local machine store before searching for the
store by that name for the current user.

CREDENTIAL_STORE_FILENAME The certificate store name is a file that
contains the certificate and private key that
will be used.

dwReserved

This structure member is reserved for future use and should always be initialized to zero.

lpszHostName

A pointer to a null terminated string which specifies the hostname that will be used when
validating the server certificate. If this member is NULL, then the server certificate will be
validated against the hostname used to establish the connection.

lpszUserName

A pointer to a null terminated string which identifies the owner of client certificate. Currently this
member is not used by the library and should always be initialized as a NULL pointer.

lpszPassword

A pointer to a null terminated string which specifies the password needed to access the
certificate. Currently this member is only used if the CREDENTIAL_STORE_FILENAME option has
been specified. If there is no password associated with the certificate, then this member should
be initialized as a NULL pointer.

lpszCertStore

A pointer to a null terminated string which specifies the name of the certificate store to open. A
certificate store is a collection of certificates and their private keys, typically organized by how
they are used. If this value is NULL or points to an empty string, the default certificate store "MY"
will be used.

Store
Name

Description

CA
Certification authority certificates. These are certificates that are issued by entities
which are entrusted to issue certificates to other individuals or organizations.
Companies such as VeriSign and Thawte act as certification authorities.

MY

Personal certificates and their associated private keys for the current user. This
store typically holds the client certificates used to establish a user's credentials.
This corresponds to the "Personal" store that is displayed by the certificate
manager utility and is the default store used by the library.

ROOT
Certificates that have been self-signed by a certificate authority. Root certificates
for a number of different certification authorities such as VeriSign and Thawte are
installed as part of the operating system and periodically updated by Microsoft.

lpszCertName

A pointer to a null terminated string which specifies the name of the certificate to use. The
library will first search the certificate store for a certificate with a matching "friendly name"; this is
a name for the certificate that is assigned by the user. Note that the name must match
completely, but the comparison is not case sensitive. If no matching certificate is found, the
library will then attempt to find a certificate that has a matching common name (also called the
certificate subject). This comparison is less stringent, and the first partial match will be returned.

If this second search fails, the library will return an error indicating that the certificate could not
be found. If the SECURITY_PROTOCOL_SSH protocol has been specified, this member should
be NULL.

lpszKeyFile

A pointer to a null terminated string which specifies the name of the file which contains the
private key required to establish the connection. This member is only used for SSH connections
and should always be NULL when establishing a secure connection using SSL or TLS.

Remarks
A client application only needs to create this structure if the server requires that the client provide
a certificate as part of the process of negotiating the secure session. If a certificate is required,
note that it must have a private key associated with it. Attempting to use a certificate that does not
have a private key will result in an error during the connection process indicating that the client
credentials could not be established.

If you are using a local certificate store, with the certificate and private key stored in the registry,
you can explicitly specify whether the certificate store for the current user or the local machine (all
users) should be used. This is done by prefixing the certificate store name with "HKCU:" for the
current user, or "HKLM:" for the local machine. For example, a certificate store name of
"HKLM:MY" would specify the personal certificate store for the local machine, rather than the
current user. If neither prefix is specified, then it will default to the certificate store for the current
user. You can manage these certificates using the CertMgr.msc Microsoft Management Console
(MMC) snap-in.

It is possible to load the certificate from a file rather than from current user's certificate store. The
dwOptions member should be set to CREDENTIAL_STORE_FILENAME and the lpszCertStore
member should specify the name of the file that contains the certificate and its private key. The file
must be in Private Information Exchange (PFX) format, also known as PKCS #12. These certificate
files typically have an extension of .pfx or .p12. Note that if a password was specified when the
certificate file was created, it must be provided in the lpszPassword member or the library will be
unable to access the certificate.

Note that the lpszUserName and lpszPassword members are values which are used to access the
certificate store or private key file. They are not the credentials which are used when establishing
the connection with the remote host or authenticating the client session.

The TLS 1.1 and TLS 1.2 protocols are only supported on Windows 7, Windows Server 2008 R2
and later versions of the platform. If these options are specified and the application is running on
Windows XP or Windows Vista, the protocol version will be downgraded to TLS 1.0 for backwards
compatibility with those platforms.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cstools11.h.
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SECURITYINFO Structure

This structure contains information about a secure connection that has been established.

typedef struct _SECURITYINFO
{
 DWORD dwSize;
 DWORD dwProtocol;
 DWORD dwCipher;
 DWORD dwCipherStrength;
 DWORD dwHash;
 DWORD dwHashStrength;
 DWORD dwKeyExchange;
 DWORD dwCertStatus;
 SYSTEMTIME stCertIssued;
 SYSTEMTIME stCertExpires;
 LPCTSTR lpszCertIssuer;
 LPCTSTR lpszCertSubject;
 LPCTSTR lpszFingerprint;
} SECURITYINFO, *LPSECURITYINFO;

Members
dwSize

Specifies the size of the data structure. This member must always be initialized to
sizeof(SECURITYINFO) prior to passing the address of this structure to the function. Note that
if this member is not initialized, an error will be returned indicating that an invalid parameter has
been passed to the function.

dwProtocol

A numeric value which specifies the protocol that was selected to establish the secure
connection. One of the following values will be returned:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The

correct protocol is automatically selected, based on
what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.
This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is
supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

dwCipher

A numeric value which specifies the cipher that was selected when establishing the secure
connection. One of the following values will be returned:

Constant Description

SECURITY_CIPHER_RC2 The RC2 block cipher was selected. This is a variable
key length cipher which supports keys between 40 and
128 bits, in 8-bit increments.

SECURITY_CIPHER_RC4 The RC4 stream cipher was selected. This is a variable
key length cipher which supports keys between 40 and
128 bits, in 8-bit increments.

SECURITY_CIPHER_RC5 The RC5 block cipher was selected. This is a variable
key length cipher which supports keys up to 2040 bits,
in 8-bit increments.

SECURITY_CIPHER_DES The DES (Data Encryption Standard) block cipher was
selected. This is a fixed key length cipher, using 56-bit
keys.

SECURITY_CIPHER_DES3 The Triple DES block cipher was selected. This cipher
encrypts the data three times using different keys,
effectively providing a 168-bit length key.

SECURITY_CIPHER_DESX A variant of the DES block cipher which XORs an extra
64-bits of the key before and after the plaintext has
been encrypted, increasing the key size to 184 bits.

SECURITY_CIPHER_AES The Advanced Encryption Standard cipher (also known
as the Rijndael cipher) is a fixed block size cipher which
use a key size of 128, 192 or 256 bits. This cipher is
supported on Windows XP SP3 and later versions of
the operating system.

SECURITY_CIPHER_SKIPJACK The Skipjack block cipher was selected. This is a fixed
key length cipher, using 80-bit keys.

SECURITY_CIPHER_BLOWFISH The Blowfish block cipher was selected. This is a
variable key length cipher up to 448 bits, using a 64-bit
block size.

dwCipherStrength

A numeric value which specifies the strength (the length of the cipher key in bits) of the cipher
that was selected. Typically this value will be 128 or 256. 40-bit and 56-bit key lengths are
considered weak encryption, and subject to brute force attacks. 128-bit and 256-bit key lengths
are considered to be secure, and are the recommended key length for secure communications.

dwHash

A numeric value which specifies the hash algorithm which was selected. One of the following
values will be returned:

Constant Description

SECURITY_HASH_MD5 The MD5 algorithm was selected. Its use has been
deprecated and is no longer considered to be
cryptographically secure.

SECURITY_HASH_SHA1 The SHA-1 algorithm was selected. Its use has been
deprecated and is no longer considered to be
cryptographically secure.

SECURITY_HASH_SHA256 The SHA-256 algorithm was selected.

SECURITY_HASH_SHA384 The SHA-384 algorithm was selected.

SECURITY_HASH_SHA512 The SHA-512 algorithm was selected.

dwHashStrength

A numeric value which specifies the strength (the length in bits) of the message digest that was

selected.

dwKeyExchange

A numeric value which specifies the key exchange algorithm which was selected. One of the
following values will be returned:

Constant Description

SECURITY_KEYEX_RSA The RSA public key algorithm was selected.

SECURITY_KEYEX_KEA The Key Exchange Algorithm (KEA) was selected. This is an
improved version of the Diffie-Hellman public key algorithm.

SECURITY_KEYEX_DH The Diffie-Hellman key exchange algorithm was selected.

SECURITY_KEYEX_ECDH The Elliptic Curve Diffie-Hellman key exchange algorithm was
selected. This is a variant of the Diffie-Hellman algorithm
which uses elliptic curve cryptography. This key exchange
algorithm is only supported on Windows XP SP3 and later
versions of the operating system.

dwCertStatus

A numeric value which specifies the status of the certificate returned by the secure server. This
member only has meaning for connections using the SSL or TLS protocols. One of the following
values will be returned:

Constant Description

SECURITY_CERTIFICATE_VALID The certificate is valid.

SECURITY_CERTIFICATE_NOMATCH The certificate is valid, but the domain name
does not match the common name in the
certificate.

SECURITY_CERTIFICATE_EXPIRED The certificate is valid, but has expired.

SECURITY_CERTIFICATE_REVOKED The certificate has been revoked and is no
longer valid.

SECURITY_CERTIFICATE_UNTRUSTED The certificate or certificate authority is not
trusted on the local system.

SECURITY_CERTIFICATE_INVALID The certificate is invalid. This typically indicates
that the internal structure of the certificate has
been damaged.

stCertIssued

A structure which contains the date and time that the certificate was issued by the certificate
authority. If the issue date cannot be determined for the certificate, the SYSTEMTIME structure
members will have zero values. This member only has meaning for connections using the SSL or
TLS protocols.

stCertExpires

A structure which contains the date and time that the certificate expires. If the expiration date
cannot be determined for the certificate, the SYSTEMTIME structure members will have zero
values. This member only has meaning for connections using the SSL or TLS protocols.

lpszCertIssuer

A pointer to a string which contains information about the organization that issued the
certificate. This string consists of one or more comma-separated tokens. Each token consists of
an identifier, followed by an equal sign and a value. If the certificate issuer could not be
determined, this member may be NULL. This member only has meaning for connections using
the SSL or TLS protocols.

lpszCertSubject

A pointer to a string which contains information about the organization that the certificate was
issued to. This string consists of one or more comma-separated tokens. Each token consists of
an identifier, followed by an equal sign and a value. If the certificate subject could not be
determined, this member may be NULL. This member only has meaning for connections using
the SSL or TLS protocols.

lpszFingerprint

A pointer to a string which contains a sequence of hexadecimal values that uniquely identify the
server. This member is only used when a connection has been established using the Secure
Shell (SSH) protocol.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SYSTEMTIME Structure

The SYSTEMTIME structure represents a date and time using individual members for the month,
day, year, weekday, hour, minute, second, and millisecond.

typedef struct _SYSTEMTIME
{
 WORD wYear;
 WORD wMonth;
 WORD wDayOfWeek;
 WORD wDay;
 WORD wHour;
 WORD wMinute;
 WORD wSecond;
 WORD wMilliseconds;
} SYSTEMTIME, *LPSYSTEMTIME;

Members
wYear

Specifies the current year. The year value must be greater than 1601.

wMonth

Specifies the current month. January is 1, February is 2 and so on.

wDayOfWeek

Specifies the current day of the week. Sunday is 0, Monday is 1 and so on.

wDay

Specifies the current day of the month

wHour

Specifies the current hour.

wMinute

Specifies the current minute

wSecond

Specifies the current second.

wMilliseconds

Specifies the current millisecond.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include windows.h.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Hypertext Transfer Queue Class Library

Manage a queue which will perform HTTP file transfers in the background.

Reference

Class Methods
Data Structures
Error Codes

Library Information

File Name CSHTPV11.DLL

Version 11.0.2180.1635

LibID 1EE620E7-5A9E-4DC3-8403-9153F19C51D9

Import Library CSHTPV11.LIB

Dependencies None

Standards RFC 1945, RFC 2616, RFC 7230, RFC 7540

Overview
The Hypertext Transfer Queue class library provides a high-level interface to uploading and
downloading a collection of files using the Hypertext Transfer Protocol. Queued file transfers are
performed in a background worker thread, with optional event notifications to inform the
application about the current state of the queue and the files being processed.

A file may be queued for upload or download, and both uploads and downloads may be included
in the same queue. Multiple instances of this class may be created to transfer multiple files at the
same time. This class supports the same options available to individual file transfers using the
CHttpClient class.

This class supports secure, encrypted file transfers using TLS 1.2 and later versions of the protocol.

Requirements
The SocketTools Library Edition libraries are compatible with any programming language which
supports calling functions exported from a standard dynamic link library (DLL). If you are using
Visual C++ 6.0 it is required that you have Service Pack 6 (SP6) installed. You should install all
updates for your development tools and have the current Windows SDK installed. The minimum
recommended version of Visual Studio is Visual Studio 2010.

This class is supported on Windows 7, Windows Server 2008 R2 and later versions of the desktop
and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1) installed as
a minimum requirement. It is recommended that you install the current service pack and all critical
updates available for your version of the operating system.

This product includes both 32-bit and 64-bit libraries. Native 64-bit CPU support requires the 64-
bit version of Windows 7 or later versions of the Windows operating system.

Distribution
When you distribute your application that uses this library, it is recommended that you install the
file in the same folder as your application executable. If you install the library into a shared location

on the system, it is important that you distribute the correct version for the target platform and it
should be registered as a shared DLL. This is a standard Windows dynamic link library, not an
ActiveX component, and does not require COM registration.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Hypertext Transfer Queue Class Methods

Class Description

CHttpQueue Constructor which initializes the current instance of the class

~CHttpQueue Destructor which releases resources allocated by the class

Method Description

AddFile Add a file to the transfer queue

AttachHandle Attach the specified client handle to this instance of the class

Cancel Cancel the specified queued file transfer

Clear Remove all files from the transfer queue

DetachHandle Detach the handle for the current instance of this class

DisableTrace Disable logging of socket function calls to the trace log

EnableTrace Enable logging of socket function calls to a file

EnumFiles Enumerate queued files based on the specified criteria

FindFile Find a specific file in the queue

HttpEventProc Callback function that processes events generated during queued transfers

GetClient Return a handle to the active client session during a queued file transfer

GetCount Return the number of files queued for transfer

GetErrorString Return a description for the specified error code

GetFile Return information about the specified file

GetFirstFile Return information about the first file in the transfer queue

GetHandle Return a handle for the queue

GetLastError Return the last error code

GetNextFile Return information about the next file in the transfer queue

GetStatus Return the current status of the file transfer queue

GetTransferStatus Return information about the file being currently transferred

IsEmpty Determine if the current file transfer queue is empty

IsIdle Determine if the queue manager is currently idle

IsInitialized Determine if the class has been successfully initialized

RemoveFile Remove a file from the transfer queue

Reset Reset the internal state of file transfers in the queue

Resume Resume the transfer of files after queue processing has been paused

SetLastError Set the last error code

ShowError Display a message box with a description of the specified error

Start Begin transferring files in the queue

file:///C|/Projects/cstools11/pdf/httpqft/class/httpeventproc.html

Stop Stop transferring files in the queue

Suspend Pause the transfer of files in the queue

Wait Wait for the transfer of all queued files to complete

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpQueue::CHttpQueue Method

CHttpQueue();

CHttpQueue(
 UINT nMaxFiles,
 UINT nTimeout,
 DWORD dwOptions
);

The CHttpQueue constructor initializes the class library and validates the license key at runtime.

Parameters
nMaxFiles

An unsigned integer which specifies the maximum number of files which can be added to the
queue. The constant INFINITE can be used to specify that there is no fixed limit to the number
of files in the queue.

nTimeout

An unsigned integer which specifies the default timeout for all queued file transfers. If this value
is zero, a reasonable default timeout period will be used. This timeout period is used when a file
is added to the queue without providing a timeout period for that specific file transfer. If a
timeout period is specified for a particular file, it will override this value.

dwOptions

An unsigned integer value which specifies one or more default options for all queued files. This
parameter is constructed by using a bitwise operator and can be any of the options used with
the CHttpClient::Connect method. If transfer options are specified for a particular file, it will
override this value. The most common options are:

Constant Description

HTTP_OPTION_DEFAULT Default options should be used for queued file
transfers. This is the same as specifying that all file
transfers should use passive mode when
establishing a data connection with the server. It is
recommended most applications use passive mode
to prevent potential compatibility issues with certain
types of firewalls and routers which use Network
Address Translation (NAT).

HTTP_OPTION_FIREWALL This option specifies queued transfers should
always use the host IP address to establish the data
connection with the server, not the address
returned by the server in response to the PASV
command. This option may be necessary if the
server is behind a router that performs Network
Address Translation (NAT) and it returns an
unreachable IP address for the data connection. If
this option is specified, it will also enable passive
mode data transfers.

HTTP_OPTION_SECURE This option specifies queued file transfers should
attempt to establish a secure connection with the

server by default. This option is the same as
specifying HTTP_OPTION_SECURE_IMPLICIT which
immediately performs the SSL/TLS protocol
negotiation when the connection is established.

HTTP_OPTION_SECURE_IMPLICIT This option specifies queued file transfers should
attempt to immediately establish secure SSL/TLS
connection with the server by default. This option is
typically used when connecting to a server on port
990, which is the default port number used for
HTTPS.

HTTP_OPTION_SECURE_EXPLICIT This option specifies queued file transfers should
establish a standard connection to the server and
then use the AUTH command to negotiate an
explicit secure connection. This option is typically
used when connecting to the server on ports other
than 990.

HTTP_OPTION_SECURE_SHELL This option specifies queued file transfers should
use the Secure Shell (SSH) protocol to establish the
connection by default. This option will automatically
be selected if the connection is established using
port 22, the default port for SSH.

Remarks
If the constructor fails to validate the runtime license, subsequent methods in this class will fail. If
the product is installed with an evaluation license, then the application will only function on the
development system and cannot be redistributed.

If the nMaxFiles parameter is INFINITE, memory will be dynamically allocated on the process heap
with no limit to the number of files which can be queued. If there is a logic error which causes the
application to recursively add files to the queue, or repeatedly queue the same file, this can result
in virtual memory being exhausted for the process. You can avoid this by specifying a reasonable
maximum queue size, which will cause the AddFile method to fail if that limit is exceeded.

When called without any parameters, the constructor will create a queue with no file limit, default
options and a default timeout period. The memory allocated for the queue will be released when
the class destructor is invoked.

The constructor calls the HttpInitialize function to initialize the library, which dynamically loads
other system libraries and allocates thread local storage. If you are using this class within another
DLL, it is important that you do not create or destroy an instance of the class from within the
DllMain function because it can result in deadlocks or access violation errors. You should not
declare static or global instances of this class within another DLL if it is linked with the C runtime
library (CRT) because it will automatically call the constructors and destructors for static and global
C++ objects and has the same restrictions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
~CHttpQueue, IsInitialized, CHttpClient::Connect

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpQueue::~CHttpQueue

~CHttpQueue();

The CHttpQueue destructor releases resources allocated by the current instance of the
CHttpQueue object. It also uninitializes the library if there are no other concurrent uses of the
class.

Remarks
When a CHttpQueue object goes out of scope, the destructor is automatically called to allow the
library to free any resources allocated on behalf of the process. Any pending blocking or
asynchronous calls in this process are canceled without posting any notification messages, and all
handles that were created for the client session are destroyed.

The destructor is not called explicitly by the application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
CHttpQueue

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpQueue::AddFile Method

DWORD AddFile(
 DWORD dwQueueMode,
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszRemoteFile,
 DWORD dwOptions,
 UINT nTimeout
);

DWORD AddFile(
 DWORD dwQueueMode,
 LPCTSTR lpszHostName,
 UINT nHostPort,
 UINT nAuthType,
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword,
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszRemoteFile,
 DWORD dwOptions,
 UINT nTimeout
);

The AddFile method adds a new file to the queue with additional transfer options.

Parameters
dwQueueMode

An integer value which specifies if the file should be downloaded from the server or uploaded
to the server. This parameter must be one of the following options and cannot have a value of
zero.

Constant Description

HTTP_QUEUE_DOWNLOAD The file should be queued for downloading from
the server to the local system.

HTTP_QUEUE_UPLOAD The file should be queued for uploading from the
local system to the server.

lpszHostName

A pointer to the name of the server to establish a connection with. This may be a fully-qualified
domain name or an IP address. If this parameter is NULL or points to an empty string, the
lpszRemoteFile parameter must specify a complete URL which identifies the server as well as the
path to the remote file.

nHostPort

The port number which should be used when establishing the connection. A value of zero
specifies that the default port number should be used. For standard connections, the default
port number is 21. For secure connections, the default port number is 990. If this parameter is
zero and a URL is specified with the lpszRemoteFile parameter, the port number included in the
URL will be used as the default value.

nAuthType

An unsigned integer value which specifies the method to be used when authenticating the
client. The following values are supported:

Constant Description

HTTP_AUTH_NONE No client authentication should be performed. The
lpszUserName and lpszPassword parameters are ignored and
current authentication settings are cleared.

HTTP_AUTH_BASIC The Basic authentication scheme should be used. This option is
supported by all servers that support at least version 1.0 of the
protocol. The user credentials are not encrypted and Basic
authentication should not be used over standard (non-secure)
connections. Most web services which use Basic authentication
require the connection to be secure.

HTTP_AUTH_BEARER The Bearer authentication scheme should be used. This
authentication method does not require a user name and the
lpszPassword parameter must specify the OAuth 2.0 bearer
token issued by the service provider. If the access token has
expired, the request will fail with an authorization error.

lpszUserName

Points to a null terminated string which specifies the user name to be used to authenticate the
connection. If this parameter is NULL or an empty string, no client credentials are provided. If
the authentication type is HTTP_AUTH_BEARER, this parameter is ignored.

lpszPassword

Points to a null terminated string which specifies the password to be used to authenticate the
current client session. This parameter may be NULL or an empty string if no password is
required for the specified user, or if no username has been specified. If the authentication type
is HTTP_AUTH_BEARER, this value must be the bearer token issued by the service provider.

lpszLocalFile

A pointer to a null terminated string which specifies the name of the local file to be queued for
transfer. This parameter cannot be NULL or point to an empty string. If the file is being queued
for an upload, the file must exist on the local system or the method will fail. If the file is being
downloaded, it will be created or replaced on the local system.

lpszRemoteFile

A pointer to a null terminated string which specifies the name of the file on the server. If the file
is being downloaded, the file must exist on the server or the transfer will fail. If the file is being
uploaded, the file will be created or replaced on the server. This parameter may specify a
complete URL. Note that any values you specify as arguments to this method will override the
values specified in the URL. If you want to use a URL as the remote file name, the
lpszHostName parameter should be NULL and the nHostPort parameter should be zero.

dwOptions

An unsigned integer value which specifies one or more options. This parameter is constructed
by using a bitwise operator and can be any of the options used with the HttpClient::Connect
method. If this value is zero, the default options for the queue will be used. The most common
options are:

Constant Description

HTTP_OPTION_DEFAULT Default options should be used for the queued transfer. All
standard headers will be included with the request and

redirected resources will return an error, allowing the
application to determine if it should request the resource
from the new location or inform the user the resource
location has changed.

HTTP_OPTION_REDIRECT This option specifies the client should automatically handle
resource redirection. If the server indicates that the
requested resource has moved to a new location, the client
will close the current connection and request the resource
from the new location. Note that it is possible that the
redirected resource will be located on a different server.

HTTP_OPTION_PROXY This option specifies the client should use the default proxy
configuration for the local system. If the system is
configured to use a proxy server, then the connection will
be automatically established through that proxy; otherwise,
a direct connection to the server is established. The local
proxy configuration can be changed in the system settings
or control panel.

HTTP_OPTION_HTTP2 This option specifies the client should attempt a HTTP/2
connection with the server. If a connection cannot be
established using HTTP/2 the client will attempt to connect
using an earlier version of the protocol.

HTTP_OPTION_SECURE This option specifies the client should attempt to establish a
secure connection with the server. Note that the server
must support secure connections using either the SSL or
TLS protocol. The client will default to using TLS 1.2 or later
for secure connections.

nTimeout

The number of seconds to wait for a response from the server before failing the file transfer. If
this value is zero, the default timeout period for the queue will be used.

lpvReserved

A reserved parameter which should always be NULL.

Return Value
If the method succeeds, the return value is a unique identifier which corresponds to the queued
file. If the method fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
This method will add a file to the current transfer queue. If successful, the value returned is a
unique integer which identifies that file in the queue. To obtain information about the queued file,
you can call the GetFile method and provide this return value as the dwFileId parameter. To
remove a file from the queue, use the RemoveFile method.

Files can only be added to the queue when in an idle or paused state. If you attempt to add a file
to the queue while the queue manager is transferring files, the method will fail. To determine the
current state of the queue, call the GetStatus method

There are no fixed limits to the number of files which can be queued for transfer. To release the

memory allocated for the queue, call the Clear method. To determine the current status of the
queue, including how many file transfers have been queued and how many are pending
completion, call the GetStatus method.

If the local file name includes environment variables enclosed in percentage (%) symbols, those
values will automatically be expanded based on the environment variables defined for the current
user using the ExpandEnvironmentStrings function in the Windows API. Note that environment
variable names are not case-sensitive.

This method will not immediately begin the process of uploading or downloading the file. It will
only add the transfer request to the current queue. The file transfers are managed by a
background worker thread which is created when the Start method is called.

Example
// Create a new queue
CHttpQueue pQueue = new CHttpQueue();

if (!pQueue->IsInitialized())
 return;

// Add a file to the queue
DWORD dwFileId = pQueue->AddFile(
 HTTP_QUEUE_DOWNLOAD,
 lpszHostName,
 HTTP_PORT_DEFAULT,
 lpszUserName,
 lpszPassword,
 lpszLocalFile,
 lpszRemoteFile);

// Display information about the queued file
if (dwFileId != 0)
{
 HTTPQUEUEDFILE queuedFile;

 if (pQueue->GetFile(dwFileId, &queuedFile))
 {
 switch (queuedFile.dwMode)
 {
 case HTTP_QUEUE_DOWNLOAD:
 _tprintf(_T("%u: Download \"%s\" to \"%s\"\n"),
 dwFileId,
 queuedFile.szRemoteFile,
 queuedFile.szLocalFile);
 break;

 case HTTP_QUEUE_UPLOAD:
 _tprintf(_T("%u: Upload \"%s\" to \"%s\"\n"),
 dwFileId,
 queuedFile.szLocalFile,
 queuedFile.szRemoteFile);
 break;
 }
 }
}

// Start the queued file transfers and wait for it to complete
if (pQueue->Start())

{
 pQueue->Wait(INFINITE);
 pQueue->Stop();
}

// Remove all files from the queue
delete pQueue;

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CHttpQueue, ~CHttpQueue, FindFile, HttpGetFile, GetFirstFile, GetNextFile, RemoveFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/httpqft/class/httpgetfile.html

 CHttpQueue::AttachHandle Method

VOID AttachHandle(
 HQUEUE hQueue
);

The AttachHandle method attaches the specified queue handle to the current instance of the
class.

Parameters
hQueue

A handle to the queue.

Return Value
None.

Remarks
This method is used to attach a queue handle created outside of the class using the SocketTools
API. Once the handle is attached to the class, the other class member functions may be used with
that queue.

If a handle already has been created for the class, that handle will be released when the new
handle is attached to the class object. If you want to prevent the previous queue from being
destroyed, you must call the DetachHandle method. Failure to release the detached handle may
result in a resource leak in your application.

Note that the hQueue parameter is presumed to be a valid queue handle and no checks are
performed to ensure that the handle is valid. Specifying an invalid queue handle will cause
subsequent method calls to fail.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
DetachHandle, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpQueue::Cancel Method

BOOL Cancel(
 DWORD dwFileId
);

The Cancel method cancels the specified file transfer.

Parameters
dwFileId

An optional unsigned integer value which uniquely identifies the file in the queue. If this
parameter is omitted or the value is zero, the method will cancel the current file transfer in
progress. If queue transfers have been suspended, this parameter cannot be zero.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it will return zero. To get
extended error information, call GetLastError.

Remarks
When this method is called, the queued file transfer may not immediately stop. An internal flag is
set which causes the file transfer to exit with an error and the queue manager will begin
processing the next file in the queue. If the queue is in an idle state, this method will fail.

It is permitted to call the Cancel method from within a queue event handler to cancel the current
file transfer. In this case, the dwFileId parameter should be zero. If you specify a file which has not
been transferred, it will be flagged as canceled and skipped by the queue manager when
processing the queue. If you specify a file which has already been processed, this method will fail.

A canceled file transfer is also considered a failed transfer. When you call GetStatus after a
queued file transfer is canceled, the dwFailedFiles member of the HTTPQUEUESTATUS structure
will be incremented to reflect this change. You can determine the status of an individual file
transfer by calling the GetFile method and checking the value of the dwQueueFlags member of
the HTTPQUEUEDFILE structure.

The Reset method can be used to reset the state of previously canceled transfers.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
Cancel, GetFile, GetStatus, Reset, Resume, Start, Suspend, Stop

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpQueue::Clear Method

BOOL Clear();

The Clear method removes all files from the queue.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it will return zero. To get
extended error information, call GetLastError.

Remarks
This method can only be called when the queue is in an idle state. An error will be returned if the
method is called while the queue manager is paused or actively transferring files in the queue. To
determine the current state of the queue, call the GetStatus method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
Cancel, GetStatus, Reset, Resume, Start, Stop, Suspend

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpQueue::DetachHandle Method

HQUEUE DetachHandle();

The DetachHandle method detaches the queue handle associated with the current instance of
the class.

Parameters
None.

Return Value
This method returns the queue handle associated with the current instance of the class object. If
an error occurs, the value INVALID_QUEUE will be returned.

Remarks
This method is used to detach a queue handle created by the class for use with the SocketTools
API. Once the handle is detached from the class, no other class member functions may be called.
Note that the handle must be explicitly released at some later point by the process or a resource
leak will occur.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
AttachHandle, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpQueue::DisableTrace Method

BOOL DisableTrace();

The DisableTrace method disables the logging of socket function calls to the trace log.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, a value of zero is
returned.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
EnableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpQueue::EnableTrace Method

BOOL EnableTrace(
 LPCTSTR lpszTraceFile,
 DWORD dwTraceFlags
);

The EnableTrace method enables the logging of network function calls to a file.

Parameters
lpszTraceFile

A pointer to a string which specifies the name of the trace log file. If this parameter is NULL or
an empty string, the default file name cstrace.log is used. The file is stored in the directory
specified by the TEMP environment variable, if it is defined; otherwise, the current working
directory is used.

dwTraceFlags

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

TRACE_INFO All function calls are written to the trace file. This is the default
value.

TRACE_ERROR Only those function calls which fail are recorded in the trace file.

TRACE_WARNING Only those function calls which fail or return values which indicate
a warning are recorded in the trace file.

TRACE_HEXDUMP All functions calls are written to the trace file, plus all the data that
is sent or received is displayed, in both ASCII and hexadecimal
format.

TRACE_PROCESS All function calls in the current process are logged, rather than
only those functions in the current thread. This option is useful for
multithreaded applications that are using worker threads. This
option is always selected for the CHttpQueue class.

Return Value
If the method succeeds, the return value is non-zero. A return value of zero indicates an error.
Failure typically indicates that the tracing library cstrcv11.dll cannot be loaded on the local
system.

Remarks
When trace logging is enabled, the file is opened, appended to and closed for each socket
function call. This makes it possible for an application to append its own logging information,
however care should be taken to ensure that the file is closed before the next network operation is
performed. To limit the size of the log files, enable and disable logging only around those sections
of code that you wish to trace.

Note that the TRACE_HEXDUMP trace level generates very large log files since it includes all of the
data exchanged between your application and the server.

Trace method logging is managed on a per-thread basis, not for each client handle. This means

that all SocketTools libraries and components share the same settings in the current thread. If you
are using multiple SocketTools libraries or components in your application, you only need to
enable logging once.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DisableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpQueue::EnumFiles Method

LONG EnumFiles(
 LPCTSTR lpszFileMask,
 DWORD dwQueueMode,
 DWORD dwExcludeFiles,
 LPDWORD lpFileList,
 LONG nMaxFiles
);

The EnumFiles method returns a list of files in the current transfer queue.

Parameters
lpszFileMask

A pointer to a null terminated string which specifies a file name which can include wildcards.
Only those files which match this value will be enumerated. The character '?' will match against
any single character, and '*' will match any number of characters. If this parameter is NULL or
points to an empty string, all eligible files in the queue will be matched.

dwQueueMode

An unsigned integer value which specifies if the file name should be matched against
downloaded files, uploaded files or all files in the queue. Only those files which match the queue
mode will be enumerated. This is a bitmask which may be one or more of the following values:

Constant Description

HTTP_QUEUE_ALL Match the file name to all files in the queue.

HTTP_QUEUE_DOWNLOAD Match file names which are queued for download.

HTTP_QUEUE_UPLOAD Match file names which are queued for upload.

HTTP_QUEUE_LOCAL Match against the local file name instead of the
remote file name.

dwExcludeFiles

An unsigned integer value which specifies which files to exclude from the enumeration. If this
value is zero, no files will be excluded; otherwise, this value is constructed by using a bitwise
operator with any of the following values:

Constant Description

HTTP_QUEUE_FLAG_NONE No files should be excluded.

HTTP_QUEUE_FLAG_COMPLETED Exclude files which have been transferred. This flag
is set after a queued file has been uploaded or
downloaded successfully.

HTTP_QUEUE_FLAG_FAILED Exclude files which where not successfully
uploaded or downloaded. This flag is set when an
error occurs, either when establishing a connection
with the server or during the file transfer.

HTTP_QUEUE_FLAG_CANCELED Exclude files which were canceled during the file
transfer. This flag is only set when the Cancel
method has been called and a queued file is in the

process of being uploaded or downloaded.

lpFileList

A pointer to an array of unsigned integer values which will contain the unique file identifiers for
each matching file in the queue. This parameter must specify an array large enough to store all
of the file identifiers, otherwise the method will fail with a ST_ERROR_BUFFER_TOO_SMALL
error. If this parameter is NULL, the method will return the number of matching files.

nMaxFiles

An integer value which specifies the maximum number of file identifiers which can be copied
into the lpFileList array. If the lpFileList parameter is not NULL, this value must be greater than
zero.

Return Value
If the method succeeds, the return value is the number of matching files. If the queue is empty or
there are no matching files, this method will return zero. If the method fails, the return value is
HTTP_ERROR. To get extended error information, call GetLastError.

Remarks
This method populates an array of unique file identifiers which can be used to obtain information
about the files in the current queue. The values returned in the lpFileList array can be used in
conjunction with the GetFile method. This provides an alternative to using the GetFirstFile and
GetNextFile methods.

The application should not make any assumptions about the value of the file identifiers returned
by this method. They should be considered opaque values which are only guaranteed to uniquely
identify a file in the transfer queue. In particular, there is no guarantee that the file identifiers will
be sequential and they should not be used as index values into an array.

Example
// Get the total number of files in the queue
LONG nFiles = pQueue->GetCount();

// Display information about the queued files
if (nFiles > 0)
{
 DWORD *pdwFileList = new DWORD[nFiles];
 nFiles = pQueue->EnumFiles(NULL, HTTP_QUEUE_ALL, HTTP_QUEUE_FLAG_NONE,
pdwFileList, nFiles);

 for (LONG nIndex = 0; nIndex < nFiles; nIndex++)
 {
 HTTPQUEUEDFILE queuedFile;

 if (pQueue->GetFile(pdwFileList[nIndex], &queuedFile) == FALSE)
 break;

 switch (queuedFile.dwMode)
 {
 case HTTP_QUEUE_DOWNLOAD:
 _tprintf(_T("%u: Download \"%s\" to \"%s\"\n"),
 queuedFile.dwFileId,
 queuedFile.szRemoteFile,
 queuedFile.szLocalFile);
 break;

 case HTTP_QUEUE_UPLOAD:
 _tprintf(_T("%u: Upload \"%s\" to \"%s\"\n"),
 queuedFile.dwFileId,
 queuedFile.szLocalFile,
 queuedFile.szRemoteFile);
 break;
 }
 }

 delete pdwFileList;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AddFile, FindFile, GetFile, GetFirstFile, GetNextFile, RemoveFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpQueue::FindFile Method

DWORD FindFile(
 LPCTSTR lpszFileName,
 DWORD dwQueueMode,
 DWORD dwExcludeFiles
);

The FindFile method finds a file in the transfer queue which matches the search criteria.

Parameters
lpszFileName

A pointer to a null terminated string which specifies the name of the file to search for. The string
may contain the wildcard character '?' to match against any single character, and '*' will match
any number of characters. This parameter cannot be NULL or point to an empty string.

dwQueueMode

An unsigned integer value which specifies if the file name should be matched against
downloaded files, uploaded files or all files in the queue. This is a bitmask which may be one or
more of the following values:

Constant Description

HTTP_QUEUE_ALL Match the file name to all files in the queue.

HTTP_QUEUE_DOWNLOAD Match file names which are queued for download.

HTTP_QUEUE_UPLOAD Match file names which are queued for upload.

HTTP_QUEUE_LOCAL Match against the local file name instead of the
remote file name.

dwExcludeFiles

An unsigned integer value which specifies which files to exclude from the search. If this value is
zero, no files will be excluded from the search; otherwise, this value is constructed by using a
bitwise operator with any of the following values:

Constant Description

HTTP_QUEUE_FLAG_NONE No files should be excluded from the search.

HTTP_QUEUE_FLAG_COMPLETED Exclude files which have been transferred. This flag
is set after a queued file has been uploaded or
downloaded successfully.

HTTP_QUEUE_FLAG_FAILED Exclude files which where not successfully
uploaded or downloaded. This flag is set when an
error occurs, either when establishing a connection
with the server or during the file transfer.

HTTP_QUEUE_FLAG_CANCELED Exclude files which were canceled during the file
transfer. This flag is only set when the Cancel
method has been called and a queued file is in the
process of being uploaded or downloaded.

Return Value

 If the method succeeds, the return value is a unique identifier for the file. To obtain information
about the file, call the GetFile method. If the method fails, the return value is zero. To get
extended error information, call GetLastError.

Remarks
This method returns a unique file identifier for the first file which matches the specified file name in
the queue. If the lpszFileName parameter includes wildcard characters, this method will return the
first file in the queue which matches the name. File name matches are not case-sensitive, even
when matching against remote file names on servers which use case-sensitive naming, such as
UNIX based servers.

To perform more complex searches based on the file name, or to find multiple files, you can use
the GetFirstFile and GetNextFile methods to iterate through all queued files.

Example
// Find a local file in the download queue
DWORD dwFileId = pQueue->FindFile(lpszFileName,
 HTTP_QUEUE_DOWNLOAD | HTTP_QUEUE_LOCAL,
 HTTP_QUEUE_FLAG_NONE);

// Display information about the queued file
if (dwFileId != 0)
{
 HTTPQUEUEDFILE queuedFile;

 if (pQueue->GetFile(dwFileId, &queuedFile))
 {
 switch (queuedFile.dwMode)
 {
 case HTTP_QUEUE_DOWNLOAD:
 _tprintf(_T("%u: Download \"%s\" to \"%s\"\n"),
 dwFileId,
 queuedFile.szRemoteFile,
 queuedFile.szLocalFile);
 break;

 case HTTP_QUEUE_UPLOAD:
 _tprintf(_T("%u: Upload \"%s\" to \"%s\"\n"),
 dwFileId,
 queuedFile.szLocalFile,
 queuedFile.szRemoteFile);
 break;
 }
 }
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AddFile, EnumFiles, GetFile, GetFirstFile, GetNextFile, RemoveFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpQueue::GetClient Method

HCLIENT GetClient();

The GetClient method returns a handle to the current client session.

Parameters
None.

Return Value
If the method succeeds, the return value a handle to a client session. If the method fails, it will
return INVALID_CLIENT. To get extended error information, call GetLastError.

Remarks
The GetClient method returns the handle to a client session which may be used with other
methods. A valid handle will only be returned if the queue manager is currently uploading or
downloading a file. If the queue is active but there are no file transfers in progress at the time this
method is called, it will fail and set the last error code to ST_ERROR_NO_QUEUED_TRANSFER.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
CHttpQueue, ~CHttpQueue, GetTransferStatus, Resume, Start, Stop, Suspend

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpQueue::GetCount Method

LONG GetCount();

The GetCount method returns the total number of files which have been queued for transfer.

Parameters
None.

Return Value
If the method succeeds, the return value is the number of files in the queue. If the method fails, it
will return HTTP_ERROR. To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
CHttpQueue, ~CHttpQueue, EnumFiles, GetStatus, GetFile, GetFirstFile, GetNextFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpQueue::GetErrorString Method

INT GetErrorString(
 DWORD dwErrorCode,
 LPTSTR lpszDescription,
 INT cbDescription
);

INT GetErrorString(
 DWORD dwErrorCode,
 CString& strDescription
);

The GetErrorString method is used to return a description of a specific error code. Typically this is
used in conjunction with the GetLastError method for use with warning dialogs or as diagnostic
messages.

Parameters
dwErrorCode

The error code for which a description is returned.

lpszDescription

A pointer to the buffer that will contain a description of the specified error code. This buffer
should be at least 128 characters in length. An alternate form of the method accepts a CString
variable which will contain the error description.

cbDescription

The maximum number of characters that may be copied into the description buffer.

Return Value
If the method succeeds, the return value is the length of the description string. If the method fails,
the return value is zero, meaning that no description exists for the specified error code. Typically
this indicates that the error code passed to the method is invalid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetLastError, SetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpQueue::GetFile Method

BOOL GetFile(
 LPCTSTR lpszFileName,
 LPHTTPQUEUEDFILE lpFileInfo
);

BOOL GetFile(
 DWORD dwFileId,
 LPHTTPQUEUEDFILE lpFileInfo
);

The GetFile method returns information about the specified file in the transfer queue.

Parameters
lpszFileName

A pointer to a null terminated string which specifies the name of the file in the queue. The name
should always be the name of the remote file to search for.

dwFileId

An unsigned integer value which uniquely identifies the file in the queue. This value cannot be
zero.

lpFileInfo

A pointer to a HTTPQUEUEDFILE structure which will contain information about the file. This
parameter cannot be NULL.

Return Value
If the method succeeds, the return value is non-zero. If the file identifier is not valid or the file has
been removed from the queue, the return value is zero. To get extended error information, call
HttpGetLastError.

Remarks
The file identifier can be obtained by several different methods, including EnumFiles and
GetStatus, which provides information about the current file being processed in the queue. Do
not make any assumptions about the value of the identifier. Although the value is guaranteed to
be unique for the specified queue, it is not guaranteed that file identifiers will be assigned in
sequential order.

If you call the version of this method which accepts a file name, it will use the FindFile method to
obtain the file ID for the first file name which matches a remote file in the queue. This approach is
only recommended if you know that the queued file names will be unique.

Example
// Get the number of files in the queue
LONG nFiles = pQueue->GetCount();

// Display information about the queued files
if (nFiles > 0)
{
 DWORD *pdwFileList = new DWORD[nFiles];

 nFiles = pQueue->EnumFiles(pdwFileList, nFiles);

 for (LONG nIndex = 0; nIndex < nFiles; nIndex++)

 {
 HTTPQUEUEDFILE queuedFile;

 if (pQueue->GetFile(pdwFileList[nIndex], &queuedFile) == FALSE)
 break;

 switch (queuedFile.dwMode)
 {
 case HTTP_QUEUE_DOWNLOAD:
 _tprintf(_T("%u: Download \"%s\" to \"%s\"\n"),
 queuedFile.dwFileId,
 queuedFile.szRemoteFile,
 queuedFile.szLocalFile);
 break;

 case HTTP_QUEUE_UPLOAD:
 _tprintf(_T("%u: Upload \"%s\" to \"%s\"\n"),
 queuedFile.dwFileId,
 queuedFile.szLocalFile,
 queuedFile.szRemoteFile);
 break;
 }
 }

 delete pdwFileList;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
EnumFiles, GetStatus, GetFile, GetFirstFile, GetNextFile, GetStatus

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpQueue::GetFirstFile Method

DWORD GetFirstFile(
 DWORD dwQueueMode,
 DWORD dwExcludeFiles,
 LPHTTPQUEUEDFILE lpFileInfo
);

The HttpGetFirstFile method returns information about the first file in the transfer queue.

Parameters
dwQueueMode

An unsigned integer value which specifies if the file name should be matched against
downloaded files, uploaded files or all files in the queue. It may be one of the following values:

Constant Description

HTTP_QUEUE_ALL Return information about all files in the queue.

HTTP_QUEUE_DOWNLOAD Return information for files which are queued for
download.

HTTP_QUEUE_UPLOAD Return information for files which are queued for
upload.

dwExcludeFiles

An unsigned integer value which specifies which files to exclude from the search. If this value is
zero, no files will be excluded from the search; otherwise, this value is constructed by using a
bitwise operator with any of the following values:

Constant Description

HTTP_QUEUE_FLAG_NONE No files should be excluded.

HTTP_QUEUE_FLAG_COMPLETED Exclude files which have been transferred. This flag
is set after a queued file has been uploaded or
downloaded successfully.

HTTP_QUEUE_FLAG_FAILED Exclude files which where not successfully
uploaded or downloaded. This flag is set when an
error occurs, either when establishing a connection
with the server or during the file transfer.

HTTP_QUEUE_FLAG_CANCELED Exclude files which were canceled during the file
transfer. This flag is only set when the Cancel
method has been called and a queued file is in the
process of being uploaded or downloaded.

lpFileInfo

A pointer to a HTTPQUEUEDFILE structure which will contain information about the file. This
parameter cannot be NULL.

Return Value
If the method succeeds, the return value is an unsigned integer with a non-zero value which
uniquely identifies the file in the queue. If there are no queued files which match the specified

parameters, or the method fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
This method returns information about the first file in the current transfer queue. It is used in
conjunction with the GetNextFile method to obtain information about all queued files.

Example
// List all files in a file transfer queue
HTTPQUEUEDFILE queuedFile;
DWORD dwFileId;

dwFileId = pQueue->GetFirstFile(HTTP_QUEUE_ALL, HTTP_QUEUE_FLAG_NONE,
&queuedFile);

while (dwFileId != 0)
{
 switch (queuedFile.dwQueueMode)
 {
 case HTTP_QUEUE_DOWNLOAD:
 _tprintf(_T("%u: download \"%s\" to \"%s\"\n"),
 queuedFile.dwFileId,
 queuedFile.szRemoteFile,
 queuedFile.szLocalFile);
 break;

 case HTTP_QUEUE_UPLOAD:
 _tprintf(_T("%u: upload \"%s\" to \"%s\"\n"),
 queuedFile.dwFileId,
 queuedFile.szRemoteFile,
 queuedFile.szLocalFile);
 break;
 }

 dwFileId = pQueue->GetNextFile(&queuedFile);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AddFile, EnumFiles, FindFile, GetFile, GetNextFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpQueue::GetHandle Method

HQUEUE GetHandle();

The GetHandle method returns the queue handle associated with the current instance of the
class.

Parameters
None.

Return Value
This method returns the queue handle associated with the current instance of the class object. If
an error occurs, the value INVALID_QUEUE will be returned.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
AttachHandle, DetachHandle, IsInitialized

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpQueue::GetLastError Method

DWORD GetLastError();

DWORD GetLastError(
 CString& strDescription
);

Parameters
strDescription

A string which will contain a description of the last error code value when the method returns. If
no error has been set, or the last error code has been cleared, this string will be empty.

Return Value
The return value is the last error code value for the current thread. Functions set this value by
calling the SetLastError method. The Return Value section of each reference page notes the
conditions under which the method sets the last error code.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. You should call
the GetLastError method immediately when a method's return value indicates that an error has
occurred. That is because some methods call SetLastError(0) when they succeed, clearing the
error code set by the most recently failed method.

Most methods will set the last error code value when they fail; a few methods set it when they
succeed. Function failure is typically indicated by a return value such as FALSE, NULL,
INVALID_CLIENT or HTTP_ERROR. Those methods which call SetLastError when they succeed are
noted on the method reference page.

The description of the error code is the same string that is returned by the GetErrorString
method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
GetErrorString, SetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpQueue::GetNextFile Method

DWORD GetNextFile(
 LPHTTPQUEUEDFILE lpFileInfo
);

The GetNextFile method returns information about the next file in the transfer queue.

Parameters
lpFileInfo

A pointer to a HTTPQUEUEDFILE structure which will contain information about the file. This
parameter cannot be NULL.

Return Value
If the method succeeds, the return value is an unsigned integer with a non-zero value which
uniquely identifies the file in the queue. If there are no additional queued files which match the
exclusion criteria specified with the call to GetFirstFile, the return value is zero. To get extended
error information, call GetLastError.

Remarks
This method returns information about the next file in the current transfer queue after an initial call
to GetFirstFile. To obtain a list of all matching files in the queue, call this method repeatedly until
it returns a value of zero. When information about the last file in the queue has been returned, the
last error code will be set to ST_ERROR_END_OF_QUEUE.

Example
// List all files in a file transfer queue
HTTPQUEUEDFILE queuedFile;
DWORD dwFileId;

dwFileId = pQueue->GetFirstFile(HTTP_QUEUE_ALL, HTTP_QUEUE_FLAG_NONE,
&queuedFile);

while (dwFileId != 0)
{
 switch (queuedFile.dwQueueMode)
 {
 case HTTP_QUEUE_DOWNLOAD:
 _tprintf(_T("%u: download \"%s\" to \"%s\"\n"),
 queuedFile.dwFileId,
 queuedFile.szRemoteFile,
 queuedFile.szLocalFile);
 break;

 case HTTP_QUEUE_UPLOAD:
 _tprintf(_T("%u: upload \"%s\" to \"%s\"\n"),
 queuedFile.dwFileId,
 queuedFile.szRemoteFile,
 queuedFile.szLocalFile);
 break;
 }

 dwFileId = pQueue->GetNextFile(&queuedFile);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AddFile, EnumFiles, FindFile, GetFile, GetFirstFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpQueue::GetStatus Method

INT GetStatus(
 LPHTTPQUEUESTATUS lpQueueStatus
);

The GetStatus method returns information about the specified file in the transfer queue.

Parameters
lpQueueStatus

A pointer to a HTTPQUEUESTATUS structure which will contain information about the current
state of the file transfer queue. If this parameter is NULL, the method will ignore the parameter
and only return the current status of the queue.

Return Value
If the method succeeds, the return value is the current queue status. If the method fails, the return
value is HTTP_ERROR. To get extended error information, call HttpGetLastError. The following
status values may be returned:

Constant Description

HTTP_QUEUE_STATUS_IDLE The file transfer queue is idle and no files are being
uploaded or downloaded. This state is returned
before HttpStartQueue has been called or after
HttpStopQueue has been called. The queue will
also automatically enter an idle state after the last file
transfer has completed and the queue manager
thread exits.

HTTP_QUEUE_STATUS_ACTIVE The queue manager is active and files are currently
being uploaded or downloaded.

HTTP_QUEUE_STATUS_PAUSED The queue manager is active although file transfers
are currently paused. The queue enters this state
after the HttpSuspendQueue method is called and
resumes file transfers after the HttpResumeQueue
method is called.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
CHttpQueue, ~CHttpQueue, Cancel, Reset, Resume, Start, Suspend, Stop, Wait

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpQueue::GetTransferStatus Method

INT GetTransferStatus(
 LPHTTPTRANSFERSTATUS lpStatus
);

INT GetTransferStatus(
 LPHTTPTRANSFERSTATUSEX lpStatus
);

The GetTransferStatus method returns information about the current file transfer in progress.

Parameters
lpStatus

A pointer to an HTTPTRANSFERSTATUS or HTTPTRANSFERSTATUSEX structure which contains
information about the status of the current file transfer.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
HTTP_ERROR. To get extended error information, call GetLastError.

Remarks
The GetTransferStatus method returns information about the current file transfer, including the
average number of bytes transferred per second and the estimated amount of time until the
transfer completes. This method would typically be called from within a callback function in
response to an HTTP_EVENT_PROGRESS event notification.

The dwBytesTotal and dwBytesCopied members of the HTTPTRANSFERSTATUSEX structure are
declared as unsigned 64-bit integers rather than 32-bit integers. To obtain accurate file transfer
information, this extended version of the structure should be used with files that are larger than
4GiB.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CHttpQueue, ~CHttpQueue, HttpEventProc, GetClient, Start, Stop

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/httpqft/class/httpeventproc.html

 CHttpQueue::IsEmpty Method

BOOL IsEmpty();

The IsEmpty method determines if the current queue is empty.

Parameters
None.

Return Value
If no files have been added to the queue, the return value is non-zero. If one or more files have
been added to the queue, the method will return zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
AddFile Clear GetFile, IsIdle, RemoveFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpQueue::IsIdle Method

BOOL IsIdle();

The IsIdle method determines if the queue is idle.

Parameters
None.

Return Value
If the queue is idle and no files are being transferred, this method returns a non-zero value. If the
queue manager is currently transferring files, the return value is zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
AddFile Cancel, Clear IsEmpty, Reset, Resume, Start, Stop, Suspend, Wait

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpQueue::IsInitialized Method

BOOL IsInitialized();

The IsInitialized method returns whether or not the class object has been successfully initialized.

Return Value
This method returns a non-zero value if the class object has been successfully initialized. A return
value of zero indicates that the runtime license key could not be validated or the networking
library could not be loaded by the current process.

Remarks
When an instance of the class is created, the class constructor will attempt to initialize the
component with the runtime license key that was created when SocketTools was installed. If the
constructor is unable to validate the license key or load the networking libraries, this initialization
will fail.

If SocketTools was installed with an evaluation license, the application cannot be redistributed to
another system. The class object will fail to initialize if the application is executed on another
system, or if the evaluation period has expired. To redistribute your application, you must
purchase a development license which will include the runtime key that is needed to redistribute
your software to other systems. Refer to the Developer's Guide for more information.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
CHttpQueue, ~CHttpQueue, Clear GetClient, GetHandle Reset, Resume, Start, Stop, Suspend

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpQueue::RemoveFile Method

BOOL RemoveFile(
 DWORD dwFileId
);

BOOL RemoveFile(
 LPCTSTR lpszFileName
);

The RemoveFile method removes the specified file from the queue.

Parameters
dwFileId

An unsigned integer value which uniquely identifies the file in the queue. This value cannot be
zero.

lpszFileName

A pointer to a null terminated string which specifies the name of the file to remove. If this
version of the method is called, this parameter cannot be NULL or point to an empty string. The
file name may include wildcard characters if you wish to remove multiple files. The character '?'
will match against any single character, and '*' will match any number of characters.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it will return zero. To get
extended error information, call HttpGetLastError.

Remarks
Files can only be removed from the queue when in an idle or paused state. If you attempt to
remove a file while the queue manager is in the process of uploading or download files, the
method will fail.

The file identifier can be obtained by several different methods, including EnumFiles and
GetStatus, which provides information about the current file being processed in the queue. Do
not make any assumptions about the value of the identifier. Although the value is guaranteed to
be unique for the specified queue, it is not guaranteed that file identifiers will be assigned in
sequential order.

If you call this method using a file name, the EnumFiles method will be used to enumerate all
remote file names which match and remove them from the queue. File name matches are not
case-sensitive, even when matching against file names on servers which use case-sensitive
naming, such as UNIX based servers.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
AddFile Clear IsEmpty, Reset, Resume, Start, Stop, Suspend

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpQueue::Reset Method

BOOL Reset(
 UINT nResetMode
);

The Reset method resets the state of all file transfers in the current queue.

Parameters
dwOptions

An integer value which specifies which files should be reset in the queue. It may be one of the
following values:

Constant Description

HTTP_QUEUE_RESET_ALL All files in the queue should be reset to their initial
state.

HTTP_QUEUE_RESET_COMPLETED All files in the queue which have been successfully
transferred will be reset to their initial state.

HTTP_QUEUE_RESET_FAILED All files in the queue which were not transferred
will be reset to their initial state.

HTTP_QUEUE_RESET_CANCELED All files in the queue which were canceled will be
reset to their initial state.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
When the Start method is called multiple times, it will not attempt to transfer files which have
already been successfully copied, and it will not attempt to re-transfer files if the previous transfer
failed. This method resets queued files back to their initial state, prior to when the queue manager
attempted to perform the transfer. The most common use would be to call the method with the
HTTP_QUEUE_RESET_FAILED mode and then call Start to retry failed or canceled file transfers.

Because canceled file transfers are also considered failed transfers, specifying
HTTP_QUEUE_RESET_FAILED will reset queued files which either encountered an error during the
transfer or were explicitly canceled by calling the Cancel method. The
HTTP_QUEUE_RESET_CANCELED option will only reset the state of queued file transfers which
were canceled.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
AddFile Cancel, Clear, IsEmpty, Resume, Start, Stop, Suspend, Wait

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpQueue::Resume Method

BOOL Resume();

The Resume method resumes transfers in the queue.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it will return zero. To get
extended error information, call GetLastError.

Remarks
This method signals the queue manager to resume processing files in the transfer queue after the
Suspend method has been called. This method will fail if the queue is in an idle (stopped) state,
and will be ignored if the queue manager is already transferring files. The GetStatus method can
be called to obtain the current status of the queue.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
Cancel, Clear, GetStatus, Start, Stop, Suspend, Wait

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpQueue::SetLastError Method

VOID SetLastError(
 DWORD dwErrorCode
);

The SetLastError method sets the last error code for the current thread. This method is typically
used to clear the last error by specifying a value of zero as the parameter.

Parameters
dwErrorCode

Specifies the last error code for the current thread.

Return Value
None.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. Most methods will
set the last error code value when they fail; a few methods set it when they succeed. Failure is
typically indicated by a return value such as FALSE, NULL, INVALID_QUEUE or HTTP_ERROR.
Those methods which call SetLastError when they succeed are noted on the method reference
page.

Applications can retrieve the value saved by this method by calling the GetLastError method. The
use of GetLastError is optional; an application can use the method to determine the specific
reason for a failure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
GetErrorString, GetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpQueue::ShowError Method

INT ShowError(
 LPCTSTR lpszAppTitle,
 UINT uType,
 DWORD dwErrorCode
);

The ShowError method displays a message box which describes the specified error.

Parameters
lpszAppTitle

A pointer to a string which specifies the title of the message box that is displayed. If this
argument is NULL or omitted, then the default title of "Error" will be displayed.

uType

An unsigned integer which specifies the type of message box that will be displayed. This is the
same value that is used by the MessageBox function in the Windows API. If a value of zero is
specified, then a message box with a single OK button will be displayed. Refer to that function
for a complete list of options.

dwErrorCode

Specifies the error code that will be used when displaying the message box. If this argument is
zero, then the last error that occurred in the current thread will be displayed.

Return Value
If the method is successful, the return value will be the return value from the MessageBox
function. If the method fails, it will return a value of zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetErrorString, GetLastError, SetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpQueue::Start Method

BOOL Start(
 DWORD dwQueueMode,
 HTTPEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

The Start method begins transferring files in the queue.

Parameters
dwQueueMode

An unsigned integer which specifies which files in the queue should be transferred. It may be
one of the following values:

Constant Description

HTTP_QUEUE_ALL All files in the queue should be transferred.

HTTP_QUEUE_DOWNLOAD Transfer only those files which have been queued
for download.

HTTP_QUEUE_UPLOAD Transfer only those files which have been queued
for upload.

lpEventProc

Specifies the procedure-instance address of an application defined callback function. For more
information about the callback method, see the description of the HttpEventProc callback
method. If this parameter is NULL, there will be no callback notifications.

dwParam

A user-defined integer value that is passed to the callback method. If the application targets the
x86 (32-bit) platform, this parameter must be a 32-bit unsigned integer. If the application
targets the x64 (64-bit) platform, this parameter must be a 64-bit unsigned integer.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it will return zero. To get
extended error information, call GetLastError.

Remarks
Queued file transfers are performed asynchronously using a background worker thread. If you
provide the address to an event callback function, that method will always be invoked in the
context of the queue manager thread. You must ensure that any access to global or static
variables are synchronized, otherwise the results may be unpredictable. It is recommended that
you do not declare any static variables within the callback function itself and you should avoid
calling any methods which could cause the thread to block. For example, you should not attempt
to establish other network connections from within the event handler.

If your application has a graphical user interface, you should never attempt to directly modify a UI
control from within the callback method. Controls should only be modified by the same UI thread
that created their window. One common approach to address this issue is to post a user-defined
message to the main window to signal that the user interface needs to be updated. The message
handler would then process the user-defined message and update the user interface as needed.

The callback function specified by the lpEventProc parameter must be declared using the
__stdcall calling convention. This ensures the arguments passed to the event handler are pushed
on to the stack in the correct order. Failure to use the correct calling convention will corrupt the
stack and cause the application to terminate abnormally.

The dwParam parameter is commonly used to identify the class instance which is associated with
the event that has occurred. Applications will cast the this pointer to a DWORD_PTR value when
calling this function, and then the event handler will cast it back to a pointer to the class instance.
This gives the handler access to the class member variables and methods.

The Wait method can be used to wait for the queue manager to complete processing the transfer
queue.

Example
// Create a new queue
CHttpQueue *pQueue = new CHttpQueue();

// Add a file to the queue
pQueue->AddFile(lpszLocalFile, lpszRemoteFile);

// Start the queued file transfers and wait for it to complete
if (pQueue->Start(HTTP_QUEUE_ALL))
{
 pQueue->Wait(INFINITE);
 pQueue->Stop();
}

// Remove all files from the queue
delete pQueue;

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
CHttpQueue, ~CHttpQueue, Cancel, Clear, GetStatus, Resume, Stop, Suspend, Wait

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpQueue::Stop Method

BOOL Stop();

The Stop method stops tranfering queued files.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it will return zero. To get
extended error information, call GetLastError.

Remarks
When the Stop method is called and there is a file transfer in progress, it will not immediately stop
the upload or download of the file. Instead, the queue manager is signaled to stop processing
additional files in the queue after the transfer has completed. To wait for the current transfer to
complete, call the Wait method.

It is permitted to call the Stop method from within a queue event handler. In this case, the current
file transfer will complete and the queue manager will terminate.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
Cancel, Clear, GetStatus, Resume, Start, Suspend, Wait

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpQueue::Suspend Method

BOOL Suspend();

The Suspend method pauses all file transfers for the queue.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it will return zero. To get
extended error information, call GetLastError.

Remarks
If there is a file transfer in progress when this method is called, the transfer will complete normally.
The queue manager will enter a suspended state after the transfer has completed and before it
begins processing the next file in the queue.

It is permitted to call the Suspend method from within a queue event handler. In this case, the
current file transfer will complete and the queue manager will stop processing additional files in
the queue until it is resumed or stopped.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
Cancel, Clear, GetStatus, Resume, Start, Stop, Wait

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpQueue::Wait Method

BOOL WINAPI HttpWaitForQueue(
 DWORD dwMilliseconds,
 LPDWORD lpdwElapsed,
 LPDWORD lpdwError
);

BOOL WINAPI HttpWaitForQueue(
 DWORD dwMilliseconds
);

The Wait method waits for the specified queue to complete the file transfers.

Parameters
dwMilliseconds

An unsigned integer value which specifies the number of milliseconds to wait for the queue to
complete processing. If this value is zero, the method will return immediately. If this value is
INFINITE (0xFFFFFFFF), the method will block indefinitely until all files in the queue have been
processed.

lpdwElapsed

A pointer to an unsigned integer which will contain the number of milliseconds the queue
manager has been active when the method returns. If this information is not needed, this
parameter can omitted or it can be NULL. If this parameter is not NULL, it will always be
initialized to a value of zero.

lpdwError

A pointer to an unsigned integer which will contain the last error code set if a file transfer has
failed or was canceled. If this information is not needed, this parameter can be omitted or NULL.
If this parameter is not NULL, it will always be initialized to a value of zero.

Return Value
If the method succeeds, the return value is non-zero, which means the queue manager has
completed transferring all queued files. If the method fails, or the timeout period elapses, it will
return zero. To get extended error information, call GetLastError.

Remarks
This method will cause the current thread to block until either the queue manager has completed
processing all files in the queue, or until the specified number of milliseconds have elapsed. It is
important to note that Windows messages will not be processed during this time. If you call this
method within the main UI thread, it can potentially cause the application to become non-
responsive. To determine the current state of the queue without blocking the current thread, call
the GetStatus method.

If the dwMilliseconds parameter is non-zero and file transfers have not completed within the
specified amount of time, the method will return zero and the last error code will be set to
ST_ERROR_OPERATION_TIMEOUT.

If an event callback function has been specified when starting the queue, you should never call this
method within the event handler. Attempting to do so can potentially create a situation which will
cause the application to become non-responsive. The method will return zero if it determines it's
being called within the context of the queue manager thread and will set the last error code to
ST_ERROR_THREAD_DEADLOCK.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
Cancel, Clear, GetStatus, Resume, Start, Stop, Suspend

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Hypertext Transfer Queue Data Structures

HTTPQUEUEDFILE
HTTPQUEUESTATUS
HTTPTRANSFERSTATUS
HTTPTRANSFERSTATUSEX
SYSTEMTIME

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HTTPQUEUEDFILE Structure

This structure is used by the GetFile, GetFirstFile and GetNextFile methods to return information
about a file in the transfer queue.

typedef struct _HTTPQUEUEDFILE
{
 DWORD dwFileId;
 DWORD dwQueueMode;
 DWORD dwQueueFlags;
 DWORD dwTimeElapsed;
 DWORD dwLastError;
 ULARGE_INTEGER uiBytesCopied;
 TCHAR szLocalFile[HTTP_MAXFILENAMELEN];
 TCHAR szRemoteFile[HTTP_MAXURLPATHLEN];
} HTTPQUEUEDFILE, *LPHTTPQUEUEDFILE;

Members
dwFileId

An unsigned integer which specifies a unique identifier for the queued file. The application
should not make any assumptions about the value of the file identifiers. They should be
considered opaque values which are only guaranteed to uniquely identify a file in the transfer
queue. In particular, there is no guarantee that the file identifiers will be sequential and they
should not be used as index values into an array.

dwQueueMode

An unsigned integer value which specifies how the file was queued for transfer. It may be one of
the following values:

Constant Description

HTTP_QUEUE_DOWNLOAD The file was queued for download.

HTTP_QUEUE_UPLOAD The file was queued for upload.

dwQueueFlags

An unsigned integer which specifies one or more bitflags which provides information about the
status of the file transfer. It may be one or more of the following values:

Constant Description

HTTP_QUEUE_FLAG_NONE The file is pending transfer in queue.

HTTP_QUEUE_FLAG_COMPLETED The file has been transferred successfully. If this
flag is set, no errors were encountered during the
upload or download.

HTTP_QUEUE_FLAG_FAILED The file transfer failed. If this flag is set, the
dwError member of this structure will contain the
error code associated with the failed transfer.

HTTP_QUEUE_FLAG_CANCELED The file transfer was canceled. This flag is only set
when the Cancel method has been called and a
queued file is in the process of being uploaded or
downloaded.

dwTimeElapsed

An unsigned integer which specifies the number of milliseconds required to complete the
transfer. This value will be zero unless the file has been transferred successfully.

dwLastError

An unsigned integer which specifies the last error code for a failed transfer. If the file was
transferred successfully, this value will be zero.

uiBytesCopied

A value which specifies the number of bytes which were copied during the file transfer. The
ULARGE_INTEGER type is a union of a structure and a 64-bit value which can be used on both
32-bit and 64-bit systems. For languages other than C/C++ you can define this structure
member as an unsigned 64-bit integer type.

szLocalFile

A null terminated string which specifies the full path to the local file being transferred.

szRemoteFile

A null terminated string which specifies the complete URL to the remote file being transferred.

Remarks
It is possible that the szLocalFile and szRemoteFile structure members will be different than the
values passed to the AddFile method. Those values are normalized, with any relative paths
converted to absolute paths. Internationalized domain names will be encoded and the URL paths
will be collapsed, removing any extraneous path information. For example, if the remote file name
is specified as http://http.server.tld/folder1/../folder2/filename.txt it would be
normalized as http://http.server.tld/folder2/filename.txt.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AddFile, GetFile, GetFirstFile, GetNextFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HTTPQUEUESTATUS Structure

This structure is used by the GetStatus method to return information about the current status of
the file transfer queue.

typedef struct _HTTPQUEUESTATUS
{
 DWORD dwStatus;
 DWORD dwThreadId;
 DWORD dwQueuedFiles;
 DWORD dwPendingFiles;
 DWORD dwCopiedFiles;
 DWORD dwFailedFiles;
 DWORD dwTimeElapsed;
 DWORD dwCurrentFile;
 DWORD dwLastError;
 ULARGE_INTEGER uiBytesCopied;
 ULARGE_INTEGER uiBytesTotal;
} HTTPQUEUESTATUS, *LPHTTPQUEUESTATUS;

Members
dwStatus

An unsigned integer which specifies the current status of the queue. It can be one of the
following values:

Constant Description

HTTP_QUEUE_STATUS_IDLE The file transfer queue is idle and no files are being
uploaded or downloaded. This state is returned
before the Start method has been called or after the
Stop method has been called. The queue will also
automatically enter an idle state after the last file
transfer has completed and the queue manager
thread exits.

HTTP_QUEUE_STATUS_ACTIVE Files in the queue are being uploaded or
downloaded. The dwCurrentFile member of this
structure identifies the file which is currently being
transferred.

HTTP_QUEUE_STATUS_PAUSED File transfers are currently paused. The queue enters
this state after the Suspend method is called and
resumes file transfers after the Resume method is
called.

dwThreadId

An unsigned integer which specifies the thread ID for the queue manager which is performing
the file transfers. All file transfers are performed asynchronously in a background worker thread.
If this structure member is zero, the queue is idle and not performing file transfers. The
application should not use the thread ID to obtain a handle to suspend or terminate the thread.
This can potentially result in unexpected behavior or instability within the application.

dwQueuedFiles

An unsigned integer which specifies the total number of queued files. This value includes
pending and completed file transfers.

dwPendingFiles

An unsigned integer which specifies the number of files which are queued to be transferred.

dwCopiedFiles

An unsigned integer which specifies the number of files which have been successfully
transferred. This value reflects the total number of files which have the
HTTP_QUEUE_FLAG_COMPLETED status.

dwFailedFiles

An unsigned integer which specifies the number of files which have failed to transfer or the file
transfer has been canceled. This value reflects the total number of files which have the
HTTP_QUEUE_FLAG_FAILED status.

dwTimeElapsed

An unsigned integer which specifies the total amount of time, in milliseconds, the queue
manager has been active performing a file transfer. If the queue is idle, this value will reflect the
total run time for the previously active queue. A value of zero indicates the queue was never
active or the queue state has been reset with a call to the Reset method.

dwCurrentFile

An unsigned integer which specifies the unique identifier for the current file being transferred. If
no file transfer is in progress, this member will have a value of zero. If the value is non-zero, it
can be passed to the GetFile method to obtain information about the queued file.

dwLastError

An unsigned integer which specifies the last error code for a failed file transfer. If there have
been no errors, this value will be zero.

uiBytesCopied

A value which specifies the number of bytes which were copied during the current or last
transfer. The ULARGE_INTEGER type is a union of a structure and a 64-bit value which can be
used on both 32-bit and 64-bit systems. For languages other than C/C++ you can define this
structure member as an unsigned 64-bit integer type.

uiBytesTotal

A value which specifies the total number of bytes which were copied during the current queue
run. The ULARGE_INTEGER type is a union of a structure and a 64-bit value which can be used
on both 32-bit and 64-bit systems. For languages other than C/C++ you can define this
structure member as an unsigned 64-bit integer type.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
GetFile, GetStatus, Cancel, Reset, Resume, Start, Stop, Suspend

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HTTPTRANSFERSTATUS Structure

This structure is used by the GetTransferStatus method to return information about a data
transfer in progress.

typedef struct _HTTPTRANSFERSTATUS
{
 DWORD dwBytesTotal;
 DWORD dwBytesCopied;
 DWORD dwBytesPerSecond;
 DWORD dwTimeElapsed;
 DWORD dwTimeEstimated;
} HTTPTRANSFERSTATUS, *LPHTTPTRANSFERSTATUS;

Members
dwBytesTotal

The total number of bytes that will be transferred. If the data is being downloaded from the
server to the local host, this is the size of the requested resource. If the data is being uploaded
from the local host to the server, it is the size of the local file or memory buffer. If the size of the
resource cannot be determined, this value will be zero.

dwBytesCopied

The total number of bytes that have been copied.

dwBytesPerSecond

The average number of bytes that have been copied per second.

dwTimeElapsed

The number of seconds that have elapsed since the file transfer started.

dwTimeEstimated

The estimated number of seconds until the data transfer is completed. This is based on the
average number of bytes transferred per second.

Remarks
If the option HTTP_OPTION_HIRES_TIMER has been specified when connecting to the server, the
values returned in the dwTimeElapsed and dwTimeEstimated members will be in milliseconds
instead of seconds. You can use this option to obtain more accurate elapsed times when
uploading or downloading small amounts of data over a fast network connection.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

See Also
EnableEvents, GetTransferStatus, HTTPTRANSFERSTATUSEX

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/httpqft/class/enableevents.html

 HTTPTRANSFERSTATUSEX Structure

This structure is used by the GetTransferStatus method to return information about a data
transfer in progress. This structure is designed for use with extended functions that support files
larger than 4GB.

typedef struct _HTTPTRANSFERSTATUSEX
{
 ULARGE_INTEGER uiBytesTotal;
 ULARGE_INTEGER uiBytesCopied;
 DWORD dwBytesPerSecond;
 DWORD dwTimeElapsed;
 DWORD dwTimeEstimated;
} HTTPTRANSFERSTATUSEX, *LPHTTPTRANSFERSTATUSEX;

Members
uiBytesTotal

The total number of bytes that will be transferred. If the data is being downloaded from the
server to the local host, this is the size of the requested resource. If the data is being uploaded
from the local host to the server, it is the size of the local file or memory buffer. If the size of the
resource cannot be determined, this value will be zero.

uiBytesCopied

The total number of bytes that have been copied.

dwBytesPerSecond

The average number of bytes that have been copied per second.

dwTimeElapsed

The number of seconds that have elapsed since the file transfer started.

dwTimeEstimated

The estimated number of seconds until the data transfer is completed. This is based on the
average number of bytes transferred per second.

Remarks
If the option HTTP_OPTION_HIRES_TIMER has been specified when connecting to the server, the
values returned in the dwTimeElapsed and dwTimeEstimated members will be in milliseconds
instead of seconds. You can use this option to obtain more accurate elapsed times when
uploading or downloading small amounts of data over a fast network connection.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

See Also
EnableEvents, GetTransferStatus, HTTPTRANSFERSTATUS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/httpqft/class/enableevents.html

 SYSTEMTIME Structure

The SYSTEMTIME structure represents a date and time using individual members for the month,
day, year, weekday, hour, minute, second, and millisecond.

typedef struct _SYSTEMTIME
{
 WORD wYear;
 WORD wMonth;
 WORD wDayOfWeek;
 WORD wDay;
 WORD wHour;
 WORD wMinute;
 WORD wSecond;
 WORD wMilliseconds;
} SYSTEMTIME, *LPSYSTEMTIME;

Members
wYear

Specifies the current year. The year value must be greater than 1601.

wMonth

Specifies the current month. January is 1, February is 2 and so on.

wDayOfWeek

Specifies the current day of the week. Sunday is 0, Monday is 1 and so on.

wDay

Specifies the current day of the month

wHour

Specifies the current hour.

wMinute

Specifies the current minute

wSecond

Specifies the current second.

wMilliseconds

Specifies the current millisecond.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include windows.h.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Hypertext Transfer Protocol Server Class

Implements a server that enables the application to send and receive files using the Hypertext
Transfer Protocol.

Reference

Data Members
Class Methods
Event Handlers
Data Structures
Error Codes

Library Information

File Name CSHTSV11.DLL

Version 11.0.2180.1635

LibID 475FBDFE-E206-4E5A-93E0-D69A7FC2E858

Import Library CSHTSV11.LIB

Dependencies None

Standards RFC 1945, RFC 2616, RFC 3875

Overview
This library provides an interface for implementing an embedded, lightweight server that can be
used to provide access to documents and other resources using the standard Hypertext Transfer
Protocol. The server can accept connections from any standard web browser, third-party
applications or programs developed using the SocketTools HTTP client API.

The application specifies an initial server configuration and then responds to events that are
generated when the client sends a request to the server. An application may implement only
minimal handlers for most events, in which case the default actions are performed for most
standard HTTP commands. However, an application may also use the event mechanism to filter
specific commands or to extend the protocol by providing custom implementations of existing
commands or add entirely new commands.

The server includes support for CGI scripting, virtual hosting, client authentication and the creation
of virtual directories and files. The server also supports secure connections using TLS. Secure
connections require a valid security certificate to be installed on the system.

Requirements
The SocketTools Library Edition libraries are compatible with any programming language which
supports calling functions exported from a standard dynamic link library (DLL). If you are using
Visual C++ 6.0 it is required that you have Service Pack 6 (SP6) installed. You should install all
updates for your development tools and have the current Windows SDK installed. The minimum
recommended version of Visual Studio is Visual Studio 2010.

This library is supported on Windows 7, Windows Server 2008 R2 and later versions of the desktop
and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1) installed as
a minimum requirement. It is recommended that you install the current service pack and all critical

updates available for your version of the operating system.

This class provides an implementation of a multithreaded server which should only be used with
languages that support the creation of multithreaded applications. It is important that you do not
attempt to link against static libraries which were not built with support for threading.

This product includes both 32-bit and 64-bit libraries. Native 64-bit CPU support requires the 64-
bit version of Windows 7 or later versions of the Windows operating system.

Distribution
When you distribute your application that uses this library, it is recommended that you install the
file in the same folder as your application executable. If you install the library into a shared location
on the system, it is important that you distribute the correct version for the target platform and it
should be registered as a shared DLL. This is a standard Windows dynamic link library, not an
ActiveX component, and does not require COM registration.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer Public Data Members

Member Variables Description

m_nCacheTime The number of seconds until the client should consider a cached response
to be stale

m_nExecTime The maximum number of seconds that the server will permit an external
command to execute

m_nIdleTime The maximum number of seconds a client can be idle before the server
terminates the session

m_nLogFormat The format used by the server to log client activity

m_nLogLevel The level of detail included in the server log file

m_nMaxClients The maximum number of active client sessions accepted by the server

m_nMaxClientsPerAddress The maximum number of clients per IP address accepted by the server

m_nMaxPostSize The maximum amount of data a client may submit to the server

m_nMaxRequests The maximum number of requests a client may make per connection

m_dwOptions Options specified when creating an instance of the server

m_dwStackSize The initial size of the stack allocated for threads created by the server

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/httpsrv/class/cachetime.html
file:///C|/Projects/cstools11/pdf/httpsrv/class/maxpostsize.html
file:///C|/Projects/cstools11/pdf/httpsrv/class/maxrequests.html
file:///C|/Projects/cstools11/pdf/httpsrv/class/stacksize.html

 CHttpServer::m_nExecTime

UINT m_nExecTime;

The maximum number of seconds that the server will permit an external command to execute.

Remarks
The m_nExecTime data member is a public variable that specifies the maximum number of
seconds that an external CGI program is permitted to run on the server. Programs are registered
using the RegisterProgram method and are executed when the client sends a request for a
resource that is associated with the program. If this value is zero, the default timeout period of 5
seconds will be used. The minimum execution time is 1 second and the maximum time limit is 30
seconds. Changing the value of this data member does not have an effect on an active instance of
the server.

See Also
CHttpServer, RegisterProgram

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::m_nIdleTime

UINT m_nIdleTime;

The maximum number of seconds a client can be idle before the server terminates the session.

Remarks
The m_nIdleTime data member is a public variable that specifies the maximum number of
seconds that a client session may be idle before the server closes the control connection to the
client. A value of zero specifies the default value of 60 seconds. If the value is non-zero, the
minimum value is 10 seconds and the maximum value is 300 seconds (5 minutes). This value is
used to initialize the default idle timeout period for each client session. The server determines if a
client is idle based on the time the last command was issued and whether or not a file transfer is in
progress. Changing the value of this data member does not have an effect on an active instance
of the server.

See Also
CHttpServer, RegisterProgram, SetClientIdleTime

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::m_nLogFormat

UINT m_nLogFormat;

The format used when updating the server log file.

Remarks
The m_nLogFormat data member is a public variable that specifies the format of the log file that
is created or updated by the server. It may be one of the following values:

Constant Description

HTTP_LOGFILE_NONE
(0)

This value specifies that the server should not create or
update a log file.

HTTP_LOGFILE_COMMON
(1)

This value specifies that the log file should use the
common log format that records a subset of information
in a fixed format. This log format usually only provides
information about file transfers.

HTTP_LOGFILE_COMBINED
(2)

This value specifies that the server should use the
combined log file format. This format is similar to the
common format, however it includes the client referrer
and user agent. This is the format that most Apache web
servers use by default.

HTTP_LOGFILE_EXTENDED
(3)

This value specifies that the log file should use the
standard W3C extended log file format. This is an
extensible format that can provide additional information
about the client session.

By default, logging is not enabled for the server. Changing the value of this data member does
not have an effect on an active instance of the server. To change the format, level of detail or
default log file name, use the SetLogFile method.

See Also
CHttpServer, GetLogFile, SetLogFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::m_nLogLevel

UINT m_nLogLevel;

The level of detail included in the server log file.

Remarks
The m_nLogLevel data member is a public variable that specifies the level of detail that should
generated in the log file. The minimum value is 1 and the maximum value is 10. If the
m_nLogFormat data member specifies a valid log file format and this value is zero, a default level
of detail will be selected based on the format.

The common log file format generally contains less information by default, only logging the data
transfers between the client and server. The W3C extended log file format defaults to a higher
level of detail that includes additional information about the client session. The higher the level of
detail, the larger the log file will be.

By default, logging is not enabled for the server. Changing the value of this data member does
not have an effect on an active instance of the server. To change the format, level of detail or
default log file name, use the SetLogFile method.

See Also
CHttpServer, GetLogFile, SetLogFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::m_nMaxClients

UINT m_nMaxClients;

The maximum number of clients that are permitted to connect to the server.

Remarks
The m_nMaxClients data member is a public variable that specifies the maximum number of
clients that are permitted to establish a connection with the server. After this limit is reached, the
server will reject additional connections until the number of active clients drops below this
threshold. A value of zero specifies that there is no fixed limit on the active number of client
connections. Changing the value of this data member does not have an effect on an active
instance of the server. To change the maximum number of clients on an active server, use the
Throttle method.

The actual number of client connections that can be accepted depends on the amount of memory
available to the server process. Sockets are allocated from the non-paged memory pool, so the
actual number of sockets that can be created system-wide depends on the amount of physical
memory that is installed. If the server will be accessible over the Internet, it is recommended that
you limit the maximum number of client connections to a reasonable value.

See Also
CHttpServer, Throttle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::m_nMaxClientsPerAddress

UINT m_nMaxClientsPerAddress;

The maximum number of clients that are permitted to connect to the server from a single IP
address.

Remarks
The m_nMaxClientsPerAddress data member is a public variable that specifies the maximum
number of clients that are permitted to establish a connection with the server from a single IP
address. After this limit is reached, the server will will reject additional connections until the
number of active clients drops below this threshold. A value of zero specifies that there is no limit
on the active number of client connections per IP address. Changing the value of this data
member does not have an effect on an active instance of the server. To change the maximum
number of clients on an active server, use the Throttle method.

It is not recommended that you set the maximum clients per address below a value of 4. Lower
values can negatively impact the performance of some clients, and may result in unexpected
errors.

See Also
CHttpServer, Throttle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::m_dwOptions

DWORD m_dwOptions;

The default options used when starting an instance of the server.

Remarks
The m_dwOptions data member is a public variable that specifies the default options that should
be used when starting an instance of the server. This variable can be modified directly or by calling
the SetOptions method. For a list of available server options, see Server Option Constants.
Changing the value of this data member does not have an effect on an active instance of the
server.

See Also
CHttpServer, GetOptions, SetOptions

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/httpsrv/class/optionconst.html

 CHttpServer Methods

Class Description

CHttpServer Constructor which initializes the current instance of the class

~CHttpServer Destructor which releases resources allocated by the class

Method Description

AddVirtualHost Add a new virtual host to the server virtual host table

AddVirtualHostAlias Add an alternate host name for an existing virtual host

AddVirtualPath Add a new virtual path for the specified host

AddVirtualUser Add a new virtual user for the specified host

AsyncNotify Enable or disable asynchronous notification of changes in server status

AttachHandle Attach the specified server handle to this instance of the class

AuthenticateClient Authenticate the client and assign access rights for the session

CheckVirtualPath Determine if the client has permission to access the specified virtual path

DeleteAllClientHeaders Delete all of the request or response headers for the specified client session

DeleteClientHeader Delete a request or response header for the specified client session

DeleteVirtualHost Delete a virtual host associated with the specified server

DeleteVirtualPath Remove a virtual path from the specified host

DeleteVirtualUser Delete a virtual user from the specified host

DetachHandle Detach the server handle from the current instance of this class

DisableCommand Disable a specific server command

DisableTrace Disable the logging of network function calls

DisconnectClient Disconnect the specific client session, closing the control channel and aborting
any file transfer

EnableClientAccess Enable or disable access rights for the specified client session

EnableCommand Enable a specific server command

EnableTrace Enable logging of network function calls to a file

EnumClients Returns a list of active client connections established with the server

GetActiveClient Return the client ID for the active client session associated with the current
thread

GetAddress Return the IP address for the server

GetAllClientHeaders Return all client request or response headers in a string buffer

GetClientAccess Return the access rights that have been granted to the client session

GetClientAddress Return the IP address of the specified client session

GetClientCredentials Return the credentials for the specified client session

file:///C|/Projects/cstools11/pdf/httpsrv/class/getallclientheaders.html

GetClientDirectory Return the root document directory for a client session

GetClientHeader Return the value of a request or response header for the specified client session

GetClientIdleTime Return the idle timeout period for the specified client

GetClientLocalPath Return the full local path for the specified virtual path

GetClientServer Return the handle to the server that created the specified client session

GetClientThreadId Returns the thread ID associated with the specified client session

GetClientUserName Return the user name associated with the specified client session

GetClientVariable Return the value of a CGI environment variable for the specified client

GetClientVirtualHost Return the name of the virtual host the client used to establish the connection

GetClientVirtualHostId Return the virtual host ID associated with the specified client session

GetClientVirtualPath Return the virtual path for a local file on the server

GetCommandFile Return the full path to the local file name or directory specified by the client

GetCommandLine Return the complete command line issued by the client

GetCommandName Return the name of the command that was issued by the client

GetCommandQuery Return the query parameters included with the command

GetCommandResource Return the path for the resource requested by the client

GetCommandResult Return the result code and a description of the last command processed by the
server

GetCommandUrl Return the complete URL of the resource requested by the client

GetDirectory Return the full path to the root directory assigned to the specified server

GetHandle Return the server handle associated with the class instance

GetIdentity Return the identity and version information for the specified server

GetLastError Return information about the last server error that occurred

GetLogFile Return the current log file format and full path for the file

GetMemoryUsage Return the amount of memory allocated for the server and all client sessions

GetName Return the host name assigned to the server or specified client session

GetOptions Return the options specified for this instance of the server

GetPriority Return the current priority assigned to the specified server

GetProgramExitCode Return the exit code of the last program executed by the client

GetProgramName Return the name of the CGI program executed by the client

GetProgramOutput Return a copy of the standard output from the last program executed by the
client

GetProgramText Return a copy of the standard output from the last program in a string buffer

GetStackSize Return the initial size of the stack allocated for threads created by the server

GetTransferInfo Return information about the current file transfer

GetUuid Return the UUID assigned to the specified server

GetVirtualHostId Return the virtual host ID associated with the specified hostname

GetVirtualHostName Return the hostname associated with the specified virtual host ID

IsActive Determine if the server has been started

IsClientAuthenticated Determine if the specified client session has been authenticated

IsCommandEnabled Determine if the specified command is currently enabled or disabled

IsInitialized Determine if the class has been successfully initialized

IsListening Determine if the server is listening for client connections

PreProcessEvent Filter server events before being processed by the default event handler

ReceiveRequest Receive the request that was sent by the client to the server

RedirectRequest Redirect the request from the client to another URL

RegisterHandler Register a CGI program for use and associate it with a file name extension

RegisterProgram Register a CGI program for use and associate it with a virtual path on the server

RenameServerLogFile Rename or delete the current log file being updated by the server

RequireAuthentication Send a response to the client indicating that authentication is required

Restart Restart the server, terminating all active client sessions

Resume Resume accepting client connections on the specified server

SendErrorResponse Send a customized error response to the specified client

SendResponse Send a response from the server to the specified client

SendResponseData Send additional data to the client in response to a command

SetCertificate Set the name of the certificate to be used with secure connections.

SetClientAccess Change the access rights associated with the specified client session

SetClientHeader Create or change the value of a request or response header for the client
session

SetClientIdleTime Change the idle timeout period for the specified client session

SetClientVariable Create or change the value of a CGI environment variable for the specified
client

SetCommandFile Change the name of the local file or directory that is the target of the current
command

SetDirectory Specify the local directory that will be used as the server root directory

SetLastError Set the last error code for the specified server session

SetLogFile Change the current log format, level of detail and file name

SetIdentity Change the identity and version information for the specified server

SetName Change the hostname assigned to the server or specified client session

SetOptions Change the options specified for this instance of the server

SetPriority Change the priority assigned to the specified server

SetStackSize Change the initial size of the stack allocated for threads created by the server

SetUuid Assign a UUID to be associated with this instance of the server

Start Start the server and begin accepting client connections

Stop Stop the server and terminate all active client connections

Suspend Suspend accepting client connections on the specified server

Throttle Limit the number of active client connections, connections per address and
connection rate

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::~CHttpServer

~CHttpServer();

The CHttpServer destructor releases resources allocated by the current instance of the
CHttpServer object. It also uninitializes the library if there are no other concurrent uses of the
class.

Remarks
When a CHttpServer object goes out of scope, the destructor is automatically called to allow the
library to free any resources allocated on behalf of the process. Any pending blocking or
asynchronous calls in this process are canceled without posting any notification messages, and all
handles that were created for the client session are destroyed.

The destructor is not called explicitly by the application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CHttpServer

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::AddVirtualHost Method

UINT HttpAddVirtualHost(
 LPCTSTR lpszHostName,
 UINT nHostPort,
 LPCTSTR lpszDirectory
);

Add a new virtual host to the server virtual host table.

Parameters
lpszHostName

A pointer to a string which specifies the hostname that will be added to the virtual host table.
This parameter must specify a valid hostname and cannot be a NULL pointer or a zero-length
string.

nHostPort

An integer value which specifies the port number for the virtual host. This value must be zero or
the same value as the original port number that the server was configured to use.

lpszDirectory

A pointer to a NULL terminated string which specifies the root document directory for the
virtual host. If this parameter is NULL or a zero-length string, the virtual host will use the same
root directory that was specified when the server was started. This parameter may contain
environment variables enclosed in % symbols.

Return Value
If the method is successful, it will return a non-zero integer value that identifies the virtual host. If
the method fails, it will return INVALID_VIRTUAL_HOST and the last error code will be updated to
indicate the cause of the failure.

Remarks
Virtual hosting is a method for sharing multiple domain names on a single instance of a server.
The client provides the server with the hostname that it has used to establish the connection, and
that name is compared against a table of virtual hosts configured for the server. If the hostname
matches a virtual host, the client will use the root directory and any virtual paths that have been
assigned to that host.

When the server is first started, a default virtual host with an ID of zero is automatically created
and is identified as VIRTUAL_HOST_DEFAULT. This virtual host uses the same hostname, port
number and root directory that the server instance was created with. The application should treat
all other host IDs as opaque values and never make assumptions about how they are allocated.

The nHostPort parameter should always be specified with a value of zero, or the same port
number that the server was configured to use. Port-based virtual hosting is currently not
supported and this parameter is included for future use.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AddVirtualHostAlias, AddVirtualPath, DeleteVirtualHost, GetVirtualHostId, GetVirtualHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::AddVirtualHostAlias Function

BOOL AddVirtualHostAlias(
 UINT nHostId,
 LPCTSTR lpszHostAlias
);
BOOL AddVirtualHostAlias(
 LPCTSTR lpszHostAlias
);

Add an alternate host name for an existing virtual host.

Parameters
nHostId

An integer value which identifies the virtual host. If this parameter is omitted, the alias will be
assigned to the default server.

lpszHostAlias

A pointer to a string which specifies the alias for the virtual host. The alias must be a valid
domain name that uniquely identifies the host. This parameter cannot be a NULL pointer or
specify an empty string.

Return Value
If the function succeeds, the return value is non-zero. If the virtual host ID does not specify a valid
host, the function will return zero. If the function fails, the last error code will be updated to
indicate the cause of the failure.

Remarks
The AddVirtualHostAlias method adds an alias for an existing virtual host. This enables a client to
establish a connection using a number of different domain names which all reference the same
virtual host. When the server responds to the client, it will identify itself with the primary domain
name assigned to the virtual host rather than the alias provided by the client.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AddVirtualHost, AddVirtualPath

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::AddVirtualPath Function

BOOL AddVirtualPath(
 UINT nHostId,
 LPCTSTR lpszVirtualPath,
 LPCTSTR lpszLocalPath,
 DWORD dwFileAccess
);

Add a new virtual path for the specified host.

Parameters
nHostId

An integer value which identifies the virtual host. If this parameter is omitted, the default virtual
host will be used.

lpszVirtualPath

A pointer to a string which specifies the virtual path that will be created. This parameter cannot
be a NULL pointer or an empty string. The maximum length of the virtual path is 1024
characters.

lpszLocalPath

A pointer to a string which specifies the local directory or file name that the virtual path will be
mapped to. This path must exist and can be no longer than MAX_PATH characters. This
parameter cannot be a NULL pointer or an empty string.

dwFileAccess

An integer value which specifies the access clients will be given to the virtual path. For a list of
file access permissions, see User and File Access Constants.

Return Value
If the method succeeds, the return value is non-zero. If the virtual host ID does not specify a valid
host, the method will return zero. If the method fails, the last error code will be updated to
indicate the cause of the failure.

Remarks
The AddVirtualPath method maps a virtual path name to a directory or file name on the local
system. Virtual paths are assigned to specific hosts and if multiple virtual hosts are created for the
server, each can have its own virtual paths which map to different files. To create a virtual path for
the default server, the nHostId parameter should be specified as VIRTUAL_HOST_DEFAULT.

It is recommended that the lpszLocalPath parameter always specify the full path to the local file or
directory. If the path is relative, it will be considered relative to the current working directory for
the process and expanded to its full path name. The local path can include environment variables
surrounded by % symbols. For example, if the value %ProgramData% is included in the path, it will
be expanded to the full path for the common application data folder. The local path cannot
specify a Windows system folder or the root directory of a mounted drive volume.

The local file or directory does not need to located in the document root directory for the server
or virtual host. It can specify any valid local path that the server process has the appropriate
permissions to access. You should exercise caution when creating virtual paths to files or
directories outside of the server root directory. If the lpszLocalPath parameter specifies a
directory, clients will have access to that directory and all subdirectories using its virtual path.

file:///C|/Projects/cstools11/pdf/httpsrv/class/useraccess.html
file:///C|/Projects/cstools11/pdf/httpsrv/class/useraccess.html

If you wish to password protect the virtual file or directory, include the HTTP_ACCESS_PROTECTED
flag in the file permissions. The default command handlers will recognize this flag and require that
the client authenticate itself to grant access to the resource. If the server application implements a
custom command handler, it is responsible for checking for the presence of this flag and perform
the appropriate checks to ensure that the client session has been authenticated.

If the server was started in restricted mode, the client will be unable to access documents outside
of the server root directory and its subdirectories. This restriction also applies to virtual paths that
reference documents or other resources outside of the root directory. To allow a client to access a
document outside of the server root directory, the SetClientAccess method should be used to
grant the client HTTP_ACCESS_READ permission.

The GetClientVirtualPath method will return the virtual path that is associated with a local file or
directory. The GetClientLocalPath method will return the full path to a local file or directory that
is mapped to a virtual path.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AddVirtualHost, CheckVirtualPath, GetClientLocalPath, GetClientVirtualPath, DeleteVirtualPath

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::AddVirtualUser Method

BOOL AddVirtualUser(
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword,
 DWORD dwUserAccess,
 LPCTSTR lpszDirectory
);

BOOL AddVirtualUser(
 UINT nHostId,
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword,
 DWORD dwUserAccess,
 LPCTSTR lpszDirectory
);

Add a new virtual user for the specified host.

Parameters
nHostId

An integer value which identifies the virtual host. If this parameter is omitted, the default virtual
host will be used.

lpszUserName

A pointer to a string which specifies the user name. The maximum length of a username is 63
characters and it is recommended that names be limited to alphanumeric characters.
Whitespace, control characters and certain symbols such as path delimiters and wildcard
characters are not permitted. If an invalid character is included in the name, the method will fail
with an error indicating the username is invalid. This parameter cannot be NULL and the name
must be at least three characters in length. Usernames are not case sensitive.

lpszPassword

A pointer to a string which specifies the user password. The maximum length of a password is
63 characters and is limited to printable characters. Whitespace and control characters are not
permitted. If an invalid character is included in the password, the method will fail with an error
indicating the password is invalid. This parameter cannot be NULL and must be at least one
character in length. Passwords are case sensitive.

dwUserAccess

An integer value which specifies the access clients will be given when authenticated as this user.
For a list of user access permissions, see User and File Access Constants. If this parameter is
omitted, default access rights will be assigned based on the server configuration.

lpszDirectory

A pointer to a string which specifies the local directory that is considered to be the virtual user's
home directory. This path must exist and can be no longer than MAX_PATH characters. The
maximum length of the local path is 260 characters. The directory cannot be located in a
Windows system folder or the root directory of a mounted disk volume. If this parameter is
omitted, the server root directory will be assigned as the user home directory.

Return Value
If the method succeeds, the return value is non-zero. If the the virtual host ID does not specify a
valid host, or the username or password contain invalid characters, the method will return zero. If

file:///C|/Projects/cstools11/pdf/httpsrv/class/useraccess.html
file:///C|/Projects/cstools11/pdf/httpsrv/class/useraccess.html

the method fails, the last error code will be updated to indicate the cause of the failure.

Remarks
The AddVirtualUser method adds a virtual user that is associated with the specified virtual host. If
a client attempts to access a protected document and provides credentials, the server will attempt
to automatically authenticate the session by searching for virtual user with the same username and
password. If a match is found, then the client session is assigned the same access permissions as
the virtual user.

If the server is started with the HTTP_SERVER_MULTIUSER option, then documents in the virtual
user's home directory can be accessed by specifying their username using a specially formatted
request URL. For example, if a virtual user named "Thomas" is created, the documents in that
user's home directory could be accessed as http://servername/~thomas/document.html

All files and subdirectories in the user's home directory are considered to be read-only. A client
cannot create files in a user's home directory, even if they are authenticated as that user. In
addition, CGI programs and scripts cannot be executed from a user's home directory.

If you wish to modify the information for a user, it is not necessary to delete the username first. If
this method is called with a username that already exists, that record is replaced with the values
passed to this method.

The virtual users created by this method exist only as long as the server is active. If you wish to
maintain a persistent database of users and passwords, you are responsible for its implementation
based on the requirements of your specific application. For example, a simple implementation
would be to store the user information in a local XML or INI file and then read that configuration
file after the server has started, calling this method for each user that is listed.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AddVirtualHost, DeleteVirtualUser

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::AsyncNotify Method

BOOL AsyncNotify(
 HWND hWnd,
 UINT uMsg
);

Enable or disable asynchronous notification of changes in server status.

Parameters
hWnd

A handle to the window whose window procedure will receive the notification message.

uMsg

The user-defined message that will be sent to the notification window.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call the GetLastError method.

Remarks
The AsyncNotify method is used by an application to enable or disable asynchronous
notifications. The message window is typically the main UI window and these notifications are used
signal to the application that it should update the user interface. If the hWnd parameter is not
NULL, it must specify a valid window handle and the user-defined message must have a value of
WM_USER or higher. The application cannot specify a notification message that is reserved by the
operating system. The pseudo-handle HWND_BROADCAST cannot be specified as the
notification window. If the hWnd parameter is NULL, notifications for the specified server will be
disabled.

When asynchronous notifications are enabled for a server, the server will post the user-defined
message to the window whenever there is a change in status or after a client has connected or
disconnected from the server. The wParam message parameter will contain the notification
message and the lParam message parameter will contain the handle to the server or the client ID.
The following notification messages are defined:

Constant Description

HTTP_NOTIFY_STARTUP This notification is sent when the server has started and
is preparing to accept client connections. This
notification is only sent once, and only if asynchronous
notifications are enabled immediately after the Start
method is called. This message will not be sent once the
server has begun accepting client connections or when
notification messages are disabled and then
subsequently re-enabled at a later time. The lParam
message parameter will specify the handle to the server.

HTTP_NOTIFY_LISTEN This notification is sent when the server is listening for
client connections. This notification message may be
sent to the application multiple times over the lifetime
of the server. If the server was suspended, this
notification will be sent after the application calls the

Resume method to resume accepting client
connections. The lParam message parameter will
specify the handle to the server.

HTTP_NOTIFY_SUSPEND This notification is sent when the server suspends
accepting new connections because the application has
called the Suspend method. This notification message
may be sent to the application multiple times over the
lifetime of the server. The lParam message parameter
will specify the handle to the server.

HTTP_NOTIFY_RESTART This notification is sent when the server is restarted
using the Restart method. Note that the server socket
handle provided by the lParam message parameter will
specify the new socket handle of the restarted server
instance, not the original socket handle. The lParam
message parameter will specify the handle to the server.

HTTP_NOTIFY_CONNECT This notification is sent when the server accepts a client
connection and the thread that manages the client
session has begun processing network events for that
client. This message notification will not be sent if the
client connection is rejected by the server. The lParam
message parameter will specify the unique ID of the
client that connected to the server.

HTTP_NOTIFY_DISCONNECT This notification is sent when the client disconnects from
the server and the client socket has been closed. This
notification message may not occur for each client
session that is forced to terminate as the result of the
server being stopped using the Stop method. The
lParam message parameter will specify the unique ID of
the client that disconnected from the server.

HTTP_NOTIFY_SHUTDOWN This notification is sent when the server thread is in the
process of terminating. At the time the application
processes this notification message, the server handle in
lParam will reference the defunct server and cannot be
used with other server methods. The lParam message
parameter will specify the handle to the server.

If asynchronous notifications are enabled, you should never use those notifications as a
replacement for an event handler. When an event occurs, the callback function that handles the
event is invoked in the context of the thread that manages the client session. The application
should exchange data with the client within that event handler and not in response to a
notification message. These notification messages should only be used to update the application
UI in response to changes in the status of the server.

The HTTP_NOTIFY_CONNECT and HTTP_NOTIFY_DISCONNECT notifications are different from
the other server notifications because the lParam message parameter does not specify the server
handle, but rather the unique client ID associated with the session that connected to or
disconnected from the server. Use the GetClientServer method to obtain a handle to the server
that created the client session. Note that at the time the application processes the
HTTP_NOTIFY_DISCONNECT notification message, the client session will have already terminated.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cstools11.h.
Import Library: cshtsv11.lib

See Also
GetClientServer, Start

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::AttachHandle Method

VOID AttachHandle(
 HSERVER hServer
);

The AttachHandle method attaches the specified server handle to the current instance of the
class.

Parameters
hServer

The handle to the server that will be attached to the current instance of the class object.

Return Value
None.

Remarks
This method is used to attach a server handle created outside of the class using the SocketTools
API. Once the client handle is attached to the class, the other class member functions may be used
with that server.

If a server handle already has been created for the class, that handle will be released when the
new handle is attached to the class object. This will cause the server to stop and all client sessions
will be terminated immediately. If you want to prevent the previous server from being stopped,
you must call the DetachHandle method prior to attaching a new handle to the class instance.

Note that the hServer parameter is presumed to be a valid server handle and no checks are
performed to ensure that the handle references an active server. Specifying an invalid server
handle will cause subsequent method calls to fail.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
DetachHandle, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::AuthenticateClient Method

BOOL AuthenticateClient(
 UINT nClientId,
 DWORD dwUserAccess
);

Authenticate the client and assign access rights for the session.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

dwUserAccess

An unsigned integer which specifies one or more user access rights. For a list of user access
rights that can be granted to the client, see User and File Access Constants.

Return Value
If the the client session could be authenticated, the return value is non-zero. If the client ID does
not specify a valid client session, or the client has already been authenticated, this method will
return zero.

Remarks
The HttpAuthenticateClient method is used to authenticate a specific client session, typically in
response to an OnAuthenticate event that indicates a client has provided authentication
credentials as part of the request for a document or other resource.

To enable the server to automatically authenticate a client session, use the AddVirtualUser
method to add one or more virtual users. The server will search the list of virtual users for a match
to the credentials provided by the client and will set the appropriate permissions for the session
without requiring a event handler to manually authenticate the session using this method.

If the server was started with the HTTP_SERVER_LOCALUSER option and the client session is not
authenticated using this method, the server will attempt to authenticate the client session using
the local Windows user database. Although this option can be convenient because it does not
require the implementation of an event handler for the OnAuthenticate event, it can be used by
clients to attempt to discover valid usernames and passwords for the local system. It is
recommended that you use the AddVirtualUser method to create virtual users rather than using
the local user database.

It is recommended that most applications specify HTTP_ACCESS_DEFAULT as the dwUserAccess
value for a client session, since this allows the server automatically grant the appropriate access
based on the server configuration options.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AddVirtualUser, GetClientCredentials, GetClientDirectory, OnAuthenticate

file:///C|/Projects/cstools11/pdf/httpsrv/class/useraccess.html

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::CheckVirtualPath Method

BOOL CheckVirtualPath(
 UINT nClientId,
 LPCTSTR lpszVirtualPath,
 DWORD dwFileAccess
);

Determine if the client has permission to access the specified virtual path.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpszVirtualPath

A pointer to a string which specifies the virtual path that should be checked. This path must be
absolute and cannot be a NULL pointer or an empty string. The maximum length of the virtual
path is 1024 characters.

dwFileAccess

An unsigned integer value which specifies the access permissions that should be checked. For a
list of file access permissions, see User and File Access Constants.

Return Value
If the method succeeds, the return value is non-zero. If the client ID does not specify a valid client,
the method will return zero. If the method fails, the last error code will be updated to indicate the
cause of the failure.

Remarks
The CheckVirtualPath method is used to determine if the client has permission to access the
virtual file or directory, based on the value of the dwFileAccess parameter. For example, if the
dwFileAccess parameter has the value HTTP_ACCESS_WRITE, this method will check if the client
has write permission for the file or directory. The method will return a non-zero value if the client
does have the requested permission, or zero if it does not.

Applications that implement their own custom handlers for standard HTTP commands should use
this method to ensure that the client has the appropriate permissions to access the requested
resource. Failure to check the access permissions for the client can result in the client being able to
access restricted documents and other resources. It is recommended that most applications use
the default command handlers.

To obtain the path to the local file or directory that the virtual path is mapped to, use the
GetClientLocalPath method.

Example
CString strPathName;

// Get the current request URL path
INT cchPathName = pServer->GetCommandResource(nClientId, strPathName);

if (cchPathName == 0)
{
 pServer->SendErrorResponse(nClientId, 500);
 return;

file:///C|/Projects/cstools11/pdf/httpsrv/class/useraccess.html
file:///C|/Projects/cstools11/pdf/httpsrv/class/useraccess.html

}

// Check if the client has write access to that resource
BOOL bAllowed = pServer->CheckVirtualPath(
 nClientId,
 strPathName,
 HTTP_ACCESS_WRITE);

if (!bAllowed)
{
 pServer->SendErrorResponse(nClientId, 403);
 return;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AddVirtualPath, DeleteVirtualPath, GetClientLocalPath, GetClientVirtualPath

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::CHttpServer Method

CHttpServer();

The CHttpServer constructor initializes the class library and validates the license key at runtime.

Remarks
If the constructor fails to validate the runtime license, subsequent methods in this class will fail. If
the product is installed with an evaluation license, then the application will only function on the
development system and cannot be redistributed.

The constructor calls the HttpServerInitialize function to initialize the library, which dynamically
loads other system libraries and allocates thread local storage. If you are using this class within
another DLL, it is important that you do not create or destroy an instance of the class from within
the DllMain method because it can result in deadlocks or access violation errors. You should not
declare static or global instances of this class within another DLL if it is linked with the C runtime
library (CRT) because it will automatically call the constructors and destructors for static and global
C++ objects and has the same restrictions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
~CHttpServer, IsInitialized

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::DeleteAllClientHeaders Method

BOOL DeleteAllClientHeaders(
 UINT nClientId,
 UINT nHeaderType
);

Delete all of the request or response headers for the specified client session.

Parameters
nClientId

Delete all of the request or response headers for the specified client session.

nHeaderType

Specifies the type of headers to delete. It may be one of the following values:

Constant Description

HTTP_HEADERS_REQUEST Delete all of the request headers that were provided by
the client. Request header values provide additional
information to the server about the type of request being
made.

HTTP_HEADERS_RESPONSE Delete all of the response headers that were created by
the server in response to a request made by the client.
Response header values provide additional information
to the client about the type of information that is being
returned by the server.

Return Value
If the method succeeds, the return value is non-zero. If the client ID does not specify a valid client
session, the method will return zero.

Remarks
The DeleteAllClientHeaders method is used to delete all of the request or response headers that
were set as the result of the client issuing a request for a document or other resource. If this
method is used to delete all of the response headers, the server will automatically generate a
standard set of response headers when it returns the requested information to the client.

It is not necessary to call this method inside an OnDisconnect event handler to delete the header
values that were set during the client session. This is done automatically when the client
disconnects from the server.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
DeleteClientHeader, SetClientHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::DeleteClientHeader Function

BOOL DeleteClientHeader(
 UINT nClientId,
 UINT nHeaderType,
 LPCTSTR lpszHeaderName
);

Delete a request or response header for the specified client session.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

nHeaderType

Specifies the type of header to delete. It may be one of the following values:

Constant Description

HTTP_HEADERS_REQUEST Delete a request header that was provided by the client.
Request header values provide additional information to
the server about the type of request being made.

HTTP_HEADERS_RESPONSE Delete a response header that was created by the server.
Response header values provide additional information
to the client about the type of information that is being
returned by the server.

lpszHeaderName

A pointer to a string that specifies the name of the header that should be deleted. Header
names are not case-sensitive and should not include the colon which acts as a delimiter that
separates the header name from its value. This parameter cannot be a NULL pointer or an
empty string.

Return Value
If the method succeeds, the return value is non-zero. If the client ID does not specify a valid client
session, the method will return zero. If the method fails, the GetLastError method will return more
information about the last error that has occurred.

Remarks
The DeleteClientHeader method will delete a request or response header for the specified client
session. There are a number of required response headers that are always sent to a client and
deleting the header using this method will cause the server to automatically generate a new
default header value. You should not delete response header values unless you are certain of the
impact that it would have on the normal operation of the client.

It is not necessary for you to delete a header value to change the value of an existing header. The
SetClientHeader method will replace an existing header value with a new value, or create a new
header if the header name does not already exist.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)

Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DeleteAllClientHeaders, SetClientHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::DeleteVirtualHost Method

BOOL DeleteVirtualHost(
 UINT nHostId
);

Delete a virtual host associated with the specified server.

Parameters
nHostId

An integer value which identifies the virtual host.

Return Value
If the method succeeds, the return value is non-zero. If the server handle is invalid or the virtual
host ID does not specify a valid host, the method will return zero. If the method fails, the last error
code will be updated to indicate the cause of the failure.

Remarks
The DeleteVirtualHost method removes a virtual host that was created by a previous call to the
AddVirtualHost method. All virtual paths and users associated with the specified host are no
longer valid. It is not necessary to call this method to delete any of the virtual hosts prior to
stopping the server. Part of the normal shutdown process is releasing the resources allocated for
each virtual host that was added to the server.

This method cannot be used to delete the virtual host with an ID of zero, which is the default
virtual host that is allocated when the server is started.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
AddVirtualHost, AddVirtualPath, AddVirtualUser DeleteVirtualPath, DeleteVirtualUser

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::DeleteVirtualPath Method

BOOL DeleteVirtualPath(
 UINT nHostId,
 LPCTSTR lpszVirtualPath
);

Remove a virtual path from the specified host.

Parameters
nHostId

An integer value which identifies the virtual host.

lpszVirtualPath

A pointer to a string which specifies the virtual path that will be removed. This path must be
absolute and cannot be a NULL pointer or an empty string.

Return Value
If the method succeeds, the return value is non-zero. If the virtual host ID does not specify a valid
host, the method will return zero. If the method fails, the last error code will be updated to
indicate the cause of the failure.

Remarks
This method removes a virtual path that was created by a previous call to the AddVirtualPath
method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AddVirtualHost, AddVirtualPath, GetClientLocalPath, GetClientVirtualPath

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::DeleteVirtualUser Method

BOOL DeleteVirtualUser(
 UINT nHostId,
 LPCTSTR lpszUserName
);

Remove a virtual user from the specified host.

Parameters
nHostId

An integer value which identifies the virtual host.

lpszUserName

A pointer to a string which specifies the user that will be removed. This parameter cannot be a
NULL pointer or an empty string.

Return Value
If the method succeeds, the return value is non-zero. If the the virtual host ID does not specify a
valid host, or the username does not exist, the method will return zero. If the method fails, the last
error code will be updated to indicate the cause of the failure.

Remarks
This method removes a virtual user that was created by a previous call to the AddVirtualUser
method. This method will not match partial usernames and wildcard characters cannot be used to
delete multiple users. Usernames are not case sensitive.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AddVirtualHost, AddVirtualUser

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::DetachHandle Method

HSERVER DetachHandle();

The DetachHandle method detaches the server handle associated with the current instance of
the class.

Parameters
None.

Return Value
This method returns the server handle associated with the current instance of the class object. If
there is no active server, the value INVALID_SERVER will be returned.

Remarks
This method is used to detach a server handle created by the class for use with the SocketTools
API. Once the server handle is detached from the class, no other class member functions may be
called.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
AttachHandle, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::DisableCommand Method

BOOL EnableCommand(
 LPCTSTR lpszCommand
);

Disable a specific server command.

Parameters
lpszCommand

A pointer to a NULL terminated string that specifies the name of the command to be disabled.
The command name is not case-sensitive, but the value must otherwise match the exact name.
Partial matches are not recognized by this method. This parameter cannot be NULL.

Return Value
If the method succeeds, the return value is non-zero. If the command is not recognized, the
method will return zero. If the method fails, the GetLastError method will return more information
about the last error that has occurred.

Remarks
The DisableCommand method is used to disable access to a specific command on the server,
typically for security purposes. For example, the PUT command can be disabled, preventing any
client from attempting to upload files directly to the server. The IsCommandEnabled method can
be used to determine if a command is enabled or not.

The command name provided to this method must match the commands defined in RFC 2616 or
related protocol standards. Refer to Hypertext Transfer Protocol Commands for a complete list of
server commands.

Some commands cannot be disabled because they are required to perform essential server
functions. For example, the GET and HEAD commands cannot be disabled. If you attempt to
disable a required command, this method will return zero and the last error code will be set to
ST_ERROR_COMMAND_REQUIRED. Because this method affects all clients connected to the
server, it should not be used to limit access to certain commands for specific clients. Instead, use
an event handler to filter the commands.

The OPTIONS and TRACE commands are disabled by default for all server instances and must be
explicitly enabled using the EnableCommand method if you wish permit clients to use them. It is
not recommended that you enable these commands if your server is going to be publicly
accessible over the Internet. If the server started with the option HTTP_SERVER_READONLY,
commands that can be used to create or modify files on the server will be disabled by default.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AuthenticateClient, EnableCommand, IsCommandEnabled

file:///C|/Projects/cstools11/pdf/httpsrv/class/commands.html
file:///C|/Projects/cstools11/pdf/httpsrv/class/commands.html

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::DisableTrace Method

BOOL DisableTrace();

Disable the logging of network function calls.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
EnableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::DisconnectClient Method

BOOL DisconnectClient(
 UINT nClientId
);

Close the control connection for the specified client and release the resources allocated for the
session.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

Return Value
If the method succeeds, the return value is non-zero. If the client ID does not specify a valid client
session, the method will return zero.

Remarks
The DisconnectClient method will close the control channel, disconnecting the client from the
server and terminating the client session thread. Resources that we allocated for the client, such as
memory and open handles, will be released back to the operating system. If the client was in the
process of transferring a file, the transfer will be aborted. This performs the same operation as if
the client sent the QUIT command to the server.

This method sends an internal control message that notifies the server that this session should be
terminated. When the session thread is signaled that it should terminate, it will abort any active file
transfers and begin to release the resources allocated for that session. To ensure that the client
session terminates gracefully, there may be a brief period of time where the session thread is still
active after this method has returned.

After this method returns, the application should never use the same client ID with another
method. Client IDs are unique to the session over the lifetime of the server, and are not reused.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
Restart, Stop

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::EnableClientAccess Method

BOOL EnableClientAccess(
 UINT nClientId,
 DWORD dwUserAccess,
 BOOL bEnable
);

Enable or disable access rights for the specified client session.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

dwUserAccess

An unsigned integer which specifies an access right to enable or disable. For a list of user access
rights that can be granted to the client, see User and File Access Constants.

bEnable

An integer value which specifies if permission should be granted or revoked for the specified
access right. If this value is non-zero, permission is granted to the client to perform the action
specified by the dwUserAccess parameter. If this value is zero, that permission is revoked.

Return Value
If the method succeeds, the return value is non-zero. If the client ID does not specify a valid client
session, the method will return zero.

Remarks
The EnableClientAccess method is used to enable or disable access to specific functionality by
the client. The method can only change a single access right and cannot be used to enable or
disable multiple access rights in a single method call. To change multiple user access rights for the
client, use the SetClientAccess method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
AuthenticateClient, GetClientAccess, SetClientAccess

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/httpsrv/class/useraccess.html

 CHttpServer::EnableCommand Method

BOOL EnableCommand(
 LPCTSTR lpszCommand
);

Enable a specific server command.

Parameters
lpszCommand

A pointer to a NULL terminated string that specifies the name of the command to be enabled
or disabled. The command name is not case-sensitive, but the value must otherwise match the
exact name. Partial matches are not recognized by this method. This parameter cannot be
NULL.

bEnable

An integer value which specifies if the command should be enabled or disabled. If the value is
non-zero, the command is enabled. If the value is zero, the command will be disabled.

Return Value
If the method succeeds, the return value is non-zero. If the client ID does not specify a valid client
session, the method will return zero. If the method fails, the GetLastError method will return more
information about the last error that has occurred.

Remarks
The EnableCommand method is used to enable access to a specific command on the server. The
IsCommandEnabled method can be used to determine if a command is enabled or not. The
command name provided to this method must match the commands defined in RFC 2616 or
related protocol standards. Refer to Hypertext Transfer Protocol Commands for a complete list of
server commands.

The OPTIONS and TRACE commands are disabled by default for all server instances and must be
explicitly enabled using the EnableCommand method if you wish permit clients to use them. It is
not recommended that you enable these commands if your server is going to be publicly
accessible over the Internet. If the server started with the option HTTP_SERVER_READONLY,
commands that can be used to create or modify files on the server will be disabled by default.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AuthenticateClient, DisableCommand, IsCommandEnabled

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/httpsrv/class/commands.html
file:///C|/Projects/cstools11/pdf/httpsrv/class/commands.html

 CHttpServer::EnableTrace Method

BOOL EnableTrace(
 LPCTSTR lpszTraceFile,
 DWORD dwTraceFlags
);

Enable the logging of network function calls to a file.

Parameters
lpszTraceFile

A pointer to a string that specifies the name of the log file. If this parameter is NULL or points to
an empty string, a log file is created in the temporary directory for the current user.

dwTraceFlags

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

TRACE_DEFAULT
(0)

All function calls are written to the trace file. This is the default
value.

TRACE_ERROR
(1)

Only those function calls which fail are recorded in the trace file.

TRACE_WARNING
(2)

Only those function calls which fail, or return values which indicate
a warning, are recorded in the trace file.

TRACE_HEXDUMP
(4)

All functions calls are written to the trace file, plus all the data that
is sent or received is displayed, in both ASCII and hexadecimal
format.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
When trace logging is enabled, the log file is opened, appended to and closed for each socket
function call. Using the same file name, you can do the same in your application to add additional
information to the file if needed. This can provide an application-level context for the entries made
by the library. Make sure that the file is closed after the data has been written. If a file name is not
specified by the caller, a file named cstrace.log will be created in the temporary directory for the
current user.

The TRACE_HEXDUMP option can produce very large files, since all data that is being sent and
received by the application is logged. To reduce the size of the file, you can enable and disable
logging around limited sections of code that you wish to analyze.

To redistribute an application that includes this debug logging functionality, the cstrcv11.dll
library must be included as part of the installation package. This library provides the trace logging
features, and if it is not available the EnableTrace method will fail. Note that this is a standard
Windows DLL and does not need to be registered, it only needs to be redistributed with your
application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DisableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::EnumClients Method

INT EnumClients(
 UINT * lpClients,
 INT nMaxClients
);

Return a list of active client connections established with the server.

Parameters
lpClients

Pointer to an array of unsigned integers which will contain client IDs that uniquely identifies each
client when the method returns. If this parameter is NULL, then the method will return the
number of active client connections established with the server.

nMaxClients

Maximum number of client IDs to be returned in the lpClients array. If the lpClients parameter
is NULL, this parameter should have a value of zero.

Return Value
If the method succeeds, the return value is the number of active client connections to the server. If
the method fails, the return value is HTTP_ERROR. To get extended error information, call
GetLastError.

Remarks
If the nMaxClients parameter is less than the number of active client connections, the method will
fail and the last error code will be set to the error ST_ERROR_BUFFER_TOO_SMALL. To dynamically
determine the number of active connections, call the method with the lpClients parameter with a
value of NULL, and the nMaxClients parameter with a value of zero.

Example
// Populate a listbox with all of the users connected to the server
pListBox->ResetContent();

INT nClients = pHttpServer->EnumClients();
if (nClients > 0)
{
 UINT *pIdList = new UINT[nClients];

 nClients = pHttpServer->EnumClients(pIdList, nClients);
 if (nClients == HTTP_ERROR)
 {
 // Unable to obtain list of connected clients
 return;
 }

 for (INT nIndex = 0; nIndex < nClients; nIndex++)
 {
 CString strUserName;

 if (pHttpServer->GetClientUserName(pIdList[nIndex], strUserName))
 pListBox->AddString(strUserName);
 }

 // Free the memory allocated for the client IDs

 delete pIdList;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
GetClientAddress, GetClientDirectory, GetClientUserName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::GetActiveClient Method

UINT GetActiveClient();

Return the client ID for the active client session associated with the current thread.

Parameters
None.

Return Value
If the method succeeds, the return value is the unique ID associated with the client session for the
current thread. If there is no client session active on the current thread, the return value is zero.

Remarks
The GetActiveClient method is used to obtain the client ID associated with the current thread.
This means this method will only return a client ID if it is called within an event handler or a
method called by an event handler. If this method is called by a function that is not executing
within the context of an event handler it will return a value of zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
EnumClients

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::GetAddress Method

INT GetAddress(
 UINT nClientId,
 LPTSTR lpszAddress,
 INT nMaxLength
);

INT GetAddress(
 UINT nClientId,
 CString& strAddress
);

Return the IP address of the server.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session. This value may be zero.

lpszAddress

A pointer to a string buffer that will contain the server IP address, terminated with a null
character. To accommodate both IPv4 and IPv6 addresses, this buffer should be at least 46
characters in length. This parameter cannot be NULL. An alternate version of this method
accepts a CString object if it is available.

nMaxLength

An integer value that specifies the maximum number of characters can be copied into the string
buffer, including the terminating null character. This value must be greater than zero. If the
buffer size is too small, the method will fail.

Return Value
If the method succeeds, the return value is the number of characters copied into the string buffer,
not including the terminating null character. If either the client ID is invalid, or the buffer is not
large enough to store the complete address, the method will return a value of zero.

Remarks
This method will return the IP address assigned to the specified server as a printable string. If the
nClientId parameter has a value of zero, this method will return the IP address assigned to the
local system. If the HTTP_SERVER_NATROUTER option was specified when the server was started,
this method will return the external IP address assigned to the system. If the nClientId parameter
specifies a valid client session, this method will return the IP address that the client used to
establish the connection with the server. To determine the IP address assigned to the client, use
the GetClientAddress method.

The format and length of IPv4 and IPv6 address strings are very different. An IPv4 address string
looks like "192.168.0.20", while an IPv6 address string can look something like
"fd7c:2f6a:4f4f:ba34::a32". If your application checks for the format of these address strings, it
needs to be aware of the differences. You also need to make sure that you're providing enough
space to display or store an address to avoid buffer overruns.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)

Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetClientAddress, GetName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::GetClientAccess Method

BOOL GetClientAccess(
 UINT nClientId,
 DWORD& dwUserAccess
);

Return the access rights that have been granted to the client session.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

dwUserAccess

An unsigned integer which specifies one or more access rights for the client session. For a list of
user access rights that can be granted to the client, see User and File Access Constants.

Return Value
If the method succeeds, the return value is non-zero. If the client ID does not specify a valid client
session, the method will return zero. This method can only be used with authenticated clients. If
the client session has not been authenticated, the return value will be zero.

Remarks
The GetClientAccess method is used to obtain all of the access rights that are currently granted
to an authenticated client session. The EnableClientAccess method can be used to enable or
disable specific permissions, and the SetClientAccess method can change multiple access rights
at once.

Example
DWORD dwUserAccess = 0;

// Check if the client has execute permission
if (pHttpServer->GetClientAccess(nClientId, dwUserAccess))
{
 if (dwUserAccess & HTTP_ACCESS_EXECUTE)
 {
 std::cout << "Client can execute programs and scripts\n";
 return;
 }
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
AuthenticateClient, EnableClientAccess, SetClientAccess

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/httpsrv/class/useraccess.html

 CHttpServer::GetClientAddress Method

INT GetClientAddress(
 UINT nClientId,
 LPTSTR lpszAddress,
 INT nMaxLength
);

INT GetClientAddress(
 UINT nClientId,
 CString& strAddress
);

Return the IP address of the specified client session.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpszAddress

A pointer to a string buffer that will contain the client IP address, terminated with a null
character. To accommodate both IPv4 and IPv6 addresses, this buffer should be at least 46
characters in length. This parameter cannot be NULL. An alternate version of this method
accepts a CString object if it is available.

nMaxLength

An integer value that specifies the maximum number of characters can be copied into the string
buffer, including the terminating null character. This value must be greater than zero. If the
buffer size is too small, the method will fail.

Return Value
If the method succeeds, the return value is the number of characters copied into the string buffer,
not including the terminating null character. If the client ID is invalid, or the buffer is not large
enough to store the complete address, the method will return a value of zero.

Remarks
The format and length of IPv4 and IPv6 address strings are very different. An IPv4 address string
looks like "192.168.0.20", while an IPv6 address string can look something like
"fd7c:2f6a:4f4f:ba34::a32". If your application checks for the format of these address strings, it
needs to be aware of the differences. You also need to make sure that you're providing enough
space to display or store an address to avoid buffer overruns.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetAddress

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::GetClientCredentials Method

BOOL GetClientCredentials(
 UINT nClientId,
 LPHTTPCLIENTCREDENTIALS lpCredentials
);

BOOL GetClientCredentials(
 UINT nClientId,
 CString& strUserName,
 CString& strPassword
);

Return the user credentials for the specified client session.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpCredentials

A pointer to an HTTPCLIENTCREDENTIALS structure that will contain information about the
user when the method returns. This parameter cannot be NULL.

strUserName

A string that will contain the user name when the method returns. This version of the method is
only available for MFC and ATL based projects that define the CString object.

strPassword

A string that will contain the user password when the method returns. This version of the
method is only available for MFC and ATL based projects that define the CString object.

Return Value
If the user credentials for the client session are available, the return value is non-zero. If the client
ID does not specify a valid client session, or the client has not requested authentication, this
method will return zero.

Remarks
The GetClientCredentials method is used to obtain the username and password that was
provided by the client when it requested authentication. Typically this method is used in an event
handler to validate the credentials provided by the client. If the credentials are considered valid,
the event handler would then call the AuthenticateClient method to specify that the session has
been authenticated.

If the default event handler is used, the OnAuthenticate method will be invoked with the user
credentials passed to the handler as arguments.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also

AuthenticateClient, RequireAuthentication, OnAuthenticate, HTTPCLIENTCREDENTIALS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::GetClientDirectory Method

INT GetClientDirectory(
 UINT nClientId,
 LPTSTR lpszDirectory,
 INT nMaxLength
);

INT GetClientDirectory(
 UINT nClientId,
 CString& strDirectory
);

Returns the root document directory for the specified client session.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpszDirectory

A pointer to a string buffer that will contain the root document directory for the specified client
session, terminated with a null character. This buffer should be at least MAX_PATH characters in
length. This parameter cannot be NULL. An alternate version of this method accepts a CString
object if it is available.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer, including the terminating null character. This value must be larger than zero or the
method will fail.

Return Value
If the method succeeds, the return value is the number of characters copied into the string buffer,
not including the terminating null character. If the client ID does not specify a valid client session,
the method will return zero.

Remarks
This method returns the full path to the root document directory for the specified client session. If
no virtual hosts have been configured, then this value will be the same as the root directory
assigned to the server when it was started. If the server has been configured with multiple virtual
hosts, this function will return the path to the root directory associated with the hostname
provided by the client.

To convert a full path to the virtual path for a specific client session, use the GetClientVirtualPath
method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetClientVirtualPath

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::GetClientHeader Method

INT GetClientHeader(
 UINT nClientId,
 UINT nHeaderType,
 LPCTSTR lpszHeaderName,
 LPTSTR lpszHeaderValue,
 INT nMaxLength,
);

Return the value of a request or response header for the specified client session.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

nHeaderType

Specifies the type of header. It may be one of the following values:

Constant Description

HTTP_HEADERS_REQUEST Return the value of a request header that was provided
by the client. Request header values provide additional
information to the server about the type of request being
made.

HTTP_HEADERS_RESPONSE Return the value of a response header that was created
by the server. Response header values provide additional
information to the client about the type of information
that is being returned by the server.

lpszHeaderName

A pointer to a string that specifies the name of the header field. Header names are not case-
sensitive and should not include the colon which acts as a delimiter that separates the header
name from its value. This parameter cannot be a NULL pointer or an empty string.

lpszHeaderValue

A pointer to a buffer that will contain the header value, terminated with a null character. To
determine the length of the header value, this parameter can be NULL and the nMaxLength
parameter should be specified with a value of zero.

nMaxLength

An integer that specifies the maximum number of characters that can be copied into the header
value buffer, including the terminating null character. If the lpszHeaderValue parameter is
NULL, this value must be zero.

Return Value
If the method succeeds, the return value is the length of the header value, not including the
terminating null character. If the client ID does not specify a valid client session, or there is no
header that matches the given name, the method will return zero. If the lpszHeaderValue
parameter is not NULL and the buffer is not large enough to store the complete header value, the
method will return zero and the last error code will be set to ST_ERROR_BUFFER_TOO_SMALL. If
the method fails, the GetLastError method will return more information about the last error that
has occurred.

Remarks
The GetClientHeader method will return the value of a request or response header for the
specified client session. If the lpszHeaderName value matches an existing header field, its value
will be copied to the string buffer provided by the caller.

Refer to Hypertext Transfer Protocol Headers for a list of common request and response headers
that are used.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DeleteClientHeader, GetAllClientHeaders, SetClientHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/httpsrv/class/headers.html
file:///C|/Projects/cstools11/pdf/httpsrv/class/headers.html
file:///C|/Projects/cstools11/pdf/httpsrv/class/getallclientheaders.html

 CHttpServer::GetClientIdleTime Method

UINT GetClientIdleTime(
 UINT nClientId,
 UINT * lpnElapsed
);

Return the idle timeout period for the specified client session.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpnElapsed

An optional pointer to an unsigned integer value that will contain the number of seconds the
client session has been idle. This parameter may be NULL or omitted if this information is not
required.

Return Value
If the method succeeds, the return value is client idle timeout period in seconds. If the client ID
does not specify a valid client session, the method will return zero.

Remarks
The GetClientIdleTime method will return the number of seconds that the client may remain idle
before being automatically disconnected by the server. The idle time of a client session is based
on the last time a command was issued to the server or when a data transfer completed. The
server will never disconnect a client that is in the process of sending or receiving data, regardless
of the idle timeout period.

The default idle timeout period for a client session is 60 seconds, however the server can be
configured to use a different value. The minimum timeout period for a client is 10 seconds, the
maximum is 300 seconds (5 minutes). An application can change the timeout period for a specific
client session using the SetClientIdleTime method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
SetClientIdleTime

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::GetClientLocalPath Method

INT GetClientLocalPath(
 UINT nClientId,
 LPCTSTR lpszVirtualPath,
 LPTSTR lpszLocalPath,
 INT nMaxLength,
);

INT GetClientLocalPath(
 UINT nClientId,
 LPCTSTR lpszVirtualPath,
 CString& strLocalPath
);

Return the full local path for a virtual filename or directory on the server.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpszVirtualPath

A pointer to a string that specifies an virtual path on the server. This parameter cannot be NULL.

lpszLocalPath

A pointer to a string buffer that will contain the full local path, terminated with a null-character.
This buffer should be at least MAX_PATH characters to accommodate the complete path. This
parameter cannot be NULL. An alternate version of this method accepts a CString object if it is
available.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer, including the terminating null character. This value must be greater than zero.

Return Value
If the method succeeds, the return value is the number of characters copied into the string buffer,
not including the terminating null character. If the client ID does not specify a valid client session,
the method will return zero. If the string buffer is not large enough to contain the complete path,
this method will return zero and the last error code will be set to ST_ERROR_BUFFER_TOO_SMALL.

Remarks
The GetClientLocalPath method takes a virtual path and returns the full path to the specified file
or directory on the local system. The virtual path may be absolute or relative to the root directory
for the client session.

To obtain the virtual path for a local file or directory, use the GetClientVirtualPath method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetClientVirtualPath

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::GetClientServer Method

HSERVER HttpGetClientServer(
 UINT nClientId
);

The GetClientServer method returns a handle to the server that created the specified client
session.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

Return Value
If the method succeeds, the return value is the handle to the server that created the client session.
If the method fails, the return value is INVALID_SERVER. To get extended error information, call
the GetLastError method.

Remarks
The GetClientServer method returns the handle to the server that created the client session and
is typically used within a notification message handler. If the server is in the process of shutting
down, or the client session thread is terminating, this method will fail and return INVALID_SERVER
indicating that the session ID is invalid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cstools11.h.
Import Library: cshtsv11.lib

See Also
AsyncNotify

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::GetClientThreadId Method

DWORD GetClientThreadId(
 UINT nClientId
);

Returns the thread ID associated with the specified client session.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

Return Value
If the method succeeds, the return value is a thread ID. If the method fails, the return value is zero.
To get extended error information, call the GetLastError method.

Remarks
The GetClientThreadId method returns a thread ID that can be used to identify the thread that is
managing the client session. The thread ID can be used with other Windows API functions such as
OpenThread. Exercise caution when using thread-related functions, interfering with the normal
operation of the thread can have unexpected results. You should never use this method to obtain
a thread handle and then call the TerminateThread function to terminate a client session. This will
prevent the thread from releasing the resources that were allocated for the session and can leave
the server in an unstable state. To terminate a client session, use the DisconnectClient method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
EnumClients, GetActiveClient

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::GetClientUserName Method

INT GetClientUserName(
 UINT nClientId,
 LPTSTR lpszUserName,
 INT nMaxLength
);

INT GetClientUserName(
 UINT nClientId,
 CString& strUserName
);

Return the user name associated with the specified client session.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

strUserName

A pointer to a string buffer that will contain the user name associated with the client session.
This buffer must be large enough to store the complete user name, including the terminating
null character. This parameter cannot be NULL. An alternate version of this method accepts a
CString object if it is available.

Return Value
If the method succeeds, the return value is non-zero. If the client ID does not specify a valid client
session, or the client has not authenticated itself, the method will return zero and the
lpszUserName parameter will be set to an empty string.

The IsClientAuthenticated method can be used to determine if the client has provided
credentials as part of the request made to the server.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AuthenticateClient, GetClientAccess

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::GetClientVariable Method

INT GetClientVariable(
 UINT nClientId,
 LPCTSTR lpszName,
 LPTSTR lpszValue,
 INT nMaxLength,
);

INT GetClientVariable(
 UINT nClientId,
 LPCTSTR lpszName,
 CString& strValue
);

Return the value of a CGI environment variable for the specified client.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpszName

A pointer to a string that specifies the name of the environment variable. Variable names are
not case-sensitive and should not include the equal sign which acts as a delimiter that separates
the variable name from its value. This parameter cannot be a NULL pointer or an empty string.

lpszValue

A pointer to a buffer that will contain the value of the environment variable, terminated with a
null character. To determine the length of the header value, this parameter can be NULL and
the nMaxLength parameter should be specified with a value of zero.

nMaxLength

An integer that specifies the maximum number of characters that can be copied into the value
buffer, including the terminating null character. If the lpszValue parameter is NULL, this value
must be zero.

Return Value
If the method succeeds, the return value is the length of the environment variable value, not
including the terminating null character. If the client ID does not specify a valid client session, or
there is no environment variable that matches the given name, the method will return zero. If the
lpszValue parameter is not NULL and the buffer is not large enough to store the complete header
value, the method will return zero and the last error code will be set to
ST_ERROR_BUFFER_TOO_SMALL. If the method fails, the GetLastError method will return more
information about the last error that has occurred.

Remarks
The GetClientVariable method will return the value of an environment variable that has been
defined for the client. Each client session inherits a copy of the process environment block, which
is then modified to define various environment variables that are used with CGI programs and
scripts. The SetClientVariable method can be used to change existing environment variables or
create new variables.

The standard CGI environment variables that are defined by the server are not created until the
client request has been processed. This means that environment variables such as REMOTE_ADDR

and SERVER_NAME will not be defined inside an OnConnect event handler.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SetClientVariable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::GetClientVirtualHost Method

INT GetClientVirtualHost(
 UINT nClientId,
 LPTSTR lpszHostName,
 INT nMaxLength
);

INT GetClientVirtualHost(
 UINT nClientId,
 CString& strHostName
);

Return the name of the virtual host the client used to establish the connection.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpszHostName

A pointer to a string buffer that will contain the virtual host name. The string buffer will be null
terminated and must be large enough to store the complete hostname. If this parameter is
NULL, the method will only return the length of the current command in characters, not
including the terminating null character. An alternate version of this method accepts a CString
object if it is available.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer, including the terminating null character. If the maximum length specified is smaller
than the actual length of the parameter, this method will fail. If the lpszHostName parameter is
NULL, this value should be zero.

Return Value
An integer value which specifies the number of characters copied into the buffer, not including the
terminating null character. If the method fails, the return value will be zero and the GetLastError
method can be used to retrieve the last error code.

Remarks
The GetClientVirtualHost method is used to obtain the hostname that the client used to
establish a connection with the server. This method is typically used within an event handler to
determine the hostname associated with the request made by the client. It should not be called
inside an OnConnect event handler because the virtual host has not been selected at that point. If
the virtual hostname is not available at the time this method is called, the method will return zero
and the last error code will be set to ST_ERROR_VIRTUAL_HOST_NOT_FOUND.

The GetClientVirtualHostId method can be used to obtain the virtual host ID associated with the
hostname.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

Unicode: Implemented as Unicode and ANSI versions.

See Also
GetClientVirtualHostId, GetCommandUrl, GetVirtualHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::GetClientVirtualHostId Method

UINT GetClientVirtualHostId(
 UINT nClientId
);

Return the virtual host ID associated with the specified client session.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

Return Value
An unsigned integer value which specifies the virtual host ID. If the method fails, the return value
will be INVALID_VIRTUAL_HOST and the GetLastError method can be used to retrieve the last
error code.

Remarks
The GetClientVirtualHostId method is used to obtain the virtual host ID associated with the
hostname the client used to establish a connection with the server. This method should not be
called inside an OnConnect event handler because the virtual host has not been selected at that
point. If the virtual host ID is not available at the time this method is called, the method will return
INVALID_VIRTUAL_HOST and the last error code will be set to
ST_ERROR_VIRTUAL_HOST_NOT_FOUND.

The GetClientVirtualHost method can be used to obtain the hostname that the client used to
establish the connection.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
GetClientVirtualHost, GetCommandUrl, GetVirtualHostId

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::GetClientVirtualPath Method

INT GetClientVirtualPath(
 UINT nClientId,
 LPCTSTR lpszLocalPath,
 LPTSTR lpszVirtualPath,
 INT nMaxLength,
);

INT GetClientVirtualPath(
 UINT nClientId,
 LPCTSTR lpszLocalPath,
 CString& strVirtualPath
);

Return the virtual path for a local file on the server.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpszLocalPath

A pointer to a string that specifies an absolute path on the local system. This parameter cannot
be NULL.

lpszVirtualPath

A pointer to a string buffer that will contain the virtual path, terminated with a null-character.
This buffer should be at least MAX_PATH characters to accommodate the complete path. This
parameter cannot be NULL. An alternate version of this method accepts a CString object if it is
available.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer, including the terminating null character. This value must be greater than zero.

Return Value
If the method succeeds, the return value is the number of characters copied into the string buffer,
not including the terminating null character. If the client ID does not specify a valid client session,
the method will return zero. If the string buffer is not large enough to contain the complete path,
this method will return zero and the last error code will be set to ST_ERROR_BUFFER_TOO_SMALL.

Remarks
A virtual path for the client is relative to the root directory for the specified client session. These
virtual paths are what the client will see as an absolute path on the server. For example, if the
server was configured to use "C:\ProgramData\MyServer" as the root directory, and the
lpszLocalPath parameter was specified as "C:\ProgramData\MyServer\Documents\Research", this
method would return the virtual path to that directory as "/Documents/Research".

If the lpszLocalPath parameter specifies a file or directory outside of the server root directory, this
method will return zero and the last error code will be set to ST_ERROR_INVALID_FILE_NAME. This
method can only be used with authenticated clients. If the nClientId parameter specifies a client
session that has not been authenticated, this method will return zero and the last error code will
be ST_ERROR_AUTHENTICATION_REQUIRED.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetCommandFile, GetClientLocalPath

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::GetCommandFile Method

INT GetCommandFile(
 UINT nClientId,
 LPTSTR lpszFileName,
 INT nMaxLength
);

INT GetCommandFile(
 UINT nClientId,
 CString& strFileName
);

Get the full path to a file name or directory specified by the client.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpszFileName

A pointer to a string buffer that will contain the full path to a file name or directory specified by
the client when it issued a command. The string buffer will be null terminated and must be large
enough to store the complete file path. This parameter cannot be NULL. An alternate version of
this method accepts a CString object if it is available.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer. It is recommended that the buffer be at least MAX_PATH characters in size. If the
maximum length specified is smaller than the actual length of the full path, this method will fail.

Return Value
An integer value which specifies the number of characters copied into the buffer, not including the
terminating null character. If the method fails, the return value will be zero and the GetLastError
method can be used to retrieve the last error code.

Remarks
The GetCommandFile method is used to obtain the full path to a local file name or directory
specified by the client as an argument to a standard HTTP command. For example, if the client
sends the GET command to the server, this method will return the complete path to the local file
that the client wants to retrieve. This method will only work with those standard commands that
perform some action on a file or directory.

This method should always be used to obtain the file name for a command that performs a file or
directory operation. It normalizes the path provided by the client and ensures that it specifies a file
or directory name in the correct location. The GetCommandUrl method can be used to obtain
the URL that was provided by the client.

To map a virtual path to a file or directory on the local system, use the AddVirtualPath method.
To redirect a client to use a different URL to access the resource, use the RedirectRequest
method.

The SetCommandFile method can be used to change the name of the local file or directory that
is the target of the command, however using this method to redirect access to a resource can
have unintended side-effects, particularly in the case where the URL provided by the client actually

resolves to an executable CGI program that handles the request.

If the client has provided a URL that resolves to a CGI program that handles the request, this
method behaves differently than if the URL is resolved to a local file or directory. If the client uses
the GET or POST command that results in a program being executed to handle the request, this
method will return the path to the server root directory along with any additional path information
provided in the URL. In other words, the file name returned by this method will be the same as the
PATH_TRANSLATED value passed to the CGI program.

This method should only be called after the client request has been received by the server,
typically inside a OnCommand or OnExecute event handler. It should not be called inside a
OnConnect event handler because the server has not processed the client request at that point.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AddVirtualPath, GetCommandUrl, RedirectRequest, SetCommandFile, OnCommand, OnExecute

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::GetCommandLine Method

INT GetCommandLine(
 UINT nClientId,
 LPTSTR lpszCmdLine,
 INT nMaxLength
);

INT GetCommandLine(
 UINT nClientId,
 CString& strCmdLine
);

Return the complete command line issued by the client.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpszCmdLine

A pointer to a string buffer that will contain the command, including all arguments. The string
buffer will be null terminated and must be large enough to store the complete command line. If
this parameter is NULL, the method will return the length of the command line. An alternate
version of this method accepts a CString object if it is available.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer. The internal limit on the maximum length of a command is 1024 characters. If the
maximum length specified is smaller than the actual length of the complete command, this
method will fail.

Return Value
An integer value which specifies the number of characters copied into the buffer, not including the
terminating null character. If the method fails, the return value will be zero and the GetLastError
method can be used to retrieve the last error code. If the last error code has a value of zero then
no command has been issued by the client.

Remarks
The GetCommandLine method is used to obtain the command that was issued by the client, and
is commonly used inside the OnCommand and OnResult event handlers to pre-process and
post-process client commands, respectively. When the method returns, the string buffer provided
by the caller will contain the complete command, including the resource path and requested HTTP
version. Any extraneous whitespace will be removed, however all encoding will be preserved.

To obtain the complete URL associated with the request issued by the client, use the
GetCommandUrl method. If the command sent by the client is used to perform an action on a
file or directory, the GetCommandFile method should be called to obtain the full path to the
local file rather than using the resource path.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetCommandFile, GetCommandUrl, OnCommand, OnResult

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::GetCommandName Method

INT GetCommandName
 UINT nClientId,
 LPTSTR lpszCommand,
 INT nMaxLength
);

INT GetCommandName
 UINT nClientId,
 CString& strCommand
);

Return the name of the last command issued by the client.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpszCommand

A pointer to a string buffer that will contain the command name. The string buffer will be null
terminated and must be large enough to store the complete parameter value. If this parameter
is NULL, the method will only return the length of the current command in characters, not
including the terminating null character. An alternate version of this method accepts a CString
object if it is available.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer, including the terminating null character. If the maximum length specified is smaller
than the actual length of the parameter, this method will fail. If the lpszCommand parameter is
NULL, this value should be zero.

Return Value
An integer value which specifies the number of characters copied into the buffer, not including the
terminating null character. If the method fails, the return value will be zero and the GetLastError
method can be used to retrieve the last error code. If the last error code is returned as a value of
zero, this means that no command has been issued by the client.

Remarks
The GetCommandName method is used to obtain the name of the last command that was
issued by the client. The command name returned by this method will always be capitalized,
regardless of how it was sent by the client. This method is typically used inside the OnCommand
and OnResult event handlers to pre-process and post-process client commands, respectively. It
should not be called inside a OnConnect event handler because the server has not processed the
client request at that point.

The GetCommandUrl function can be used to return the resource that was requested by the
client.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetCommandFile, GetCommandUrl, OnCommand, OnResult

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::GetCommandQuery Method

INT GetCommandQuery(
 UINT nClientId,
 LPTSTR lpszParameters,
 INT nMaxLength
);

INT GetCommandQuery(
 UINT nClientId,
 CString& strParameters
);

Return the query parameters included with the command.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpszParameters

A pointer to a string buffer that will contain the query parameters when the method returns.
The string buffer will be null terminated up to the maximum number of characters specified by
the caller. If this parameter is NULL the method will return the length of the query string. An
alternate version of this method accepts a CString object if it is available.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer. If the lpszParameters parameter is NULL, this value should be zero.

Return Value
An integer value which specifies the number of characters copied into the buffer, not including the
terminating null character. If the method fails, the return value will be zero and the GetLastError
method can be used to retrieve the last error code. If the client did not provide any query
parameters, this method will return zero and the last error code will be zero.

Remarks
The GetCommandQuery method is used to obtain a copy of the query parameters that were
included in the request URL. If there were no query parameters, the string buffer will be empty and
the return value will be zero. If the request did include query parameters, they will be returned to
the caller in their original, encoded form.

This method should not be called within an OnConnect event handler because the client request
has not been processed at that point.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetCommandName, GetCommandResource, ReceiveRequest

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::GetCommandResource Method

INT GetCommandResource(
 UINT nClientId,
 LPTSTR lpszResource,
 INT nMaxLength
);

INT GetCommandResource(
 UINT nClientId,
 CString& strUrlPath
);

Return the URL path for the resource requested by the client.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpszResource

A pointer to a string buffer that will contain the URL path provided by the client for the current
command. The string buffer will be null terminated and must be large enough to store the
complete path. If this parameter is NULL, the method will only return the length of the path. An
alternate version of this method accepts a CString object if it is available.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer, including the terminating null character. If the lpszResource parameter is NULL,
this value should be zero. If this value is less than the length of the URL, the method will fail.

Return Value
An integer value which specifies the number of characters copied into the buffer, not including the
terminating null character. If the method fails, the return value will be zero and the GetLastError
method can be used to retrieve the last error code.

Remarks
The GetCommandResource method returns the URL path that the client provided to access the
requested resource. The path will not include the URI scheme, user credentials or query
parameters. The GetCommandFile method can be used to determine the name of the local file
on the server that will be accessed using this URL.

If you require the complete URL, not just the path to the resource, use the GetCommandUrl
method.

This method should only be called after the client request has been received by the server,
typically inside an OnCommand event handler. It should not be called inside a OnConnect event
handler because the server has not processed the client request at that point.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetCommandFile, GetCommandQuery, GetCommandUrl, RedirectRequest

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::GetCommandResult Method

INT GetCommandResult(
 UINT nClientId,
 LPTSTR lpszResult,
 INT nMaxLength
);

INT GetCommandResult(
 UINT nClientId,
 CString& strResult
);

Return the result code and description for the last command issued by the client.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpszResult

A pointer to a string buffer that will contain the description of the result code. The string buffer
will be null terminated up to the maximum number of characters specified by the caller. This
parameter can be NULL if this information is not required. An alternate version of this method
accepts a CString object if it is available.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer. If the lpszResult parameter is NULL, this value should be zero.

Return Value
An integer value which specifies the result code for the last command issued by the client. A return
value of zero indicates that the command has not completed and there is no result code available.

Remarks
The GetCommandResult method is used to determine the result of the last command that was
issued by the client and is typically called in the OnResult event handler. This method should only
be called after a command has been processed or the SendResponse method has been called.

The result code is a three-digit integer value that indicates the success or failure of a command.
Whenever a client sends a command to the server, the server must respond with this numeric
code and a brief description of the the result. Result codes are generally broken down into the
following categories:

Result Code Description

100-199 Result codes in this range are informational and only used with version 1.1 of the
protocol. If the server returns a result code in this range, it means that it has
received the request and that the client should proceed.

200-299 Result codes in this range indicate that the server has successfully completed the
requested action. In most cases this means that the server has returned the
requested data to the client, however if a 204 result code is sent, this indicates
that the request has been processed but there is no data available.

300-399 Result codes in this range indicate that the requested resource has been moved

to a new location. The most common result codes are 301 and 302. A value of
301 indicates that the location of the resource has changed permanently and all
future requests should be sent to the new URL. A value of 302 indicates that the
resource location has changed temporarily. The new location of the resource is
sent to the client by setting the Location response header field.

400-499 Result codes in this range indicate an error with the request that was made by the
client. These types of errors include invalid commands, requests that can only be
issued by authenticated clients, or resources that cannot be accessed on the
server. The most common result code in this range is the 404 code which
indicates that the requested document could not be found.

500-599 Result codes in this range indicate a server error has occurred while processing a
valid request. These types of errors are returned when a command has not been
implemented, the execution of a CGI program or script has failed unexpectedly,
or an internal server error has occurred.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ReceiveRequest, SendResponse, OnResult

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::GetCommandUrl Method

INT GetCommandUrl(
 UINT nClientId,
 LPTSTR lpszUrl,
 INT nMaxLength
);

INT GetCommandUrl(
 UINT nClientId,
 CString& strUrl
);

Return the complete URL of the resource requested by the client.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpszUrl

A pointer to a string buffer that will contain the URL provided by the client for the current
command. The string buffer will be null terminated and must be large enough to store the
complete URL. If this parameter is NULL, the method will only return the length of the URL. An
alternate version of this method accepts a CString object if it is available.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer, including the terminating null character. If the lpszUrl parameter is NULL, this
value should be zero. If this value is less than the length of the URL, the method will fail.

Return Value
An integer value which specifies the number of characters copied into the buffer, not including the
terminating null character. If the method fails, the return value will be zero and the GetLastError
method can be used to retrieve the last error code.

Remarks
The GetCommandUrl method returns the complete URL that the client provided to access the
requested resource. The URL will include any query parameters that were specified by the client,
but it will not include any user credentials. The GetCommandFile method can be used to
determine the name of the local file on the server that will be accessed using this URL.

If you only require the URL path, without the URI scheme or the query parameters, use the
GetCommandResource method.

This method should only be called after the client request has been received by the server,
typically inside an OnCommand event handler. It should not be called inside an OnConnect
event handler because the server has not processed the client request at that point.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetCommandFile, GetCommandResource, RedirectRequest, OnCommand

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::GetDirectory Method

INT GetDirectory(
 LPTSTR lpszDirectory,
 INT nMaxLength
);

INT GetDirectory(
 CString& strDirectory
);

Return the full path to the root directory assigned to the specified server.

Parameters
lpszDirectory

A pointer to a string buffer that will contain the server root directory, terminated with a null
character. It is recommended that this buffer be at least MAX_PATH characters in length. This
parameter cannot be NULL. An alternate version of this method accepts a CString object if it is
available.

nMaxLength

An integer value that specifies the maximum number of characters can be copied into the string
buffer, including the terminating null character. This value must be greater than zero. If the
buffer size is too small, the method will fail.

Return Value
If the method succeeds, the return value is the number of characters copied into the string buffer,
not including the terminating null character. If the buffer is not large enough to store the complete
path, the method will return a value of zero.

Remarks
The GetDirectory method will return the full path to the root directory assigned to the server
instance. The root directory may be specified as part of the server configuration, or if no directory
is specified by the application, the current working directory for the process will be used and this
method can be used to obtain the full path to the directory. When the application specifies a root
directory, it may use environment variables such as %AppData% in the path. This method will
return the fully resolved path name, with all environment variables expanded.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetAddress, GetIdentity, GetName, SetDirectory

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::GetHandle Method

HSERVER GetHandle();

The GetHandle method returns the server handle associated with the current instance of the
class.

Parameters
None.

Return Value
This method returns the server handle associated with the current instance of the class object. If
the server is inactive, the value INVALID_SERVER will be returned.

Remarks
This method is used to obtain the server handle created by the class for use with the SocketTools
API.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
IsInitialized

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::GetIdentity Method

INT GetIdentity(
 LPTSTR lpszIdentity,
 INT nMaxLength
);

INT GetIdentity(
 CString& strIdentity
);

Return the identity of the specified server.

Parameters
lpszIdentity

A pointer to a string buffer that will contain the identity of the server when the method returns,
terminated with a null character. This parameter cannot be NULL. It is recommended that this
buffer be at least 32 characters in length. An alternate version of this method accepts a CString
object if it is available.

nMaxLength

An integer value that specifies the maximum number of characters can be copied into the string
buffer, including the terminating null character. This value must be greater than zero. If the
buffer size is too small, the method will fail.

Return Value
If the method succeeds, the return value is the number of characters copied into the string buffer,
not including the terminating null character. If the buffer is not large enough to store the complete
path, the method will return a value of zero.

Remarks
The GetIdentity method returns the identity string that was specified as part of the server
configuration. It is used for informational purposes only and does not affect the operation of the
server. Typically the string specifies the name of the application and a version number. The
SetIdentity method can be used to change the identity string associated with the server.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SetIdentity

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::GetLastError Method

DWORD GetLastError(
 LPTSTR lpszError,
 INT nMaxLength
);

DWORD GetLastError(
 CString& strError
);

DWORD GetLastError();

Return the last server error code and a description of the error.

Parameters
lpszError

A pointer to a string buffer that will contain a description of the error. If the error description is
not needed, this parameter may be NULL. An alternate version of this method accepts a
CString object if it is available.

nMaxLength

An integer that specifies the maximum number of characters that can be copied into the error
string buffer, including the terminating null character. If the lpszError parameter is NULL, this
value should be zero.

Return Value
An unsigned integer value that specifies the last error that occurred. A value of zero indicates that
there was no error.

Remarks
Error codes are unsigned 32-bit values which are private to each server. You should call the
GetLastError method immediately when a method's return value indicates that an error has
occurred. That is because some methods clear the last error code when they succeed.

It is important to note that the error codes returned by this method are different than the
command result codes that are defined in RFC 2616, the standard protocol specification for HTTP.
This method is used to determine reason that an API function has failed, and should not be used
to determine if a command issued by the client was successful. The SendResponse method is
used to send responses to the client, and the GetCommandResult method can be used to
determine the result of the last command sent by the client.

Most methods will set the last error code value when they fail; a few methods set it when they
succeed. Failure is typically indicated by a return value such as FALSE, NULL, INVALID_SERVER or
HTTP_ERROR. Those methods which clear the last error code when they succeed are noted on
their reference page.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetCommandResult, SendResponse, SetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::GetLogFile Method

BOOL GetLogFile(
 UINT * lpnLogFormat,
 UINT * lpnLogLevel,
 LPTSTR lpszFileName,
 INT nMaxLength
);

BOOL GetLogFile(
 UINT * lpnLogFormat,
 UINT * lpnLogLevel,
 CString& strFileName
);

BOOL GetLogFile(
 CString& strFileName
);

Return the current log file format and the full path to the file.

Parameters
lpnLogFormat

A pointer to an integer value that will contain the log file format being used when the method
returns. If this information is not needed, this parameter may be NULL. The following formats
are supported:

Constant Description

HTTP_LOGFILE_NONE
(0)

This value specifies that the server should not create or
update a log file.

HTTP_LOGFILE_COMMON
(1)

This value specifies that the server should use the
common log format that records a subset of information
in a fixed format. This log format usually only provides
information about file transfers.

HTTP_LOGFILE_COMBINED
(2)

This value specifies that the server should use the
combined log file format. This format is similar to the
common format, however it includes the client referrer
and user agent. This is the format that most Apache web
servers use by default.

HTTP_LOGFILE_EXTENDED
(3)

This value specifies that the log file should use the
standard W3C extended log file format. This is an
extensible format that can provide additional information
about the client session.

lpnLogLevel

A pointer to an integer value that will contain the level of detail the server uses when generating
the log file. The minimum value is 1 and the maximum value is 10. If this information is not
needed, this parameter may be NULL.

lpszFileName

A pointer to a string buffer that will contain the full path to the log file. This parameter may be

NULL if this information is not required. An alternate version of this method accepts a CString
object if it is available.

nMaxLength

An integer that specifies the maximum number of characters that can be copied into the file
name string, including the terminating null character. If the lpszFileName parameter is NULL,
this value should be zero.

Return Value
An integer value which specifies the current log file format. Refer to the HTTPSERVERCONFIG
structure definition for a list of supported log file formats. If logging has not been enabled, this
method will return a value of zero.

Remarks
If the server is configured with logging enabled, but a log file name is not explicitly provided, then
the server will automatically generate one. This method can be used to get the full path to the
current log file along with the format that is being used to record client session data. Normally the
log file is held open by the server thread while it is active, however you can call the
RenameServerLogFile method to explicitly rename or delete the log file.

To change the name of the log file, the log file format or level of detail, use the SetLogFile
method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
RenameServerLogFile, SetLogFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 GetMemoryUsage Method

SIZE_T GetMemoryUsage();

Return the amount of memory allocated for the server and all client sessions.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero and specifies the amount of memory
allocated by the server. If the server is inactive or cannot be locked, the return value is zero. Call
the GetLastError method to determine the cause of the failure.

Remarks
This method returns the amount of memory allocated by the server and all active client sessions. It
enumerates all of memory allocations made by the server process and client session threads and
returns the total number of bytes allocated for the server process. This value reflects the amount
of memory explicitly allocated by this library and does not reflect the total working set size of the
process, or memory allocated by any other libraries. To determine the working set size for the
process, refer to the Win32 GetProcessWorkingSetSize and GetProcessMemoryInfo functions.

This method forces the server into a locked state, and all client sessions will block until the method
returns. Because this method enumerates all heaps allocated for the server process, it can be an
expensive operation, particularly when there are a large number of active clients connected to the
server. Frequent use of this method can significantly degrade the performance of the server. It is
primarily intended for use as a debugging tool to determine if memory usage is the result of an
increase in active client sessions. If the value returned by the method remains reasonably constant,
but the amount of memory allocated for the process continues to grow, it could indicate a
memory leak in some other area of the application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetStackSize, SetStackSize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::GetName Method

INT GetName(
 UINT nClientId,
 LPTSTR lpszHostName,
 INT nMaxLength
);

INT GetName(
 UINT nClientId,
 CString& strHostName
);

Return the host name assigned to the specified server.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session. This value may be zero.

lpszHostName

A pointer to a string buffer that will contain the server host name, terminated with a null
character. It is recommended that this buffer be at least 64 characters in length. This parameter
cannot be NULL. An alternate version of this method accepts a CString object if it is available.

nMaxLength

An integer value that specifies the maximum number of characters can be copied into the string
buffer, including the terminating null character. This value must be greater than zero. If the
buffer size is too small, the method will fail.

Return Value
If the method succeeds, the return value is the number of characters copied into the string buffer,
not including the terminating null character. If the client ID is invalid or the buffer is not large
enough to store the complete hostname, the method will return a value of zero.

Remarks
This method will return the host name assigned to the specified server. If the nClientId parameter
has a value of zero, the method will return the default host name that was specified as part of the
server configuration. If no host name was explicitly assigned to the server, then it will return the
local system name. If the nClientId parameter specifies a client session, then it this method will
return the host name that the client used to establish the connection.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetAddress

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::GetOptions Method

DWORD GetOptions();

Return the options specified for this instance of the server.

Parameters
None.

Return Value
The current server options. For a list of available options, see Server Option Constants

Remarks
The GetOptions method returns the default options for the current instance of the server. To
change the server options, use the SetOptions method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
SetOptions

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/httpsrv/class/optionconst.html

 CHttpServer::GetPriority Method

INT GetPriority();

Return the current priority assigned to the specified server.

Parameters
None.

Return Value
If the method succeeds, the return value is the priority for the specified server. If the method fails,
the return value is HTTP_PRIORITY_INVALID. To get extended error information, call the
GetLastError method.

Remarks
The GetPriority method can be used to determine the current priority assigned to the server. It
will return one of the following values:

Constant Description

HTTP_PRIORITY_BACKGROUND
(0)

This priority significantly reduces the memory, processor and
network resource utilization for the server. It is typically used
with lightweight services running in the background that are
designed for few client connections. The server thread will be
assigned a lower scheduling priority and will be frequently
forced to yield execution to other threads.

HTTP_PRIORITY_LOW
(1)

This priority lowers the overall resource utilization for the
server and meters the processor utilization for the server
thread. The server thread will be assigned a lower scheduling
priority and will occasionally be forced to yield execution to
other threads.

HTTP_PRIORITY_NORMAL
(2)

The default priority which balances resource and processor
utilization. This is the priority that is initially assigned to the
server when it is started, and it is recommended that most
applications use this priority.

HTTP_PRIORITY_HIGH
(3)

This priority increases the overall resource utilization for the
server and the thread will be given higher scheduling priority.
It is not recommended that this priority be used on a system
with a single processor.

HTTP_PRIORITY_CRITICAL
(4)

This priority can significantly increase processor, memory and
network utilization. The server thread will be given higher
scheduling priority and will be more responsive to client
connection requests. It is not recommended that this priority
be used on a system with a single processor.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cstools11.h.
Import Library: cshtsv11.lib

See Also
SetPriority, Start

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::GetProgramExitCode Method

BOOL GetProgramExitCode(
 UINT nClientId,
 DWORD& dwExitCode
);

Return the exit code of the last program executed by the client.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

dwExitCode

An unsigned integer that will contain the program exit code when the method returns.

Return Value
If the method succeeds, the return value is non-zero. If the client ID does not specify a valid client
session, the method will return zero.

Remarks
The GetProgramExitCode method returns the exit code of a registered CGI program or script
that was executed. By convention, most programs return an exit code in the range of 0-255, with
an exit code of zero indicating success. The exit code is commonly used by programs to
communicate status information back to the server application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
GetProgramOutput, RegisterProgram

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::GetProgramName Method

INT GetProgramName(
 UINT nClientId,
 LPTSTR lpszProgramName,
 INT nMaxLength
);

INT GetProgramName(
 UINT nClientId,
 CString& strProgramName
);

Return the name of the CGI program executed by the client.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpszProgramName

A pointer to a string buffer that will contain the name of the CGI program executed by the
client. This parameter cannot be NULL and should be at least MAX_PATH characters in size. An
alternate version of this method accepts a CString object if it is available.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer, including the terminating null character. This parameter must have a value greater
than zero.

Return Value
If the method succeeds, the return value is the length of the executable file name. If the client ID
does not specify a valid client session, the method will return zero. If the client has not executed a
CGI program this method will return zero and the last error code will be set to zero.

Remarks
The GetProgramName method returns the local file name of the CGI program that was executed
in response to a request from the client. This is the full path to the executable that was registered
with the server using the RegisterProgram method. If the client specified a regular document or
directory, this method will return a value of zero, indicating that no CGI program has been
executed to handle the request.

To obtain the resource URL that was provided by the client, use the GetCommandUrl method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetProgramExitCode, GetProgramOutput, RegisterProgram

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::GetProgramOutput Method

DWORD GetProgramOutput(
 UINT nClientId,
 LPBYTE lpBuffer,
 DWORD dwBufferSize
);

Return a copy of the standard output from the a CGI program executed by the client.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpBuffer

A pointer to a buffer that will contain the output from the last program executed by the client. If
this parameter is NULL, the method will return the number of bytes of data that was output by
the program. Note that this output is not null terminated.

dwBufferSize

The maximum number of bytes that can be copied into the buffer. If the lpBuffer parameter is
NULL, this value should be zero.

Return Value
If the method succeeds, the return value is the number of bytes copied into the specified buffer. If
the client ID does not specify a valid client session, the method will return zero. If the client has not
executed any programs, the return value will be zero.

Remarks
The GetProgramOutput method is used to obtain a copy of the output generated by a CGI
program. To determine the number of bytes of output available to read, call this method with the
lpBuffer parameter as NULL and the dwBufferSize parameter with a value of zero. The return
value will be the number of bytes of data that was output by the program. It should be noted that
for Unicode builds, the buffer is a byte array, not an array of characters, and will not be null
terminated.

This method returns the raw output from the program which may contain a response header
block, escape sequences, control characters and embedded nulls. When the application processes
the output returned by this method, it should never coerce the buffer pointer to an LPTSTR value
because there is no guarantee that the data will be null-terminated. To obtain the output from the
program as a null-terminated string, use the GetProgramText method.

This method should only be used within an OnExecute event handler, which occurs after the
program has terminated.

Example
LPBYTE lpBuffer = NULL; // A pointer to the output buffer
DWORD cbBuffer = 0; // Number of bytes in the output buffer

// Determine the number of bytes in the output buffer
cbBuffer = pHttpServer->GetProgramOutput(nClientId, NULL, 0);

if (cbBuffer > 0)
{

 // Allocate memory for the buffer
 lpBuffer = new BYTE[cbBuffer + 1];

 // Copy the program output to the buffer
 cbBuffer = pHttpServer->GetProgramOutput(nClientId, lpBuffer, cbBuffer + 1);
}

// Free the memory allocated for the buffer when finished
if (lpBuffer != NULL)
{
 delete lpBuffer;
 lpBuffer = NULL;
 cbBuffer = 0;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
GetProgramExitCode, GetProgramText, OnExecute, RegisterProgram

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::GetProgramText Method

INT GetProgramText(
 UINT nClientId,
 LPTSTR lpszBuffer,
 INT nMaxLength
);

INT GetProgramText(
 UINT nClientId,
 CString& strBuffer
);

Return a copy of the standard output from a CGI program in a string buffer.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpszBuffer

A pointer to a buffer that will contain the output from the last program executed by the client as
a string. If this parameter is NULL, the method will return the number of bytes of characters that
was output by the program, not including a terminating null character. An alternate version of
this method accepts a CString object if it is available.

nMaxLength

The maximum number of bytes that can be copied into the buffer. If the lpszBuffer parameter is
NULL, this value should be zero.

Return Value
If the method succeeds, the return value is the number of characters copied into the specified
string buffer, not including the terminating null character. If the client ID does not specify a valid
client session, the method will return zero. If the client has not executed any programs, the return
value will be zero.

Remarks
The GetProgramText method is used to obtain a copy of the output generated by a CGI
program. To determine the number of characters of output available to read, call this method with
the lpszBuffer parameter as NULL and the nMaxLength parameter with a value of zero. The return
value will be the number of characters that were output by the program. If the application
dynamically allocates the string buffer, make sure that it allocates an extra character for the
terminating null character.

This method will only return textual output from the program and any non-printable control
characters and the escape character will be replaced with a space. To obtain the unfiltered output
from the program, use the GetProgramOutput method. If the program outputs a response
header block, this will be included in the string buffer.

This method should only be used within an OnExecute event handler, which occurs after the
program has terminated.

Example
CString strBuffer;

if (pHttpServer->GetProgramText(nClientId, strBuffer) > 0)
 pEditCtrl->SetWindowText(strBuffer);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetProgramExitCode, GetProgramOutput, OnExecute, RegisterProgram

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::GetStackSize Method

DWORD GetStackSize();

Return the initial size of the stack allocated for threads created by the server.

Parameters
None.

Return Value
If the method succeeds, the return value is the amount of memory that will be allocated for the
stack in bytes. If the method fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
The GetStackSize method returns the initial amount of memory that is committed to the stack for
each thread created by the server. By default, the stack size for each thread is set to 256K for 32-
bit processes and 512K for 64-bit processes.

If this method is called when the server is not active, it will return the default stack size that the
server will be configured to use when it starts. In this case, a return value of zero specifies that the
default stack size will be used.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cstools11.h.
Import Library: cshtsv11.lib

See Also
GetMemoryUsage, SetStackSize, Start

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::GetTransferInfo Method

BOOL GetTransferInfo(
 UINT nClientId,
 LPHTTPSERVERTRANSFER lpTransferInfo
);

Return information about the current file transfer.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpTransferInfo

A pointer to an HTTPSERVERTRANSFER structure that will contain information about the last
file transfer. This parameter cannot be NULL, and the dwSize member of the structure must be
initialized to specify the structure size prior to calling this method.

Return Value
If the method succeeds, the return value is non-zero. If the client ID does not specify a valid client
session, the method will return zero. This method should only be called after the client has issued
the GET or PUT commands to initiate a file transfer, otherwise the return value will be zero.

Remarks
The GetTransferInfo method is used to obtain information about the last file transfer that was
performed by the client. This method is typically called within an event handler to determine how
many bytes of data were transferred, the type of file and the full path to the file on the local
system.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ReceveRequest, SendResponse, HTTPSERVERTRANSFER

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::GetUuid Method

INT GetUuid(
 LPTSTR lpszHostUuid,
 INT nMaxLength
);

INT GetUuidString(
 CString& strHostUuid
);

Return the UUID assigned to the server as a printable string.

Parameters
lpszHostUuid

A pointer to a string buffer that will contain the server UUID, terminated with a null character. It
is recommended that this buffer be at least 40 characters in length. This parameter cannot be
NULL. An alternate version of this method accepts a CString object if it is available.

nMaxLength

An integer value that specifies the maximum number of characters can be copied into the string
buffer, including the terminating null character. This value must be greater than zero. If the
buffer size is too small, the method will fail.

Return Value
If the method succeeds, the return value is the number of characters copied into the string buffer,
not including the terminating null character. If the buffer is not large enough to store the complete
UUID string, the method will return a value of zero.

Remarks
The GetUuid method returns the Universally Unique Identifier (UUID) that has been assigned to
the server. The UUID may either be generated by the application and assigned as part of the
server configuration, or an ephemeral UUID may be automatically generated when the server is
started.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SetUuid

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::GetVirtualHostId Method

UINT GetVirtualHostId(
 LPCTSTR lpszHostName,
 UINT nHostPort
);

Return the virtual host ID associated with the specified hostname.

Parameters
lpszHostName

A string that specifies the virtual host name.

nHostPort

An optional integer value which specifies the port number for the virtual host. If this parameter
is specified it must be the same value as the original port number that the server was
configured to use.

Return Value
If the method succeeds, the return value is the host ID that uniquely identifies the virtual host. If
the server handle is invalid, or there is no virtual host with the specified name, the method will
return VIRTUAL_HOST_UNKNOWN. If the method fails, the last error code will be updated to
indicate the cause of the failure.

Remarks
The GetVirtualHostId method is used to obtain the unique virtual host ID that is associated with a
specific hostname. This method will match both the primary virtual hostname added using the
AddVirtualHost method, as well as any aliases that were added using the AddVirtualHostAlias
method. To obtain the virtual host ID associated with the active client session, use the
GetClientVirtualHostId method.

The nHostPort parameter should either be omitted or specified with the same port number that
the server was configured to use. Port-based virtual hosting is currently not supported and this
parameter is included for future use.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AddVirtualHost, AddVirtualHostAlias, DeleteVirtualHost, GetClientVirtualHostId,
GetVirtualHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::GetVirtualHostName Method

INT GetVirtualHostName(
 UINT nHostId,
 LPTSTR lpszHostName,
 INT nMaxLength
);

INT GetVirtualHostName(
 UINT nHostId,
 CString& strHostName
);

Return the hostname associated with the specified virtual host ID.

Parameters
hServer

The server handle.

nHostId

An integer value which identifies the virtual host.

lpszHostName

A pointer to a string buffer that will contain the virtual host name, terminated with a null
character. It is recommended that this buffer be at least 64 characters in length. If this
parameter is NULL, the method will return the length of the virtual hostname. An alternate
version of this method accepts a CString object if it is available.

nMaxLength

An integer value that specifies the maximum number of characters can be copied into the string
buffer, including the terminating null character. If the lpszHostName parameter is NULL this
value must be zero.

Return Value
If the method succeeds, the return value is the number of characters copied into the string buffer,
not including the terminating null character. If either the server handle or the host ID is invalid, or
the buffer is not large enough to store the complete hostname, the method will return a value of
zero.

Remarks
The GetVirtualHostName method returns the primary hostname associated with the specified
virtual host ID. This is the same hostname that was specified when the virtual host was added to
the server configuration using the AddVirtualHost method. To obtain the hostname that was
used by the active client session to connect to the server, use the GetClientVirtualHost method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also

AddVirtualHost, AddVirtualHostAlias, DeleteVirtualHost, GetClientVirtualHost, GetVirtualHostId

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::IsActive Method

BOOL IsActive();

Determine if the server has been started.

Return Value
This method returns a non-zero value if the server has been started. If the server is stopped this
method will return zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
CHttpServer, IsListening, Start, Stop

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::IsClientAuthenticated Method

BOOL IsClientAuthenticated(
 UINT nClientId
);

Determine if the specified client session has been authenticated.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

Return Value
If the client session has been authenticated, this method will return a non-zero value, otherwise it
will return zero. If the client ID is valid, this method will clear the last error code.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
AuthenticateClient, GetClientCredentials, RequireAuthentication

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::IsCommandEnabled Method

BOOL IsCommandEnabled(
 LPCTSTR lpszCommand
);

Determine if a specific server command has been enabled or disabled.

Parameters
lpszCommand

A pointer to a NULL terminated string that specifies the name of the command. The command
name is not case-sensitive, but the value must otherwise match the exact command name.
Partial matches are not recognized by this method. This parameter cannot be NULL.

Return Value
If the command is enabled, this method will return a non-zero value. If the command is disabled
or the command name does not match a supported command, this method will return zero.

Remarks
The IsCommandEnabled method is used to determine whether a specific command is enabled.
Typically this method is used in an event handler to make sure the command issued by a client is
recognized by the server and enabled for use. Commands can be enabled using the
EnableCommand method and disabled using the DisableCommand method.

This method does not account for the permissions granted to a specific client session. Clients are
assigned access rights when they are authenticated using the AuthenticateClient method, and
certain commands can be limited by the permissions granted to the client. For example, even if
the PUT command is enabled, a client must have the HTTP_ACCESS_WRITE permission to use the
command to upload a file to the server. For a list of access rights, see User Access Constants.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AuthenticateClient, DisableCommand, EnableCommand, GetCommandName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/httpsrv/class/useraccess.html

 CHttpServer::IsInitialized Method

BOOL IsInitialized();

The IsInitialized method returns whether or not the class object has been successfully initialized.

Return Value
This method returns a non-zero value if the class object has been successfully initialized. A return
value of zero indicates that the runtime license key could not be validated or the networking
library could not be loaded by the current process.

Remarks
When an instance of the class is created, the class constructor will attempt to initialize the
component with the runtime license key that was created when SocketTools was installed. If the
constructor is unable to validate the license key or load the networking libraries, this initialization
will fail.

If SocketTools was installed with an evaluation license, the application cannot be redistributed to
another system. The class object will fail to initialize if the application is executed on another
system, or if the evaluation period has expired. To redistribute your application, you must
purchase a development license which will include the runtime key that is needed to redistribute
your software to other systems. Refer to the Developer's Guide for more information.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
CHttpServer

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::IsListening Method

BOOL IsListening();

Determine if the server is listening for client connections.

Return Value
This method returns a non-zero value if the server has been started and is listening for client
connections. If the server is stopped or has been suspended this method will return zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
CHttpServer, IsActive, Start, Stop

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::PreProcessEvent Method

virtual LONG PreProcessEvent(
 HSERVER hServer,
 UINT nClientId,
 UINT nEventId,
 DWORD dwError,
 BOOL& bHandled
);

A virtual method that is invoked for each event generated by the server.

Parameters
hServer

The server handle. The application should treat this as an opaque value that is only valid as long
as the server is active. This value should not be stored by the application and the handle value
will change if the server is restarted.

nClientId

An unsigned integer which uniquely identifies the client that has issued a request to the server.
This value is guaranteed to be unique to the client session throughout the life of the server and
is never reused. The application should never make assumptions about the order in which IDs
are allocated to the client sessions.

nEventId

An unsigned integer which specifies which event occurred. For a list of events, see Server Event
Constants.

dwError

An unsigned integer which specifies any error that occurred. If no error occurred, then this
parameter will be zero.

bHandled

An integer which specifies if the event has been handled by the application. If this parameter is
set to a non-zero value, the default event handler will not be invoked for the event.

Return Value
The method should return a value of zero to indicate that the default event handler should be
invoked for the event. If the method returns a non-zero value, this value is passed back to the
event dispatcher and the default handler will not be invoked.

Remarks
The PreProcessEvent method is invoked for each event that is generated, prior to the default
handler for that event. To implement an event handler, the application should create a class
derived from the CHttpServer class, and then override this method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

file:///C|/Projects/cstools11/pdf/httpsrv/class/eventconst.html
file:///C|/Projects/cstools11/pdf/httpsrv/class/eventconst.html

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::ReceiveRequest Method

BOOL ReceiveRequest(
 UINT nClientId,
 DWORD dwOptions,
 LPHTTPREQUEST lpRequest,
 LPVOID lpvBuffer,
 LPDWORD lpdwLength
);

Receive the request that was sent by the client to the server.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

dwOptions

An unsigned integer which specifies how the client request data will be copied. It may be one of
the following values:

Constant Description

HTTP_REQUEST_DEFAULT
(0)

If the lpdwLength parameter points to a integer with a
non-zero value, the lpvBuffer parameter is considered to
be a pointer to a block of memory that has been allocated
to store the request data. This is the same as specifying
the HTTP_REQUEST_MEMORY option. If the lpdwLength
parameter points to an integer with a value of zero, the
lpvBuffer parameter is considered to be a pointer to an
HGLOBAL memory handle. This is the same as specifying
the HTTP_REQUEST_HGLOBAL option.

HTTP_REQUEST_MEMORY
(0x1)

The lpvBuffer parameter is a pointer to a block of
memory that has been allocated to store the request data.
The maximum number of bytes of data that can stored is
determined by the value of the integer that the
lpdwLength parameter points to. When the method
returns, that value will updated with with actual number of
bytes copied into the buffer.

HTTP_REQUEST_STRING
(0x2)

The lpvBuffer parameter is a pointer to a string buffer that
has been allocated to store the request data. The
maximum number of bytes of data that can stored is
determined by the value of the integer that the
lpdwLength parameter points to. When the method
returns, that value will updated with with actual number of
bytes copied into the buffer.

HTTP_REQUEST_HGLOBAL
(0x4)

The lpvBuffer parameter is a pointer to an HGLOBAL
memory handle. When the method returns, the handle
will reference a block of memory that contains the request
data submitted by the client. The lpdwLength parameter
will contain the number of bytes copied to the buffer.

HTTP_REQUEST_FILE
(0x8)

The lpvBuffer parameter is a pointer to a string which
specifies the name of a file that will contain the request
data. If the file does not exist, it will be created. If it does
exist, the contents will be replaced. This option is typically
used in conjunction with the PUT command. If the
lpdwLength parameter is not NULL, the value it points to
will be updated with the actual number of bytes stored in
the file.

HTTP_REQUEST_HANDLE
(0x10)

The lpvBuffer parameter is a handle to an open file. This
option is typically used in conjunction with the POST or
PUT commands. If the lpdwLength parameter is not NULL,
the value it points to will be updated with the actual
number of bytes written to the file. If this option is
specified, the request data will be written from the current
position in the file and will advance the file pointer by the
number of bytes received from the client.

lpRequest

A pointer to a HTTPREQUEST structure which contains information about the request from the
client. This parameter cannot be NULL. The structure that is passed to this method must have all
members set to a value of zero except the dwSize member, which must be initialized to the size
of the structure.

lpvBuffer

A pointer to the buffer that will contain any request data that was submitted by the client. The
dwOptions parameter determines if this pointer references a block of memory, a null-
terminated string buffer, a global memory handle or a file name. If this parameter is NULL, any
data submitted by the client will not be copied.

lpdwLength

A pointer to an unsigned integer that will contain the number of bytes of data submitted by the
client when the method returns. If the lpvBuffer parameter specifies a memory or string buffer,
this value must be initialized to the maximum size of the buffer before the method is called. If
the lpvBuffer parameter points to a global memory handle, this value must be initialized to
zero. If lpvBuffer is NULL or specifies a file name, this parameter may be NULL.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call the GetLastError method.

Remarks
The ReceiveRequest method is called within an OnCommand event handler to process the
command issued by the client and return information about the request to the server application.
It is only necessary for the application to call this method if it wants to implement its own custom
handling for a command. It is recommended that most applications use the default command
processing for standard commands such as GET and POST to ensure that the appropriate security
checks are performed and the response conforms to the protocol standard.

This method may only be called once per command issued by the client and the data referenced
in the HTTPREQUEST structure only remains valid while the client is connected to the server. You
should never attempt to directly modify the data referenced by any of the structure members. If
you wish to store or modify any of the string values returned in the structure, you should allocate

a buffer large enough to store the contents of the string, including the terminating null character,
and copy the string into that buffer.

If the HTTP_REQUEST_HGLOBAL option is used to return a copy of the request data in a global
memory buffer, the HGLOBAL handle must be freed by the application when the data is no longer
needed. Failure to free this handle will result in a memory leak.

If the HTTP_REQUEST_HANDLE option is used to write a copy of the request data to an open file,
the handle must reference a disk file that was opened or created using the CreateFile function
with GENERIC_WRITE access. It cannot be a handle to a device or named pipe. If the method
succeeds, the file pointer is advanced by the number of bytes of request data submitted by the
client. If the method fails, the file pointer is returned to its original position prior to the method
being called.

Example
// Initialize the HTTPREQUEST structure
HTTPREQUEST httpRequest;
ZeroMemory(&httpRequest, sizeof(httpRequest));
httpRequest.dwSize = sizeof(httpRequest);

// Return the data in a global memory buffer
HGLOBAL hgblBuffer = NULL;
DWORD dwLength = 0;

bSuccess = pServer->ReceiveRequest(nClientId,
 HTTP_REQUEST_HGLOBAL,
 &httpRequest,
 &hgblBuffer,
 &dwLength);

if (bSuccess && hgblBuffer != NULL)
{
 LPBYTE lpBuffer = (LPBYTE)GlobalLock(hgblBuffer);

 if (lpBuffer != NULL)
 {
 // Process dwLength bytes of data submitted by the client
 }

 GlobalUnlock(hgblBuffer);
 GlobalFree(hgblBuffer);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SendResponse, HTTPREQUEST

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::RedirectRequest Method

BOOL RedirectRequest(
 UINT nClientId,
 UINT nMethod,
 LPCTSTR lpszLocation
);

Redirect the request from the client to another URL.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

nMethod

An integer value that specifies if the redirection is permanent or temporary. The following values
may be used:

Constant Description

HTTP_REDIRECT_PERMANENT
(1)

This value is used for permanent redirection, indicating
that the client should update any record of the link
with the new URL specified by the lpszLocation
parameter. This result is cacheable and when the client
makes subsequent requests for the resource, it should
always use the new URL.

HTTP_REDIRECT_TEMPORARY
(2)

This value is used for temporary redirection, indicating
that the client should issue a request for the resource
using the new URL specified by the lpszLocation
parameter, but subsequent requests should continue
to use the original URL.

HTTP_REDIRECT_OTHER
(3)

This value is used for temporary redirection, however it
instructs the client that it should use the GET
command to request the redirected resource. This
option is typically used to redirect a client after it has
used the POST command.

lpszLocation

A pointer to a string that specifies the new location for the requested resource. This value must
be a complete URL, including the http:// or https:// scheme. This parameter cannot be NULL or
point to zero-length string.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call the GetLastError method.

Remarks
The RedirectRequest method can be used within a HTTP_CLIENT_COMMAND event handler to
redirect the client to a new location for the resource that it has requested. This redirection can be
permanent or temporary, depending on whether the server expects the client to continue to use
the original URL when requesting the resource.

If the HTTP_REDIRECT_TEMPORARY method is used, the actual status code that is returned to the
client depends on the version of the protocol that is being used. If the client has issued the request
using HTTP 1.0 then the server will return a 302 code to the client. If the client is using HTTP 1.1,
the server will return a 307 code to the client that indicates it should use the same command verb
(GET, POST, etc.) when requesting the resource at the new location.

If the HTTP_REDIRECT_OTHER method is used, the status code that is returned to the client
depends on which version of the protocol is being used. For clients who are using HTTP 1.0, the
server will return a 302 code to the client just as with the HTTP_REDIRECT_TEMPORARY method. If
the client is using HTTP 1.1, the server will return a 303 code to the client that indicates it should
always use the GET command to request the new resource, regardless if a different command was
originally used (POST, PUT, etc.)

This method provides a simplified interface for sending a redirection status code that also implicitly
sets the Location response header to the value of the lpszLocation parameter. If the server
application needs to send alternate redirection codes such as 305 (Use Proxy) then it should use
the SendReponse method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
RequireAuthentication, SendErrorResponse, SendResponse

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::RegisterHandler Method

BOOL RegisterHandler(
 UINT nHostId,
 LPCTSTR lpszExtension,
 LPCTSTR lpszProgramFile,
 LPCTSTR lpszParameters,
 LPCTSTR lpszDirectory
);

Register a CGI program for use and associate it with a file name extension.

Parameters
nHostId

An unsigned integer that identifies the virtual host associated with the program. The value
VIRTUAL_HOST_DEFAULT should be used for the default host that is created when the server is
first started.

lpszExtension

A pointer to a string which specifies the file name extension that is associated with the CGI
program. This parameter cannot be NULL.

lpszProgramFile

A pointer to a string that specifies the full path to the executable program. This parameter
cannot be NULL.

lpszParameters

A pointer to a string that specifies additional parameters for the program. This value will be
passed to the program as command line arguments. If the program does not require any
command line parameters, this value may be NULL or point to an empty string.

lpszDirectory

A pointer to a string that specifies the current working directory for the program. If this
parameter is NULL or points to an empty string, the server will use the root document directory
for the virtual host.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call the GetLastError method.

Remarks
The RegisterHandler method registers an executable CGI program and associates it with a file
name extension. When the client issues a GET or POST command that specifies a file with that
extension, the program will be executed and the output return to the client.

The lpszProgramFile string specifies file name of the CGI program. You should not install any
executable programs in the server root directory or its subdirectories. A client should never have
the ability to directly access the executable file itself. It is permitted to have multiple file name
extensions that reference the same program. The only requirement is that the extension be unique
for the given host. The program name may contain environment variables surrounded by %
symbols. For example, %ProgramFiles% would be expanded to the C:\Program Files folder.

It is important to note that the program specified by lpszProgramFile must be an executable file,
not a script or batch file. If the program name does not contain a directory path, then the

standard Windows pathing rules will be used when searching for an executable file that matches
the given name. It is recommended that you always provide a full path to the executable file.

The lpszParameters string can specify additional command line parameters that should be passed
to the CGI program as arguments. This string can also contain a placeholder named "%1" that will
be replaced by the full path to the local script filename. If no placeholder is included in the
parameters, or lpszParameters is a NULL pointer, the script file name will be passed to the
program as its only argument.

The executable program that is registered using this program must be a console application that
conforms to the CGI/1.1 specification defined in RFC 3875. Request data submitted by the client as
part of a POST will be provided to the program as standard input. The output from the program
must be written to standard output. The first lines of output from the program should be any
response headers, followed by an empty line. Each line should be terminated with a carriage-
return and linefeed (CRLF) sequence. If the CGI program outputs additional data to be processed
by the client, it should provide Content-Type and Content-Length response headers.

The application can obtain a copy of the output from the command by calling the
GetProgramOutput method from within an OnExecute event handler.

When developing a CGI program, it is important to take into consideration the environment that it
will be executing in. The program will be started as a child process of the server application, and
will inherit the same privileges. This means that it will typically have access to the boot drive, the
Windows folders and the system registry. CGI programs must ensure that all query parameters
and request data submitted by the client have been validated.

If the server is running on a system with User Account Control (UAC) enabled and does not have
elevated privileges, do not register a program that requires elevated privileges or has a manifest
that specifies the requestedExecutionLevel as requiring administrative privileges.

Example
// Register a handler for VBScript
pServer->RegisterHandler(hServer,
 VIRTUAL_HOST_DEFAULT,
 _T("vbs"),
 _T("%SystemRoot%\\System32\\cscript.exe"),
 _T("/nologo /b \"%1\""),
 NULL);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetProgramExitCode, GetProgramOutput, RegisterProgram

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::RegisterProgram Method

BOOL RegisterProgram(
 LPCTSTR lpszVirtualPath,
 LPCTSTR lpszProgramFile,
);

BOOL RegisterProgram(
 LPCTSTR lpszVirtualPath,
 LPCTSTR lpszProgramFile,
 LPCTSTR lpszParameters,
 LPCTSTR lpszDirectory
);

Register a CGI program for use and associate it with a virtual path on the server.

Parameters
nHostId

An unsigned integer that identifies the virtual host associated with the program. The value
VIRTUAL_HOST_DEFAULT should be used for the default host that is created when the server is
first started.

lpszVirtualPath

A pointer to a string which specifies the virtual path to the CGI program. This must be an
absolute path, but does not have to specify a pre-existing virtual path or map to the directory
structure of the root document directory for the server. This parameter cannot be NULL. The
maximum length of the virtual path is 1024 characters.

lpszProgramFile

A pointer to a string that specifies the full path to the executable program. This parameter
cannot be NULL.

lpszParameters

A pointer to a string that specifies additional parameters for the program. This value will be
passed to the program as command line arguments. If the program does not require any
command line parameters, this value may be NULL or point to an empty string.

lpszDirectory

A pointer to a string that specifies the current working directory for the program. If this
parameter is NULL or points to an empty string, the server will use the root document directory
for the virtual host.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value will be
zero and the GetLastError method can be used to retrieve the last error code.

Remarks
The RegisterProgram function registers an executable CGI program and associates it with a
virtual path. When the client issues a GET or POST command specifying the virtual path associated
with the program, the program will be executed and the output return to the client.

The lpszProgramFile string specifies file name of the CGI program. You should not install any
executable programs in the server root directory or its subdirectories. A client should never have
the ability to directly access the executable file itself. It is permitted to have multiple virtual paths

 that reference the same executable file. The only requirement is that the virtual path be unique for
the given host. The program name may contain environment variables surrounded by % symbols.
For example, %ProgramFiles% would be expanded to the C:\Program Files folder.

It is important to note that the program specified by lpszProgramFile must be an executable file,
not a script or batch file. If the program name does not contain a directory path, then the
standard Windows pathing rules will be used when searching for an executable file that matches
the given name. It is recommended that you always provide a full path to the executable file.

The lpszParameters string can specify additional command line parameters that should be passed
to the CGI program as arguments. This string can also contain a placeholder named "%1" that will
be replaced by the virtual path associated with the program. If lpszParameters is NULL or a zero-
length string, then no additional parameters are passed to the program.

The executable program that is registered using this program must be a console application that
conforms to the CGI/1.1 specification defined in RFC 3875. Request data submitted by the client as
part of a POST will be provided to the program as standard input. The output from the program
must be written to standard output. The first lines of output from the program should be any
response headers, followed by an empty line. Each line should be terminated with a carriage-
return and linefeed (CRLF) sequence. If the CGI program outputs additional data to be processed
by the client, it should provide Content-Type and Content-Length response headers.

The application can obtain a copy of the output from the command by calling the
GetProgramOutput function from within an OnExecute event handler.

When developing a CGI program, it is important to take into consideration the environment that it
will be executing in. The program will be started as a child process of the server application, and
will inherit the same privileges. This means that it will typically have access to the boot drive, the
Windows folders and the system registry. CGI programs must ensure that all query parameters
and request data submitted by the client have been validated.

If the server is running on a system with User Account Control (UAC) enabled and does not have
elevated privileges, do not register a program that requires elevated privileges or has a manifest
that specifies the requestedExecutionLevel as requiring administrative privileges.

Example
m_pServer->RegisterProgram(hServer,
 VIRTUAL_HOST_DEFAULT,
 HTTP_METHOD_DEFAULT,
 _T("/order/invoice"),
 _T("%ProgramData%\\MyServer\\Programs\\invoice.exe"),
 NULL,
 NULL);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetProgramExitCode, GetProgramOutput, RegisterHandler

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::RenameServerLogFile Method

BOOL RenameServerLogFile(
 LPCTSTR lpszFileName
);

Rename or delete the current log file being updated by the server.

Parameters
lpszFileName

A pointer to a string that specifies the file name the current log file should be renamed to. If this
parameter is NULL or an empty string, the current log file will be deleted.

Return Value
If the method succeeds, the return value is non-zero. If logging is not currently enabled for the
server, this method will return zero.

Remarks
The RenameServerLogFile method is used to rename or delete the current log file. Note that this
does not change the current log file name or disable logging by the server. It only changes the file
name of the current log file, or removes the log file if the lpszFileName parameter is NULL. This
can be useful if you want your server to perform log file rotation, archiving the current log file. By
renaming the current log file, the server will automatically create a new log file with original file
name.

This method must be used to rename or delete the current log file while logging is active because
the server holds an open handle on the file. The application should not use the GetLogFile
method to obtain the log file name and then use the MoveFileEx or DeleteFile Windows API
functions with that file.

To disable logging, use the SetLogFile method and specify the logging format as
HTTP_LOGFILE_NONE.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetLogFile, SetLogFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::RequireAuthentication Method

BOOL RequireAuthentication(
 UINT nClientId,
 UINT nAuthType,
 LPCTSTR lpszRealm
);

Send a response to the client indicating that authentication is required.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

nAuthType

An integer value that corresponds to a result code, informing the client if the redirection is
permanent or temporary. The following values may be used:

Constant Description

HTTP_AUTH_BASIC
(1)

This option specifies the Basic authentication scheme should be
used. This option is supported by all clients that support at least
version 1.0 of the protocol.

lpszRealm

A pointer to a string that is displayed by a web browser to indicate to the user which username
and password they should use. If this parameter is NULL or an empty string, the domain name
the client used to establish the connection will be used.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call the GetLastError method.

Remarks
The RequireAuthentication method can be used within an OnCommand event handler to
indicate to the client that it must provide a username and password to access the requested
resource. The client should respond by issuing another request that includes the required
credentials. To determine if a client has included credentials with its request, use the
IsClientAuthenticated method. The GetClientCredentials method will return the username and
password that was provided by the client.

Some clients may require that the session be secure if authentication is requested or display
warning messages to the user if the connection is not secure. It is recommended that you enable
security using the HTTP_OPTION_SECURE option if your application will require clients to
authenticate before accessing specific resources.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetClientCredentials, IsClientAuthenticated, SendResponse

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::Restart Method

BOOL Restart();

Restart the server, terminating all active client sessions.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The Restart method will restart the specified server, terminating all active client sessions. If the
method is unable to restart the server for any reason, the server thread is terminated. The server
retains all of the configuration parameters from the previous instance, however the statistical
information (such as the number of clients, files transferred, etc.) will be reset.

If an application calls this method from within an event handler, the active client session (the client
for which the event handler was invoked) may not get a disconnect notification. It is
recommended that this method only be called by the same thread that created the server using
the Start method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
Start, Stop

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::Resume Method

BOOL Resume();

Resume accepting client connections.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The Resume method instructs the server to resume accepting new client connections after the
Suspend method has been called.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
Restart, Start, Stop, Suspend, Throttle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::SendErrorResponse Method

BOOL SendErrorResponse(
 UINT nClientId,
 UINT nErrorCode,
 LPCTSTR lpszMessage
);

Send a customized error response to the specified client.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

nErrorCode

An integer value that specifies the error code that should be sent to the client. This value should
correspond to the error result codes defined for HTTP in RFC 2616, which are three-digit values
in the range of 400 through 599. The method will fail if an invalid error code is specified.

lpszMessage

A pointer to a string that describes the error. If this parameter is NULL or specifies a zero-length
string, a default message will be selected based on the error code.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call the GetLastError method.

Remarks
The SendErrorResponse method sends a response to the client indicating that an error has
occurred, providing a numeric error code and HTML formatted text which may be displayed to the
user. The lpszMessage parameter should provide a brief description of the error that will be
included in the output sent to the client. Note that the message should not contain any special
formatting control characters or HTML markup.

This method provides a simplified interface for sending an error response to the client. In some
cases, a browser may choose to display its own error message to the user in place of the generic
HTML document generated by this method. If you want your application to send a customized
HTML document for a specific type of error, you should use the SendResponse method.

If you wish to redirect the client to use an alternate URL to access the requested resource, it is
recommended that you use the RedirectRequest method rather than sending an error response.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
RedirectRequest, SendResponse

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::SendResponse Method

BOOL SendResponse(
 UINT nClientId,
 DWORD dwOptions,
 LPHTTPRESPONSE lpResponse,
 LPVOID lpvBuffer,
 DWORD dwLength
);

Send a response from the server to the specified client.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

dwOptions

An unsigned integer which specifies how the client request data will be copied. It may be one of
the following values:

Constant Description

HTTP_RESPONSE_DEFAULT
(0)

The lpvBuffer parameter is a pointer to a block of
memory that contains the response data. The number
of bytes of data that in the buffer is specified by the
dwLength parameter. This is the same as specifying the
HTTP_RESPONSE_MEMORY option.

HTTP_RESPONSE_MEMORY
(0x1)

The lpvBuffer parameter is a pointer to a block of
memory that contains the response data. The number
of bytes of data that in the buffer is specified by the
dwLength parameter. The data will be sent to the client
as a stream of bytes. If the server application was
compiled using Unicode, it is responsibility of the
application to convert any Unicode text to either ANSI
or UTF-8, depending on the resource that was
requested by the client.

HTTP_RESPONSE_STRING
(0x2)

The lpvBuffer parameter is a pointer to a string buffer
that contains the response data. The maximum number
of bytes of data that will be sent to the client is
determined by the dwLength parameter. If the value of
the dwLength parameter exceeds the string length, the
value will be ignored and the contents of the string will
be sent up to the terminating null character. If the
Unicode version of this method is called, the string will
be converted to a byte array before being sent to the
client.

HTTP_RESPONSE_HGLOBAL
(0x4)

The lpvBuffer parameter is an HGLOBAL memory
handle which references a block of memory that
contains the response data. The number of bytes of
data that in the buffer is specified by the dwLength

parameter. The data will be sent to the client as a
stream of bytes. It is the responsibility of the application
to free the global memory handle after it is no longer
needed.

HTTP_RESPONSE_FILE
(0x8)

The lpvBuffer parameter is a pointer to a string which
specifies the name of a file that contains the response
data. If the file does not exist, or does not specify a
regular file, this method will fail. The dwLength
parameter is ignored. If the content type for the
specified file is not explicitly defined in the response, the
method will attempt to automatically determine the
correct type based on the file name extension and/or
the contents of the file.

HTTP_RESPONSE_HANDLE
(0x10)

The lpvBuffer parameter is a handle to an open file and
the dwLength parameter specifies the number of bytes
to be read from the file and send to the client. If this
option is specified, the response data will be read from
the current position in the file and will advance the file
pointer by the number of bytes sent to the client.

HTTP_RESPONSE_DYNAMIC
(0x0010)

The response data will be generated dynamically. This
prevents the content length from being included in the
response header, and forces the connection to close,
regardless if the keep-alive option has been specified.
This option must be specified if the application wishes
to use the SendResponseData method to send
additional data to the client.

HTTP_RESPONSE_NOCACHE
(0x0020)

Informs the client that the data being returned by the
server should not be cached. Typically this is used in
conjunction with the HTTP_RESPONSE_DYNAMIC
option when the data is being generated dynamically.

lpResponse

A pointer to a HTTPRESPONSE structure which contains additional information about the
response to the client. The structure that is passed by reference to this method must have the
dwSize member initialized to the size of the structure or the method will fail. This parameter
may be NULL, in which case a default response of "200 OK" is sent to the client along with any
data specified by the lpvBuffer parameter.

lpvBuffer

A pointer to the buffer that will contain any response data that should be sent to the client. The
dwOptions parameter determines if this pointer references a block of memory, a null-
terminated string buffer, a global memory handle or a file name. This parameter may be NULL,
in which case no data will be sent to the client. If this method is called in response to a HEAD
command being sent by the client, this parameter is ignored.

dwLength

An unsigned integer that specifies the number of bytes of data to be sent to the client. If the
lpvBuffer parameter is NULL, this value must be zero. If this method is called in response to a
HEAD command being sent by the client, this parameter is ignored.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call the GetLastError method.

Remarks
The SendResponse method is called within an OnCommand event handler to respond to the
request made by the client. This method may only be called once after a command has been
received, and must be called after the ReceiveRequest method. It is only necessary for the
application to call this method if it wants to implement its own custom handling for a command. It
is recommended that most applications use the default command processing for standard
commands such as GET and POST to ensure that the appropriate security checks are performed
and the response conforms to the protocol standard.

If the HTTP_RESPONSE_HANDLE option is used to read a copy of the response data from an open
file, the handle must reference a disk file that was opened using the CreateFile function with
GENERIC_READ access. It cannot be a handle to a device or named pipe. If the dwLength
parameter is larger than the total number of bytes available to be read from the current position
in the file, the method will stop sending data to the client when it reaches the end-of-file. If the
method succeeds, the file pointer is advanced by the number of bytes of response data sent to
the the client. If the method fails, the file pointer is returned to its original position prior to the
method being called.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
RecieveRequest, SendResponseData, OnCommand, HTTPRESPONSE

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::SendResponseData Method

INT SendResponseData(
 UINT nClientId,
 LPBYTE lpBuffer,
 INT nLength
);

Send additional data to the client in response to a command.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpBuffer

A pointer to a buffer that contains the response data that should be sent to the client. This
parameter cannot be NULL.

nLength

An integer that specifies the number of bytes of data in the buffer. This value must be greater
than zero.

Return Value
If the method succeeds, the return value is the number of bytes of data sent to the client. If the
method fails, the return value is HTTP_ERROR. To get extended error information, call the
GetLastError method.

Remarks
The SendResponseData method is called within a OnCommand event handler to send data to
the client in response to a request. This method can only be used to send dynamically generated
content after the SendResponse method has been called. The HTTP_RESPONSE_DYNAMIC
option must have been specified when responding to the client or this method will fail.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
RecieveRequest, SendResponse, OnCommand, HTTPRESPONSE

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::SetCertificate Method

BOOL SetCertificate(
 DWORD dwProtocol,
 LPCTSTR lpszCertStore,
 LPCTSTR lpszCertName,
 LPCTSTR lpszPassword
);

BOOL SetCertificate(
 LPCTSTR lpszCertName,
 LPCTSTR lpszPassword
);

Set the name of the certificate to be used with secure connections.

Parameters
dwProtocol

An unsigned integer that specifies the security protocols to be used when establishing a secure
connection with the client. This parameter may be one or more of the following values:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default selection of security protocols will be
used when establishing a connection. The TLS 1.2,
TLS 1.1 and TLS 1.0 protocols will be negotiated
with the server, in that order of preference. This
option will always request the latest version of the
preferred security protocols and is the
recommended value.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Note
that SSL 2.0 has been deprecated and will never be
used unless the server does not support version 3.0.

SECURITY_PROTOCOL_TLS The TLS 1.0, 1.1 or 1.2 protocol should be used
when establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, SSL will be
excluded from the list of supported protocols. This
may be necessary for some servers that reject any
attempt to use the older SSL protocol and require
that only TLS be used.

lpszCertStore

A pointer to a string which specifies the name of certificate store. This may be the name of the
certificate store in registry, or it may specify the name of a file that contains the certificate and

its private key.

lpszCertName

A pointer to a string which specifies the common name for the certificate that will be used.
Typically this will be the fully qualified domain name for the server.

lpszPassword

An optional pointer to a string which specifies the certificate owner's password. A value of NULL
specifies that no password is required. This parameter is only required if the lpszCertStore
parameter specifies a certificate file in PKCS #12 format that is password protected.

Return Value
If the method succeeds, the return value is non-zero. If the client ID does not specify a valid client
session, the method will return zero.

Remarks
The SetCertificate method will create the security credentials required for the server to accept
secure connections and enable security options for the server. This method will not validate the
certificate information provided by the application. If the certificate does not exist, or does not
have a private key associated with it, the client will be unable to establish a secure connection.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetOptions, SetOptions

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::SetClientAccess Method

BOOL SetClientAccess(
 UINT nClientId,
 DWORD dwUserAccess
);

Change the access rights associated with the specified client session.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

dwUserAccess

An unsigned integer which specifies one or more user access rights. For a list of user access
rights that can be granted to the client, see User and File Access Constants.

Return Value
If the method succeeds, the return value is non-zero. If the client ID does not specify a valid client
session, the method will return zero. This method can only be used with authenticated clients. If
the client session has not been authenticated, the return value will be zero.

Remarks
The SetClientAccess method can change multiple access rights for the client session. The
EnableClientAccess method can be used to grant or revoke a specific permission for the client
session.

If the dwUserAccess parameter has a value of HTTP_ACCESS_DEFAULT, then default permissions
will be granted to the client session based on the configuration of the server. This is the
recommended value for most clients. It is important to consider the implications of changing the
access permissions granted to a client session. For example, if you do not grant clients
HTTP_ACCESS_READ permission, it can effectively disable the site because the server will return
403 Forbidden errors for all GET and HEAD requests.

This function should typically be called in the OnConnect event handler to assign general
permissions to the client, or in the OnCommand event handler after the client has issued a
request and provided any authentication credentials that are required.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
AuthenticateClient, EnableClientAccess, GetClientAccess

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/httpsrv/class/useraccess.html

 CHttpServer::SetClientHeader Method

BOOL HttpSetClientHeader(
 UINT nClientId,
 UINT nHeaderType,
 LPCTSTR lpszHeaderName,
 LPCTSTR lpszHeaderValue
);

Create or change the value of a request or response header for the client session.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

nHeaderType

Specifies the type of header to create or modify. It may be one of the following values:

Constant Description

HTTP_HEADERS_REQUEST Change a request header that was provided by the
client. Request header values provide additional
information to the server about the type of request being
made.

HTTP_HEADERS_RESPONSE Change a response header that was created by the
server. Response header values provide additional
information to the client about the type of information
that is being returned by the server.

lpszHeaderName

A pointer to a string that specifies the name of the header that should be created or modified.
Header names are not case-sensitive and should not include the colon which acts as a delimiter
that separates the header name from its value. This parameter cannot be a NULL pointer or an
empty string.

lpszHeaderValue

A pointer to a string that specifies the new value of the header. If this parameter is a NULL
pointer or an empty string, it has the same effect as deleting the header value from the list of
request or response headers.

Return Value
If the method succeeds, the return value is non-zero. If the client ID does not specify a valid client
session, the method will return zero. If the method fails, the GetLastError method will return more
information about the last error that has occurred.

Remarks
The SetClientHeader method will change the value of a request or response header for the
specified client session. If the lpszHeaderName value matches an existing header field, its value
will be replaced. If the header name is not defined, then a new header will be created with the
given value. You should not change the value of most standard response header values unless
you are certain of the impact that it would have on the normal operation of the client.

If you wish to define a custom header value that would be included in the response to a client

request, you should prefix the header name with "X-" to avoid potential conflicts with the standard
response headers. For example, if you wanted to identify a customer, you could create a header
field with the name "X-Customer-ID" and set the value to the customer ID number. The client
application would receive this custom header value as part of the response to its request for a
document.

Refer to Hypertext Transfer Protocol Headers for a list of common request and response headers
that are used.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DeleteClientHeader, GetClientHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/httpsrv/class/headers.html
file:///C|/Projects/cstools11/pdf/httpsrv/class/headers.html

 CHttpServer::SetClientIdleTime Method

UINT SetClientIdleTime(
 UINT nClientId,
 UINT nTimeout
);

Change the idle timeout period for the specified client session.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

nTimeout

An unsigned integer value that specifies the number of seconds that the client may remain idle.
If this value is zero, the default idle timeout period for the server will be used.

Return Value
If the method succeeds, the return value is the previous client idle timeout period in seconds. If the
client ID does not specify a valid client session, the method will return zero.

Remarks
The SetClientIdleTime method is will change the number of seconds that the client may remain
idle before being automatically disconnected by the server. The minimum timeout period for a
client is 10 seconds, the maximum is 300 seconds (5 minutes). The idle time of a client session is
based on the last time a command was issued to the server or when a data transfer completed.

If the value INFINITE is specified as the timeout period, the client activity timer will be refreshed,
extending the idle timeout period for the session. This is typically done inside an OnTimeout
event handler to prevent the client from being disconnected due to inactivity.

To obtain the current idle timeout period for a client, along with the amount of time the client has
been idle, use the GetClientIdleTime method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
GetClientIdleTime

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::SetClientVariable Method

BOOL HttpSetClientVariable(
 UINT nClientId,
 LPCTSTR lpszName,
 LPCTSTR lpszValue
);

Create or change the value of a CGI environment variable for the specified client.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpszName

A pointer to a string that specifies the name of the environment variable that should be created
or modified. Environment variables are not case-sensitive and should not include the equal sign
which acts as a delimiter that separates the variable name from its value. This parameter cannot
be a NULL pointer or an empty string.

lpszValue

A pointer to a string that specifies the new value of the environment variable. If this parameter is
a NULL pointer or an empty string, it has the same effect as deleting the variable from the
environment block for the client session.

Return Value
If the method succeeds, the return value is non-zero. If the client ID does not specify a valid client
session, the method will return zero. If the method fails, the GetLastError method will return more
information about the last error that has occurred.

Remarks
The SetClientVariable method will change the value of a environment variable for the specified
client session. If the lpszName value matches an existing variable, its value will be replaced. If the
variable is not defined, then a new variable will be created with the given value. The value of an
environment variable can be obtained using the GetClientVariable method.

The server will automatically create a number of different environment variables that will be
passed to a program or script executed by the server. These variables are defined in RFC 3875 as
part of the Common Gateway Interface (CGI) 1.1 specification. The following variables are defined
by the server and should not be modified directly by the application:

Variable Name Description

AUTH_TYPE The authorization scheme used by the server to authenticate the client
session

CONTENT_LENGTH The length of the request data provided by the client

CONTENT_TYPE The MIME type that identifies the type of content provided by the
client

DOCUMENT_ROOT The full path to the local document root directory on the server

GATEWAY_INTERFACE The version of the Common Gateway Interface that is being used by
the server

 PATH_INFO The resource or sub-resource that is to be returned by the program or
script

PATH_TRANSLATED The path information mapped to the server root document directory
structure

QUERY_STRING The URL encoded query parameters passed to the program or script

REMOTE_ADDR The network address of the client sending the request to the server

REMOTE_HOST The same value as the REMOTE_ADDR variable

REMOTE_USER The username specified as part of the authentication credentials
provided by the client

REQUEST_METHOD The method used by the client to request the resource

REQUEST_URI The URI for the script provided by the client

SCRIPT_FILENAME The full path to the program or script on the server

SCRIPT_NAME The path to the program or script specified by the client

SERVER_NAME The hostname or IP address of the server that the client connected to

SERVER_PORT The port number that the client used to connect to the server

SERVER_PORT_SECURE This variable has a value of "1" if the client connection to the server is
secure

SERVER_PROTOCOL The version of the server protocol used

SERVER_SOFTWARE The server identity string which specifies the application name and
version

In addition to the environment variables listed, the server will also create variables that are prefixed
with "HTTP_" that are set to the value of request headers that are not otherwise defined. For
example, the HTTP_USER_AGENT variable will be set to the value of the User-Agent header
provided by the client as part of the request.

Calling the SetClientVariable method within an OnExecute event handler will have no effect
because it occurs after the CGI program or script has completed execution. To create or modify
environment variables for the client session, it should be done within an OnCommand event
handler.

This method will not change the environment block for the server process. Each client session is
allocated its own private environment block which is inherited by the CGI program. When the
client session terminates, the memory allocated for its environment is released.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetClientVariable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::SetCommandFile Method

BOOL SetCommandFile(
 UINT nClientId,
 LPCTSTR lpszFileName
);

Change the name of a file or directory that is the target of the current command.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpszFileName

A pointer to a string that specifies the new file name. This parameter may be NULL to specify
that the original file or directory name should be used.

Return Value
If the method succeeds, the return value is non-zero. If the client ID does not specify a valid client
session, the method will return zero.

Remarks
The SetCommandFile method is used by the application to change the target file or directory
name for the current command from within an OnCommand event handler. This can be used to
effectively redirect the client to use a different file than the one that was actually requested. For
example, if the client issues the GET command to download a file from the server, this method can
be used to redirect the command to use a different file name. To obtain the full path to the file or
directory that is the target of the current command, use the GetCommandFile method.

The lpszFileName parameter specifies the path to the new file or directory name. If the path is
absolute, then it will be used as-is. If the path is relative, it will be relative to the root directory for
the client session. Because the root document directory for the client can depend on the
hostname that the client used when connecting to the server, it is recommended that you always
use an absolute path. The full path to this file is not limited to the server root directory or its
subdirectory, it can specify a file anywhere on the local system. If this parameter is a NULL pointer,
or points to an empty string, then the server will revert to using the actual file or directory name
specified by the command. This enables the application to effectively undo a previous call to this
method to change the target file name.

Typically this method would be used to redirect a client to a file or directory that it may not
normally have access to. Exercise caution when using this method to provide access to data that is
stored outside of the server root directory. Incorrect use of this method could expose the server to
security risks or cause unpredictable behavior by client applications. In most cases it is preferable
to use the AddVirtualPath method to create a virtual path or file name on the server, or the
RedirectRequest method to request the client use a different URL to access the resource.

This method should only be called within the context of the OnCommand event, and only for
those commands that perform an action on a file or directory. If the current command does not
target a file or directory, this method will return zero and the last error code will be set to
ST_ERROR_INVALID_COMMAND.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)

Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AddVirtualPath, GetCommandFile, ReceiveRequest, RedirectRequest, SendResponse

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::SetDirectory Method

BOOL SetDirectory(
 LPCTSTR lpszDirectory
);

Specify the local directory that will be used as the server root directory.

Parameters
lpszDirectory

A pointer to a string that specifies the root directory for the server. If this parameter is NULL or a
zero-length string, the server will use the current working directory as the root directory.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it will return zero.

Remarks
The SetDirectory method specifies the path to the local directory that should be used as the root
document directory for the server.

You cannot change the server root directory after the server has started. To change the root
directory, you must stop the server using the Stop method and then start another instance of the
server with a configuration that specifies the new directory.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetDirectory

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::SetIdentity Method

BOOL SetIdentity(
 LPCTSTR lpszIdentity
);

Change the identity of the specified server.

Parameters
lpszIdentity

A pointer to a string that identifies the server. If this parameter is NULL or specifies an empty
string, the current identity for the server is reset to a default value. The maximum length of the
identity string is 64 characters, including the terminating null character.

Return Value
If the method succeeds, the return value is non-zero, otherwise it will return a value of zero.

Remarks
The SetClientIdentity method changes a string value used by the server to identify itself to
clients. The identity string does not have any standard format and is used for informational
purposes only. Typically it consists of the application name and a version number. Changing the
server identity has no effect on the operation of the server. To obtain the identity string currently
associated with the server, use the GetIdentity method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetIdentity

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::SetLastError Method

VOID SetLastError(
 DWORD dwError
);

Set the last error code for the specified server session.

Parameters
dwError

An unsigned integer that specifies an error code.

Return Value
None.

Remarks
Error codes are unsigned 32-bit values which are private to each server session. Most methods will
set the last error code value when they fail; a few methods set it when they succeed. Function
failure is typically indicated by a return value such as FALSE, NULL, INVALID_SERVER or
HTTP_ERROR.

If the dwError parameter is specified with a value of zero, this effectively clears the error code for
the last method that failed. Those methods which clear the last error code when they succeed are
noted on their reference page.

Applications can retrieve the value saved by this method by calling the GetLastError method to
determine the specific reason for failure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
GetCommandResult, GetLastError, SendResponse

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::SetLogFile Method

BOOL SetLogFile(
 UINT nLogFormat,
 UINT nLogLevel,
 LPCTSTR lpszFileName
);

Change the current log format, level of detail and file name.

Parameters
nLogFormat

An integer value that specifies the format used when creating or updating the server log file.
The following formats are supported:

Constant Description

HTTP_LOGFILE_NONE
(0)

This value specifies that the server should not create or
update a log file.

HTTP_LOGFILE_COMMON
(1)

This value specifies that the log file should use the
common log format that records a subset of information
in a fixed format. This log format usually only provides
information about GET, PUT and POST requests.

HTTP_LOGFILE_COMBINED
(2)

This value specifies that the server should use the
combined log file format. This format is similar to the
common format, however it includes the client referrer
and user agent. This is the format that most Apache web
servers use by default.

HTTP_LOGFILE_EXTENDED
(3)

This value specifies that the log file should use the
standard W3C extended log file format. This is an
extensible format that can provide additional information
about the client session. This format typically generates
the largest logfiles.

nLogLevel

An integer value that specifies the level of detail that should generated in the log file. The
minimum value is 1 and the maximum value is 10. If this parameter is zero, it is the same as
specifying a log file format of HTTP_LOGFILE_NONE and will disable logging by the server.

lpszFileName

A pointer to a string that specifies the name of the log file that should be created or appended
to. If the server was configured with logging enabled and this parameter is NULL or an empty
string, the current log file name will not be changed. If the log file does not exist, it will be
created. If it does exist, the contents of the log file will be appended to.

Return Value
If the method succeeds, the return value is non-zero. If one of the parameters are invalid, the
method will return zero.

Remarks
The SetLogFile method can be used to change the current log file name, the format of the log file

or the level of detail recorded in the log file. In some situations it may be desirable to delete the
current log file contents when changing the format or ensure that a new log file is created. To do
this, combine the nLogFormat parameter with the constant HTTP_LOGFILE_DELETE.

The higher the value of the nLogLevel parameter, the greater the level of detail that is recorded by
the server. A log level of 1 instructs the server to only record GET, POST and PUT requests, while a
level of 10 instructs the server to record all commands processed by the server. Because a higher
level of logging detail can negatively impact the performance of the server, it is recommended
that you do not exceed a level of 5 for most applications. A log level of 10 should only be used for
debugging purposes.

Example
UINT nLogFormat = HTTP_LOGFILE_NONE;
UINT nLogLevel = 0;
UINT nNewLevel = 5;
BOOL bChanged = FALSE;

// Change the level of detail for the current log file if logging
// has been enabled and the current level is a lower value

if (pHttpServer->GetLogFile(&nLogFormat, &nLogLevel, NULL, 0))
{
 if (nLogFormat != HTTP_LOGFILE_NONE && nLogLevel < nNewLevel)
 bChanged = pHttpServer->SetLogFile(nLogFormat, nNewLevel, NULL);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetLogFile, RenameServerLogFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::SetName Method

BOOL SetName(
 UINT nClientId,
 LPCTSTR lpszHostName
);

Change the host name assigned to the specified server or client session.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session. This value may be zero.

lpszHostName

A pointer to a string that specifies the new host name assigned to the server or client session. If
this value is NULL or points to an empty string, the current host name will be changed to use
the default host name.

Return Value
If the method succeeds, the return value is non-zero. If the client ID is invalid, or the buffer is not
large enough to store the complete hostname, the method will return a value of zero.

Remarks
This method will change the host name assigned to the specified client session. If the nClientId
parameter has a value of zero, the method will change default host name that was assigned to the
server as part of the server configuration. If the nClientId parameter specifies a valid client session
and the lpszHostName parameter is NULL, the host name associated with the client session will be
changed to the current host name assigned to the server.

When a client connects to the server, it can specify the host name that it used to establish the
connection by sending the HOST command. This is typically used with virtual hosting, where one
server may accept client connections for multiple domains. The GetName method will return the
host name specified by the client, and SetName can be used by the application to either explicitly
assign a different host name to the client session, or override the host name provided by the
client.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetAddress, GetName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::SetOptions Method

BOOL SetOptions(
 DWORD dwOptions
);

Sets the default options for this instance of the server.

Parameters
dwOptions

An unsigned integer which specifies one or more options. For a list of available options, see
Server Option Constants.

Return Value
If the method is successful, it will return a non-zero value, otherwise it will return a value of zero.

Remarks
The SetOptions method changes the default options for the current instance of the server. This
method cannot be used to change the options for an active instance of the server. If the server is
active, it must be stopped before calling this method. To get the current options, use the
GetOptions method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
GetOptions

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/httpsrv/class/optionconst.html

 CHttpServer::SetPriority Method

INT SetPriority(
 INT nPriority
);

Change the priority assigned to the specified server.

Parameters
nPriority

An integer value which specifies the new priority for the server. It may be one of the following
values:

Constant Description

HTTP_PRIORITY_BACKGROUND
(0)

This priority significantly reduces the memory,
processor and network resource utilization for the
server. It is typically used with lightweight services
running in the background that are designed for few
client connections. The server thread will be assigned
a lower scheduling priority and will be frequently
forced to yield execution to other threads.

HTTP_PRIORITY_LOW
(1)

This priority lowers the overall resource utilization for
the server and meters the processor utilization for
the server thread. The server thread will be assigned
a lower scheduling priority and will occasionally be
forced to yield execution to other threads.

HTTP_PRIORITY_NORMAL
(2)

The default priority which balances resource and
processor utilization. This is the priority that is initially
assigned to the server when it is started, and it is
recommended that most applications use this
priority.

HTTP_PRIORITY_HIGH
(3)

This priority increases the overall resource utilization
for the server and the thread will be given higher
scheduling priority. It is not recommended that this
priority be used on a system with a single processor.

HTTP_PRIORITY_CRITICAL
(4)

This priority can significantly increase processor,
memory and network utilization. The server thread
will be given higher scheduling priority and will be
more responsive to client connection requests. It is
not recommended that this priority be used on a
system with a single processor.

Return Value
If the method succeeds, the return value is the previous priority assigned to the server. If the
method fails, the return value is HTTP_PRIORITY_INVALID. To get extended error information, call
the GetLastError method.

Remarks

The SetPriority method can be used to change the current priority assigned to the specified
server. Client connections that are accepted after this method is called will inherit the new priority
as their default priority. Previously existing client connections will not be affected by this method.

Higher priority values increase the thread priority and processor utilization for each client session.
You should only change the server priority if you understand the impact it will have on the system
and have thoroughly tested your application. Configuring the server to run with a higher priority
can have a negative effect on the performance of other programs running on the system.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cstools11.h.
Import Library: cshtsv11.lib

See Also
GetPriority, Start

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::SetStackSize Method

BOOL SetStackSize(
 DWORD dwStackSize
);

Change the initial size of the stack allocated for threads created by the server.

Parameters
dwStackSize

The amount of memory that will be committed to the stack for each thread created by the
server. If this value is zero, a default stack size will be used.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The SetStackSize method changes the initial amount of memory that is committed to the stack
for each thread created by the server. By default, the stack size for each thread is set to 256K for
32-bit processes and 512K for 64-bit processes. Increasing or decreasing the stack size will only
affect new threads that are created by the server, it will not affect those threads that have already
been created to manage active client sessions. It is recommended that most applications use the
default stack size.

You should not change the stack size unless you understand the impact that it will have on your
system and have thoroughly tested your application. Increasing the initial commit size of the stack
will remove pages from the total system commit limit, and every page of memory that is reserved
for stack cannot be used for any other purpose.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cstools11.h
Import Library: cshtsv11.lib

See Also
GetMemoryUsage, GetStackSize, Start

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::SetUuid Method

BOOL SetUuid(
 LPCTSTR lpszHostUuid
);

Assign a UUID to the current instance of the server.

Parameters
lpszHostUuid

A pointer to a string that specifies the server UUID, terminated with a null character. This value
can be used when storing information about the server, and should be generated using a utility
such as uuidgen which is included with Visual Studio. This parameter may be NULL or point to
an empty string, in which case a temporary UUID will be randomly generated for the server.

Return Value
If the method succeeds, the return value is non-zero, otherwise the method return a value of zero.

Remarks
The SetUuid method assigns a Universally Unique Identifier (UUID) to the server. The UUID may
either be generated by the application and assigned as part of the server configuration, or an
ephemeral UUID may be automatically generated when the server is started. This method cannot
be used to change the UUID after the server has been started. To determine the UUID assigned to
an active server instance, use the GetUuid method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetUuid

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::Start Method

BOOL Start(
 LPCTSTR lpszLocalHost,
 UINT nLocalPort,
 DWORD dwOptions
);

BOOL Start(
 LPCTSTR lpszLocalHost,
 UINT nLocalPort
);

BOOL Start(
 UINT nLocalPort
);

The Start method begins listening for client connections on the specified local address and port
number. The server is started in its own thread and manages the client sessions independently of
the calling thread. All interaction with the server and its client sessions takes place inside the class
event handlers.

Parameters
lpszLocalHost

A pointer to a string which specifies the local hostname or IP address address that the server
should be bound to. If this parameter is omitted or specifies a NULL pointer an appropriate
address will automatically be used. If a specific address is used, the server will only accept client
connections on the network interface that is bound to that address.

nLocalPort

The port number the server should use to accept client connections. If a value of zero is
specified, the server will use the standard port number 21 to listen for connections, or port 990
if the server is configured to use implicit SSL. The port number used by the application must be
unique and multiple instances of a server cannot use the same port number. It is recommended
that a port number greater than 5000 be used for private, application-specific implementations.

dwOptions

An unsigned integer value that specifies one or more options to be used when creating an
instance of the server. For a list of the available options, see Server Option Constants. If this
parameter is omitted, the default options for the server instance will be used.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call the GetLastError method.

Remarks
In most cases, the lpszLocalHost parameter should be omitted or a NULL pointer. On a
multihomed system, this will enable the server to accept connections on any appropriately
configured network adapter. Specifying a hostname or IP address will limit client connections to
that particular address. Note that the hostname or address must be one that is assigned to the
local system, otherwise an error will occur.

If an IPv6 address is specified as the local address, the system must have an IPv6 stack installed
and configured, otherwise the method will fail.

file:///C|/Projects/cstools11/pdf/httpsrv/class/optionconst.html

To listen for connections on any suitable IPv4 interface, specify the special dotted-quad address
"0.0.0.0". You can accept connections from clients using either IPv4 or IPv6 on the same socket by
specifying the special IPv6 address "::0", however this is only supported on Windows 7 and
Windows Server 2008 R2 or later platforms. If no local address is specified, then the server will only
listen for connections from clients using IPv4. This behavior is by design for backwards
compatibility with systems that do not have an IPv6 TCP/IP stack installed.

The handle returned by this method references the listening socket that was created when the
server was started. The service is managed in another thread, and all interaction with the server
and active client connections are performed inside the event handlers. To disconnect all active
connections, close the listening socket and terminate the server thread, call the Stop method.

The host UUID that is defined as part of the server configuration should be generated using the
uuidgen utility that is included with the Windows SDK. You should not use the UUID that is
provided in the example code, it is for demonstration purposes only. If no host UUID is specified in
the server configuration, an ephemeral UUID will be generated automatically when the server is
started.

Example
CHttpServer *pHttpServer = new CHttpServer();

// Initialize the server configuration
pHttpServer->SetName(_T("server.company.com"));
pHttpServer->SetUuid(_T("10000000-1000-1000-1000-100000000000"));
pHttpServer->SetDirectory(_T("%ProgramData%\\MyProgram\\Server"));
pHttpServer->SetLogFile(HTTP_LOGFILE_EXTENDED, 5,
_T("%ProgramData%\\MyProgram\\Server.log"));
pHttpServer->SetOptions(HTTP_SERVER_DEFAULT);

// Start the server
pHttpServer->Start(HTTP_PORT_DEFAULT);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
EnumClients, Restart, Stop

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::Stop Method

BOOL Stop();

Stop the server, terminating all active client sessions and releasing the resources that were
allocated for the server.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.

Remarks
The Stop method instructs the server to stop accepting client connections, disconnects all active
client connections and terminates the thread that is managing the server session. The handle is no
longer valid after the server has been stopped and should no longer be used. Note that it is
possible that the actual handle value may be re-used at a later point when a new server is started.
An application should always consider the server handle to be opaque and never depend on it
being a specific value.

If an application calls this method from within an event handler, the active client session (the client
for which the event handler was invoked) may not get a disconnect notification. It is
recommended that this method only be called by the same thread that created the server using
the Start method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
Restart, Start

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::Suspend Method

BOOL Suspend();

Suspend the server and reject new client connections.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The Suspend method instructs the server to suspend accepting new client connections. Any
incoming client connections will be rejected with an error message indicating that the server is
currently unavailable. To resume accepting client connections, call the Resume method.
Suspending the server will have no effect on clients that have already established a connection
with the server.

It is recommended that you only suspend a server if absolutely necessary, and only for brief
periods of time. If you want to limit the number of active client connections or control the
connection rate for clients, use the Throttle method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
Restart, Resume, Start, Stop, Throttle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::Throttle Method

BOOL Throttle(
 UINT nMaxClients,
 UINT nMaxClientsPerAddress,
 DWORD dwConnectionRate
);

The Throttle method limits the number of active client connections, connections per address and
connection rate.

Parameters
nMaxClients

A value which specifies the maximum number of clients that may connect to the server. A value
of zero specifies that there is no fixed limit to the number of client connections.

nMaxClientsPerAddress

A value which specifies the maximum number of clients that may connect to the server from the
same IP address. A value of zero specifies that there is no fixed limit to the number of client
connections per address. By default, there is a limit of four client connections per address.

dwConnectionRate

A value which specifies a restriction on the rate of client connections, limiting the number of
connections that will be accepted within that period of time. A value of zero specifies that there
is no restriction on the rate of client connections. The higher this value, the fewer the number of
connections that will be accepted within a specific period of time. By default, there is no limit on
the client connection rate.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The Throttle method is used to limit the number of connections and the connection rate to
minimize the potential impact of a large number of client connections over a short period of time.
This can be used to protect the server from a client application that is malfunctioning or a
deliberate denial-of-service attack in which the attacker attempts to flood the server with
connection attempts.

If the maximum number of client connections or maximum number of connections per address is
exceeded, the server will reject subsequent connection attempts until the number of active client
sessions drops below the specified threshold. Note that adjusting these values lower than the
current connection limits will not affect clients that have already connected to the server. For
example, if the Start method is called with the maximum number of clients set to 100, and then
Throttle is called lowering that value to 75, no existing client connections will be affected by the
change. However, the server will not accept any new connections until the number of active clients
drops below 75.

Increasing the connection rate value will force the server to slow down the rate at which it will
accept incoming client connection requests. For example, setting this parameter to a value of 1000
would limit the server to accepting one client connection every second, while a value of 250 would
allow the server to accept four client connections per second. Note that significantly increasing the
amount of time the server must wait to accept client connections can exceed the connection

backlog queue, resulting in client connections being rejected.

It is recommended that you always specify conservative connection limits for your server
application based on expected usage. Allowing an unlimited number of client connections can
potentially expose the system to denial-of-service attacks and should never be done for servers
that are accessible over the Internet.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
Restart, Resume, Start, Suspend

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer Event Handlers

Method Description

OnAuthenticate The client requested authentication

OnConnect The client established a control connection to the server

OnCommand The client issued a command to the server

OnDisconnect The client has disconnected from the server

OnDownload The client has downloaded a file from the server

OnError The event handler encountered an error when processing a client event

OnExecute The client has executed an external program on the server

OnResult The command issued by the client has been processed by the server

OnTimeout The client has exceeded the maximum allowed idle time

OnUpload The client has uploaded a file to the server

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::OnAuthenticate Method

virtual void OnAuthenticate(
 UINT nClientId,
 LPCTSTR lpszHostName,
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword
);

A virtual method that is invoked after the client has successfully downloaded a file from the server.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpszHostName

A pointer to a string that specifies the host name that the client used to establish the
connection.

lpszUserName

A pointer to a string that specifies the user name provided by the client.

lpszPassword

A pointer to a string that specifies the cleartext user password provided by the client.

Return Value
None.

Remarks
The OnAuthenticate event handler is invoked when the client has provided authentication
credentials as part of the request for a document or other resource. To implement an event
handler, the application should create a class derived from the CHttpServer class, and then
override this method.

The event handler can call the AuthenticateClient method to authenticate the client session. If
the event handler does not authenticate the client, the server will perform its default
authentication. To reject the credentials provided by the client, use the SendErrorResponse
method with a result code of 401.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
OnCommand, OnConnect

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::OnCommand Method

virtual void OnCommand(
 UINT nClientId,
 LPCTSTR lpszCommand,
 LPCTSTR lpszResource,
 LPCTSTR lpszParameters,
 BOOL& bHandled
);

A virtual method that is invoked after the client has sent a command to the server.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpszCommand

A pointer to a string that specifies the command issued by the client. The command name will
always be capitalized. For a complete list of commands supported by the server, see Server
Commands.

lpszResource

A pointer to a string that specifies the resource that the client has requested. Depending on the
command issued, it may be a document, a folder or an executable script.

lpszParameters

A pointer to a string that specifies any query parameters that have been provided by the client.
The string will be empty if there were no query parameters included with the request. The query
parameters in this string will be URL encoded.

bHandled

An integer value that indicates whether the handler has processed the event. If the handler sets
this parameter to a non-zero value, it indicates that the application has processed the
command itself. If this parameter has a value of zero, then the server will perform the default
action for the command. By default, this parameter has a value of zero.

Return Value
None.

Remarks
The OnCommand event handler is invoked after the client has sent a command to the server, but
before the command has been processed. To implement an event handler, the application should
create a class derived from the CHttpServer class, and then override this method.

This event handler is invoked for all commands issued by the client, including invalid or disabled
commands. If the bHandled parameter is FALSE, the server will perform the default processing for
the command. If the bHandled parameter is set to TRUE, the server will take no action. Note that if
the event handler processes the command, it must call the SendResponse method to send a
success or error response back to the client. If this is not done, the server will consider the
command to be invalid and will send a 501 "not implemented" error by default.

It is not necessary to use this event handler to disable a command. The EnableCommand method
can be used to enable or disable specific commands, and the IsCommandEnabled method can
be used to determine if a command is enabled.

file:///C|/Projects/cstools11/pdf/httpsrv/class/commands.html
file:///C|/Projects/cstools11/pdf/httpsrv/class/commands.html

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DisconnectClient, EnableCommand, IsCommandEnabled, OnDisconnect, SendResponse

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::OnConnect Method

virtual void OnConnect(
 UINT nClientId,
 LPCTSTR lpszAddress
);

A virtual method that is invoked after the client has connected to the server.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpszAddress

A pointer to a string that specifies the IP address of the client. This address may either be in IPv4
or IPv6 format, depending on how the server was configured and the address the client used to
establish the connection.

Return Value
None.

Remarks
The OnConnect event handler is invoked after the client has connected to the server. To
implement an event handler, the application should create a class derived from the CHttpServer
class, and then override this method.

This event only occurs after the server has checked the active client limits and has accepted the
connection. If the server was started with security enabled, the TLS handshake has been
performed. If the server has been suspended, or the limit on the maximum number of client
sessions has been exceeded, the server will terminate the client session prior to this event handler
being invoked.

If this event handler is not implemented, the server will perform the default action of accepting the
connection and waiting for the client to send a request for a document. To reject a connection,
call the DisconnectClient method to terminate the client session.

Your server application should never make the assumption that for each OnConnect event there
will be one command issued by the client. A client may issue multiple commands per session, and
in some cases a client may send no commands to the server. If the client is using HTTP 1.0,
connections will not be persistent. This means that the client will connect to the server, issue one
command and then disconnect. For clients that use HTTP 1.1, multiple commands may be issued
using a single connection. There is no guarantee that either the client or server will maintain a
persistent connection, and either may request that the connection be closed after a command has
completed.

If the client is a web browser, it is not unusual to see multiple, simultaneous connections being
established with your server for a single request. Do not be concerned if you see multiple
connections without any commands being issued. Browsers will do this to in anticipation of
downloading additional assets (stylesheets, images, etc.) to improve performance and will typically
close any unused connections after a few seconds. You may also see multiple requests for the file
/favicon.ico. The browser will request this icon to display in the browser address bar and
bookmarks. If the file does not exist, the browser ignores the error response from the server.

Requirements

Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DisconnectClient, OnCommand, OnDisconnect,

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::OnDisconnect Method

virtual void OnDisconnect(
 UINT nClientId
);

A virtual method that is invoked immediately before the client is disconnected from the server.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

Return Value
None.

Remarks
The OnDisconnect event handler is invoked immediately before the client is disconnected from
the server. To implement an event handler, the application should create a class derived from the
CHttpServer class, and then override this method.

This is an advisory event and it is not required for the application to explicitly disconnect the client
or perform any action. The event handler cannot prevent the client from disconnecting.
Applications that implement a handler for this event should only use it to update any private data
that was associated with the client session.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
OnConnect

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::OnDownload Method

virtual void OnDownload(
 UINT nClientId,
 LPCTSTR lpszFileName,
 DWORD dwTimeElapsed,
 ULARGE_INTEGER uiBytesCopied
);

A virtual method that is invoked after the client has successfully downloaded a file from the server.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpszFileName

A pointer to a string that specifies the local path name of the file that was downloaded from the
server. The path will always include the disk volume or share name, and the path delimiter will
always be the backslash character.

dwTimeElased

An unsigned integer value that specifies the number of milliseconds that it took to complete the
file transfer.

uiBytesCopied

An unsigned 64-bit integer value that specifies the number of bytes of data that was
downloaded by the client.

Return Value
None.

Remarks
The OnDownload event handler is invoked after the client has successfully downloaded a file
from the server using the GET command. To implement an event handler, the application should
create a class derived from the CHttpServer class, and then override this method.

The ULARGE_INTEGER structure is actually a union that is used to represent a 64-bit value. If the
compiler has built-in support for 64-bit integers, use the QuadPart member to access the 64-bit
integer value. Otherwise, use the LowPart and HighPart members to access the value.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
OnCommand, OnUpload

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::OnError Method

virtual void OnConnect(
 UINT nClientId,
 UINT nEventId,
 DWORD dwError
);

A virtual method that is invoked when the event handler encountered an error when processing a
client event.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

nEventId

An unsigned integer which identifies the client event that was being processed when the error
occurred. For a list of event identifiers, see Server Event Constants.

dwError

An unsigned integer value that specifies the error code.

Return Value
None.

Remarks
The OnError event handler is invoked whenever an error occurs while an event is being processed
by the server. To implement an event handler, the application should create a class derived from
the CHttpServer class, and then override this method.

It is important to note that this event is not raised for every error that occurs. The event only
occurs when another event is being processed and an unhandled error occurs that must be
reported back to the server application. The following are some common situations in which this
event handler may be invoked:

A network error occurs when the client connection is being accepted by the server. This
could be the result of an aborted connection or some other lower-level failure reported by
the networking subsystem on the server.

The server is configured to use implicit SSL but cannot obtain the security credentials
required to create the security context for the session. Usually this indicates that the server
certificate cannot be found, or the certificate does not have a private key associated with it.
It could also indicate a general problem with the cryptographic subsystem where the client
and server could not successfully negotiate a cipher suite.

A network error occurs when attempting to process a command issued by the client. This
usually indicates that the connection to the client has been aborted, either because the
client is not acknowledging the data that has been exchanged with the server, or the client
has terminated abnormally. This event will not occur if the client terminates the connection
normally.

In most situations where this event handler is invoked, the error is not recoverable and the only
action that can be taken is to terminate the client session.

file:///C|/Projects/cstools11/pdf/httpsrv/class/eventconst.html

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
GetLastError, OnConnect, OnCommand

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::OnExecute Method

virtual void OnExecute(
 UINT nClientId,
 LPCTSTR lpszCommand,
 LPCTSTR lpszResource,
 LPCTSTR lpszParameters,
 DWORD dwExitCode
);

A virtual method that is invoked after the client has successfully executed a CGI program or script
on the server.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpszCommand

A pointer to a string that specifies the command issued by the client. The command name will
always be capitalized. For a complete list of commands supported by the server, see Server
Commands.

lpszResource

A pointer to a string that specifies the resource that the client has requested.

lpszParameters

A pointer to a string that specifies any query parameters that have been provided by the client.
The string will be empty if there were no query parameters included with the request. The query
parameters in this string will be URL encoded.

dwExitCode

An unsigned integer that specifies the exit code that was returned by the program.

Return Value
None.

Remarks
The OnExecute event handler is invoked after the client has successfully executed an external CGI
program or script. To implement an event handler, the application should create a class derived
from the CHttpServer class, and then override this method.

External programs must be registered by the server application using the RegisterProgram
method. To enable the use of scripts, the RegisterHandler method can be used to associate an
executable program with a specific file extension.

The GetProgramOutput method can be used to obtain the unfiltered output from the external
command, while the GetProgramText method will return filtered output from the program that
contains only printable text characters.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

file:///C|/Projects/cstools11/pdf/httpsrv/class/commands.html
file:///C|/Projects/cstools11/pdf/httpsrv/class/commands.html

Unicode: Implemented as Unicode and ANSI versions.

See Also
GetProgramOutput, GetProgramText, RegisterHandler, RegisterProgram

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::OnResult Method

virtual void OnResult(
 UINT nClientId,
 LPCTSTR lpszCommand,
 LPCTSTR lpszResource,
 LPCTSTR lpszParameters,
 UINT nResultCode
);

A virtual method that is invoked after the server has processed a command issued by the client.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpszCommand

A pointer to a string that specifies the command issued by the client. The command name will
always be capitalized. For a complete list of commands supported by the server, see Server
Commands.

lpszResource

A pointer to a string that specifies the resource that the client has requested. Depending on the
command issued, it may be a document, a folder or an executable script.

lpszParameters

A pointer to a string that specifies any query parameters that have been provided by the client.
The string will be empty if there were no query parameters included with the request. The query
parameters in this string will be URL encoded.

nResultCode

A integer value that specifies the result code that was sent to the client.

Return Value
None.

Remarks
The OnResult event handler is invoked after the server has processed a command issued by the
client. To implement an event handler, the application should create a class derived from the
CHttpServer class, and then override this method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetCommandResult, OnCommand

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/httpsrv/class/commands.html
file:///C|/Projects/cstools11/pdf/httpsrv/class/commands.html

 CHttpServer::OnTimeout Method

virtual void OnTimeout(
 UINT nClientId,
 UINT nIdleTime,
 UINT nElapsed
);

A virtual method that is invoked after the client has exceeded the maximum allowed idle time.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

nIdleTime

An unsigned integer value that specifies the current idle timeout period for the client in seconds.

nElapsed

An unsigned integer value that specifies the number of seconds that the client has been idle.

Return Value
None.

Remarks
The OnTimeout event handler is invoked after the client has has exceeded the maximum allowed
idle time. To implement an event handler, the application should create a class derived from the
CHttpServer class, and then override this method.

This event handler will be invoked prior to the client being disconnected from the server. This
event will never occur while the server is returning data to the client. The SetClientIdleTime
method can be used to change or refresh the idle timeout period for the session.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
GetClientIdleTime, OnCommand, OnResult, SetClientIdleTime

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer::OnUpload Method

virtual void OnUpload(
 UINT nClientId,
 LPCTSTR lpszFileName,
 DWORD dwTimeElapsed,
 ULARGE_INTEGER uiBytesCopied
);

A virtual method that is invoked after the client has successfully uploaded a file to the server.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

lpszFileName

A pointer to a string that specifies the local path name of the file that was uploaded to the
server. The path will always include the disk volume or share name, and the path delimiter will
always be the backslash character.

dwTimeElased

An unsigned integer value that specifies the number of milliseconds that it took to complete the
file transfer.

uiBytesCopied

An unsigned 64-bit integer value that specifies the number of bytes of data that was uploaded
by the client.

Return Value
None.

Remarks
The OnUpload event handler is invoked after the client has successfully uploaded a file to the
server using the PUT command. To implement an event handler, the application should create a
class derived from the CHttpServer class, and then override this method.

The ULARGE_INTEGER structure is actually a union that is used to represent a 64-bit value. If the
compiler has built-in support for 64-bit integers, use the QuadPart member to access the 64-bit
integer value. Otherwise, use the LowPart and HighPart members to access the value.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
OnCommand, OnDownload

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CHttpServer Data Structures

HTTPCLIENTCREDENTIALS
HTTPREQUEST
HTTPRESPONSE
HTTPSERVERTRANSFER

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HTTPCLIENTCREDENTIALS Structure

The HTTPCLIENTCREDENTIALS structure defines the credentials used to authenticate a specific
user.

typedef struct _HTTPCLIENTCREDENTIALS
{
 DWORD dwSize;
 DWORD dwFlags;
 UINT nAuthType;
 UINT nHostPort;
 TCHAR szHostName[HTTP_MAXHOSTNAME];
 TCHAR szUserName[HTTP_MAXUSERNAME];
 TCHAR szPassword[HTTP_MAXPASSWORD];
} HTTPCLIENTCREDENTIALS, *LPHTTPCLIENTCREDENTIALS;

Members
dwSize

An unsigned integer value that specifies the size of the structure.

dwFlags

An unsigned integer value is reserved for future use. This value will always be zero.

nAuthType

An unsigned integer value that identifies the authentication method.

nHostPort

The server port number.

szHostName

A pointer to a string that specifies the server host name.

szUserName

A pointer to a string that specifies the user name.

szPassword

A pointer to a string that specifies the user password.

Remarks
When an instance of this structure is passed to the GetClientCredentials method, this member
must be initialized to the size of the structure and all other members must be initialized with a
value of zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetClientCredentials

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HTTPREQUEST Structure

The HTTPREQUEST structure provides information about the request made by the client.

typedef struct _HTTPREQUEST
{
 DWORD dwSize;
 DWORD dwFlags;
 DWORD dwVersion;
 DWORD dwAccess;
 DWORD dwLength;
 DWORD dwReserved;
 UINT nHostId;
 UINT nHostPort;
 LPCSTR lpszCommand;
 LPCSTR lpszHostName;
 LPCSTR lpszUserName;
 LPCSTR lpszPassword;
 LPCSTR lpszResource;
 LPCSTR lpszParameters;
 LPCSTR lpszDirectory;
 LPCSTR lpszPathInfo;
 LPCSTR lpszProgram;
 LPCSTR lpszScriptFile;
 LPCSTR lpszLocalFile;
 LPCSTR lpszMediaType;
} HTTPREQUEST, *LPHTTPREQUEST;

Members
dwSize

An unsigned integer value that specifies the size of the structure.

dwFlags

An unsigned integer value that provides additional information about the request. It may be
one or more of the following values:

Constant Description

HTTP_REQUEST_FLAG_PROTECTED
(0x1)

The resource that the client has requested is
protected. The client should only be permitted to
access the resource if the client session has been
authenticated.

HTTP_REQUEST_FLAG_PROGRAM
(0x2)

The resource that the client has requested is a
CGI program or an executable script. The output
from the program or script should be returned to
the client in the response. If this flag is specified,
the lpszProgram member of the structure
specifies the name of the program that should be
executed.

HTTP_REQUEST_FLAG_SCRIPT
(0x4)

The resource that the client has requested is an
executable script. This flag is set when the request
URL is mapped to a registered script handler. The
lpszProgram member specifies the name of the
program that is responsible for executing the

script, and the lpszScriptFile parameter specifies
the full path to the script itself.

dwVersion

An unsigned integer value that specifies the protocol version used. It may be one of the
following values:

Constant Description

HTTP_VERSION_09
(0x00009)

The client issued a GET command without specifying a protocol
version.

HTTP_VERISON_10
(0x10000)

The client issued a command that specified version 1.0 of the
protocol.

HTTP_VERSION_11
(0x10001)

The client issued a command that specified version 1.1 of the
protocol.

dwAccess

An unsigned integer value that specifies the access permissions that were assigned to the
resource. For a list of file access permissions, see User and File Access Constants.

dwLength

An unsigned integer value that will specify the number of bytes of request data provided by the
client. If the client did not submit any data with the request, this member will have a value of
zero.

dwReserved

An unsigned integer value that is reserved for future use.

nHostId

An integer value that identifies the virtual host that was specified by the client. This is based on
the value of the Host request header included in the request. This value will be zero if a host
name is not specified by the client, or does not match one of the virtual hosts that have been
created.

nHostPort

An integer value that specifies the port number that the client used to establish the connection.
This will be the same port number that was used when starting the server.

lpszCommand

A pointer to a string that specifies the command that was issued by the client. The command
will always be in upper case. Refer to Hypertext Transfer Protocol Commands for a list of
standard commands.

lpszHostName

A pointer to a string that identifies the hostname or IP address that the client used to establish
the connection. This will typically correspond to the hostname assigned to the server, or to one
of the virtual hosts that have been created.

lpszUserName

A pointer to a string that specifies the username provided with the request. This member is only
set if the client has included authentication credentials as part of the request. If the client has
not provided any credentials, this member will be NULL.

lpszPassword

file:///C|/Projects/cstools11/pdf/httpsrv/class/useraccess.html
file:///C|/Projects/cstools11/pdf/httpsrv/class/useraccess.html
file:///C|/Projects/cstools11/pdf/httpsrv/class/commands.html
file:///C|/Projects/cstools11/pdf/httpsrv/class/commands.html

A pointer to a string that specifies the password provided with the request. This member is only
set if the client has included authentication credentials as part of the request. If the client has
not provided any credentials, this member will be NULL.

lpszResource

A pointer to a string that specifies the URL path provided by the client.

lpszParameters

A pointer to a string that specifies any query parameters that were included in the request made
by the client. If the URL did not include any query parameters, this member will be NULL.

lpszDirectory

A pointer to a string the specifies the full path to the root directory for the virtual host.

lpszPathInfo

A pointer to a string that specifies additional path information provided by the client when
referencing an executable CGI program or script in the URL. For example, if a program is
mapped to the virtual path "/orders/invoice" and the client requests
"/orders/invoice/pdf/10001" this member will be the string "/pdf/10001". If there is no path
information associated with the request, this member will be NULL.

lpszProgram

A pointer to a string that specifies the local path to the CGI program that should be executed to
process the request made by the client. If this member is NULL, it indicates that the client has
provided a URL that maps to a local file or directory.

lpszScriptFile

A pointer to a string that specifies the local path to the script file that will be executed by the
handler. If this member is NULL, it indicates that the request URL was not mapped to registered
script handler.

lpszLocalFile

A pointer to a string that specifies the local path to the directory or file name referenced by the
URL. If the lpszPathInfo member is not NULL, then this member will point to a local file name
based the path information appended to the root directory for the virtual host.

lpszMediaType

A pointer to a string that identifies the request data using the standard Internet media types
defined in RFC 2046. It is used to designate the format for various types of content and has two
parts, a primary and secondary media type separated by a forward slash. Common examples
are "text/plain", "text/html" and "application/octet-stream". If the client did not submit any data
with the request, this member will be NULL.

Remarks
This structure is used with the ReceiveRequest method and all members should be initialized to a
value of zero, except for the dwSize member which should be initialized to size of the structure.
Failure to properly initialize the structure will cause the method call to fail.

The value of the lpszLocalFile member depends on whether the client has requested a static
document, or if the URL is mapped to a registered program or script handler. If the request is for a
static document, then the dwFlags member will not have the HTTP_REQUEST_FLAG_PROGRAM
bit flag set and the lpszLocalFile member will be the full path to the document. If the URL is
mapped to a registered program or script, then the lpszLocalFile member will be the full path to
the server root directory, If the request URL included additional path information, that will be
appended to the root directory.

The value of the lpszScriptFile member is only defined if the dwFlags member has the
HTTP_REQUEST_FLAG_SCRIPT bit flag set. This indicates that the request URL references a file that
is an executable script with a handler that was registered using the RegisterHandler method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

See Also
ReceiveRequest, SendResponse, HTTPRESPONSE

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HTTPRESPONSE Structure

The HTTPRESPONSE structure provides additional information about the response to the client.

typedef struct _HTTPRESPONSE
{
 DWORD dwSize;
 DWORD dwFlags;
 DWORD dwVersion;
 DWORD dwReserved;
 UINT nExpires;
 UINT nResultCode;
 LPCTSTR lpszReason;
 LPCTSTR lpszMediaType;
} HTTPRESPONSE, *LPHTTPRESPONSE;

Members
dwSize

An unsigned integer value that specifies the size of the structure.

dwFlags

An unsigned integer value that specifies one or more response flags. This member is reserved
for future use and should always have a value of zero.

dwVersion

An unsigned integer value that specifies the protocol version used. It may be one of the
following values:

Constant Description

HTTP_VERSION_DEFAULT
(0)

The server should respond to the client using the same
version specified in the request.

HTTP_VERISON_10
(0x10000)

The server should respond to the client using version 1.0 of
the protocol.

HTTP_VERSION_11
(0x10001)

The server should respond to the client using version 1.1 of
the protocol.

dwReserved

An unsigned integer value that is reserved for future use.

nExpires

An integer value that specifies the number of seconds until the client should consider any
cached response data to be stale. If this value is zero, the default cache expiration time for the
server will be used. The default cache expiration time is 7200 seconds (2 hours). The value of
this structure member is ignored if the HTTP_RESPONSE_NOCACHE option is specified when
the response is sent to the client.

nResultCode

An integer value that specifies the result code that should be sent in response to the client
request. The result code is a three-digit number that indicates success or failure. For more
information, refer to the GetCommandResult method.

lpszReason

A string that that describes the result code sent to the client. The description should be brief

and should not contain any formatting characters or HTML markup. This parameter may be
NULL, in which case a default description of the result code will be used.

lpszMediaType

A string that specifies the Internet media type for the data that is being sent to the client as
defined in RFC 2046. The format for the content type string consists of two parts, a primary and
secondary media type separated by a forward slash. Common examples are "text/plain",
"text/html" and "application/octet-stream". If this member is NULL, the library will attempt to
automatically determine the appropriate media type.

Remarks
This structure is used with the SendResponse method and the dwSize member must be initialized
to size of the structure. Failure to properly initialize the structure will cause the method call to fail.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetCommandResult, ReceiveRequest, SendResponse, HTTPREQUEST

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HTTPSERVERTRANSFER Structure

The HTTPSERVERTRANSFER structure provides information about the last file transfer performed
by a client.

typedef struct _HTTPSERVERTRANSFER
{
 DWORD dwSize;
 DWORD dwReserved;
 DWORD dwFileAccess;
 DWORD dwTimeElapsed;
 ULARGE_INTEGER uiBytesCopied;
 TCHAR szFileName[MAX_PATH];
} HTTPSERVERTRANSFER, *LPHTTPSERVERTRANSFER;

Members
dwSize

An unsigned integer value that specifies the size of the structure.

dwReserved

An unsigned integer value that is reserved for future use. This value will always be zero.

dwFileAccess

An unsigned integer value that specifies the how the local file was accessed. It can be one of the
following values:

Constant Description

HTTP_FILE_READ
(0)

The file was opened for reading. This mode indicates that the client
issued the GET command to download the contents of a file from
the server to the client system. The szFileName member specifies
the name of the local file on the server that was downloaded by
the client.

HTTP_FILE_WRITE
(1)

The file was opened for writing. This mode indicates that the client
issued the PUT command to upload the contents of a file from the
client system to server. The szFileName member specifies the
name of the local file on the server that was created by the client. If
a file already existed with the name name, it was replaced.

dwTimeElapsed

The amount of time that it took for the file transfer to complete in milliseconds. This value is
limited to the resolution of the system timer, which is typically in the range of 10 to 16
milliseconds. This value may be zero if the transfer occurred over a local network or on the
same host using a loopback address.

uiBytesCopied

A 64-bit integer value that specifies the total number of bytes copied during the file transfer.
This value is represented by a ULARGE_INTEGER union which provides support for those
programming languages that do not have intrinsic support for 64-bit integers. For more
information, refer to the Windows SDK documentation. The application should not make the
assumption that this is the actual size of the file.

szFileName

A pointer to a string value that will contain the full path to the local file that was transferred. The

dwFileAccess member determines whether the file name represents a file that was downloaded
by the client, or uploaded from the client and stored on the server.

Remarks
When an instance of this structure is passed to the GetTransferInfo method, the dwSize member
must be initialized to the size of the structure, otherwise the method will fail with an error
indicating that the parameter is invalid. All other members should be initialized to a value of zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetTransferInfo

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SECURITYCREDENTIALS Structure

The SECURITYCREDENTIALS structure specifies the information needed by the library to specify
additional security credentials, such as a client certificate or private key, when establishing a secure
connection.

typedef struct _SECURITYCREDENTIALS
{
 DWORD dwSize;
 DWORD dwProtocol;
 DWORD dwOptions;
 DWORD dwReserved;
 LPCTSTR lpszHostName;
 LPCTSTR lpszUserName;
 LPCTSTR lpszPassword;
 LPCTSTR lpszCertStore;
 LPCTSTR lpszCertName;
 LPCTSTR lpszKeyFile;
} SECURITYCREDENTIALS, *LPSECURITYCREDENTIALS;

Members
dwSize

Size of this structure. If the structure is being allocated dynamically, this member must be set to
the size of the structure and all other unused structure members must be initialized to a value of
zero or NULL.

dwProtocol

A bitmask of supported security protocols. The value of this structure member is constructed by
using a bitwise operator with any of the following values:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The
correct protocol is automatically selected, based on

what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.
This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is
supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

dwOptions

A value which specifies one or options. This member is constructed by using a bitwise operator
with any of the following values:

Constant Description

CREDENTIAL_STORE_CURRENT_USER The library will attempt to open a store for
the current user using the certificate store
name provided in this structure. If no options
are specified, then this is the default
behavior.

CREDENTIAL_STORE_LOCAL_MACHINE The library will attempt to open a local
machine store using the certificate store

name provided in this structure. If this option
is specified, the library will always search for a
local machine store before searching for the
store by that name for the current user.

CREDENTIAL_STORE_FILENAME The certificate store name is a file that
contains the certificate and private key that
will be used.

dwReserved

This structure member is reserved for future use and should always be initialized to zero.

lpszHostName

A pointer to a null terminated string which specifies the hostname that will be used when
validating the server certificate. If this member is NULL, then the server certificate will be
validated against the hostname used to establish the connection.

lpszUserName

A pointer to a null terminated string which identifies the owner of client certificate. Currently this
member is not used by the library and should always be initialized as a NULL pointer.

lpszPassword

A pointer to a null terminated string which specifies the password needed to access the
certificate. Currently this member is only used if the CREDENTIAL_STORE_FILENAME option has
been specified. If there is no password associated with the certificate, then this member should
be initialized as a NULL pointer.

lpszCertStore

A pointer to a null terminated string which specifies the name of the certificate store to open. A
certificate store is a collection of certificates and their private keys, typically organized by how
they are used. If this value is NULL or points to an empty string, the default certificate store "MY"
will be used.

Store
Name

Description

CA
Certification authority certificates. These are certificates that are issued by entities
which are entrusted to issue certificates to other individuals or organizations.
Companies such as VeriSign and Thawte act as certification authorities.

MY

Personal certificates and their associated private keys for the current user. This
store typically holds the client certificates used to establish a user's credentials.
This corresponds to the "Personal" store that is displayed by the certificate
manager utility and is the default store used by the library.

ROOT
Certificates that have been self-signed by a certificate authority. Root certificates
for a number of different certification authorities such as VeriSign and Thawte are
installed as part of the operating system and periodically updated by Microsoft.

lpszCertName

A pointer to a null terminated string which specifies the name of the certificate to use. The
library will first search the certificate store for a certificate with a matching "friendly name"; this is
a name for the certificate that is assigned by the user. Note that the name must match
completely, but the comparison is not case sensitive. If no matching certificate is found, the
library will then attempt to find a certificate that has a matching common name (also called the
certificate subject). This comparison is less stringent, and the first partial match will be returned.

If this second search fails, the library will return an error indicating that the certificate could not
be found. If the SECURITY_PROTOCOL_SSH protocol has been specified, this member should
be NULL.

lpszKeyFile

A pointer to a null terminated string which specifies the name of the file which contains the
private key required to establish the connection. This member is only used for SSH connections
and should always be NULL when establishing a secure connection using SSL or TLS.

Remarks
A client application only needs to create this structure if the server requires that the client provide
a certificate as part of the process of negotiating the secure session. If a certificate is required,
note that it must have a private key associated with it. Attempting to use a certificate that does not
have a private key will result in an error during the connection process indicating that the client
credentials could not be established.

If you are using a local certificate store, with the certificate and private key stored in the registry,
you can explicitly specify whether the certificate store for the current user or the local machine (all
users) should be used. This is done by prefixing the certificate store name with "HKCU:" for the
current user, or "HKLM:" for the local machine. For example, a certificate store name of
"HKLM:MY" would specify the personal certificate store for the local machine, rather than the
current user. If neither prefix is specified, then it will default to the certificate store for the current
user. You can manage these certificates using the CertMgr.msc Microsoft Management Console
(MMC) snap-in.

It is possible to load the certificate from a file rather than from current user's certificate store. The
dwOptions member should be set to CREDENTIAL_STORE_FILENAME and the lpszCertStore
member should specify the name of the file that contains the certificate and its private key. The file
must be in Private Information Exchange (PFX) format, also known as PKCS #12. These certificate
files typically have an extension of .pfx or .p12. Note that if a password was specified when the
certificate file was created, it must be provided in the lpszPassword member or the library will be
unable to access the certificate.

Note that the lpszUserName and lpszPassword members are values which are used to access the
certificate store or private key file. They are not the credentials which are used when establishing
the connection with the remote host or authenticating the client session.

The TLS 1.1 and TLS 1.2 protocols are only supported on Windows 7, Windows Server 2008 R2
and later versions of the platform. If these options are specified and the application is running on
Windows XP or Windows Vista, the protocol version will be downgraded to TLS 1.0 for backwards
compatibility with those platforms.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Internet Control Message Protocol Class Library

Determine if a remote host is reachable and how packets of data are routed to that system.

Reference

Class Methods
Data Structures
Error Codes

Library Information

Class Name CIcmpClient

File Name CSICMV11.DLL

Version 11.0.2180.1635

LibID 861142C8-68FD-4BC5-BAA9-25B33F15DD07

Import Library CSICMV11.LIB

Dependencies None

Standards RFC 792

Overview
The Internet Control Message Protocol (ICMP) is commonly used to determine if a remote host is
reachable and how packets of data are routed to that system. Users are most familiar with this
protocol as it is implemented in the ping and traceroute command line utilities. The ping
command is used to check if a system is reachable and the amount of time that it takes for a
packet of data to make a round trip from the local system, to the remote host and then back
again. The traceroute command is used to trace the route that a packet of data takes from the
local system to the remote host, and can be used to identify potential problems with overall
throughput and latency. The library can be used to build in this type of functionality in your own
applications, giving you the ability to send and receive ICMP echo datagrams in order to perform
your own analysis.

Requirements
The SocketTools Library Edition libraries are compatible with any programming language which
supports calling functions exported from a standard dynamic link library (DLL). If you are using
Visual C++ 6.0 it is required that you have Service Pack 6 (SP6) installed. You should install all
updates for your development tools and have the current Windows SDK installed. The minimum
recommended version of Visual Studio is Visual Studio 2010.

This library is supported on Windows 7, Windows Server 2008 R2 and later versions of the desktop
and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1) installed as
a minimum requirement. It is recommended that you install the current service pack and all critical
updates available for your version of the operating system.

This product includes both 32-bit and 64-bit libraries. Native 64-bit CPU support requires the 64-
bit version of Windows 7 or later versions of the Windows operating system.

Distribution
When you distribute your application that uses this library, it is recommended that you install the

file in the same folder as your application executable. If you install the library into a shared location
on the system, it is important that you distribute the correct version for the target platform and it
should be registered as a shared DLL. This is a standard Windows dynamic link library, not an
ActiveX component, and does not require COM registration.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Internet Control Message Protocol Class Methods

Class Description

CIcmpClient Constructor which initializes the current instance of the class

~CIcmpClient Destructor which releases resources allocated by the class

Method Description

AttachHandle Attach the specified client handle to this instance of the class

AttachThread Attach the specified client handle to another thread

Cancel Cancel the current blocking operation

DetachHandle Detach the handle for the current instance of this class

DisableEvents Disable asynchronous event notification

DisableTrace Disable logging of socket-level calls to the trace log

Echo Send one or more echo datagrams to the specified host

EnableEvents Enable asynchronous event notification

EnableTrace Enable logging of network function calls to a file

FormatAddress Convert a numeric IP address to a string

FreezeEvents Suspend or resume event handling by the calling process

GetErrorString Return a description for the specified error code

GetFirstHost Return the first host from the traceroute

GetHandle Return the client handle used by this instance of the class

GetHostAddress Return the current host IP address

GetHostName Return the current host name

GetLastError Return the last error code

GetNextHost Return the next host from the traceroute

GetPacketSize Return the ICMP datagram packet size

GetRecvCount Return the number of packets received

GetSendCount Return the number of packets sent

GetSequenceId Return the current sequence identifier

GetTimeout Return the number of milliseconds until an operation times out

GetTimeToLive Return the current time-to-live for the ICMP datagram

GetTripTime Return the current trip time statistics

IcmpEventProc Callback method that processes events generated by the client

IsBlocking Determine if the client is blocked, waiting for information

IsInitialized Determine if the class has been successfully initialized

file:///C|/Projects/cstools11/pdf/icmp/class/icmpeventproc.html

RecvEcho Read an ICMP datagram returned by the remote host

RegisterEvent Register an event callback function

Reset Reset the current client state

ResolveAddress Resolve an IP address into a fully qualified host name

SendEcho Send an ICMP datagram to the specified host

SetHostAddress Set the IP address of the host to receive the next datagram

SetHostName Set the name of the host to receive the next datagram

SetLastError Set the last error code

SetPacketSize Set the ICMP datagram packet size

SetSequenceId Set the sequence identifier for the next datagram

SetTimeout Set the number of milliseconds until an operation times out

SetTimeToLive Set the time-to-live for the next datagram

ShowError Display a message box with a description of the specified error

TraceRoute Trace the route from the local system to a remote host

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CIcmpClient::CIcmpClient Method

CIcmpClient();

The CIcmpClient constructor initializes the class library and validates the license key at runtime.

Remarks
If the constructor fails to validate the runtime license, subsequent methods in this class will fail. If
the product is installed with an evaluation license, then the application will only function on the
development system and cannot be redistributed.

The constructor calls the IcmpInitialize function to initialize the library, which dynamically loads
other system libraries and allocates thread local storage. If you are using this class within another
DLL, it is important that you do not create or destroy an instance of the class from within the
DllMain function because it can result in deadlocks or access violation errors. You should not
declare static or global instances of this class within another DLL if it is linked with the C runtime
library (CRT) because it will automatically call the constructors and destructors for static and global
C++ objects and has the same restrictions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
~CIcmpClient, IsInitialized

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CIcmpClient::~CIcmpClient

~CIcmpClient();

The CIcmpClient destructor releases resources allocated by the current instance of the
CIcmpClient object. It also uninitializes the library if there are no other concurrent uses of the
class.

Remarks
When a CIcmpClient object goes out of scope, the destructor is automatically called to allow the
library to free any resources allocated on behalf of the process. Any pending blocking or
asynchronous calls in this process are canceled without posting any notification messages, and all
handles that were created for the client session are destroyed.

The destructor is not called explicitly by the application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CIcmpClient

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CIcmpClient::AttachHandle Method

VOID AttachHandle(
 HCLIENT hClient
);

The AttachHandle method attaches the specified client handle to the current instance of the
class.

Parameters
hClient

The handle to the client session that will be attached to the current instance of the class object.

Return Value
None.

Remarks
This method is used to attach a client handle created outside of the class using the SocketTools
API. Once the client handle is attached to the class, the other class member functions may be used
with that client session.

If a client handle already has been created for the class, that handle will be released when the new
handle is attached to the class object. If you want to prevent the previous client session from being
terminated, you must call the DetachHandle method. Failure to release the detached handle may
result in a resource leak in your application.

Note that the hClient parameter is presumed to be a valid client handle and no checks are
performed to ensure that the handle is valid. Specifying an invalid client handle will cause
subsequent method calls to fail.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib

See Also
AttachThread, DetachHandle, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CIcmpClient::AttachThread Method

DWORD AttachThread(
 DWORD dwThreadId
);

The AttachThread method attaches the specified client handle to another thread.

Parameters
dwThreadId

The ID of the thread that will become the new owner of the handle. A value of zero specifies
that the current thread should become the owner of the client handle.

Return Value
If the method succeeds, the return value is the thread ID of the previous owner. If the method fails,
the return value is ICMP_ERROR. To get extended error information, call GetLastError.

Remarks
When a client handle is created, it is associated with the current thread that created it. Normally, if
another thread attempts to perform an operation using that handle, an error is returned since it
does not own the handle. This is used to ensure that other threads cannot interfere with an
operation being performed by the owner thread. In some cases, it may be desirable for one
thread in a client application to create the client handle, and then pass that handle to another
worker thread. The AttachThread method can be used to change the ownership of the handle to
the new worker thread. By preserving the return value from the method, the original owner of the
handle can be restored before the worker thread terminates.

This method should be called by the new thread immediately after it has been created, and if the
new thread does not release the handle itself, the ownership of the handle should be restored to
the parent thread before it terminates. Under no circumstances should AttachThread be used to
forcibly release a handle allocated by another thread while a blocking operation is in progress. To
cancel an operation, use the Cancel method and then release the handle after the blocking
method exits and control is returned to the current thread.

Note that the dwThreadId parameter is presumed to be a valid thread ID and no checks are
performed to ensure that the thread actually exists. Specifying an invalid thread ID will orphan the
client handle used by the class until the destructor is called.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib

See Also
AttachHandle, Cancel, CloseHandle, CreateHandle, DetachHandle, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CIcmpClient::Cancel Method

INT Cancel();

The Cancel method cancels any outstanding blocking operation in the client, causing the blocking
method to fail. The application may then retry the operation or terminate the client session.

Parameters
None.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
ICMP_ERROR. To get extended error information, call GetLastError.

Remarks
When the Cancel method is called, the blocking method will not immediately fail. An internal flag
is set which causes the blocking operation to exit with an error. This means that the application
cannot cancel an operation and immediately perform some other operation. Instead it must allow
the calling stack to unwind, returning back to the blocking operation before making any further
function calls.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib

See Also
IsBlocking

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CIcmpClient::CloseHandle Method

INT CloseHandle(
 HCLIENT hClient
);

The CloseHandle method closes the socket and releases the memory allocated for the client
session.

Parameters
hClient

A handle to the client session.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
ICMP_ERROR. To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CIcmpClient, CreateHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CIcmpClient::CreateHandle Method

HCLIENT CreateHandle(
 UINT nPacketSize,
 UINT nTimeToLive,
 DWORD dwTimeout,
 DWORD dwReserved,
 HWND hEventWnd,
 UINT uEventMsg
);

The CreateHandle method creates a client handle for sending and receiving ICMP echo
datagrams. If an event notification window is specified, the client will be notified when a network
event occurs.

Parameters
nPacketSize

An unsigned integer which specifies the default packet size used when generating ICMP echo
datagrams. The minimum packet size is 32 bytes and the maximum size is 65,535 bytes.

nTimeToLive

An unsigned integer which specifies the default time-to-live for ICMP echo datagrams. This
determines the maximum number of times that a packet will be routed from one system to
another while enroute to its destination. The minimum time-to-live value is 1, the maximum is
255. The recommend value for this parameter is 255, and typical applications should use a time-
to-live value of at least 30.

dwTimeout

An unsigned integer which specifies the maximum number of milliseconds to wait before the
current operation times out.

dwReserved

A reserved parameter. This value should always be zero.

hEventWnd

The handle to an asynchronous notification window. This window receives messages which
notify the client when asynchronous network events occur. If asynchronous event notification is
not required, this parameter may be NULL.

uEventMsg

The message identifier that is used when an asynchronous network event occurs. This value
should be greater than WM_USER as defined in the Windows header files. If the hEventWnd
parameter is NULL, this parameter should be specified as WM_NULL.

Return Value
If the method succeeds, the return value is a handle to the client session. If the method fails, the
return value is INVALID_CLIENT. To get extended error information, call GetLastError.

Remarks
The CreateHandle method creates a client handle that is used with subsequent calls to the library.
This library uses a special type of socket called a raw socket, which is created to send and receive
ICMP echo datagrams. Raw socket support is optional under the Windows Sockets specification,
and may not be available if a non-standard networking libraries are used or may only be available

to privileged accounts.

If the hEventWnd parameter is not NULL, the client operates in asynchronous mode and
messages will be posted to the notification window when a network event occurs. When a
message is posted to the window, the low word of the lParam parameter contains the event
identifier. The high word of lParam contains the low word of the error code, if an error has
occurred. The wParam parameter contains the client handle. One or more of the following event
identifiers may be sent:

Constant Description

ICMP_EVENT_ECHO The client has generated an ICMP echo datagram and has sent it to
the specified host. If the datagram is received, the remote host should
generate a reply and return it to the sender.

ICMP_EVENT_REPLY The client has received an ICMP echo reply datagram from the
remote host. At this point the client can collect statistical information.

ICMP_EVENT_TIMEOUT The network operation has exceeded the specified timeout period.
The client application may attempt to retry the operation.

ICMP_EVENT_CANCEL The current operation has been canceled. TThe client application may
attempt to retry the operation or close the handle.

To cancel asynchronous notification and return the client to a blocking mode, use the
DisableEvents method.

The ability to create and send ICMP echo datagrams is limited to privileged users. Non-
administrator users will receive an error if they attempt to create a client handle. On Windows NT
it is possible to disable this security check by creating or modifying the system registry. Microsoft
Knowledge Base article 195445 has additional information and instructions for making this change.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Sockets 2.0 update or later.
Header File: cstools11.h
Import Library: csicmv11.lib

See Also
CIcmpClient, CloseHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CIcmpClient::DetachHandle Method

HCLIENT DetachHandle();

The DetachHandle method detaches the client handle associated with the current instance of the
class.

Parameters
None.

Return Value
This method returns the client handle associated with the current instance of the class object. If
there is no active client session, the value INVALID_CLIENT will be returned.

Remarks
This method is used to detach a client handle created by the class for use with the SocketTools
API. Once the client handle is detached from the class, no other class member functions may be
called. Note that the handle must be explicitly released at some later point by the process or a
resource leak will occur.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib

See Also
AttachHandle, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CIcmpClient::DisableEvents Method

INT DisableEvents();

The DisableEvents method disables the event notification mechanism, preventing subsequent
event notification messages from being posted to the application's message queue.

This method has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Parameters
None.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
ICMP_ERROR. To get extended error information, call GetLastError.

Remarks
The DisableEvents method is used to disable event message posting for the specified client
session. Although this will immediately prevent any new events from being generated, it is possible
that messages could be waiting in the message queue. Therefore, an application must be
prepared to handle client event messages after this method has been called.

This method is automatically called if the client has event notification enabled, and the Disconnect
method is called. The same issues regarding outstanding event messages also applies in this
situation, requiring that the application handle event messages that may reference a client handle
that is no longer valid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib

See Also
EnableEvents, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CIcmpClient::DisableTrace Method

BOOL DisableTrace();

The DisableTrace method disables the logging of socket function calls to the trace log.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, a value of zero is
returned.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib

See Also
EnableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CIcmpClient::Echo Method

INT Echo(
 LPCTSTR lpszHostName,
 UINT nIterations,
 UINT nPacketSize,
 DWORD dwTimeout,
 LPICMPTIME lpTime
);

INT Echo(
 LPCTSTR lpszHostName,
 LPICMPTIME lpTime
);

The Echo method sends one or more ICMP echo datagrams, collecting information about the
reliability and latency of a connection between the local and remote host.

Parameters
lpszHostName

A pointer to a string which specifies the fully qualified domain name of the remote host, or the
IP address in dotted notation.

nIterations

An unsigned integer value which specifies the number of echo datagrams that will be sent to
the remote host. The minimum value for this parameter is 1 and the maximum value is 512.

nPacketSize

An unsigned integer value which specifies the size of the echo datagram in bytes. The minimum
size is 1 byte and the maximum size is 65,535 bytes. It is recommended that most applications
use the minimum size of 32 bytes for this parameter.

dwTimeout

An unsigned integer which specifies the number of milliseconds the method will wait for a
response to an echo datagram.

lpTime

A pointer to an ICMPTIME structure which will contain the minimum, maximum and average
round trip times for the echo datagrams sent and received.

Return Value
If the method succeeds, the return value is the number of replies received from the remote host. If
the method fails, the return value is ICMP_ERROR. To get extended error information, call
GetLastError.

Remarks
The Echo method sends a series of ICMP echo datagrams to the specified host, providing a
simplified interface for pinging a remote system. If the method returns the same value as the
number of iterations, then replies were received for all of the echo datagrams that were sent. This
would typically indicate that the client can establish a reliable connection to the server; the values
returned in the ICMPTIME structure provide information on the latency between the two hosts.
Higher average time values would indicate greater latency and reduced throughput between the
systems. If the method returns a value less than the specified number of iterations, this indicates
that replies were not received for one or more of the echo datagrams. This may indicate that there

are problems routing data between the local and remote host. A return value of zero indicates
that there was no response to the echo datagrams. The remote host may not exist or may not be
available.

The failure for a host to respond to an ICMP echo datagram may not indicate a problem with the
remote system. In some cases, a router between the local and remote host may be malfunctioning
or discarding the datagrams. Systems can also be configured to specifically ignore ICMP echo
datagrams and not respond to them; this is often a security measure to prevent certain kinds of
Denial of Service attacks.

The ability to send ICMP datagrams may be restricted to users with administrative privileges,
depending on the policies and configuration of the local system. If you are unable to send or
receive any ICMP datagrams, it is recommended that you check the firewall settings and any third-
party security software that could impact the normal operation of this component.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib

See Also
CreateHandle, GetTripTime, RecvEcho, SendEcho, TraceRoute

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CIcmpClient::EnableEvents Method

INT EnableEvents(
 HWND hEventWnd,
 UINT uEventMsg
);

The EnableEvents method enables event notifications using Windows messages.

This method has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Applications should use the RegisterEvent method to register an event handler which is invoked
when an event occurs.

Parameters
hEventWnd

Handle to the window which will receive the client notification messages. This parameter must
specify a valid window handle. If a NULL handle is specified, event notification will be disabled.

uEventMsg

The message that is received when a client event occurs. This value must be greater than 1024.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
ICMP_ERROR. To get extended error information, call GetLastError.

Remarks
The EnableEvents method is used to request that notification messages be posted to the
specified window whenever a client event occurs. This allows an application to monitor the status
of different client operations, such as a file transfer.

The wParam argument will contain the client handle, the low word of the lParam argument will
contain the event ID, and the high word will contain any error code. If no error has occurred, the
high word will always have a value of zero. The following events may be generated:

Constant Description

ICMP_EVENT_ECHO The client has generated an ICMP echo datagram and has sent it to
the specified host. If the datagram is received, the remote host should
generate a reply and return it to the sender.

ICMP_EVENT_REPLY The client has received an ICMP echo reply datagram from the
remote host. At this point the client can collect statistical information.

ICMP_EVENT_TIMEOUT The network operation has exceeded the specified timeout period.
The client application may attempt to retry the operation, or may
disconnect from the server and report an error to the user.

ICMP_EVENT_CANCEL The current operation has been canceled. Under most circumstances
the client should disconnect from the server and re-connect if needed.
After an operation has been canceled, the server may abort the
connection or refuse to accept further commands from the client.

To disable event notification, call the DisableEvents method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib

See Also
DisableEvents, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CIcmpClient::EnableTrace Method

BOOL EnableTrace(
 LPCTSTR lpszTraceFile,
 DWORD dwTraceFlags
);

The EnableTrace method enables the logging of socket function calls to a file.

Parameters
lpszTraceFile

A pointer to a string which specifies the name of the trace log file. If this parameter is NULL or
an empty string, the default file name cstrace.log is used. The file is stored in the directory
specified by the TEMP environment variable, if it is defined; otherwise, the current working
directory is used.

dwTraceFlags

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

TRACE_INFO All function calls are written to the trace file. This is the default
value.

TRACE_ERROR Only those function calls which fail are recorded in the trace file.

TRACE_WARNING Only those function calls which fail or return values which indicate
a warning are recorded in the trace file.

TRACE_HEXDUMP All functions calls are written to the trace file, plus all the data that
is sent or received is displayed, in both ASCII and hexadecimal
format.

TRACE_PROCESS All function calls in the current process are logged, rather than
only those functions in the current thread. This option is useful for
multithreaded applications that are using worker threads.

Return Value
If the method succeeds, the return value is non-zero. A return value of zero indicates an error.
Failure typically indicates that the tracing library cstrcv11.dll cannot be loaded on the local
system.

Remarks
When trace logging is enabled, the file is opened, appended to and closed for each socket
function call. This makes it possible for an application to append its own logging information,
however care should be taken to ensure that the file is closed before the next network operation is
performed. To limit the size of the log files, enable and disable logging only around those sections
of code that you wish to trace.

Note that the TRACE_HEXDUMP trace level generates very large log files since it includes all of the
data exchanged between your application and the remote host.

Trace method logging is managed on a per-thread basis, not for each client handle. This means
that all SocketTools libraries and components share the same settings in the current thread. If you

are using multiple SocketTools libraries or components in your application, you only need to
enable logging once.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DisableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CIcmpClient::FormatAddress Method

INT FormatAddress(
 DWORD dwAddress,
 LPTSTR lpszAddress,
 INT nMaxLength
);

INT FormatAddress(
 DWORD dwAddress,
 CString& strAddress
);

The FormatAddress method converts a numeric IP address to a null-terminated string.

Parameters
dwAddress

A unsigned 32-bit integer which specifies the IP address to be converted into a string.

lpszAddress

A pointer to a null-terminated array of characters which will contain the converted IP address in
dot-notation. This string should be at least 16 characters in length. An alternate form of this
method accepts a CString object which will contain the IP address in dotted notation when the
method returns.

nMaxLength

The maximum number of characters which may be copied in to the string buffer.

Return Value
If the method succeeds, the return value is the length of the string buffer. If the method fails, the
return value is zero. To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetHostAddress, GetHostName, ResolveAddress

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CIcmpClient::FreezeEvents Method

INT FreezeEvents(
 BOOL bFreeze
);

The FreezeEvents method is used to suspend and resume event handling by the client.

Parameters
bFreeze

A non-zero value specifies that event handling should be suspended by the client. A zero value
specifies that event handling should be resumed.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
ICMP_ERROR. To get extended error information, call GetLastError.

Remarks
This method should be used when the application does not want to process events, such as when
a modal dialog is being displayed. When events are suspended, all client events are queued. If
events are re-enabled at a later point, those queued events will be sent to the application for
processing. Note that only one of each event will be generated. For example, if the client has
suspended event handling, and four read events occur, once event handling is resumed only one
of those read events will be posted to the client. This prevents the application from being flooded
by a potentially large number of queued events.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DisableEvents, EnableEvents, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CIcmpClient::GetErrorString Method

INT GetErrorString(
 DWORD dwErrorCode,
 LPTSTR lpszDescription,
 INT cbDescription
);

INT GetErrorString(
 DWORD dwErrorCode,
 CString& strDescription
);

The GetErrorString method is used to return a description of a specific error code. Typically this is
used in conjunction with the GetLastError method for use with warning dialogs or as diagnostic
messages.

Parameters
dwErrorCode

The error code for which a description is returned.

lpszDescription

A pointer to the buffer that will contain a description of the specified error code. This buffer
should be at least 128 characters in length. An alternate form of the method accepts a CString
variable which will contain the error description.

cbDescription

The maximum number of characters that may be copied into the description buffer.

Return Value
If the method succeeds, the return value is the length of the description string. If the method fails,
the return value is zero, meaning that no description exists for the specified error code. Typically
this indicates that the error code passed to the method is invalid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetLastError, SetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CIcmpClient::GetFirstHost Method

BOOL GetFirstHost(
 ICMPTRACE& icmpTrace
);

The GetFirstHost method returns information about the first host between the local system and
the remote host specified in the call to the TraceRoute method.

Parameters
icmpTrace

An ICMPTRACE structure which contains information about the intermediate host.

Return Value
If the method succeeds, the return value is non-zero. If the return value is zero, this indicates that
no host information is available. To get extended error information, call GetLastError.

Remarks
The GetFirstHost method is used in conjunction with the GetNextHost method to enumerate all
of the intermediate hosts between the local system and the remote host specified when the
TraceRoute method was called.

Example
BOOL bResult = pClient->TraceRoute(strAddress);
if (bResult)
{
 ICMPTRACE icmpTrace;

 bResult = pClient->GetFirstHost(icmpTrace);
 while (bResult)
 {
 // The icmpTrace structure contains information about the
 // intermediate host in the traceroute
 CString strHostName;
 pClient->ResolveAddress(icmpTrace.dwHostAddress, strHostName);

 bResult = pClient->GetNextHost(icmpTrace);
 }
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetNextHost, ResolveAddress, TraceRoute

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CIcmpClient::GetHandle Method

HCLIENT GetHandle();

The GetHandle method returns the client handle associated with the current instance of the class.

Parameters
None.

Return Value
This method returns the client handle associated with the current instance of the class object. If
there is no active client session, the value INVALID_CLIENT will be returned.

Remarks
This method is used to obtain the client handle created by the class for use with the SocketTools
API.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib

See Also
AttachHandle, DetachHandle, IsInitialized

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CIcmpClient::GetHostAddress Method

INT GetHostAddress(
 LPTSTR lpszHostAddress,
 INT cbHostAddress
);

INT GetHostAddress(
 CString& strHostAddress
);

The GetHostAddress copies the IP address of the current host into the specified buffer as a string
using dot-notation.

Parameters
lpszHostAddress

A pointer to the buffer that will contain the IP address of the current remote host in dot-
notation. This buffer should be at least 16 characters in length.

cbHostAddress

The maximum number of characters that may be copied into the buffer, including the
terminating null character character.

Return Value
If the method succeeds, the return value is the length of the address string. If the return value is
zero, this indicates that no remote host has been specified. If the method fails, the return value is
ICMP_ERROR. To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FormatAddress, GetHostName, ResolveAddress, SetHostAddress, SetHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CIcmpClient::GetHostName Method

INT GetHostName(
 LPTSTR lpszHostName,
 INT cbHostName
);

INT GetHostName(
 CString& strHostName
);

The GetHostName copies the name of the current host into the specified buffer.

Parameters
lpszHostName

A pointer to the buffer that will contain the name of the current remote host. This buffer should
be at least 64 characters in length.

cbHostName

The maximum number of characters that may be copied into the buffer, including the
terminating null character character.

Return Value
If the method succeeds, the return value is the length of the host name string. If the return value is
zero, this indicates that no remote host has been specified. If the method fails, the return value is
ICMP_ERROR. To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FormatAddress, GetHostAddress, ResolveAddress, SetHostAddress, SetHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CIcmpClient::GetLastError Method

DWORD GetLastError();

DWORD GetLastError(
 CString& strDescription
);

Parameters
strDescription

A string which will contain a description of the last error code value when the method returns. If
no error has been set, or the last error code has been cleared, this string will be empty.

Return Value
The return value is the last error code value for the current thread. Functions set this value by
calling the SetLastError method. The Return Value section of each reference page notes the
conditions under which the method sets the last error code.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. You should call
the GetLastError method immediately when a method's return value indicates that an error has
occurred. That is because some methods call SetLastError(0) when they succeed, clearing the
error code set by the most recently failed method.

Most methods will set the last error code value when they fail; a few methods set it when they
succeed. Function failure is typically indicated by a return value such as FALSE, NULL,
INVALID_CLIENT or ICMP_ERROR. Those methods which call SetLastError when they succeed are
noted on the method reference page.

The description of the error code is the same string that is returned by the GetErrorString
method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib

See Also
GetErrorString, SetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CIcmpClient::GetNextHost Method

BOOL GetFirstHost(
 ICMPTRACE& icmpTrace
);

The GetNextHost method returns information about the next host between the local system and
the remote host specified in the call to the TraceRoute method.

Parameters
icmpTrace

An ICMPTRACE structure which contains information about the intermediate host.

Return Value
If the method succeeds, the return value is non-zero. If the return value is zero, this indicates that
no host information is available. To get extended error information, call GetLastError.

Remarks
The GetNextHost method is used in conjunction with the GetFirstHost method to enumerate all
of the intermediate hosts between the local system and the remote host specified when the
TraceRoute method was called.

Example
BOOL bResult = pClient->TraceRoute(strAddress);
if (bResult)
{
 ICMPTRACE icmpTrace;

 bResult = pClient->GetFirstHost(icmpTrace);
 while (bResult)
 {
 // The icmpTrace structure contains information about the
 // intermediate host in the traceroute
 CString strHostName;
 pClient->ResolveAddress(icmpTrace.dwHostAddress, strHostName);

 bResult = pClient->GetNextHost(icmpTrace);
 }
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetFirstHost, ResolveAddress, TraceRoute

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CIcmpClient::GetPacketSize Method

UINT GetPacketSize();

The GetPacketSize method returns the size of the ICMP echo datagram that will be sent to the
remote host. The minimum packet size is 1 byte, the maximum packet size is 65,535 bytes.

Parameters
None.

Return Value
If the method succeeds, the return value is the size of the datagram. If the method fails, the return
value is ICMP_ERROR. To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetRecvCount, GetSendCount, GetSequenceId, GetTimeToLive, GetTripTime, SetPacketSize,
SetSequenceId, SetTimeToLive

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CIcmpClient::GetRecvCount Method

INT GetRecvCount();

The GetRecvCount method returns the number of replies sent to the client from the remote host.

Parameters
None.

Return Value
If the method succeeds, the return value is the number of replies. If the method fails, the return
value is ICMP_ERROR. To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetPacketSize, GetSendCount, GetSequenceId, GetTimeToLive, GetTripTime, SetSequenceId,
SetTimeToLive

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CIcmpClient::GetSendCount Method

INT GetSendCount();

The GetSendCount method returns the number of datagrams sent to the remote host by the
client.

Parameters
None.

Return Value
If the method succeeds, the return value is the number of datagrams sent by the client. If the
method fails, the return value is ICMP_ERROR. To get extended error information, call
GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetPacketSize, GetRecvCount, GetSequenceId, GetTimeToLive, GetTripTime, SetSequenceId,
SetTimeToLive

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CIcmpClient::GetSequenceId Method

INT GetSequenceId();

The GetSequenceId method returns the sequence identifier for the last ICMP echo datagram
received by the client.

Parameters
None.

Return Value
If the method succeeds, the return value is the sequence identifier. If the method fails, the return
value is ICMP_ERROR. To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetPacketSize, GetRecvCount, GetSendCount, GetTimeToLive, GetTripTime, SetSequenceId,
SetTimeToLive

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CIcmpClient::GetTimeout Method

INT GetTimeout();

The GetTimeout method returns the number of seconds the client will wait for a response from
the remote host. Once the specified number of seconds has elapsed, the method will fail and
return to the caller.

Parameters
None.

Return Value
If the method succeeds, the return value is the timeout period in seconds. If the method fails, the
return value is ICMP_ERROR. To get extended error information, call GetLastError.

Remarks
The timeout value is only used with blocking client connections. A value of zero indicates that the
default timeout period of 20 seconds should be used.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib

See Also
CreateHandle, SetTimeout

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CIcmpClient::GetTimeToLive Method

INT GetTimeToLive();

The GetTimeToLive method returns the time-to-live for the last ICMP echo datagram received by
the client.

Parameters
None.

Return Value
If the method succeeds, the return value is the time-to-live for the last datagram. If the method
fails, the return value is ICMP_ERROR. To get extended error information, call GetLastError.

Remarks
The time-to-live (TTL) value is specified in the IP header of a datagram, and is used to control the
number of routers that the datagram is passed through. Each router that handles the datagram
decrements the TTL value by one. When it drops to zero, a datagram is returned to the sender,
specifying that the TTL has been exceeded. The default value is 255.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib

See Also
GetPacketSize, GetRecvCount, GetSendCount, GetSequenceId, GetTripTime, SetSequenceId,
SetTimeToLive

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CIcmpClient::GetTripTime Method

INT GetTripTime(
 LPICMPTIME lpTime
);

The GetTripTime returns round-trip statistics for the datagrams sent to the current remote host.

Parameters
lpTime

A pointer to an ICMPTIME data structure which will contain the round-trip statistics for the
current remote host.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
ICMP_ERROR. To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib

See Also
GetPacketSize, GetRecvCount, GetSendCount, GetSequenceId, GetTimeToLive, SetSequenceId,
SetTimeToLive

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CIcmpClient::IsBlocking Method

BOOL IsBlocking();

The IsBlocking method is used to determine if the client is currently performing a blocking
operation.

Parameters
None.

Return Value
If the client is performing a blocking operation, the method returns a non-zero value. If the client
is not performing a blocking operation, or the client handle is invalid, the method returns zero.

Remarks
Because a blocking operation can allow the application to be re-entered (for example, by pressing
a button while the operation is being performed), it is possible that another blocking method may
be called while it is in progress. Since only one thread of execution may perform a blocking
operation at any one time, an error would occur. The IsBlocking method can be used to
determine if the client is already blocked, and if so, take some other action (such as warning the
user that they must wait for the operation to complete).

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Cancel, IsInitialized

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CIcmpClient::IsInitialized Method

BOOL IsInitialized();

The IsInitialized method returns whether or not the class object has been successfully initialized.

Return Value
This method returns a non-zero value if the class object has been successfully initialized. A return
value of zero indicates that the runtime license key could not be validated or the networking
library could not be loaded by the current process.

Remarks
When an instance of the class is created, the class constructor will attempt to initialize the
component with the runtime license key that was created when SocketTools was installed. If the
constructor is unable to validate the license key or load the networking libraries, this initialization
will fail.

If SocketTools was installed with an evaluation license, the application cannot be redistributed to
another system. The class object will fail to initialize if the application is executed on another
system, or if the evaluation period has expired. To redistribute your application, you must
purchase a development license which will include the runtime key that is needed to redistribute
your software to other systems. Refer to the Developer's Guide for more information.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib

See Also
CIcmpClient, IsBlocking

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CIcmpClient::RecvEcho Method

INT RecvEcho();

The RecvEcho method reads the reply to an ICMP echo datagram generated by the client. This
method should only be called by asynchronous client sessions in response to an event notification
that a datagram has been received.

Parameters
None.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
ICMP_ERROR. To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib

See Also
GetRecvCount, GetSequenceId, GetTimeToLive, SendEcho

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CIcmpClient::RegisterEvent Method

INT RegisterEvent(
 UINT nEventId,
 ICMPEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

The RegisterEvent method registers an event handler for the specified event.

Parameters
nEventId

An unsigned integer which specifies which event should be registered with the specified callback
function. One of the following values may be used:

Constant Description

ICMP_EVENT_ECHO The client has generated an ICMP echo datagram and has sent it to
the specified host. If the datagram is received, the remote host should
generate a reply and return it to the sender.

ICMP_EVENT_REPLY The client has received an ICMP echo reply datagram from the
remote host. At this point the client can collect statistical information.

ICMP_EVENT_TIMEOUT The network operation has exceeded the specified timeout period.
The client application may attempt to retry the operation, or may
disconnect from the server and report an error to the user.

ICMP_EVENT_CANCEL The current operation has been canceled. Under most circumstances
the client should disconnect from the server and re-connect if needed.
After an operation has been canceled, the server may abort the
connection or refuse to accept further commands from the client.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the IcmpEventProc callback
function. If this parameter is NULL, the callback for the specified event is disabled.

dwParam

A user-defined integer value that is passed to the callback function. If the application targets the
x86 (32-bit) platform, this parameter must be a 32-bit unsigned integer. If the application
targets the x64 (64-bit) platform, this parameter must be a 64-bit unsigned integer.

Remarks
The RegisterEvent method associates a callback function with a specific event. The event handler
is an IcmpEventProc function that is invoked when the event occurs. Arguments are passed to
the function to identify the client session, the event type and the user-defined value specified
when the event handler is registered. If the event occurs because of an error condition, the error
code will be provided to the handler.

The callback function specified by the lpEventProc parameter must be declared using the
__stdcall calling convention. This ensures the arguments passed to the event handler are pushed
on to the stack in the correct order. Failure to use the correct calling convention will corrupt the
stack and cause the application to terminate abnormally.

The dwParam parameter is commonly used to identify the class instance which is associated with
the event that has occurred. Applications will cast the this pointer to a DWORD_PTR value when
calling this function, and then the event handler will cast it back to a pointer to the class instance.
This gives the handler access to the class member variables and methods.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
ICMP_ERROR. To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib

See Also
DisableEvents, EnableEvents, FreezeEvents, IcmpEventProc

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/icmp/class/icmpeventproc.html

 CIcmpClient::Reset Method

INT Reset();

The Reset method resets the client session, clearing the packet trip statistics, time-to-live,
sequence identifier, send and receive counts.

Parameters
None.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
ICMP_ERROR. To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib

See Also
SetHostAddress, SetHostName, SetSequenceId, SetTimeToLive

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CIcmpClient::ResolveAddress Method

INT ResolveAddress(
 DWORD dwAddress,
 LPTSTR lpszHostName,
 INT nMaxLength
);

INT ResolveAddress(
 DWORD dwAddress,
 CString& strHostName
);

The ResolveAddress method resolves a numeric IP address into a fully qualified domain name.

Parameters
dwAddress

The IP address to be resolved, specified as an unsigned 32-bit integer in network byte order.

lpszHostName

A pointer to a buffer that will contain a null-terminated string that specifies the fully qualified
domain name for the host. It is recommended that this buffer be at least 64 characters in length.

nMaxLength

The maximum number of characters that can be copied into the string buffer, including the
terminating null character.

Return Value
If the method succeeds, the return value is the length of the host name. If the method fails, the
return value is ICMP_ERROR. To get extended error information, call GetLastError.

Remarks
The ResolveAddress method is used to perform a reverse DNS lookup, converting a numeric IP
address into a fully qualified domain name. This is useful for methods like TraceRoute, which
return host addresses as numeric values in network byte order. If the reverse DNS lookup fails
because there is no PTR record for the given IP address, a printable form of the address in dotted
notation will be returned in the string buffer.

Calling this method will cause the thread to block until the IP address is resolved, or until the DNS
query times out because there is no reverse record for the address. In some cases, a reverse
lookup can take several seconds.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib

See Also
GetHostAddress, GetHostName, SetHostAddress, SetHostName, TraceRoute

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CIcmpClient::SendEcho Method

INT SendEcho();

The SendEcho method sends an ICMP echo datagram to the remote host.

Parameters
None.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
ICMP_ERROR. To get extended error information, call GetLastError.

Remarks
For asynchronous client sessions, this method returns immediately. Otherwise, the client enters a
blocking state and waits for a reply from the remote host. The method returns when a reply has
been received, or the operation times-out.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Echo, GetSendCount, RecvEcho, SetSequenceId, SetTimeToLive, TraceRoute

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CIcmpClient::SetHostAddress Method

INT SetHostAddress(
 DWORD dwAddress
);

INT SetHostAddress(
 LPCTSTR lpszAddress
);

The SetHostAddress method specifies the IP address of the host to receive an ICMP echo
datagram. If the address specifies a new host, the current client statistics are reset.

Parameters
dwAddress

The IP address of the remote host as a 32-bit integer value, specified in network byte order. In
an alternate form of this method, a pointer to a string which specifies the IP address in dotted
notation may also be used.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
ICMP_ERROR. To get extended error information, call GetLastError.

Remarks
To specify a remote host name, use the SetHostName method instead.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib

See Also
GetHostAddress, GetHostName, SetHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CIcmpClient::SetHostName Method

INT SetHostName(
 HCLIENT hClient,
 LPCTSTR lpszHostName
);

The SetHostName method specifies the name of the host to receive an ICMP echo datagram. If
the name specifies a new host, the current client statistics are reset.

Parameters
hClient

A handle to the client session.

lpszHostName

A pointer to a string which specifies the name, or IP address in dot-notation, of the remote host.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
ICMP_ERROR. To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetHostAddress, GetHostName, SetHostAddress

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CIcmpClient::SetLastError Method

VOID SetLastError(
 DWORD dwErrorCode
);

The SetLastError method sets the last error code for the current thread. This method is typically
used to clear the last error by specifying a value of zero as the parameter.

Parameters
dwErrorCode

Specifies the last error code for the current thread.

Return Value
None.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. Most methods will
set the last error code value when they fail; a few methods set it when they succeed. Function
failure is typically indicated by a return value such as FALSE, NULL, INVALID_CLIENT or
ICMP_ERROR. Those methods which call SetLastError when they succeed are noted on the
method reference page.

Applications can retrieve the value saved by this method by using the GetLastError method. The
use of GetLastError is optional; an application can call the method to determine the specific
reason for a method failure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib

See Also
GetErrorString, GetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CIcmpClient::SetPacketSize Method

UINT SetPacketSize(
 UINT nPacketSize
);

The SetPacketSize method sets the size of the ICMP datagram packet that is sent to the remote
host.

Parameters
nPacketSize

Size of the ICMP datagram packet in bytes. The minimum packet size is 1 byte and the
maximum packet size is 65,535 bytes.

Return Value
If the method succeeds, the return value is the previous ICMP datagram packet size. If the method
fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
Note that packet sizes over 512 bytes may not be supported by your networking software or
configuration. It is recommended that most applications use the minimum packet size of 32 bytes.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib

See Also
GetPacketSize, SetSequenceId, SetTimeToLive

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CIcmpClient::SetSequenceId Method

INT SetSequenceId(
 INT nSequenceId
);

The SetSequenceId method sets the sequence identifier for the next ICMP echo datagram sent
by the client. The default sequence identifier for the first datagram is one.

Parameters
nSequenceId

The sequence identifier for the next datagram sent by the client.

Return Value
If the method succeeds, the return value is the previous sequence identifier. If the method fails, the
return value is ICMP_ERROR. To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib

See Also
GetPacketSize, GetRecvCount, GetSendCount, GetSequenceId, GetTimeToLive, GetTripTime,
SetPacketSize, SetTimeToLive

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CIcmpClient::SetTimeout Method

INT SetTimeout(
 UINT nTimeout
);

The SetTimeout method sets the number of seconds the client will wait for a response from the
remote host. Once the specified number of seconds has elapsed, the method will fail and return to
the caller.

Parameters
nTimeout

The number of seconds to wait for a blocking operation to complete.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
ICMP_ERROR. To get extended error information, call GetLastError.

Remarks
The timeout value is only used with blocking client connections.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib

See Also
GetTimeout

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CIcmpClient::SetTimeToLive Method

INT SetTimeToLive(
 INT nTimeToLive
);

The SetTimeToLive method sets the maximum time-to-live for the next ICMP datagram sent by
the client.

Parameters
nTimeToLive

The time-to-live value for the next ICMP echo datagram.

Return Value
If the method succeeds, the return value is the previous time-to-live value. If the method fails, the
return value is ICMP_ERROR. To get extended error information, call GetLastError.

Remarks
The time-to-live (TTL) value is specified in the IP header of a datagram, and is used to control the
number of routers that the datagram is passed through. Each router that handles the datagram
decrements the TTL value by one. When it drops to zero, a datagram is returned to the sender,
specifying that the TTL has been exceeded.

Calling this method changes the default TTL value for all subsequent ICMP datagrams sent by the
library, with the default value being 255. Note that not all Windows Sockets implementations
support setting the time-to-live value.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib

See Also
GetPacketSize, GetRecvCount, GetSendCount, GetSequenceId, GetTimeToLive, GetTripTime,
SetPacketSize, SetSequenceId

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CIcmpClient::ShowError Method

INT ShowError(
 LPCTSTR lpszAppTitle,
 UINT uType,
 DWORD dwErrorCode
);

The ShowError method displays a message box which describes the specified error.

Parameters
lpszAppTitle

A pointer to a string which specifies the title of the message box that is displayed. If this
argument is NULL or omitted, then the default title of "Error" will be displayed.

uType

An unsigned integer which specifies the type of message box that will be displayed. This is the
same value that is used by the MessageBox method in the Windows API. If a value of zero is
specified, then a message box with a single OK button will be displayed. Refer to that method
for a complete list of options.

dwErrorCode

Specifies the error code that will be used when displaying the message box. If this argument is
zero, then the last error that occurred in the current thread will be displayed.

Return Value
If the method is successful, the return value will be the return value from the MessageBox
function. If the method fails, it will return a value of zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetErrorString, GetLastError, SetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CIcmpClient::TraceRoute Method

BOOL TraceRoute(
 LPCTSTR lpszHostName,
 UINT nMaxHops,
 DWORD dwTimeout
);

The TraceRoute method sends a series of ICMP echo datagrams to trace the route taken from
the local system to the remote host.

Parameters
lpszHostName

A pointer to a string which specifies the fully qualified domain name of the remote host, or the
IP address in dotted notation.

nMaxHops

An unsigned integer which specifies the maximum number of routers the datagram will be
forwarded through (the number of hops) to the remote host. The minimum value is 1 and the
maximum value is 255. It is recommended that most applications specify a value of at least 30.

dwTimeout

An unsigned integer which specifies the number of milliseconds the method will wait for a
response to an echo datagram.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The TraceRoute method sends a series of ICMP echo datagrams to the specified host, adjusting
the time-to-live value to determine the intermediate hosts that route the packet. Use the
GetFirstHost and GetNextHost methods to enumerate the hosts returned by the method.

It is important to note that the failure of an intermediate host to respond to an ICMP echo
datagram may not indicate a problem with the remote system. Systems can be configured to
specifically ignore ICMP echo datagrams and not respond to them; this is often a security measure
to prevent certain kinds of Denial of Service attacks.

The ability to send ICMP datagrams may be restricted to users with administrative privileges,
depending on the policies and configuration of the local system. If you are unable to send or
receive any ICMP datagrams, it is recommended that you check the firewall settings and any third-
party security software that could impact the normal operation of this component.

Example
BOOL bResult = pClient->TraceRoute(strAddress);
if (bResult)
{
 ICMPTRACE icmpTrace;

 bResult = pClient->GetFirstHost(icmpTrace);
 while (bResult)
 {
 // The icmpTrace structure contains information about the

 // intermediate host in the traceroute
 CString strHostName;
 pClient->ResolveAddress(icmpTrace.dwHostAddress, strHostName);

 bResult = pClient->GetNextHost(icmpTrace);
 }
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib

See Also
Echo, GetFirstHost, GetNextHost, ResolveAddress

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Internet Control Message Protocol Data Structures

ICMPTIME
ICMPTRACE
INTERNET_ADDRESS
SYSTEMTIME

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ICMPTIME Structure

This structure is used by the GetTripTime method to return the round-trip times of an ICMP
datagram.

typedef struct _ICMPTIME {
 DWORD dwTripAverage;
 DWORD dwTripMaximum;
 DWORD dwTripMinimum;
 DWORD dwTripTime;
} ICMPTIME, *LPICMPTIME;

Members
dwTripAverage

The average round-trip time in milliseconds for all datagrams sent to the current host.

dwTripMaximum

The maximum round-trip time in milliseconds for all datagrams sent to current host.

dwTripMinimum

The minimum round-trip time in milliseconds for all datagrams sent to the current host.

dwTripTime

The current round-trip time in milliseconds for the last datagram sent to the current host.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ICMPTRACE Structure

This structure is used by the GetFirstHost and GetNextHost methods to return the route of an
ICMP datagram.

typedef struct _ICMPTRACE
{
 UINT nDistance;
 DWORD dwHostAddress;
 DWORD dwTripAverage;
 DWORD dwTripMaximum;
 DWORD dwTripMinimum;
} ICMPTRACE, *LPICMPTRACE;

Members
nDistance

The distance from the local host to the remote host for this route.

dwHostAddress

An unsigned integer which specifies the IP address of the remote host in network byte order.

dwTripAverage

The average round-trip time in milliseconds for all datagrams sent to the specified host.

dwTripMaximum

The maximum round-trip time in milliseconds for all datagrams sent to specified host.

dwTripMinimum

The minimum round-trip time in milliseconds for all datagrams sent to the specified host.

dwTripTime

The current round-trip time in milliseconds for the last datagram sent to the specified host.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 INTERNET_ADDRESS Structure

This structure represents a numeric IPv4 or IPv6 address in network byte order.

typedef struct _INTERNET_ADDRESS
{
 INT ipFamily;
 BYTE ipNumber[16];
} INTERNET_ADDRESS, *LPINTERNET_ADDRESS;

Members
ipFamily

An integer which identifies the type of IP address. It will be one of the following values:

Constant Description

INET_ADDRESS_UNKNOWN The address has not been specified or the bytes in the
ipNumber array does not represent a valid address.
Functions which populate this structure will use this value
to indicate that the address cannot be determined.

INET_ADDRESS_IPV4 Specifies that the address is in IPv4 format. The first four
bytes of the ipNumber array are significant and contains
the IP address. The remaining bytes are not significant
and an application should not depend on them having
any particular value, including zero.

INET_ADDRESS_IPV6 Specifies that the address is in IPv6 format. All bytes in
the ipNumber array are significant. Note that it is
possible for an IPv6 address to actually represent an IPv4
address. This is indicated by the first 10 bytes of the
address being zero.

ipNumber

A byte array which contains the numeric form of the IP address. This array is large enough to
store both IPv4 (32 bit) and IPv6 (128 bit) addresses. The values are stored in network byte
order.

Remarks
The INTERNET_ADDRESS structure is used by some functions to represent an Internet address in
a binary format that is compatible with both IPv4 and IPv6 addresses. Applications that use this
structure should consider it to be opaque, and should not modify the contents of the structure
directly.

For compatibility with legacy applications that expect an IP address to be 32 bits and stored in an
unsigned integer, you can copy the first four bytes of the ipNumber array using the
CopyMemory function or equivalent. Note that if this is done, your application should always
check the ipFamily member first to make sure that it is actually an IPv4 address.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SYSTEMTIME Structure

The SYSTEMTIME structure represents a date and time using individual members for the month,
day, year, weekday, hour, minute, second, and millisecond.

typedef struct _SYSTEMTIME
{
 WORD wYear;
 WORD wMonth;
 WORD wDayOfWeek;
 WORD wDay;
 WORD wHour;
 WORD wMinute;
 WORD wSecond;
 WORD wMilliseconds;
} SYSTEMTIME, *LPSYSTEMTIME;

Members
wYear

Specifies the current year. The year value must be greater than 1601.

wMonth

Specifies the current month. January is 1, February is 2 and so on.

wDayOfWeek

Specifies the current day of the week. Sunday is 0, Monday is 1 and so on.

wDay

Specifies the current day of the month

wHour

Specifies the current hour.

wMinute

Specifies the current minute

wSecond

Specifies the current second.

wMilliseconds

Specifies the current millisecond.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include windows.h.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Internet Message Access Protocol Class Library

Manage email messages and mailboxes on a mail server.

Reference

Class Methods
Data Structures
Error Codes

Library Information

Class Name CImapClient

File Name CSMAPV11.DLL

Version 11.0.2180.1635

LibID FFDFB6F8-6CBE-49EF-8C0F-093254490868

Import Library CSMAPV11.LIB

Dependencies None

Standards RFC 3501

Overview
The Internet Message Access Protocol (IMAP) is an application protocol which is used to access a
user's email messages which are stored on a mail server. However, unlike the Post Office Protocol
(POP) where messages are downloaded and processed on the local system, the messages on an
IMAP server are retained on the server and processed remotely. This is ideal for users who need
access to a centralized store of messages or have limited bandwidth. For example, traveling
salesmen who have notebook computers or mobile users on a wireless network would be ideal
candidates for using IMAP.

The SocketTools IMAP library implements the current standard for this protocol, and provides
methods to retrieve messages, or just certain parts of a message, create and manage mailboxes,
search for specific messages based on certain criteria and so on. The API is designed as a superset
of the Post Office Protocol API, so developers who are used to working with the POP3 library will
find the IMAP library very easy to integrate into an existing application.

This library supports secure connections using the standard SSL and TLS protocols.

Requirements
The SocketTools Library Edition libraries are compatible with any programming language which
supports calling functions exported from a standard dynamic link library (DLL). If you are using
Visual C++ 6.0 it is required that you have Service Pack 6 (SP6) installed. You should install all
updates for your development tools and have the current Windows SDK installed. The minimum
recommended version of Visual Studio is Visual Studio 2010.

This library is supported on Windows 7, Windows Server 2008 R2 and later versions of the desktop
and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1) installed as
a minimum requirement. It is recommended that you install the current service pack and all critical
updates available for your version of the operating system.

This product includes both 32-bit and 64-bit libraries. Native 64-bit CPU support requires the 64-

bit version of Windows 7 or later versions of the Windows operating system.

Distribution
When you distribute your application that uses this library, it is recommended that you install the
file in the same folder as your application executable. If you install the library into a shared location
on the system, it is important that you distribute the correct version for the target platform and it
should be registered as a shared DLL. This is a standard Windows dynamic link library, not an
ActiveX component, and does not require COM registration.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Internet Message Access Protocol Class Methods

Class Description

CImapClient Constructor which initializes the current instance of the class

~CImapClient Destructor which releases resources allocated by the class

Method Description

AttachHandle Attach the specified client handle to this instance of the class

AttachThread Attach the specified client handle to another thread

Cancel Cancel the current blocking operation

CheckMailbox Check the current mailbox for new messages

CloseMessage Close the current message

Command Send a command to the server

Connect Connect to the specified server

CopyMessage Copy a message from the current mailbox to another mailbox

CreateMailbox Create a new mailbox on the server

CreateMessage Create a new message in the specified mailbox

CreateSecurityCredentials Allocate a structure to establish client security credentials

DecodeMailboxName Decode a UTF-7 encoded mailbox name using the specified code page

DeleteMailbox Delete the specified mailbox from the server

DeleteMessage Delete the specified message from the mailbox

DeleteSecurityCredentials Delete the specified client security credentials

DetachHandle Detach the handle for the current instance of this class

DisableEvents Disable the event notification mechanism

DisableTrace Disable logging of network function calls to the trace log

Disconnect Disconnect from the current server

EnableEvents Enable the client event notification mechanism

EnableTrace Enable logging of network function calls to a file

EncodeMailboxName Encode a mailbox name using modified UTF-7 encoding

EnumMessages Enumerate the messages in the current mailbox

ExamineMailbox Select the specified mailbox in read-only mode

ExpungeMailbox Remove messages that have been marked for deletion from the current mailbox

FreezeEvents Suspend and resume event handling by the client

GetCapability Return a string which identifies the capabilities of the server

GetCurrentMailbox Return the name of the currently selected mailbox

GetDeletedMessages Return the messages that have been marked for deletion

GetErrorString Return a description for the specified error code

GetFirstMailbox Return the first mailbox according to specified criteria

GetHandle Return the client handle used by this instance of the class

GetHeaderValue Return the value of the specified header field

GetIdleThreadId Return the ID of the thread created to monitor the client session

GetLastError Return the last error code

GetMailboxDelimiter Get the path delimiter for the specified mailbox hierarchy

GetMailboxSize Return the size of the specified mailbox

GetMailboxStatus Return the status of the specified mailbox

GetMailboxUID Return the unique identifier for the specified mailbox

GetMessage Retrieve the specified message from the server

GetMessageCount Return the number of messages available in the mailbox

GetMessageFlags Return the status flags for the specified message

GetMessageHeaders Retrieve the specified message header from the server

GetMessageId Return the message ID string for the specified message

GetMessageParts Return the number of MIME message parts in the specified message

GetMessageSender Return the address of the message sender

GetMessageSize Return the size of the specified message

GetMessageUID Return the unique identifier for the specified message

GetNewMessages Return a list of the new messages in the current mailbox

GetNextMailbox Return the next mailbox name on the server

GetResultCode Return the result code from the previous command

GetResultString Return the result string from the previous command

GetSecurityInformation Return security information about the current client connection

GetStatus Return the current status of the client

GetTimeout Return the number of seconds until an operation times out

GetTransferStatus Return data transfer statistics

GetUnseenMessages Return a list of messages from the current mailbox that have not been read

Idle Enables mailbox status monitoring for the client session

ImapEventProc Callback method that processes events generated by the client

ImapIdleProc Callback function that receives update notifications from the server

IsBlocking Determine if the client is blocked, waiting for information

IsConnected Determine if the client is connected to the server

IsInitialized Determine if the class has been successfully initialized

IsReadable Determine if data can be read from the server

IsWritable Determine if data can be written to the server

file:///C|/Projects/cstools11/pdf/imap/class/imapeventproc.html
file:///C|/Projects/cstools11/pdf/imap/class/imapidleproc.html

Login Login to the server

OpenMessage Open the specified message for reading on the server

Read Read data returned by the server

RegisterEvent Register an event handler for the specified event

RenameMailbox Rename the specified mailbox

ReselectMailbox Reselect the current mailbox and return updated status information

SearchMailbox Search the mailbox according to specified criteria

SelectMailbox Select the specified mailbox in read-write mode

SetLastError Set the last error code for the current thread

SetMessageFlags Set one or more status flags for the specified message

SetTimeout Set the number of seconds until an operation times out

ShowError Display a message box with a description of the specified error

StoreMessage Store the contents of a message to the specified file

SubscribeMailbox Subscribe to the specified mailbox

UndeleteMessage Undelete the specified message from the current mailbox

UnselectMailbox Unselect the current mailbox and expunge any deleted messages

UnsubscribeMailbox Unsubscribe from the specified mailbox

Write Write data to the server

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::CImapClient Method

CImapClient();

The CImapClient constructor initializes the class library and validates the license key at runtime.

Remarks
If the constructor fails to validate the runtime license, subsequent methods in this class will fail. If
the product is installed with an evaluation license, then the application will only function on the
development system and cannot be redistributed.

The constructor calls the ImapInitialize function to initialize the library, which dynamically loads
other system libraries and allocates thread local storage. If you are using this class within another
DLL, it is important that you do not create or destroy an instance of the class from within the
DllMain function because it can result in deadlocks or access violation errors. You should not
declare static or global instances of this class within another DLL if it is linked with the C runtime
library (CRT) because it will automatically call the constructors and destructors for static and global
C++ objects and has the same restrictions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
~CImapClient, IsInitialized

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::~CImapClient

~CImapClient();

The CImapClient destructor releases resources allocated by the current instance of the
CImapClient object. It also uninitializes the library if there are no other concurrent uses of the
class.

Remarks
When a CImapClient object goes out of scope, the destructor is automatically called to allow the
library to free any resources allocated on behalf of the process. Any pending blocking or
asynchronous calls in this process are canceled without posting any notification messages, and all
handles that were created for the client session are destroyed.

The destructor is not called explicitly by the application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CImapClient

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::AttachHandle Method

VOID AttachHandle(
 HCLIENT hClient
);

The AttachHandle method attaches the specified client handle to the current instance of the
class.

Parameters
hClient

The handle to the client session that will be attached to the current instance of the class object.

Return Value
None.

Remarks
This method is used to attach a client handle created outside of the class using the SocketTools
API. Once the client handle is attached to the class, the other class member functions may be used
with that client session.

If a client handle already has been created for the class, that handle will be released when the new
handle is attached to the class object. If you want to prevent the previous client session from being
terminated, you must call the DetachHandle method. Failure to release the detached handle may
result in a resource leak in your application.

Note that the hClient parameter is presumed to be a valid client handle and no checks are
performed to ensure that the handle is valid. Specifying an invalid client handle will cause
subsequent method calls to fail.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
AttachThread, DetachHandle, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::AttachThread Method

DWORD AttachThread(
 DWORD dwThreadId
);

The AttachThread method attaches the specified client handle to another thread.

Parameters
dwThreadId

The ID of the thread that will become the new owner of the handle. A value of zero specifies
that the current thread should become the owner of the client handle.

Return Value
If the method succeeds, the return value is the thread ID of the previous owner. If the method fails,
the return value is IMAP_ERROR. To get extended error information, call GetLastError.

Remarks
When a client handle is created, it is associated with the current thread that created it. Normally, if
another thread attempts to perform an operation using that handle, an error is returned since it
does not own the handle. This is used to ensure that other threads cannot interfere with an
operation being performed by the owner thread. In some cases, it may be desirable for one
thread in a client application to create the client handle, and then pass that handle to another
worker thread. The AttachThread method can be used to change the ownership of the handle to
the new worker thread. By preserving the return value from the method, the original owner of the
handle can be restored before the worker thread terminates.

This method should be called by the new thread immediately after it has been created, and if the
new thread does not release the handle itself, the ownership of the handle should be restored to
the parent thread before it terminates. Under no circumstances should AttachThread be used to
forcibly release a handle allocated by another thread while a blocking operation is in progress. To
cancel an operation, use the Cancel method and then release the handle after the blocking
method exits and control is returned to the current thread.

Note that the dwThreadId parameter is presumed to be a valid thread ID and no checks are
performed to ensure that the thread actually exists. Specifying an invalid thread ID will orphan the
client handle used by the class until the destructor is called.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
AttachHandle, Cancel, Connect, DetachHandle, Disconnect, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::Cancel Method

INT Cancel();

The Cancel method cancels any outstanding blocking operation in the client, causing the blocking
method to fail. The application may then retry the operation or terminate the client session.

Parameters
None.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
IMAP_ERROR. To get extended error information, call GetLastError.

Remarks
When the Cancel method is called, the blocking method will not immediately fail. An internal flag
is set which causes the blocking operation to exit with an error. This means that the application
cannot cancel an operation and immediately perform some other operation. Instead it must allow
the calling stack to unwind, returning back to the blocking operation before making any further
function calls.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
IsBlocking

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::CheckMailbox Method

INT CheckMailbox(
 UINT *lpnMessages,
 UINT *lpnUnseen
);

The CheckMailbox method requests that the server create a checkpoint of the currently selected
mailbox, and returns the current number of messages and unseen messages.

Parameters
lpnMessages

A pointer to an unsigned integer value which will contain the number of messages in the
currently selected mailbox when the method returns.

lpnUnseen

A pointer to an unsigned integer value which will contain the number of unseen messages in
the currently selected mailbox.

Return Value
If the method succeeds, it returns zero. If an error occurs, the method returns IMAP_ERROR. To
get extended error information, call GetLastError.

Remarks
When the client requests a checkpoint, the server may perform implementation-dependent
housekeeping for that mailbox, such updating the mailbox on disk with the current state of the
mailbox in memory. On some systems this command has no effect other than to update the client
with the current number of messages in the mailbox.

This method actually sends two IMAP commands. The first is the CHECK command, followed by
the NOOP command to poll for any new messages that have arrived. In addition to polling the
server for new messages, this command can also be used to ensure the idle timer on the server
does not expire and force a disconnect from the client.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
CreateMailbox, GetFirstMailbox, GetMailboxStatus, GetNextMailbox, RenameMailbox

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::CloseMessage Method

INT CloseMessage();

The CloseMessage method closes the current message.

Parameters
None.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
IMAP_ERROR. To get extended error information, call GetLastError.

Remarks
The CloseMessage method closes the current message. If there is any remaining data left to be
read from the message, it will be read and discarded.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
CreateMessage, OpenMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::Command Method

INT Command(
 LPCTSTR lpszCommand,
 LPCTSTR lpszParameter
);

The Command method sends a command to the server. This method is typically used for site-
specific commands not directly supported by the API.

Parameters
lpszCommand

The command which will be executed by the server.

lpszParameter

An optional command parameter. If the command requires more than one parameter, then
they should be combined into a single string, with a space separating each parameter. If the
command does not accept any parameters, this value may be NULL.

Return Value
If the method succeeds, it returns an IMAP result code. If the command was successful, it returns
IMAP_RESULT_OK. A return value of IMAP_RESULT_CONTINUE indicates the command was
accepted and the caller should proceed with the next command. If an error occurs, the method
returns IMAP_ERROR. To get extended error information, call GetLastError.

Remarks
A list of valid commands can be found in the technical specification for the protocol. The current
version of the protocol which is supported by this library is version 4rev1 as defined in RFC 3501.

Use the GetResultCode method to determine the result of the command that was sent to the
server.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetResultCode, GetResultString

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::Connect Method

BOOL Connect(
 LPCTSTR lpszRemoteHost,
 UINT nRemotePort,
 UINT nTimeout,
 DWORD dwOptions
);

The Connect method is used to establish a connection with the server.

Parameters
lpszHostName

A pointer to a null terminated string which specifies the host name or IP address of the IMAP
server.

nRemotePort

The port number the client should use to establish the connection. A value of zero specifies that
default port 143 should be used, which is the standard port number assigned to the IMAP
service. If the secure port number is specified, an implicit SSL/TLS connection will be established
by default.

nTimeout

The number of seconds that the client will wait for a response from the server before failing the
current operation.

dwOptions

An unsigned integer value which specifies one or more options. This parameter is constructed
by using a bitwise operator with any of the following values:

Constant Description

IMAP_OPTION_NONE No connection options specified. A standard
connection to the server will be established using
the specified host name and port number.

IMAP_OPTION_IDENTIFY This option specifies the client should identify itself
to the server. If enabled, the client will send the ID
command to the server as defined in RFC 2971.
This option has no effect if the server does not
support the ID command.

IMAP_OPTION_TUNNEL This option specifies that a tunneled TCP
connection and/or port-forwarding is being used
to establish the connection to the server. This
changes the behavior of the client with regards to
internal checks of the destination IP address and
remote port number, default capability selection
and how the connection is established.

IMAP_OPTION_TRUSTEDSITE This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option
only affects connections using either the SSL or

TLS protocols.

IMAP_OPTION_SECURE This option specifies that a secure connection
should be established with the server and requires
that the server support either the SSL or TLS
protocol. This option is the same as specifying
IMAP_OPTION_SECURE_EXPLICIT, which initiates
the secure session using the STARTTLS command.

IMAP_OPTION_SECURE_EXPLICIT This option specifies the client should attempt to
establish a secure connection with the server. The
server must support secure connections using
either the SSL or TLS protocol and the STARTTLS
command.

IMAP_OPTION_SECURE_IMPLICIT This option specifies the client should attempt to
establish a secure connection with the server. The
server must support secure connections using
either the SSL or TLS protocol, and the secure
session must be negotiated immediately after the
connection has been established.

IMAP_OPTION_SECURE_FALLBACK This option specifies the client should permit the
use of less secure cipher suites for compatibility
with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

IMAP_OPTION_PREFER_IPV6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be resolved
to both an IPv6 and IPv4 address. This option is
ignored if the local system does not have IPv6
enabled, or when the hostname can only be
resolved to an IPv4 address. If the server
hostname can only be resolved to an IPv6
address, the client will attempt to establish a
connection using IPv6 regardless if this option has
been specified.

IMAP_OPTION_FREETHREAD This option specifies that this instance of the class
may be used by any thread, and is not limited to
the thread which created it. The application is
responsible for ensuring that access to the class
instance is synchronized across multiple threads.

hEventWnd

The handle to the asynchronous notification window. This window receives messages which
notify the client of various asynchronous client events that occur. Specifying this parameter and
a message identifier causes the connection to be non-blocking. If this parameter is NULL, then a
blocking connection is established.

uEventMsg

The message identifier that is used when an asynchronous client event occurs. This value should
be greater than WM_USER as defined in the Windows header files. If the hEventWnd parameter

is NULL, this parameter should be specified as WM_NULL.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
This method will block the current thread until a connection has been established or the timeout
period has elapsed. To prevent it from blocking the main user interface thread, the application
should create a background worker thread and establish a connection by calling the Connect
method in that thread. If the application requires multiple simultaneous connections, it is
recommended you create a worker thread for each connection.

The dwOptions argument can be used to specify the threading model that is used by the class
when a connection is established. By default, the client session is initially attached to the thread
that created it. From that point on, until the connection is terminated, only the owner may invoke
methods in that instance of the class. The ownership of the class instance may be transferred from
one thread to another using the AttachThread method.

Specifying the IMAP_OPTION_FREETHREAD option enables any thread to call methods in any
instance of the class, regardless of which thread created it. It is important to note that this option
disables certain internal safety checks which are performed by the class and may result in
unexpected behavior unless access to the class instance is synchronized. If one thread calls a
method in the class, it must ensure that no other thread will call another method at the same time
using the same instance.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Disconnect, Login, RegisterEvent, SelectMailbox

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::CopyMessage Method

INT CopyMessage(
 UINT nMessageId,
 LPCTSTR lpszMailbox
);

The CopyMessage method copies a message from the current mailbox to the specified mailbox.
The message is appended to the mailbox, and the message flags and internal date are preserved.

Parameters
nMessageId

The message identifier which specifies which message is to be copied to the mailbox. This value
must be greater than zero and specify a valid message number.

lpszMailbox

A pointer to a string which specifies the name of the mailbox that the message will be copied to.
The mailbox must already exist, and the client must have the appropriate access rights to
modify the mailbox.

Return Value
If the method succeeds, it returns a value of zero. If an error occurs, the method returns
IMAP_ERROR. To get extended error information, call GetLastError.

Remarks
If the mailbox does not exist, the method will fail. To create a new mailbox, use the
CreateMailbox method. A message can be copied within the same mailbox, in which case the
server may flag it as a new message.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CreateMailbox, GetResultCode, GetResultString

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::CreateMailbox Method

INT CreateMailbox(
 LPCTSTR lpszMailbox
);

The CreateMailbox method creates a new mailbox on the server.

Parameters
lpszMailbox

A pointer to a string which specifies the new mailbox to be created.

Return Value
If the method succeeds, it returns a value of zero. If an error occurs, the method returns
IMAP_ERROR. To get extended error information, call GetLastError.

Remarks
If the mailbox name is suffixed with the server's hierarchy delimiter, this indicates to the server that
the client intends to create mailbox names under the specified name in the hierarchy. If superior
hierarchical names are specified in the mailbox name, then the server may automatically create
them as needed. For example, if the mailbox name "Mail/Office/Projects" is specified and
"Mail/Office" does not exist, it may be automatically created by the server.

The special mailbox name INBOX is reserved, and cannot be created. It is recommended that
mailbox names only consist of printable ASCII characters, and the special characters "*" and "%"
should be avoided. If you need to create a mailbox which contains Unicode characters or symbols,
your application should be compiled to use the Unicode character set to ensure that the mailbox
name is encoded correctly. If you do not use Unicode, this method will only accept mailbox names
using either modified UTF-7 encoding or UTF-8 encoding.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DeleteMailbox, GetFirstMailbox, GetNextMailbox, RenameMailbox

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::CreateMessage Method

INT CreateMessage(
 LPCTSTR lpszMailbox,
 LPBYTE lpMessage,
 DWORD dwMessageSize,
 DWORD dwFlags
);

INT CreateMessage(
 LPCTSTR lpszMailbox,
 LPCTSTR lpszMessage,
 DWORD dwFlags
);

The CreateMessage method creates a message, appending it to the contents of the specified
mailbox.

Parameters
lpszMailbox

A pointer to a string which specifies the name of the mailbox that the message will be created
in. The mailbox must already exist, and the client must have the appropriate access rights to
modify the mailbox.

lpMessage

A pointer to the buffer which contains the data for the message to be created. An alternate
form of the method accepts a pointer to a string.

dwMessageSize

An unsigned integer value which specifies the size of the message data in bytes.

dwFlags

An unsigned integer that specifies one or more message flags. This parameter is constructed by
using a bitwise operator with any of the following values:

Constant Description

IMAP_FLAG_NONE No value.

IMAP_FLAG_ANSWERED The message has been answered.

IMAP_FLAG_DRAFT The message is not completed and is marked as a draft
copy.

IMAP_FLAG_URGENT The message is flagged for urgent or special attention.

IMAP_FLAG_SEEN The message has been read.

Return Value
If the method succeeds, it returns zero. If an error occurs, the method returns IMAP_ERROR. To
get extended error information, call GetLastError.

Remarks
If the mailbox does not exist, the method will fail. To create a new mailbox, use the
CreateMailbox method. If the message is created in the mailbox that is currently selected, the
server may flag it as recent.

This method is typically used by applications to store messages which have already been sent to a
user. After a message has been delivered using the SMTP protocol, that same message may be
created in a mailbox on the IMAP server so that the user has access to those messages.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CopyMessage, DeleteMessage, GetMessageFlags, SetMessageFlags

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::CreateSecurityCredentials Method

BOOL CreateSecurityCredentials(
 DWORD dwProtocol,
 DWORD dwOptions,
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword,
 LPCTSTR lpszCertStore,
 LPCTSTR lpszCertName
);

BOOL CreateSecurityCredentials(
 LPCTSTR lpszCertStore,
 LPCTSTR lpszCertName
);

BOOL CreateSecurityCredentials(
 LPCTSTR lpszCertName
);

The CreateSecurityCredentials method establishes the security credentials for the client session.

Parameters
dwProtocol

A bitmask of supported security protocols. This parameter is constructed by using a bitwise
operator with any of the following values:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The
correct protocol is automatically selected, based on
what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.

This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is
supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

dwOptions

A value which specifies one or options. This member is constructed by using a bitwise operator
with any of the following values:

Constant Description

CREDENTIAL_STORE_CURRENT_USER The library will attempt to open a store for
the current user using the certificate store
name provided in this structure. If no options
are specified, then this is the default
behavior.

CREDENTIAL_STORE_LOCAL_MACHINE The library will attempt to open a local
machine store using the certificate store
name provided in this structure. If this option
is specified, the library will always search for a
local machine store before searching for the

store by that name for the current user.

CREDENTIAL_STORE_FILENAME The certificate store name is a file that
contains the certificate and private key that
will be used.

lpszUserName

A pointer to a string which specifies the certificate owner's username. A value of NULL specifies
that no username is required. Currently this parameter is not used and any value specified will
be ignored.

lpszPassword

A pointer to a string which specifies the certificate owner's password. A value of NULL specifies
that no password is required. This parameter is only used if a PKCS #12 (PFX) certificate file is
specified and that certificate has been secured with a password. This value will be ignored the
current user or local machine certificate store is specified.

lpszCertStore

A pointer to a string which specifies the name of the certificate store to open. A certificate store
is a collection of certificates and their private keys, typically organized by how they are used. If
this value is NULL or points to an empty string, the default certificate store "MY" will be used.

Store Name Description

CA Certification authority certificates. These are certificates that are issued by
entities which are entrusted to issue certificates to other individuals or
organizations. Companies such as VeriSign and Thawte act as
certification authorities.

MY Personal certificates and their associated private keys for the current user.
This store typically holds the client certificates used to establish a user's
credentials. This corresponds to the "Personal" store that is displayed by
the certificate manager utility and is the default store used by the library.

ROOT Certificates that have been self-signed by a certificate authority. Root
certificates for a number of different certification authorities such as
VeriSign and Thawte are installed as part of the operating system and
periodically updated by Microsoft.

lpszCertName

A pointer to a null terminated string which specifies the name of the certificate to use. The
function will first search the certificate store for a certificate with a matching "friendly name"; this
is a name for the certificate that is assigned by the user. Note that the name must match
completely, but the comparison is not case sensitive. If no matching certificate is found, the
function will then attempt to find a certificate that has a matching common name (also called
the certificate subject). This comparison is less stringent, and the first partial match will be
returned. If this second search fails, the function will return an error indicating that the certificate
could not be found.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Example

pClient->CreateSecurityCredentials(
 SECURITY_PROTOCOL_DEFAULT,
 0,
 NULL,
 NULL,
 lpszCertStore,
 lpszCertName);

bConnected = pClient->Connect(lpszHostName,
 IMAP_PORT_SECURE,
 IMAP_TIMEOUT,
 IMAP_OPTION_SECURE);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Connect, DeleteSecurityCredentials, GetSecurityInformation, SECURITYCREDENTIALS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::DecodeMailboxName Method

INT DecodeMailboxName(
 LPCSTR lpszMailboxName,
 LPTSTR lpszDecodedName,
 INT nMaxLength,
 INT nCodePage
);

INT DecodeMailboxName(
 LPCSTR lpszMailboxName,
 CString& strDecodedName,
 INT nCodePage
);

The DecodeMailboxName method decodes a UTF-7 encoded mailbox name using the specified
code page.

Parameters
lpszMailboxName

A pointer to a null terminated string which contains the UTF-7 encoded name of the mailbox.
The encoded string must use the modified UTF-7 format defined in the IMAP4 protocol
standard. This parameter cannot be a NULL pointer or an empty string.

lpszDecodedName

A pointer to a string buffer which will contain the decoded mailbox name. This parameter
cannot be NULL and must be large enough to contain the entire name. An alternate form of the
method accepts a CString object which will contain the decoded mailbox name when the
method returns.

nMaxLength

An integer value which specifies the maximum number of characters which can be copied into
the lpszDecodedName string buffer. This value must be greater than zero and the buffer must
be large enough to store the entire name.

nCodePage

An optional integer value which specifies the code page used when decoding the mailbox
name. If the application does not use Unicode, this parameter can be any valid code page. The
default value is CP_ACP which specifies the current active code page for the locale. Applications
which are built using Unicode should always use the default value.

Return Value
If the method succeeds, it returns the number of characters in the decoded mailbox name. If an
error occurs, the method returns zero. To get extended error information, call GetLastError.

Remarks
Mailbox names which contain non-ASCII characters must be converted to a modified version of
UTF-7 encoding as defined by the IMAP4 protocol. This encoding allows applications to reference
mailbox names which contain Unicode characters and provides support for languages other than
English. This method is used to convert a UTF-7 encoded mailbox name using the current locale,
primarily for display purposes.

For example, if the lpszMailboxName parameter specifies the string "&A5QDvwO6A7kDvAOu-",
this method will convert it to the Greek word "Δοκιμή" and return that value in the

lpszDecodedName buffer. It is recommended you use the Unicode version of this method
whenever possible to ensure the mailbox name is decoded correctly.

If the application is not built using Unicode, the decoded mailbox name will be converted using
the code page specified by the nCodePage parameter. If the code page does not support the
characters used in the mailbox name, this can result in an incorrect conversion.

This method should not be used to convert strings between Unicode and UTF-7. The encoding
format is specifically intended for use with the IMAP4 protocol and should never be used for
general purpose encoding or decoding. If you need to convert a UTF-7 encoded string to
Unicode, use the Win32 API function MultiByteToWideChar.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CreateMailbox, EncodeMailboxName, GetFirstMailbox, GetNextMailbox, RenameMailbox

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::DeleteMailbox Method

INT DeleteMailbox(
 LPCTSTR lpszMailbox
);

The DeleteMailbox method deletes a mailbox on the server.

Parameters
lpszMailbox

A pointer to a string which specifies the mailbox to be deleted.

Return Value
If the method succeeds, it returns value of zero. If an error occurs, the method returns
IMAP_ERROR. To get extended error information, call GetLastError.

Remarks
A mailbox cannot be deleted if it contains inferior hierarchical names and has the
IMAP_FLAG_NOSELECT attribute. On most systems this is the case when the mailbox name
references a directory on the server, and that directory contains other subdirectories or mailboxes.
To remove the mailbox, you must first delete any child mailboxes that exist.

If the mailbox that is deleted is the currently selected mailbox, it will be automatically unselected
and any messages marked for deletion will be expunged before the mailbox is removed. If the
delete operation fails, the client will remain in an unselected state until either the
ExamineMailbox or SelectMailbox method is called.

The special mailbox name INBOX is reserved, and cannot be deleted.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CreateMailbox, GetFirstMailbox, GetNextMailbox, RenameMailbox

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::DeleteMessage Method

INT DeleteMessage(
 UINT nMessageId
);

The DeleteMessage method marks the specified message for deletion from the current mailbox.

Parameters
nMessage

Number of message to delete from the server. This value must be greater than zero. The first
message in the mailbox is message number one.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
IMAP_ERROR. To get extended error information, call GetLastError.

Remarks
This method only marks the message for deletion. The message is not actually deleted until the
mailbox is expunged or another mailbox is selected. This method will return an error if the current
mailbox is in read-only mode, such as if it was selected using the ExamineMailbox method.

It is important to note that unlike the POP3 protocol, a message that is marked for deletion is still
accessible on the IMAP server until the mailbox is expunged. This means, for example, that a
deleted message can still be retrieved using the GetMessage method.

To determine if a message has been marked for deletion, use the GetMessageFlags method and
check if the IMAP_FLAG_DELETED bit flag has been set. To list all of the deleted messages in the
current mailbox, use the GetDeletedMessages method.

To remove the deletion flag from the message, use the UndeleteMessage method. To prevent all
messages in the current mailbox from being expunged, use the ReselectMailbox method to reset
the current mailbox state.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
GetDeletedMessages, GetMessage, GetMessageCount, GetMessageFlags, ReselectMailbox,
UndeleteMessage, UnselectMailbox

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::DeleteSecurityCredentials Method

VOID DeleteSecurityCredentials();

The DeleteSecurityCredentials method releases the security credentials for the current session.

Parameters
None.

Return Value
None.

Remarks
This method can be used to release the memory allocated to the client or server credentials after
a secure connection has been terminated. The security credentials are released when the class
destructor is called, so it is normally not required that the application explicitly call this method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CreateSecurityCredentials

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::DetachHandle Method

HCLIENT DetachHandle();

The DetachHandle method detaches the client handle associated with the current instance of the
class.

Parameters
None.

Return Value
This method returns the client handle associated with the current instance of the class object. If
there is no active client session, the value INVALID_CLIENT will be returned.

Remarks
This method is used to detach a client handle created by the class for use with the SocketTools
API. Once the client handle is detached from the class, no other class member functions may be
called. Note that the handle must be explicitly released at some later point by the process or a
resource leak will occur.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
AttachHandle, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::DisableEvents Method

INT DisableEvents();

The DisableEvents method disables the event notification mechanism, preventing subsequent
event notification messages from being posted to the application's message queue.

This method has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Parameters
None.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
IMAP_ERROR. To get extended error information, call GetLastError.

Remarks
The DisableEvents method is used to disable event message posting for the specified client
session. Although this will immediately prevent any new events from being generated, it is possible
that messages could be waiting in the message queue. Therefore, an application must be
prepared to handle client event messages after this method has been called.

This method is automatically called if the client has event notification enabled, and the Disconnect
method is called. The same issues regarding outstanding event messages also applies in this
situation, requiring that the application handle event messages that may reference a client handle
that is no longer valid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
EnableEvents, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::DisableTrace Method

BOOL DisableTrace();

The DisableTrace method disables the logging of socket function calls to the trace log.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, a value of zero is
returned.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
EnableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::Disconnect Method

VOID Disconnect();

The Disconnect method terminates the connection with the server, closing the socket and
releasing the memory allocated for the client session.

Parameters
None.

Return Value
None.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
Connect, IsConnected

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::EnableEvents Method

INT EnableEvents(
 HWND hEventWnd,
 UINT uEventMsg
);

The EnableEvents method enables event notifications using Windows messages.

This method has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Applications should use the RegisterEvent method to register an event handler which is invoked
when an event occurs.

Parameters
hEventWnd

Handle to the window which will receive the client notification messages. This parameter must
specify a valid window handle. If a NULL handle is specified, event notification will be disabled.

uEventMsg

The message that is received when a client event occurs. This value must be greater than 1024.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
IMAP_ERROR. To get extended error information, call GetLastError.

Remarks
The EnableEvents method is used to request that notification messages be posted to the
specified window whenever a client event occurs. This allows an application to monitor the status
of different client operations, such as a file transfer.

The wParam argument will contain the client handle, the low word of the lParam argument will
contain the event ID, and the high word will contain any error code. If no error has occurred, the
high word will always have a value of zero. The following events may be generated:

Constant Description

IMAP_EVENT_CONNECT The connection to the server has completed. The high word of
the lParam parameter should be checked, since this notification
message will be posted if an error has occurred.

IMAP_EVENT_DISCONNECT The server has closed the connection to the client. The client
should read any remaining data and disconnect.

IMAP_EVENT_READ Data is available to read by the calling process. No additional
messages will be posted until the client has read at least some of
the data. This event is only generated if the client is in
asynchronous mode.

IMAP_EVENT_WRITE The client can now write data. This notification is sent after a
connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking

operation. This event is only generated if the client is in
asynchronous mode.

IMAP_EVENT_TIMEOUT The network operation has exceeded the specified timeout
period. The client application may attempt to retry the operation,
or may disconnect from the server and report an error to the
user.

IMAP_EVENT_CANCEL The current operation has been canceled. Under most
circumstances the client should disconnect from the server and
re-connect if needed. After an operation has been canceled, the
server may abort the connection or refuse to accept further
commands from the client.

IMAP_EVENT_COMMAND A command has been issued by the client and the server
response has been received and processed. This event can be
used to log the result codes and messages returned by the server
in response to actions taken by the client.

IMAP_EVENT_PROGRESS The client is in the process of sending or receiving a file on the
data channel. This event is called periodically during a transfer so
that the client can update any user interface components such as
a status control or progress bar.

It is not required that the client be placed in asynchronous mode in order to receive command
and progress event notifications. To disable event notification, call the DisableEvents method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
DisableEvents, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::EnableTrace Method

BOOL EnableTrace(
 LPCTSTR lpszTraceFile,
 DWORD dwTraceFlags
);

The EnableTrace method enables the logging of socket function calls to a file.

Parameters
lpszTraceFile

A pointer to a string which specifies the name of the trace log file. If this parameter is NULL or
an empty string, the default file name cstrace.log is used. The file is stored in the directory
specified by the TEMP environment variable, if it is defined; otherwise, the current working
directory is used.

dwTraceFlags

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

TRACE_INFO All function calls are written to the trace file. This is the default
value.

TRACE_ERROR Only those function calls which fail are recorded in the trace file.

TRACE_WARNING Only those function calls which fail or return values which indicate
a warning are recorded in the trace file.

TRACE_HEXDUMP All functions calls are written to the trace file, plus all the data that
is sent or received is displayed, in both ASCII and hexadecimal
format.

TRACE_PROCESS All function calls in the current process are logged, rather than
only those functions in the current thread. This option is useful for
multithreaded applications that are using worker threads.

Return Value
If the method succeeds, the return value is non-zero. A return value of zero indicates an error.
Failure typically indicates that the tracing library cstrcv11.dll cannot be loaded on the local
system.

Remarks
When trace logging is enabled, the file is opened, appended to and closed for each socket
function call. This makes it possible for an application to append its own logging information,
however care should be taken to ensure that the file is closed before the next network operation is
performed. To limit the size of the log files, enable and disable logging only around those sections
of code that you wish to trace.

Note that the TRACE_HEXDUMP trace level generates very large log files since it includes all of the
data exchanged between your application and the server.

Trace method logging is managed on a per-thread basis, not for each client handle. This means
that all SocketTools libraries and components share the same settings in the current thread. If you

are using multiple SocketTools libraries or components in your application, you only need to
enable logging once.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DisableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::EncodeMailboxName Function

INT EncodeMailboxName(
 LPCTSTR lpszMailboxName,
 LPTSTR lpszEncodedName,
 INT nMaxLength,
 INT nCodePage
);

INT EncodeMailboxName(
 LPCTSTR lpszMailboxName,
 CString& strEncodedName,
 INT nCodePage
);

The EncodeMailboxName method encodes a mailbox name using modified UTF-7 encoding.

Parameters
lpszMailboxName

A pointer to a null terminated string which contains the name of the mailbox. If the application
does not use Unicode, this string is automatically converted to Unicode using the code page
specified by the nCodePage parameter. This paramter cannot be a NULL pointer or an empty
string.

lpszEncodedName

A pointer to a string buffer which will contain the UTF-7 encoded mailbox name. This parameter
cannot be NULL and must be large enough to contain the entire name. The string will be null
terminated and will only contain printable ASCII characters. An alternate form of the method
accepts a CString object which will contain the decoded mailbox name when the method
returns.

nMaxLength

An integer value which specifies the maximum number of characters which can be copied into
the lpszEncodedName string buffer. This value must be greater than zero and the buffer must
be large enough to store the entire name.

nCodePage

An optional integer value which specifies the code page used when decoding the mailbox
name. If the application does not use Unicode, this parameter can be any valid code page. The
default value is CP_ACP which specifies the current active code page for the locale. Applications
which are built using Unicode should always use the default value.

Return Value
If the method succeeds, it returns the number of characters in the encoded mailbox name. If an
error occurs, the method returns zero. To get extended error information, call GetLastError.

Remarks
Mailbox names which contain non-ASCII characters must be converted to a modified version of
UTF-7 encoding as defined by the IMAP4 protocol. This encoding allows applications to reference
mailbox names which contain Unicode characters and provides support for languages other than
English. This method is used to convert a mailbox name which contains non-ASCII characters to
the UTF-7 encoded required by IMAP servers.

For example, if the lpszMailboxName parameter specifies the string "Δοκιμή", this method will

encode it as "&A5QDvwO6A7kDvAOu-" and return that value in the lpszEncodedName buffer. It is
recommended you compile the application using the Unicode character set whenever possible to
ensure the mailbox name is encoded correctly.

If the application is not compiled using Unicode, the mailbox name will be automatically converted
to Unicode using the code page specified by the nCodePage parameter. If the code page does
not support the characters used in the mailbox name, this can result in an incorrect conversion.
Using the previous example, the mailbox name will always encode correctly if the Unicode version
of the method is used, but the ANSI version of the method will only encode it correctly if the code
page is specified as 1253 (Greek).

This method should not be used to convert strings between Unicode and UTF-7. The encoding
format is specifically intended for use with the IMAP4 protocol and should never be used for
general purpose encoding or decoding. If you need to convert a Unicode string to UTF-7, use the
Win32 API function WideCharToMultiByte.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CreateMailbox, DecodeMailboxName, GetFirstMailbox, GetNextMailbox, RenameMailbox

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::EnumMessages Method

INT EnumMessages(
 UINT nFirstMessageId,
 UINT nLastMessageId,
 DWORD dwMessageFlags,
 LPIMAPMESSAGE lpMessageList,
 INT nMaxMessages
);

INT EnumMessages(
 LPIMAPMESSAGE lpMessageList,
 INT nMaxMessages
);

The EnumMessages method enumerates the messages in the current mailbox, populating an
array of IMAPMESSAGE structures which contain information about each message.

Parameters
nFirstMessageId

An unsigned integer value which specifies the first message to enumerate. This value must be
greater than zero and specify a valid message identifier. The first message in the mailbox has a
value of one.

nLastMessageId

An unsigned integer value which specifies the last message to enumerate. This value must be
greater than or equal to the value of the nFirstMessageId parameter. A special value of
0xFFFFFFFF (-1) can be used to specify the last message in the mailbox.

dwMessageFlags

This parameter is used to determine which messages are enumerated. If the value is zero, then
all applicable messages will be enumerated. If the value is non-zero, only those messages which
have at least one of the specified flags will be returned. More than one flag can be specified by
using a bitwise operator. Valid message flags are:

Constant Description

IMAP_FLAG_ANSWERED Return only those messages which have been answered.

IMAP_FLAG_DELETED Return only those messages which have been marked for
deletion.

IMAP_FLAG_DRAFT Return only those messages which have been marked as
draft copies.

IMAP_FLAG_URGENT Return only those messages which have been flagged for
urgent or special attention.

IMAP_FLAG_RECENT Return only those messages which have been recently
added to the mailbox.

IMAP_FLAG_SEEN Return only those messages which have been read.

lpMessageList

A pointer to an array of IMAPMESSAGE structures which will contain information about each of
the messages returned by the server. This parameter cannot be NULL.

nMaxMessages

An integer value which specifies the maximum size of the IMAPMESSAGE array that was passed
to the method. This value must be at least one.

Return Value
If the method succeeds, the return value is the number of messages that were enumerated. If no
messages match the specified criteria, the method will return a value of zero. If an error is
encountered, the method returns IMAP_ERROR. To get extended error information, call
GetLastError.

Remarks
If the message UID is being stored locally by the client to identify the message over multiple
sessions, it must also store the mailbox UID. Only the combination of the mailbox name, mailbox
UID and message UID can be used to uniquely identify a given message on the server. Although
IMAP server implementations are encouraged to maintain persistent message UIDs, they are not
required to do so and those values may change if the mailbox UID changes.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
GetMessage, GetMessageCount, GetMessageFlags, GetMessageHeaders, GetMessageSize,
GetMessageUID, IMAPMESSAGE

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::ExamineMailbox Method

INT ExamineMailbox(
 LPCTSTR lpszMailbox,
 LPIMAPMAILBOX lpMailboxInfo
);

The ExamineMailbox method selects the specified mailbox for read-only access.

Parameters
lpszMailbox

A pointer to a string which specifies the new mailbox to be examined.

lpMailboxInfo

A pointer to an IMAPMAILBOX structure which contains information about the mailbox when
the method returns. This parameter may be NULL if the caller does not require any information
about the mailbox.

Return Value
If the method succeeds, it returns zero. If an error occurs, the method returns IMAP_ERROR. To
get extended error information, call GetLastError.

Remarks
The ExamineMailbox method is used to select a mailbox in read-only mode. Messages can be
read, but they cannot be modified or deleted from the mailbox and new messages will not lose
their status as new messages if they are accessed.

If the client has a different mailbox currently selected, that mailbox will be closed and any
messages marked for deletion will be expunged. To prevent deleted messages from being
removed from the previous mailbox, use the UnselectMailbox method prior to examining the
new mailbox.

If an application wishes to update the information returned in the IMAPMAILBOX structure for the
current mailbox, simply call ExamineMailbox again with the same mailbox name.

The special case-insensitive mailbox name INBOX is used for new messages. Other mailbox names
may or may not be case-sensitive depending on the IMAP server's operating system and
implementation.

To access a mailbox in read-write mode, use the SelectMailbox method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DeleteMailbox, GetFirstMailbox, GetMailboxStatus, GetNextMailbox, RenameMailbox,
ReselectMailbox, SelectMailbox, UnselectMailbox

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::ExpungeMailbox Method

INT ExpungeMailbox(
 LPIMAPMAILBOX lpMailboxInfo
);

The ExpungeMailbox method removes all messages marked for deletion from the current
mailbox.

Parameters
lpMailboxInfo

A pointer to an IMAPMAILBOX structure which contains information about the mailbox when
the method returns. This parameter may be NULL if the caller does not require any information
about the mailbox.

Return Value
If the method succeeds, it returns zero. If an error occurs, the method returns IMAP_ERROR. To
get extended error information, call GetLastError.

Remarks
The ExpungeMailbox method causes all messages marked for deletion to be removed from the
mailbox. Note that this can cause the mailbox's UID to change, and potentially invalidate the
current message UIDs. It is recommended that applications use the information returned in the
IMAPMAILBOX structure to update any internal state information stored on the local system.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CreateMailbox, ExamineMailbox, GetFirstMailbox, GetNextMailbox, RenameMailbox, SelectMailbox

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::FreezeEvents Method

INT FreezeEvents(
 BOOL bFreeze
);

The FreezeEvents method is used to suspend and resume event handling by the client.

Parameters
bFreeze

A non-zero value specifies that event handling should be suspended by the client. A zero value
specifies that event handling should be resumed.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
IMAP_ERROR. To get extended error information, call GetLastError.

Remarks
This method should be used when the application does not want to process events, such as when
a modal dialog is being displayed. When events are suspended, all client events are queued. If
events are re-enabled at a later point, those queued events will be sent to the application for
processing. Note that only one of each event will be generated. For example, if the client has
suspended event handling, and four read events occur, once event handling is resumed only one
of those read events will be posted to the client. This prevents the application from being flooded
by a potentially large number of queued events.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DisableEvents, EnableEvents, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::GetCapability Method

INT GetCapability(
 LPTSTR lpszCapability,
 INT nMaxLength
);

INT GetCapability(
 CString& strCapability
);

The GetCapability method returns a string which identifies the capabilities of the IMAP server.

Parameters
lpszCapability

A pointer to a null terminated string buffer that will contain one or more tokens separated by
spaces which identify the capabilities of the IMAP server.

nMaxLength

The maximum length of the capability string, including the terminating null character.

Return Value
If the function succeeds, it returns the length of the capability string, not including the terminating
null character. If an error occurs, the function returns IMAP_ERROR. To get extended error
information, call GetLastError.

Remarks
This method returns a string that contains one or more tokens separated by whitespace. Each
token identifies a capability of the server. The following table lists some of the common
capabilities:

Capability Description

ACL The RFC 2086 ACL extension

BINARY The RFC 3516 binary content extension

CHILDREN The RFC 3348 child mailbox extension

ID The RFC 2971 ID extension

IDLE The RFC 2177 IDLE extension

LOGINDISABLED The RFC 2595 TLS/SSL extension

LOGINREFERRALS The RFC 2221 login referrals extension

MAILBOXREFERRALS The RFC 2193 mailbox referrals extension

MULTIAPPEND The RFC 3501 MULTIAPPEND extension

NAMESPACE The RFC 2342 namespace Extension

QUOTA The RFC 2087 QUOTA extension

STARTTLS The RFC 2595 TLS/SSL extension

UNSELECT The RFC 3691 UNSELECT extension

Additional capabilities may be supported by your server. Note that experimental or custom

capabilities are always prefixed with the letter X. A list of standard IMAP capabilities is maintained
by the Internet Assigned Numbers Authority (IANA) at www.iana.org.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Connect, Disconnect

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::GetCurrentMailbox Method

INT GetCurrentMailbox(
 LPTSTR lpszMailbox,
 INT nMaxLength
);

INT GetCurrentMailbox(
 CString& strMailbox
);

The GetCurrentMailbox method returns the name of the current mailbox that has been selected.

Parameters
lpszMailbox

A pointer to a null terminated string buffer that will contain the current mailbox name. If the
application uses the Unicode character set, the mailbox name will automatically be converted
from modified UTF-7 encoding to Unicode. If the application does not use Unicode, the mailbox
name will be returned using modified UTF-7 encoding. An alternate form of the method accepts
a CString object which will contain the mailbox name when the method returns.

nMaxLength

The maximum length of the mailbox string, including the terminating null character.

Return Value
If the method succeeds, it returns the length of the current mailbox name, not including the
terminating null character. If an error occurs, the method returns IMAP_ERROR. To get extended
error information, call GetLastError.

Remarks
It is recommended you compile the application using the Unicode character set, particularly if it is
possible that mailbox names will contain Unicode characters or symbols. This will ensure that
mailbox names are automatically converted from modified UTF-7 to UTF-16 Unicode. If Unicode is
not used and a mailbox name contains non-ASCII characters, the name will be returned using a
modified UTF-7 encoding format as defined by the IMAP4 standard. The mailbox name will not be
returned as UTF-8 Unicode or as ANSI text converted to the current locale.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ExamineMailbox, GetFirstMailbox, GetNextMailbox, SelectMailbox, UnselectMailbox

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::GetDeletedMessages Method

INT GetDeletedMessages(
 UINT* lpnMessageIds,
 INT nMaxMessages
);

The GetDeletedMessages method returns the message identifiers for those messages that have
been marked for deletion in the current mailbox.

Parameters
lpnMessageIds

A pointer to an array of unsigned integers that will contain the message identifiers of those
messages which have been marked for deletion in the current mailbox. This parameter may be
NULL, in which case the method will return the number of deleted messages but will not return
their identifiers.

nMaxMessages

The maximum number of message identifiers that may be stored in the lpnMessageIds array. If
the lpnMessageIds parameter is NULL, this value should be zero.

Return Value
If the method succeeds, the return value is the number of messages marked for deletion in the
current mailbox. If the method fails, the return value is IMAP_ERROR. To get extended error
information, call GetLastError.

Remarks
The message identifiers returned by this method are only valid until the mailbox is expunged or
another mailbox is selected.

To remove the deleted flag from a message, use the UndeleteMessage method. To prevent all
messages in the current mailbox from being expunged, use the ReselectMailbox method to reset
the current mailbox state.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
GetMessageCount, GetMessageFlags, GetNewMessages, GetUnseenMessages, SearchMailbox

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::GetErrorString Method

INT GetErrorString(
 DWORD dwErrorCode,
 LPTSTR lpszDescription,
 INT cbDescription
);

INT GetErrorString(
 DWORD dwErrorCode,
 CString& strDescription
);

The GetErrorString method is used to return a description of a specific error code. Typically this is
used in conjunction with the GetLastError method for use with warning dialogs or as diagnostic
messages.

Parameters
dwErrorCode

The error code for which a description is returned.

lpszDescription

A pointer to the buffer that will contain a description of the specified error code. This buffer
should be at least 128 characters in length. An alternate form of the method accepts a CString
variable which will contain the error description.

cbDescription

The maximum number of characters that may be copied into the description buffer.

Return Value
If the method succeeds, the return value is the length of the description string. If the method fails,
the return value is zero, meaning that no description exists for the specified error code. Typically
this indicates that the error code passed to the method is invalid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetLastError, SetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::GetFirstMailbox Method

INT GetFirstMailbox(
 LPCTSTR lpszReference,
 LPCTSTR lpszWildcard,
 DWORD dwOptions,
 LPTSTR lpszMailbox,
 INT nMaxLength
 LPDWORD lpdwFlags
);

INT GetFirstMailbox(
 CString& strMailbox,
 LPDWORD lpdwFlags
);

The GetFirstMailbox method returns the name of the first matching mailbox.

Parameters
lpszReference

A pointer to a string which specifies the reference name. An empty string or NULL pointer
specifies that the default mailbox hierarchy for the current user is returned. If the reference
name is provided, this must be the name of a mailbox or a level of the mailbox hierarchy which
provides the context in which the mailbox name is interpreted.

lpszWildcard

A pointer to a null terminated string which specifies the mailbox name to match. The wildcard
character "*" may be used to match any portion of the mailbox hierarchy, including the
delimiter. The wildcard character "%" matches any portion of the mailbox name, but does not
match the mailbox delimiter. An empty string or NULL pointer specifies that all mailboxes in the
context of the lpszReference parameter should be returned.

dwOptions

Specifies one or more options which controls how mailboxes are returned by the method. The
options are bit flags which may be combined using a bitwise operator. One or more of the
following values may be used:

Constant Description

IMAP_LIST_DEFAULT This option specifies that all regular, selectable mailboxes
should be returned.

IMAP_LIST_SUBSCRIBED This option specifies that only subscribed mailboxes should
be returned.

IMAP_LIST_FOLDERS This option specifies that non-selectable mailbox folders
should also be returned.

IMAP_LIST_HIDDEN This option specifies that hidden mailboxes should be
returned.

IMAP_LIST_INFERIOR This option specifies that inferior mailboxes should be
returned if an explicit wildcard mask is not specified.

lpszMailbox

A pointer to a string buffer which will contain the first matching mailbox. This parameter cannot

be NULL. A minimum buffer size of at least 128 character is recommended. If the application
uses the Unicode character set, the mailbox name will automatically be converted from
modified UTF-7 encoding to Unicode. If the application does not use Unicode, the mailbox
name will be returned using modified UTF-7 encoding.

nMaxLength

Specifies the maximum length of the string buffer. The maximum length of the buffer should be
large enough to accommodate most path names on the IMAP server.

lpdwFlags

A pointer to an unsigned integer which will contain the mailbox flags for the first matching
mailbox. This parameter may be NULL, in which case the mailbox flags are not returned.
Otherwise, one or more of the following bit flags may be returned:

Constant Description

IMAP_FLAG_NOINFERIORS The mailbox does not contain any sub-mailboxes. In the
IMAP protocol, these are referred to as inferior
hierarchical mailbox names.

IMAP_FLAG_NOSELECT The mailbox cannot be selected or examined. This flag is
typically used by servers to indicate that the mailbox name
refers to a directory on the server, not a mailbox file.

IMAP_FLAG_MARKED The mailbox is marked as being of interest to a client. If
this flag is used, it typically means that the mailbox
contains messages. An application should not depend on
this flag being present for any given mailbox. Some IMAP
servers do not support marked or unmarked flags for
mailboxes.

IMAP_FLAG_UNMARKED The mailbox is marked as not being of interest to a client.
If this flag is used, it typically means that the mailbox does
not contain any messages. An application should not
depend on this flag being present for any given mailbox.
Some IMAP servers do not support marked or unmarked
flags for mailboxes.

Return Value
If the method succeeds, it returns the length of the mailbox name. If an error occurs, the method
returns IMAP_ERROR. To get extended error information, call GetLastError.

Remarks
The GetFirstMailbox method is used to begin enumerating the available mailboxes for the
current user on the IMAP server. Subsequent mailbox names are returned by calling
GetNextMailbox until the method returns IMAP_ERROR with an error code of
ST_ERROR_NO_MORE_MAILBOXES.

It is recommended you compile the application using the Unicode character set, particularly if it is
possible that mailbox names will contain Unicode characters or symbols. This will ensure that
mailbox names are automatically converted from modified UTF-7 to UTF-16 Unicode. If Unicode is
not used and a mailbox name contains non-ASCII characters, the name will be returned using a
modified UTF-7 encoding format as defined by the IMAP4 standard. The mailbox name will not be
returned as UTF-8 Unicode or as ANSI text converted to the current locale.

The method of the lpszReference and lpszWildcard parameters are implementation dependent
and generally are tied to the underlying operating system. On a UNIX based system, it can be
helpful to think of the reference name as the directory where mailbox folders are stored, and the
mailbox name as the name to search for in that directory and any subdirectories, if applicable. If
the reference name is an empty string or NULL pointer, this typically refers to the current user's
home directory.

Generally speaking, a reference name should only be specified if you or the user of the application
knows the directory structure on the IMAP server. Incorrectly using a reference name can have
serious negative side-effects. For example, specifying a reference name of "/" on a UNIX based
system could cause the IMAP server to return search every directory on the system for a matching
mailbox name. Similarly, the IMAP server may be unable to distinguish between regular files in the
user's home directory and mailboxes. For this reason, most IMAP clients require that the user
specify the directory on the server where their mailboxes are stored. Typically this is subdirectory
named "mail" or "Mail" under the user's home directory. For non-UNIX servers, the mailbox
hierarchy may represented differently, including a flat hierarchy.

Hidden mailboxes are those mailboxes which use the UNIX convention of the name beginning
with a period. Therefore, a mailbox named ".secrets" would not normally be returned by the
GetFirstMailbox and GetNextMailbox methods. The IMAP_LIST_HIDDEN option causes all
mailboxes to be returned.

The IMAP_LIST_INFERIOR option will return inferior mailboxes (mailboxes located in folders or
subdirectories) if a wildcard mask is not specified. If a wildcard mask is specified, this option has no
effect and only those mailboxes which match the wildcard will be returned.

Subscribed mailboxes are those which were specified using the SubscribeMailbox method.
Marked mailboxes are typically those which have some special importance to the user.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DeleteMailbox, GetCurrentMailbox, GetMailboxStatus, GetNextMailbox, RenameMailbox,
SelectMailbox

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::GetHandle Method

HCLIENT GetHandle();

The GetHandle method returns the client handle associated with the current instance of the class.

Parameters
None.

Return Value
This method returns the client handle associated with the current instance of the class object. If
there is no active client session, the value INVALID_CLIENT will be returned.

Remarks
This method is used to obtain the client handle created by the class for use with the SocketTools
API.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
AttachHandle, DetachHandle, IsInitialized

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::GetHeaderValue Method

INT GetHeaderValue(
 UINT nMessageId,
 UINT nMessagePart,
 LPCTSTR lpszHeader,
 LPTSTR lpszValue,
 INT nMaxLength
);

INT GetHeaderValue(
 UINT nMessageId,
 LPCTSTR lpszHeader,
 LPTSTR lpszValue,
 INT nMaxLength
);

INT GetHeaderValue(
 UINT nMessageId,
 UINT nMessagePart,
 LPCTSTR lpszHeader,
 CString& strValue
);

INT GetHeaderValue(
 UINT nMessageId,
 LPCTSTR lpszHeader,
 CString& strValue
);

The GetHeaderValue method returns the value of a header field in the specified message.

Parameters
nMessageId

Number of message to retrieve header value from. This value must be greater than zero. The
first message in the mailbox is message number one.

nMessagePart

The message part that the header value will be be retrieved from. Message parts start with a
value of one. A value of zero specifies that the RFC822 header field for the message will be
used.

lpszHeader

Pointer to a string which specifies the message header to retrieve. The colon should not be
included in this string.

lpszValue

Pointer to a string buffer that will contain the value of the specified message header.

nMaxLength

The maximum number of characters that may be copied into the buffer, including the
terminating null character.

Return Value
If the method succeeds, it returns the length of the header field value. If the header field is not
present in the message, the method will return a value of zero. If the method fails, the return value

is IMAP_ERROR. To get extended error information, call GetLastError.

Remarks
The GetHeaderValue method returns the value of header field from the specified message. This
allows an application to be able to easily determine the value of a header such as the sender, or
the subject of the message. Any header field, including non-standard extensions, may be returned
by this method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetMessageHeaders, GetMessageId, GetMessageSender

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::GetIdleThreadId Method

DWORD GetIdleThreadId();

The GetIdleThreadId method returns ID of the thread that is monitoring the client session.

Parameters
None

Return Value
If the method succeeds, it returns the ID of the thread that is checking for update notifications
from the server. If there is no active thread monitoring the client session, the method will return
zero.

Remarks
The worker thread that monitors the client connection in the background can terminate if an IMAP
command is sent to the server, if the Cancel method is called or if the client disconnects from the
server. The GetIdleThreadId method enables the application to determine if this background
thread is still active or not.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Idle, ImapIdleProc

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/imap/class/imapidleproc.html

 CImapClient::GetLastError Method

DWORD GetLastError();

DWORD GetLastError(
 CString& strDescription
);

Parameters
strDescription

A string which will contain a description of the last error code value when the method returns. If
no error has been set, or the last error code has been cleared, this string will be empty.

Return Value
The return value is the last error code value for the current thread. Functions set this value by
calling the SetLastError method. The Return Value section of each reference page notes the
conditions under which the method sets the last error code.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. You should call
the GetLastError method immediately when a method's return value indicates that an error has
occurred. That is because some methods call SetLastError(0) when they succeed, clearing the
error code set by the most recently failed method.

Most methods will set the last error code value when they fail; a few methods set it when they
succeed. Function failure is typically indicated by a return value such as FALSE, NULL,
INVALID_CLIENT or IMAP_ERROR. Those methods which call SetLastError when they succeed are
noted on the method reference page.

The description of the error code is the same string that is returned by the GetErrorString
method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
GetErrorString, SetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::GetMailboxDelimiter Method

INT GetMailboxDelimiter(
 LPCTSTR lpszMailbox,
 LPTSTR lpszDelimiter,
 INT nMaxLength
);

INT GetMailboxDelimiter(
 LPCTSTR lpszMailbox,
 CString& strDelimiter
);

The GetMailboxDelimiter method returns the hierarchical path delimiter used for the specified
mailbox.

Parameters
lpszMailbox

A pointer to a null terminated string which specifies the mailbox name. This parameter may be
NULL or an empty string, in which case the default delimiter will be returned.

lpszDelimiter

A pointer to a null terminated string buffer that will contain the mailbox delimiter. An alternate
form of this method accepts a CString object that will contain the delimiter when the method
returns.

nMaxLength

The maximum length of the delimiter string, including the terminating null character.

Return Value
If the method succeeds, it returns the length of the delimiter for the specified mailbox, not
including the terminating null character. If an error occurs, the method returns IMAP_ERROR. To
get extended error information, call GetLastError.

Remarks
If the IMAP server supports multiple levels of mailboxes, then a special character or sequence of
characters are used as delimiters between different levels of the mailbox hierarchy. On most
systems, including most UNIX and Windows platforms, the delimiter is the forward slash "/"
character.

It is possible that an IMAP server may only support a flat namespace, in which case this method
will return a value of zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ExamineMailbox, SelectMailbox, UnselectMailbox

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::GetMailboxSize Method

DWORD GetMailboxSize(
 LPCTSTR lpszMailbox
);

The GetMailboxSize method returns the size of the specified mailbox.

Parameters
lpszMailbox

A pointer to a string which specifies the mailbox name.

Return Value
If the method succeeds, it returns the size of the mailbox. If an error occurs, the method returns
IMAP_ERROR. To get extended error information, call GetLastError.

Remarks
The GetMailboxSize method may require a significant amount of time to calculate the mailbox
size if there are a large number of messages in the mailbox. If the specified mailbox is not
currently selected, then the current mailbox is unselected, the new mailbox is selected and the size
calculated, and then the original mailbox is re-selected. This will have the side-effect of causing
any messages marked for deletion to be expunged from the mailbox.

Because it can potentially result in long delays, it is not recommended that an application calculate
the mailbox size unless it is absolutely necessary.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CreateMailbox, GetFirstMailbox, GetNextMailbox, RenameMailbox

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::GetMailboxStatus Method

INT GetMailboxStatus(
 LPCTSTR lpszMailbox,
 LPIMAPMAILBOXSTATUS lpMailboxStatus
);

The GetMailboxStatus method returns status information about the specified mailbox.

Parameters
lpszMailbox

A pointer to a null terminated string that specifies the mailbox to return information about.

lpMailboxStatus

A pointer to an IMAPMAILBOXSTATUS structure which contains status information about the
specified mailbox.

Return Value
If the method succeeds, it returns zero. If an error occurs, the method method returns
IMAP_ERROR. To get extended error information, call GetLastError.

Remarks
The GetMailboxStatus method enables an application to obtain status information about a
mailbox without having to select another mailbox or open a second connection to the IMAP server
to examine the mailbox. The information returned is a subset of the information returned when a
mailbox is selected.

If you need to check the status of a mailbox which contains Unicode characters or symbols, it is
recommended you use the Unicode character set when compiling your application. The mailbox
name will automatically be converted to modified UTF-7 encoding as defined by the IMAP4
standard. If you do not use Unicode, this method will only accept mailbox names using modified
UTF-7 encoding or UTF-8 encoding.

Note that obtaining status information for a mailbox may be a slow operation. It may require that
server open the mailbox in read-only mode internally in order to obtain some of the status
information. For this reason, this method should not be used to check for new messages; use the
CheckMailbox method instead.

Some IMAP servers may return an error if you attempt to obtain status information about the
currently selected mailbox. The protocol standard states that clients should not use this method on
the currently selected mailbox, and should instead use the information returned by the
SelectMailbox or ExamineMailbox methods.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CheckMailbox, ExamineMailbox, SelectMailbox

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::GetMailboxUID Method

DWORD GetMailboxUID(
 LPCTSTR lpszMailbox
);

The GetMailboxUID method returns the unique identifier for the specified mailbox.

Parameters
lpszMailbox

A pointer to a null terminated string that specifies the mailbox name.

Return Value
If the method succeeds, it returns a non-zero value. If no unique identifier is assigned to the
mailbox, the method will return zero. If an error occurs, the method returns IMAP_ERROR. To get
extended error information, call GetLastError.

Remarks
The GetMailboxUID method returns an unsigned 32-bit value which uniquely identifies the
mailbox and corresponds to the UIDVALIDITY value returned by the IMAP server. The actual value
is determined by the server and should be considered opaque. The protocol specification requires
that a mailbox's UID must not change unless the mailbox contents are modified or existing
messages in the mailbox have been assigned new UIDs.

An application can use the mailbox UID value in combination with the message UID in order to
uniquely identify a message on the server. However, the application must take into consideration
that the IMAP server can reassign new message UIDs when the mailbox is modified. If the mailbox
and message UIDs are being stored on the local system to track what messages have been
retrieved from the server, the application must check the UID of the mailbox whenever it is
selected. If the mailbox UID has changed, this means that the UIDs for the messages in that
mailbox may have changed. The client should resynchronize with the server, and update it's local
copy of that mailbox.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetCurrentMailbox, GetMailboxStatus, GetMessageUID

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::GetMessage Method

INT GetMessage(
 UINT nMessageId,
 UINT nMessagePart,
 LPBYTE lpMessage,
 LPDWORD lpdwLength,
 DWORD dwOptions
);

INT GetMessage(
 UINT nMessageId,
 UINT nMessagePart,
 HGLOBAL* lpMessage,
 LPDWORD lpdwLength,
 DWORD dwOptions
);

INT GetMessage(
 UINT nMessageId,
 UINT nMessagePart,
 CString& strMessage,
 DWORD dwOptions
);

INT GetMessage(
 UINT nMessageId,
 CString& strMessage
);

The GetMessage method retrieves a message from the server.

Parameters
nMessageId

Number of message to retrieve from the server. This value must be greater than zero. The first
message in the mailbox is message number one.

nMessagePart

The message part that will be retrieved. A value of zero specifies that the complete message
should be returned. If the message is a multipart MIME message, message parts start with a
value of one.

lpMessage

A pointer to a byte buffer which will contain the data transferred from the server, or a pointer to
a global memory handle which will reference the data when the method returns.

lpdwLength

A pointer to an unsigned integer which should be initialized to the maximum number of bytes
that can be copied to the buffer specified by the lpMessage parameter. If the lpMessage
parameter points to a global memory handle, the length value should be initialized to zero.
When the method returns, this value will be updated with the actual length of the message that
was downloaded.

dwOptions

An unsigned integer value which specifies one or more options. This parameter is constructed
by using a bitwise operator with any of the following values:

Constant Description

IMAP_SECTION_DEFAULT All headers and the complete body of the specified
message or message part are to be retrieved. The
client application is responsible for parsing the header
block. If the message is a MIME multipart message
and the complete message is returned, the application
is responsible for parsing the individual message parts
if necessary.

IMAP_SECTION_HEADER All headers for the specified message or message part
are to be retrieved. The client application is
responsible for parsing the header block.

IMAP_SECTION_MIMEHEADER The MIME headers for the specified message or
message are to be retrieved. Only those header fields
which are used in MIME messages, such as Content-
Type will be returned to the client. This is typically
useful when processing the header for a multipart
message which contains file attachments. The client
application is responsible for parsing the header block.

IMAP_SECTION_BODY The body of the specified message or message part is
to be retrieved. For a MIME formatted message, this
may include data that is uuencoded or base64
encoded. The application is responsible for decoding
this data.

IMAP_SECTION_PREVIEW The message header or body is being previewed and
should not be marked as read by the server. This
prevents the message from having the
IMAP_FLAG_SEEN flag from being automatically set
when the message data is retrieved.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
IMAP_ERROR. To get extended error information, call GetLastError.

Remarks
The GetMessage method is used to retrieve a message from the server and copy it into a local
buffer. The method may be used in one of two ways, depending on the needs of the application.
The first method is to pre-allocate a buffer large enough to store the contents of the message. In
this case, the lpMessage parameter will point to the buffer that was allocated, the value that the
lpdwLength parameter points to should be initialized to the size of that buffer.

The second method that can be used is have the lpMessage parameter point to a global memory
handle which will contain the message data when the method returns. In this case, the value that
the lpdwLength parameter points to must be initialized to zero. It is important to note that the
memory handle returned by the method must be freed by the application, otherwise a memory
leak will occur.

This method will cause the current thread to block until the transfer completes, a timeout occurs
or the transfer is canceled. During the transfer, the IMAP_EVENT_PROGRESS event will be

periodically fired, enabling the application to update any user interface controls. Event notification
must be enabled, either by calling EnableEvents, or by registering a callback function using the
RegisterEvent method.

To determine if a message is a multipart MIME message, use the GetMessageParts method. The
return value specifies the number of parts in the message, with a value greater than one indicating
that it is a multipart message. Combining the IMAP_SECTION_HEADER and IMAP_SECTION_BODY
options will only return the header and body for the specified message if the nMessagePart
parameter is zero. Due to a limitation of the IMAP FETCH command, if a message part is specified
then only the body of that message part will be returned.

Note that unlike the SocketTools MIME API which considers the first message part to be zero, the
IMAP protocol defines the first message part to be one.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
GetMessageCount, GetMessageHeaders, GetMessageParts, StoreMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::GetMessageCount Method

INT GetMessageCount(
 UINT *lpnLastMessage,
 DWORD *lpdwMailboxSize
);

The GetMessageCount method returns the number of messages that are available in the
currently selected mailbox, and optionally the size of the mailbox in bytes.

Parameters
lpnLastMessage

Address of a variable that receives the number of the last valid message in the mailbox. If a
NULL value is specified, this argument is ignored.

lpdwMailboxSize

Address of a variable that receives the current size of the mailbox. If a NULL value is specified,
this argument is ignored.

Return Value
If the method succeeds, it returns the number of messages that are currently available. If no
messages are available, this method will return zero. If the method fails, the return value is
IMAP_ERROR. To get extended error information, call GetLastError.

Remarks
The GetMessageCount method is provided for compatibility with the POP3 class. The
lpnLastMessage parameter will always contain the same value returned by the method since there
is no distinction between the message count and the last available message. This is because
messages that are marked for deletion on an IMAP server can still be accessed until the mailbox is
expunged or unselected. This differs from the POP3 protocol, where messages cannot be
accessed once they have been marked for deletion.

If the lpdwMailboxSize parameter is specified, this method will call GetMailboxSize to determine
the size of the currently selected mailbox. Unlike the POP3 protocol, calculating the mailbox size
may require a significant amount of time if there are a large number of messages in the mailbox. It
is not recommended that an application request the mailbox size unless it is absolutely necessary.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DeleteMessage, GetHeaderValue, GetMailboxSize, GetMessage, GetMessageHeaders,
StoreMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::GetMessageFlags Method

BOOL GetMessageFlags(
 UINT nMessageId,
 LPDWORD lpdwMessageFlags
);

The GetMessageFlags method returns the message flags for the specified message.

Parameters
nMessageId

Number of message to obtain the message flags for. This value must be greater than zero. The
first message in the mailbox is message number one.

lpdwMessageFlags

Pointer to an unsigned integer that will contain the message flags for the specified message.
The value may be zero, or one or more of the following values:

Constant Description

IMAP_FLAG_ANSWERED The message has been answered.

IMAP_FLAG_DELETED The message has been marked for deletion.

IMAP_FLAG_DRAFT The message has not been completed and is marked as a
draft copy.

IMAP_FLAG_URGENT The message has been flagged for urgent or special
attention.

IMAP_FLAG_RECENT The message has been added to the mailbox recently.

IMAP_FLAG_SEEN The message has been read.

Return Value
If the method succeeds, the return value is non-zero and the lpdwMessageFlags parameter
contains the status flags for the specified message. If the method fails, the return value is zero. To
get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
DeleteMessage, GetMessageCount, SetMessageFlags

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::GetMessageHeaders Method

INT GetMessageHeaders(
 UINT nMessageId,
 LPBYTE lpHeaders,
 LPDWORD lpdwLength
);

INT GetMessageHeaders(
 UINT nMessageId,
 HGLOBAL* lpHeaders,
 LPDWORD lpdwLength
);

INT GetMessageHeaders(
 UINT nMessageId,
 CString& strHeaders
);

The GetMessageHeaders method retrieves the headers for the specified message from the
server.

Parameters
nMessageId

Number of message to retrieve from the server. This value must be greater than zero. The first
message in the mailbox is message number one.

lpHeaders

A pointer to a byte buffer which will contain the data transferred from the server, or a pointer to
a global memory handle which will reference the data when the method returns.

lpdwLength

A pointer to an unsigned integer which should be initialized to the maximum number of bytes
that can be copied to the buffer specified by the lpHeaders parameter. If the lpHeaders
parameter points to a global memory handle, the length value should be initialized to zero.
When the method returns, this value will be updated with the actual length of the message that
was downloaded.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
IMAP_ERROR. To get extended error information, call GetLastError.

Remarks
The GetMessagHeaders method is used to retrieve a message header block from the server and
copy it into a local buffer. The method may be used in one of two ways, depending on the needs
of the application. The first method is to pre-allocate a buffer large enough to store the contents
of the file. In this case, the lpHeaders parameter will point to the buffer that was allocated, the
value that the lpdwLength parameter points to should be initialized to the size of that buffer.

The second method that can be used is have the lpHeaders parameter point to a global memory
handle which will contain the file data when the method returns. In this case, the value that the
lpdwLength parameter points to must be initialized to zero. It is important to note that the
memory handle returned by the method must be freed by the application, otherwise a memory
leak will occur.

This method will cause the current thread to block until the file transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the IMAP_EVENT_PROGRESS event will be
periodically fired, enabling the application to update any user interface controls. Event notification
must be enabled, either by calling EnableEvents, or by registering a callback function using the
RegisterEvent method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
GetMessage, GetMessageCount, GetMessageParts, StoreMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::GetMessageId Method

INT GetMessageId(
 UINT nMessageId,
 LPTSTR lpszMessageId,
 INT nMaxLength
);

INT GetMessageId(
 UINT nMessageId,
 CString& strMessageId
);

The GetMessageId method returns the message identifier string for the specified message.

Parameters
nMessageId

Number of message to retrieve the unique identifier for. This value must be greater than zero.
The first message in the mailbox is message number one.

lpszMessageId

Address of a string buffer to receive the message identifier. This should be at least 64 bytes in
length.

nMaxLength

The maximum length of the string buffer.

Return Value
If the method succeeds, the return value is the length of the unique identifier string. If the method
fails, the return value is IMAP_ERROR. To get extended error information, call GetLastError.

Remarks
The GetMessageId method returns the message identifier from the Message-ID header of the
specified message. The returned value is a string which can be used to identify a specific message,
regardless if the message is moved to a different mailbox.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetHeaderValue, GetMessage, GetMessageHeaders, GetMessageSender

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::GetMessageParts Method

INT GetMessageParts(
 UINT nMessageId
);

The GetMessageParts method returns the number of parts in a MIME multipart message on the
server.

Parameters
nMessageId

Number of message to retrieve the part count for. This value must be greater than zero. The
first message in the mailbox is message number one.

Return Value
If the method succeeds, the return value is the number of parts in the specified message. If the
method fails, the return value is IMAP_ERROR. To get extended error information, call
GetLastError.

Remarks
The GetMessageParts method can be used to determine if a message on the server contains
multiple parts. A multipart MIME message typically contains file attachments or multiple
representations of the message, such as a version of the message in plain text and another using
HTML markup.

If the method returns a value of one, then the message does not contain multiple parts and is a
standard RFC822 formatted message. A value greater than one indicates that the message does
have multiple parts. The GetMessageEx method may be used to retrieve the data for a specific
part of the message.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
GetHeaderValue, GetMessage, GetMessageHeaders, GetMessageId, GetMessageSender

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::GetMessageSender Method

INT GetMessageSender(
 UINT nMessageId,
 LPTSTR lpszAddress,
 INT nMaxLength
);

INT GetMessageSender(
 UINT nMessageId,
 CString& strAddress
);

The GetMessageSender method returns the sender's address for the specified message.

Parameters
nMessageId

Number of message to retrieve header value from. This value must be greater than zero. The
first message in the mailbox is message number one.

lpszAddress

Pointer to a string buffer that will contain the address of the message sender.

nMaxLength

The maximum number of characters that may be copied into the buffer, including the
terminating null character.

Return Value
If the method succeeds, it returns the length of the address. If the sender cannot be determined,
the method will return a value of zero. If the method fails, the return value is IMAP_ERROR. To get
extended error information, call GetLastError.

Remarks
The GetMessageSender method returns the email address specified in the Return-Path header
field. This allows an application to be able to easily determine the sender, without parsing the
header or downloading the contents of the message.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetHeaderValue, GetMessageHeaders, GetMessageId

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::GetMessageSize Method

DWORD GetMessageSize(
 UINT nMessageId
);

The GetMessageSize method returns the size of the specified message.

Parameters
nMessageId

Number of message to retrieve size of. This value must be greater than zero. The first message
in the mailbox is message number one.

Return Value
If the method succeeds, the return value is the size of the specified message in bytes. If the
method fails, the return value is IMAP_ERROR. To get extended error information, call
GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
GetHeaderValue, GetMessageHeaders, GetMessageId, GetMessageSender

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::GetMessageUID Method

DWORD GetMessageUID(
 UINT nMessageId
);

The GetMessageUID method returns the unique identifier (UID) for the specified message in the
current mailbox.

Parameters
nMessageId

Number of message to obtain the unique identifier for. This value must be greater than zero.
The first message in the mailbox is message number one.

Return Value
If the method succeeds, it returns a non-zero value. If no unique identifier is assigned to the
message, the method will return zero. If an error occurs, the method returns IMAP_ERROR. To get
extended error information, call GetLastError.

Remarks
The GetMessageUID method returns an unsigned integer value which specifies a unique
identifier for this message. The actual value is determined by the server and should be considered
opaque.

An application can use the message UID value in combination with the mailbox UID in order to
uniquely identify a message on the server. However, the application must take into consideration
that the IMAP server can reassign new message UIDs when the mailbox is modified. If the mailbox
and message UIDs are being stored on the local system to track what messages have been
retrieved from the server, the application must check the UID of the mailbox whenever it is
selected. If the mailbox UID has changed, this means that the UIDs for the messages in that
mailbox may have changed. The client should resynchronize with the server, and update it's local
copy of that mailbox.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
GetCurrentMailbox, GetMailboxStatus, GetMailboxUID

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::GetNewMessages Method

INT GetNewMessages(
 UINT* lpnMessageIds,
 INT nMaxMessages
);

The GetNewMessages method returns the message identifiers for those messages that have
recently been added to the mailbox and have not been read.

Parameters
lpnMessageIds

A pointer to an array of unsigned integers that will contain the message identifiers of those
messages that have recently been added to the mailbox and have not been read. This
parameter may be NULL, in which case the method will return the number of new messages but
will not return their identifiers.

nMaxMessages

The maximum number of message identifiers that may be stored in the lpnMessageIds array. If
the lpnMessageIds parameter is NULL, this value should be zero.

Return Value
If the method succeeds, the return value is the number of new messages in the current mailbox. If
the method fails, the return value is IMAP_ERROR. To get extended error information, call
GetLastError.

Remarks
The message identifiers returned by this method are only valid until the mailbox is expunged or
another mailbox is selected. Once a message has been read using GetMessage or
StoreMessage, it is no longer considered to be a new message.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
GetDeletedMessages, GetMessageCount, GetMessageFlags, GetUnseenMessages, SearchMailbox

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::GetNextMailbox Method

INT GetNextMailbox(
 LPTSTR lpszMailbox,
 INT nMaxLength
 LPDWORD lpdwFlags
);

INT GetNextMailbox(
 CString& strMailbox,
 LPDWORD lpdwFlags
);

The GetNextMailbox method returns the name of the next matching mailbox.

Parameters
lpszMailbox

A pointer to a string buffer which will contain the next matching mailbox. This parameter cannot
be NULL. A minimum buffer size of at least 128 character is recommended. If the application
uses the Unicode character set, the mailbox name will automatically be converted from
modified UTF-7 encoding to Unicode. If the application does not use Unicode, the mailbox
name will be returned using modified UTF-7 encoding.

nMaxLength

Specifies the maximum length of the string buffer. The maximum length of the buffer should be
large enough to accommodate most path names on the IMAP server.

lpdwFlags

A pointer to an unsigned integer which will contain the mailbox flags for the next matching
mailbox. This parameter may be NULL, in which case the mailbox flags are not returned.
Otherwise, one or more of the following bit flags may be returned:

Constant Description

IMAP_FLAG_NOINFERIORS The mailbox does not contain any sub-mailboxes. In the
IMAP protocol, these are referred to as inferior
hierarchical mailbox names.

IMAP_FLAG_NOSELECT The mailbox cannot be selected or examined. This flag is
typically used by servers to indicate that the mailbox name
refers to a directory on the server, not a mailbox file.

IMAP_FLAG_MARKED The mailbox is marked as being of interest to a client. If
this flag is used, it typically means that the mailbox
contains messages. An application should not depend on
this flag being present for any given mailbox. Some IMAP
servers do not support marked or unmarked flags for
mailboxes.

IMAP_FLAG_UNMARKED The mailbox is marked as not being of interest to a client.
If this flag is used, it typically means that the mailbox does
not contain any messages. An application should not
depend on this flag being present for any given mailbox.
Some IMAP servers do not support marked or unmarked
flags for mailboxes.

Return Value
If the method succeeds, it returns the length of the mailbox name. If an error occurs, the method
returns IMAP_ERROR. To get extended error information, call GetLastError.

Remarks
The GetNextMailbox method returns the next matching mailbox name. When the last mailbox
has been returned, the next call to this method will result in an error, with the last error code set to
ST_ERROR_NO_MORE_MAILBOXES.

It is recommended you compile the application using the Unicode character set, particularly if it is
possible that mailbox names will contain Unicode characters or symbols. This will ensure that
mailbox names are automatically converted from modified UTF-7 to UTF-16 Unicode. If Unicode is
not used and a mailbox name contains non-ASCII characters, the name will be returned using a
modified UTF-7 encoding format as defined by the IMAP4 standard. The mailbox name will not be
returned as UTF-8 Unicode or as ANSI text converted to the current locale.

Subscribed mailboxes are those which were specified using the SubscribeMailbox method.
Marked mailboxes are typically those which have some special importance to the user.

For more information about enumerating the available mailboxes on the IMAP server, refer to the
GetFirstMailbox method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DeleteMailbox, GetFirstMailbox, GetMailboxStatus, RenameMailbox, SelectMailbox

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::GetResultCode Method

INT GetResultCode();

The GetResultCode method reads the result code returned by the server in response to a
command. The result code is a three-digit numeric code, and indicates if the operation succeeded,
failed or requires additional action by the client.

Parameters
None.

Return Value
If the method succeeds, the return value is the result code. If the method fails, the return value is
IMAP_ERROR. To get extended error information, call GetLastError.

Remarks
Result codes are three-digit numeric values returned by the server. They may be broken down into
the following ranges:

Value Description

100-
199

Positive preliminary result. This indicates that the requested action is being initiated, and
the client should expect another reply from the server before proceeding.

200-
299

Positive completion result. This indicates that the server has successfully completed the
requested action.

300-
399

Positive intermediate result. This indicates that the requested action cannot complete
until additional information is provided to the server.

400-
499

Transient negative completion result. This indicates that the requested action did not
take place, but the error condition is temporary and may be attempted again.

500-
599

Permanent negative completion result. This indicates that the requested action did not
take place.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
Command, GetResultString

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::GetResultString Method

INT GetResultString(
 LPTSTR lpszResult,
 INT cbResult
);

INT GetResultString(
 CString& strResult
);

The GetResultString method returns the last message sent by the server along with the result
code.

Parameters
lpszResult

A pointer to the buffer that will contain the result string returned by the server. An alternate
form of the method accepts a CString argument which will contain the result string returned by
the server.

cbResult

The maximum number of characters that may be copied into the result string buffer, including
the terminating null character.

Return Value
If the method succeeds, the return value is the length of the result string. If a value of zero is
returned, this means that no result string was sent by the server. If the method fails, the return
value is IMAP_ERROR. To get extended error information, call GetLastError.

Remarks
The GetResultString method is most useful when an error occurs because the server will typically
include a brief description of the cause of the error. This can then be parsed by the application or
displayed to the user. The result string is updated each time the client sends a command to the
server and then calls GetResultCode to obtain the result code for the operation.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Command, GetResultCode

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::GetSecurityInformation Method

BOOL GetSecurityInformation(
 LPSECURITYINFO lpSecurityInfo
);

The GetSecurityInformation method returns security protocol, encryption and certificate
information about the current client connection.

Parameters
lpSecurityInfo

A pointer to a SECURITYINFO structure which contains information about the current client
connection. The dwSize member of this structure must be initialized to the size of the structure
before passing the address of the structure to this method.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
This method is used to obtain security related information about the current client connection to
the server. It can be used to determine if a secure connection has been established, what security
protocol was selected, and information about the server certificate. Note that a secure connection
has not been established, the dwProtocol structure member will contain the value
SECURITY_PROTOCOL_NONE.

Example
The following example notifies the user if the connection is secure or not:

SECURITYINFO securityInfo;
securityInfo.dwSize = sizeof(SECURITYINFO);

if (pClient->GetSecurityInformation(&securityInfo))
{
 if (securityInfo.dwProtocol == SECURITY_PROTOCOL_NONE)
 {
 MessageBox(NULL, _T("The connection is not secure"),
 _T("Connection"), MB_OK);
 }
 else
 {
 if (securityInfo.dwCertStatus == SECURITY_CERTIFICATE_VALID)
 {
 MessageBox(NULL, _T("The connection is secure"),
 _T("Connection"), MB_OK);
 }
 else
 {
 MessageBox(NULL, _T("The server certificate not valid"),
 _T("Connection"), MB_OK);
 }
 }
}

Requirements

Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Connect, CreateSecurityCredentials, SECURITYINFO

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::GetStatus Method

INT GetStatus();

The GetStatus method the current status of the client session.

Parameters
None.

Return Value
If the method succeeds, the return value is the client status code. If the method fails, the return
value is IMAP_ERROR. To get extended error information, call GetLastError.

Remarks
The GetStatus method returns a numeric code which identifies the current state of the client
session. The following values may be returned:

Value Constant Description

0 IMAP_STATUS_UNUSED No connection has been established.

1 IMAP_STATUS_IDLE The client is current idle and not sending or
receiving data.

2 IMAP_STATUS_CONNECT The client is establishing a connection with the
server.

3 IMAP_STATUS_READ The client is reading data from the server.

4 IMAP_STATUS_WRITE The client is writing data to the server.

5 IMAP_STATUS_DISCONNECT The client is disconnecting from the server.

In a multithreaded application, any thread in the current process may call this method to obtain
status information for the specified client session.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
IsBlocking, IsConnected, IsInitialized, IsReadable, IsWritable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::GetTimeout Method

INT GetTimeout();

The GetTimeout method returns the number of seconds the client will wait for a response from
the server. Once the specified number of seconds has elapsed, the method will fail and return to
the caller.

Parameters
None.

Return Value
If the method succeeds, the return value is the timeout period in seconds. If the method fails, the
return value is IMAP_ERROR. To get extended error information, call GetLastError.

Remarks
The timeout value is only used with blocking client connections. A value of zero indicates that the
default timeout period of 20 seconds should be used.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
Connect, IsReadable, IsWritable, Read, SetTimeout, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::GetTransferStatus Method

INT GetTransferStatus(
 LPIMAPTRANSFERSTATUS lpStatus
);

The GetTransferStatus method returns information about the current file transfer in progress.

Parameters
lpStatus

A pointer to an IMAPTRANSFERSTATUS structure which contains information about the status of
the current file transfer.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
IMAP_ERROR. To get extended error information, call GetLastError.

Remarks
The GetTransferStatus method returns information about the current file transfer, including the
average number of bytes transferred per second and the estimated amount of time until the
transfer completes. If there is no file currently being transferred, this method will return the status
of the last successful transfer made by the client.

In a multithreaded application, any thread in the current process may call this method to obtain
status information for the specified client session.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
EnableEvents, GetStatus, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::GetUnseenMessages Method

INT GetUnseenMessages(
 UINT * lpnMessageIds,
 INT nMaxMessages
);

The GetUnseenMessages method returns the message identifiers for those messages that have
not been read.

Parameters
lpnMessageIds

A pointer to an array of unsigned integers that will contain the message identifiers of those
messages that have not been read. This parameter may be NULL, in which case the method will
return the number of unseen messages but will not return their identifiers.

nMaxMessages

The maximum number of message identifiers that may be stored in the lpnMessageIds array. If
the lpnMessageIds parameter is NULL, this value should be zero.

Return Value
If the method succeeds, the return value is the number of unseen messages in the current
mailbox. If the method fails, the return value is IMAP_ERROR. To get extended error information,
call GetLastError.

Remarks
The message identifiers returned by this method are only valid until the mailbox is expunged or
another mailbox is selected. Once a message has been read using GetMessage or
StoreMessage, it is no longer considered to be an unseen message.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
GetDeletedMessages, GetMessageCount, GetMessageFlags, GetNewMessages, SearchMailbox

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::Idle Method

INT Idle(
 IMAPIDLEPROC lpfnIdleProc,
 DWORD_PTR dwParam
);

INT Idle(
 UINT nTimeout,
 DWORD dwOptions,
 IMAPIDLEPROC lpfnIdleProc,
 DWORD_PTR dwParam
);

The Idle method enables mailbox status monitoring for the client session, allowing the client to
receive notifications from the server whenever a new message arrives or a message is expunged
from the currently selected mailbox. This is typically used as an alternative to the client periodically
polling the server for status information.

Parameters
nTimeout

Specifies the timeout period in seconds to wait for a notification from the server. This parameter
is only used when the IMAP_IDLE_WAIT option has been specified.

dwOptions

Specifies the options which should be used when enabling idle monitoring. The following
options are supported:

Constant Description

IMAP_IDLE_NOWAIT The method should return immediately after idle processing has
been enabled. When this option is used, the application may
continue to perform other methods while the client session is
monitored for status updates sent by the server. The client will
continue to monitor status changes until an IMAP command
issued or the client disconnects from the server.

IMAP_IDLE_WAIT The method should wait until the server sends a status update,
or until the timeout period is reached. The client will stop
monitoring status changes when the method returns. If this
option is used in a single-threaded application, normal message
processing can be impeded, causing the application to appear
non-responsive until the timeout period is reached. It is strongly
recommended that single-threaded applications with a user
interface specify the IMAP_IDLE_NOWAIT option instead.

lpfnIdleProc

A pointer to an IMAPIDLEPROC callback function that will be invoked whenever the server sends
an update notification to the client. This parameter must specify a valid function address and
cannot be a NULL pointer.

dwParam

A user-defined value that is passed back to the caller whenever the callback function is invoked.
This can be used to provide additional state information to the client. If it is not needed, the

file:///C|/Projects/cstools11/pdf/imap/class/imapidleproc.html

caller should use a value of zero.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
IMAP_ERROR. To get extended error information, call GetLastError.

Remarks
Many IMAP servers support the ability to asynchronously send status updates to the client, rather
than have the client periodically poll the server. The client enables this feature by calling Idle and
providing the address of a callback function that will be invoked whenever the server sends an
update notification to the client. Typically these updates inform the client that a new message has
arrived or that a message has been expunged from the mailbox.

The Idle method can operate in two modes, based on the options specified by the caller. If the
option IMAP_IDLE_NOWAIT is specified, the method begins monitoring the client session and
returns control immediately to the caller. If the server sends a update notification, the callback
function will be invoked with information about the status change. If the option IMAP_IDLE_WAIT
is specified, the method will block waiting for the server to send a notification message to the
client. The method will return when either a message is received or the timeout period is
exceeded.

Sending an IMAP command to the server will cause the client to stop monitoring the session for
status changes. To explicitly stop monitoring the session, use the Cancel method. To determine if
the current client session is being monitored, use the GetIdleThreadId method. A non-zero
return value indicates that the client session is idle and being monitored.

This method works by sending the IDLE command to the server and starting a worker thread
which monitors the connection and looks for untagged responses issued by the server. Callbacks
will be invoked for EXISTS, EXPUNGE and RECENT messages. Note that some servers may
periodically send untagged OK messages to the client, indicating that the connection is still active;
these messages are explicitly ignored. Because the monitoring is performed in a different thread,
the callback function is invoked in the context of that thread. Client event notifications are disabled
while inside the callback function, and the Idle method cannot be used to restart monitoring from
within a callback function.

Applications should not perform any operation that takes a significant amount of time or updates
the user interface from within the callback function. Instead, use flags or send application defined
messages to indicate a change in state. For example, if the server sends a notification that a new
email message has arrived, the application should not attempt to read the new message and
update the user interface from within the callback function. Instead, it could use the
CWindow::PostMessage method to send an application-defined message to the UI thread
indicating the change in state. The application would have a message handler for that Windows
message and update the user interface, indicating that a new message has arrived.

An application should never make an assumption about how a particular server may send update
notifications to the client. Servers can be configured to use different intervals at which notifications
are sent. For example, a server may send new message notifications immediately, but may
periodically notify the client when a message has been expunged. Alternatively, a server may only
send notifications at fixed intervals, in which case the client would not be notified of any new
messages until the interval period is reached. It is not possible for a client to know what a
particular server's update interval is. Applications that require that degree of control should not
use Idle and should poll the server instead.

Example

// Begin monitoring the client session for status changes; when a new
// message arrives or a message is expunged, the UpdateHandler callback
// function will be invoked.

BOOL CUserApp::MonitorUpdates()
{
 INT nResult;

 nResult = m_imapClient.Idle(UpdateHandler, (DWORD)this);

 if (nResult == IMAP_ERROR)
 {
 m_imapClient.ShowError();
 return FALSE;
 }

 return TRUE;
}

// This function is called whenever the server notifies the client
// that a new message has arrived or a message has been expunged from
// the current mailbox

#define WM_APP_NEWMESSAGE (WM_APP+1)
#define WM_APP_EXPUNGED (WM_APP+2)

VOID CALLBACK CUserApp::UpdateHandler(HCLIENT hClient, UINT nUpdateId, UINT
nMessageId, DWORD_PTR dwParam)
{
 CUserApp *pThis = (CUserApp *)dwParam;

 switch (nUpdateId)
 {
 case IMAP_UPDATE_MESSAGE:
 {
 // Send a message indicating that a new message has arrived
 pThis->m_pMainWnd->PostMessage(WM_APP_NEWMESSAGE, nMessageId, 0);
 }
 break;

 case IMAP_UPDATE_EXPUNGE:
 {
 // Send a message indicating that a message has been expunged
 pThis->m_pMainWnd->PostMessage(WM_APP_EXPUNGED, nMessageId, 0);
 }
 break;
 }
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetIdleThreadId, ImapIdleProc

file:///C|/Projects/cstools11/pdf/imap/class/imapidleproc.html

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::IsBlocking Method

BOOL IsBlocking();

The IsBlocking method is used to determine if the client is currently performing a blocking
operation.

Parameters
None.

Return Value
If the client is performing a blocking operation, the method returns a non-zero value. If the client
is not performing a blocking operation, or the client handle is invalid, the method returns zero.

Remarks
Because a blocking operation can allow the application to be re-entered (for example, by pressing
a button while the operation is being performed), it is possible that another blocking method may
be called while it is in progress. Since only one thread of execution may perform a blocking
operation at any one time, an error would occur. The IsBlocking method can be used to
determine if the client is already blocked, and if so, take some other action (such as warning the
user that they must wait for the operation to complete).

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Cancel, GetStatus, IsConnected, IsInitialized, IsReadable, IsWritable, Read, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::IsConnected Method

BOOL IsConnected();

The IsConnected method is used to determine if the client is currently connected to a server.

Parameters
None.

Return Value
If the client is connected to a server, the method returns a non-zero value. If the client is not
connected, or the client handle is invalid, the method returns zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
GetStatus, IsBlocking, IsInitialized, IsReadable, IsWritable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::IsInitialized Method

BOOL IsInitialized();

The IsInitialized method returns whether or not the class object has been successfully initialized.

Return Value
This method returns a non-zero value if the class object has been successfully initialized. A return
value of zero indicates that the runtime license key could not be validated or the networking
library could not be loaded by the current process.

Remarks
When an instance of the class is created, the class constructor will attempt to initialize the
component with the runtime license key that was created when SocketTools was installed. If the
constructor is unable to validate the license key or load the networking libraries, this initialization
will fail.

If SocketTools was installed with an evaluation license, the application cannot be redistributed to
another system. The class object will fail to initialize if the application is executed on another
system, or if the evaluation period has expired. To redistribute your application, you must
purchase a development license which will include the runtime key that is needed to redistribute
your software to other systems. Refer to the Developer's Guide for more information.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
CImapClient, IsBlocking, IsConnected

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::IsReadable Method

BOOL IsReadable(
 INT nTimeout,
 LPDWORD lpdwAvail
);

The IsReadable method is used to determine if data is available to be read from the server.

Parameters
nTimeout

Timeout for server response, in seconds. A value of zero specifies that the connection should be
polled without blocking the current thread.

lpdwAvail

A pointer to an unsigned integer which will contain the number of bytes available to read. This
parameter may be NULL if this information is not required.

Return Value
If the client can read data from the server within the specified timeout period, the method returns
a non-zero value. If the client cannot read any data, the method returns zero.

Remarks
On some platforms, this value will not exceed the size of the receive buffer (typically 64K bytes).
Because of differences between TCP/IP stack implementations, it is not recommended that your
application exclusively depend on this value to determine the exact number of bytes available.
Instead, it should be used as a general indicator that there is data available to be read.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
GetStatus, IsBlocking, IsConnected, IsInitialized, IsWritable, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::IsWritable Method

BOOL IsWritable(
 INT nTimeout
);

The IsWritable method is used to determine if data can be written to the server.

Parameters
nTimeout

Timeout for server response, in seconds. A value of zero specifies that the connection should be
polled without blocking the current thread.

Return Value
If the client can write data to the server within the specified timeout period, the method returns a
non-zero value. If the client cannot write any data, the method returns zero.

Remarks
Although this method can be used to determine if some amount of data can be sent to the
remote process it does not indicate the amount of data that can be written without blocking the
client. In most cases, it is recommended that large amounts of data be broken into smaller logical
blocks, typically some multiple of 512 bytes in length.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
GetStatus, IsBlocking, IsConnected, IsInitialized, IsReadable, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::Login Method

INT Login(
 UINT nAuthType,
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword
);

INT Login(
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword
);

The Login method authenticates the specified user in on the server. This method must be called
after the connection has been established, and before attempting to retrieve messages or perform
any other method on the server.

Parameters
nAuthType

Identifies the type of authentication that should be used when the client logs in to the mail
server. The following authentication methods are supported:

Constant Description

IMAP_AUTH_LOGIN Standard cleartext username and password is sent to the
server. This authentication method is supported by all
servers. Note that some servers may only support LOGIN
authentication if a secure connection has been
established.

IMAP_AUTH_PLAIN Login using the PLAIN authentication mechanism as
defined in RFC 4959. This authentication method is
supported by most servers, although some may require
that client establish a secure connection.

IMAP_AUTH_XOAUTH2 This authentication type will use the XOAUTH2 method
to authenticate the client session. This authentication
method does not require the user password, instead the
lpszPassword parameter must specify the OAuth 2.0
bearer token issued by the service provider. The
application must provide a valid access token which has
not expired, or this method will fail.

IMAP_AUTH_BEARER This authentication type will use the OAUTHBEARER
method to authenticate the client session as defined in
RFC 7628. This authentication method does not require
the user password, instead the lpszPassword parameter
must specify the OAuth 2.0 bearer token issued by the
service provider. The application must provide a valid
access token which has not expired, or this method will
fail.

IMAP_AUTH_ANONYMOUS Login using the anonymous Simple Authentication and
Security Layer (SASL) mechanism as defined in RFC 4505.

If this authentication method is specified, the
lpszUserName parameter should specify a name or
email address acceptable to the mail server. The
lpszPassword parameter is ignored and may be NULL.

lpszUserName

A null terminated string which specifies the user name to be used to authenticate the current
client session.

lpszPassword

A null terminated string which specifies the password to be used when authenticating the
current client session. If you are using the IMAP_AUTH_XOAUTH2 or IMAP_AUTH_BEARER
authentication methods, this parameter is not a password, instead it specifies the bearer token
provided by the mail service.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
IMAP_ERROR. To get extended error information, call GetLastError.

Remarks
In some cases, the user may be pre-authenticated by the server. In this case, the method will fail
with the last error set to ST_ERROR_ALREADY_AUTHENTICATED. If a particular authentication
method is not supported by the server, the last error will be set to
ST_ERROR_INVALID_AUTHENTICATION_TYPE. For compatibility with the greatest number of
servers, it is recommended that you use IMAP_AUTH_LOGIN as the authentication method.

You should only use an OAuth 2.0 authentication method if you understand the process of how to
request the access token. Obtaining an access token requires registering your application with the
mail service provider (e.g.: Microsoft or Google), getting a unique client ID associated with your
application and then requesting the access token using the appropriate scope for the service.
Obtaining the initial token will typically involve interactive confirmation on the part of the user,
requiring they grant permission to your application to access their mail account.

The IMAP_AUTH_XOAUTH2 and IMAP_AUTH_BEARER authentication methods are similar, but
they are not interchangeable. Both use an OAuth 2.0 bearer token to authenticate the client
session, but they differ in how the token is presented to the server. It is currently preferable to use
the XOAUTH2 method because it is more widely available and some service providers do not yet
support the OAUTHBEARER method.

Your application should not store an OAuth 2.0 bearer token for later use. They have a relatively
short lifespan, typically about an hour, and are designed to be used with that session. You should
specify offline access as part of the OAuth 2.0 scope if necessary and store the refresh token
provided by the service. The refresh token has a much longer validity period and can be used to
obtain a new bearer token when needed.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also

Connect, Disconnect

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::OpenMessage Method

INT OpenMessage(
 UINT nMessageId,
 UINT nMessagePart,
 DWORD dwOffset,
 LPDWORD lpdwLength,
 DWORD dwOptions
);

INT OpenMessage(
 UINT nMessageId,
 DWORD dwOptions
);

The OpenMessage method opens a message or a specific part of a multipart message in the
current mailbox. The message data may also be limited a specific byte offset and length, which
can be useful for previewing the contents.

Parameters
nMessageId

Number of message to retrieve. This value must be greater than zero. The first message in the
mailbox is message number one.

nMessagePart

The message part that will be retrieved. A value of zero specifies that the complete message
should be returned. If the message is a multipart MIME message, message parts start with a
value of one.

dwOffset

The byte offset into the message. This parameter can be used in conjunction with the
lpdwLength parameter to return a specific part of a message. A value of zero specifies the
beginning of the message.

lpdwLength

A pointer to an unsigned integer value which should be initialized to the maximum number of
bytes to be read, and will contain the size of the message when the method returns. To specify
the entire message, from the offset specified by the dwOffset parameter to the end of the
message, initialize the lpdwLength parameter to a value of -1. This parameter may be NULL if
the message size is not needed.

dwOptions

The low order word of this parameter specifies how the message data will be returned. It may
be one of the following values:

Constant Description

IMAP_SECTION_DEFAULT All headers and the complete body of the
specified message or message part are to be
retrieved. The client application is responsible
for parsing the header block. If the message
is a MIME multipart message and the
complete message is returned, the
application is responsible for parsing the

individual message parts if necessary.

IMAP_SECTION_HEADER All headers for the specified message or
message part are to be retrieved. The client
application is responsible for parsing the
header block.

IMAP_SECTION_MIMEHEADER The MIME headers for the specified message
or message are to be retrieved. Only those
header fields which are used in MIME
messages, such as Content-Type will be
returned to the client. This is typically useful
when processing the header for a multipart
message which contains file attachments. The
client application is responsible for parsing
the header block.

IMAP_SECTION_BODY The body of the specified message or
message part is to be retrieved. For a MIME
formatted message, this may include data
that is uuencoded or base64 encoded. The
application is responsible for decoding this
data.

IMAP_SECTION_PREVIEW The message header or body is being
previewed and should not be marked as read
by the server. This prevents the message
from having the IMAP_FLAG_SEEN flag from
being automatically set when the message
data is retrieved.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value
is zero. To get extended error information, call GetLastError.

Remarks
The OpenMessageEx method uses the FETCH command to access the specified
message on the server. The client can then use the Read method to read the contents of
the message.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CloseMessage, GetMessage, GetMessageHeaders, OpenMessage, Read, StoreMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::Read Method

INT Read(
 LPBYTE lpBuffer,
 INT cbBuffer
);

INT Read(
 CString& strBuffer,
 INT cbBuffer
);

The Read method reads the specified number of bytes from the client socket and copies them
into the buffer. The data may be of any type, and is not terminated with a null character.

Parameters
lpBuffer

Pointer to the buffer in which the data will be copied. An alternate form of this method allows a
CString variable to be passed and data read from the socket will be returned in that string.

cbBuffer

The maximum number of bytes to read and copy into the specified buffer. This value must be
greater than zero.

Return Value
If the method succeeds, the return value is the number of bytes actually read. A return value of
zero indicates that the server has closed the connection and there is no more data available to be
read. If the method fails, the return value is IMAP_ERROR. To get extended error information, call
GetLastError.

Remarks
When Read is called and the client is in non-blocking mode, it is possible that the method will fail
because there is no available data to read at that time. This should not be considered a fatal error.
Instead, the application should simply wait to receive the next asynchronous notification that data
is available.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
EnableEvents, IsBlocking, IsReadable, IsWritable, RegisterEvent, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::RegisterEvent Method

INT RegisterEvent(
 UINT nEventId,
 IMAPEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

The RegisterEvent method registers an event handler for the specified event.

Parameters
nEventId

An unsigned integer which specifies which event should be registered with the specified callback
function. One of the following values may be used:

Constant Description

IMAP_EVENT_CONNECT The connection to the server has completed.

IMAP_EVENT_DISCONNECT The server has closed the connection to the client. The client
should read any remaining data and disconnect.

IMAP_EVENT_READ Data is available to read by the calling process. No additional
messages will be posted until the client has read at least some of
the data. This event is only generated if the client is in
asynchronous mode.

IMAP_EVENT_WRITE The client can now write data. This notification is sent after a
connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking
operation. This event is only generated if the client is in
asynchronous mode.

IMAP_EVENT_TIMEOUT The network operation has exceeded the specified timeout
period. The client application may attempt to retry the operation,
or may disconnect from the server and report an error to the
user.

IMAP_EVENT_CANCEL The current operation has been canceled. Under most
circumstances the client should disconnect from the server and
re-connect if needed. After an operation has been canceled, the
server may abort the connection or refuse to accept further
commands from the client.

IMAP_EVENT_COMMAND A command has been issued by the client and the server
response has been received and processed. This event can be
used to log the result codes and messages returned by the server
in response to actions taken by the client.

IMAP_EVENT_PROGRESS The client is in the process of sending or receiving a file on the
data channel. This event is called periodically during a transfer so
that the client can update any user interface components such as
a status control or progress bar.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the ImapEventProc callback
function. If this parameter is NULL, the callback for the specified event is disabled.

dwParam

A user-defined integer value that is passed to the callback function. If the application targets the
x86 (32-bit) platform, this parameter must be a 32-bit unsigned integer. If the application
targets the x64 (64-bit) platform, this parameter must be a 64-bit unsigned integer.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
IMAP_ERROR. To get extended error information, call GetLastError.

Remarks
The RegisterEvent method associates a callback function with a specific event. The event handler
is an ImapEventProc function that is invoked when the event occurs. Arguments are passed to
the function to identify the client session, the event type and the user-defined value specified
when the event handler is registered. If the event occurs because of an error condition, the error
code will be provided to the handler.

This method is typically used to register an event handler that is invoked while a message is being
retrieved. The IMAP_EVENT_PROGRESS event will only be generated periodically during the
transfer to ensure the application is not flooded with event notifications. It is guaranteed that at
least one IMAP_EVENT_PROGRESS notification will occur at the beginning of the transfer, and one
at the end of the transfer when it has completed.

The callback function specified by the lpEventProc parameter must be declared using the
__stdcall calling convention. This ensures the arguments passed to the event handler are pushed
on to the stack in the correct order. Failure to use the correct calling convention will corrupt the
stack and cause the application to terminate abnormally.

The dwParam parameter is commonly used to identify the class instance which is associated with
the event that has occurred. Applications will cast the this pointer to a DWORD_PTR value when
calling this function, and then the event handler will cast it back to a pointer to the class instance.
This gives the handler access to the class member variables and methods.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
DisableEvents, EnableEvents, FreezeEvents, ImapEventProc

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/imap/class/imapeventproc.html

 CImapClient::RenameMailbox Method

INT RenameMailbox(
 LPCTSTR lpszOldMailbox,
 LPCTSTR lpszNewMailbox
);

The RenameMailbox method renames an existing mailbox.

Parameters
lpszOldMailbox

A pointer to a string which specifies the mailbox to be renamed.

lpszNewMailbox

A pointer to a string which specifies the new mailbox name.

Return Value
If the method succeeds, it returns zero. If an error occurs, the method returns IMAP_ERROR. To
get extended error information, call GetLastError.

Remarks
The RenameMailbox method renames an existing mailbox on the server. The new mailbox name
cannot exist on the server, or the method will fail.

If the existing mailbox name contains inferior hierarchical names (mailboxes under the specified
mailbox) then those mailboxes will also be renamed. For example, if the mailbox "Mail/Pictures"
contains two mailboxes, "Personal" and "Work" and it is renamed to "Mail/Images" then the two
mailboxes under it would be automatically renamed to "Mail/Images/Personal" and
"Mail/Images/Work".

If the mailbox being renamed is the currently selected mailbox, the current mailbox will be
unselected and any messages marked for deletion will be expunged. The new mailbox name will
then automatically be re-selected. To prevent deleted messages from being removed from the
mailbox prior to being renamed, use the UnselectMailbox method to unselect the current
mailbox before calling RenameMailbox. Note that if the rename operation fails, the client may be
left in an unselected state.

It is permitted to rename the special mailbox INBOX. In this case, the messages will be moved
from the INBOX mailbox to the new mailbox. If the INBOX mailbox is currently selected, the new
mailbox will not automatically be selected. INBOX will remain the selected mailbox.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CreateMailbox, DeleteMailbox, GetFirstMailbox, GetNextMailbox

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::ReselectMailbox Method

BOOL ReselectMailbox(
 LPIMAPMAILBOX lpMailboxInfo
);

The ReselectMailbox method reselects the current mailbox and returns updated information
about the status of the mailbox.

Parameters
lpMailboxInfo

A pointer to an IMAPMAILBOX structure which contains updated information about the mailbox
when the method returns. This parameter may be NULL if the caller does not require any
information about the mailbox.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
IMAP_ERROR. To get extended error information, call GetLastError.

Remarks
The ReselectMailbox method forces the current mailbox to be reselected and returns updated
information about the status of the mailbox. Deleted messages are not expunged from the
mailbox and remain marked for deletion.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
ExamineMailbox, SelectMailbox, UnselectMailbox

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::SearchMailbox Method

LONG SearchMailbox(
 LPCTSTR lpszCriteria,
 LPCTSTR lpszCharacterSet,
 UINT* lpnMessageIds,
 LONG nMaxMessages
);

LONG SearchMailbox(
 LPCTSTR lpszCriteria,
 UINT* lpnMessageIds,
 LONG nMaxMessages
);

The SearchMailbox method searches the current mailbox for messages that match the specified
criteria, returning matching message identifiers.

Parameters
lpszCriteria

A pointer to a string which specifies the search criteria.

lpszCharacterSet

A pointer to a string which specifies the character set to use when searching the mailbox. If this
parameter is NULL or an empty string, the default US-ASCII character set will be used.

dwReserved

A reserved parameter which should be set to the value 0.

lpnMessageIds

A pointer to an array of unsigned integers that will contain the message identifiers of those
messages which match the search criteria in the current mailbox. This parameter may be NULL,
in which case the method will return the number of matching messages but will not return their
identifiers.

nMaxMessages

The maximum number of message identifiers that may be stored in the lpnMessageIds array. If
the lpnMessageIds parameter is NULL, this value should be zero.

Return Value
If the method succeeds, the return value is the number of messages that meet the search criteria
in the current mailbox. If the method fails, the return value is IMAP_ERROR. To get extended error
information, call GetLastError.

Remarks
The SearchMailbox method is used to search a mailbox for messages which match a given
criteria and return a list of the matching message identifiers. The search criteria is composed of
one or more search keywords and and optional value to match against. String searches are not
case sensitive and partial matches in the message are returned.

The following search keywords are recognized:

Keyword Description

ANSWERED Match those messages which have the IMAP_FLAG_ANSWERED flag

set.

BCC address Match those messages which contain the specified address in the BCC
header field.

BEFORE date Match those messages which were added to the mailbox prior to the
specified date.

BODY string Match those messages where the body contains the specified string.

CC address Match those messages which contain the specified address in the CC
header field.

DELETED Match those messages which have the IMAP_FLAG_DELETED flag set.

DRAFT Match those messages which have the IMAP_FLAG_DRAFT flag set.

FLAGGED Match those messages which have the IMAP_FLAG_URGENT flag set.

FROM address Match those messages which contain the specified address in the
FROM header field.

HEADER field
string

Match those messages which contain the string in the specified
header field. If no string is specified, then all messages which contain
the header will be matched.

LARGER size Match those messages which are larger than the specified size in
bytes.

NEW Match those messages which have the IMAP_FLAG_RECENT flag set,
but not the IMAP_FLAG_SEEN flag.

OLD Match those messages which do not have the IMAP_FLAG_RECENT
flag set.

ON date Match those messages which were added on the specified date.

RECENT Match those messages which have the IMAP_FLAG_RECENT flag set.

SEEN Match those messages which have the IMAP_FLAG_SEEN flag set.

SENTBEFORE
date

Match those messages whose Date header value is earlier than the
specified date.

SENTON date Match those messages whose Date header value is the same as the
specified date.

SENTSINCE
date

Match those messages whose Date header value is later than the
specified date.

SINCE date Match those messages added to the mailbox after the specified date.

SMALLER size Match those messages which are smaller than the specified size in
bytes.

SUBJECT
string

Match those messages whose Subject header contains the specified
string.

TEXT string Match those messages whose headers or body contains the specified
string.

TO address Match those messages which contain the specified address in the TO
header field.

UID sequence Match those messages with unique identifiers in the sequence set.

UNANSWERED Match those messages which do not have the
IMAP_FLAG_ANSWERED flag set.

UNDELETED Match those messages which do not have the IMAP_FLAG_DELETED
flag set.

UNDRAFT Match those messages which do not have the IMAP_FLAG_DRAFT flag
set.

UNFLAGGED Match those messages which do not have the IMAP_FLAG_URGENT
flag set.

UNSEEN Match those messages which do not have the IMAP_FLAG_SEEN flag
set.

In addition to the listed keywords, the keyword NOT may prefix a keyword to return those
messages which do not match the search criteria. For example, "NOT TO user@domain.com"
would return those messages which were not addressed to user@domain.com.

If multiple search keywords are specified, the result is the intersection of all those messages which
meet the search criteria. For example, a search criteria of "DELETED SINCE 1-Jan-2003" would
return all those messages which are marked for deletion and were added to the mailbox after 1
January 2003.

Those search keywords which expect dates must be specified in format dd-mmm-yyyy where the
month is the three letter abbreviation for the month name. Note that the internal date the
message was added to the mailbox is not the same as the value of the Date header field in the
message.

The UID keyword expects a one or more unique message identifiers. These values may provided
as comma separated list, or a range delimited by a colon. For example, "UID 23000:24000" would
return all those messages who have UIDs ranging from 23000 through to 24000.

The message identifiers returned by this method are only valid until the mailbox is expunged or
another mailbox is selected.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetDeletedMessages, GetMessageCount, GetMessageFlags, GetNewMessages,
GetUnseenMessages

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::SelectMailbox Method

INT SelectMailbox(
 LPCTSTR lpszMailbox,
 LPIMAPMAILBOX lpMailboxInfo
);

The SelectMailbox method selects the specified mailbox for read-write access.

Parameters
lpszMailbox

A pointer to a string which specifies the new mailbox to be selected.

lpMailboxInfo

A pointer to an IMAPMAILBOX structure which contains information about the mailbox when
the method returns. This parameter may be NULL if the caller does not require any information
about the mailbox.

Return Value
If the method succeeds, it returns zero. If an error occurs, the method returns IMAP_ERROR. To
get extended error information, call GetLastError.

Remarks
The SelectMailbox method is used to select a mailbox in read-write mode. If the client has a
different mailbox currently selected, that mailbox will be closed and any messages marked for
deletion will be expunged. To prevent deleted messages from being removed from the previous
mailbox, use the UnselectMailbox method prior to selecting the new mailbox.

If you need to select a mailbox which contains Unicode characters or symbols, it is recommended
you use the Unicode character set when compiling your application. The mailbox name will
automatically be converted to modified UTF-7 encoding as defined by the IMAP4 standard. If you
do not use Unicode, this method will only accept mailbox names using modified UTF-7 encoding
or UTF-8 encoding.

If an application wishes to update the information returned in the IMAPMAILBOX structure for the
current mailbox, simply call SelectMailbox again with the same mailbox name. Note that this will
not cause any messages marked for deletion to be expunged.

The special case-insensitive mailbox name INBOX is used for new messages. Other mailbox names
may or may not be case-sensitive depending on the IMAP server's operating system and
implementation.

To access a mailbox in read-only mode, use the ExamineMailbox method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DeleteMailbox, ExamineMailbox, GetFirstMailbox, GetMailboxStatus, GetNextMailbox,
RenameMailbox, ReselectMailbox, UnselectMailbox

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::SetLastError Method

VOID SetLastError(
 DWORD dwErrorCode
);

The SetLastError method sets the last error code for the current thread. This method is typically
used to clear the last error by specifying a value of zero as the parameter.

Parameters
dwErrorCode

Specifies the last error code for the current thread.

Return Value
None.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. Most methods will
set the last error code value when they fail; a few methods set it when they succeed. Function
failure is typically indicated by a return value such as FALSE, NULL, INVALID_CLIENT or
IMAP_ERROR. Those methods which call SetLastError when they succeed are noted on the
method reference page.

Applications can retrieve the value saved by this method by using the GetLastError method. The
use of GetLastError is optional; an application can call the method to determine the specific
reason for a method failure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
GetErrorString, GetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::SetMessageFlags Method

INT SetMessageFlags(
 UINT nMessageId,
 UINT nMode
 DWORD dwMessageFlags
);

The SetMessageFlags method returns the message flags for the specified message.

Parameters
nMessageId

Number of message to obtain the message flags for. This value must be greater than zero. The
first message in the mailbox is message number one.

nMode

An unsigned integer value which specifies one of the following modes which determines how
the message flags are set:

Constant Description

IMAP_FLAGS_REPLACE All message flags are replaced with the flags specified by the
dwMessageFlags parameter.

IMAP_FLAGS_ADD The message flags specified by the dwMessageFlags
parameter will be set for the message. Message flags that
have been previously set will remain unmodified.

IMAP_FLAGS_REMOVE The message flags specified by the dwMessageFlags
parameter will be removed from the message. Message flags
that are not specified will remain unmodified.

dwMessageFlags

An unsigned integer value which specifies one or more message flags. This parameter is
constructed by using a bitwise operator with any of the following values:

Constant Description

IMAP_FLAG_ANSWERED The message has been answered.

IMAP_FLAG_DELETED The message has been marked for deletion.

IMAP_FLAG_DRAFT The message has not been completed and is marked as a
draft copy.

IMAP_FLAG_URGENT The message has been flagged for urgent or special
attention.

IMAP_FLAG_RECENT The message has been added to the mailbox recently.

IMAP_FLAG_SEEN The message has been read.

Return Value
If the method succeeds, it returns IMAP_RESULT_OK. If an error occurs, the method returns
IMAP_ERROR. To get extended error information, call GetLastError.

Requirements

Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
DeleteMessage, GetMessageCount, GetMessageFlags

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::SetTimeout Method

INT SetTimeout(
 UINT nTimeout
);

The SetTimeout method sets the number of seconds the client will wait for a response from the
server. Once the specified number of seconds has elapsed, the method will fail and return to the
caller.

Parameters
nTimeout

The number of seconds to wait for a blocking operation to complete.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
IMAP_ERROR. To get extended error information, call GetLastError.

Remarks
The timeout value is only used with blocking client connections.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
Connect, GetTimeout, IsReadable, IsWritable, Read, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::ShowError Method

INT ShowError(
 LPCTSTR lpszAppTitle,
 UINT uType,
 DWORD dwErrorCode
);

The ShowError method displays a message box which describes the specified error.

Parameters
lpszAppTitle

A pointer to a string which specifies the title of the message box that is displayed. If this
argument is NULL or omitted, then the default title of "Error" will be displayed.

uType

An unsigned integer which specifies the type of message box that will be displayed. This is the
same value that is used by the MessageBox method in the Windows API. If a value of zero is
specified, then a message box with a single OK button will be displayed. Refer to that method
for a complete list of options.

dwErrorCode

Specifies the error code that will be used when displaying the message box. If this argument is
zero, then the last error that occurred in the current thread will be displayed.

Return Value
If the method is successful, the return value will be the return value from the MessageBox
function. If the method fails, it will return a value of zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetErrorString, GetLastError, SetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::StoreMessage Method

INT StoreMessage(
 UINT nMessageId,
 LPCTSTR lpszFileName
);

The StoreMessage method retrieves a message from the current mailbox and stores it in a local
file or the system clipboard.

Parameters
nMessageId

Number of the message to retrieve. This value must be greater than zero. The first message in
the mailbox is message number one.

lpszFileName

Pointer to a string which specifies the file that the message will be stored in. If an empty string
or NULL pointer is passed as an argument, the message is copied to the system clipboard.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
IMAP_ERROR. To get extended error information, call GetLastError.

Remarks
The StoreMessage method provides a method of retrieving and storing a message on the local
system. The contents of the message is stored as a text file, using the specified file name. This
method always causes the caller to block until the entire message has been retrieved, even if the
client has been put in asynchronous mode.

If event handling is enabled, the IMAP_EVENT_PROGRESS event will fire periodically during the
transfer of the message to the local system. An application can determine how much of the
message has been retrieved by calling the GetTransferStatus method.

To retrieve the message into a global memory buffer so that it can be passed to the MIME or
SMTP libraries, use the GetMessage method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetMessage, GetMessageHeaders, GetTransferStatus

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::SubscribeMailbox Method

INT SubscribeMailbox(
 LPCTSTR lpszMailbox
);

The SubscribeMailbox method subscribes the user to the specified mailbox.

Parameters
lpszMailbox

A pointer to a string which specifies the mailbox to subscribe to.

Return Value
If the method succeeds, it returns zero. If an error occurs, the method returns IMAP_ERROR. To
get extended error information, call GetLastError.

Remarks
The SubscribeMailbox method adds the specified mailbox to the current user's list of active or
subscribed mailboxes. The user will remain subscribed to the mailbox across multiple sessions,
until the UnsubscribeMailbox method is called to remove the mailbox from the subscription list.

To list those mailboxes which the user has subscribed to, use the GetFirstMailbox method and
specify the IMAP_LIST_SUBSCRIBED option.

Note that if a user subscribes to a mailbox and that mailbox is later renamed or deleted, the
mailbox will not be automatically removed from the user's subscription list. An application must
not assume that because a mailbox name is included in the list of subscribed mailboxes, it exists
and can be selected. To check if the mailbox exists, use the GetMailboxStatus method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ExamineMailbox, GetFirstMailbox, GetNextMailbox, SelectMailbox, UnselectMailbox,
UnsubscribeMailbox

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::UndeleteMessage Method

INT UndeleteMessage(
 UINT nMessageId
);

The UndeleteMessage method removes the deletion flag for the specified message.

Parameters
nMessage

Number of message to undelete from the server. This value must be greater than zero. The first
message in the mailbox is message number one.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
IMAP_ERROR. To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
DeleteMessage, GetDeletedMessages, GetMessage, GetMessageCount, GetMessageFlags,
ReselectMailbox, UnselectMailbox

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::UnselectMailbox Method

INT UnselectMailbox(
 BOOL bExpunge
);

The UnselectMailbox method unselects the current mailbox.

Parameters
bExpunge

A boolean flag which determines if deleted messages will be expunged from the mailbox. A
non-zero value specifies that messages that have been marked for deletion will be removed
from the mailbox. A zero value specifies that no messages will be removed from the mailbox.

Return Value
If the method succeeds, it returns zero. If an error occurs, the method returns IMAP_ERROR. To
get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
DeleteMailbox, ExamineMailbox, GetFirstMailbox, GetMailboxStatus, GetNextMailbox,
RenameMailbox, ReselectMailbox, SelectMailbox

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::UnsubscribeMailbox Method

INT UnsubscribeMailbox(
 LPCTSTR lpszMailbox
);

The UnsubscribeMailbox method unsubscribes the user from the specified mailbox.

Parameters
lpszMailbox

A pointer to a string which specifies the mailbox to unsubscribe from.

Return Value
If the method succeeds, it returns zero. If an error occurs, the method returns IMAP_ERROR. To
get extended error information, call GetLastError.

Remarks
The UnsubscribeMailbox method removes the specified mailbox from the current user's list of
active or subscribed mailboxes.

To list those mailboxes which the user has subscribed to, use the GetFirstMailbox method and
specify the IMAP_LIST_SUBSCRIBED option.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ExamineMailbox, GetFirstMailbox, GetNextMailbox, SelectMailbox, SubscribeMailbox,
UnselectMailbox

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CImapClient::Write Method

INT Write(
 LPBYTE lpBuffer,
 INT cbBuffer
);

INT Write(
 LPCTSTR lpszBuffer
 INT cbBuffer
);

The Write method sends the specified number of bytes to the server.

Parameters
lpBuffer

The pointer to the buffer which contains the data that is to be sent to the server. In an alternate
form of the method, the pointer is to a string.

cbBuffer

The number of bytes to send from the specified buffer. This value must be greater than zero,
unless a pointer to a string is passed as the buffer argument. In that case, if the value is -1, all of
the characters in the string, up to but not including the terminating null character, will be sent to
the server.

Return Value
If the method succeeds, the return value is the number of bytes actually written. If the method
fails, the return value is IMAP_ERROR. To get extended error information, call GetLastError.

Remarks
The return value may be less than the number of bytes specified by the cbBuffer parameter. In this
case, the data has been partially written and it is the responsibility of the client application to send
the remaining data at some later point. For non-blocking clients, the client must wait for the next
asynchronous notification message before it resumes sending data.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
EnableEvents, IsBlocking, IsReadable, IsWritable, Read, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Internet Message Access Protocol Data Structures

IMAPMAILBOX
IMAPMAILBOXSTATUS
IMAPMESSAGE
IMAPTRANSFERSTATUS
SECURITYCREDENTIALS
SECURITYINFO
SYSTEMTIME

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IMAPMAILBOX Structure

This structure contains information about a selected mailbox.

typedef struct _IMAPMAILBOX
{
 UINT nMessages;
 UINT nRecentMessages;
 UINT nUnseenMessageId;
 DWORD dwMailboxUID;
 DWORD dwNextMessageUID;
 DWORD dwFlags;
 DWORD dwPermanentFlags;
 DWORD dwAccessMode;
 DWORD dwReserved1;
 DWORD dwReserved2;
} IMAPMAILBOX, *LPIMAPMAILBOX;

Members
nMessages

A value specifies the total number of messages in the mailbox.

nRecentMessages

A value which specifies the number of new messages that have recently arrived in the mailbox.

nUnseenMessageId

A value which specifies the message ID of the first unseen message in the mailbox.

dwMailboxUID

A value which specifies a unique identifier for this mailbox which corresponds to the
UIDVALIDITY value returned by the IMAP server. The actual value is determined by the server
and should be considered opaque. The protocol specification requires that a mailbox's UID
must not change unless the mailbox contents are modified or existing messages in the mailbox
have been assigned new UIDs.

dwNextMessageUID

A value which specifies the predicted unique identifier that will be assigned to a new message in
the mailbox. This corresponds to the UIDNEXT value returned by the IMAP server. The protocol
specification requires that as long as the mailbox UID is unchanged, messages that are added to
the mailbox will be assigned a UID greater than or equal to the next UID value.

dwFlags

A value which specifies one or more mailbox flags. One or more of the following values may be
specified:

Constant Description

IMAP_FLAG_NOINFERIORS The mailbox does not contain any child mailboxes. In the
IMAP protocol, these are referred to as inferior
hierarchical mailbox names.

IMAP_FLAG_NOSELECT The mailbox cannot be selected or examined. This flag is
typically used by servers to indicate that the mailbox name
refers to a directory on the server, not a mailbox file.

IMAP_FLAG_MARKED The mailbox is marked as being of interest to a client. If

this flag is used, it typically means that the mailbox
contains messages. An application should not depend on
this flag being present for any given mailbox. Some IMAP
servers do not support marked or unmarked flags for
mailboxes.

IMAP_FLAG_UNMARKED The mailbox is marked as not being of interest to a client.
If this flag is used, it typically means that the mailbox does
not contain any messages. An application should not
depend on this flag being present for any given mailbox.
Some IMAP servers do not support marked or unmarked
flags for mailboxes.

dwPermanentFlags

A value which specifies the message flags that a client can change permanently. If this value is
zero, then no permanent flags are defined for the mailbox and the client may assume that all
message flags may be set permanently. Otherwise, one or more of the following values may be
specified:

Constant Description

IMAP_FLAG_ANSWERED The message has been answered.

IMAP_FLAG_DRAFT The message has not been completed and is marked as a
draft copy.

IMAP_FLAG_URGENT The message has been flagged for urgent or special
attention.

IMAP_FLAG_SEEN The message has been read.

dwAccessMode

A value which specifies the access mode for the mailbox. It may be one of the following values:

Constant Description

IMAP_ACCESS_READONLY The mailbox has been selected in read-only mode.
Messages may not be created in the mailbox, nor can
message flags be modified.

IMAP_ACCESS_READWRITE The mailbox has been selected in read-write mode.
Messages may be modified by the client, and messages
marked for deletion can be expunged.

dwReserved1

A reserved value that is undefined.

dwReserved2

A reserved value that is undefined.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IMAPMAILBOXSTATUS Structure

This structure contains information about a mailbox.

typedef struct _IMAPMAILBOXSTATUS
{
 UINT nMessages;
 UINT nRecentMessages;
 UINT nUnseenMessages;
 DWORD dwMailboxUID;
 DWORD dwNextMessageUID;
 DWORD dwReserved;
} IMAPMAILBOXSTATUS, *LPIMAPMAILBOXSTATUS;

Members
nMessages

A value specifies the total number of messages in the mailbox.

nRecentMessages

A value which specifies the number of new messages that have recently arrived in the mailbox.

nUnseenMessages

A value which specifies the number of unread messages in the mailbox.

dwMailboxUID

A value which specifies a unique identifier for this mailbox which corresponds to the
UIDVALIDITY value returned by the IMAP server. The actual value is determined by the server
and should be considered opaque. The protocol specification requires that a mailbox's UID
must not change unless the mailbox contents are modified or existing messages in the mailbox
have been assigned new UIDs.

dwNextMessageUID

A value which specifies the predicted unique identifier that will be assigned to a new message in
the mailbox. This corresponds to the UIDNEXT value returned by the IMAP server. The protocol
specification requires that as long as the mailbox UID is unchanged, messages that are added to
the mailbox will be assigned a UID greater than or equal to the next UID value.

dwReserved

A reserved value that is undefined.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IMAPMESSAGE Structure

This structure contains information about a message.

typedef struct _IMAPMESSAGE
{
 UINT nMessageId;
 DWORD dwMessageUID;
 DWORD dwSize;
 DWORD dwFlags;
 DWORD dwTimestamp;
 DWORD dwReserved;
} IMAPMESSAGE, *LPIMAPMESSAGE;

Members
nMessageId

An integer value which identifies the message. The message identifier is only valid while the
mailbox is selected and no messages marked for deletion have been expunged. To maintain a
persistent identifier for the message, use a combination of the mailbox UID and message UID.

dwMessageUID

An integer value which specifies a unique identifier for this message. The actual value is
determined by the server and should be considered opaque. If the client application stores the
message UID on the local system, it should also store the UID for the mailbox that contains the
message. If the mailbox UID changes, the message UID may no longer be valid.

dwSize

Specifies the size of the message in bytes.

dwFlags

A value which specifies one or more message flags. One or more of the following values may
be specified:

Constant Description

IMAP_FLAG_NONE No value.

IMAP_FLAG_ANSWERED The message has been answered.

IMAP_FLAG_DELETED The message has been marked for deletion.

IMAP_FLAG_DRAFT The message has not been completed and is marked as a
draft copy.

IMAP_FLAG_URGENT The message has been flagged for urgent or special
attention.

IMAP_FLAG_RECENT The message has been added to the mailbox recently.

IMAP_FLAG_SEEN The message has been read.

dwTimestamp

An integer value which specifies the date and time that the message was created in the mailbox.
The value is expressed as the number of seconds since midnight, 1 January 1970 and is the
same value that is used for the standard C runtime library time methods. Note that the date and
time used is the message's internal date from the mail server, not the value of the Date header
field.

dwReserved

A reserved value that is undefined.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IMAPTRANSFERSTATUS Structure

This structure is used by the GetTransferStatus method to return information about a file transfer
in progress.

typedef struct _IMAPTRANSFERSTATUS
{
 UINT nMessageId;
 DWORD dwBytesTotal;
 DWORD dwBytesCopied;
 DWORD dwBytesPerSecond;
 DWORD dwTimeElapsed;
 DWORD dwTimeEstimated;
} IMAPTRANSFERSTATUS, *LPIMAPTRANSFERSTATUS;

Members
nMessageId

The message ID of the current message that is being transferred.

dwBytesTotal

The total number of bytes that will be transferred. If the file is being copied from the server to
the local host, this is the size of the remote file. If the file is being copied from the local host to
the server, it is the size of the local file. If the file size cannot be determined, this value will be
zero.

dwBytesCopied

The total number of bytes that have been copied.

dwBytesPerSecond

The average number of bytes that have been copied per second.

dwTimeElapsed

The number of seconds that have elapsed since the file transfer started.

dwTimeEstimated

The estimated number of seconds until the file transfer is completed. This is based on the
average number of bytes transferred per second.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SECURITYCREDENTIALS Structure

The SECURITYCREDENTIALS structure specifies the information needed by the library to specify
additional security credentials, such as a client certificate or private key, when establishing a secure
connection.

typedef struct _SECURITYCREDENTIALS
{
 DWORD dwSize;
 DWORD dwProtocol;
 DWORD dwOptions;
 DWORD dwReserved;
 LPCTSTR lpszHostName;
 LPCTSTR lpszUserName;
 LPCTSTR lpszPassword;
 LPCTSTR lpszCertStore;
 LPCTSTR lpszCertName;
 LPCTSTR lpszKeyFile;
} SECURITYCREDENTIALS, *LPSECURITYCREDENTIALS;

Members
dwSize

Size of this structure. If the structure is being allocated dynamically, this member must be set to
the size of the structure and all other unused structure members must be initialized to a value of
zero or NULL.

dwProtocol

A bitmask of supported security protocols. The value of this structure member is constructed by
using a bitwise operator with any of the following values:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The
correct protocol is automatically selected, based on

what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.
This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is
supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

dwOptions

A value which specifies one or options. This member is constructed by using a bitwise operator
with any of the following values:

Constant Description

CREDENTIAL_STORE_CURRENT_USER The library will attempt to open a store for
the current user using the certificate store
name provided in this structure. If no options
are specified, then this is the default
behavior.

CREDENTIAL_STORE_LOCAL_MACHINE The library will attempt to open a local
machine store using the certificate store

name provided in this structure. If this option
is specified, the library will always search for a
local machine store before searching for the
store by that name for the current user.

CREDENTIAL_STORE_FILENAME The certificate store name is a file that
contains the certificate and private key that
will be used.

dwReserved

This structure member is reserved for future use and should always be initialized to zero.

lpszHostName

A pointer to a null terminated string which specifies the hostname that will be used when
validating the server certificate. If this member is NULL, then the server certificate will be
validated against the hostname used to establish the connection.

lpszUserName

A pointer to a null terminated string which identifies the owner of client certificate. Currently this
member is not used by the library and should always be initialized as a NULL pointer.

lpszPassword

A pointer to a null terminated string which specifies the password needed to access the
certificate. Currently this member is only used if the CREDENTIAL_STORE_FILENAME option has
been specified. If there is no password associated with the certificate, then this member should
be initialized as a NULL pointer.

lpszCertStore

A pointer to a null terminated string which specifies the name of the certificate store to open. A
certificate store is a collection of certificates and their private keys, typically organized by how
they are used. If this value is NULL or points to an empty string, the default certificate store "MY"
will be used.

Store
Name

Description

CA
Certification authority certificates. These are certificates that are issued by entities
which are entrusted to issue certificates to other individuals or organizations.
Companies such as VeriSign and Thawte act as certification authorities.

MY

Personal certificates and their associated private keys for the current user. This
store typically holds the client certificates used to establish a user's credentials.
This corresponds to the "Personal" store that is displayed by the certificate
manager utility and is the default store used by the library.

ROOT
Certificates that have been self-signed by a certificate authority. Root certificates
for a number of different certification authorities such as VeriSign and Thawte are
installed as part of the operating system and periodically updated by Microsoft.

lpszCertName

A pointer to a null terminated string which specifies the name of the certificate to use. The
library will first search the certificate store for a certificate with a matching "friendly name"; this is
a name for the certificate that is assigned by the user. Note that the name must match
completely, but the comparison is not case sensitive. If no matching certificate is found, the
library will then attempt to find a certificate that has a matching common name (also called the
certificate subject). This comparison is less stringent, and the first partial match will be returned.

If this second search fails, the library will return an error indicating that the certificate could not
be found. If the SECURITY_PROTOCOL_SSH protocol has been specified, this member should
be NULL.

lpszKeyFile

A pointer to a null terminated string which specifies the name of the file which contains the
private key required to establish the connection. This member is only used for SSH connections
and should always be NULL when establishing a secure connection using SSL or TLS.

Remarks
A client application only needs to create this structure if the server requires that the client provide
a certificate as part of the process of negotiating the secure session. If a certificate is required,
note that it must have a private key associated with it. Attempting to use a certificate that does not
have a private key will result in an error during the connection process indicating that the client
credentials could not be established.

If you are using a local certificate store, with the certificate and private key stored in the registry,
you can explicitly specify whether the certificate store for the current user or the local machine (all
users) should be used. This is done by prefixing the certificate store name with "HKCU:" for the
current user, or "HKLM:" for the local machine. For example, a certificate store name of
"HKLM:MY" would specify the personal certificate store for the local machine, rather than the
current user. If neither prefix is specified, then it will default to the certificate store for the current
user. You can manage these certificates using the CertMgr.msc Microsoft Management Console
(MMC) snap-in.

It is possible to load the certificate from a file rather than from current user's certificate store. The
dwOptions member should be set to CREDENTIAL_STORE_FILENAME and the lpszCertStore
member should specify the name of the file that contains the certificate and its private key. The file
must be in Private Information Exchange (PFX) format, also known as PKCS #12. These certificate
files typically have an extension of .pfx or .p12. Note that if a password was specified when the
certificate file was created, it must be provided in the lpszPassword member or the library will be
unable to access the certificate.

Note that the lpszUserName and lpszPassword members are values which are used to access the
certificate store or private key file. They are not the credentials which are used when establishing
the connection with the remote host or authenticating the client session.

The TLS 1.1 and TLS 1.2 protocols are only supported on Windows 7, Windows Server 2008 R2
and later versions of the platform. If these options are specified and the application is running on
Windows XP or Windows Vista, the protocol version will be downgraded to TLS 1.0 for backwards
compatibility with those platforms.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cstools11.h.
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SECURITYINFO Structure

This structure contains information about a secure connection that has been established.

typedef struct _SECURITYINFO
{
 DWORD dwSize;
 DWORD dwProtocol;
 DWORD dwCipher;
 DWORD dwCipherStrength;
 DWORD dwHash;
 DWORD dwHashStrength;
 DWORD dwKeyExchange;
 DWORD dwCertStatus;
 SYSTEMTIME stCertIssued;
 SYSTEMTIME stCertExpires;
 LPCTSTR lpszCertIssuer;
 LPCTSTR lpszCertSubject;
 LPCTSTR lpszFingerprint;
} SECURITYINFO, *LPSECURITYINFO;

Members
dwSize

Specifies the size of the data structure. This member must always be initialized to
sizeof(SECURITYINFO) prior to passing the address of this structure to the function. Note that
if this member is not initialized, an error will be returned indicating that an invalid parameter has
been passed to the function.

dwProtocol

A numeric value which specifies the protocol that was selected to establish the secure
connection. One of the following values will be returned:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The

correct protocol is automatically selected, based on
what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.
This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is
supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

dwCipher

A numeric value which specifies the cipher that was selected when establishing the secure
connection. One of the following values will be returned:

Constant Description

SECURITY_CIPHER_RC2 The RC2 block cipher was selected. This is a variable
key length cipher which supports keys between 40 and
128 bits, in 8-bit increments.

SECURITY_CIPHER_RC4 The RC4 stream cipher was selected. This is a variable
key length cipher which supports keys between 40 and
128 bits, in 8-bit increments.

SECURITY_CIPHER_RC5 The RC5 block cipher was selected. This is a variable
key length cipher which supports keys up to 2040 bits,
in 8-bit increments.

SECURITY_CIPHER_DES The DES (Data Encryption Standard) block cipher was
selected. This is a fixed key length cipher, using 56-bit
keys.

SECURITY_CIPHER_DES3 The Triple DES block cipher was selected. This cipher
encrypts the data three times using different keys,
effectively providing a 168-bit length key.

SECURITY_CIPHER_DESX A variant of the DES block cipher which XORs an extra
64-bits of the key before and after the plaintext has
been encrypted, increasing the key size to 184 bits.

SECURITY_CIPHER_AES The Advanced Encryption Standard cipher (also known
as the Rijndael cipher) is a fixed block size cipher which
use a key size of 128, 192 or 256 bits. This cipher is
supported on Windows XP SP3 and later versions of
the operating system.

SECURITY_CIPHER_SKIPJACK The Skipjack block cipher was selected. This is a fixed
key length cipher, using 80-bit keys.

SECURITY_CIPHER_BLOWFISH The Blowfish block cipher was selected. This is a
variable key length cipher up to 448 bits, using a 64-bit
block size.

dwCipherStrength

A numeric value which specifies the strength (the length of the cipher key in bits) of the cipher
that was selected. Typically this value will be 128 or 256. 40-bit and 56-bit key lengths are
considered weak encryption, and subject to brute force attacks. 128-bit and 256-bit key lengths
are considered to be secure, and are the recommended key length for secure communications.

dwHash

A numeric value which specifies the hash algorithm which was selected. One of the following
values will be returned:

Constant Description

SECURITY_HASH_MD5 The MD5 algorithm was selected. Its use has been
deprecated and is no longer considered to be
cryptographically secure.

SECURITY_HASH_SHA1 The SHA-1 algorithm was selected. Its use has been
deprecated and is no longer considered to be
cryptographically secure.

SECURITY_HASH_SHA256 The SHA-256 algorithm was selected.

SECURITY_HASH_SHA384 The SHA-384 algorithm was selected.

SECURITY_HASH_SHA512 The SHA-512 algorithm was selected.

dwHashStrength

A numeric value which specifies the strength (the length in bits) of the message digest that was

selected.

dwKeyExchange

A numeric value which specifies the key exchange algorithm which was selected. One of the
following values will be returned:

Constant Description

SECURITY_KEYEX_RSA The RSA public key algorithm was selected.

SECURITY_KEYEX_KEA The Key Exchange Algorithm (KEA) was selected. This is an
improved version of the Diffie-Hellman public key algorithm.

SECURITY_KEYEX_DH The Diffie-Hellman key exchange algorithm was selected.

SECURITY_KEYEX_ECDH The Elliptic Curve Diffie-Hellman key exchange algorithm was
selected. This is a variant of the Diffie-Hellman algorithm
which uses elliptic curve cryptography. This key exchange
algorithm is only supported on Windows XP SP3 and later
versions of the operating system.

dwCertStatus

A numeric value which specifies the status of the certificate returned by the secure server. This
member only has meaning for connections using the SSL or TLS protocols. One of the following
values will be returned:

Constant Description

SECURITY_CERTIFICATE_VALID The certificate is valid.

SECURITY_CERTIFICATE_NOMATCH The certificate is valid, but the domain name
does not match the common name in the
certificate.

SECURITY_CERTIFICATE_EXPIRED The certificate is valid, but has expired.

SECURITY_CERTIFICATE_REVOKED The certificate has been revoked and is no
longer valid.

SECURITY_CERTIFICATE_UNTRUSTED The certificate or certificate authority is not
trusted on the local system.

SECURITY_CERTIFICATE_INVALID The certificate is invalid. This typically indicates
that the internal structure of the certificate has
been damaged.

stCertIssued

A structure which contains the date and time that the certificate was issued by the certificate
authority. If the issue date cannot be determined for the certificate, the SYSTEMTIME structure
members will have zero values. This member only has meaning for connections using the SSL or
TLS protocols.

stCertExpires

A structure which contains the date and time that the certificate expires. If the expiration date
cannot be determined for the certificate, the SYSTEMTIME structure members will have zero
values. This member only has meaning for connections using the SSL or TLS protocols.

lpszCertIssuer

A pointer to a string which contains information about the organization that issued the
certificate. This string consists of one or more comma-separated tokens. Each token consists of
an identifier, followed by an equal sign and a value. If the certificate issuer could not be
determined, this member may be NULL. This member only has meaning for connections using
the SSL or TLS protocols.

lpszCertSubject

A pointer to a string which contains information about the organization that the certificate was
issued to. This string consists of one or more comma-separated tokens. Each token consists of
an identifier, followed by an equal sign and a value. If the certificate subject could not be
determined, this member may be NULL. This member only has meaning for connections using
the SSL or TLS protocols.

lpszFingerprint

A pointer to a string which contains a sequence of hexadecimal values that uniquely identify the
server. This member is only used when a connection has been established using the Secure
Shell (SSH) protocol.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SYSTEMTIME Structure

The SYSTEMTIME structure represents a date and time using individual members for the month,
day, year, weekday, hour, minute, second, and millisecond.

typedef struct _SYSTEMTIME
{
 WORD wYear;
 WORD wMonth;
 WORD wDayOfWeek;
 WORD wDay;
 WORD wHour;
 WORD wMinute;
 WORD wSecond;
 WORD wMilliseconds;
} SYSTEMTIME, *LPSYSTEMTIME;

Members
wYear

Specifies the current year. The year value must be greater than 1601.

wMonth

Specifies the current month. January is 1, February is 2 and so on.

wDayOfWeek

Specifies the current day of the week. Sunday is 0, Monday is 1 and so on.

wDay

Specifies the current day of the month

wHour

Specifies the current hour.

wMinute

Specifies the current minute

wSecond

Specifies the current second.

wMilliseconds

Specifies the current millisecond.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include windows.h.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Internet Server Class Library

A general purpose TCP/IP networking library for developing server applications.

Reference

Data Members
Class Methods
Event Handlers
Data Structures
Error Codes

Library Information

Class Name CInternetServer

File Name CSWSKV11.DLL

Version 11.0.2180.1635

LibID EC6DE93D-FBB8-4928-B2D5-C09758C644EE

Import Library CSWSKV11.LIB

Dependencies None

Standards RFC 768, RFC 791, RFC 793

Overview
The Internet Server class library provides a simplified interface for creating event-driven,
multithreaded server applications using the TCP/IP protocol. Each instance of the Internet Server
class represents a server, and each active client connection is managed internally and referenced
by a handle which uniquely identifies the client session. The class library supports secure
connections using the standard SSL and TLS protocols and can be used to create secure, custom
server programs.

This class is designed to be used as a base class from which your own server class is derived. To
exchange data with the clients that connect to the server, you should override the default events
such as OnConnect and OnRead. Most interaction with the clients occur within these event
handlers. Because the client sessions are managed in worker threads that are separate from the
main UI thread of your application, you may perform a blocking operation in response to an event
without affecting the other clients that are connected to the server.

Requirements
The SocketTools Library Edition libraries are compatible with any programming language which
supports calling functions exported from a standard dynamic link library (DLL). If you are using
Visual C++ 6.0 it is required that you have Service Pack 6 (SP6) installed. You should install all
updates for your development tools and have the current Windows SDK installed. The minimum
recommended version of Visual Studio is Visual Studio 2010.

This library is supported on Windows 7, Windows Server 2008 R2 and later versions of the desktop
and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1) installed as
a minimum requirement. It is recommended that you install the current service pack and all critical
updates available for your version of the operating system.

This product includes both 32-bit and 64-bit libraries. Native 64-bit CPU support requires the 64-
bit version of Windows 7 or later versions of the Windows operating system.

Distribution
When you distribute your application that uses this library, it is recommended that you install the
file in the same folder as your application executable. If you install the library into a shared location
on the system, it is important that you distribute the correct version for the target platform and it
should be registered as a shared DLL. This is a standard Windows dynamic link library, not an
ActiveX component, and does not require COM registration.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer Public Data Members

Member Variables Description

m_nBacklog The size of the backlog connection queue for the server

m_nMaxClients The maximum number of active client sessions accepted by the server

m_nMaxClientsPerAddress The maximum number of clients per IP address accepted by the server

m_dwOptions The options specified when creating an instance of the server

m_nPriority The priority specified when creating an instance of the server

m_dwStackSize The initial size of the stack allocated for threads created by the server

m_nTimeout The timeout period in seconds waiting for a blocking operation to complete

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::m_nBacklog

UINT m_nBacklog;

The size of the backlog connection queue for the server.

Remarks
The m_nBacklog data member is a public variable that specifies the size of the queue allocated
for pending client connections. A value of zero specifies that the queue should be set to a
reasonable default value. On Windows server platforms, the maximum value is large enough to
queue several hundred pending connections. Changing the value of this data member does not
have an effect on an active instance of the server.

See Also
CInternetServer

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::m_nMaxClients

UINT m_nMaxClients;

The maximum number of clients that are permitted to connect to the server.

Remarks
The m_nMaxClients data member is a public variable that specifies the maximum number of
clients that are permitted to establish a connection with the server. After this limit is reached, the
server will reject additional connections until the number of active clients drops below this
threshold. A value of zero specifies that there is no fixed limit on the active number of client
connections. Changing the value of this data member does not have an effect on an active
instance of the server. To change the maximum number of clients on an active server, use the
Throttle method.

The actual number of client connections that can be accepted depends on the amount of memory
available to the server process. Sockets are allocated from the non-paged memory pool, so the
actual number of sockets that can be created system-wide depends on the amount of physical
memory that is installed. If the server will be accessible over the Internet, it is recommended that
you limit the maximum number of client connections to a reasonable value.

See Also
CInternetServer, Throttle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::m_nMaxClientsPerAddress

UINT m_nMaxClientsPerAddress;

The maximum number of clients that are permitted to connect to the server from a single IP
address.

Remarks
The m_nMaxClientsPerAddress data member is a public variable that specifies the maximum
number of clients that are permitted to establish a connection with the server from a single IP
address. After this limit is reached, the server will will reject additional connections until the
number of active clients drops below this threshold. A value of zero specifies that there is no limit
on the active number of client connections per IP address. Changing the value of this data
member does not have an effect on an active instance of the server. To change the maximum
number of clients on an active server, use the Throttle method.

See Also
CInternetServer, Throttle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::m_dwOptions

DWORD m_dwOptions;

The default options used when starting an instance of the server.

Remarks
The m_dwOptions data member is a public variable that specifies the default options that should
be used when starting an instance of the server. This variable can be modified directly or by calling
the SetOptions method. For a list of available server options, see Server Option Constants.
Changing the value of this data member does not have an effect on an active instance of the
server.

See Also
CInternetServer, GetOptions, SetOptions

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/tcpsrv/class/optionconst.html

 CInternetServer::m_nPriority

INT m_nPriority;

The priority specified when creating an instance of the server.

Remarks
The m_nPriority data member is a public variable that specifies the which specifies the priority for
the server and all client sessions. Changing the value of this data member does not have an effect
on an active instance of the server. It may be one of the following values:

Constant Description

INET_PRIORITY_NORMAL The default priority which balances resource and
processor utilization. It is recommended that most
applications use this priority.

INET_PRIORITY_BACKGROUND This priority significantly reduces the memory,
processor and network resource utilization for the
client session. It is typically used with lightweight
services running in the background that are designed
for few client connections. The client thread will be
assigned a lower scheduling priority and will be
frequently forced to yield execution to other threads.

INET_PRIORITY_LOW This priority lowers the overall resource utilization for
the client session and meters the processor utilization
for the client session. The client thread will be
assigned a lower scheduling priority and will
occasionally be forced to yield execution to other
threads.

INET_PRIORITY_HIGH This priority increases the overall resource utilization
for the client session and the thread will be given
higher scheduling priority. It can be used when it is
important for the client session thread to be highly
responsive. It is not recommended that this priority be
used on a system with a single processor.

INET_PRIORITY_CRITICAL This priority can significantly increase processor,
memory and network utilization. The thread will be
given higher scheduling priority and will be more
responsive to the remote host. It is not recommended
that this priority be used on a system with a single
processor.

See Also
CInternetServer, GetPriority, SetPriority

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::m_dwStackSize

DWORD m_dwStackSize;

The initial size of the stack allocated for threads created by the server.

Remarks
The m_dwStackSize data member is a public variable that specifies the initial amount of memory
that is committed to the stack for each thread created by the server. A value of zero specifies that
the default stack size should be used, which is 256K for 32-bit processes and 512K for 64-bit
processes. This variable can be modified directly or by calling the SetStackSize method. Changing
the value of this data member does not have an effect on an active instance of the server. It is
recommended that most applications use the default stack size.

See Also
CInternetServer, GetStackSize, SetStackSize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::m_nTimeout

DWORD m_nTimeout;

The default options used when starting an instance of the server.

Remarks
The m_nTimeout data member is a public variable that specifies the number of seconds the
server should wait for a client to perform a network operation. If the client does not exchange any
information with the server within this period of time, a timeout event will occur. The timeout value
affects all clients that are connected to the server. This variable can be modified directly or by
calling the SetTimeout method. Changing the value of this data member does not have an effect
on an active instance of the server.

See Also
CInternetServer, GetTimeout, SetTimeout

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer Class Methods

Class Description

CInternetServer Constructor which initializes the current instance of the class

~CInternetServer Destructor which releases resources allocated by the class

Method Description

Abort Abort the connection and immediately close the socket

AsyncNotify Enable or disable asynchronous notification of changes in server status

AttachHandle Attach the specified server handle to this instance of the class

Broadcast Write data to all active clients currently connected to the server

Cancel Cancel a blocking operation for the specified client session

CompareAddress Compare two IP addresses to determine if they are identical

DetachHandle Detach the server handle from the current instance of this class

DisableSecurity Disable secure communication with the client

DisableTrace Disable logging of network function calls to the trace log

Disconnect Disconnect the client, closing the socket handle and terminating the session

EnableSecurity Enable secure communication with the client

EnableTrace Enable logging of network function calls to a file

EnumClients Returns a list of active client connections established with the server

EnumNetworkAddresses Return the list of network addresses that are configured for the local host

FindClient Returns a handle to the client which matches the specified client ID or moniker

FormatAddress Convert an IP address in binary format into a printable string

Flush Flush the send and receive buffers for the specified client session

GetActiveClient Return the socket handle for the active client session

GetAdapterAddress Return the IP or MAC assigned to the specified network adapter

GetAddress Convert an IP address string to a binary format

GetAddressFamily Return the address family for the specified IP address

GetBacklog Return the size of the backlog connection queue for the server

GetClientAddress Return the IP address and port number for the specified client session

GetClientData Returns the application defined data associated with the specified client session

GetClientHandle Returns the handle for a specific client session based on its ID number

GetClientId Returns the unique ID number assigned to the specified client session

GetClientIdleTime Returns the amount of time the specified client session has been idle

GetClientMoniker Returns the string alias associated with the specified client session

GetClientPort Returns the remote port number used by the client to establish the connection

GetClientServer Returns a socket handle to the server for the specified client socket

GetClientServerById Returns a socket handle to the server for the specified session identifier

GetClientThreadId Returns the thread ID for the specified client

GetClientThreads Returns the number of client session threads created by the server

GetErrorString Return a description for the specified error code

GetExternalAddress Return the external IP address assigned to the local system

GetHandle Return the client handle used by this instance of the class

GetHostAddress Return the IP address assigned to the specified hostname

GetHostName Return the hostname assigned to the specified IP address

GetLastError Return the last error code

GetLocalAddress Return the local IP address and port number for the server

GetLocalName Return the hostname assigned to the local system

GetOptions Return the current server options

GetPriority Return the current priority assigned to the server

GetStackSize Return the initial size of the stack allocated for threads created by the server

GetStatus Return the current status of the server

GetStreamInfo Return information about the current stream I/O operation

GetThreadClient Return the handle for the client session that is being managed by the specified thread

GetTimeout Return the timeout interval for blocking operations in seconds

IsActive Determine if the server is currently active

IsAddressNull Determine if the specified IP address is a null address

IsAddressRoutable Determine if the specified IP address is routable over the Internet

IsInitialized Determine if the class has been successfully initialized

IsListening Determine if the server is listening for client connections

IsLocked Determine if the server is currently in a locked state

IsProtocolAvailable Determine if the specified protocol and address family are supported

IsReadable Determine if data is available to be read from the client

IsWritable Determine if data can be sent to the client without causing the thread to block

Lock Lock the server, causing all other client threads to block until it is unlocked

MatchHostName Match a host name against one more strings that may contain wildcards

Peek Read data from the client without removing it from the socket buffer

Read Read data from the client

ReadLine Read a line of data from the client, storing it in a string buffer

ReadStream Read a stream of data from the client and store it in the specified buffer

Reject Reject a pending client connection

Restart Restart the server, terminating all active client sessions

Resume Resume accepting client connections on the specified server

SetBacklog Set the size of the backlog connection queue for the server

SetCertificate Specify the server certificate that should be used with secure connections

SetClientData Associate application defined data with the specified client session

SetClientMoniker Associate a unique string alias with the specified client session

SetLastError Set the last error code

SetOptions Set one or more server options

SetPriority Set the priority assigned to the server

SetTimeout Set the timeout interval used when waiting for a blocking operation to complete

ShowError Display a message box with a description of the specified error

Start Begin listening for client connections on the specified address and port

Stop Stop listening for connections and terminate all client sessions

StoreStream Read a stream of data from the client and store it in a file

Suspend Suspend accepting client connections and optionally reject or disconnect clients

Throttle Limit the number of active client connections, connections per address and connection rate

Unlock Unlock the server, allowing other client threads to resume execution

ValidateCertificate Validate the specified security certificate is installed on the local system

Write Write data to the client

WriteLine Write a line of data to the client, terminated with a carriage-return and linefeed

WriteStream Write a stream of data to the client

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::CInternetServer Method

CInternetServer();

The CInternetServer constructor initializes the class library and validates the license key at
runtime.

Remarks
If the constructor fails to validate the runtime license, subsequent methods in this class will fail. If
the product is installed with an evaluation license, then the application will only function on the
development system and cannot be redistributed.

The constructor calls the InetInitialize function to initialize the library, which dynamically loads
other system libraries and allocates thread local storage. If you are using this class within another
DLL, it is important that you do not create or destroy an instance of the class from within the
DllMain function because it can result in deadlocks or access violation errors. You should not
declare static or global instances of this class within another DLL if it is linked with the C runtime
library (CRT) because it will automatically call the constructors and destructors for static and global
C++ objects and has the same restrictions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
~CInternetServer, IsInitialized

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::~CInternetServer

~CInternetServer();

The CInternetServer destructor releases resources allocated by the current instance of the
CInternetServer object. It also uninitializes the library if there are no other concurrent uses of the
class.

Remarks
When a CInternetServer object goes out of scope, the destructor is automatically called to allow
the library to free any resources allocated on behalf of the process. Any pending blocking or
asynchronous calls in this process are canceled without posting any notification messages, and all
handles that were created for the connection are destroyed. If there are any clients connected to
the server at the time the destructor is called, those client sessions will be immediately terminated.

The destructor is not called explicitly by the application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
CInternetServer

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::Abort Method

BOOL Abort(
 SOCKET hSocket
);

BOOL Abort();

Immediately close the socket without waiting for any remaining data to be written out.

Parameters
hSocket

An optional parameter that specifies the handle to the client socket. If this parameter is omitted,
the socket handle for the active client session will be used. If this method is called outside of a
server event handler, the socket handle must be specified.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The Abort method should only be used when the connection must be closed immediately. This
method should only be used to abort client connections and should not be called within an
OnAccept event handler. To reject an incoming client connection, use the Reject method.

In most cases, the server should call the Disconnect method to gracefully close a client
connection. Aborting the connection will discard any buffered data and may cause errors or result
in unpredictable behavior by the client application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
Cancel, Disconnect, Reject

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::AsyncNotify Method

BOOL AsyncNotify(
 HWND hWnd,
 UINT uMsg
);

Enable or disable asynchronous notification of changes in server status.

Parameters
hWnd

A handle to the window whose window procedure will receive the notification message.

uMsg

The user-defined message that will be sent to the notification window.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call the GetLastError method.

Remarks
The AsyncNotify method is used by an application to enable or disable asynchronous
notifications. The message window is typically the main UI window and these notifications are used
signal to the application that it should update the user interface. If the hWnd parameter is not
NULL, it must specify a valid window handle and the user-defined message must have a value of
WM_USER or higher. The application cannot specify a notification message that is reserved by the
operating system. The pseudo-handle HWND_BROADCAST cannot be specified as the
notification window. If the hWnd parameter is NULL, notifications for the specified server will be
disabled.

When asynchronous notifications are enabled for a server, the server will post the user-defined
message to the window whenever there is a change in status or after a client has connected or
disconnected from the server. The wParam message parameter will contain the notification
message and the lParam message parameter will contain the handle to the server or the client ID.
The following notification messages are defined:

Constant Description

INET_NOTIFY_STARTUP This notification is sent when the server has started and
is preparing to accept client connections. This
notification is only sent once, and only if asynchronous
notifications are enabled immediately after the Start
method is called. This message will not be sent once the
server has begun accepting client connections or when
notification messages are disabled and then
subsequently re-enabled at a later time. The lParam
message parameter will specify the handle to the server.

INET_NOTIFY_LISTEN This notification is sent when the server is listening for
client connections. This notification message may be
sent to the application multiple times over the lifetime of
the server. If the server was suspended, this notification
will be sent after the application calls the Resume

method to resume accepting client connections. The
lParam message parameter will specify the handle to
the server.

INET_NOTIFY_SUSPEND This notification is sent when the server suspends
accepting new connections because the application has
called the Suspend method. This notification message
may be sent to the application multiple times over the
lifetime of the server. The lParam message parameter
will specify the handle to the server.

INET_NOTIFY_RESTART This notification is sent when the server is restarted using
the Restart method. Note that the server socket handle
provided by the lParam message parameter will specify
the new socket handle of the restarted server instance,
not the original socket handle. The lParam message
parameter will specify the handle to the server.

INET_NOTIFY_CONNECT This notification is sent when the server accepts a client
connection and the thread that manages the client
session has begun processing network events for that
client. This message notification will not be sent if the
client connection is rejected by the server. The lParam
message parameter will specify the unique ID of the
client that connected to the server.

INET_NOTIFY_DISCONNECT This notification is sent when the client disconnects from
the server and the client socket has been closed. This
notification message may not occur for each client
session that is forced to terminate as the result of the
server being stopped using the Stop method. The
lParam message parameter will specify the unique ID of
the client that disconnected from the server.

INET_NOTIFY_SHUTDOWN This notification is sent when the server thread is in the
process of terminating. At the time the application
processes this notification message, the server handle in
lParam will reference the defunct server and cannot be
used with other server methods. The lParam message
parameter will specify the handle to the server.

If asynchronous notifications are enabled, you should never use those notifications as a
replacement for an event handler. When an event occurs, the callback function that handles the
event is invoked in the context of the thread that manages the client session. The application
should exchange data with the client within that event handler and not in response to a
notification message. These notification messages should only be used to update the application
UI in response to changes in the status of the server.

The INET_NOTIFY_CONNECT and INET_NOTIFY_DISCONNECT notifications are different from the
other server notifications because the lParam message parameter does not specify the server
handle, but rather the unique client ID associated with the session that connected to or
disconnected from the server. If you need to obtain the handle to the client session using the ID,
call the GetClientHandle method. To obtain the server handle in response to the
INET_NOTIFY_CONNECT message, use the GetClientServerById method. Note that at the time

the application processes the INET_NOTIFY_DISCONNECT notification message, the client session
will have already terminated.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetClientHandle, GetClientServerById

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::AttachHandle Method

VOID AttachHandle(
 SOCKET hSocket
);

Attach the specified server socket handle to the current instance of the class.

Parameters
hSocket

The socket handle to the server that will be attached to the current instance of the class object.

Return Value
None.

Remarks
This method is used to attach a server handle created outside of the class using the SocketWrench
API. Once the client handle is attached to the class, the other class member functions may be used
with that server.

If a server handle already has been created for the class, that handle will be released when the
new handle is attached to the class object. This will cause the server to stop and all client sessions
will be terminated immediately. If you want to prevent the previous server from being stopped,
you must call the DetachHandle method prior to attaching a new handle to the class instance.

Note that the hSocket parameter is presumed to be a valid server socket handle and no checks
are performed to ensure that the handle references an active server. Specifying an invalid socket
handle will cause subsequent method calls to fail.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib

See Also
DetachHandle, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::Broadcast Method

INT Broadcast(
 LPBYTE lpBuffer,
 INT cbBuffer
);

Sends data to all clients that are connected to the server.

Parameters
lpBuffer

The pointer to the buffer which contains the data that is to be sent to the server clients.

cbBuffer

The number of bytes to send from the specified buffer.

Return Value
If the method succeeds, the return value is the number of clients that the data was sent to. If the
method fails, the return value is INET_ERROR. To get extended error information, call the
GetLastError method.

Remarks
The Broadcast method sends the contents of the buffer to all of the clients that are connected to
the server. This method will block until all clients have been sent a copy of the data. There is no
guarantee in which order the clients will receive and process the data that has been broadcast.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
Write, WriteLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::Cancel Method

BOOL Cancel(
 SOCKET hSocket
);

Cancel a blocking operation for the specified client session.

Parameters
hSocket

The handle to a client socket.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
When the Cancel method is called, the blocking method will not immediately fail. An internal flag
is set which causes the blocking operation to exit with an error. This means that the application
cannot cancel an operation and immediately perform some other operation using the same client
socket handle. Instead it must allow the calling stack to unwind, returning back to the blocking
operation before making any further function calls.

Canceling a blocking operation for another client session may yield unpredictable results. If you
wish to terminate the client session, it is preferable to use the Disconnect method rather than
using this method in conjunction with the Abort method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
Abort, Disconnect

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::CompareAddress Method

BOOL CompareAddress(
 LPINTERNET_ADDRESS lpAddress1,
 LPINTERNET_ADDRESS lpAddress2
);

BOOL CompareAddress(
 LPCTSTR lpszAddress1,
 LPCTSTR lpszAddress2
);

Compare two IP addresses to determine if they are identical.

Parameters
lpAddress1

A pointer to an INTERNET_ADDRESS structure that contains the first IP address to be compared.
An alternate version of this method accepts a string that specifies the IP address to be
compared.

lpAddress2

A pointer to an INTERNET_ADDRESS structure that contains the second IP address to be
compared. An alternate version of this method accepts a string that specifies the IP address to
be compared.

Return Value
If the method succeeds and the two addresses are identical, the return value is non-zero. If the
method fails or the two addresses are not identical, the return value is zero. If either parameter is
NULL, or the address family for the two addresses are not the same, the last error code will be
updated. If the addresses are valid and in the same address family, but are not identical, the last
error code will be set to NO_ERROR.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetClientAddress, INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::DetachHandle Method

SOCKET DetachHandle();

The DetachHandle method detaches the server socket handle associated with the current
instance of the class.

Parameters
None.

Return Value
This method returns the server socket associated with the current instance of the class object. If
the server is not active, the value INVALID_SOCKET will be returned.

Remarks
This method is used to detach a server handle created by the class for use with the SocketWrench
API. Once the server handle is detached from the class, no other class member functions may be
called.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib

See Also
AttachHandle, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::DisableSecurity Method

BOOL DisableSecurity(
 SOCKET hSocket
);

BOOL DisableSecurity();

Disable secure communication with the client.

Parameters
hSocket

An optional parameter that specifies the handle to the client socket. If this parameter is omitted,
the socket handle for the active client session will be used. If this method is called outside of a
server event handler, the socket handle must be specified.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The DisableSecurity method disables a secure session, with subsequent calls to Read and Write
sending and receiving unencrypted data. It is important to note that because this method sends a
shutdown message to terminate the secure session, this may cause connection to be closed by the
remote host.

This method does not close the socket. Use the Disconnect method to close the socket and
release the resources allocated for the client session.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
EnableSecurity, SetCertificate

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::DisableTrace Method

BOOL DisableTrace();

The DisableTrace method disables the logging of socket function calls to the trace log.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, a value of zero is
returned.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
EnableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::Disconnect Method

BOOL Disconnect(
 SOCKET hSocket
);

BOOL Disconnect();

Disconnect the client, closing the socket handle and terminating the session.

Parameters
hSocket

An optional parameter that specifies the handle to the client socket. If this parameter is omitted,
the socket handle for the active client session will be used. If this method is called outside of a
server event handler, the socket handle must be specified.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
INET_ERROR. To get extended error information, call GetLastError.

Remarks
Once the connection has been terminated, the client socket handle is no longer valid and should
no longer be used. Note that it is possible that the actual handle value may be re-used at a later
point when a new connection is established. An application should always consider the socket
handle to be opaque and never depend on it being a specific value.

This method sends an internal control message that notifies the server that this session should be
terminated. When the session thread is signaled that it should terminate, it will begin to release the
resources allocated for that session. To ensure that the client session terminates gracefully, there
may be a brief period of time where the session thread is still active after this method has
returned.

The Disconnect method should only be used to terminate client sessions and the server handle
should never be provided as the hSocket parameter. To stop the server, use the Stop method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
Abort, Stop

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::EnableSecurity Method

BOOL EnableSecurity(
 SOCKET hSocket
);

BOOL EnableSecurity();

Enable secure communication with the client.

Parameters
hSocket

An optional parameter that specifies the handle to the client socket. If this parameter is omitted,
the socket handle for the active client session will be used. If this method is called outside of a
server event handler, the socket handle must be specified.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
INET_ERROR. To get extended error information, call GetLastError.

Remarks
The EnableSecurity method enables a secure communications session with the remote host,
automatically negotiating the encryption algorithm and validating the certificate specified by a
previous call to the SetCertificate method. This method will cause the calling thread to block and
wait for the client to initiate the TLS handshake.

This method is typically used to implement support for explicit TLS connections, where the client
establishes a standard, non-secure connection to the server and then negotiates a secure
connection at a later point. Usually this is done by the client sending a specific command to the
server, and the server calls EnableSecurity from within the OnRead event handler that processes
the command. If the method succeeds, all subsequent calls to Read and Write to receive and
send data will be encrypted.

This method is only used to enable a secure connection for a specific client session. If all client
connections should be secure, then call the SetOptions method to specify the
INET_OPTION_SECURE option prior to starting the server and call the SetCertificate method to
specify the server certificate that should be used.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
DisableSecurity, SetCertificate, SetOptions

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::EnableTrace Method

BOOL EnableTrace(
 LPCTSTR lpszTraceFile,
 DWORD dwTraceFlags
);

The EnableTrace method enables the logging of socket function calls to a file.

Parameters
lpszTraceFile

A pointer to a string which specifies the name of the trace log file. If this parameter is NULL or
an empty string, the default file name cstrace.log is used. The file is stored in the directory
specified by the TEMP environment variable, if it is defined; otherwise, the current working
directory is used.

dwTraceFlags

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

TRACE_INFO All function calls are written to the trace file. This is the default
value.

TRACE_ERROR Only those function calls which fail are recorded in the trace file.

TRACE_WARNING Only those function calls which fail or return values which indicate
a warning are recorded in the trace file.

TRACE_HEXDUMP All functions calls are written to the trace file, plus all the data that
is sent or received is displayed, in both ASCII and hexadecimal
format.

Return Value
If the method succeeds, the return value is non-zero. A return value of zero indicates an error.
Failure typically indicates that the tracing library cstrcv11.dll cannot be loaded on the local
system.

Remarks
When trace logging is enabled, the file is opened, appended to and closed for each socket
function call. This makes it possible for an application to append its own logging information,
however care should be taken to ensure that the file is closed before the next network operation is
performed. To limit the size of the log files, enable and disable logging only around those sections
of code that you wish to trace.

This method will enable logging for all network function calls made by the server process, not for a
particular client session or socket handle. The TRACE_HEXDUMP flag will include all of the data
exchanged between the server and the clients connected to it. This has the potential to generate
very large log files that can negatively impact the performance of the server. It is recommended
that you only enable trace logging for debugging purposes when absolutely necessary.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)

Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DisableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::EnumClients Method

INT EnumClients(
 INTERNET_ADDRESS& ipAddress,
 SOCKET * lpClients,
 INT nMaxClients
);

INT EnumClients(
 LPCTSTR lpszAddress,
 SOCKET * lpClients,
 INT nMaxClients
);

INT EnumClients(
 SOCKET * lpClients,
 INT nMaxClients
);

Return a list of active client connections established with the server.

Parameters
ipAddress

A reference to an INTERNET_ADDRESS structure that contains the IP address that should be
matched against the clients connected to the server. Only those clients that have connected to
the server from this address will be returned in the lpClients array.

lpszAddress

A string that specifies the IP address that should be matched against the clients connected to
the server. Only those clients that have connected to the server from this address will be
returned in the lpClients array.

lpClients

Pointer to an array which will contain the socket handle for each active client session when the
method returns. If this parameter is NULL, then the method will return the number of active
client connections established with the server.

nMaxClients

Maximum number of socket handles to be returned in the lpClients array. If the lpClients
parameter is NULL, this parameter should have a value of zero.

Return Value
If the method succeeds, the return value is the number of active client connections to the server. A
return value of zero indicates that there are either no active client sessions, or no clients have
connected using the specified IP address. If the method fails, the return value is FTP_ERROR. To
get extended error information, call the GetLastError method.

Remarks
If the nMaxClients parameter is less than the number of active client connections, the method will
fail. To dynamically determine the number of active connections, call the method with the
lpClients parameter with a value of NULL, and the nMaxClients parameter with a value of zero.

This method will not enumerate clients that have disconnected from the server, even if the session
thread is still active. If the server is in the process of shutting down, this method will return zero,
indicating no active client sessions, even though there may be clients that are still in the process of

disconnecting from the server. To determine the actual number of client sessions regardless of
their status, use the GetClientThreads method.

Example
// Populate a listbox with the IP address for each client
pListBox->ResetContent();

INT nClients = pServer->EnumClients();
if (nClients > 0)
{
 SOCKET *phClients = new SOCKET[nClients];

 nClients = pServer->EnumClients(phClients, nClients);
 if (nClients == INET_ERROR)
 {
 // Unable to obtain list of connected clients
 return;
 }

 for (INT nIndex = 0; nIndex < nClients; nIndex++)
 {
 CString strAddress;

 if (pServer->GetClientAddress(phClients[nIndex], strAddress))
 pListBox->AddString(strAddress);
 }

 // Free the memory allocated for the socket handles
 delete phClients;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib

See Also
GetClientAddress, GetClientThreads

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::EnumNetworkAddresses Method

INT EnumNetworkAddresses(
 INT nAddressFamily,
 LPINTERNET_ADDRESS lpAddressList,
 INT nMaxAddresses
);

INT EnumNetworkAddresses(
 LPINTERNET_ADDRESS lpAddressList,
 INT nMaxAddresses
);

The EnumNetworkAddresses method returns the list of network addresses that are configured
for the local host.

Parameters
nAddressFamily

An integer which identifies the type of IP address that should be returned by this function. It
may be one of the following values:

Constant Description

INET_ADDRESS_ANY Return both IPv4 or IPv6 addresses for the local host, depending
on how the system is configured and which network interfaces
are enabled. This option is only recommended for applications
that support IPv6.

INET_ADDRESS_IPV4 Specifies that the addresses should be in IPv4 format. The first
four bytes of the ipNumber array are significant and contains
the IP address. The remaining bytes are not significant and an
application should not depend on them having any particular
value, including zero.

INET_ADDRESS_IPV6 Specifies that the addresses should be in IPv6 format. All bytes
in the ipNumber array are significant.

lpAddressList

A pointer to an array of INTERNET_ADDRESS structures that will contain the IP address of each
local network interface.

nMaxAddresses

Maximum number of addresses to be returned.

Return Value
If the function succeeds, the return value is the number of network addresses that are configured
for the local host. If the function fails, the return value is INET_ERROR. To get extended error
information, call InetGetLastError.

Remarks
If the nAddressFamily parameter is specified as INET_ADDRESS_ANY, the application must be
prepared to handle IPv6 addresses because it is possible that an IPv6 address string has been
specified. For legacy applications that only recognize IPv4 addresses, the nAddressFamily member
should always be specified as INET_ADDRESS_IPV4 to ensure that only IPv4 addresses are

returned.

If this method is called without specifying the address family, the value INET_ADDRESS_IPV4 is
used. This is provided primarily for compatibility with legacy applications and it is recommended
that you explicitly specify the address family.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
FormatAddress, GetHostAddress, GetHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::FindClient Method

SOCKET FindClient(
 UINT nClientId
);

SOCKET FindClient(
 LPCTSTR lpszMoniker
);

Returns a handle to the client which matches the specified client ID or moniker.

Parameters
nClientId

An unsigned integer the specifies a unique client ID for the session. This value must be greater
than zero.

lpszMoniker

A pointer to a string which specifies the client moniker to search for. This parameter cannot be
NULL and cannot specify an empty string.

Return Value
If the method succeeds, the return value is the handle to the client socket for the session that
matches the specified client ID or moniker. If the method fails, the return value is
INVALID_SOCKET. To get extended error information, call GetLastError.

Remarks
A client moniker is a string which can be used to uniquely identify a specific client session aside
from its socket handle. A moniker can be assigned to the client session using the
SetClientMoniker method. This method will search all active client sessions for the server, and
returns the socket handle to the client that matches the specified moniker. If there is no match, an
error will be returned.

The moniker can be any string value, however monikers are not case sensitive and may not
contain embedded null characters. The maximum length of a moniker is 127 characters.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetClientMoniker, SetClientMoniker

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::Flush Method

BOOL Flush(
 SOCKET hSocket
);

BOOL Flush();

Flush the send and receive buffers for the specified client session.

Parameters
hSocket

An optional parameter that specifies the handle to the client socket. If this parameter is omitted,
the socket handle for the active client session will be used. If this method is called outside of a
server event handler, the socket handle must be specified.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The Flush method will flush any data waiting to be read or written to the remote host . It is
important to note that this method is not similar to flushing data to a disk file; it does not ensure
that a specific block of data has been written to the socket. For example, you should never call this
function immediately after calling the Write method or prior to calling the Disconnect method.

An application never needs to use the Flush method under normal circumstances. This method is
only to be used when the application needs to immediately return the socket to an inactive state
with no pending data to be read or written. Calling this function may result in data loss and should
only be used if you understand the implications of discarding any data which has been sent by the
client.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
IsReadable, IsWritable, Read, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::FormatAddress Method

INT FormatAddress(
 LPINTERNET_ADDRESS lpAddress,
 LPTSTR lpszAddress,
 INT cchAddress
);

INT FormatAddress(
 LPINTERNET_ADDRESS lpAddress,
 CString& strAddress
);

The FormatAddress method converts a numeric IP address to a printable string. The format of
the string depends on whether an IPv4 or IPv6 address is specified.

Parameters
lpAddress

A pointer to an INTERNET_ADDRESS structure which specifies the numeric IP address that
should be converted to a string.

lpszAddress

A pointer to the buffer that will contain the formatted IP address. This buffer should be at least
46 characters in length. This may also reference a CString object which will contain the
formatted address when the method returns.

cchAddress

The maximum number of characters that can be copied into the address buffer.

Return Value
If the method succeeds, the return value is the length of the IP address string. If the method fails,
the return value is INET_ERROR, meaning that the IP address could not be converted into a string.
Typically this indicates that the pointer to the INTERNET_ADDRESS structure is invalid, or the data
does not specify a valid IP address family.

Remarks
The format and length of IPv4 and IPv6 address strings are very different. An IPv4 address string
looks like "192.168.0.20", while an IPv6 address string can look something like
"fd7c:2f6a:4f4f:ba34::a32". If your application checks for the format of these address strings, it
needs to be aware of the differences. You also need to make sure that you're providing enough
space to display or store an address to avoid buffer overruns.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetClientAddress, GetLocalAddress, INTERNET_ADDRESS

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetActiveClient Method

SOCKET GetActiveClient();

Return the socket handle for the active client session.

Parameters
None.

Return Value
If the method succeeds, the return value is the socket handle for the active client session. If the
method fails, the return value is INVALID_SOCKET. To get extended error information, call the
GetLastError method.

Remarks
The GetActiveClient method returns a handle to the client socket for the active client session. The
active session is determined by the session thread that is currently executing, and therefore is only
meaningful within the context of a server event handler such as OnConnect or OnRead. The
value returned by the his method is the same as the client socket handle that is passed to the
event handler.

This method will fail within an OnAccept event handler because at that point the connection has
not yet been accepted, therefore there is no active client session. It will also fail if called outside of
an event handler. To obtain the socket handle associated with a particular session thread, use the
GetThreadClient method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetClientHandle, GetClientThreadId, GetThreadClient

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetAdapterAddress Method

INT GetAdapterAddress(
 INT nAdapterIndex,
 INT nAddressType,
 LPTSTR lpszAddress,
 INT nMaxLength
);

INT GetAdapterAddress(
 INT nAdapterIndex,
 INT nAddressType,
 CString& strAddress
);

Return the IP or MAC assigned to the specified network adapter.

Parameters
nAdapterIndex

An integer value that identifies the network adapter.

nAddressType

An integer value which specifies the type of address that should be returned:

Constant Description

INET_ADAPTER_IPV4 The address string will contain the primary IPv4 unicast address
assigned to the network adapter.

INET_ADAPTER_IPV6 The address string will contain the primary IPv6 unicast address
assigned to the network adapter.

INET_ADAPTER_MAC The address string will contain the media access control (MAC)
address assigned to the network adapter.

lpszAddress

A string buffer that will contain the IP or MAC address assigned to the adapter. This parameter
cannot be NULL and it is recommended that it be at least 64 characters in length to provide
enough space for any address type. An alternate form of the method accepts a CString
argument which will contain the address.

nMaxLength

The maximum number of characters that can be copied into the string buffer, including the
terminating null character. If the buffer is too small to store the complete address, this method
will fail.

Return Value
If the method succeeds, the return value is the number of characters copied to the string buffer,
not including the terminating null character. A return value of zero indicates that the requested
address type has not been assigned to the adapter. If the method fails, the return value is
INET_ERROR and this typically indicates that either the adapter index is invalid or the string buffer
is not large enough to store the complete address. To get extended error information, call
GetLastError.

Remarks

The GetAdapterAddress method will return the IPv4, IPv6 or MAC address assigned to a specific
network adapter. The primary network adapter has an index value of zero, and it increments for
each adapter that is configured on the local system.

The media access control (MAC) address is a 48 bit or 64 bit value that is assigned to each
network interface and is used for identification and access control. All network devices on the
same subnet must be assigned their own unique MAC address. Unlike IP addresses which may be
assigned dynamically and can be frequently changed, MAC addresses are considered to be more
permanent because they are usually assigned by the device manufacturer and stored in firmware.
Note that in some cases it is possible to change the address assigned to a device, and virtual
network interfaces may have configurable MAC addresses.

This method returns the MAC address string as sequence of hexadecimal values separated by a
colon. An example of a 48 bit MAC address would be "01:23:45:67:89:AB". Note that some virtual
network adapters may not have a MAC address assigned to them, in which case this method
would return zero.

This method will ignore network adapters that have been disabled, as well as those that are bound
to a virtual loopback interface. If the system has dial-up networking or virtualization software
installed, this method may also return IP addresses assigned to a virtualized network adapters
installed by that software.

Example
// Display the IPv4 address assigned to each network adapter
for (INT nIndex = 0;; nIndex++)
{
 CString strAddress;

 if (pServer->GetAdapterAddress(nIndex, INET_ADAPTER_IPV4, strAddress) ==
INET_ERROR)
 break;

 _tprintf(_T("Adapter %d: %s\n"), nIndex, szAddress);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
EnumNetworkAddresses, GetLocalAddress, GetLocalName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetAddress Method

INT GetAddress(
 LPCTSTR lpszAddress,
 INT nAddressFamily,
 LPINTERNET_ADDRESS lpAddress
);

INT GetAddress(
 LPCTSTR lpszAddress,
 LPINTERNET_ADDRESS lpAddress
);

The GetAddress method converts an IP address string to binary format.

Parameters
lpszAddress

A pointer to a null terminated string which specifies an IP address. This method recognizes the
format for both IPv4 and IPv6 format addresses.

nAddressFamily

An integer which identifies the type of IP address specified by the lpszAddress parameter. It may
be one of the following values:

Constant Description

INET_ADDRESS_UNKNOWN Return the IP address for the specified host in either IPv4
or IPv6 format, depending on the value of the
lpszAddress parameter.

INET_ADDRESS_IPV4 Specifies that the address should be in IPv4 format. The
first four bytes of the ipNumber array are significant and
contains the IP address. The remaining bytes are not
significant and an application should not depend on
them having any particular value, including zero. If the
lpszAddress parameter does not specify a valid IPv4
address string, this method will fail.

INET_ADDRESS_IPV6 Specifies that the address should be in IPv6 format. All
bytes in the ipNumber array are significant. If the
lpszAddress parameter does not specify a valid IPv6
address string, this method will fail.

lpAddress

A pointer to an INTERNET_ADDRESS structure that will contain the IP address.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
INET_ERROR. To get extended error information, call GetLastError.

Remarks
If the nAddressFamily parameter is specified as INET_ADDRESS_UNKNOWN, the application must
be prepared to handle IPv6 addresses because it is possible that an IPv6 address string has been
specified. For legacy applications that only recognize IPv4 addresses, the nAddressFamily member

should always be specified as INET_ADDRESS_IPV4 to ensure that only IPv4 addresses are
returned and any attempt to specify an IPv6 address string would result in an error.

To determine if the local system has an IPv6 TCP/IP stack installed and configured on the local
system, use the IsProtocolAvailable method. If an IPv6 stack is not installed, this method will fail if
the lpszAddress parameter specifies an IPv6 address, even if the address itself is valid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FormatAddress, IsAddressNull, IsAddressRoutable, IsProtocolAvailable, INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetAddressFamily Method

INT GetAddressFamily(
 LPCTSTR lpszAddress,
);

Return the address family for the specified IP address.

Parameters
lpszAddress

A pointer to a string which specifies an IP address. This method recognizes the format for both
IPv4 and IPv6 format addresses.

Return Value
If the method succeeds, the return value is the address family for the specified IP address and may
be one of the values listed below. If the method fails, the return value is
INET_ADDRESS_UNKNOWN. To get extended error information, call the GetLastError method.

Constant Description

INET_ADDRESS_IPV4 The address passed to the method is a valid IPv4 address.

INET_ADDRESS_IPV6 The address passed to the method is a valid IPv6 address.

Remarks
The GetAddressFamily method returns the address family associated with the specified IP
address string. This can be used to determine if a string specifies a valid IPv4 or IPv6 address that
can be passed to other methods such as Connect. Note that this method will not attempt to
resolve hostnames, it will only accept IP addresses.

To determine if the local system has an IPv6 TCP/IP stack installed and configured on the local
system, use the IsProtocolAvailable method. If an IPv6 stack is not installed, this method will fail if
the lpszAddress parameter specifies an IPv6 address, even if the address itself is valid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
IsAddressNull, IsAddressRoutable, IsProtocolAvailable, INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetBacklog Method

UINT GetBacklog();

Return the size of the backlog connection queue for the server.

Parameters
None.

Return Value
The return value is the size of the queue used to accept client connections.

Remarks
The GetBacklog method returns the size of the queue allocated for pending client connections. A
value of zero specifies that the size of the queue should be set to a reasonable default value. On
Windows server platforms, the maximum value is large enough to queue several hundred pending
connections. To change the size of the backlog queue, use the SetBacklog method prior to
starting the server.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
SetBacklog, Start, Data Members

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetClientAddress Method

INT GetClientAddress(
 SOCKET hSocket,
 LPINTERNET_ADDRESS lpAddress,
 UINT * lpnRemotePort
);

INT GetClientAddress(
 SOCKET hSocket,
 LPTSTR lpszAddress,
 INT nMaxLength
);

INT GetClientAddress(
 SOCKET hSocket,
 CString& strAddress
);

Return the IP address and port number for the specified client session.

Parameters
hSocket

An optional parameter that specifies the handle to a server or client socket. If this parameter is
omitted, the socket handle for the active client session will be used. If this method is called
outside of a server event handler, the socket handle must be specified.

lpAddress

A pointer to an INTERNET_ADDRESS structure that will contain the IP address of the client that is
connected to the server. This parameter may be NULL, in which case the IP address will not be
returned to the caller.

lpnRemotePort

A pointer to an unsigned integer that will contain the port number of the client that is
connected to the server. This parameter may be NULL, in which case the port number will not
be returned to the caller.

lpszAddress

A pointer to a string buffer that will contain the formatted IP address, terminated with a null
character. To accommodate both IPv4 and IPv6 addresses, this buffer should be at least 46
characters in length.

nMaxLength

The maximum number of characters that can be copied into the address buffer.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
INET_ERROR. To get extended error information, call GetLastError.

Remarks
If this method is called within an OnAccept event handler, passing the server handle as the
hSocket parameter will return the IP address and port number for the client that is attempting to
establish the connection. If the client address is unavailable, the ipFamily member of the
INTERNET_ADDRESS structure will be zero.

The format and length of IPv4 and IPv6 address strings are very different. An IPv4 address string
looks like "192.168.0.20", while an IPv6 address string can look something like
"fd7c:2f6a:4f4f:ba34::a32". If your application checks for the format of these address strings, it
needs to be aware of the differences. You also need to make sure that you're providing enough
space to display or store an address to avoid buffer overruns.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetClientPort, OnAccept, OnConnect, INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetClientData Method

BOOL GetClientData(
 SOCKET hSocket,
 LPVOID * lppvData
);

BOOL GetClientData(
 LPVOID * lppvData
);

Returns the application defined data associated with the specified client session.

Parameters
hSocket

An optional parameter that specifies the handle to the client socket. If this parameter is omitted,
the socket handle for the active client session will be used. If this method is called outside of a
server event handler, the socket handle must be specified.

lpvData

A pointer to a void pointer which will contain an application defined value associated with the
client session.

Return Value
If the method succeeds, the return value is non-zero. A return value of zero indicates that
application defined data for the client session could not be retrieved. To get extended error
information, call GetLastError.

Remarks
The GetClientData method is used to retrieve the application defined data that was previously
associated with a client session using the SetClientData method. This is typically used to associate
a pointer to a data structure or a class instance with a specific client handle.

This method can only be used with client socket handles created using the server interface. If the
socket handle is invalid, or does not reference a client socket handle created by the server, the
lppvData pointer passed to this method will be initialized to a value of NULL and the method will
return a value of zero.

If this method is called with a valid socket handle and there is no data associated with the socket,
the method will return a non-zero value and the lppvData pointer will be returned with a NULL
value. Before dereferencing the pointer returned by this method, the application should always
check the return value to ensure the method succeeded and make sure that the pointer is not
NULL.

Example
UINT *pnValue1 = new UINT;
UINT *pnValue2 = NULL;

*pnValue1 = 1234;

if (!pServer->SetClientData(hClient, pnValue1))
{
 // Unable to associate the data with this session
 return;

}

if (!pServer->GetClientData(hClient, (LPVOID *)&pnValue2))
{
 // Unable to retrieve the data associated with this session
 return;
}

// pnValue2 == pnValue1
printf("The value of the user defined data is %u\n", *pnValue2);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
SetClientData

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetClientHandle Method

SOCKET GetClientHandle(
 UINT nClientId
);

Returns the handle for a specific client session based on its ID number.

Parameters
nClientId

An unsigned integer value which uniquely identifies the client session.

Return Value
If the method succeeds, the return value is the socket handle for the specified client session. If the
method fails, the return value is INVALID_SOCKET. To get extended error information, call
GetLastError.

Remarks
Each client connection that is accepted by the server is assigned a unique numeric value called the
client ID. The GetClientHandle method will return the socket handle that is associated with the
specified client ID. Unlike socket handles, which are reused by the operating system, the client ID is
guaranteed to be unique throughout the lifetime of the server. To obtain the ID associated with
the client session, use the GetClientId method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetClientId, GetClientMoniker, SetClientMoniker, GetThreadClient

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetClientId Method

UINT GetClientId(
 SOCKET hSocket
);

UINT GetClientId();

Returns the unique ID number assigned to the specified client session.

Parameters
hSocket

An optional parameter that specifies the handle to the client socket. If this parameter is omitted,
the socket handle for the active client session will be used. If this method is called outside of a
server event handler, the socket handle must be specified.

Return Value
If the method succeeds, the return value is an unsigned integer value which uniquely identifies the
client session. If the method fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
Each client connection that is accepted by the server is assigned a unique numeric value. This
value can be obtained by calling the GetClientId method and used by the application to identify
that client session. The GetClientHandle method can then be used to used to obtain the client
socket handle for the session, based on that client ID. It is important to note that the actual value
of the client ID should be considered opaque. It is only guaranteed that the value will be greater
than zero, and that it will be unique to the client session.

While it is possible for a client socket handle to be reused by the operating system, client IDs are
unique throughout the life of the server session and are never duplicated.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetClientHandle, GetClientMoniker, SetClientMoniker

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetClientIdleTime Method

DWORD GetClientIdleTime(
 SOCKET hSocket
);

DWORD GetClientIdleTime();

Returns the number of milliseconds that the specified client session has been idle.

Parameters
hSocket

An optional parameter that specifies the handle to the client socket. If this parameter is omitted,
the socket handle for the active client session will be used. If this method is called outside of a
server event handler, the socket handle must be specified.

Return Value
If the method succeeds, the return value is an unsigned integer value which specifies the number
of milliseconds the client session has been idle. If the method fails, the return value is INFINITE. To
get extended error information, call GetLastError.

Remarks
The GetClientIdleTime method will return the number of milliseconds that have elapsed since
data was exchanged with the client. The elapsed time is limited to the resolution of the system
timer, which is typically in the range of 10 milliseconds to 16 milliseconds.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetClientHandle, GetClientId, GetClientMoniker, GetTimeout

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetClientMoniker Method

INT GetClientMoniker(
 SOCKET hClient,
 LPTSTR lpszMoniker,
 INT nMaxLength
);

INT GetClientMoniker(
 SOCKET hClient,
 CString& strMoniker
);

The GetClientMoniker method returns the moniker associated with the specified client session.

Parameters
hSocket

An optional parameter that specifies the handle to the client socket. If this parameter is omitted,
the socket handle for the active client session will be used. If this method is called outside of a
server event handler, the socket handle must be specified.

lpszMoniker

Pointer to a string buffer that will contain the moniker for the specified client session when the
method returns. An alternate version of this method accepts a CString object if it is available.

nMaxLength

The maximum number of characters that may be copied into the string buffer. The buffer must
be large enough to store the moniker and a terminating null character. The maximum length of
a moniker is 127 characters.

Return Value
If the method succeeds, the return value is the number of characters in the moniker string. A
return value of zero specifies that no moniker was assigned to the socket. If the method fails, the
return value is INET_ERROR. To get extended error information, call GetLastError.

Remarks
A client moniker is a string which can be used to uniquely identify a specific client session aside
from its socket handle. A moniker can be assigned to the client session using the
SetClientMoniker method. This method will return the moniker that was previously assigned to
the client, if any. To obtain the socket handle associated with a given moniker, use the FindClient
method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
FindClient, GetClientId, SetClientMoniker

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetClientPort Method

INT GetClientPort(
 SOCKET hSocket
);

INT GetClientPort();

Returns the remote port number used by the client to establish the connection.

Parameters
hSocket

An optional parameter that specifies the handle to the client socket. If this parameter is omitted,
the socket handle for the active client session will be used. If this method is called outside of a
server event handler, the socket handle must be specified.

Return Value
If the method succeeds, the return value is the port number. If the method fails, the return value is
INET_ERROR. To get extended error information, call GetLastError.

Remarks
The GetClientPort method returns the remote port number that the client is bound to. Note that
this is not the port number that the server is using to listen for connections, it is the port number
that the client is bound to on the remote host. Typically this is an ephemeral port, either in the
range of 1025 through 5000, or greater than 32768, depending on the client operating system.

If this method is called within the OnAccept event handler, providing the server socket handle as
the hSocket parameter will return the port number of the client that is attempting to establish the
connection.

It is not recommended that you use the client port number for anything other than informational
and logging purposes. Do not make any assumptions about the specific port number or range of
port numbers that a client is using when establishing a connection to the server. The ephemeral
port number that a client is bound to can vary based on the client operating system.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetClientAddress, OnAccept, OnConnect

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetClientServer Method

SOCKET HttpGetClientServer(
 UINT nClientId
);

The GetClientServer method returns a handle to the server that created the specified client
session.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

Return Value
If the method succeeds, the return value is the handle to the server that created the client session.
If the method fails, the return value is INVALID_SOCKET. To get extended error information, call
the GetLastError method.

Remarks
The GetClientServer method returns the handle to the server that created the client session and
is typically used within a notification message handler. If the server is in the process of shutting
down, or the client session thread is terminating, this method will fail and return INVALID_SOCKET
indicating that the session ID is invalid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
AsyncNotify

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetClientServerById Method

SOCKET GetClientServerById(
 UINT nClientId
);

The GetClientServerById method returns a socket handle to the server for the specified client
session identifier.

Parameters
nClientId

Client session identifier.

Return Value
If the method succeeds, the return value is the handle to the server that created the client session.
If the method fails, the return value is INVALID_SOCKET. To get extended error information, call
the GetLastError method.

Remarks
The GetClientServerById method returns the handle to the server that created the client session
using the client's unique identifier. The GetClientServer method can be used to obtain the server
handle using the client socket handle rather than the client session ID. This method is typically
used in conjunction with the INET_NOTIFY_CONNECT notification message to obtain the handle
to the server that generated the event using the client ID passed in the wParam message
parameter.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
AsyncNotify, GetClientHandle, GetClientId, GetClientServer

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetClientThreadId Method

DWORD GetClientThreadId(
 SOCKET hSocket
);

DWORD GetClientThreadId();

Returns the thread ID associated with the specified client.

Parameters
hSocket

An optional parameter that specifies the handle to the client socket. If this parameter is omitted,
the socket handle for the active client session will be used. If this method is called outside of a
server event handler, the socket handle must be specified.

Return Value
If the method succeeds, the return value is a thread ID. If the method fails, the return value is zero.
To get extended error information, call the GetLastError method.

Remarks
The GetClientThreadId method returns a thread ID that can be used to identify the thread that is
managing the client session. The thread ID can be used with other Windows API functions such as
OpenThread. Exercise caution when using thread-related functions, interfering with the normal
operation of the thread can have unexpected results. You should never use this method to obtain
a thread handle and then call the TerminateThread function to terminate a client session. This will
prevent the thread from releasing the resources that were allocated for the session and can leave
the server in an unstable state. To terminate a client session, use the Disconnect method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib

See Also
EnumClients, GetActiveClient

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetClientThreads Method

INT GetClientThreads();

Returns the number of client session threads created by the server.

Parameters
None.

Return Value
If the method succeeds, the return value is the number of client session threads that have been
created by the server. If the method fails, the return value is INET_ERROR. To get extended error
information, call the GetLastError method.

Remarks
The InetGetClientThreads function returns the number of threads that are managing client
sessions for the specified server. If there are no clients connected to the server, this function will
return a value of zero. Because this function returns the number of session threads, the value
returned will include those clients that are in the process of disconnecting from the server but their
session thread has not yet terminated. This differs from the InetEnumServerClients function
which will only enumerate active clients.

If you wish to determine when the last client has disconnected from the server, call this function
within an event handler for the INET_EVENT_DISCONNECT event. If the function returns a value
greater than one, then there are other client sessions that are either connected or in the process
of terminating.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
EnumClients

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetErrorString Method

INT GetErrorString(
 DWORD dwErrorCode,
 LPTSTR lpszDescription,
 INT cbDescription
);

INT GetErrorString(
 DWORD dwErrorCode,
 CString& strDescription
);

The GetErrorString method is used to return a description of a specific error code. Typically this is
used in conjunction with the GetLastError method for use with warning dialogs or as diagnostic
messages.

Parameters
dwErrorCode

The error code for which a description is returned.

lpszDescription

A pointer to the buffer that will contain a description of the specified error code. This buffer
should be at least 128 characters in length. An alternate form of the method accepts a CString
variable which will contain the error description.

cbDescription

The maximum number of characters that may be copied into the description buffer.

Return Value
If the method succeeds, the return value is the length of the description string. If the method fails,
the return value is zero, meaning that no description exists for the specified error code. Typically
this indicates that the error code passed to the method is invalid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetLastError, SetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetExternalAddress Method

INT GetExternalAddress(
 INT nAddressFamily,
 LPINTERNET_ADDRESS lpAddress,
 INT nMaxLength
);

INT GetExternalAddress(
 INT nAddressFamily,
 LPTSTR lpszAddress,
 INT nMaxLength
);

INT GetExternalAddress(
 INT nAddressFamily,
 CString& strAddress
);

The GetExternalAddress method returns the external IP address for the local system.

Parameters
nAddressFamily

An integer which identifies the type of IP address that should be returned by this function. It
may be one of the following values:

Constant Description

INET_ADDRESS_IPV4 Specifies that the address should be in IPv4 format. The method
will attempt to determine the external IP address using an IPv4
network connection.

INET_ADDRESS_IPV6 Specifies that the address should be in IPv6 format. The method
will attempt to determine the external IP address using an IPv6
network connection and requires that the local host have an
IPv6 network interface installed and enabled.

lpAddress

A pointer to an INTERNET_ADDRESS structure that will contain the external IP address of the
local host in binary form.

lpszAddress

A pointer to a string buffer that will contain the external IP address of the local host.

nMaxLength

The maximum length of the string that will contain the IP address when the method returns.

Return Value
In the first form of the method, if it succeeds, the return value is the IP address of the local system
in numeric form. If the method fails, the return value is INET_ADDRESS_NONE. In the second form,
the return value is the length of the IP address string and an error is indicated by the return value
INET_ERROR. To get extended error information, call GetLastError.

Remarks
The GetExternalAddress method returns the IP address assigned to the router that connects the

local host to the Internet. This is typically used by an application executing on a system in a local
network that uses a router which performs Network Address Translation (NAT). In that network
configuration, the GetLocalAddress method will only return the IP address for the local system on
the LAN side of the network unless a connection has already been established to a remote host.
The GetExternalAddress function can be used to determine the IP address assigned to the router
on the Internet side of the connection and can be particularly useful for servers running on a
system behind a NAT router.

This method requires that you have an active connection to the Internet and calling this function
on a system that uses dial-up networking may cause the operating system to automatically
connect to the Internet service provider. An application should always check the return value in
case there is an error; never assume that the return value is always a valid address. The function
may be unable to determine the external IP address for the local host for a number of reasons,
particularly if the system is behind a firewall or uses a proxy server that restricts access to external
sites on the Internet. If the function is able to obtain a valid external address for the local host, that
address will be cached by the library for sixty minutes. Because dial-up connections typically have
different IP addresses assigned to them each time the system is connected to the Internet, it is
recommended that this function only be used with broadband connections where a NAT router is
being used.

Calling this function may cause the current thread to block until the external IP address can be
resolved and should never be used in conjunction with asynchronous socket connections. If you
need to call this function in an application which uses asynchronous sockets, it is recommended
that you create a new thread and call this function from within that thread.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetClientAddress, GetHostAddress, GetLocalAddress

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetHandle Method

SOCKET GetHandle();

The GetHandle method returns the socket handle associated with the current instance of the
class.

Parameters
None.

Return Value
This method returns the socket handle associated with the current instance of the class object. If
there is no active connection, the value INVALID_SOCKET will be returned.

Remarks
This method is used to obtain the client handle created by the class for use with the SocketWrench
API.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
AttachHandle, DetachHandle, IsInitialized

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetHostAddress Method

INT GetHostAddress(
 LPCTSTR lpszHostName,
 INT nAddressFamily,
 LPINTERNET_ADDRESS lpAddress
);

INT GetHostAddress(
 LPCTSTR lpszHostName,
 LPINTERNET_ADDRESS lpAddress
);

The InetGetHostAddress method resolves the specified host name into an IP address in binary
format.

Parameters
lpszHostName

A pointer to the name of the host to resolve; this may be a fully-qualified domain name or an IP
address. This method recognizes the format for both IPv4 and IPv6 format addresses.

nAddressFamily

An integer which identifies the type of IP address to return. It may be one of the following
values:

Constant Description

INET_ADDRESS_UNKNOWN Return the IP address for the specified host in either IPv4
or IPv6 format, depending on how the host name can be
resolved. By default, a preference will be given for
returning an IPv4 address. However, if the host only has
an IPv6 address, that value will be returned.

INET_ADDRESS_IPV4 Specifies that the address should be returned in IPv4
format. The first four bytes of the ipNumber array are
significant and contains the IP address. The remaining
bytes are not significant and an application should not
depend on them having any particular value, including
zero.

INET_ADDRESS_IPV6 Specifies that the address should be returned in IPv6
format. All bytes in the ipNumber array are significant.
Note that it is possible for an IPv6 address to actually
represent an IPv4 address. This is indicated by the first 10
bytes of the address being zero.

lpAddress

A pointer to an INTERNET_ADDRESS structure that will contain the IP address of the specified
host.

Return Value
If the method succeeds, the return value is zero. If the function fails, the return value is
INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
This method can also be used to convert an address in dot notation to a binary format. If the
method must perform a DNS lookup to resolve the hostname, the calling thread will block. To
ensure future compatibility with IPv6 networks, it is important that the application does not make
any assumptions about the format of the address. If the function returns successfully, the ipFamily
member of the INTERNET_ADDRESS structure should always be checked to determine the type
of address.

The nAddressFamily parameter is used to specify a preference for the type of address returned,
however it is possible that a host may not have an IPv4 or IPv6 address record, in which case this
function will fail. Although IPv4 is still the most common address used at this time, an application
should not assume that because a given host name does not have an IPv4 address, that the host
name is invalid.

If the nAddressFamily parameter is specified as INET_ADDRESS_UNKNOWN, the application must
be prepared to handle IPv6 addresses because it is possible for a host name to have an IPv6
address assigned to it and no IPv4 address. For legacy applications that only recognize IPv4
addresses, the nAddressFamily member should always be specified as INET_ADDRESS_IPV4 to
ensure that only IPv4 addresses are returned.

To determine if the local system has an IPv6 TCP/IP stack installed and configured on the local
system, use the IsProtocolAvailable method. If an IPv6 stack is not installed, this method will fail if
the lpszHostName parameter specifies an host that only has an IPv6 (AAAA) DNS record.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetClientAddress, GetHostName, GetLocalAddress, GetLocalName, IsProtocolAvailable,
INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetHostName Method

INT GetHostName(
 LPINTERNET_ADDRESS lpAddress,
 LPTSTR lpszHostName,
 INT cchHostName
);

INT GetHostName(
 LPINTERNET_ADDRESS lpAddress,
 CString& strHostName
);

The GetHostName method performs a reverse lookup, returning the host name associated with a
given IP address.

Parameters
lpAddress

A pointer to an INTERNET_ADDRESS structure which specifies the IP address that should be
resolved into a host name.

lpszHostName

A pointer to the buffer that will contain the host name. It is recommended that this buffer be at
least 256 characters in length to accommodate the longest possible fully qualified domain
name. This parameter cannot be NULL. An alternate form of the method accepts a CString
argument which will contain the hostname.

cchHostName

The maximum number of characters that can be copied into the buffer.

Return Value
If the method succeeds, the return value is the length of the hostname. If the method fails, the
return value is INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
If the method must perform a reverse DNS lookup to resolve the IP address into a host name, the
calling thread will block. This method requires that the host have a PTR record, otherwise it will fail.
Because many hosts do not have a PTR record, calling this method frequently may have a
negative impact on the overall performance of the application.

To determine if the local system has an IPv6 TCP/IP stack installed and configured on the local
system, use the IsProtocolAvailable method. If an IPv6 stack is not installed, this method will fail if
the lpAddress parameter specifies an IPv6 address, even if the address itself is valid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetClientAddress, GetHostAddress, GetLocalAddress, GetLocalName, IsProtocolAvailable,
INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetLastError Method

DWORD GetLastError();

DWORD GetLastError(
 CString& strDescription
);

Parameters
strDescription

A string which will contain a description of the last error code value when the method returns. If
no error has been set, or the last error code has been cleared, this string will be empty.

Return Value
The return value is the last error code value for the current thread. Functions set this value by
calling the SetLastError method. The Return Value section of each reference page notes the
conditions under which the method sets the last error code.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. You should call
the GetLastError method immediately when a method's return value indicates that an error has
occurred. That is because some methods call SetLastError(0) when they succeed, clearing the
error code set by the most recently failed method.

Most methods will set the last error code value when they fail; a few methods set it when they
succeed. Function failure is typically indicated by a return value such as FALSE, NULL,
INVALID_SOCKET or INET_ERROR. Those methods which call SetLastError when they succeed are
noted on the method reference page.

The description of the error code is the same string that is returned by the GetErrorString
method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetErrorString, SetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetLocalAddress Method

INT GetLocalAddress(
 LPINTERNET_ADDRESS lpAddress,
 UINT * lpnPort
);

INT GetLocalAddress(
 LPTSTR lpszAddress,
 INT nMaxLength
);

INT GetLocalAddress(
 CString& strAddress
 UINT * lpnPort
);

Return the local IP address and port number for the server.

Parameters
lpAddress

A pointer to an INTERNET_ADDRESS structure that will contain the IP address of the local host. If
the server is not active, this function will attempt to determine the IP address of the local host
assigned by the system. If the address is not required, this parameter may be NULL.

lpszAddress

A pointer to a null terminated string that will contain the IP address of the local host. If this
version of the method is used, the IP address is converted to a string format using the
FormatAddress method. The string should be able to store at least 46 characters to ensure
that both IPv4 and IPv6 formatted addresses can be returned without the possibility of a buffer
overrun. An alternate form of the method accepts a CString argument which will contain the
line of text returned by the server.

lpnPort

A pointer to an unsigned integer that will contain the local port number. If the server is active,
this parameter will be set to the local port that the listening socket was bound to. If the server is
not active, this parameter is ignored. If the port number is not required, this parameter may be
NULL.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
INET_ERROR. To get extended error information, call GetLastError.

Remarks
To ensure future compatibility with IPv6 networks, it is important that the application does not
make any assumptions about the format of the address. If the function returns successfully, the
ipFamily member of the INTERNET_ADDRESS structure should always be checked to determine
the type of address.

If the system is connected to the Internet through a local network and/or uses a router that
performs Network Address Translation (NAT), the GetLocalAddress method will return the local,
non-routable IP address assigned to the local system. To determine the public IP address has
been assigned to the system, you should use the GetExternalAddress method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetClientAddress, GetExternalAddress, GetHostAddress, GetHostName, GetLocalName,
INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetLocalName Method

INT GetLocalName(
 LPTSTR lpszHostName,
 INT cchHostName
);

INT GetLocalName(
 CString& strHostName
);

The GetLocalName method returns the hostname assigned to the local system.

Parameters
lpszHostName

A pointer to the buffer that will contain the hostname. This parameter cannot be NULL. An
alternate form of the method accepts a CString argument which will contain the local
hostname.

cchHostName

The maximum number of characters that can be copied into the address buffer.

Return Value
If the method succeeds, the return value is the length of the hostname. If the method fails, the
return value is INET_ERROR. To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetClientAddress, GetLocalAddress

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetOptions Method

DWORD GetOptions();

Return the current server options.

Parameters
None.

Return Value
This method returns an unsigned integer value that specifies the server options that are currently
enabled for the class instance. For a list of the available options, see Server Option Constants. This
method returns the value of the m_dwOptions class member variable.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
SetOptions, Data Members

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/tcpsrv/class/optionconst.html

 CInternetServer::GetPriority Method

INT GetPriority();

Return the current priority assigned to the specified server.

Parameters
None.

Return Value
If the method succeeds, the return value is the priority for the specified server. If the method fails,
the return value is INET_PRIORITY_INVALID. To get extended error information, call the
GetLastError method.

Remarks
The GetPriority method can be used to determine the current priority assigned to the server. It
will return one of the following values:

Constant Description

INET_PRIORITY_BACKGROUND
(0)

This priority significantly reduces the memory, processor and
network resource utilization for the server. It is typically used
with lightweight services running in the background that are
designed for few client connections. The server thread will be
assigned a lower scheduling priority and will be frequently
forced to yield execution to other threads.

INET_PRIORITY_LOW
(1)

This priority lowers the overall resource utilization for the
server and meters the processor utilization for the server
thread. The server thread will be assigned a lower scheduling
priority and will occasionally be forced to yield execution to
other threads.

INET_PRIORITY_NORMAL
(2)

The default priority which balances resource and processor
utilization. This is the priority that is initially assigned to the
server when it is started, and it is recommended that most
applications use this priority.

INET_PRIORITY_HIGH
(3)

This priority increases the overall resource utilization for the
server and the thread will be given higher scheduling priority.
It is not recommended that this priority be used on a system
with a single processor.

INET_PRIORITY_CRITICAL
(4)

This priority can significantly increase processor, memory and
network utilization. The server thread will be given higher
scheduling priority and will be more responsive to client
connection requests. It is not recommended that this priority
be used on a system with a single processor.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
SetPriority

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetStackSize Method

DWORD GetStackSize();

Return the initial size of the stack allocated for threads created by the server.

Parameters
None.

Return Value
If the method succeeds, the return value is the amount of memory that will be allocated for the
stack in bytes. If the method fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
The GetStackSize method returns the initial amount of memory that is committed to the stack for
each thread created by the server. By default, the stack size for each thread is set to 256K for 32-
bit processes and 512K for 64-bit processes.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
SetStackSize, Start

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetStatus Method

INT GetStatus();

Return the current status of the server.

Parameters
None.

Return Value
An integer value that specifies the server status.

Remarks
The return value is one of the following values:

Constant Description

INET_SERVER_INACTIVE The server is currently inactive.

INET_SERVER_STARTED The server has initialized and is preparing to listen for client
connections.

INET_SERVER_LISTENING The server is actively listening for incoming client connections.

INET_SERVER_SUSPENDED The server has been suspended and is no longer accepting client
connections.

INET_SERVER_SHUTDOWN The server has been stopped and is in the process of terminating
all active client connections.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
IsInitialized, IsListening, IsLocked

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetStreamInfo Method

BOOL GetStreamInfo(
 SOCKET hSocket
 LPINETSTREAMINFO lpStreamInfo
);

BOOL GetStreamInfo(
 LPINETSTREAMINFO lpStreamInfo
);

The GetStreamInfo function fills a structure with information about the current stream I/O
operation.

Parameters
hSocket

An optional parameter that specifies the handle to the client socket. If this parameter is omitted,
the socket handle for the active client session will be used. If this method is called outside of a
server event handler, the socket handle must be specified.

lpSecurityInfo

A pointer to an INETSTREAMINFO structure which contains information about the status of the
current operation.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The GetStreamInfo method returns information about the current streaming socket operation,
including the average number of bytes transferred per second and the estimated amount of time
until the operation completes. If there is no operation currently in progress, this method will return
the status of the last successful streaming read or write performed by the client.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
ReadStream, StoreStream, WriteStream, INETSTREAMINFO

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetThreadClient Method

SOCKET WINAPI InetGetThreadClient(
 DWORD dwThreadId
);

The GetThreadClient method returns the socket handle for the client session that is being
managed by the specified thread.

Parameters
dwThreadId

An unsigned integer value which identifies the thread managing the client session. If this
parameter has a value of zero, then the client handle for the current thread is returned.

Return Value
If the method succeeds, the return value is the socket handle for the specified client session. If the
method fails, the return value is INVALID_SOCKET. To get extended error information, call
InetGetLastError.

Remarks
The GetThreadClient is used to obtain the socket handle for the client session that is being
managed by the specified thread. If the specified thread ID is zero, then the method will return the
client socket for the current thread, otherwise it will search the internal table of all active client
sessions and return the handle to the session that is being managed by that thread.

This method will fail if the thread ID does not specify an active client session thread.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetActiveClient GetClientHandle, GetClientId, GetClientThreadId

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetTimeout Method

INT GetTimeout();

Return the timeout interval for blocking network operations in seconds.

Parameters
None.

Return Value
The return value is the timeout period in seconds. If there is no active server, this will return the
timeout period that will be used when the server is started. A value of zero specifies that a
reasonable default timeout period will be automatically selected.

Remarks
The GetTimeout method returns the number of seconds the server will wait for a blocking
network operation to complete, such as sending or receiving data. This value also determines the
amount of time that the server will wait for the client to send data before invoking the OnTimeout
event handler for that session.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
IsReadable, IsWritable, SetTimeout, OnTimeout

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::IsActive Method

BOOL IsActive();

Determine if the server has been started.

Return Value
This method returns a non-zero value if the server has been started. If the server is stopped this
method will return zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib

See Also
CInternetServer, IsListening, Start, Stop

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::IsAddressNull Method

BOOL IsAddressNull(
 LPCTSTR lpszAddress
);

BOOL IsAddressNull(
 LPINTERNET_ADDRESS lpAddress
);

The IsAddressNull method determines if the IP address is null.

Parameters
lpszAddress

A string that specifies the IP address.

lpAddress

A pointer to an INTERNET_ADDRESS structure that specifies the IP address.

Return Value
If the method succeeds and the IP address is null, or the parameter is a NULL pointer, the return
value is non-zero. If the method fails or the address is not null, the return value is zero. If the
address family is not supported, the last error code will be updated. If the address is valid but not
null, the last error code will be set to NO_ERROR.

Remarks
A null IP address is one where all bits for the address (32 bits for IPv4 or 128 bits for IPv6) are zero.
This is a special address that is typically used when creating a passive socket that should listen for
connections on all available network interfaces.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetAddress, IsAddressRoutable, INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::IsAddressRoutable Method

BOOL IsAddressRoutable(
 LPCTSTR lpszAddress
);

BOOL IsAddressRoutable(
 LPINTERNET_ADDRESS lpAddress
);

The IsAddressRoutable method determines if the IP address is routable over the Internet.

Parameters
lpszAddress

A string that specifies the IP address.

lpAddress

A pointer to an INTERNET_ADDRESS structure that specifies the IP address.

Return Value
If the method succeeds and the IP address is routable over the Internet, the return value is non-
zero. If the method fails or the address is not routable, the return value is zero. If the parameter is
NULL, or the address family is not supported, the last error code will be updated. If the address is
valid but not routable, the last error code will be set to NO_ERROR.

Remarks
A routable IP address is one that can be reached by anyone over the public Internet. These are
also commonly referred to as "public addresses" which are typically assigned to networks and
individual hosts by an Internet service provider. There are also certain addresses that are not
routable over the Internet, and used to address systems over a local network or private intranet.
This function can be used to determine if a given IP address is public (routable) or private.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetAddress, GetExternalAddress, IsAddressNull, INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::IsInitialized Method

BOOL IsInitialized();

The IsInitialized method returns whether or not the class object has been successfully initialized.

Parameters
None.

Return Value
This method returns a non-zero value if the class object has been successfully initialized. A return
value of zero indicates that the runtime license key could not be validated or the networking
library could not be loaded by the current process.

Remarks
When an instance of the class is created, the class constructor will attempt to initialize the
component with the runtime license key that was created when SocketTools was installed. If the
constructor is unable to validate the license key or load the networking libraries, this initialization
will fail.

If SocketTools was installed with an evaluation license, the application cannot be redistributed to
another system. The class object will fail to initialize if the application is executed on another
system, or if the evaluation period has expired. To redistribute your application, you must
purchase a development license which will include the runtime key that is needed to redistribute
your software to other systems. Refer to the Developer's Guide for more information.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
CInternetServer, IsListening, IsLocked

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::IsListening Method

BOOL IsListening();

Determine if the server is listening for client connections.

Parameters
None.

Return Value
If the server has started and is listening for client connections, the method returns a non-zero
value. If the server is not listening for connections, the return value is zero.

Remarks
The IsListening method determines if the server has been started and is actively listening for
incoming connection requests from client applications. This method will return zero if the server is
not active, if it has been suspended using the Suspend method or if the Stop method has been
called to shutdown the server.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
IsActive, Start, Stop, Suspend

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::IsLocked Method

BOOL IsLocked();

Determine if the server is currently in a locked state.

Parameters
None.

Return Value
If the server is locked, the method returns a non-zero value. If the server is not locked, the return
value is zero.

Remarks
The IsLocked method determines if a server has been locked using the Lock method. Only the
thread that has locked the server may interact with it and all other threads will block when they
attempt to perform a network operation. After the server is unlocked, the blocked threads will
resume normal execution. If the application has created multiple instances of the CInternetServer
class, this method will return a non-zero value if any of those servers have been locked, not only
the current instance.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
Lock, Unlock

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::IsProtocolAvailable Method

BOOL IsProtocolAvailable(
 INT nAddressFamily,
 INT nProtocol
);

The IsProtocolAvailable method determines if the operating system supports creating a socket
for the specified address family and protocol.

Parameters
nAddressFamily

An integer which identifies the address family that should be checked. It should be one of the
following values:

Constant Description

INET_ADDRESS_IPV4 Specifies that the function should determine if it can create an
Internet Protocol version 4 (IPv4) socket. This requires that the
system have an IPv4 TCP/IP stack bound to at least one network
adapter on the local system. All Windows systems include
support for IPv4 by default.

INET_ADDRESS_IPV6 Specifies that the function should determine if it can create an
Internet Protocol version 6 (IPv6) socket. This requires that the
system have an IPv6 TCP/IP stack bound to at least one network
adapter on the local system. Windows XP and Windows Server
2003 includes support for IPv6, however it is not installed by
default. Windows Vista and later versions include support for
IPv6 and enable it by default.

nProtocol

An integer which identifies the protocol that should be checked. It should be one of the
following values:

Constant Description

INET_PROTOCOL_TCP Specifies the Transmission Control Protocol. This protocol
provides a reliable, bi-directional byte stream. This requires
that the system be capable of creating a stream socket using
the specified address family.

INET_PROTOCOL_UDP Specifies the User Datagram Protocol. This protocol is
message oriented, sending data in discrete packets. This
requires that the system be capable of creating a datagram
socket using the specified address family.

Return Value
If the the system is capable of creating a socket using the specified address family and protocol,
this method will return a non-zero value. If the combination of address family and protocol is not
supported, this method will return a value of zero.

Remarks

The IsProtocolAvailable method is used to determine if the operating system supports creating a
particular type of socket. Typically it is used by an application to determine if the system has an
IPv6 TCP/IP stack installed and configured. By default, all Windows systems will have an IPv4 stack
installed if the system has a network adapter. However, not all systems may have an IPv6 stack
installed, particularly older Windows XP and Windows Server 2003 systems. Note that if an IPv6
stack is not installed, the library will not recognize IPv6 addresses and cannot resolve host names
that only have an IPv6 (AAAA) record, even if the address or host name is valid.

Example
if (!pSocket->IsProtocolAvailable(INET_ADDRESS_IPV6, INET_PROTOCOL_TCP))
{
 AfxMessageBox(_T("This system does not support IPv6"), MB_ICONEXCLAMATION);
 return;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetAddress, GetHostAddress, GetHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::IsReadable Method

BOOL IsReadable();

BOOL IsReadable(
 SOCKET hSocket
);

BOOL IsReadable(
 SOCKET hSocket,
 INT nTimeout,
 LPDWORD lpdwAvail
);

The IsReadable method is used to determine if data is available to be read from the client.

Parameters
hSocket

An optional parameter that specifies the handle to the client socket. If this parameter is omitted,
the socket handle for the active client session will be used. If this method is called outside of a
server event handler, the socket handle must be specified.

nTimeout

Timeout for remote host response, in seconds. A value of zero specifies that the connection
should be polled without blocking the current thread.

lpdwAvail

A pointer to an unsigned integer which will contain the number of bytes available to read. This
parameter may be NULL if this information is not required.

Return Value
If the server can read data from the client within the specified timeout period, the method returns
a non-zero value. If there is no data available to be read, the method returns zero.

Remarks
On some platforms, this value will not exceed the size of the receive buffer (typically 64K bytes).
Because of differences between TCP/IP stack implementations, it is not recommended that your
application exclusively depend on this value to determine the exact number of bytes available.
Instead, it should be used as a general indicator that there is data available to be read.

If the connection is secure, the value returned in lpdwAvail will reflect the number of bytes
available in the encrypted data stream. The actual amount of data available to the application after
it has been decrypted will vary.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
IsWritable, Peek, Read, ReadLine, ReadStream

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::IsWritable Method

BOOL IsWritable(
 INT nTimeout
);

The IsWritable method is used to determine if data can be written to the remote host.

Parameters
nTimeout

Timeout for remote host response, in seconds. A value of zero specifies that the connection
should be polled without blocking the current thread.

Return Value
If data can be sent to the client within the specified timeout period, the method returns a non-
zero value. The method will return zero if the socket send buffer is full.

Remarks
The IsWritable method cannot be used to determine the amount of data that can be sent to the
client without blocking the current thread. A non-zero return value only indicates that the send
buffer is not full and can accept some data. In most cases, it is recommended that larger blocks of
data be broken into smaller logical blocks rather than attempting to send it all of the data at once.
For very large streams of data, it is recommended that you use the WriteStream method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
IsReadable, Write, WriteLine, WriteStream

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::Lock Method

BOOL Lock();

Lock the server, causing other client threads to block until it is unlocked.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call the GetLastError method.

Remarks
The Lock method causes the specified server to enter a locked state where only the current thread
may interact with the server and the clients that are connected to it. While a server is locked, all
other threads will block when they attempt to perform a network operation. When the server is
unlocked, the blocked threads will resume normal execution.

This method should be used carefully, and a server should never be left in a locked state for an
extended period of time. It is meant to be used when the server process updates a global data
structure and it must prevent any other threads from performing a network operation during the
update. Only one server can be locked at any one time, and once a server has been locked, it can
only be unlocked by the same thread.

The program should always check the return value from this method, and should never assume
that the lock has been established. If more than one thread attempts to lock a server at the same
time, there is no guarantee as to which thread will actually establish the lock. If a potential
deadlock situation is detected, this method will fail and return a value of zero.

Every time the Lock method is called, an internal lock counter is incremented, and the lock will not
be released until the lock count drops to zero. This means that each call to the Lock method must
be matched by an equal number of calls to the Unlock method. Failure to do so will result in the
server becoming non-responsive as it remains in a locked state.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
IsLocked, Unlock

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::MatchHostName Method

BOOL MatchHostName(
 LPCTSTR lpszHostName,
 LPCTSTR lpszHostMask
 BOOL bResolve
);

The MatchHostName method matches a host name against one more strings that may contain
wildcards.

Parameters
lpszHostName

A pointer to a string which specifies the host name or IP address to match.

lpszHostMask

A pointer to a string which specifies one or more values to match against the host name. The
asterisk character can be used to match any number of characters in the host name, and the
question mark can be used to match any single character. Multiple values may be specified by
separating them with a semicolon.

bResolve

A boolean value which specifies if the host name or IP address should be resolved when
matching the host against the mask string. If this parameter is non-zero, two checks against the
host mask string will be performed; once for the host name specified and once for its IP
address. If this parameter is zero, then the match is made only against the host name string
provided.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The MatchHostName method provides a convenient way for an application to determine if a
given host name matches one or more mask strings which may contain wildcard characters. For
example, the host name could be "www.microsoft.com" and the host mask string could be
"*.microsoft.com". In this example, the method would return a non-zero value indicating the host
name matched the mask. However, if the mask string was "*.net" then the method would return
zero, indicating that there was no match. Multiple mask values can be combined by separating
them with a semicolon; for example, the mask "*.com;*.org" would match any host name in either
the .com or .org top-level domains.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetAddress, GetHostAddress, GetHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::Peek Method

INT Peek(
 SOCKET hSocket,
 LPBYTE lpBuffer,
 INT cbBuffer
);

INT Peek(
 LPBYTE lpBuffer,
 INT cbBuffer
);

Read data from the client without removing it from the socket buffer.

Parameters
hSocket

An optional parameter that specifies the handle to the client socket. If this parameter is omitted,
the socket handle for the active client session will be used. If this method is called outside of a
server event handler, the socket handle must be specified.

lpBuffer

Pointer to the buffer in which the data will be stored. This argument may be NULL, in which
case no data is copied from the socket buffers, however the function will return the number of
bytes available to read.

cbBuffer

The maximum number of bytes to read and copy into the specified buffer. If the lpBuffer
parameter is not NULL, this value must be greater than zero.

Return Value
If the function succeeds, the return value is the number of bytes available to read from the socket.
A return value of zero indicates that there is no data available to read at that time. If the function
fails, the return value is INET_ERROR. To get extended error information, call GetLastError.

Remarks
The Peek method returns data that is available to read from the socket, up to the number of bytes
specified. The data returned by this method is not removed from the socket buffers. It must be
consumed by a subsequent call to the Read method. The return value indicates the number of
bytes that can be read in a single operation, up to the specified buffer size. However, it is
important to note that it may not indicate the total amount of data available to be read from the
socket at that time.

If no data is available to be read, the method will return a value of zero. To determine if there is
data available to be read, use the IsReadable method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
IsReadable, IsWritable, Read, ReadLine, Write, WriteLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::PreProcessEvent Method

virtual LONG PreProcessEvent(
 SOCKET hServer,
 UINT nClientId,
 UINT nEventId,
 DWORD dwError,
 BOOL& bHandled
);

A virtual method that is invoked for each event generated by the server.

Parameters
hServer

The server handle. The application should treat this as an opaque value that is only valid as long
as the server is active. This value should not be stored by the application and the handle value
will change if the server is restarted.

nClientId

An unsigned integer which uniquely identifies the client that has issued a request to the server.
This value is guaranteed to be unique to the client session throughout the life of the server and
is never reused. The application should never make assumptions about the order in which IDs
are allocated to the client sessions.

nEventId

An unsigned integer which specifies which event occurred. For a list of events, see Server Event
Constants.

dwError

An unsigned integer which specifies any error that occurred. If no error occurred, then this
parameter will be zero.

bHandled

An integer which specifies if the event has been handled by the application. If this parameter is
set to a non-zero value, the default event handler will not be invoked for the event.

Return Value
The method should return a value of zero to indicate that the default event handler should be
invoked for the event. If the method returns a non-zero value, this value is passed back to the
event dispatcher and the default handler will not be invoked.

Remarks
The PreProcessEvent method is invoked for each event that is generated, prior to the default
handler for that event. To implement an event handler, the application should create a class
derived from the CInternetServer class, and then override this method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib

file:///C|/Projects/cstools11/pdf/tcpsrv/class/eventconst.html
file:///C|/Projects/cstools11/pdf/tcpsrv/class/eventconst.html

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::Read Method

INT Read(
 SOCKET hSocket,
 LPBYTE lpBuffer,
 INT cbBuffer
);

INT Read(
 LPBYTE lpBuffer,
 INT cbBuffer
);

Read data from the client.

Parameters
hSocket

An optional parameter that specifies the handle to the client socket. If this parameter is omitted,
the socket handle for the active client session will be used. If this method is called outside of a
server event handler, the socket handle must be specified.

lpBuffer

Pointer to the buffer in which the data will be stored. This parameter cannot be NULL.

cbBuffer

The maximum number of bytes to read and copy into the specified buffer. This value must be
greater than zero.

Return Value
If the method succeeds, the return value is the number of bytes read. A return value of zero
indicates that the client has closed the connection and there is no more data available to be read.
If the method fails, the return value is INET_ERROR. To get extended error information, call the
GetLastError method.

Remarks
The Read method will read up to the specified number of bytes and store the data in the buffer
provided by the caller. If there is no data available to be read at the time this method is invoked,
the session thread will block until at least one byte of data becomes available, the timeout period
elapses or an error occurs. This method will return if any amount of data is sent by the client, and
will not block until the entire buffer has been filled.

The application should never make an assumption about the amount of data that will be available
to read. TCP considers all data to be an arbitrary stream of bytes and does not impose any
structure on the data itself. For example, if the client is sending data to the server in fixed 512 byte
blocks of data, it is possible that a single call to the Read method will return only a partial block of
data, or it may return multiple blocks combined together. It is the responsibility of the application
to buffer and process this data appropriately.

For applications that are built using the Unicode character set, it is important to note that the
buffer is an array of bytes, not characters. If the client is sending string data to the server, it must
be read as a stream of bytes and converted using the MultiByteToWideChar function. If the
client is sending lines of text terminated with a linefeed or carriage return and linefeed pair, the
ReadLine method will return a line of text at a time and perform this conversion for you.

To determine if there is data available to be read without causing the session thread to block, call
the IsReadable method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
IsReadable, IsWritable, Peek, ReadLine, Write, WriteLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::ReadLine Method

BOOL ReadLine(
 SOCKET hSocket,
 LPTSTR lpszBuffer,
 LPINT lpnLength
);

BOOL ReadLine(
 LPTSTR lpszBuffer,
 LPINT lpnLength
);

BOOL ReadLine(
 SOCKET hSocket,
 CString& strBuffer,
 INT nMaxLength
);

BOOL ReadLine(
 CString& strBuffer,
 INT nMaxLength
);

Read up to a line of data from the socket and return it in a string buffer.

Parameters
hSocket

An optional parameter that specifies the handle to the client socket. If this parameter is omitted,
the socket handle for the active client session will be used. If this method is called outside of a
server event handler, the socket handle must be specified.

lpszBuffer

Pointer to the string buffer that will contain the data when the method returns. The string will be
terminated with a null character, and will not contain the end-of-line characters. An alternate
form of the method accepts a CString argument which will contain the line of text returned by
the server.

lpnLength

A pointer to an integer value which specifies the length of the buffer. The value should be
initialized to the maximum number of characters that can be copied into the string buffer,
including the terminating null character. When the method returns, its value will updated with
the actual length of the string.

nMaxLength

An integer value which specifies the maximum length of the buffer.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The ReadLine method reads data from the socket and copies into a specified string buffer. Unlike
the Read method which reads arbitrary bytes of data, this method is specifically designed to
return a single line of text data in a string. When an end-of-line character sequence is

encountered, the method will stop and return the data up to that point. The string buffer is
guaranteed to be null-terminated and will not contain the end-of-line characters. This method will
force the thread to block until an end-of-line character sequence is processed, the read operation
times out or the remote host closes its end of the socket connection.

There are some limitations when using ReadLine. The method should only be used to read text,
never binary data. In particular, the method will discard nulls, linefeed and carriage return control
characters. The Unicode version of this method will return a Unicode string, however it does not
support reading raw Unicode data from the socket. Any data read from the socket is internally
buffered as octets (eight-bit bytes) and converted to Unicode using the MultiByteToWideChar
function.

The Read and ReadLine method calls can be intermixed, however be aware that Read will
consume any data that has already been buffered by the ReadLine method and this may have
unexpected results.

Unlike the Read method, it is possible for data to be returned in the string buffer even if the return
value is zero. Applications should check the length of the string to determine if any data was
copied into the buffer. For example, if a timeout occurs while the method is waiting for more data
to arrive on the socket, it will return zero; however, data may have already been copied into the
string buffer prior to the error condition. It is the responsibility of the application to process that
data, regardless of the return value.

Example
CString strBuffer;
BOOL bResult;

do
{
 bResult = pServer->ReadLine(strBuffer);

 if (strBuffer.GetLength() > 0)
 {
 // Process the line of data returned in the string
 // buffer; the string is always null-terminated
 }
} while (bResult);

DWORD dwError = pServer->GetLastError();

if (dwError == ST_ERROR_CONNECTION_CLOSED)
{
 // The remote host has closed its side of the connection and
 // there is no more data available to be read
}
else if (dwError != 0)
{
 // An error has occurred while reading a line of data
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
IsReadable, Peek, Read, ReadStream, Write, WriteLine, WriteStream

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::ReadStream Method

BOOL ReadStream(
 SOCKET hSocket,
 LPVOID lpvBuffer,
 LPDWORD lpdwLength,
 DWORD dwOptions,
 LPBYTE lpMarker,
 DWORD cbMarker
);

BOOL ReadStream(
 LPVOID lpvBuffer,
 LPDWORD lpdwLength,
 DWORD dwOptions,
 LPBYTE lpMarker,
 DWORD cbMarker
);

Read a stream of data from the client and store it in the specified buffer.

Parameters
hSocket

An optional parameter that specifies the handle to the client socket. If this parameter is omitted,
the socket handle for the active client session will be used. If this method is called outside of a
server event handler, the socket handle must be specified.

lpvBuffer

Pointer to the buffer that will contain or reference the data when the method returns. The actual
argument depends on the value of the dwOptions parameter which specifies how the data
stream will be stored.

lpdwLength

A pointer to an unsigned integer value which specifies the maximum length of the buffer and
contains the number of bytes read when the method returns. This argument should should
always point to an initialized value. If the lpvBuffer argument specifies a memory buffer, then
this argument cannot point to an initialized value of zero; if any other type of stream buffer is
used and the initialized value is zero, that indicates that all available data from the socket should
be returned until the end-of-stream marker is encountered or the remote host disconnects.

dwOptions

An unsigned integer value which specifies both the stream buffer type and any options to be
used when reading the data stream. One of the following stream types may be specified:

Constant Description

INET_STREAM_DEFAULT The default stream buffer type is determined by
the value passed as the lpvBuffer parameter. If the
argument specifies a pointer to a global memory
handle initialized to NULL, then the method will
return a handle which references the data;
otherwise, the method will consider the parameter
a pointer to a block of pre-allocated memory
which will contain the stream data when the

method returns. In most cases, it is recommended
that an application explicitly specify the stream
buffer type rather than using the default value.

INET_STREAM_MEMORY The lpvBuffer argument specifies a pointer to a
pre-allocated block of memory which will contain
the data read from the socket when the method
returns. If this stream buffer type is used, the
lpdwLength argument must point to an unsigned
integer which has been initialized with the
maximum length of the buffer.

INET_STREAM_HGLOBAL The lpvBuffer argument specifies a pointer to a
global memory handle. When the method returns,
the handle will reference a block of memory that
contains the stream data. The application should
take care to make sure that the handle passed to
the method does not currently reference a valid
block of memory; it is recommended that the
handle be initialized to NULL prior to calling this
method.

INET_STREAM_HANDLE The lpvBuffer argument specifies a Windows
handle to an open file, console or pipe. This should
be the same handle value returned by the
CreateFile function in the Windows API. The data
read from the socket will be written to this handle
using the WriteFile function.

INET_STREAM_SOCKET The lpvBuffer argument specifies a socket handle.
The data read from the socket specified by the
hSocket argument will be written to this socket.
The socket handle passed to this method must
have been created by this library; if it is a socket
created by an third-party library or directly by the
Windows Sockets API, you should either create
another instance of the class and attach the socket
using the AttachHandle method or use the
INET_STREAM_HANDLE stream buffer type instead.

In addition to the stream buffer types listed above, the dwOptions parameter may also
have one or more of the following bit flags set. Programs should use a bitwise operator
to combine values.

Constant Description

INET_STREAM_CONVERT The data stream is considered to be textual and
will be modified so that end-of-line character
sequences are converted to follow standard
Windows conventions. This will ensure that all lines
of text are terminated with a carriage-return and
linefeed sequence. Because this option modifies
the data stream, it should never be used with
binary data. Using this option may result in the

amount of data returned in the buffer to be larger
than the source data. For example, if the source
data only terminates a line of text with a single
linefeed, this option will have the effect of inserting
a carriage-return character before each linefeed.

INET_STREAM_UNICODE The data stream should be converted to Unicode.
This option should only be used with text data, and
will result in the stream data being returned as 16-
bit wide characters rather than 8-bit bytes. The
amount of data returned will be twice the amount
read from the source data stream; if the
application is using a pre-allocated memory buffer,
this must be considered before calling this method.

lpMarker

A pointer to an array of bytes which marks the end of the data stream. When this byte
sequence is encountered by the method, it will stop reading and return to the caller.
The buffer will contain all of the data read from the socket up to and including the
end-of-stream marker. If this argument is NULL, then the method will continue to read
from the socket until the maximum buffer size is reached, the remote host closes its
socket or an error is encountered.

cbMarker

An unsigned integer value which specifies the length of the end-of-stream marker in
bytes. If the lpMarker parameter is NULL, then this value must be zero.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value
is zero. To get extended error information, call GetLastError.

Remarks
The ReadStream method enables an application to read an arbitrarily large stream of
data and store it in memory, write it to a file or even another socket. Unlike the Read
method, which will return immediately when any amount of data has been read,
ReadStream will only return when the buffer is full as specified by the lpdwLength
parameter, the logical end-of-stream marker has been read, the socket closed by the
remote host or when an error occurs. This method will force the session thread to block
until the operation completes.

It is possible for data to be returned in the buffer even if the method returns a value of
zero. Applications should also check the value of the lpdwLength argument to determine
if any data was copied into the buffer. For example, if a timeout occurs while the method
is waiting for more data to arrive on the socket, it will return zero; however, data may
have already been copied into the buffer prior to the error condition. It is the
responsibility of the application to process that data, regardless of the method return
value.

Example
HGLOBAL hgblBuffer = NULL; // Return data in a global memory buffer
DWORD cbBuffer = 102400; // Read up to 100K bytes
BOOL bResult;

bResult = pServer->ReadStream(&hgblBuffer, &cbBuffer,
 INET_STREAM_HGLOBAL | INET_STREAM_CONVERT);

if (bResult && cbBuffer > 0)
{
 LPBYTE lpBuffer = (LPBYTE)GlobalLock(hgblBuffer);

 // Use data in the stream buffer

 GlobalUnlock(hgblBuffer);
 GlobalFree(hgblBuffer);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetStreamInfo, Read, ReadLine, StoreStream, Write, WriteLine, WriteStream

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::Reject Method

BOOL Reject();

Reject a pending client connection.

Parameters
None.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The Reject method rejects a pending client connection and the remote host will see this as the
connection being aborted. If there are no pending client connections at the time, this method will
immediately return with an error indicating that the operation would cause the server thread to
block. This method should only be invoked from within an OnAccept event handler if the
application wishes to reject the incoming connection before a client session is created.

To determine the IP address of a client that is attempting to connect to the server from within the
OnAccept event, use the GetClientAddress method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetClientAddress, OnAccept

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::Restart Method

BOOL Restart();

Restart the server, terminating all active client sessions.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The Restart method will restart the specified server, terminating all active client sessions. If the
method is unable to restart the server for any reason, the server thread is terminated. The server
retains all of the options specified for the previous instance.

If an application calls this method from within an event handler, the active client session (the client
for which the event handler was invoked) may not get a disconnect notification. It is
recommended that this method only be called by the same thread that created the server using
the Start method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib

See Also
Start, Stop

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::Resume Method

BOOL Resume();

Resume accepting client connections.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The Resume method instructs the server to resume accepting new client connections after the
Suspend method has been called.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib

See Also
Restart, Start, Stop, Suspend, Throttle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::SetBacklog Method

BOOL SetBacklog(
 UINT nBacklog
);

Set the size of the backlog connection queue for the server.

Parameters
nBacklog

An integer value that specifies the size of the connection backlog queue.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.

Remarks
The SetBacklog method specifies the size of the queue allocated for pending client connections.
A value of zero specifies that the queue should be set to a reasonable default value. On Windows
server platforms, the maximum value is large enough to queue several hundred pending
connections. This method should only be called prior to invoking the Start method, it does not
have any effect on an active server. To get the current size of the backlog queue, use the
GetBacklog method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetBacklog, Start, Data Members

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::SetCertificate Method

BOOL SetCertificate(
 DWORD dwProtocol,
 LPCTSTR lpszCertStore,
 LPCTSTR lpszCertName,
 LPCTSTR lpszPassword
);

BOOL SetCertificate(
 LPCTSTR lpszCertStore,
 LPCTSTR lpszCertName,
 LPCTSTR lpszPassword
);

BOOL SetCertificate(
 LPCTSTR lpszCertName,
 LPCTSTR lpszPassword
);

Specify the server certificate that should be used with secure connections.

Parameters
dwProtocol

An optional bitmask of supported security protocols. If this parameter is not specified, then a
default set of security protocols will be automatically selected. This parameter is constructed by
using a bitwise operator with any of the following values:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default selection of security protocols will be
used when establishing a connection. The TLS 1.2,
TLS 1.1 and TLS 1.0 protocols will be negotiated
with the client, in that order of preference. This
option will always request the latest version of the
preferred security protocols and is the
recommended value.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the client. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Note
that SSL 2.0 has been deprecated and will never be
used by default.

SECURITY_PROTOCOL_TLS The TLS 1.0, 1.1 or 1.2 protocol should be used
when establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the client. If
this is the only protocol specified, SSL will be
excluded from the list of supported protocols. This
may be necessary for some clients that reject any

attempt to use the older SSL protocol and require
that only TLS be used.

lpszCertStore

An optional string value that specifies the name of the certificate store that contains the server
certificate. If the certificate is stored in the registry, this parameter must specify a valid local
certificate store name. If the certificate is stored in a file, this parameter should specify the full
path to the file that contains the certificate. If this parameter is omitted, the personal certificate
store for the current process will be used.

lpszCertName

A string value that specifies the name of the certificate. This parameter is required and cannot
be NULL. Either the common name or the name assigned to the certificate may be specified. In
most cases, this will be the fully qualified domain name of the host that the server is running on.

lpszPassword

An optional string value that specifies a password associated with the server certificate. This
parameter is usually only required when the lpszCertStore parameter specifies a certificate
stored in a file. If the server certificate does not have a password associated with it, this
parameter or omitted.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
EnableSecurity, SetOptions, Start, ValidateCertificate

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::SetClientData Method

BOOL SetClientData(
 SOCKET hClient,
 VOID lpvData
);

BOOL SetClientData(
 VOID lpvData
);

Associate application defined data with the specified client session.

Parameters
hSocket

An optional parameter that specifies the handle to the client socket. If this parameter is omitted,
the socket handle for the active client session will be used. If this method is called outside of a
server event handler, the socket handle must be specified.

lppvData

Pointer to the application defined data associated with the specified client session.

Return Value
If the method succeeds, the return value is non-zero. A return value of zero indicates that
application defined data for the client session could not be modified. To get extended error
information, call the GetLastError method.

Remarks
The SetClientData method is used to associate application defined data with a specific client
session. This is typically used to associate a pointer to a data structure or a class instance with the
client socket. A pointer to the data can be retrieved using the GetClientData method.

You should never specify a pointer to a local variable or data structure that will go out of scope
when the calling method exits. If you do this, the pointer will no longer be valid after the method
exits and attempting to dereference that pointer at some later time can cause an exception to be
thrown and terminate the program. You should always allocate a block of memory for the data
using a method such as HeapAlloc or LocalAlloc. If you specify the address of a static or global
data structure, you must use thread synchronization methods when dereferencing and modifying
that structure.

Example
UINT *pnValue1 = new UINT;
UINT *pnValue2 = NULL;

*pnValue1 = 1234;

if (!pServer->SetClientData(hClient, pnValue1))
{
 // Unable to associate the data with this session
 return;
}

if (!pServer->GetClientData(hClient, (LPVOID *)&pnValue2))
{

 // Unable to retrieve the data associated with this session
 return;
}

// pnValue2 == pnValue1
printf("The value of the user defined data is %u\n", *pnValue2);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetClientData

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::SetClientMoniker Method

INT SetClientMoniker(
 SOCKET hSocket,
 LPCTSTR lpszMoniker
);

INT SetClientMoniker(
 LPCTSTR lpszMoniker
);

Associate a unique string alias with the specified client session.

Parameters
hSocket

An optional parameter that specifies the handle to the client socket. If this parameter is omitted,
the socket handle for the active client session will be used. If this method is called outside of a
server event handler, the socket handle must be specified.

lpszMoniker

Pointer to a string which specifies the moniker for the specified client socket. If this parameter is
NULL or specifies an empty string, a moniker will no longer be associated with the client session.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
INET_ERROR. To get extended error information, call the GetLastError method.

Remarks
A client moniker is a string which can be used to uniquely identify a specific client session aside
from its socket handle. The GetClientMoniker method will return the moniker that was previously
assigned to the client, if any. To obtain the socket handle associated with a given moniker, use the
FindClient method.

Monikers are not case-sensitive, and they must be unique so that no client socket for a particular
server can have the same moniker. The maximum length for a moniker is 127 characters.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
FindClient, GetClientHandle, GetClientId, GetClientMoniker

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::SetLastError Method

VOID SetLastError(
 DWORD dwErrorCode
);

The SetLastError method sets the last error code for the current thread. This method is typically
used to clear the last error by specifying a value of zero as the parameter.

Parameters
dwErrorCode

Specifies the last error code for the current thread.

Return Value
None.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. Most methods will
set the last error code value when they fail; a few methods set it when they succeed. Function
failure is typically indicated by a return value such as FALSE, NULL, INVALID_SOCKET or
INET_ERROR. Those methods which call SetLastError when they succeed are noted on the
method reference page.

Applications can retrieve the value saved by this method by using the GetLastError method. The
use of GetLastError is optional; an application can call the method to determine the specific
reason for a method failure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetErrorString, GetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::SetOptions Method

BOOL SetOptions(
 DWORD dwOptions
);

Set one or more server options.

Parameters
dwOptions

An unsigned integer that specifies one or more option bitflags.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.

Remarks
The SetOptions method sets the server options for the class instance. For a list of the available
options, see Server Option Constants. This method should only be called prior to invoking the
Start method, it does not have any effect on an active server. The GetOptions method returns
the options that are currently specified for the server.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetOptions, Data Members

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/tcpsrv/class/optionconst.html

 CInternetServer::SetPriority Method

INT SetPriority(
 INT nPriority
);

Set the priority assigned to the specified server.

Parameters
nPriority

An integer that specifies the server priority. It may be one of the following values:

Constant Description

INET_PRIORITY_BACKGROUND
(0)

This priority significantly reduces the memory,
processor and network resource utilization for the
server. It is typically used with lightweight services
running in the background that are designed for few
client connections. The server thread will be assigned
a lower scheduling priority and will be frequently
forced to yield execution to other threads.

INET_PRIORITY_LOW
(1)

This priority lowers the overall resource utilization for
the server and meters the processor utilization for the
server thread. The server thread will be assigned a
lower scheduling priority and will occasionally be
forced to yield execution to other threads.

INET_PRIORITY_NORMAL
(2)

The default priority which balances resource and
processor utilization. This is the priority that is initially
assigned to the server when it is started, and it is
recommended that most applications use this priority.

INET_PRIORITY_HIGH
(3)

This priority increases the overall resource utilization
for the server and the thread will be given higher
scheduling priority. It is not recommended that this
priority be used on a system with a single processor.

INET_PRIORITY_CRITICAL
(4)

This priority can significantly increase processor,
memory and network utilization. The server thread
will be given higher scheduling priority and will be
more responsive to client connection requests. It is
not recommended that this priority be used on a
system with a single processor.

Return Value
If the method succeeds, the return value is the previous priority assigned to the server. If the
method fails, the return value is INET_ERROR.

Remarks
The SetPriority method changes the current priority assigned to the specified server. Client
connections that are accepted after this method is called will inherit the new priority as their
default priority. Previously existing client connections will not be affected by this function.

Higher priority values increase the thread priority and processor utilization for each client session.
You should only change the server priority if you understand the impact it will have on the system
and have thoroughly tested your application. Configuring the server to run with a higher priority
can have a negative effect on the performance of other programs running on the system.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetPriority

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::SetStackSize Method

BOOL SetStackSize(
 DWORD dwStackSize
);

Change the initial size of the stack allocated for threads created by the server.

Parameters
dwStackSize

The amount of memory that will be committed to the stack for each thread created by the
server. If this value is zero, a default stack size will be used.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The SetStackSize method changes the initial amount of memory that is committed to the stack
for each thread created by the server. By default, the stack size for each thread is set to 256K for
32-bit processes and 512K for 64-bit processes. Increasing or decreasing the stack size will only
affect new threads that are created by the server, it will not affect those threads that have already
been created to manage active client sessions. It is recommended that most applications use the
default stack size.

You should not change this value unless you understand the impact that it will have on your
system and have thoroughly tested your application. Increasing the initial commit size of the stack
will remove pages from the total system commit limit, and every page of memory that is reserved
for stack cannot be used for any other purpose.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetStackSize, Start

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::SetTimeout Method

INT SetTimeout(
 UINT nTimeout
);

Set the timeout interval used when waiting for a blocking operation to complete.

Parameters
nTimeout

The number of seconds to wait for a blocking operation to complete.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
INET_ERROR. To get extended error information, call GetLastError.

Remarks
The SetTimeout method sets the amount of time that the server will wait for data to become
available to read, and the default timeout for blocking network operations for each client session.
If this method is invoked before the server has started, it will change the default timeout period for
the entire server. If this method is invoked within a server event handler, it will change the timeout
period for the active client session.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetTimeout, IsReadable, IsWritable, OnTimeout

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::ShowError Method

INT ShowError(
 LPCTSTR lpszAppTitle,
 UINT uType,
 DWORD dwErrorCode
);

Display a message box which describes the specified error.

Parameters
lpszAppTitle

A pointer to a string which specifies the title of the message box that is displayed. If this
argument is NULL or omitted, then the default title of "Error" will be displayed.

uType

An unsigned integer which specifies the type of message box that will be displayed. This is the
same value that is used by the MessageBox method in the Windows API. If a value of zero is
specified, then a message box with a single OK button will be displayed. Refer to that method
for a complete list of options.

dwErrorCode

Specifies the error code that will be used when displaying the message box. If this argument is
zero, then the last error that occurred in the current thread will be displayed.

Return Value
If the method is successful, the return value will be the return value from the MessageBox
function. If the method fails, it will return a value of zero.

Remarks
The ShowError method will display a modal message box with an error message that corresponds
to the specified error code. All top-level windows belonging to the current thread will be disabled
until the user responds to the message box. An application should only invoke this method from
within the main UI thread, never from within a server event handler such as OnConnect.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetErrorString, GetLastError, SetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::Start Method

BOOL Start(
 LPCTSTR lpszLocalHost,
 UINT nLocalPort,
 UINT nMaxClients,
 DWORD dwOptions
);

BOOL Start(
 LPCTSTR lpszLocalHost,
 UINT nLocalPort,
 DWORD dwOptions
);

BOOL Start(
 UINT nLocalPort,
 DWORD dwOptions
);

BOOL Start(
 UINT nLocalPort
);

The Start method begins listening for client connections on the specified local address and port
number. The server is started in its own thread and manages the client sessions independently of
the calling thread. All interaction with the server and its client sessions takes place inside the class
event handlers.

Parameters
lpszLocalHost

A pointer to a string which specifies the local hostname or IP address address that the server
should be bound to. If this parameter is omitted or specifies a NULL pointer an appropriate
address will automatically be used. If a specific address is used, the server will only accept client
connections on the network interface that is bound to that address.

nLocalPort

The port number the server should use to listen for client connections. The port number used
by the application must be unique and multiple instances of a server cannot use the same port
number. It is recommended that a port number greater than 5000 be used for private,
application-specific implementations.

nMaxClients

The maximum number of client connections that can be established with the server. A value of
zero specifies that there should not be any fixed limit on the number of active client
connections. This value can be adjusted after the server has been created by calling the
Throttle method.

dwOptions

An unsigned integer value that specifies one or more options to be used when creating an
instance of the server. For a list of the available options, see Server Option Constants. If this
parameter is omitted, the default options for the server instance will be used.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.

file:///C|/Projects/cstools11/pdf/tcpsrv/class/optionconst.html

To get extended error information, call GetLastError.

Remarks
In most cases, the lpszLocalHost parameter should be omitted or a NULL pointer. On a
multihomed system, this will enable the server to accept connections on any appropriately
configured network adapter. Specifying a hostname or IP address will limit client connections to
that particular address. Note that the hostname or address must be one that is assigned to the
local system, otherwise an error will occur.

If an IPv6 address is specified as the local address, the system must have an IPv6 stack installed
and configured, otherwise the method will fail.

To listen for connections on any suitable IPv4 interface, specify the special dotted-quad address
"0.0.0.0". You can accept connections from clients using either IPv4 or IPv6 on the same socket by
specifying the special IPv6 address "::0", however this is only supported on Windows 7 and
Windows Server 2008 R2 or later platforms. If no local address is specified, then the server will only
listen for connections from clients using IPv4. This behavior is by design for backwards
compatibility with systems that do not have an IPv6 TCP/IP stack installed.

The server instance is managed in another thread, and all interaction with the server and active
client connections are performed inside the event handlers. To disconnect all active connections,
close the listening socket and terminate the server thread, call the Stop method.

Example
// EchoServer implementation
class CEchoServer : public CInternetServer
{
 void OnRead(SOCKET hSocket)
 {
 // Read data sent by the client to the server
 BYTE ioBuffer[1024];
 INT nBytesRead = Read(hSocket, ioBuffer, sizeof(ioBuffer));

 // Send a copy of the data back to the client
 if (nBytesRead > 0)
 Write(hSocket, ioBuffer, nBytesRead);
 }
};

int _tmain(int argc, _TCHAR* argv[])
{
 CEchoServer myServer;

 // Start the server listening for connections on port 7000
 if (myServer.Start(7000))
 {
 TCHAR szCommand[128], *pszCommand;

 // Process commands entered by the user at the console
 while (TRUE)
 {
 if ((pszCommand = _fgetts(szCommand, 128, stdin)) == NULL)
 break;

 if (_tcsicmp(pszCommand, _T("quit")) == 0)
 break;
 }

 // Stop the server and terminate all clients
 myServer.Stop();
 }

 return 0;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
EnumClients, Restart, Stop

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::Stop Method

BOOL Stop();

Stop the server, terminating all active client sessions and releasing the resources that were
allocated for the server.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it will return a value of
zero.

Remarks
The Stop method instructs the server to stop accepting client connections, disconnects all active
client connections and terminates the thread that is managing the server session. The handle is no
longer valid after the server has been stopped and should no longer be used. Note that it is
possible that the actual handle value may be re-used at a later point when a new server is started.
An application should always consider the server handle to be opaque and never depend on it
being a specific value.

If an application calls this method from within an event handler, the active client session (the client
for which the event handler was invoked) may not get a disconnect notification. It is
recommended that this method only be called by the same thread that created the server using
the Start method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib

See Also
Restart, Start

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::StoreStream Method

BOOL StoreStream(
 LPCTSTR lpszFileName,
 DWORD dwLength,
 LPDWORD lpdwCopied
 DWORD dwOffset,
 DWORD dwOptions
);

The StoreStream method reads the socket data stream and stores the contents in the specified
file.

Parameters
lpszFileName

Pointer to a string which specifies the name of the file to create or overwrite.

dwLength

An unsigned integer which specifies the maximum number of bytes to read from the socket and
write to the file. If this value is zero, then the method will continue to read data from the socket
until the remote host disconnects or an error occurs.

lpdwCopied

A pointer to an unsigned integer value which will contain the number of bytes written to the file
when the method returns.

dwOffset

An unsigned integer which specifies the byte offset into the file where the method will start
storing data read from the socket. Note that all data after this offset will be truncated. A value of
zero specifies that the file should be completely overwritten if it already exists.

dwOptions

An unsigned integer value which specifies one or more options. Programs can use a bitwise
operator to combine any of the following values:

Constant Description

INET_STREAM_CONVERT The data stream is considered to be textual and
will be modified so that end-of-line character
sequences are converted to follow standard
Windows conventions. This will ensure that all lines
of text are terminated with a carriage-return and
linefeed sequence. Because this option modifies
the data stream, it should never be used with
binary data. Using this option may result in the
amount of data written to the file to be larger than
the source data. For example, if the source data
only terminates a line of text with a single linefeed,
this option will have the effect of inserting a
carriage-return character before each linefeed.

INET_STREAM_UNICODE The data stream should be converted to Unicode.
This option should only be used with text data, and
will result in the stream data being written as 16-bit

wide characters rather than 8-bit bytes. The
amount of data returned will be twice the amount
read from the source data stream. If the dwOffset
parameter has a value of zero, the Unicode byte
order mark (BOM) will be written to the beginning
of the file.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value
is zero. To get extended error information, call GetLastError.

Remarks
The StoreStream method enables an application to read an arbitrarily large stream of
data and store it in a file. This method is essentially a simplified version of the
ReadStream method, designed specifically to be used with files rather than memory
buffers or handles.

Example
// Store all data sent by the client in a file
DWORD dwCopied = 0;
BOOL bResult = pServer->StoreStream(lpszFileName, 0, &dwCopied, 0,
INET_STREAM_CONVERT);

// Close the client connection to the server
pServer->Disconnect();

if (bResult && dwCopied > 0)
{
 // Process the data has been written to the file
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Read, ReadLine, ReadStream, Write, WriteLine, WriteStream

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::Suspend Method

BOOL Suspend();

Suspend the server and reject new client connections.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The Suspend method instructs the server to suspend accepting new client connections. Any
incoming client connections will be rejected with an error message indicating that the server is
currently unavailable. To resume accepting client connections, call the Resume method.
Suspending the server will have no effect on clients that have already established a connection
with the server.

It is recommended that you only suspend a server if absolutely necessary, and only for brief
periods of time. If you want to limit the number of active client connections or control the
connection rate for clients, use the Throttle method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib

See Also
Restart, Resume, Start, Stop, Throttle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::Throttle Method

BOOL Throttle(
 UINT nMaxClients,
 UINT nMaxClientsPerAddress,
 DWORD dwConnectionRate
);

The Throttle method limits the number of active client connections, connections per address and
connection rate.

Parameters
nMaxClients

A value which specifies the maximum number of clients that may connect to the server. A value
of zero specifies that there is no fixed limit to the number of client connections. A value of -1
specifies that the maximum number of clients should not be changed.

nMaxClientsPerAddress

A value which specifies the maximum number of clients that may connect to the server from the
same IP address. A value of zero specifies that there is no fixed limit to the number of client
connections per address. By default, there is a limit of four client connections per address. A
value of -1 specifies that the maximum number of clients should not be changed.

dwConnectionRate

A value which specifies a restriction on the rate of client connections, limiting the number of
connections that will be accepted within that period of time. A value of zero specifies that there
is no restriction on the rate of client connections. The higher this value, the fewer the number of
connections that will be accepted within a specific period of time. By default, there is no limit on
the client connection rate. A value of -1 specifies that the connection rate should not be
changed.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The Throttle method is used to limit the number of connections and the connection rate to
minimize the potential impact of a large number of client connections over a short period of time.
This can be used to protect the server from a client application that is malfunctioning or a
deliberate denial-of-service attack in which the attacker attempts to flood the server with
connection attempts.

If the maximum number of client connections or maximum number of connections per address is
exceeded, the server will reject subsequent connection attempts until the number of active client
sessions drops below the specified threshold. Note that adjusting these values lower than the
current connection limits will not affect clients that have already connected to the server. For
example, if the Start method is called with the maximum number of clients set to 100, and then
Throttle is called lowering that value to 75, no existing client connections will be affected by the
change. However, the server will not accept any new connections until the number of active clients
drops below 75.

Increasing the connection rate value will force the server to slow down the rate at which it will
accept incoming client connection requests. For example, setting this parameter to a value of 1000

would limit the server to accepting one client connection every second, while a value of 250 would
allow the server to accept four client connections per second. Note that significantly increasing the
amount of time the server must wait to accept client connections can exceed the connection
backlog queue, resulting in client connections being rejected.

It is recommended that you always specify conservative connection limits for your server
application based on expected usage. Allowing an unlimited number of client connections can
potentially expose the system to denial-of-service attacks and should never be done for servers
that are accessible over the Internet.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib

See Also
Restart, Resume, Start, Suspend

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::Unlock Method

BOOL Unlock();

Unlock the server, allowing other client threads to resume execution.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call the GetLastError method.

Remarks
The Unlock method releases the lock on the specified server and allows any blocked threads to
resume execution. Only one server may be locked at any one time, and only the thread which
established the lock can unlock the server.

Every time the Lock method is called, an internal lock counter is incremented, and the lock will not
be released until the lock count drops to zero. This means that each call to the Lock method must
be matched by an equal number of calls to the Unlock method. Failure to do so will result in the
server becoming non-responsive as it remains in a locked state.

The program should always check the return value from this method, and should never assume
that the lock has been released. If a potential deadlock situation is detected, this method will fail
and return a value of zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
IsLocked, Lock

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::ValidateCertificate Method

BOOL ValidateCertificate(
 LPCTSTR lpszCertStore,
 LPCTSTR lpszCertPassword,
 LPCTSTR lpszCertName
);

The ValidateCertificate method determines if the specified security certificate is installed on the
local system.

Parameters
lpszCertStore

A pointer to a null terminated string which specifies the name of the certificate store to open. A
certificate store is a collection of certificates and their private keys, typically organized by how
they are used. If this value is NULL or points to an empty string, the personal certificate store will
be used as the default. This parameter may also specify the name of a certificate file in PKCS
#12 (PFX) format.

Store Name Description

CA Certification authority certificates. These are certificates that are issued by
entities which are entrusted to issue certificates to other individuals or
organizations. Companies such as VeriSign and Thawte act as
certification authorities.

MY Personal certificates and their associated private keys for the current user.
This store typically holds the client certificates used to establish a user's
credentials. This corresponds to the "Personal" store that is displayed by
the certificate manager utility and is the default store used by the library.

ROOT Certificates that have been self-signed by a certificate authority. Root
certificates for a number of different certification authorities such as
VeriSign and Thawte are installed as part of the operating system and
periodically updated by Microsoft.

lpszCertPassword

A null terminated string which specifies the password associated with a certificate file. This
parameter is only used if the lpszCertStore parameter specifies a certificate file, otherwise it is
ignored. If the certificate file is not protected with a password, this parameter should be a NULL
pointer or empty string.

lpszCertName

A pointer to a null terminated string which specifies the name of the certificate to validate. The
method will first search the certificate store for a certificate with a matching "friendly name"; this
is a name for the certificate that is assigned by the user. Note that the name must match
completely, but the comparison is not case sensitive. If no matching certificate is found, the
method will then attempt to find a certificate that has a matching common name (also called
the certificate subject). This comparison is less stringent, and the first partial match will be
returned. If this second search fails, the method will return an error indicating that the certificate
could not be found.

Return Value

If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call InetGetLastError.

Remarks
If you are checking the validity of a certificate installed in the local certificate store, you can
explicitly specify whether the certificate store for the current user or the local machine (all users)
should be used. This is done by prefixing the certificate store name with "HKCU:" for the current
user, or "HKLM:" for the local machine. For example, a certificate store name of "HKLM:MY" would
specify the personal certificate store for the local machine, rather than the current user. If neither
prefix is specified, then it will default to the certificate store for the current user.

It is possible to validate a certificate file rather than one stored in the local certificate store. The
lpszCertStore member should specify the name of a file in Private Information Exchange (PFX)
format, also known as PKCS #12.These certificate files typically have an extension of .pfx or .p12. If
a password was specified when the certificate file was created, it must be provided in with the
lpszCertPassword parameter or this method will be unable to access the certificate.

This method can only validate certificate files in PFX format and cannot be used to validate a
certificate file in another format, such as PEM (base64 encoded) or DER (binary).

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
EnableSecurity, SetCertificate

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::Write Method

INT Write(
 SOCKET hSocket,
 LPBYTE lpBuffer,
 INT cbBuffer
);

INT Write(
 LPBYTE lpBuffer,
 INT cbBuffer
);

Send the contents of the specified buffer to to the client.

Parameters
hSocket

An optional parameter that specifies the handle to the client socket. If this parameter is omitted,
the socket handle for the active client session will be used. If this method is called outside of a
server event handler, the socket handle must be specified.

lpBuffer

The pointer to the buffer which contains the data that is to be sent to the client.

cbBuffer

The number of bytes to send from the specified buffer. This value must be greater than zero.

Return Value
If the method succeeds, the return value is the number of bytes actually written. If the method
fails, the return value is INET_ERROR. To get extended error information, call the GetLastError
method.

Remarks
The return value may be less than the number of bytes specified by the cbBuffer parameter. In this
case, the data has been partially written and it is the responsibility of the client application to send
the remaining data at some later point.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
IsReadable, IsWritable, Read, ReadLine, WriteLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::WriteLine Method

BOOL WriteLine(
 SOCKET hSocket,
 LPCTSTR lpszBuffer,
 LPINT lpnLength
);

BOOL WriteLine(
 LPCTSTR lpszBuffer,
 LPINT lpnLength
);

Write a line of data to the client, terminated with a carriage-return and linefeed.

Parameters
hSocket

An optional parameter that specifies the handle to the client socket. If this parameter is omitted,
the socket handle for the active client session will be used. If this method is called outside of a
server event handler, the socket handle must be specified.

lpszBuffer

The pointer to a string buffer which contains the data that will be sent to the remote host. All
characters up to, but not including, the terminating null character will be written to the socket.
The data will always be terminated with a carriage-return and linefeed control character
sequence. If this parameter points to an empty string or NULL pointer, then a only a carriage-
return and linefeed are written to the socket.

lpnLength

A pointer to an integer value which will contain the number of characters written to the socket,
including the carriage-return and linefeed sequence. If this information is not required, a NULL
pointer may be specified.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The WriteLine method writes a line of text to the remote host and terminates the line with a
carriage-return and linefeed control character sequence. Unlike the Write method which writes
arbitrary bytes of data to the socket, the WriteLine method is specifically designed to write a
single line of text data from a null-terminated string. This method will force the session thread to
block until the complete line of text has been written, the write operation times out or the remote
host aborts the connection.

There are some limitations when using WriteLine. This method should only be used to send text,
never binary data. In particular, it will discard nulls and append linefeed and carriage return control
characters to the data stream. The Unicode version of this method will accept a Unicode string,
however it does not support writing raw Unicode data to the socket. Unicode strings will be
automatically converted to UTF-8 encoding using the WideCharToMultiByte function and then
written to the socket as a stream of bytes.

The Write and WriteLine methods can be safely intermixed.

Unlike the Write method, it is possible for data to have been written to the socket if the return
value is zero. For example, if a timeout occurs while the method is waiting to send more data to
the remote host, it will return zero; however, some data may have already been written prior to
the error condition. If this is the case, the lpnLength argument will specify the number of
characters actually written up to that point.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
IsWritable, Read, ReadLine, ReadStream, Write, WriteStream

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::WriteStream Method

BOOL WriteStream(
 SOCKET hSocket,
 LPVOID lpvBuffer,
 LPDWORD lpdwLength,
 DWORD dwOptions
);

BOOL WriteStream(
 LPVOID lpvBuffer,
 LPDWORD lpdwLength,
 DWORD dwOptions
);

Write a stream of data to the client.

Parameters
hSocket

An optional parameter that specifies the handle to the client socket. If this parameter is omitted,
the socket handle for the active client session will be used. If this method is called outside of a
server event handler, the socket handle must be specified.

lpvBuffer

Pointer to the buffer that contains or references the data to be written to the socket. The actual
argument depends on the value of the dwOptions parameter which specifies how the data
stream will be accessed.

lpdwLength

A pointer to an unsigned integer value which specifies the size of the buffer and contains the
number of bytes written when the method returns. This argument should should always point to
an initialized value. If the lpvBuffer argument specifies a memory buffer or global memory
handle, then this argument cannot point to an initialized value of zero.

dwOptions

An unsigned integer value which specifies the stream buffer type to be used when writing the
data stream to the socket. One of the following stream types may be specified:

Constant Description

INET_STREAM_DEFAULT The default stream buffer type is determined by
the value passed as the lpvBuffer parameter. If the
argument specifies a a global memory handle,
then the method will write the data referenced by
that handle; otherwise, the method will consider
the parameter a pointer to a block of memory
which contains data to be written. In most cases, it
is recommended that an application explicitly
specify the stream buffer type rather than using the
default value.

INET_STREAM_MEMORY The lpvBuffer argument specifies a pointer to a
block of memory which contains the data to be
written to the socket. If this stream buffer type is

used, the lpdwLength argument must point to an
unsigned integer which has been initialized with
the size of the buffer.

INET_STREAM_HGLOBAL The lpvBuffer argument specifies a global memory
handle that references the data to be written to the
socket. The handle must have been created by a
call to the GlobalAlloc or GlobalReAlloc function. If
this stream buffer type is used, the lpdwLength
argument must point to an unsigned integer which
has been initialized with the size of the buffer.

INET_STREAM_HANDLE The lpvBuffer argument specifies a Windows
handle to an open file, console or pipe. This should
be the same handle value returned by the
CreateFile function in the Windows API. The data
read using the ReadFile function with this handle
will be written to the socket.

INET_STREAM_SOCKET The lpvBuffer argument specifies a socket handle.
The data read from the socket specified by this
handle will be written to the socket specified by the
hSocket parameter. The socket handle passed to
this method must have been created by this library;
if it is a socket created by an third-party library or
directly by the Windows Sockets API, you should
either create another instance of the class and
attach the socket using the AttachHandle method
or use the INET_STREAM_HANDLE stream buffer
type instead.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value
is zero. To get extended error information, call InetGetLastError.

Remarks
The WriteStream method enables an application to write an arbitrarily large stream of
data from memory or a file to the specified socket. Unlike the Write method, which may
not write all of the data in a single method call, WriteStream will only return when all of
the data has been written or an error occurs. This method will force the thread to block
until the operation completes.

It is possible for some data to have been written even if the method returns a value of
zero. Applications should also check the value of the lpdwLength argument to determine
if any data was sent. For example, if a timeout occurs while the method is waiting to write
more data, it will return zero; however, some data may have already been written to the
socket prior to the error condition.

Example
CFile *pFile = new CFile();
DWORD dwLength = 0;

if (!pFile->Open(strFileName, CFile::modeRead | CFile::shareDenyWrite))

 return;

dwLength = pFile->GetLength();

if (dwLength > 0)
{
 BOOL bResult = pServer->WriteStream(
 pFile->m_hFile,
 &dwLength,
 INET_STREAM_HANDLE);
}

delete pFile;

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
Read, ReadLine, ReadStream, StoreStream, Write, WriteLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer Event Handlers

Method Description

OnAccept The client is attempting to establish a connection to the server

OnConnect The client has established a connection to the server

OnDisconnect The client has disconnected from the server

OnError The event handler encountered an error when processing a client event

OnRead The client has sent data to the server

OnTimeout The client has not sent data within the specified timeout period

OnWrite The client is ready to receive data from the server

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::OnAccept Method

virtual void OnAccept(
 SOCKET hSocket
);

A virtual method that is invoked when a client attempts to connect to the server.

Parameters
hSocket

A handle to the server socket.

Return Value
None.

Remarks
The OnAccept event handler is invoked when a client attempts to connect to the server, but prior
to the connection being accepted. To implement an event handler, the application should create a
class derived from the CInternetServer class, and then override this method.

This event only occurs before the server has checked the active client limits. This event is typically
used to reject a connection based on some criteria established by the server, such as the IP
address of the client attempting to make the connection. To obtain the IP address of the client
that is attempting to connect to the server, use the GetClientAddress method using the server
handle.

If this event handler is not implemented, the server will permit the client connection to complete.
To reject the connection attempt, call the Reject method using the handle to the server socket.
Rejecting the client connection within the OnAccept event handler may cause unexpected
behavior by the client application because the connection process will not complete normally.
Instead of rejecting the client connection within the OnAccept handler, it is recommended that
most server applications implement an OnConnect event handler, perform any required checks
and then gracefully disconnect the client using the Disconnect method if needed.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Disconnect, OnConnect, OnDisconnect

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::OnConnect Method

virtual void OnConnect(
 SOCKET hSocket,
 UINT nClientId,
 LPCTSTR lpszAddress,
 UINT nPort
);

A virtual method that is invoked after the client has connected to the server.

Parameters
hSocket

A handle to the client socket.

nClientId

An unsigned integer which uniquely identifies the client session.

lpszAddress

A string that specifies the IP address of the client. This address may either be in IPv4 or IPv6
format, depending on how the server was configured and the address the client used to
establish the connection.

nPort

An integer that specifies the port number that the client socket is bound to.

Return Value
None.

Remarks
The OnConnect event handler is invoked after the client has connected to the server. To
implement an event handler, the application should create a class derived from the
CInternetServer class, and then override this method.

This event only occurs after the server has checked the active client limits and the TLS handshake
has been performed, if security has been enabled. If the server has been suspended, or the limit
on the maximum number of client sessions has been exceeded, the server will reject the
connection prior to this event handler being invoked.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Disconnect, OnAccept, OnDisconnect

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::OnDisconnect Method

virtual void OnDisconnect(
 SOCKET hSocket
);

A virtual method that is invoked when a client disconnects from the server.

Parameters
hSocket

A handle to the client socket.

Return Value
None.

Remarks
The OnDisconnect event handler is invoked when a client disconnects from the server,
immediately before the client session is terminated. To implement an event handler, the
application should create a class derived from the CInternetServer class, and then override this
method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Disconnect, OnConnect

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::OnError Method

virtual void OnConnect(
 SOCKET hSocket,
 UINT nEventId,
 DWORD dwError
);

A virtual method that is invoked when the server encounters an error while handling a client
request.

Parameters
hSocket

An unsigned integer which uniquely identifies the client session.

nEventId

An unsigned integer which identifies the client event that was being processed when the error
occurred. For a list of event identifiers, see Server Event Constants.

dwError

An unsigned integer value that specifies the error code.

Return Value
None.

Remarks
The OnError event handler is invoked whenever an error occurs while an event is being processed
by the server. To implement an event handler, the application should create a class derived from
the CInternetServer class, and then override this method.

It is important to note that this event is not raised for every error that occurs. The event only
occurs when another event is being processed and an unhandled error occurs that must be
reported back to the server application. The following are some common situations in which this
event handler may be invoked:

A network error occurs when the client connection is being accepted by the server. This
could be the result of an aborted connection or some other lower-level failure reported by
the networking subsystem on the server.

The server is configured to use implicit SSL but cannot obtain the security credentials
required to create the security context for the session. Usually this indicates that the server
certificate cannot be found, or the certificate does not have a private key associated with it.
It could also indicate a general problem with the cryptographic subsystem where the client
and server could not successfully negotiate a cipher suite.

Network errors that may occur when attempting to buffer data sent by the client. This
usually indicates that the connection to the client has been aborted, either because the
client is not acknowledging the data that has been exchanged with the server, or the client
has terminated abnormally. This event will not occur if the client terminates the connection
normally.

In most situations where this event handler is invoked, the error is not recoverable and the only
action that can be taken is to terminate the client session.

file:///C|/Projects/cstools11/pdf/tcpsrv/class/eventconst.html

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib

See Also
OnConnect, OnDisconnect, OnTimeout

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::OnRead Method

virtual void OnRead(
 SOCKET hSocket
);

A virtual method that is invoked when a client sends data to the server.

Parameters
hSocket

A handle to the client socket.

Return Value
None.

Remarks
The OnRead event handler is invoked when a client sends data to the server. To implement an
event handler, the application should create a class derived from the CInternetServer class, and
then override this method. All server applications must implement an OnRead event handler to
process the data sent by the client.

This event occurs whenever there is data available to be read from the client. The server
application reads the data using the Read or ReadLine method, and can then send data back to
the client using the Write or WriteLine method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Read, ReadLine, Write, WriteLine, OnWrite

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::OnTimeout Method

virtual void OnTimeout(
 SOCKET hSocket
);

A virtual method that is invoked when the client has not sent any data to the server within the
timeout period.

Parameters
hSocket

A handle to the client socket.

Return Value
None.

Remarks
The OnTimeout event handler is invoked when a client has not sent any data to the server within
the timeout period specified when the server was started. To implement an event handler, the
application should create a class derived from the CInternetServer class, and then override this
method.

This event handler is typically used to monitor the amount of time that a client is idle. The default
timeout period for the server is 20 seconds, which would cause this event handler to be invoked
whenever a client has not sent any data to the server in the last 20 seconds. The server may take
no action, or it may disconnect the client after it has been idle for an extended period of time. To
get the total amount of time that the client has been idle, call the GetClientIdleTime method.
Note that while the server timeout period is specified in seconds, the GetClientIdleTime method
returns the client idle time in milliseconds.

The default implementation for this event handler is to take no action. It is recommended that
most server applications disconnect clients that are inactive. For typical client-server
implementations that use transitory connections (where the client sends a single request to the
server, the server responds and the connection is terminated) the amount of time that a client
should be permitted to remain idle should be relatively low, usually 60 seconds or less. For
persistent connections where there are multiple requests issued by the client over the lifetime of
the session, a longer idle timeout period may be preferable.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetClientIdleTime

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::OnWrite Method

virtual void OnWrite(
 SOCKET hSocket
);

A virtual method that is invoked when the client is ready to receive data.

Parameters
hSocket

A handle to the client socket.

Return Value
None.

Remarks
The OnWrite event handler is invoked when a client is ready to receive data. To implement an
event handler, the application should create a class derived from the CInternetServer class, and
then override this method. All server applications must implement an OnRead event handler to
process the data sent by the client.

This event occurs immediately after the OnConnect event and if security is enabled, after the TLS
handshake has completed. It is used to notify the server application that the client is ready to
receive data, and may be used to send an initial message to the client, typically identifying the
server that it has connected to. In most cases, the OnWrite event handler will only be invoked
once over the lifetime of the client session.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Write, WriteLine, OnRead

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Internet Server Data Structures

INETSTREAMINFO
INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 INETSTREAMINFO Structure

This structure contains information about the data stream being currently read or written.

typedef struct _INETSTREAMINFO
{
 DWORD dwStreamThread;
 DWORD dwStreamSize;
 DWORD dwStreamCopied;
 DWORD dwStreamMode;
 DWORD dwStreamError;
 DWORD dwBytesPerSecond;
 DWORD dwTimeElapsed;
 DWORD dwTimeEstimated;
} INETSTREAMINFO, *LPINETSTREAMINFO;

Members
dwStreamThread

Specifies the numeric ID for the thread that created the socket.

dwStreamSize

The maximum number of bytes that will be read or written. This is the same value as the buffer
length specified by the caller, and may be zero which indicates that no maximum size was
specified. Note that if this value is zero, the application will be unable to calculate a completion
percentage or estimate the amount of time for the operation to complete.

dwStreamCopied

The total number of bytes that have been copied to or from the stream buffer.

dwStreamMode

A numeric value which specifies the stream operation that is current being performed. It may be
one of the following values:

Constant Description

INET_STREAM_READ Data is being read from the socket and stored in the specified
stream buffer.

INET_STREAM_WRITE Data is being written from the specified stream buffer to the
socket.

dwStreamError

The last error that occurred when reading or writing the data stream. If no error has occurred,
this value will be zero.

dwBytesPerSecond

The average number of bytes that have been copied per second.

dwTimeElapsed

The number of seconds that have elapsed since the file transfer started.

dwTimeEstimated

The estimated number of seconds until the operation is completed. This is based on the
average number of bytes transferred per second and requires that a maximum stream buffer
size be specified by the caller.

Requirements

Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h

See Also
ReadStream, StoreStream, WriteStream

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 INTERNET_ADDRESS Structure

This structure represents a numeric IPv4 or IPv6 address in network byte order.

typedef struct _INTERNET_ADDRESS
{
 INT ipFamily;
 BYTE ipNumber[16];
} INTERNET_ADDRESS, *LPINTERNET_ADDRESS;

Members
ipFamily

An integer which identifies the type of IP address. It will be one of the following values:

Constant Description

INET_ADDRESS_UNKNOWN The address has not been specified or the bytes in the
ipNumber array does not represent a valid address.
Functions which populate this structure will use this value
to indicate that the address cannot be determined.

INET_ADDRESS_IPV4 Specifies that the address is in IPv4 format. The first four
bytes of the ipNumber array are significant and contains
the IP address. The remaining bytes are not significant
and an application should not depend on them having
any particular value, including zero.

INET_ADDRESS_IPV6 Specifies that the address is in IPv6 format. All bytes in
the ipNumber array are significant. Note that it is
possible for an IPv6 address to actually represent an IPv4
address. This is indicated by the first 10 bytes of the
address being zero.

ipNumber

A byte array which contains the numeric form of the IP address. This array is large enough to
store both IPv4 (32 bit) and IPv6 (128 bit) addresses. The values are stored in network byte
order.

Remarks
The INTERNET_ADDRESS structure is used by some functions to represent an Internet address in
a binary format that is compatible with both IPv4 and IPv6 addresses. Applications that use this
structure should consider it to be opaque, and should not modify the contents of the structure
directly.

For compatibility with legacy applications that expect an IP address to be 32 bits and stored in an
unsigned integer, you can copy the first four bytes of the ipNumber array using the
CopyMemory function or equivalent. Note that if this is done, your application should always
check the ipFamily member first to make sure that it is actually an IPv4 address.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Mail Message Class Library

Compose and parse standard MIME formatted email messages.

Reference

Class Methods
Error Codes

Library Information

Class Name CMailMessage

File Name CSMSGV11.DLL

Version 11.0.2180.1635

LibID 8BD70337-A653-4E11-A378-65CE51792984

Import Library CSMSGV11.LIB

Dependencies None

Standards RFC 822, RFC 2045, RFC 2046, RFC 2047, RFC 2048

Overview
The Mail Message class provides an interface for composing and processing email messages and
newsgroup articles which are structured according to the Multipurpose Internet Mail Extensions
(MIME) standard. Using this class, an application can easily create complex messages which
include multiple alternative content types, such as plain text and styled HTML text, file attachments
and customized headers.

It is not required that the developer understand the complex MIME standard; a single method call
can be used to create multipart message, complete with a styled HTML text body and support for
international character sets. The Mail Message class can be easily integrated with the other mail
related protocol libraries, making it extremely easy to create and process MIME formatted
messages.

SocketTools also includes a class for managing a local message storage file that can be used to
store and retrieve multiple messages. Methods are provided to open and create storage files, add,
remove and extract messages from storage, and search the stored messages for specific header
field values. For more information, refer to the CMessageStore class.

Requirements
The SocketTools Library Edition libraries are compatible with any programming language which
supports calling functions exported from a standard dynamic link library (DLL). If you are using
Visual C++ 6.0 it is required that you have Service Pack 6 (SP6) installed. You should install all
updates for your development tools and have the current Windows SDK installed. The minimum
recommended version of Visual Studio is Visual Studio 2010.

This library is supported on Windows 7, Windows Server 2008 R2 and later versions of the desktop
and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1) installed as
a minimum requirement. It is recommended that you install the current service pack and all critical
updates available for your version of the operating system.

This product includes both 32-bit and 64-bit libraries. Native 64-bit CPU support requires the 64-

bit version of Windows 7 or later versions of the Windows operating system.

Distribution
When you distribute your application that uses this library, it is recommended that you install the
file in the same folder as your application executable. If you install the library into a shared location
on the system, it is important that you distribute the correct version for the target platform and it
should be registered as a shared DLL. This is a standard Windows dynamic link library, not an
ActiveX component, and does not require COM registration.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Mail Message Class Methods

Class Description

CMailMessage Constructor which initializes the current instance of the class

~CMailMessage Destructor which releases resources allocated by the class

Method Description

AddHeaders Add one or more header values to the specified message

AppendText Append text to the body of the current message part

AttachData Attach the contents of a buffer to the specified message

AttachFile Attach a file to the specified message

AttachHandle Attach the specified message handle to this instance of the class

ClearMessage Clear the specified message, deleting all message parts

ClearText Clear the body of the current message part

CompareText Compare text in the body of the current message part

ComposeMessage Compose a new message using the specified parameters

CopyMessage Copy the contents of another message into the current message

CreatePart Create a new message part for the specified message

DecodeText Decode a base64 or quoted-printable encoded string

DeleteHeader Delete the specified header field from the message

DeletePart Delete the specified message part

DetachHandle Detach the handle for the current instance of this class

EncodeText Encode a string using base64 or quoted-printable encoding

EnumAttachments Enumerate all file attachments in the current message

EnumHeaders Enumerate all header fields in the current message part

EnumRecipients Enumerate addresses of all message recipients

ExportMessage Export the current message to a string buffer or text file

ExtractAllFiles Extract all file attachments in the message and store them in the specified
directory

ExtractFile Extract the file attachment from the current message part

FindAttachment Search for a file attachment in the specified message

FormatDate Return a standard RFC 822 formatted date string

GetAllHeaders Return the complete RFC 822 header values in a string buffer

GetAllRecipients Return a comma-separated list of recipient addresses in a string buffer

GetAttachedFileName Return the name of the file attachment for the current part

GetBoundary Return the multipart message boundary string

GetContentDigest Return encoded digest of message's content

GetContentLength Return the length of the current message part content

GetDate Return the date and time from the message header

GetErrorString Return a description for the specified error code

GetExportOptions Return a bitmask that describes current message export options

GetFileContentType Return the content type for a specified file

GetFirstHeader Return the first header field and value in the current message part

GetHandle Return the message handle used by this instance of the class

GetHeader Return the value of a specified header from the message

GetLastError Return the last error code

GetMessageSize Return the size of the complete message in bytes

GetNextHeader Return the next header field and value in the current message part

GetPart Return the current message part index

GetPartCount Return the total number of message parts

GetSender Return the email address of the message sender

GetText Return the text of the current message part

ImportMessage Import a message from the specified text file, clipboard or buffer

IsInitialized Determine if the class has been successfully initialized

LocalizeText Localize Unicode text to ANSI using a specific character set

ParseAddress Parse the specified email address

ParseBuffer Parse the specified text and add to the current message

ParseDate Parse the specified RFC 822 formatted date string

ParseHeader Parse the specified text and add to message header

SetExportOptions Specify a bitmask that describes current message export options

SetFileContentType Set the content type for a specific file name extension

SetLastError Set the last error code

SetDate Set the current date in the header for the specified message

SetHeader Create or update a header field in the specified message

SetPart Set the current message part index for the specified message

SetText Create or update the specified message body

ShowError Display a message box with a description of the specified error

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 AddHeaders Method

BOOL AddHeaders(
 LPCTSTR lpszHeaderList
);

The AddHeaders method adds one or more headers to the specified message.

Parameters
lpszHeaderList

Points to a null-terminated string which specifies one or more header values which should be
set for the specified message. This parameter cannot be NULL.

Return Value
If the method succeeds, the return value is non-zero. If the string contains one or more invalid
headers, the method returns a value of zero. To get extended error information, call the
GetLastError method.

Remarks
The AddHeaders method enables your application to set one or more header values by
providing a list of name/value pairs separated by a colon. Multiple header values may be provided
by separating them with a newline character. This method is similar to calling the SetHeader
method for each value. When the list of header values is parsed, extraneous whitespace is ignored;
however, if the header list contains invalid text (for example, a missing colon separating a header
name from its value) the method will fail and an error will be returned.

This method will only add or update header values in the main header block for the message. It
cannot be used to update header values in a specific section of a multipart message. If you need
to add or change a header value in a specific part of the message, use the SetHeader method.

When adding custom, application-specific header values you should always prefix them with "X-"
to avoid conflicting with standard headers.

Example
// Define a list of header values which should be included with the
// main header block for the message
LPCTSTR lpszHeaderList = _T("X-App-Sender: someuser@domain.tld\n") \
 _T("X-App-Version: 1.5\n") \
 _T("X-App-Mailer: AppMail (Win64)\n")

if (! pMessage->AddHeaders(lpszHeaderList))
{
 // Unable to add headers for this message
 return;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also

EnumHeaders, GetFirstHeader, GetHeader, GetNextHeader, SetHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::CMailMessage Method

CMailMessage();

The CMailMessage constructor initializes the class library and validates the license key at runtime.

Remarks
If the constructor fails to validate the runtime license, subsequent methods in this class will fail. If
the product is installed with an evaluation license, then the application will only function on the
development system and cannot be redistributed.

The constructor calls the MimeInitialize function to initialize the library, which dynamically loads
other system libraries and allocates thread local storage. If you are using this class within another
DLL, it is important that you do not create or destroy an instance of the class from within the
DllMain function because it can result in deadlocks or access violation errors. You should not
declare static or global instances of this class within another DLL if it is linked with the C runtime
library (CRT) because it will automatically call the constructors and destructors for static and global
C++ objects and has the same restrictions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
~CMailMessage, IsInitialized

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::~CMailMessage

~CMailMessage();

The CMailMessage destructor releases resources allocated by the current instance of the
CMailMessage object. It also uninitializes the library if there are no other concurrent uses of the
class.

Remarks
When a CMailMessage object goes out of scope, the destructor is automatically called to allow
the library to free any resources allocated on behalf of the process. All handles that were created
for the session are destroyed.

The destructor is not called explicitly by the application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CMailMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::AppendText Method

LONG AppendText(
 LPCTSTR lpszText
);

The AppendText method appends the specified text to the body of the current message part.

Parameters
lpszText

A pointer to a string which specifies the text to be appended to the current message part.

Return Value
If the method succeeds, the return value is the number of bytes copied into the message. A return
value of zero indicates that no text could be appended to the current message part. To get
extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ClearText, CompareText, GetText, SetText

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::AttachData Method

BOOL AttachData(
 LPBYTE lpBuffer,
 LONG cbBuffer,
 LPCTSTR lpszContentName,
 LPCTSTR lpszContentType,
 DWORD dwOptions
);

BOOL AttachData(
 CString& strBuffer,
 LPCTSTR lpszContentName,
 LPCTSTR lpszContentType,
 DWORD dwOptions
);

The AttachData method attaches the contents of the buffer to the message.

Parameters
lpBuffer

Pointer to a byte buffer which contains the data to be attached to the message. This parameter
may be NULL, in which case no data is attached, but an additional empty message part will be
created. An alternate form of this method accepts a CString object which contains the text to
be attached to the message.

cbBuffer

An unsigned integer which specifies the number of bytes of data in the buffer pointed to by the
lpBuffer parameter. If the lpBuffer parameter is NULL, this value must be zero.

lpszContentName

Pointer to a string which specifies a name for the data being attached to the message. This
typically is used as a file name by the mail client to store the data in. If this parameter is NULL or
an empty string then no name is defined and the data is attached as inline content. Note that if
a file name is specified with a path, only the base name will be used.

lpszContentType

Pointer to a string which specifies the type of data being attached. The value must be a valid
MIME content type. If this parameter is NULL or an empty string, then the buffer will be
examined to determine what kind of data it contains. If there is only text characters, then the
content type will be specified as "text/plain". If the buffer contains binary data, then the content
type will be specified as "application/octet-stream", which is appropriate for any type of data.

dwOptions

A value which specifies one or more options. This parameter is constructed by using a bitwise
operator with any of the following values:

Constant Description

MIME_ATTACH_DEFAULT The data encoding is based on the content type. Text data
is not encoded, and binary data is encoded using the
standard base64 encoding algorithm.

MIME_ATTACH_BASE64 The data is always encoded using the standard base64
algorithm, even if the buffer only contains printable text

characters.

MIME_ATTACH_UUCODE The data is always encoded using the uuencode algorithm,
even if the buffer only contains printable text characters.

MIME_ATTACH_QUOTED The data is always encoded using the quoted-printable
algorithm. This encoding should only be used if the data
contains 8-bit text characters.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The AttachData method allows an application to attach data to the message as either a file
attachment or as inline content. The recipient of the message will see the attached data in the
same way that they would see a file attached to the message using the AttachFile method.

If the specified message is not a multipart message, it is marked as multipart and the attached file
is appended to the message. If the message is already a multipart message, an additional part is
created and the attachment is added to the message.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AttachFile, ExportMessage, ExtractFile, GetAttachedFileName, GetFileContentType, ImportMessage,
SetFileContentType

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::AttachFile Method

BOOL AttachFile(
 LPCTSTR lpszFileName,
 DWORD dwOptions
);

The AttachFile method attaches the specified file to the message.

Parameters
lpszFileName

Pointer to a string which specifies the name of the file to be attached to the message.

dwOptions

A value which specifies one or more options. This parameter is constructed by using a bitwise
operator with any of the following values:

Constant Description

MIME_ATTACH_DEFAULT The file attachment encoding is based on the file content
type. Text files are not encoded, and binary files are
encoded using the standard base64 encoding algorithm.
This is the default option for file attachments.

MIME_ATTACH_BASE64 The file attachment is always encoded using the standard
base64 algorithm, even if the attached file is a plain text file.

MIME_ATTACH_UUCODE The file attachment is always encoded using the uuencode
algorithm, even if the attached file is a plain text file.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
If the specified message is not a multipart message, it is marked as multipart and the attached file
is appended to the message. If the message is already a multipart message, an additional part is
created and the attachment is added to the message.

To attach data that is stored in a memory buffer rather than a file, use the AttachData method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AttachData, ExportMessage, ExtractFile, GetAttachedFileName, GetFileContentType,
ImportMessage, SetFileContentType

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::AttachHandle Method

VOID AttachHandle(
 HMESSAGE hMessage
);

The AttachHandle method attaches the specified message handle to the current instance of the
class.

Parameters
hMessage

The handle to the message that will be attached to the current instance of the class object.

Return Value
None.

Remarks
This method is used to attach a message handle created outside of the class using the SocketTools
API. Once the handle is attached to the class, the other class member functions may be used with
that message.

If a message handle already has been created for the class, that handle will be released when the
new handle is attached to the class object. If you want to prevent the previous message from
being destroyed, you must call the DetachHandle method. Failure to release the detached handle
may result in a resource leak in your application.

Note that the hMessage parameter is presumed to be a valid message handle and no checks are
performed to ensure that the handle is valid. Specifying an invalid message handle will cause
subsequent method calls to fail.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib

See Also
DetachHandle, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::ClearMessage Method

BOOL ClearMessage();

The ClearMessage method clears the header and body of the specified message, and deletes all
message parts.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib

See Also
ImportMessage, ParseBuffer

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::ClearText Method

BOOL ClearText();

The ClearText method deletes the text from the body of the current message part.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AppendText, CompareText, GetText, SetText

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::CompareText Method

BOOL CompareText(
 LONG*lpnOffset,
 LPCTSTR lpszBuffer,
 LONG cchBuffer,
 BOOL bCaseSensitive
);

The CompareText method compares a text string against the contents of the current message
part.

Parameters
lpnOffset

Pointer to a long integer which specifies the offset in the message at which to begin the
comparison. This value will be updated when the method returns to indicate the offset position
in the message where the comparison ended.

lpszBuffer

Pointer to a string buffer which contains the text that is to be compared against the body of the
message.

cchBuffer

The number of characters in the buffer that should be compared against the body of the
message.

bCaseSensitive

Boolean flag which specifies that the comparison should be case sensitive.

Return Value
If the text buffer matches the contents of the current message body, the method will return a non-
zero value, and the lpnOffset argument will be set to position in the buffer where the match
terminated. If the text buffer does not match, the method will return a value of zero, and the
lpnOffset argument will be set to the position of the first non-matching character. The method will
also return zero if one of the arguments is invalid. To get extended error information, call
GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AppendText, ClearText, GetText, SetText

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::ComposeMessage Method

BOOL ComposeMessage(
 LPCTSTR lpszFrom,
 LPCTSTR lpszTo,
 LPCTSTR lpszCc,
 LPCTSTR lpszSubject,
 LPCTSTR lpszMessageText,
 LPCTSTR lpszMessageHTML,
 UINT nCharacterSet,
 UINT nEncodingType
);

The ComposeMessage method creates a new message using the specified parameters.

Parameters
lpszFrom

A pointer to a string which specifies the sender's email address. This parameter may be NULL, in
which case no sender address will be included in the message header.

lpszTo

A pointer to a string which specifies one or more recipient addresses. If multiple addresses are
specified, each address must be separated by a comma. This parameter may be NULL, in which
case no recipient addresses will be included in the message header.

lpszCc

A pointer to a string which specifies one or more addresses that will receive a copy of the
message in addition to the listed recipients. If multiple addresses are specified, each address
must be separated by a comma. This parameter may be NULL, in which case no carbon-copy
addresses will be included in the message header.

lpszSubject

A pointer to a string which specifies the subject of the message. This parameter may be NULL,
in which case no subject will be included in the message.

lpszMessageText

A pointer to a string which contains the body of the message as plain text. Each line of text
contained in the string should be terminated with a carriage-return and linefeed (CRLF) pair,
which is recognized as the end-of-line. If this parameter is NULL or points to an empty string,
then the message will have an empty body unless the lpszMessageHTML parameter is not
NULL.

lpszMessageHTML

A pointer to a string which contains the message using HTML formatting. If the
lpszMessageText parameter is not NULL, then a multipart message will be created with both
plain text and HTML text as the alternative. This allows mail clients to select which message body
they wish to display. If the lpszMessageText argument is NULL or points to an empty string,
then the message will only contain HTML. Although this is supported, it is not recommended
because older mail clients may be unable to display the message correctly.

nCharacterSet

A numeric identifier which specifies the character set to use when composing the message. A
value of zero specifies that the default UTF-8 character set should be used. It is recommended
that you always use UTF-8 when composing a new message or creating a new message part.

nEncodingType

A numeric identifier which specifies the encoding type to use when composing the message. A
value of zero specifies that default 7bit encoding should be used. The following values may also
be used:

Constant Description

MIME_ENCODING_7BIT Each character is encoded in one or more bytes, with
each byte being 8 bits long, with the most significant bit
cleared. This encoding is most commonly used with
plain text using the US-ASCII character set, where each
character is represented by a single byte in the range of
20h to 7Eh.

MIME_ENCODING_8BIT Each character is encoded in one or more bytes, with
each byte being 8 bits long and all bits are used. 8-bit
encoding is typically used with multibyte character sets
and is the default encoding used with Unicode text.

MIME_ENCODING_QUOTED Quoted-printable encoding is designed for textual
messages where most of the characters are represented
by the ASCII character set and is generally human-
readable. Non-printable characters or 8-bit characters
with the high bit set are encoded as hexadecimal values
and represented as 7-bit text. Quoted-printable
encoding is typically used for messages which use
character sets such as ISO-8859-1, as well as those
which use HTML.

MIME_ENCODING_BASE64 Base64 encoding converts binary or text data to ASCII
by translating it so each base64 digit represents 6 bits of
data. This encoding method is commonly used with
messages that contain binary data (such as binary file
attachments), or when text uses extended characters
that cannot be represented by 7-bit ASCII. It is
recommended that you use base64 encoding with
Unicode text.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
email addresses may be specified as simple addresses, or as commented addresses that include
the sender's name or other information. For example, any one of these address formats are
acceptable:

user@domain.tld
User Name <user@domain.tld>
user@domain.tld (User Name)

To specify multiple addresses, you should separate each address by a comma or semi-colon. Note
that the lpszFrom parameter cannot specify multiple addresses, however it is permitted with the
lpszTo, lpszCc and lpszBcc parameters.

To send a message that contains HTML, it is recommended that you provide both a plain text
version of the message body and an HTML formatted version. While it is permitted to send a
message that only contains HTML, some older mail clients may not be capable of displaying the
message correctly. In some cases, anti-spam software will increase the spam score of messages
that do not contain a plain text message body. This can result in your message being rejected or
quarantined by the mail server.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CreatePart, ExportMessage, ImportMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::CopyMessage Method

BOOL CopyMessage(
 CMailMessage* pMessage
);

The CopyMessage method copies the contents of the specified message.

Parameters
pMessage

A pointer to a CMailMessage object which contains the message to be copied. If this argument
is NULL, the current message contents will be cleared.

Return Value
If the message was successfully copied, the method will return a non-zero value. If the method
fails, it will return value of zero. To get extended error information, call GetLastError.

Remarks
This method is used to create a copy of the specified message, replacing the current message
contents. Note that this method creates a duplicate of the message referenced by the pMessage
object, and any subsequent changes to the contents of the original message will not be reflected
in the copy of that message.

Example
CMailMessage *pMessage1 = new CMailMessage();
CMailMessage *pMessage2 = new CMailMessage();

// Compose a test message
pMessage1->ComposeMessage(_T("Bob Jones <bob@example.com>"),
 _T("Tom Smith <tom@example.com>"),
 NULL,
 _T("This is a test message"),
 _T("This is a test, this is only a test."));

// Create a copy of the message and change the subject
// The original subject in pMessage1 remains unchanged
if (pMessage2->CopyMessage(pMessage1))
{
 CString &strSubject;
 if (pMessage2->GetHeader(0, _T("Subject"), strSubject))
 {
 strSubject = _T("Re: ") + strSubject;
 pMessage2->SetHeader(0, _T("Subject"), strSubject);
 }
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib

See Also
ClearMessage, ComposeMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::CreatePart Method

INT CreatePart();

INT CreatePart(
 LPCTSTR lpszText,
 UINT nCharacterSet,
 UINT nEncodingType
);

The CreatePart method creates a new part for the specified message. If this the first part created
for a message that does not have the multipart content type specified, the message is marked as
multipart and the header fields are updated.

Parameters
lpszText

A pointer to a string which specifies the text to be included in the body of the new message
part. If this parameter is NULL or points to an empty string, no text is added to the message
part.

nCharacterSet

A numeric identifier which specifies the character set to use when composing the message. A
value of zero specifies the character set should be the same character set used to initially
compose the message. It is recommended that you always use UTF-8 when composing a new
message or creating a new message part.

nEncodingType

A numeric identifier which specifies the encoding type to use when composing the message. A
value of zero specifies that default 7bit encoding should be used. The following values may also
be used:

Constant Description

MIME_ENCODING_7BIT Each character is encoded in one or more bytes, with
each byte being 8 bits long, with the most significant bit
cleared. This encoding is most commonly used with
plain text using the US-ASCII character set, where each
character is represented by a single byte in the range of
20h to 7Eh.

MIME_ENCODING_8BIT Each character is encoded in one or more bytes, with
each byte being 8 bits long and all bits are used. 8-bit
encoding is typically used with multibyte character sets
and is the default encoding used with Unicode text.

MIME_ENCODING_QUOTED Quoted-printable encoding is designed for textual
messages where most of the characters are represented
by the ASCII character set and is generally human-
readable. Non-printable characters or 8-bit characters
with the high bit set are encoded as hexadecimal values
and represented as 7-bit text. Quoted-printable
encoding is typically used for messages which use
character sets such as ISO-8859-1, as well as those
which use HTML.

MIME_ENCODING_BASE64 Base64 encoding converts binary or text data to ASCII
by translating it so each base64 digit represents 6 bits of
data. This encoding method is commonly used with
messages that contain binary data (such as binary file
attachments), or when text uses extended characters
that cannot be represented by 7-bit ASCII. It is
recommended that you use base64 encoding with
Unicode text.

Return Value
If the method succeeds, the return value is the new message part number. If the method fails, the
return value is MIME_ERROR. To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AttachFile, ComposeMessage, CreatePart, DeletePart, GetPart, GetPartCount, SetPart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::DecodeText Method

LONG DecodeText(
 LPCTSTR lpszInput,
 LONG cchInput,
 LPTSTR lpszOutput,
 LONG cchOutput,
 UINT nCharacterSet,
 UINT nEncodingType
);

LONG DecodeText(
 LPCTSTR lpszInput,
 LONG cchInput,
 CString& strOutput,
 UINT nCharacterSet,
 UINT nEncodingType
);

The DecodeText method decodes a string that was previously encoded using base64 or quoted-
printable encoding.

Parameters
lpszInput

A pointer to a null terminated string which contains the encoded text. This parameter cannot be
a NULL pointer.

cchInput

An integer value which specifies the number of characters of text in the input string which
should be decoded. If this parameter is omitted or the value is -1, the entire length of the string
up to the terminating null will be decoded.

lpszOutput

A pointer to a string buffer that will contain the decoded text. This buffer must be large enough
to store all of the characters in the decoded text, including the terminating null character. This
parameter cannot be NULL. An alternate version of this method accepts a CString object
instead of a fixed-length string buffer.

cchOutput

An integer value which specifies the maximum number of characters which can be copied into
the output string buffer. The buffer must be large enough to store all of the decoded text and
terminating null character. This value must be greater than zero. This parameter is not used if
output buffer is specified as a CString object.

nCharacterSet

A numeric identifier which specifies the character set to use when decoding the input text. A
value of zero specifies the character set is undefined and no Unicode text conversion is
performed when the input string is decoded. If this value does not match the character set used
when the text was originally encoded, the resulting output text may be invalid. This parameter
may be omitted, in which case the method will default to using the UTF-8 character set.

nEncodingType

An integer value that specifies the encoding method used. This parameter may be omitted, or it
may be one of the following values:

Constant Description

MIME_ENCODING_QUOTED Quoted-printable encoding is designed for textual
messages where most of the characters are represented
by the ASCII character set and is generally human-
readable. Non-printable characters or 8-bit characters
with the high bit set are encoded as hexadecimal values
and represented as 7-bit text. Quoted-printable
encoding is typically used for messages which use
character sets such as ISO-8859-1, as well as those
which use HTML.

MIME_ENCODING_BASE64 Base64 encoding converts binary or text data to ASCII
by translating it so each base64 digit represents 6 bits of
data. This encoding method is commonly used with
messages that contain binary data (such as binary file
attachments), or when text uses extended characters
that cannot be represented by 7-bit ASCII. It is
recommended that you use base64 encoding with
Unicode text. This is the default encoding type used by
this method.

Return Value
If the input buffer can be successfully decoded, the return value is the length of the decoded
output string. If the method returns zero, then no text was decoded and the output string buffer
will be empty. If the method fails, the return value is MIME_ERROR. To get extended error
information, call GetLastError.

Remarks
This method provides a means to decode text that was previously encoded using either base64 or
quoted-printable encoding. In most cases, it is not necessary to use this method because the
message parser will detect which character set and encoding was used, then automatically decode
the message text if necessary.

The value of the nCharacterSet parameter does not affect the resulting output text, it is only used
when decoding the input text. If the Unicode version of this method is called, the output text will
be converted to UTF-16 and returned to the caller. If the ANSI version of this method is used, the
decoded output will always be returned to the caller using the UTF-8 character set.

If the nCharacterSet parameter is specified as MIME_CHARSET_UTF16, the encoding type must be
MIME_ENCODING_BASE64. Other encoding methods are not supported for Unicode strings and
will cause the method to fail. In most cases, it is preferable to use MIME_ENCODING_BASE64 as
the encoding method, with quoted-printable encoding only used for legacy support.

If an unsupported encoding type is specified, this method will return MIME_ERROR and the output
text string will be empty. This method cannot be used to decode uuencoded text.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
EncodeText, GetText, SetText

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::DeleteHeader Method

BOOL DeleteHeader(
 LPCTSTR lpszHeader
);

The DeleteHeader method deletes the specified header field from the message.

Parameters
lpszHeader

Pointer to a string which specifies the header field that will be deleted.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetHeader, SetHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::DeletePart Method

BOOL DeletePart(
 INT nMessagePart
);

The DeletePart method deletes the specified message part from the multipart message. The
memory allocated for the message part is released.

Parameters
nMessagePart

The message part index to delete.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
This method cannot be used to delete part zero, which is the main body of the message. Instead
use the Clear method to clear the entire message.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CreatePart, CreatePart, GetPart, GetPartCount, ClearMessage, SetPart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::DetachHandle Method

HMESSAGE DetachHandle();

The DetachHandle method detaches the client handle associated with the current instance of the
class.

Parameters
None.

Return Value
This method returns the message handle associated with the current instance of the class object. If
there is no active client session, the value INVALID_MESSAGE will be returned.

Remarks
This method is used to detach a message handle created by the class for use with the SocketTools
API. Once the message handle is detached from the class, no other class member functions may
be called. Note that the handle must be explicitly released at some later point by the process or a
resource leak will occur.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib

See Also
AttachHandle, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::EncodeText Method

LONG EncodeText(
 LPCTSTR lpszInput,
 LONG cchInput,
 LPTSTR lpszOutput,
 LONG cchOutput,
 UINT nCharacterSet,
 UINT nEncodingType
);

LONG EncodeText(
 LPCTSTR lpszInput,
 LONG cchInput,
 CString& strOutput,
 UINT nCharacterSet,
 UINT nEncodingType
);

The EncodeText method encodes a string using base64 or quoted-printable encoding.

Parameters
lpszInput

A pointer to a null terminated string which contains the encoded text. This parameter cannot be
a NULL pointer.

cchInput

An integer value which specifies the number of characters of text in the input string which
should be encoded. If this parameter is omitted or the value is -1, the entire length of the string
up to the terminating null will be encoded.

lpszOutput

A pointer to a string buffer that will contain the encoded text. This buffer must be large enough
to store all of the characters in the encoded text, including the terminating null character. This
parameter cannot be NULL. An alternate version of this method accepts a CString object
instead of a fixed-length string buffer.

cchOutput

An integer value which specifies the maximum number of characters which can be copied into
the output string buffer. The buffer must be large enough to store all of the encoded text and
terminating null character. This value must be greater than zero.

nCharacterSet

A numeric identifier which specifies the character set to use when encoding the input text. A
value of zero specifies the character set is undefined and no Unicode text conversion is
performed when the input string is encoded.

nEncodingType

An integer value that specifies the encoding method used. It may be one of the following
values:

Constant Description

MIME_ENCODING_QUOTED Quoted-printable encoding is designed for textual
messages where most of the characters are represented

by the ASCII character set and is generally human-
readable. Non-printable characters or 8-bit characters
with the high bit set are encoded as hexadecimal values
and represented as 7-bit text. Quoted-printable
encoding is typically used for messages which use
character sets such as ISO-8859-1, as well as those
which use HTML.

MIME_ENCODING_BASE64 Base64 encoding converts binary or text data to ASCII
by translating it so each base64 digit represents 6 bits of
data. This encoding method is commonly used with
messages that contain binary data (such as binary file
attachments), or when text uses extended characters
that cannot be represented by 7-bit ASCII. It is
recommended that you use base64 encoding with
Unicode text.

Return Value
If the input buffer can be successfully encoded, the return value is the length of the encoded
output string. If the method returns zero, then no text was encoded and the output string buffer
will be empty. If the method fails, the return value is MIME_ERROR. To get extended error
information, call GetLastError.

Remarks
This method provides a means to encode text using either base64 or quoted-printable encoding.
It is not necessary to use this method to encode text when using the SetText method. The class
will automatically encode message text which contains non-ASCII characters using the character
set specified when the message is created.

If the nCharacterSet parameter parameter is non-zero, the method will encode the text using the
specified character set. If the Unicode version of this method is called, the input text is converted
to ANSI using the code page associated with the character set. If the ANSI version of this method
is called, the input text is converted to Unicode using the system default code page, and then back
to ANSI using the specified character set.

If the nCharacterSet parameter specifies the MIME_CHARSET_UTF16 character set, you must
specify MIME_ENCODING_BASE64 as the encoding method. Other encoding methods are not
supported for Unicode strings and will cause the method to fail. It is not recommended you
encode text as UTF-16 unless there is a specific requirement to use that character set.

It is recommended that you use the MIME_CHARSET_UTF8 character set whenever possible. It is
capable of encoding all Unicode code points, and is a standard for virtually all modern Internet
applications. In most cases, it is preferable to use MIME_ENCODING_BASE64 as the encoding
method, with quoted-printable encoding only used for legacy support.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also

DecodeText, GetText, SetText

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::EnumAttachments Method

INT EnumAttachments(
 LPCTSTR* lpFileNames,
 INT nMaxFiles
);

The EnumAttachments method enumerates all of the file attachments in the current message.

Parameters
lpFileNames

A pointer to a an array of null-terminated strings that contain the names of the files attached to
the message. If this parameter is NULL, the method will only return the number of files attached
to the message.

nMaxFiles

An integer value that specifies the maximum size of the array of string pointers specified by the
lpFileNames parameter. If this value is zero, the lpFileNames parameter is ignored and the
method will only return the number of files attached to the message.

Return Value
If the method succeeds, the return value is the number of files attached to the message. If the
message does not contain any file attachments, this method will return a value of zero. If the
method fails, the return value is MIME_ERROR. To get extended error information, call
GetLastError.

Example
LPCTSTR lpszFiles[MAXFILES];

INT nFiles = pMessage->EnumAttachments(lpszFiles, MAXFILES);
if (nFiles == MIME_ERROR)
{
 DWORD dwError = pMessage->GetLastError();
 _tprintf(_T("Unable to enumerate attachments, error 0x%08lx\n"), dwError);
 return;
}

_tprintf(_T("There are %d files attached to the message\n"), nFiles);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AttachFile, ExportMessage, ExtractAllFiles, GetAttachedFileName, ImportMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::EnumHeaders Method

INT EnumHeaders();

INT EnumHeaders(
 LPCTSTR* lpHeaderList,
 INT nMaxHeaders
);

The EnumHeaders method returns a list of pointers to all header field names in the current
message part. This can be used in conjunction with the GetHeader method to retrieve the values
for every header in the message.

Parameters
lpHeaderList

Pointer to an array of pointers to null terminated header field names. If this parameter is NULL,
the method only returns the number of headers in the current message part.

nMaxHeaders

The maximum number of header fields which may be returned in the lpHeaderList parameter.

Return Value
If the method succeeds, the return value is the total number of headers that are defined in the
current message part. If the method fails, the return value is MIME_ERROR. To get extended error
information, call GetLastError.

Remarks
The values returned in the header list array must not be directly modified by the application. There
is no specific order in which the header fields are enumerated by this method. The header fields
from an imported message may not be returned in the same order as which they appear in the
message. An application should never make an assumption about the order in which one or more
header fields are defined.

If this method is called without any arguments, it returns the number of headers in the current
message part but does not return any data. This is useful for determining how much memory
must be allocated for the lpHeaderList argument.

Example
// Determine the total number of headers in the current
// message part

nHeaders = pMessage->EnumHeaders();
if (nHeaders > 0)
{

 // Allocate memory for the list of headers

 lpHeaderList = (LPCTSTR *)malloc(nHeaders * sizeof(LPCTSTR));
 assert(lpHeaderList != NULL);

 // Retrieve the list of headers in the current
 // message part, and get their values

 pMessage->EnumHeaders(lpHeaderList, nHeaders);
 for (nIndex = 0; nIndex < nHeaders; nIndex++)

 {

 LPCTSTR lpszValue;
 lpszValue = pMessage->GetHeader(lpHeaderList[nIndex]);
 assert(lpszValue != NULL);

 printf("%s: %s\n", lpHeaderList[nIndex], lpszValue);

 }
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetFirstHeader, GetHeader, GetNextHeader, SetHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::EnumRecipients Method

INT EnumRecipients(
 LPCTSTR lpszExtraAddress,
 LPTSTR lpBuffer,
 LPDWORD lpcchBuffer
);

INT EnumRecipients(
 LPTSTR lpBuffer,
 LPDWORD lpcchBuffer
);

INT EnumRecipients(
 CStringArray& arrayRecipients,
 LPCTSTR lpszExtraAddress
);

The EnumRecipients method returns a null-terminated list of strings which contain the email
address of each recipient for the specified message.

Parameters
lpszExtraAddress

A pointer to a string which contains one or more additional email addresses that should be
included in the list, in addition to those found in the message. If more than one address is
specified, each address should be separated by a comma. This parameter may be NULL if there
are no extra addresses to include in the recipient list.

lpBuffer

Pointer to buffer which will contain zero or more null-terminated strings. The end of the string
list is indicated by an additional terminating null. If this parameter is NULL, the method will
calculate the minimum number of characters required to store the addresses and return the
value in the lpcchBuffer parameter.

lpcchBuffer

A pointer to an unsigned integer which should be initialized to the maximum number of
characters that can be copied into the buffer specified by the lpBuffer parameter. When the
method returns, it will be updated to contain the actual number of characters copied into the
buffer. If the lpBuffer parameter is NULL, then this value will contain the minimum number of
characters required to store all of the recipient addresses in the current message.

arrayRecipients

A reference to a CStringArray object that will contain each of the recipient addresses specified
in the message. This version of the method is only available if the program is compiled using
Microsoft Foundation Classes (MFC).

Return Value
If the method succeeds, the return value is the total number of recipients for the current message.
If the method fails, the return value is MIME_ERROR. To get extended error information, call
GetLastError.

Remarks
The EnumRecipients method returns a list of recipient email addresses for the specified message,
with each address being terminated by a null character. The end of the list is indicated by an

additional null character. To determine the size of the buffer you should pass to this function, you
can specify the lpBuffer parameter as NULL and initialize the value of the lpcchBuffer parameter
to zero.

An alternative to the EnumRecipients method is the GetAllRecipients method that returns a
comma-separated list of recipient addresses in a string buffer.

Example
LPTSTR lpRecipients = NULL;
DWORD cchRecipients = 0;
INT nRecipients = 0;

// Determine the number of characters that should be allocated to store
// all of the recipient addresses in the current message

nRecipients = pMessage->EnumRecipients(NULL, &cchRecipients);

// Allocate the memory for the string buffer that will contain all
// of the recipient addresses and call EnumRecipients
// again to store those addresses in the buffer

if (nRecipients > 0 && cchRecipients > 0)
{
 lpRecipients = (LPTSTR)::LocalAlloc(LPTR, (cchRecipients * sizeof(TCHAR));
 if (lpRecipients == NULL)
 return; // Virtual memory exhausted

 nRecipients = pMessage->EnumRecipients(lpRecipients,
 &cchRecipients);
}

// Move through the buffer, processing each recipient address
// that was returned

if (nRecipients > 0)
{
 LPTSTR lpszAddress = lpRecipients;
 INT cchAddress;

 while (lpszAddress != NULL)
 {
 if ((cchAddress = lstrlen(lpszAddress)) == 0)
 break;

 // lpszAddress specifies a recipient address
 // Advance to the next address string in the buffer
 lpszAddress += cchAddress + 1;
 }
}

if (lpRecipients != NULL)
{
 LocalFree((HLOCAL)lpRecipients);
 lpRecipients = NULL;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)

Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetAllRecipients, GetFirstHeader, GetHeader, GetNextHeader, SetHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::ExportMessage Method

BOOL ExportMessage(
 LPCTSTR lpszFileName,
 DWORD dwExportOptions
);

BOOL ExportMessage(
 HGLOBAL* lphBuffer,
 LPDWORD lpdwBufferSize,
 DWORD dwExportOptions
);

BOOL ExportMessage(
 LPTSTR lpszMessage,
 DWORD dwMessageSize,
 DWORD dwExportOptions
);

BOOL ExportMessage(
 CString& strMessage,
 DWORD dwExportOptions
);

The ExportMessage method exports the message to a file, the system clipboard or global
memory buffer.

Parameters
lpszFileName

A pointer to a string which specifies the file name that will contain the message. If the file
already exists, it will be overwritten with the message contents.

lpszMessage

A pointer to a string which will contain the message. An alternate form of this method accepts a
pointer to a global memory handle which will contain the message data when the method
returns.

dwMessageSize

An unsigned integer value which specifies the maximum size of the lpszMessage buffer.

dwExportOptions

An unsigned integer which specifies how the message will be exported. The following values
may be combined using a bitwise Or operator:

Constant Description

MIME_OPTION_DEFAULT The default export options. The headers for the
message are written out in a specific consistent order,
with custom headers written to the end of the header
block regardless of the order in which they were set or
imported from another message. If the message
contains Bcc, Received, Return-Path, Status or X400-
Received header fields, they will not be exported.

MIME_OPTION_KEEPORDER The original order in which the message header fields
were set or imported are preserved when the message

is exported.

MIME_OPTION_ALLHEADERS All headers, including the Received, Return-Path, Status
and X400-Received header fields will be exported.
Normally these headers are not exported because they
are only used by the mail transport system. This option
can be useful when exporting a message to be stored
on the local system, but should not be used when
exporting a message to be delivered to another user.

MIME_OPTION_NOHEADERS When exporting a message, the main header block will
not be included. This can be useful when creating a
multipart message for services which expect MIME
formatted data, such as HTTP POST requests. This
option should never be used for email messages being
submitted using SMTP.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
If the version of this method is used which exports the message to a pre-allocated string buffer,
the dwMessageSize parameter must specify the maximum size of the buffer. If the method
succeeds, the message will be copied to the buffer. If the method fails, the previous contents of
the buffer will not be preserved. If the buffer provided is not large enough to store the entire
message, the message contents will be truncated. The GetMessageSize method can be used to
determine the minimum size of the buffer required to store the complete message.

If the version of this method is used which returns an HGLOBAL memory handle to the caller, the
handle must be dereferenced using the GlobalLock function. No changes should be made to this
copy of the message. If you wish to modify the contents of the message, allocate a local buffer
and make a copy of the message contents, or use the method which exports the message to a
pre-allocated string buffer. Your application is responsible for calling GlobalUnlock and
GlobalFree to unlock and free the handle when it is no longer needed.

Example
The following example exports the contents of a message to a global memory buffer:

HGLOBAL hgblMessage = NULL;
DWORD dwMessageSize = 0;

if (pMessage->Export(&hgblMessage, &dwMessageSize))
{
 LPBYTE lpMessage = (LPBYTE)GlobalLock(hgblMessage);

 if (lpMessage)
 {
 // Process the contents of the message
 }

 GlobalUnlock(hgblMessage);
 GlobalFree(hgblMessage);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ImportMessage, GetMessageSize, SetExportOptions

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::ExtractAllFiles Method

INT ExtractAllFiles(
 LPCTSTR lpszDirectory
);

The ExtractAllFiles method extracts all of the file attachments in a message and stores them in
the specified directory.

Parameters
lpszDirectory

A pointer to a string which specifies the name of the directory where the file attachments should
be stored. If this parameter is NULL or points to an empty string, the attached files will be stored
in the current working directory on the local system.

Return Value
If the method succeeds, the return value is the number of file attachments which were extracted
from the message. If the message does not contain any file attachments, this method will return a
value of zero. If the method fails, the return value is MIME_ERROR. To get extended error
information, call GetLastError.

Remarks
This method will extract all of the files that are attached to the message and store them in the
specified directory. The directory must exist and the current user must have the appropriate
permissions to create files there. If a file with the same name as the attachment already exists, it
will be overwritten with the contents of the attachment. If the file attachment was encoded using
base64 or uuencode, this function will automatically decode the contents of the attachment.

To determine the file names for each of the attachments in a message, use the
EnumAttachments method. To store a file attachment on the local system using a name that is
different than the file name of the attachment, use the ExtractFile method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeAttachFile, EnumAttachments, ExportMessage, ExtractFile, GetAttachedFileName,
ImportMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::ExtractFile Method

BOOL ExtractFile(
 INT nMessagePart,
 LPCTSTR lpszFileName
);

BOOL ExtractFile(
 LPCTSTR lpszAttachment,
 LPCTSTR lpszFileName
);

BOOL ExtractFile(
 LPCTSTR lpszFileName
);

The ExtractFile method extracts a file attachment from the message and stores it on the local
system.

Parameters
nMessagePart

An integer value that specifies the message part that contains the file attachment. This value
may be -1, in which case the current message part will be used.

lpszAttachment

A pointer to a string that specifies the file name for the attachment in the message. If the file
name of the attachment is not known, this parameter can be NULL or point to an empty string.

lpszFileName

A pointer to a string that specifies the name of a file on the local system. If this parameter is
NULL or points to an empty string, the value of the lpszAttachment parameter will specify the
name of the file in the current working directory. If both the lpszAttachment and lpszFileName
parameters are NULL, the method will fail.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
This method will store the contents of a file attachment in the current message part to the
specified file on the local system. If a path is specified as part of the file name, it must exist and the
current user must have the appropriate permissions to create the file. If a file with the same name
already exists, it will be overwritten with the contents of the attachment. If the file attachment was
encoded using base64 or uuencode, this method will automatically decode the contents of the
attachment.

If the nMessagePart parameter is specified, then an attachment in that message part will be stored
in the specified file. If the message part does not contain a file attachment, the method will fail.

If the lpszAttachment parameter is specified, the method will search the entire message for an
attachment with the same file name. The search is not case-sensitive, however it must match the
attachment file name completely. This method will not match partial file names or names that
include wildcard characters. If a match is found, the contents of that attachment will be stored in
the file specified by the lpszFileName parameter.

To extract all of the files attached to a message in a single method call, use the ExtractAllFiles
method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AttachFile, EnumAttachments, ExportMessage, ExtractAllFiles, ImportMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::FindAttachment Method

INT FindAttachment(
 LPCTSTR lpszFileName
);

The FindAttachment method searches the message for an attachment with the specified file
name.

Parameters
lpszFileName

Pointer to a string that specifies the name of the file attachment to search for. This parameter
should only specify a base file name; it should not include a file path and cannot be NULL.

Return Value
If the method succeeds, the return value is the message part number that contains an attachment
that matches the specified file name. If the message does not contain an attachment with the
specified file name, the method will return MIME_ERROR. To get extended error information, call
GetLastError.

Remarks
This method will search the message for a attachment that matches the specified file name. The
search is not case-sensitive, however it must match the attachment file name completely. This
method will not match partial file names or names that include wildcard characters. To obtain a list
of all of the files attached to a message, use the EnumAttachments method.

Example
// The name of the file attachment to search for
LPCTSTR lpszFileName = _T("MyProject.docx");

// Search for the attached file and store it on the local system
INT nMessagePart = pMessage->FindAttachment(lpszFileName);
if (nMessagePart != MIME_ERROR)
{
 pMessage->SetPart(nMessagePart);

 if (pMessage->ExtractFile(lpszFileName) != MIME_ERROR)
 _tprintf(_T("Saved file attachment %s\n"), lpszFileName);
 else
 {
 _tprintf(_T("Unable to save file attachment %s\n"), lpszFileName);
 return;
 }
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also

AttachFile, ExtractAllFiles, ExtractFile, GetAttachedFileName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::FormatDate Method

LPTSTR FormatDate(
 LONG nSeconds,
 LONG nTimezone,
 LPTSTR lpszDate,
 INT cchMaxDate
);

LPTSTR FormatDate(
 LONG nSeconds,
 LPTSTR lpszDate,
 INT cchMaxDate
);

LPTSTR FormatDate(
 LONG nSeconds,
 LONG nTimezone,
 CString& strDate
);

LPTSTR FormatDate(
 LONG nSeconds,
 CString& strDate
);

The FormatDate converts the specified date, expressed as the number of seconds since 1 January
1970, into a string compatible with the RFC 822 standard format for email messages.

Parameters
nSeconds

A long integer which specifies the number of seconds since 1 January 1970 00:00:00 UTC. This
date is commonly called the epoch, and is the base date used by the standard C time methods.
If the value of this parameter is zero, the current date and time is used.

nTimezone

A pointer to a long integer which is set to the difference in seconds between the specified date's
timezone and Coordinated Universal Time. A value of zero specifies Coordinated Universal
Time, while a positive value specifies a timezone west of UTC, and a negative value specifies a
timezone east of UTC. For example, the Eastern timezone would be specified as the value
18000 and the Pacific timezone would be the value 28800. If this argument is omitted from the
method, then the current timezone is used.

lpszDate

A buffer which will contain the formatted date as a null-terminated string. This parameter
cannot be a NULL pointer.

cchMaxDate

The maximum number of characters, including the terminating null character, which may be
copied into the date string buffer.

Return Value
If the method succeeds, a pointer to the date string buffer is returned. If the method fails, a NULL
pointer is returned. To get extended error information, call GetLastError.

Remarks
The date string is returned in a standard format as outlined in RFC 822, the document which
describes the basic structure of Internet email messages. This format is as follows:

www, dd mmm yyyy hh:mm:ss [-]zzzz

Each part of the date string is defined as follows:

Format Description

www Weekday

dd Day

mmm Month

yyyy Year

hh Hour (24-hour clock)

mm Minutes

ss Seconds

zzzz Timezone

The weekday and month are displayed using standard three-character English abbreviations. The
timezone is displayed as the difference (in hours and minutes) between the specified timezone
and Coordinated Universal Time. For example, if the timezone is eight hours west of Coordinated
Universal Time, the nTimezone value would be 28800. This would be displayed as -0800 in the
formatted date string.

Note that the format of the date string is defined by the RFC 822 standard, and is not affected by
localization settings on the host system.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ParseDate, GetDate, SetDate

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::GetAllHeaders Method

INT GetAllHeaders(
 LPTSTR lpszHeaders,
 INT nMaxLength
);

INT GetAllHeaders(
 CString& strHeaders
);

The GetAllHeaders method returns the complete RFC 822 header values in a string buffer.

Parameters
lpszHeaders

Pointer to string buffer which will contain the header values for the current message. This
parameter may be NULL, in which case the method will calculate the number of characters
needed to store the complete header block.

nMaxLength

An integer value which specifies the maximum number of characters that can be stored in the
lpszHeaders string. If the lpszHeaders parameter is NULL, this value must be zero. If the
lpszHeaders parameter is not NULL, this value must be large enough to store the entire list of
addresses.

strHeaders

A CString object that will contain the header values for the current message. This version of the
method is available if MFC or ATL is being used by the application, and the memory required to
store the complete header block will be calculated automatically.

Return Value
If the method succeeds and the lpszHeaders parameter is NULL, the return value is the minimum
number of characters that should be allocated to store all of the header values, including the
terminating null character. If the lpszHeaders parameter is not NULL, then the return value is the
number of characters copied into the string, not including the terminating null character. If the
method fails, the return value is MIME_ERROR. To get extended error information, call
GetLastError.

Remarks
The GetAllHeaders method will return all of the RFC 822 header values in a string buffer. This
includes the message headers that are most commonly referred to, such as the To, From and
Subject headers. Each header and its value are separated by a colon, and terminated with a
carriage return and linefeed (CRLF) pair.

The headers and their values returned by this method will not be identical to the header block in
the original message. If a header value is split across multiple lines, this method will fold the text,
returning the complete header value on a single line of text and removing any extraneous
whitespace. If the header value has been encoded by the mail client, this method will return the
decoded value, not the original encoded value.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)

Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetFirstHeader, GetHeader, GetNextHeader, SetHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::GetAllRecipients Method

INT GetAllRecipients(
 LPCTSTR lpszExtraAddress,
 LPTSTR lpszRecipients,
 INT nMaxLength
);

INT GetAllRecipients(
 CString& strRecipients,
 LPCTSTR lpszExtraAddress
);

The GetAllRecipients method returns a comma-separated list of recipient addresses in a string
buffer.

Parameters
lpszExtraAddress

A pointer to a string which contains one or more additional email addresses that should be
included in the list, in addition to those found in the message. If more than one address is
specified, each address should be separated by a comma. This parameter may be NULL if there
are no extra addresses to include in the recipient list.

lpszRecipients

Pointer to string buffer which will contain a comma-separated list of email addresses when the
method returns. This parameter may be NULL, in which case the method will calculate the
number of characters needed to store the complete list.

nMaxLength

An integer value which specifies the maximum number of characters that can be stored in the
lpszRecipients string. If the lpszRecipients parameter is NULL, this value must be zero. If the
lpszRecipients parameter is not NULL, this value must be large enough to store the entire list of
addresses.

Return Value
If the method succeeds and the lpszRecipients parameter is NULL, the return value is the
minimum number of characters that should be allocated to store the list recipient addresses,
including the terminating null character. If the lpszRecipients parameter is not NULL, then the
return value is the number of characters copied into the buffer, not including the terminating null
character. If the method returns a value of zero, then the specified message has no recipients. If
the method fails, the return value is MIME_ERROR. To get extended error information, call
GetLastError.

Remarks
The GetAllRecipients method is useful for creating a list of message recipients that can be passed
to methods like CSmtpClient::SendMessage. If you wish to dynamically allocate the string buffer
that will contain the list of recipients, then the lpszRecipients parameter should be NULL and the
nMaxLength parameter should have a value of zero. The method will then return the
recommended size of the buffer that should be allocated. This value is guaranteed to be large
enough to store the entire list of message recipients, including the terminating null character.

Example
CString strRecipients;

if (pMessage->GetAllRecipients(strRecipients) < 1)
{
 // There are no recipients for the current message
 AfxMessageBox(IDS_ERROR_NO_RECIPIENTS);
 return;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
EnumRecipients, GetFirstHeader, GetHeader, GetNextHeader, SetHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::GetAttachedFileName Method

BOOL GetAttachedFileName(
 LPTSTR lpszFileName,
 INT cchFileName
);

BOOL GetAttachedFileName(
 CString& strFileName
);

The GetAttachedFileName method returns the file name for the attachment to the current
message part.

Parameters
lpszFileName

Pointer to a buffer that will contain the current attachment file name as a string. An alternate
form of this method accepts a CString object which will contain the file name when the method
returns.

cchFileName

The maximum number of characters that may be copied into the buffer, including the
terminating null character.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The method will first try to get the filename from the Content-Disposition header field. If this field
does not exist, it then attempts to get the name from the Content-Type header field. If neither
field exists, the method will fail.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AttachFile, GetHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::GetBoundary Method

LPCTSTR GetBoundary();

The GetBoundary method returns a pointer to the boundary string used to separate the parts of
a multipart message.

Parameters
None.

Return Value
If the method succeeds, the return value is a pointer to the boundary string. If the method fails, a
NULL pointer is returned. To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CreatePart, GetHeader, GetPart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::GetContentDigest Method

INT GetContentDigest(
 LPTSTR lpszDigest,
 INT cchDigest
);

INT GetContentDigest(
 CString& strDigest
);

The GetContentDigest method returns an encoded digest of the message.

Parameters
lpszDigest

Pointer to a string buffer to contain the MD5 digest for the specified message. An alternate
form of this method accepts a CString object which will contain the digest when the method
returns.

cchDigest

Maximum length of the digest string, in bytes.

Return Value
If the method succeeds, the return value is the length of the message digest string. A value of zero
specifies that there is no MD5 digest for the current message. If the method fails, the return value
is MIME_ERROR. To get extended error information, call GetLastError.

Remarks
This method returns the value of the Content-MD5 header field in the main body of the message.
If the header exists, it contains the MD5 digest for the message as defined in RFC 1864.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::GetContentLength Method

LONG GetContentLength();

The GetContentLength method returns the size of the current message part content in bytes.

Parameters
None.

Return Value
If the method succeeds, the return value is the content length. If the method fails, the return value
is MIME_ERROR. To get extended error information, call GetLastError.

Remarks
This function will return the size of the content in the current message part as the number of bytes
and does not account for any Unicode conversion of text. Exercise caution when using this
function to determine the size of the buffer that should be allocated for a method like GetText.
You should always allocate enough memory to accommodate any potential text conversion and
decoding which may occur.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetHeader, GetPart, GetText, SetPart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::GetDate Method

LPCTSTR GetDate(
 BOOL bLocalize
);

The GetDate method returns a pointer to a string that contains the message date and time.

Parameters
bLocalize

Boolean flag which specifies if the date and time should be localized for the current timezone.

Return Value
If the method succeeds, the return value is a pointer to the date and time string. If the method
fails, it will return a NULL pointer. To get extended error information, call GetLastError.

Remarks
If no date has been specified in the message, the Date header field will be set to the current date
and time, and that value will be returned. The date string returned by this method should never be
directly modified by the application. Each call to this method will invalidate the previous value that
was returned, so if you wish to save or modify the value, you should first make a private copy of
the string.

To convert this date string to a long integer value that can be used with the standard C time
methods, use the ParseDate method. Refer to the FormatDate method for information on the
format of the date string.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FormatDate, GetHeader, ParseDate, SetDate

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::GetErrorString Method

INT GetErrorString(
 DWORD dwErrorCode,
 LPTSTR lpszDescription,
 INT cbDescription
);

The GetErrorString method is used to return a description of a specific error code. Typically this is
used in conjunction with the GetLastError method for use with warning dialogs or as diagnostic
messages.

Parameters
dwErrorCode

The error code for which a description is returned.

lpszDescription

A pointer to the buffer that will contain a description of the specified error code. This buffer
should be at least 128 characters in length.

cbDescription

The maximum number of characters that may be copied into the description buffer.

Return Value
If the method succeeds, the return value is the length of the description string. If the method fails,
the return value is zero, meaning that no description exists for the specified error code. Typically
this indicates that the error code passed to the method is invalid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetLastError, SetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::GetExportOptions Method

BOOL GetExportOptions(
 LPDWORD lpdwOptions
);

The GetExportOptions method returns a bitmask that describes the default message export
options.

Parameters
lpdwOptions

Pointer to mask of attribute options. The mask is a combination of the following values:

Constant Description

MIME_OPTION_DEFAULT The default export options. The headers for the
message are written out in a specific consistent order,
with custom headers written to the end of the header
block regardless of the order in which they were set or
imported from another message. If the message
contains Bcc, Received, Return-Path, Status or X400-
Received header fields, they will not be exported.

MIME_OPTION_KEEPORDER The original order in which the message header fields
were set or imported are preserved when the message
is exported.

MIME_OPTION_ALLHEADERS All headers, including the Bcc, Received, Return-Path,
Status and X400-Received header fields will be
exported. Normally these headers are not exported
because they are only used by the mail transport
system. This option can be useful when exporting a
message to be stored on the local system, but should
not be used when exporting a message to be delivered
to another user.

MIME_OPTION_NOHEADERS When exporting a message, the main header block will
not be included. This can be useful when creating a
multipart message for services which expect MIME
formatted data, such as HTTP POST requests. This
option should never be used for email messages being
submitted using SMTP.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is 0. To
get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ExportMessage, ImportMessage, SetExportOptions

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::GetFileContentType Method

UINT GetFileContentType(
 LPCTSTR lpszFileName,
 LPTSTR lpszContentType,
 INT cchContentType
);

UINT GetFileContentType(
 LPCTSTR lpszFileName,
 CString& strContentType
);

The GetFileContentType method returns the content type for the specified file.

Parameters
lpszFileName

Pointer to a string which specifies the name of the file for which content type information is
returned.

lpszContentType

Pointer to a string buffer that will contain the MIME type for the specified file. This may be a
NULL pointer, in which case this parameter is ignored. If a buffer is provided, it is recommended
that it be at least 64 characters in length.

cchContentType

An integer which specifies the maximum number of characters, including the terminating null
character, which may be copied into the string buffer.

Return Value
If the method succeeds, the return value is the content type of the specified file. If the method
fails, the return value is MIME_CONTENT_UNKNOWN. To get extended error information, call
GetLastError.

The following values may be returned by this method:

Constant Description

MIME_CONTENT_UNKNOWN The file content type is unknown. This value may be returned
if the message handle is invalid, or if the file extension is
unknown and the file could not be opened for read access.

MIME_CONTENT_APPLICATION The file content is application specific. Examples of this type
of file would be a Microsoft Word document or an executable
program. This is also the default type for files which have an
unrecognized file name extension and contain binary data.

MIME_CONTENT_AUDIO The file is an audio file in one of several standard formats.
Examples of this type of file would be a Windows (.wav) file or
MPEG3 (.mp3) file.

MIME_CONTENT_IMAGE The file is an image file in one of several standard formats.
Examples of this type of file would be a GIF or JPEG image
file.

MIME_CONTENT_TEXT The file is a text file. This is also the default type for files which

have an unrecognized file name extension and contain only
printable text data.

MIME_CONTENT_VIDEO The file is a video file in one of several standard formats.
Examples of this type of file would be a Windows (.avi) or
Quicktime (.mov) video file.

Remarks
The content type for a given file is determined based on the file name extension, or if the
extension is not recognized, the actual contents of the file. On 32-bit platforms, the system registry
is used to determine the default content type values for a given extension. In all cases, file types
that are explicitly set using the SetFileContentType method will override the default system
values.

The content type string which is copied to the string buffer is the standard MIME content type
description, which specifies a primary type and a subtype, separated by a slash. For example, a
plain text file would have a content type of text/plain, while an HTML document would have a
content type of text/html. Binary files may be associated with a specific application. For example,
the content type for a Microsoft Word document is application/msword. Those binary files which
are not associated with a specific application, or have an unrecognized file name extension, have a
content type of application/octet-stream.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AttachData, AttachFile, SetFileContentType

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::GetFirstHeader Method

BOOL GetFirstHeader(
 LPTSTR lpszHeader,
 INT cchMaxHeader,
 LPTSTR lpszValue,
 INT cchMaxValue
);

BOOL GetFirstHeader(
 CString& strHeader,
 CString& strValue
);

The GetFirstHeader method returns the header field name and value for the first header in the
current message part. This method is typically used in conjunction with GetNextHeader to
enumerate all of the message header fields and their values in the current message part.

Parameters
lpszHeader

A pointer to a string buffer that will contain the the name of the first header in the current
message part. This parameter cannot be a NULL pointer.

cchMaxHeader

An integer which specifies the maximum number of characters which may be copied into the
buffer, including the terminating null character. This parameter must have a value greater than
zero.

lpszValue

A pointer to a string buffer that will contain the value of the first header in the current message
part. This parameter may be a NULL pointer, in which case the value of the header field is
ignored.

cchMaxValue

An integer which specifies the maximum number of characters which may be copied into the
buffer, including the terminating null character. If the lpszValue parameter is NULL, this
parameter should have a value of zero.

Return Value
If the method succeeds, the return value is non-zero. If no headers exist for the current message
part, or the handle to the message is invalid, the method will return zero. To get extended error
information, call GetLastError.

Remarks
Each part in a multipart message has one or more header fields. To obtain header values for the
main message, rather than the message attachments, the current part number must be set to zero
using the SetPart method.

The header fields from an imported message may not be returned in the same order as which
they appear in the message. An application should never make an assumption about the order in
which one or more header fields are defined.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)

Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
EnumHeaders, GetPart, GetNextHeader, ParseHeader, SetHeader, SetPart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::GetHandle Method

HMESSAGE GetHandle();

The GetHandle method returns the message handle associated with the current instance of the
class.

Parameters
None.

Return Value
This method returns the message handle associated with the current instance of the class object. If
there is no current message, the value INVALID_MESSAGE will be returned.

Remarks
This method is used to obtain the message handle created by the class for use with the
SocketTools API.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib

See Also
AttachHandle, DetachHandle, IsInitialized

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::GetHeader Method

INT GetHeader(
 INT nMessagePart,
 LPCTSTR lpszHeader,
 LPTSTR lpszValue,
 INT nMaxValue
);

INT GetHeader(
 LPCTSTR lpszHeader,
 LPTSTR lpszValue,
 INT nMaxValue
);

INT GetHeader(
 INT nMessagePart,
 LPCTSTR lpszHeader,
 CString& strValue
);

INT GetHeader(
 LPCTSTR lpszHeader,
 CString& lpszValue
);

The GetHeader copies the value of the specified header into a string buffer.

Parameters
nMessagePart

An integer value which specifies which part of the message to return the header value from. A
value of zero returns a header value from the main message header, while a value greater than
zero returns the header value from that specific part of a multipart message. A value of -1
specifies that the header value should be returned from the current message part. If this
argument is omitted, the value will be returned from the current message part.

lpszHeader

A pointer to a string which specifies the message header.

lpszValue

A pointer to a string buffer which will contain the value of the specified header when the
method returns. If this parameter is NULL, the method will return the length of the header value
without copying the data. This is useful for determining the length of a header value so that a
string buffer can be allocated and passed to a subsequent call to the method. In alternate forms
of this method, a CString object may be specified which will contain the header field value
when the method returns.

nMaxValue

An integer value which specifies the maximum number of characters that can be copied to the
string buffer, including the terminating null character. If the lpszValue parameter is NULL, this
value should be zero.

Return Value
If the method succeeds, the return value is the number of bytes copied into the string buffer, not
including the terminating null byte. If the lpszValue parameter is NULL, the return value is the

length of the header value. If the header field does not exist, a value of zero is returned. If an
invalid pointer or message part is specified, a value of MIME_ERROR is returned. To get extended
error information, call GetLastError.

Example
CMailMessage *pMessage = new CMailMessage();
CString strSubject;

// Compose a test message
pMessage->ComposeMessage(_T("Bob Jones <bob@example.com>"),
 _T("Tom Smith <tom@example.com>"),
 NULL,
 _T("This is a test message"),
 _T("This is a test, this is only a test."));

// Change the subject of the message
if (pMessage->GetHeader(0, _T("Subject"), strSubject))
{
 strSubject = _T("Re: ") + strSubject;
 pMessage->SetHeader(0, _T("Subject"), strSubject);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
EnumHeaders, GetFirstHeader, GetHeader, GetPart, GetNextHeader, ParseHeader, SetHeader,
SetPart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::GetLastError Method

DWORD GetLastError();

DWORD GetLastError(
 CString& strDescription
);

Parameters
strDescription

A string which will contain a description of the last error code value when the method returns. If
no error has been set, or the last error code has been cleared, this string will be empty.

Return Value
The return value is the last error code value for the current thread. Functions set this value by
calling the SetLastError method. The Return Value section of each reference page notes the
conditions under which the method sets the last error code.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. You should call
the GetLastError method immediately when a method's return value indicates that an error has
occurred. That is because some methods call SetLastError(0) when they succeed, clearing the
error code set by the most recently failed method.

Most methods will set the last error code value when they fail; a few methods set it when they
succeed. Function failure is typically indicated by a return value such as FALSE, NULL,
INVALID_MESSAGE or MIME_ERROR. Those methods which call SetLastError when they succeed
are noted on the method reference page.

The description of the error code is the same string that is returned by the GetErrorString
method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib

See Also
GetErrorString, SetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::GetMessageSize Method

DWORD GetMessageSize(
 DWORD dwOptions
);

The GetMessageSize method returns the size of the complete message in bytes.

Parameters
dwOptions

An optional unsigned integer value which specifies how the size of the message should be
calculated, based on what header fields should be included. These are the same options used
when exporting a message to a file or memory buffer. The following values may be combined
using a bitwise Or operator:

Constant Description

MIME_OPTION_DEFAULT The default export options. The headers for the
message are written out in a specific consistent order,
with custom headers written to the end of the header
block regardless of the order in which they were set or
imported from another message. If the message
contains Bcc, Received, Return-Path, Status or X400-
Received header fields, they will not be exported.

MIME_OPTION_ALLHEADERS All headers, including the Received, Return-Path, Status
and X400-Received header fields will be exported.
Normally these headers are not exported because they
are only used by the mail transport system. This option
can be useful when exporting a message to be stored
on the local system, but should not be used when
exporting a message to be delivered to another user.

Return Value
If the method succeeds, the return value is the size of the current message in bytes. If an error
occurs, the method will return MIME_ERROR. To get extended error information, call
GetLastError.

Remarks
This method returns the size of the complete message, including all headers, the message body
and any attachments. It can be used to determinine the minimum amount of memory that should
be allocated to export the message to a memory buffer using the ExportMessage method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib

See Also
ExportMessage, GetText, ImportMessage, SetExportOptions

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::GetNextHeader Method

BOOL GetNextHeader(
 LPTSTR lpszHeader,
 INT cchMaxHeader,
 LPTSTR lpszValue,
 INT cchMaxValue
);

BOOL GetNextHeader(
 CString& strHeader,
 CString& strValue
);

The GetNextHeader method returns the header field name and value for the next header in the
current message part. This method is typically used in conjunction with GetFirstHeader to
enumerate all of the message header fields and their values in the current message part.

Parameters
lpszHeader

A pointer to a string buffer that will contain the name of the next header in the current message
part. This parameter cannot be a NULL pointer.

cchMaxHeader

An integer which specifies the maximum number of characters which may be copied into the
buffer, including the terminating null character. This parameter must have a value greater than
zero.

lpszValue

A pointer to a string buffer that will contain the value of the next header in the current message
part. This parameter may be a NULL pointer, in which case the value of the header field is
ignored.

cchMaxValue

An integer which specifies the maximum number of characters which may be copied into the
buffer, including the terminating null character. If the lpszValue parameter is NULL, this
parameter should have a value of zero.

Return Value
If the method succeeds, the return value is non-zero. If no more headers exist for the current
message part, or the handle to the message is invalid, the method will return zero. To get
extended error information, call GetLastError.

Remarks
Each part in a multipart message has one or more header fields. To obtain header values for the
main message, rather than the message attachments, the current part number must be set to zero
using the SetPart method.

The header fields from an imported message may not be returned in the same order as which
they appear in the message. An application should never make an assumption about the order in
which one or more header fields are defined, with the following exception:

If an imported message has multiple Received headers, then those headers will be returned by
GetNextHeader in the order in which they appeared in the original message. Note that if

GetHeader is used to retrieve the Received header, the first Received header in the message will
be returned.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
EnumHeaders, GetFirstHeader, GetPart, ParseHeader, SetHeader, SetPart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::GetPart Method

INT GetPart();

The GetPart method returns the current message part index for the specified message.

Parameters
None.

Return Value
If the method succeeds, the return value is the message part index. If the method fails, the return
value is MIME_ERROR. To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib

See Also
CreatePart, DeletePart, GetPartCount, SetPart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::GetPartCount Method

INT GetPartCount();

The GetPartCount method returns the total number of message parts for the specified message.
Each message consists of at least one part.

Parameters
None.

Return Value
If the method succeeds, the return value is the number of message parts. If the method fails, the
return value is MIME_ERROR. To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib

See Also
CreatePart, GetPart, SetPart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::GetSender Method

INT GetSender(
 LPCTSTR lpszSender,
 INT nMaxLength
);

INT GetSender(
 CString& strSender
);

The GetSender method returns the email address of the message sender in the specified string
buffer.

Parameters
lpszSender

A pointer to a string buffer that will contain the email address of the message sender when the
method returns. In alternate forms of this method, a CString object may be specified which will
contain the email address when the method returns.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied to the
string buffer, including the terminating null character. It is recommended that the maximum
length be at least 64 characters.

Return Value
If the method succeeds, the return value is the number of bytes copied to the string buffer. If an
error occurs, the method will return MIME_ERROR. To get extended error information, call
GetLastError.

Remarks
This method attempts to determine the email address of the sender that originated the message.
It will first check for the presence of a Sender or X-Sender header value. If these headers are not
defined, it will use the value of the From header field. It will only return successfully if a valid email
address can be found.

If the method succeeds, the string buffer that is provided will only contain an email address. It will
not contain the display name of the user associated with the address or any extraneous comments
that are included in quotes or parenthesis.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
EnumHeaders, GetFirstHeader, GetHeader, GetPart, GetNextHeader, ParseHeader, SetHeader,
SetPart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::GetText Method

LONG GetText(
 LPTSTR lpszBuffer,
 LONG nMaxLength,
 LONG nOffset
);

LONG GetText(
 CString& strBuffer,
 LONG nOffset
);

The GetText method copies the text of the current message part to the specified buffer.

Parameters
lpszBuffer

A pointer to a string buffer that will receive a copy of the message text when the method
returns.

nMaxLength

The maximum number of bytes to copy into the buffer. The size of the buffer provided must be
larger than the content length for the current message part.

nOffset

The byte offset from the beginning of the message. A value of zero specifies the first character
in the body of the message part.

Return Value
If the method succeeds, the return value is number of bytes copied into the buffer. If the method
fails, the return value is MIME_ERROR. To get extended error information, call GetLastError.

Remarks
If your project targets a multi-byte character set, this method will always return the message
contents as UTF-8 text, regardless of the original character set specified in the message itself. This
ensures that characters in the original text are preserved, regardless of the default ANSI code page
on the local system. It is recommended you build your project to use Unicode whenever possible.
If your application must use ANSI, you can use the LocalizeText method to convert the Unicode
text to a specific character set.

You should not determine the maximum size of the output buffer using the GetContentLength
method. That method returns the content size in bytes as it is stored in the message, and does not
account for any character encoding or Unicode conversion which may be required. The content
length can be used to estimate the amount of text stored in the message part, but you should
always allocate a buffer which is larger than the length specified in the message.

If the nMaxLength parameter does not specify a buffer size large enough to store the contents of
the current message part, this method will fail and the last error code will be set to
ST_ERROR_BUFFER_TOO_SMALL. Your application must ensure the buffer is large enough to
contain the complete message text and a terminating NUL character.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)

Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AppendText, ClearText, CompareText, ExportMessage, GetContentLength, ImportMessage,
LocalizeText, SetText

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::ImportMessage Method

BOOL ImportMessage(
 LPCTSTR lpszFileName
);

BOOL ImportMessage(
 LPCTSTR lpszMessage,
 INT nLength
);

The ImportMessage method imports the message from a file or a string buffer in memory,
replacing the current message contents.

Parameters
lpszFileName

A pointer to a string which specifies the name of the file that contains the message to be
imported.

lpszMessage

A pointer to a string which contains the message to be imported.

nLength

An integer value which specifies the number of bytes to read from the string buffer. If this
argument is -1, then the entire contents of the string up to the terminating null character will be
imported.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ExportMessage, ParseBuffer

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::IsInitialized Method

BOOL IsInitialized();

The IsInitialized method returns whether or not the class object has been successfully initialized.

Return Value
This method returns a non-zero value if the class object has been successfully initialized. A return
value of zero indicates that the runtime license key could not be validated.

Remarks
When an instance of the class is created, the class constructor will attempt to initialize the
component with the runtime license key that was created when SocketTools was installed. If the
constructor is unable to validate the license key the initialization will fail.

If SocketTools was installed with an evaluation license, the application cannot be redistributed to
another system. The class object will fail to initialize if the application is executed on another
system, or if the evaluation period has expired. To redistribute your application, you must
purchase a development license which will include the runtime key that is needed to redistribute
your software to other systems. Refer to the Developer's Guide for more information.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib

See Also
CMailMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::LocalizeText Method

LONG LocalizeText(
 LPCTSTR lpszInput,
 LONG cchInput,
 LPBYTE lpOutput,
 LONG cbOutput,
 UINT nCharacterSet
);

The LocalizeText method converts a Unicode string to its ANSI equivalent using the specified
character set.

Parameters
lpszInput

A pointer to a null terminated string which contains the Unicode text which should be localized.
If the ANSI version of this function is called, the input text must be in UTF-8 format or the
function will fail. This parameter cannot be a NULL pointer.

cchInput

An integer value which specifies the number of characters of text in the input string which
should be localized. If this value is -1, the entire length of the string up to the terminating null
will be decoded.

lpOutput

A pointer to a byte buffer which will contain the localized ANSI version of the input text. This
parameter cannot be a NULL pointer.

cbOutput

An integer value which specifies the maximum number of bytes which can be copied into the
output buffer. The buffer must be large enough to store all of the localized text. This value must
be greater than zero.

nCharacterSet

An optional numeric identifier which specifies the character set to use when localizing the text. If
this parameter is omitted, the locale for the current thread will be used when localizing the text.

Return Value
If the input text can be successfully localized, the return value is the number of bytes copied into
the output buffer. If the function returns zero, then no text was localized. If the function fails, the
return value is MIME_ERROR. To get extended error information, call GetLastError.

Remarks
The LocalizeText method enables the application to localize a Unicode string, returning the ANSI
version of that text using the specified character set. Because library handles all text as Unicode
internally, the ANSI functions in this library will always return UTF-8 encoded text. This method
allows you to easily convert that UTF-8 text to another supported character set.

If the ANSI version of this function is called, the input text must use UTF-8 character encoding or
the method will fail with the last error set to ST_ERROR_INVALID_CHARACTER_SET.

If the nCharacterSet parameter is MIME_CHARSET_DEFAULT or MIME_CHARSET_UNKNOWN the
input text will be converted to the default ANSI code page for the current thread locale. If there
are characters in the Unicode input text which cannot be converted to an ANSI equivalent using

the specified character set, those characters will be replaced by the default character for your
locale, typically a question mark symbol. You cannot specify MIME_CHARSET_UTF16 as the
character set.

This method will always attempt to ensure that the output buffer is terminated with an extra null
byte so it is easier to work with as a standard C-style null terminated string. However, if the output
buffer is not large enough to accommodate the extra null byte, it will not be copied. It is always
recommended that your output buffer be somewhat larger than the length of the original input
text to account for multi-byte character sequences. If the output buffer is not large enough to
contain the entire localized text, no bytes will be copied to the output buffer and the function will
fail with the last error set to ST_ERROR_BUFFER_TOO_SMALL.

This function is only required if your application needs to localize the UTF-8 text returned by
another function and convert it to a specific 8-bit ANSI character set. For example, if you have an
application which calls the ANSI version of MimeGetMessageText, it will return the message
contents as UTF-8 text. If you need to display that text as localized ANSI, you can call this function
to convert the UTF-8 text to your current locale or a specific character set.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeDecodeTextEx, MimeEncodeText, MimeEncodeTextEx, MimeGetMessageText,
MimeSetMessageText

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/mime/class/mimedecodetextex.html
file:///C|/Projects/cstools11/pdf/mime/class/mimeencodetext.html
file:///C|/Projects/cstools11/pdf/mime/class/mimeencodetextex.html
file:///C|/Projects/cstools11/pdf/mime/class/mimegetmessagetext.html
file:///C|/Projects/cstools11/pdf/mime/class/mimesetmessagetext.html

 CMailMessage::ParseAddress Method

INT ParseAddress(
 LPCTSTR lpszString,
 LPCTSTR lpszDomain,
 LPTSTR lpszAddress,
 INT nMaxLength
);

INT ParseAddress(
 LPCTSTR lpszString,
 LPTSTR lpszAddress,
 INT nMaxLength
);

INT ParseAddress(
 LPCTSTR lpszString,
 CString& strAddress
);

The ParseAddress method parses a string for an email address, copying the address to the
specified buffer.

Parameters
lpszString

A pointer to a string which contains the email address to parse.

lpszDomain

A pointer to a string which specifies a default domain for the address. This parameter may be
NULL or point to an empty string if no default domain is required.

lpszAddress

A pointer to a string buffer which will contain the parsed email address when the method
returns. It is recommended that this buffer be at least 128 characters in length.

nMaxLength

The maximum number of characters which can be copied into the string buffer, including the
terminating null character.

Return Value
If the method succeeds, the return value is the length of the address. If the method fails, the return
value is MIME_ERROR. To get extended error information, call GetLastError.

Remarks
The ParseAddress method is useful for parsing the email addresses that may be specified in
various header fields in the message. In many cases, the addresses have additional comment
characters which are not part of the address itself. For example, one common format used is as
follows:

"User Name" <user@domain.com>

In this case, the email address is enclosed in angle brackets and the name outside of the brackets
is considered to be a comment which is not part of the address itself. Another common format is:

user@domain.com (User Name)

In this case, there is the address followed by a comment which is enclosed in parenthesis. The

ParseAddress method recognizes both formats, and when passed either string, would return the
following address:

user@domain.com

If there was no domain specified in the address, that is just a user name was specified, then the
value the lpszDomain parameter is added to the address.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ExportMessage, ExtractFile, ImportMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::ParseBuffer Method

BOOL ParseBuffer(
 LPCTSTR lpszBuffer,
 INT cbBuffer
);

The ParseBuffer method parses the contents of the specified buffer and adds the contents to the
message.

Parameters
lpszBuffer

Pointer to a buffer that contains the text to be added to the message contents.

cbBuffer

The length of the specified buffer. If this value is -1, all characters in the string up to the
terminating null character will be parsed.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
This method is useful when the application needs to parse an arbitrary block of text and add it to
the specified message. If the buffer contains header fields, the values will be added to the message
header. Once the end of the header block is detected, all subsequent text is added to the body of
the message.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ClearMessage, ImportMessage, ParseHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::ParseDate Method

BOOL ParseDate(
 LPCTSTR lpszDate,
 LPLONG lpnSeconds,
 LPLONG lpnTimezone,
 BOOL bLocalize
);

The ParseDate method parses a date string, returning the number of seconds since 1 January
1970 and the difference in seconds between the specified timezone and coordinated universal
time. If the string does not specify a timezone, the local timezone is used.

Parameters
lpszDate

A pointer to a string which specifies the date to be parsed. The date string must be in the
standard format defined by RFC 822.

lpnSeconds

A pointer to a long integer which is set to the number of seconds since 1 January 1970 00:00:00
UTC. This date is commonly called the epoch, and is the base date used by the standard C time
methods. This pointer may be NULL, in which case the parameter is ignored.

lpnTimezone

A pointer to a long integer which is set to the difference in seconds between the specified date's
timezone and coordinated universal time (also known as Greenwich Mean Time). This pointer
may be NULL, in which case the parameter is ignored.

bLocalize

A boolean flag which determines if the date should be localized to the current timezone,
regardless of the timezone specified in the date string. A non-zero value specifies the timezone
for the local system will be used, adjusted for daylight savings time if applicable.

Return Value
If the date could be successfully parsed, the return value is non-zero. If the method fails, the return
value is zero. To get extended error information, call GetLastError.

Remarks
This method is not a general purpose date parsing function, and may not be capable of parsing
dates for a specific locale. The date and time should be in a standard format as outlined in RFC
822, which describes the basic structure of Internet email messages. For a description of the date
string format, refer to the MimeFormatDate function.

If the date and time does not include any timezone information, Coordinated Universal Time
(UTC) will be used by default. This is an important consideration if you use this function to parse
input from a user, because in most cases they will not provide a timezone and will assume the
date and time they enter is for their current timezone.

The value of the bLocalize parameter will only change the number of seconds offset by the
current timezone and does not affect the value returned in the lpnSeconds parameter. If the date
is localized, the timezone offset will be adjusted for daylight savings if it was in effect at the time.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)

Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FormatDate, GetDate, SetDate

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::ParseHeader Method

BOOL ParseHeader(
 LPCTSTR lpszBuffer
);

The ParseHeader method parses a line of text and adds the header and value to the current
message.

Parameters
lpszBuffer

Pointer to a string which contains the header and value to be added to the message.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
This method is used to parse a line of text that is part of a message header. The string must
consist of a header name, followed by a colon, followed by the header value. The header name
may only consist of printable characters, and may not contain whitespace (space, tab, carriage
return or linefeed characters).

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ImportMessage, ParseBuffer

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::SetDate Method

BOOL SetDate(
 LPCTSTR lpszDate,
 BOOL bLocalize
);

The SetDate method sets the date and time in the header for the specified message.

Parameters
lpszDate

Pointer to a string which specifies the date and time. If this parameter specifies a zero-length
string or a NULL pointer, the current date and time will be used.

bLocalize

Boolean flag that specifies the date and time should be localized for the current timezone.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The date string should be in a standard format as outlined in RFC 822, the document which
describes the basic structure of Internet email messages. For a description of the date string
format, refer to the FormatDate method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FormatDate, GetDate, GetHeader, ParseDate, SetHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::SetExportOptions Method

BOOL SetExportOptions(
 DWORD dwOptions
);

The SetExportOptions method specifies a bitmask that describes current message export
options.

Parameters
dwOptions

Mask of attribute options. The mask is a combination of the following values:

Constant Description

MIME_OPTION_DEFAULT The default export options. The headers for the
message are written out in a specific consistent order,
with custom headers written to the end of the header
block regardless of the order in which they were set or
imported from another message. If the message
contains Bcc, Received, Return-Path, Status or X400-
Received header fields, they will not be exported.

MIME_OPTION_KEEPORDER The original order in which the message header fields
were set or imported are preserved when the message
is exported.

MIME_OPTION_ALLHEADERS All headers, including the Bcc, Received, Return-Path,
Status and X400-Received header fields will be
exported. Normally these headers are not exported
because they are only used by the mail transport
system. This option can be useful when exporting a
message to be stored on the local system, but should
not be used when exporting a message to be delivered
to another user.

MIME_OPTION_NOHEADERS When exporting a message, the main header block will
not be included. This can be useful when creating a
multipart message for services which expect MIME
formatted data, such as HTTP POST requests. This
option should never be used for email messages being
submitted using SMTP.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
By default, the Received and Return-Path headers are not exported. In addition, the order of the
headers in an exported message is undefined. This is reasonable behavior for most mail clients,
but may not be appropriate for applications which need access to all of the header fields.

Example

pMessage->SetExportOptions(MIME_EXPORT_OPTIONS_ALL |
 MIME_EXPORT_OPTIONS_KEEP_ORDER);

if (pMessage->Import(lpszFileName))
{
 // Process the message and make any modifications
 // then write the message back out, preserving all
 // of the headers in their original order
 bResult = pMessage->Export(lpszFileName);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ExportMessage, ImportMessage, GetExportOptions

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::SetFileContentType Method

BOOL SetFileContentType(
 UINT nContentType,
 LPCTSTR lpszSubtype,
 LPCTSTR lpszExtension
);

The SetFileContentType method associates a per-message content type with a given file name
extension. This association is specific to the message, and is not shared by an other messages that
may be opened by the process.

Parameters
nContentType

An identifier which specifies the primary content type. It may be one of the following values:

Constant Description

MIME_CONTENT_UNKNOWN The default content type for the specified extension
should be used. This value should only be used to
delete a previously defined content type.

MIME_CONTENT_APPLICATION The file content is application specific. Examples of
this type of file would be a Microsoft Word
document or an executable program. This is also the
default type for files which have an unrecognized file
name extension and contain binary data.

MIME_CONTENT_AUDIO The file is an audio file in one of several standard
formats. Examples of this type of file would be a
Windows (.wav) file or MPEG3 (.mp3) file.

MIME_CONTENT_IMAGE The file is an image file in one of several standard
formats. Examples of this type of file would be a GIF
or JPEG image file.

MIME_CONTENT_TEXT The file is a text file. This is also the default type for
files which have an unrecognized file name extension
and contain only printable text data.

MIME_CONTENT_VIDEO The file is a video file in one of several standard
formats. Examples of this type of file would be a
Windows (.avi) or Quicktime (.mov) video file.

lpszSubtype

A pointer to a string which specifies the MIME subtype. This parameter may be NULL if the
content type association is being deleted.

lpszExtension

A pointer to a string which specifies the file name extension that will be associated with the
MIME content type.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The SetFileContentType method allows an application to specify a content type for a given file
extension, and is typically used to define custom content types for file attachments. The content
type will override any default content types associated with the extension, as well as allow new
content types to be defined for application-specific files.

Example
In the following example, the file extension ".dat" is associated with a custom content type, a file is
attached to the message and then the custom content type is deleted. Note that because the
primary content type designates the file as an application specific (non-text) file, it will be
automatically encoded when attached to a message:

bResult = pMessage->SetFileContentType(
 MIME_CONTENT_APPLICATION,
 _T("octet-stream"), _T("dat"));

if (bResult)
{
 bResult = pMessage->AttachFile(lpszFileName, MIME_ATTACH_DEFAULT);
 pMessage->SetFileContentType(MIME_CONTENT_UNKNOWN, NULL, _T("dat"));
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AttachData, AttachFile, GetFileContentType

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::SetHeader Method

BOOL SetHeader(
 INT nMessagePart,
 LPCTSTR lpszHeader,
 LPCTSTR lpszValue
);

BOOL SetHeader(
 LPCTSTR lpszHeader,
 LPCTSTR lpszValue
);

The SetHeader method adds or updates a header field in the specified message.

Parameters
nMessagePart

An integer value which specifies which part of the message the header should be set or
modified in. A value of zero sets a header value in the main message header block, while a
value greater than zero sets the header value in that specific part of a multipart message. If this
argument is omitted or a value of -1 is specified, the header value will be set in the current
message part.

lpszHeader

Pointer to a string which specifies the header field that will be added or updated.

lpszValue

Pointer to a string which specifies the value for the header field. This pointer may be NULL,
which causes the header field to be removed from the message.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AddHeaders, EnumHeaders, GetFirstHeader, GetHeader, GetPart, GetNextHeader, SetPart, SetText

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::SetLastError Method

VOID SetLastError(
 DWORD dwErrorCode
);

The SetLastError method sets the last error code for the current thread. This method is typically
used to clear the last error by specifying a value of zero as the parameter.

Parameters
dwErrorCode

Specifies the last error code for the current thread.

Return Value
None.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. Most methods will
set the last error code value when they fail; a few methods set it when they succeed. Function
failure is typically indicated by a return value such as FALSE, NULL, INVALID_MESSAGE or
MIME_ERROR. Those methods which call SetLastError when they succeed are noted on the
method reference page.

Applications can retrieve the value saved by this method by using the GetLastError method. The
use of GetLastError is optional; an application can call the method to determine the specific
reason for a method failure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib

See Also
GetErrorString, GetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::SetPart Method

INT SetPart(
 INT nNewPart
);

The SetPart method sets the current message part index for the specified message.

Parameters
nNewPart

The new message part index. A value of zero specifies the main message part.

Return Value
If the method succeeds, the return value is the previous message part index. If the method fails,
the return value is MIME_ERROR. To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetPart, GetPartCount, SetHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::SetText Method

LONG SetText(
 LONG nOffset,
 LPCTSTR lpszText
);

LONG SetText(
 LPCTSTR lpszText
);

The SetText method copies the specified text into the body of the current message part.

Parameters
nOffset

The offset into the body of the message part. A value of -1 specifies that the text will be
appended to the message body. If this argument is omitted, the current message text is
replaced with the contents of the lpszText argument.

lpszText

A pointer to a string which specifies the text to be copied to the current message part at the
given offset.

Return Value
If the method succeeds, the return value is the number of bytes copied into the message. A return
value of zero indicates that no text could be copied into the current message part. To get
extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AppendText, ClearMessage, ClearText, CompareText, GetText, SetHeader, SetPart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage::ShowError Method

INT ShowError(
 LPCTSTR lpszAppTitle,
 UINT uType,
 DWORD dwErrorCode
);

The ShowError method displays a message box which describes the specified error.

Parameters
lpszAppTitle

A pointer to a string which specifies the title of the message box that is displayed. If this
argument is NULL or omitted, then the default title of "Error" will be displayed.

uType

An unsigned integer which specifies the type of message box that will be displayed. This is the
same value that is used by the MessageBox method in the Windows API. If a value of zero is
specified, then a message box with a single OK button will be displayed. Refer to that method
for a complete list of options.

dwErrorCode

Specifies the error code that will be used when displaying the message box. If this argument is
zero, then the last error that occurred in the current thread will be displayed.

Return Value
If the method is successful, the return value will be the return value from the MessageBox
function. If the method fails, it will return a value of zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetErrorString, GetLastError, SetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMailMessage Character Sets

Constant Value Name Code Page Description

MIME_CHARSET_USASCII 1 us-ascii 20127 A character set which
defines 7-bit printable
characters with values
ranging from 20h to 7Eh. An
application that uses this
character set has the
broadest compatibility with
most mail servers (MTAs)
because it does not require
the server to handle 8-bit
characters correctly when
the message is delivered.

MIME_CHARSET_ISO8859_1 2 iso-8859-1 28591 A character set for most
western European
languages such as English,
French, Spanish and
German. This character set is
also commonly referred to
as Latin-1. This character set
is similar to Windows code
page 1252 (Windows-1252),
however there are
differences such as the Euro
symbol.

MIME_CHARSET_ISO8859_2 3 iso-8859-2 28592 A character set for most
central and eastern
European languages such as
Czech, Hungarian, Polish
and Romanian. This
character set is also
commonly referred to as
Latin-2. This character set is
similar to Windows code
page 1250, however the
characters are arranged
differently.

MIME_CHARSET_ISO8859_3 12 iso-8859-3 28593 A character set for southern
European languages such as
Maltese and Esperanto. This
character set was also used
with the Turkish language,
but it was superseded by
ISO 8859-9 which is the
preferred character set for

Turkish. This character set is
not widely used in mail
messages and it is
recommended that you use
UTF-8 instead.

MIME_CHARSET_ISO8859_4 13 iso-8859-4 28594 A character set for northern
European languages such as
Latvian, Lithuanian and
Greenlandic. This character
set is not widely used in mail
messages and it is
recommended that you use
UTF-8 instead.

MIME_CHARSET_ISO8859_5 4 iso-8859-5 28595 A character set for Cyrillic
languages such as Russian,
Bulgarian and Serbian. This
character set was never
widely adopted and most
mail messages use either
KOI8 or UTF-8 encoding.

MIME_CHARSET_ISO8859_6 5 iso-8859-6 28596 A character set for Arabic
languages. Note that the
application is responsible for
displaying text that uses this
character set. In particular,
any display engine needs to
be able to handle the
reverse writing direction and
analyze the context of the
message to correctly
combine the glyphs.

MIME_CHARSET_ISO8859_7 6 iso-8859-7 28597 A character set for the Greek
language. This character set
is also commonly referred to
as Latin/Greek. This
character set is no longer
widely used and has largely
been replaced with UTF-8
which provides more
complete coverage of the
Greek alphabet.

MIME_CHARSET_ISO8859_8 7 iso-8859-8 28598 A character set for the
Hebrew language. Note that
similar to Arabic, Hebrew
uses a reverse writing
direction. An application
which displays this character
should be capable of

processing bi-directional text
where a single message may
include both right-to-left
and left-to-right languages,
such as Hebrew and English.
In most cases it is
recommended that you use
UTF-8 instead of this
character set.

MIME_CHARSET_ISO8859_9 8 iso-8859-9 28599 A character set for the
Turkish language. This
character set is also
commonly referred to as
Latin-5. This character set is
nearly identical to ISO 8859-
1, except that it replaces
certain Icelandic characters
with Turkish characters.

MIME_CHARSET_ISO8859_10 14 iso-8859-10 28600 A character set for the
Danish, Icelandic, Norwegian
and Swedish languages. This
character set is also
commonly referred to as
Latin-6 and is similar to ISO
8859-4.

MIME_CHARSET_ISO8859_13 15 iso-8859-13 28603 A character set for Baltic
languages. This character set
is also commonly referred to
as Latin-7. This character set
is similar to ISO 8859-4,
except it adds certain Polish
characters and does not
support Nordic languages.

MIME_CHARSET_ISO8859_14 16 iso-8859-14 28604 A character set for Gaelic
languages such as Irish,
Manx and Scottish Gaelic.
This character set is also
commonly referred to as
Latin-8. This character set
replaced ISO 8859-12 which
was never fully
implemented.

MIME_CHARSET_ISO8859_15 17 iso-8859-15 28605 A character set for western
European languages. This
character set is also
commonly referred to as
Latin-9 and is nearly
identical to ISO8859-1

except that it replaces
lesser-used symbols with the
Euro sign and some letters.

MIME_CHARSET_ISO2022_JP 18 iso-2022-jp 50222 A multi-byte character
encoding for Japanese that
is widely used with mail
messages. This is a 7-bit
encoding where all
characters start with ASCII
and uses escape sequences
to switch to the double-byte
character sets.

MIME_CHARSET_ISO2022_KR 19 iso-2022-kr 50225 A multi-byte character
encoding for Korean which
encodes both ASCII and
Korean double-byte
characters. This is a 7-bit
encoding which uses the
shift in and shift out control
characters to switch to the
double-byte character set.

MIME_CHARSET_ISO2022_CN 20 x-cp50227 50227 A multi-byte character
encoding for Simplified
Chinese which encodes both
ASCII and Chinese double-
byte characters. This is a 7-
bit encoding which uses the
shift in and shift out control
characters to switch to the
double-byte character set.

MIME_CHARSET_KOI8R 21 koi8-r 20866 A character set for Russian
using the Cyrillic alphabet.
This character set also
covers the Bulgarian
language. Most mail
messages in the Russian
language use this character
set or UTF-8 instead of ISO
8859-5, which was never
widely adopted.

MIME_CHARSET_KOI8U 22 koi8-u 21866 A character set for Ukrainian
using the Cyrillic alphabet.
This character set is similar
to the KOI8-R character set,
but replaces certain symbols
with Ukrainian letters. Most
mail messages in the
Ukrainian language use this

character set or UTF-8
instead of ISO 8859-5, which
was never widely adopted.

MIME_CHARSET_GB2312 23 x-cp20936 20936 A multi-byte character
encoding which can
represent ASCII and
simplified Chinese
characters. It has been
superseded by GB18030,
however it remains widely
used in China.

MIME_CHARSET_GB18030 24 gb18030 54936 A Unicode transformation
format which can represent
all Unicode code points and
supports both simplified and
traditional Chinese
characters. It is backwards
compatible with GB2312 and
supersedes that character
set.

MIME_CHARSET_BIG5 25 big5 950 A multi-byte character set
that supports both ASCII
characters and traditional
Chinese characters. It is
widely used in Taiwan, Hong
Kong and Macau. It is no
longer commonly used in
China, which has developed
GB18030 as a standard
encoding. Microsoft's
implementation of Big5 on
Windows does not support
all of the extensions and is
missing certain code points.

MIME_CHARSET_UTF7 9 utf-7 65000 A Unicode transformation
format that uses variable-
length character encoding
to represent Unicode text as
a stream of ASCII characters
that are safe to transport
between mail servers that
only support 7-bit printable
characters. It is primarily
used as an alternative to
UTF-8 when quoted-
printable or base64
encoding is not desired.

MIME_CHARSET_UTF8 10 utf-8 65001 A Unicode transformation

format that uses multi-byte
character sequences to
represent Unicode text. It is
backwards compatible with
the ASCII character set,
however because it uses 8-
bit text, it is recommended
that you use either quoted-
printable or base64
encoding to ensure
compatibility with mail
servers that do not support
8-bit characters.

MIME_CHARSET_UTF16 11 utf-16le N/A A 16-bit Unicode format
that represents each
character as a 16-bit value in
little endian byte order. This
character set is not widely
used in mail messages and it
is recommended that you
use UTF-8 instead. UTF-16
characters in big endian
byte order are not
supported.

Remarks
When composing a new message, it is recommended that you always use UTF-8 as the character
set encoding which ensures broad compatibility with most applications. The other character sets
are primarily used when parsing messages generated by other applications. Internally, all message
headers and text are processed as UTF-8. If you compile your application using a multi-byte
(ANSI) character set, header values and message text will always be returned to your application
as UTF-8 encoded Unicode, regardless of the original character set used in the message.

In addition to the character sets listed above, the class will recognize additional character sets
which correspond to specific Windows code pages, as well several variants. These additional
character sets are included for compatibility with other applications; they are not defined because
they should not be used when composing new messages.

It is important to note that while certain Windows character sets are similar to standard ISO
character sets, they are not identical. For example, although the Windows-1252 character set is
nearly identical to ISO 8859-1, they are not interchangeable. Some legacy applications make the
error of representing Windows ANSI character sets as 8-bit ISO character sets, which can result in
errors when converting them to Unicode. This is something to be aware of when encoding and
decoding text generated by older applications. Before the widespread adoption of UTF-8, it was
particularly common for legacy Windows mail clients to default to using Windows-1252 for text
and label it as using ISO 8859-1.

Although the CMailMessage class supports UTF-16, it is recommended you use UTF-8 instead.
Text which uses UTF-16 will always be base64 encoded, and some mail clients may not recognize
it as a valid character set. If the message does not specify if big endian or little endian byte order is
used, the class will default to little endian. When UTF-16 is used when composing a new message,

it will always use little endian byte order.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

See Also
CMailMessage, ComposeMessage, CreatePart, DecodeText, EncodeText

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Message Store Class Library

Store a collection of email messages on the local system.

Reference

Class Methods
Error Codes

Library Information

Class Name CMessageStore

File Name CSMSGV11.DLL

Version 11.0.2180.1635

LibID 8BD70337-A653-4E11-A378-65CE51792984

Import Library CSMSGV11.LIB

Dependencies None

Overview
The Message Store class library provides an interface for managing a local message storage file
that can be used to store and retrieve multiple messages. Functions are provided to open and
create storage files, add, remove and extract messages from storage, and search the stored
messages for specific header field values.

SocketTools also includes a class library for managing individual messages. For more information,
refer to the CMailMessage class.

Requirements
The SocketTools Library Edition libraries are compatible with any programming language which
supports calling functions exported from a standard dynamic link library (DLL). If you are using
Visual C++ 6.0 it is required that you have Service Pack 6 (SP6) installed. You should install all
updates for your development tools and have the current Windows SDK installed. The minimum
recommended version of Visual Studio is Visual Studio 2010.

This library is supported on Windows 7, Windows Server 2008 R2 and later versions of the desktop
and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1) installed as
a minimum requirement. It is recommended that you install the current service pack and all critical
updates available for your version of the operating system.

This product includes both 32-bit and 64-bit libraries. Native 64-bit CPU support requires the 64-
bit version of Windows 7 or later versions of the Windows operating system.

Distribution
When you distribute your application that uses this library, it is recommended that you install the
file in the same folder as your application executable. If you install the library into a shared location
on the system, it is important that you distribute the correct version for the target platform and it
should be registered as a shared DLL. This is a standard Windows dynamic link library, not an
ActiveX component, and does not require COM registration.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Message Store Class Methods

Class Description

CMessageStore Constructor which initializes the current instance of the class

~CMessageStore Destructor which releases resources allocated by the class

Method Description

AttachHandle Attach the specified message handle to this instance of the class

CloseFile Close the current message storage file

CopyFile Duplicate the contents of the current message store in a new file

DeleteMessage Remove the specified message from the current message store

DetachHandle Detach the handle for the current instance of this class

FindMessage Search for a message in the current message store

GetHandle Return the message handle used by this instance of the class

GetErrorString Return a description for the specified error code

GetLastError Return the last error code

GetMessage Retrieve a message from the current message store

GetMessageCount Return the number of messages in the current message store

IsInitialized Determine if the class has been successfully initialized

OpenFile Open the specified message storage file

PurgeFile Purge all deleted messages from the current message store

ReplaceMessage Replace the specified message in the current message store

SetLastError Set the last error code

ShowError Display a message box with a description of the specified error

StoreMessage Store the specified message in the current message store

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMessageStore::CMessageStore Method

CMessageStore();

The CMessageStore constructor initializes the class library and validates the license key at
runtime.

Remarks
If the constructor fails to validate the runtime license, subsequent methods in this class will fail. If
the product is installed with an evaluation license, then the application will only function on the
development system and cannot be redistributed.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib

See Also
~CMessageStore, IsInitialized

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMessageStore::~CMessageStore

~CMessageStore();

The CMessageStore destructor releases resources allocated by the current instance of the
CMessageStore object. It also uninitializes the library if there are no other concurrent uses of the
class.

Remarks
When a CMessageStore object goes out of scope, the destructor is automatically called to allow
the library to free any resources allocated on behalf of the process. All handles that were created
for the session are destroyed.

The destructor is not called explicitly by the application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib

See Also
CMessageStore

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMessageStore::AttachHandle Method

VOID AttachHandle(
 HMESSAGESTORE hStorage
);

The AttachHandle method attaches the specified message store to the current instance of the
class.

Parameters
hStorage

The handle to the message store that will be attached to the current instance of the class object.

Return Value
None.

Remarks
This method is used to attach a message store handle created outside of the class using the
SocketTools API. Once the handle is attached to the class, the other class member functions may
be used with that message store.

If a message store handle already has been created for the class, that handle will be released when
the new handle is attached to the class object. If you want to prevent the previous message store
from being closed, you must call the DetachHandle method. Failure to release the detached
handle may result in a resource leak in your application.

Note that the hStorage parameter is presumed to be a valid message store handle and no checks
are performed to ensure that the handle is valid. Specifying an invalid message store handle will
cause subsequent method calls to fail.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib

See Also
DetachHandle, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMessageStore::CloseFile Method

BOOL CloseFile(
 BOOL bPurgeMessages
);

The CloseFile method closes the current message store.

Parameters
bPurgeMessages

An integer value which specifies if deleted messages are purged from the message store. A
non-zero value specifies that all messages marked for deletion will be removed from the
message store. A value of zero specifies that deleted messages will not be removed from the
store.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The CloseFile method closes the storage file that was previously opened, releasing all of the
memory allocated for the message store and optionally purging all deleted messages. Note that
the current message store will be closed by the class destructor when the class object is deleted or
goes out of scope.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib

See Also
CopyFile, OpenFile, PurgeFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMessageStore::CopyFile Method

BOOL CopyFile(
 LPCTSTR lpszFileName
);

The CopyFile method duplicates the contents of the current message store in a new file.

Parameters
lpszFileName

A pointer to a string which specifies the name of the file that the messages will be copied to.
This parameter cannot be NULL and must specify a valid file path and name.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call MimeGetLastError.

Remarks
The CopyFile method is used to create a copy of the current message store in a new file. If the file
does not exist, it will be created. If the file already exists, then the contents will be overwritten with
the contents of the message store.

Messages that have been marked for deletion are not copied to the new message store file.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CloseFile, OpenFile, PurgeFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMessageStore::DeleteMessage Method

BOOL DeleteMessage(
 LONG nMessageId
);

The DeleteMessage method removes the specified message from the current message store.

Parameters
nMessageId

An integer value which identifies the message that is to be removed from the message store.
Message numbers begin at one and increment for each message in the store.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The DeleteMessage method marks the specified message for deletion from the storage file.
When the message store is closed or purged, the message is removed from the file. Once a
message has been marked for deletion, it may no longer be referenced by the application. For
example, you cannot access the contents of a message that has been deleted.

The message store must be opened with write access. This method will fail if you attempt to delete
a message from a storage file that has been opened for read-only access. If the application needs
to delete messages in the message store, it is recommended that the file be opened for exclusive
access using the MIME_STORAGE_LOCK option.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib

See Also
CloseFile, FindMessage, GetMessage, GetMessageCount, PurgeFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMessageStore::DetachHandle Method

HMESSAGESTORE DetachHandle();

The DetachHandle method detaches the client handle associated with the current instance of the
class.

Parameters
None.

Return Value
This method returns the message store handle associated with the current instance of the class
object. If there is no active client session, the value INVALID_MESSAGESTORE will be returned.

Remarks
This method is used to detach a message handle created by the class for use with the SocketTools
API. Once the message handle is detached from the class, no other class member functions may
be called. Note that the handle must be explicitly released at some later point by the process or a
resource leak will occur.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib

See Also
AttachHandle, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMessageStore::FindMessage Method

LONG FindMessage(
 LONG nMessageId,
 LPCTSTR lpszHeaderName,
 LPCTSTR lpszHeaderValue,
 DWORD dwOptions
);

The FindMessage method searches for a message in the current message store.

Parameters
nMessageId

An integer value which specifies the message number that should be used when starting the
search. The first message in the message store has a value of one.

lpszHeaderField

A pointer to the string which specifies the name of the header field that should be searched.
The header field name is not case sensitive. This parameter cannot be NULL.

lpszHeaderValue

A pointer to the string which specifies the header value that should be searched for. The search
options can be used to specify if the search is case-sensitive, and whether the search should
return partial matches to the string. This parameter cannot be NULL.

dwOptions

A value which specifies one or more options. This parameter is constructed by using a bitwise
operator with any of the following values:

Constant Description

MIME_SEARCH_DEFAULT Perform a complete match against the specified
header value. The comparison is not case-
sensitive.

MIME_SEARCH_CASE_SENSITIVE The header field value comparison will be case-
sensitive. Note that this does not affect header
field names. Matches for header names are
always case-insensitive.

MIME_SEARCH_PARTIAL_MATCH Perform a partial match against the specified
header value. It recommended that this option
be used when searching for matches to email
addresses.

MIME_SEARCH_DECODE_HEADERS Decode any encoded message headers before
comparing them to the specified value. This
option can increase the amount of time required
to search the message store and should only be
used when necessary.

Return Value
If the method succeeds, the return value is the number for the message which matches the search
criteria. If the method fails, the return value is MIME_ERROR. To get extended error information,

call GetLastError.

Remarks
The FindMessage method is used to search the message store for a message which matches a
specific header field value. For example, it can be used to find every message which is addressed
to a specific recipient or has a subject which matches a particular string value.

Example
CMessageStore mailStorage;
LPCTSTR lpszHeader = _T("From");
LPCTSTR lpszAddress = _T("jsmith@example.com");
LONG nMessageId = 1;

if (! mailStorage.OpenFile(lpszFileName))
{
 // Unable to open the storage file
 return;
}

// Begin searching for messages from the specified sender
while (nMessageId != MIME_ERROR)
{
 nMessageId = mailStorage.FindMessage(nMessageId,
 lpszHeader,
 lpszAddress,
 MIME_SEARCH_PARTIAL_MATCH);

 if (nMessageId != MIME_ERROR)
 {
 CMailMessage mailMessage;

 // Get a copy of the message that was found
 if (mailStorage.GetMessage(nMessageId, mailMessage))
 {
 // Store the message in a file
 TCHAR szFileName[MAX_PATH];
 BOOL bExported;

 // Create a filename based on the message number
 wsprintf(szFileName, _T("msg%05ld.tmp"), nMessageId);

 // Export the message to a file
 bExported = mailMessage.ExportMessage(szFileName);
 }

 // Increase the message ID to resume the search at the next message
 nMessageId++;
 }
}

mailStorage.CloseFile();

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib

Unicode: Implemented as Unicode and ANSI versions.

See Also
DeleteMessage, GetMessage, GetMessageCount

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMessageStore::GetErrorString Method

INT GetErrorString(
 DWORD dwErrorCode,
 LPTSTR lpszDescription,
 INT cbDescription
);

The GetErrorString method is used to return a description of a specific error code. Typically this is
used in conjunction with the GetLastError method for use with warning dialogs or as diagnostic
messages.

Parameters
dwErrorCode

The error code for which a description is returned.

lpszDescription

A pointer to the buffer that will contain a description of the specified error code. This buffer
should be at least 128 characters in length.

cbDescription

The maximum number of characters that may be copied into the description buffer.

Return Value
If the method succeeds, the return value is the length of the description string. If the method fails,
the return value is zero, meaning that no description exists for the specified error code. Typically
this indicates that the error code passed to the method is invalid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetLastError, SetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMessageStore::GetHandle Method

HMESSAGESTORE GetHandle();

The GetHandle method returns the message store handle associated with the current instance of
the class.

Parameters
None.

Return Value
This method returns the message store handle associated with the current instance of the class
object. If there is no current message, the value INVALID_MESSAGESTORE will be returned.

Remarks
This method is used to obtain the message store handle created by the class for use with the
SocketTools API.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib

See Also
AttachHandle, DetachHandle, IsInitialized

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMessageStore::GetLastError Method

DWORD GetLastError();

DWORD GetLastError(
 CString& strDescription
);

Parameters
strDescription

A string which will contain a description of the last error code value when the method returns. If
no error has been set, or the last error code has been cleared, this string will be empty.

Return Value
The return value is the last error code value for the current thread. Functions set this value by
calling the SetLastError method. The Return Value section of each reference page notes the
conditions under which the method sets the last error code.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. You should call
the GetLastError method immediately when a method's return value indicates that an error has
occurred. That is because some methods call SetLastError(0) when they succeed, clearing the
error code set by the most recently failed method.

Most methods will set the last error code value when they fail; a few methods set it when they
succeed. Function failure is typically indicated by a return value such as FALSE, NULL,
INVALID_MESSAGESTORE or MIME_ERROR. Those methods which call SetLastError when they
succeed are noted on the method reference page.

The description of the error code is the same string that is returned by the GetErrorString
method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib

See Also
GetErrorString, SetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMessageStore::GetMessage Method

BOOL GetMessage(
 LONG nMessageId,
 CMailMessage& mailMessage
);

HMESSAGE GetMessage(
 LONG nMessageId,
 DWORD dwOptions
);

The GetMessage method retrieves a message from the current message store.

Parameters
nMessageId

An integer value which specifies the message number that should be retrieved. The first
message in the message store has a value of one.

mailMessage

A CMailMessage object which will reference the message that is retrieved from the message
store.

dwOptions

A value which specifies one or more options. This parameter is constructed by using a bitwise
operator with any of the following values:

Constant Description

0 A shared message handle returned by the function.
The contents of this message will be overwritten
each time this function is called.

MIME_COPY_STORED_MESSAGE A message handle is allocated for a copy of the
message that is retrieved from the message store.

Return Value
If the first form of the method succeeds the return value is non-zero, otherwise the return value is
zero. If the second form of the message succeeds it returns a message handle, otherwise it returns
INVALID_MESSAGE. To get extended error information, call GetLastError.

Remarks
The second form of the GetMessage method returns a message handle for the specified message
in the message store. If no options are specified, a temporary message handle is returned that is
only valid until the next message is retrieved. If a multithreaded application changes the contents
of the temporary message, it will change for all other threads that have obtained a message
handle using this function.

If the application must have a unique copy of the message, the MIME_COPY_STORED_MESSAGE
option should be specified. Instead of returning a handle to a shared message, the message is
duplicated and a handle to that copy of the message is returned. If a reference to a
CMailMessage object is passed to the first form of this method, this option is used to create a
copy of the message.

Example
CMessageStore mailStorage;
LPCTSTR lpszHeader = _T("From");
LPCTSTR lpszAddress = _T("jsmith@example.com");
LONG nMessageId = 1;

if (! mailStorage.OpenFile(lpszFileName))
{
 // Unable to open the storage file
 return;
}

// Begin searching for messages from the specified sender
while (nMessageId != MIME_ERROR)
{
 nMessageId = mailStorage.FindMessage(nMessageId,
 lpszHeader,
 lpszAddress,
 MIME_SEARCH_PARTIAL_MATCH);

 if (nMessageId != MIME_ERROR)
 {
 CMailMessage mailMessage;

 // Get a copy of the message that was found
 if (mailStorage.GetMessage(nMessageId, mailMessage))
 {
 // Store the message in a file
 TCHAR szFileName[MAX_PATH];
 BOOL bExported;

 // Create a filename based on the message number
 wsprintf(szFileName, _T("msg%05ld.tmp"), nMessageId);

 // Export the message to a file
 bExported = mailMessage.ExportMessage(szFileName);
 }

 // Increase the message ID to resume the search at the next message
 nMessageId++;
 }
}

mailStorage.CloseFile();

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib

See Also
CMailMessage, DeleteMessage, FindMessage, GetMessageCount, StoreMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMessageStore::GetMessageCount Method

BOOL GetMessageCount(
 LPLONG lpnLastMessage
);

The GetMessageCount method returns the number of messages in the current message store.

Parameters
lpnLastMessage

A pointer to an integer which will contain the message number for the last message in the
storage file. If this information is not required, a NULL pointer may be specified.

Return Value
If the method succeeds, the return value is the number of messages in the message store. If the
method fails, the return value is MIME_ERROR. To get extended error information, call
GetLastError.

Remarks
The GetMessageCount method returns the number of messages in the message store. It is
important to note that does not count those messages which have been marked for deletion. This
means that the value returned by this function will decrease as messages are deleted.

The message number returned in the lpnLastMessage parameter will specify the total number of
messages in the message store, including deleted messages.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DeleteMessage, FindMessage, GetMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMessageStore::IsInitialized Method

BOOL IsInitialized();

The IsInitialized method returns whether or not the class object has been successfully initialized.

Return Value
This method returns a non-zero value if the class object has been successfully initialized. A return
value of zero indicates that the runtime license key could not be validated.

Remarks
When an instance of the class is created, the class constructor will attempt to initialize the
component with the runtime license key that was created when SocketTools was installed. If the
constructor is unable to validate the license key the initialization will fail.

If SocketTools was installed with an evaluation license, the application cannot be redistributed to
another system. The class object will fail to initialize if the application is executed on another
system, or if the evaluation period has expired. To redistribute your application, you must
purchase a development license which will include the runtime key that is needed to redistribute
your software to other systems. Refer to the Developer's Guide for more information.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib

See Also
CMessageStore

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMessageStore::OpenFile Method

BOOL OpenFile(
 LPCTSTR lpszFileName,
 DWORD dwOpenMode
);

The OpenFile method opens the specified message storage file.

Parameters
lpszFileName

A pointer to a string which specifies the name of the storage file.

dwOpenMode

A value which specifies one or more options. This parameter is constructed by using a bitwise
operator with any of the following values:

Constant Description

MIME_STORAGE_READ The message store will be opened for read access. The
contents of the message store can be accessed, but
cannot be modified by the process unless it has also
been opened for writing.

MIME_STORAGE_WRITE The message store will be opened for writing. This
mode also implies read access and must be specified if
the application needs to modify the contents of the
message store.

MIME_STORAGE_CREATE The message store will be created if the storage file
does not exist. If the file exists, it will be truncated. This
mode implies read and write access.

MIME_STORAGE_LOCK The message store will be opened so that it may only
be accessed and modified by the current process.

MIME_STORAGE_COMPRESS The contents of the message store are compressed.
This option is automatically enabled if a compressed
message store is opened for reading or writing.

MIME_STORAGE_MAILBOX The message store should use the UNIX mbox format
when reading and storing messages. This option is
provided for backwards compatibility and is not
recommended for general use.

Return Value
If the method succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The OpenFile method opens a message storage file which contains one or more messages. If the
storage file is opened for read access, the application can search the message store and extract
messages but it cannot add or delete messages. To add new messages or delete existing
messages from the store, it must be opened with write access.

The message store is designed to be a simple, effective way to store multiple messages together
in a single file. When the message store is opened, the contents are indexed in memory. Although
there is no specific limit to the number of messages that can be stored, there must be sufficient
memory available to build an index of each message and its headers. If the application must store
and manage a very large number of messages, it is recommended that you use a database rather
than a flat-file message store.

Message Store Format
Each message is prefixed by a control sequence of five ASCII 01 characters followed by an ASCII
10 and ASCII 13 character. The messages themselves are stored unmodified in their original text
format. The length of each message is calculated based on the location of the control sequence
that delimits each message, and explicit message lengths are not stored in the file. This means that
it is safe to manually change the message contents, as long as the message delimiters are
preserved.

If the message store is compressed, the contents of the storage file are expanded when the file is
opened and then re-compressed when the storage file is closed. Using the
MIME_STORAGE_COMPRESS option reduces the size of the storage file and prevents the contents
of the message store from being read using a text file editor. However, enabling compression will
increase the amount of memory allocated by the library and can increase the amount of time that
it takes to open and close the storage file.

The class also has a backwards compatibility mode where it will recognize storage files that use the
UNIX mbox format. While this format is supported for accessing existing files, it is not
recommended that you use it when creating new message stores or adding messages to an
existing store. There are a number of different variants on the mbox format that have been used
by different Mail Transfer Agents (MTAs) on the UNIX platform. For example, the mboxrd variant
looks identical to the mboxcl2 variant, and they are programmatically indistinguishable from one
another, but they are not compatible. For this reason, the use of the mbox format is strongly
discouraged.

Example
CMailMessage mailMessage;

// Compose a new message
mailMessage.ComposeMessage(lpszSender,
 lpszRecipient,
 NULL,
 lpszSubject,
 lpszMessage,
 NULL,
 MIME_CHARSET_DEFAULT,
 MIME_ENCODING_DEFAULT);

CMessageStore mailStorage;

// Open the message storage file
if (mailStorage.OpenFile(lpszFileName, MIME_STORAGE_WRITE))
{
 // Store a copy of the message in the message store
 nMessageId = mailStorage.StoreMessage(mailMessage);

 if (nMessageId == MIME_ERROR)
 {
 // We were unable to store the message

 }

 // Close the message store
 mailStorage.CloseFile();
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CloseFile, FindMessage, GetMessage, GetMessageCount, PurgeFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMessageStore::PurgeFile Method

BOOL PurgeFile();

The PurgeFile method purges all deleted messages from the specified message store.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The PurgeFile method purges all deleted messages from the message store. If the storage file has
been opened in read-only mode or there are no messages marked for deletion, this method will
take no action.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib

See Also
CopyFile, DeleteMessage, FindMessage, GetMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMessageStore::ReplaceMessage Method

BOOL ReplaceMessage(
 LONG nMessageId,
 CMailMessage& mailMessage
);

BOOL ReplaceMessage(
 LONG nMessageId,
 HMESSAGE hMessage
);

The MimeReplaceStoredMessage function replaces the contents of the specified message in a
message store.

Parameters
nMessageId

An integer value which specifies the message number that should be replaced.

mailMessage

A CMailMessage object which references the message that will be stored.

hMessage

Handle to the message that will be stored.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call MimeGetLastError.

Remarks
The ReplaceMessage method replaces the specified message with a new message. The message
number may be a message that has been previously marked for deletion. It is important to note
that the change will not be reflected in the physical storage file until it has been closed. If the
application needs to replace messages in the message store, it is recommended that the file be
opened for exclusive access using the MIME_STORAGE_LOCK option.

Example
CMailMessage mailMessage;

// Compose a new message
mailMessage.ComposeMessage(lpszSender,
 lpszRecipient,
 NULL,
 lpszSubject,
 lpszMessage);

CMessageStore mailStorage;

if (mailStorage.OpenFile(lpszFileName, MIME_STORAGE_WRITE))
{
 LONG nLastMessage = 0;

 // Get the last message number in the message store
 mailStorage.GetMessageCount(&nLastMessage);

 if (nLastMessage > 0)
 {
 // Replace the last message in the message store
 if (!mailStorage.ReplaceMessage(nLastMessage, mailMessage))
 {
 // We were unable to replace the message
 }
 }

 // Close the message store
 mailStorage.CloseFile();
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib

See Also
FindMessage, GetMessage, DeleteMessage, StoreMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMessageStore::SetLastError Method

VOID SetLastError(
 DWORD dwErrorCode
);

The SetLastError method sets the last error code for the current thread. This method is typically
used to clear the last error by specifying a value of zero as the parameter.

Parameters
dwErrorCode

Specifies the last error code for the current thread.

Return Value
None.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. Most methods will
set the last error code value when they fail; a few methods set it when they succeed. Function
failure is typically indicated by a return value such as FALSE, NULL, INVALID_MESSAGESTORE or
MIME_ERROR. Those methods which call SetLastError when they succeed are noted on the
method reference page.

Applications can retrieve the value saved by this method by using the GetLastError method. The
use of GetLastError is optional; an application can call the method to determine the specific
reason for a method failure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib

See Also
GetErrorString, GetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMessageStore::ShowError Method

INT ShowError(
 LPCTSTR lpszAppTitle,
 UINT uType,
 DWORD dwErrorCode
);

The ShowError method displays a message box which describes the specified error.

Parameters
lpszAppTitle

A pointer to a string which specifies the title of the message box that is displayed. If this
argument is NULL or omitted, then the default title of "Error" will be displayed.

uType

An unsigned integer which specifies the type of message box that will be displayed. This is the
same value that is used by the MessageBox method in the Windows API. If a value of zero is
specified, then a message box with a single OK button will be displayed. Refer to that method
for a complete list of options.

dwErrorCode

Specifies the error code that will be used when displaying the message box. If this argument is
zero, then the last error that occurred in the current thread will be displayed.

Return Value
If the method is successful, the return value will be the return value from the MessageBox
function. If the method fails, it will return a value of zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetErrorString, GetLastError, SetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CMessageStore::StoreMessage Method

LONG StoreMessage(
 CMailMessage& mailMessage
);

LONG StoreMessage(
 HMESSAGE hMessage
);

The StoreMessage method stores the specified message in the current message store.

Parameters
hStorage

Handle to the message store.

mailMessage

A CMailMessage object which references the message that will be stored.

hMessage

Handle to the message that will be stored.

Return Value
If the method succeeds, the return value is the message number for the message that was just
stored. If the method fails, the return value is MIME_ERROR. To get extended error information,
call GetLastError.

Remarks
The StoreMessage method will always append the specified message to the storage file. If you
want to replace a message in the message store, you should use the DeleteMessage method to
mark the original message for deletion and then use StoreMessage to write the updated
message to the message store.

Example
CMailMessage mailMessage;

// Compose a new message
mailMessage.ComposeMessage(lpszSender,
 lpszRecipient,
 NULL,
 lpszSubject,
 lpszMessage,
 NULL,
 MIME_CHARSET_DEFAULT,
 MIME_ENCODING_DEFAULT);

CMessageStore mailStorage;

// Open the message storage file
if (mailStorage.OpenFile(lpszFileName, MIME_STORAGE_WRITE))
{
 // Store a copy of the message in the message store
 nMessageId = mailStorage.StoreMessage(mailMessage);

 if (nMessageId == MIME_ERROR)

 {
 // We were unable to store the message
 }

 // Close the message store
 mailStorage.CloseFile();
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib

See Also
DeleteMessage, FindMessage, GetMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Time Protocol Class Library

Query a time server for the current time and synchronize the local system clock with that value.

Reference

Class Methods
Data Structures
Error Codes

Library Information

Class Name CNetworkTime

File Name CSTIMV11.DLL

Version 11.0.2180.1635

LibID B8642781-FD81-4457-BE92-60730AB11246

Import Library CSTIMV11.LIB

Dependencies None

Standards RFC 868

Overview
The Time Protocol class provides an interface for synchronizing the local system's time and date
with that of a server. The time values returned are in in Coordinated Universal and be adjusted for
the local host's timezone. The library enables developers to query a server for the current time
and then update the system clock if desired.

Requirements
The SocketTools Library Edition libraries are compatible with any programming language which
supports calling functions exported from a standard dynamic link library (DLL). If you are using
Visual C++ 6.0 it is required that you have Service Pack 6 (SP6) installed. You should install all
updates for your development tools and have the current Windows SDK installed. The minimum
recommended version of Visual Studio is Visual Studio 2010.

This library is supported on Windows 7, Windows Server 2008 R2 and later versions of the desktop
and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1) installed as
a minimum requirement. It is recommended that you install the current service pack and all critical
updates available for your version of the operating system.

This product includes both 32-bit and 64-bit libraries. Native 64-bit CPU support requires the 64-
bit version of Windows 7 or later versions of the Windows operating system.

Distribution
When you distribute your application that uses this library, it is recommended that you install the
file in the same folder as your application executable. If you install the library into a shared location
on the system, it is important that you distribute the correct version for the target platform and it
should be registered as a shared DLL. This is a standard Windows dynamic link library, not an
ActiveX component, and does not require COM registration.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Time Protocol Class Methods

Class Description

CNetworkTime Constructor which initializes the current instance of the class

~CNetworkTime Destructor which releases resources allocated by the class

Method Description

ConvertTime Convert between network and system time values

DisableTrace Disable logging of network function calls to the trace log

EnableTrace Enable logging of network function calls to a file

GetErrorString Return a description for the specified error code

GetLastError Return the last error code

GetTime Return the current network time from the server

IsInitialized Determine if the class has been successfully initialized

SetLastError Set the last error code

SetTime Set the local system time with the network time

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNetworkTime::CNetworkTime Method

CNetworkTime();

The CNetworkTime constructor initializes the class library and validates the license key at runtime.

Remarks
If the constructor fails to validate the runtime license, subsequent methods in this class will fail. If
the product is installed with an evaluation license, then the application will only function on the
development system and cannot be redistributed.

The constructor calls the TimeInitialize function to initialize the library, which dynamically loads
other system libraries and allocates thread local storage. If you are using this class within another
DLL, it is important that you do not create or destroy an instance of the class from within the
DllMain function because it can result in deadlocks or access violation errors. You should not
declare static or global instances of this class within another DLL if it is linked with the C runtime
library (CRT) because it will automatically call the constructors and destructors for static and global
C++ objects and has the same restrictions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstimv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
~CNetworkTime, IsInitialized

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNetworkTime::~CNetworkTime

~CNetworkTime();

The CNetworkTime destructor releases resources allocated by the current instance of the
CNetworkTime object. It also uninitializes the library if there are no other concurrent uses of the
class.

Remarks
When a CNetworkTime object goes out of scope, the destructor is automatically called to allow
the library to free any resources allocated on behalf of the process. Any pending blocking or
asynchronous calls in this process are canceled without posting any notification messages, and all
handles that were created for the client session are destroyed.

The destructor is not called explicitly by the application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstimv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CNetworkTime

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNetworkTime::ConvertTime Method

BOOL ConvertTime(
 DWORD dwNetworkTime,
 LPLONG lpnUnixTime
);

BOOL ConvertTime(
 DWORD dwNetworkTime,
 CTime& localTime
);

BOOL ConvertTime(
 DWORD dwNetworkTime,
 LPSYSTEMTIME lpSystemTime,
 BOOL bLocalTime
);

BOOL ConvertTime(
 LPSYSTEMTIME lpSystemTime,
 LPDWORD lpdwNetworkTime
);

The ConvertTime method converts between a 32-bit network time value and a SYSTEMTIME
structure.

Parameters
dwNetworkTime

The network time to be converted.

lpnUnixTime

A pointer to a long integer which will contain the time in UNIX format. The value is the number
of seconds since 1 January 1970 UTC and is commonly used with the standard C library time
functions.

localTime

A CTime object which will contain the local time when the method returns.

lpSystemTime

A pointer to a SYSTEMTIME structure which will be modified for the specified network time.

bLocalTime

A boolean flag that is used to specify if the network time should be adjusted for the local
timezone.

Return Value
If the network time could be converted, the method returns a non-zero value. If the network time
cannot be converted, or the pointer to the SYSTEMTIME structure is invalid, the method will return
zero.

Remarks
The network time value is a 32-bit number, represented as the number of seconds since midnight,
1 January 1900 UTC. It can represent a date and time up to the year 2036.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)

Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstimv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetTime, SetTime

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNetworkTime::DisableTrace Method

BOOL DisableTrace();

The DisableTrace method disables the logging of socket function calls to the trace log.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, a value of zero is
returned.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstimv11.lib

See Also
EnableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNetworkTime::EnableTrace Method

BOOL EnableTrace(
 LPCTSTR lpszTraceFile,
 DWORD dwTraceFlags
);

The EnableTrace method enables the logging of socket function calls to a file.

Parameters
lpszTraceFile

A pointer to a string which specifies the name of the trace log file. If this parameter is NULL or
an empty string, the default file name cstrace.log is used. The file is stored in the directory
specified by the TEMP environment variable, if it is defined; otherwise, the current working
directory is used.

dwTraceFlags

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

TRACE_INFO All function calls are written to the trace file. This is the default
value.

TRACE_ERROR Only those function calls which fail are recorded in the trace file.

TRACE_WARNING Only those function calls which fail or return values which indicate
a warning are recorded in the trace file.

TRACE_HEXDUMP All functions calls are written to the trace file, plus all the data that
is sent or received is displayed, in both ASCII and hexadecimal
format.

TRACE_PROCESS All function calls in the current process are logged, rather than
only those functions in the current thread. This option is useful for
multithreaded applications that are using worker threads.

Return Value
If the method succeeds, the return value is non-zero. A return value of zero indicates an error.
Failure typically indicates that the tracing library cstrcv11.dll cannot be loaded on the local
system.

Remarks
When trace logging is enabled, the file is opened, appended to and closed for each socket
function call. This makes it possible for an application to append its own logging information,
however care should be taken to ensure that the file is closed before the next network operation is
performed. To limit the size of the log files, enable and disable logging only around those sections
of code that you wish to trace.

Note that the TRACE_HEXDUMP trace level generates very large log files since it includes all of the
data exchanged between your application and the server.

Trace method logging is managed on a per-thread basis, not for each client handle. This means
that all SocketTools libraries and components share the same settings in the current thread. If you

are using multiple SocketTools libraries or components in your application, you only need to
enable logging once.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstimv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DisableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNetworkTime::GetErrorString Method

INT GetErrorString(
 DWORD dwErrorCode,
 LPTSTR lpszDescription,
 INT cbDescription
);

INT GetErrorString(
 DWORD dwErrorCode,
 CString& strDescription
);

The GetErrorString method is used to return a description of a specific error code. Typically this is
used in conjunction with the GetLastError method for use with warning dialogs or as diagnostic
messages.

Parameters
dwErrorCode

The error code for which a description is returned.

lpszDescription

A pointer to the buffer that will contain a description of the specified error code. This buffer
should be at least 128 characters in length. An alternate form of the method accepts a CString
variable which will contain the error description.

cbDescription

The maximum number of characters that may be copied into the description buffer.

Return Value
If the method succeeds, the return value is the length of the description string. If the method fails,
the return value is zero, meaning that no description exists for the specified error code. Typically
this indicates that the error code passed to the method is invalid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstimv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetLastError, SetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNetworkTime::GetLastError Method

DWORD GetLastError();

DWORD GetLastError(
 CString& strDescription
);

Parameters
strDescription

A string which will contain a description of the last error code value when the method returns. If
no error has been set, or the last error code has been cleared, this string will be empty.

Return Value
The return value is the last error code value for the current thread. Functions set this value by
calling the SetLastError method. The Return Value section of each reference page notes the
conditions under which the method sets the last error code.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. You should call
the GetLastError method immediately when a method's return value indicates that an error has
occurred. That is because some methods call SetLastError(0) when they succeed, clearing the
error code set by the most recently failed method.

Most methods will set the last error code value when they fail; a few methods set it when they
succeed. Function failure is typically indicated by a return value such as FALSE, NULL,
INVALID_CLIENT or TIME_ERROR. Those methods which call SetLastError when they succeed are
noted on the method reference page.

The description of the error code is the same string that is returned by the GetErrorString
method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstimv11.lib

See Also
GetErrorString, SetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNetworkTime::GetTime Method

BOOL GetTime(
 LPCTSTR lpszRemoteHost,
 UINT nRemotePort,
 LPDWORD lpdwNetworkTime
 UINT nTimeout
);

BOOL GetTime(
 LPCTSTR lpszRemoteHost,
 UINT nRemotePort,
 LPSYSTEMTIME lpSystemTime
 UINT nTimeout
);

BOOL GetTime(
 LPCTSTR lpszRemoteHost,
 UINT nRemotePort,
 CTime& localTime
 UINT nTimeout
);

The GetTime method returns the network time from the specified host.

Parameters
lpszRemoteHost

A pointer to the name of the server. The host must be running a time server that complies with
the specifications outlined in RFC 868.

nRemotePort

The port the time server is running on. A value of zero indicates that the default port number
for the service should be used. By default, port 37 is used to connect to the time server.

lpdwNetworkTime

A pointer to an unsigned 32-bit integer which will contain the current network time when the
method returns. Note that this value is not the same as UNIX time and cannot be used with the
standard C time functions.

lpSystemTime

A pointer to a SYSTEMTIME structure that will contain the system time when the method
returns. This structure can be used with many of the standard Windows API time-related
functions.

localTime

A CTime object that will contain the local time when the method returns.

nTimeout

The number of seconds that the method will wait for a response from the server.

Return Value
If the method succeeds, it returns the number of seconds since midnight, 1 January 1900 UTC. If
the method was unable to obtain the time from the specified host, it returns zero.

Remarks

The network time is a 32-bit number, represented as the number of seconds since midnight, 1
January 1900 UTC. It can represent a date and time up to the year 2036. It is important to note
that the network time value is not the same as the UNIX time value that is used the standard C
library time functions. To convert between network time and other time values, use the
ConvertTime method.

In the United States, the National Institute of Standards and Technology (NIST) hosts a number of
public servers which can be used to obtain the current time. The following table lists the current
host names and addresses:

Server Name IP Address Location

time-a.nist.gov 129.6.15.28 Gaithersburg, Maryland

time-b.nist.gov 129.6.15.29 Gaithersburg, Maryland

time-nw.nist.gov 131.107.13.100 Redmond, Washington

time-a.timefreq.bldrdoc.gov 132.163.4.101 Boulder, Colorado

time-b.timefreq.bldrdoc.gov 132.163.4.102 Boulder, Colorado

time-c.timefreq.bldrdoc.gov 132.163.4.103 Boulder, Colorado

Time servers are also commonly maintained by Internet service providers and universities. If you
are unable to obtain the time from a server, contact the system administrator to determine if they
have the standard time service available on port 37.

Example
CNetworkTime netTime;
DWORD dwNetworkTime;

// Get the current time from a NIST time server
if (netTime.GetTime(_T("time-nw.nist.gov"), &dwNetworkTime))
{
 // Convert the network time value to a CTime object
 CTime localTime;
 netTime.ConvertTime(dwNetworkTime, localTime);

 // Format the time string and create a message to display
 // to the user, asking if they want to update the time
 CString strTime;
 strTime = localTime.Format(_T("%B %d, %Y %H:%M:%S"));

 CString strMessage;
 strMessage.Format(_T("Update system time to %s?"), (LPCTSTR)strTime);

 INT nResult;
 nResult = AfxMessageBox(strMessage, MB_YESNO|MB_ICONQUESTION);

 if (nResult == IDYES)
 {
 // Update the local system time with the network time
 if (netTime.SetTime(dwNetworkTime) == FALSE)
 netTime.ShowError();
 }
}
else
{

 netTime.ShowError();
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstimv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ConvertTime, SetTime

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNetworkTime::IsInitialized Method

BOOL IsInitialized();

The IsInitialized method returns whether or not the class object has been successfully initialized.

Parameters
None.

Return Value
This method returns a non-zero value if the class object has been successfully initialized. A return
value of zero indicates that the runtime license key could not be validated or the networking
library could not be loaded by the current process.

Remarks
When an instance of the class is created, the class constructor will attempt to initialize the
component with the runtime license key that was created when SocketTools was installed. If the
constructor is unable to validate the license key or load the networking libraries, this initialization
will fail.

If SocketTools was installed with an evaluation license, the application cannot be redistributed to
another system. The class object will fail to initialize if the application is executed on another
system, or if the evaluation period has expired. To redistribute your application, you must
purchase a development license which will include the runtime key that is needed to redistribute
your software to other systems. Refer to the Developer's Guide for more information.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstimv11.lib

See Also
CNetworkTime

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNetworkTime::SetLastError Method

VOID SetLastError(
 DWORD dwErrorCode
);

The SetLastError method sets the error code for the current thread. This method is typically used
to clear the last error by passing a value of zero as the parameter.

Parameters
dwErrorCode

Specifies the error code for the current thread.

Return Value
None.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. Most methods will
set the last error code value when they fail; a few methods set it when they succeed. Function
failure is typically indicated by a return value such as FALSE, NULL, INVALID_CLIENT or
TIME_ERROR. Those methods which call SetLastError when they succeed are noted on the
method reference page.

Applications can retrieve the value saved by this method by using the GetLastError method. The
use of GetLastError is optional; an application can call the method to determine the specific
reason for a method failure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstimv11.lib

See Also
GetErrorString, GetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNetworkTime::SetTime Method

BOOL SetTime(
 DWORD dwNetworkTime
);

BOOL SetTime(
 LPSYSTEMTIME lpSystemTime
);

The SetTime method sets the local system clock to the specified date and time.

Parameters
dwNetworkTime

The date and time the system clock should be set to, represented as the number of seconds
since midnight, 1 January 1900.

lpSystemTime

A pointer to a SYSTEMTIME structure that specifies the date and time that the local clock should
be set to.

Return Value
If the method is able to update the local time, it returns a non-zero value. If the specified time is
invalid, or the user does not have the access rights to change the system clock, the method
returns zero.

Remarks
The network time value is an unsigned 32-bit integer which can represent a date and time up to
the year 2036. It is important to note that this is not the same as the UNIX time value which is used
by the standard C library.

You must have administrator privileges in order to set the system clock.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstimv11.lib

See Also
ConvertTime, GetTime

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNetworkTime::ShowError Method

INT ShowError(
 LPCTSTR lpszAppTitle,
 UINT uType,
 DWORD dwErrorCode
);

The ShowError method displays a message box which describes the specified error.

Parameters
lpszAppTitle

A pointer to a string which specifies the title of the message box that is displayed. If this
argument is NULL or omitted, then the default title of "Error" will be displayed.

uType

An unsigned integer which specifies the type of message box that will be displayed. This is the
same value that is used by the MessageBox method in the Windows API. If a value of zero is
specified, then a message box with a single OK button will be displayed. Refer to that method
for a complete list of options.

dwErrorCode

Specifies the error code that will be used when displaying the message box. If this argument is
zero, then the last error that occurred in the current thread will be displayed.

Return Value
If the method is successful, the return value will be the return value from the MessageBox
function. If the method fails, it will return a value of zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstimv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetErrorString, GetLastError, SetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Time Protocol Data Structures

 SYSTEMTIME

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SYSTEMTIME Structure

The SYSTEMTIME structure represents a date and time using individual members for the month,
day, year, weekday, hour, minute, second, and millisecond.

typedef struct _SYSTEMTIME
{
 WORD wYear;
 WORD wMonth;
 WORD wDayOfWeek;
 WORD wDay;
 WORD wHour;
 WORD wMinute;
 WORD wSecond;
 WORD wMilliseconds;
} SYSTEMTIME, *LPSYSTEMTIME;

Members
wYear

Specifies the current year. The year value must be greater than 1601.

wMonth

Specifies the current month. January is 1, February is 2 and so on.

wDayOfWeek

Specifies the current day of the week. Sunday is 0, Monday is 1 and so on.

wDay

Specifies the current day of the month

wHour

Specifies the current hour.

wMinute

Specifies the current minute

wSecond

Specifies the current second.

wMilliseconds

Specifies the current millisecond.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include windows.h.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Network News Transfer Protocol Class Library

Download and submit articles to a news server.

Reference

Class Methods
Data Structures
Error Codes

Library Information

Class Name CNntpClient

File Name CSNWSV11.DLL

Version 11.0.2180.1635

LibID C3BE060A-451B-4830-A754-CC7B4288C413

Import Library CSNWSV11.LIB

Dependencies None

Standards RFC 977, RFC 2980

Overview
The Network News Transfer Protocol (NNTP) is used with servers that provide news services. This
is similar in functionality to bulletin boards or message boards, where topics are organized
hierarchically into groups, called newsgroups. Users can browse and search for messages, called
news articles, which have been posted by other users. On many servers, they can also post their
own articles which can be read by others. The largest collection of public newsgroups available is
called USENET, a world-wide distributed discussion system. In addition, there are a large number
of smaller news servers. For example, Catalyst Development operates a news server which
methods as a forum for technical questions and announcements.

The SocketTools library provides a comprehensive interface for accessing newsgroups, retrieving
articles and posting new articles. In combination with the Mail Message library to process the news
articles, SocketTools can be used to integrate newsgroup access with an existing email application,
or you can implement your own full-featured newsgroup client.

This library supports secure connections using the standard SSL and TLS protocols.

Requirements
The SocketTools Library Edition libraries are compatible with any programming language which
supports calling functions exported from a standard dynamic link library (DLL). If you are using
Visual C++ 6.0 it is required that you have Service Pack 6 (SP6) installed. You should install all
updates for your development tools and have the current Windows SDK installed. The minimum
recommended version of Visual Studio is Visual Studio 2010.

This library is supported on Windows 7, Windows Server 2008 R2 and later versions of the desktop
and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1) installed as
a minimum requirement. It is recommended that you install the current service pack and all critical
updates available for your version of the operating system.

This product includes both 32-bit and 64-bit libraries. Native 64-bit CPU support requires the 64-

bit version of Windows 7 or later versions of the Windows operating system.

Distribution
When you distribute your application that uses this library, it is recommended that you install the
file in the same folder as your application executable. If you install the library into a shared location
on the system, it is important that you distribute the correct version for the target platform and it
should be registered as a shared DLL. This is a standard Windows dynamic link library, not an
ActiveX component, and does not require COM registration.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Network News Transfer Protocol Class Methods

Class Description

CNntpClient Constructor which initializes the current instance of the class

~CNntpClient Destructor which releases resources allocated by the class

Method Description

AttachHandle Attach the specified client handle to this instance of the class

AttachThread Attach the specified client handle to another thread

Authenticate Authenticate the specified user on the news server

Cancel Cancel the current blocking operation

CloseArticle Close the article being posted to the current newsgroup

Command Send a command to the server

Connect Connect to the specified server

CreateArticle Create a new article in the current newsgroup

CreateSecurityCredentials Create a new security credentials structure

DeleteSecurityCredentials Delete a previously created security credentials structure

DetachHandle Detach the handle for the current instance of this class

DisableEvents Disable asynchronous event notification

DisableTrace Disable logging of network function calls to the trace log

Disconnect Disconnect from the current server

EnableEvents Enable asynchronous event notification

EnableTrace Enable logging of network function calls to a file

FreezeEvents Suspend asynchronous event processing

GetArticle Copy the specified article to a local buffer

GetArticleHeaders Return the contents of the specified article header

GetArticleMessageId Return the message identifier for the specified article

GetArticleRange Return the first and last article number for the current group

GetCurrentArticle Return the current article number for the selected group

GetCurrentDate Return the current date and time

GetErrorString Return a description for the specified error code

GetFirstArticle Return the first available article in the currently selected newsgroup

GetFirstGroup Return the first available newsgroup from the server

GetHandle Return the client handle used by this instance of the class

GetGroupName Return the name of the currently selected newsgroup

GetGroupTitle Return a description of the currently selected newsgroup

GetLastError Return the last error code

GetMessageIdArticle Return the article number for the specified message identifier

GetNextArticle Return the next available article from the currently selected newsgroup

GetNextGroup Return the next available newsgroup from the server

GetResultCode Return the result code from the previous command

GetResultString Return the result string from the previous command

GetSecurityInformation Return security information about the current client connection

GetStatus Return the current client status

GetTimeout Return the number of seconds until an operation times out

GetTransferStatus Return data transfer statistics

IsBlocking Determine if the client is blocked, waiting for information

IsConnected Determine if the client is connected to the server

IsInitialized Determine if the class has been successfully initialized

IsReadable Determine if data can be read from the server

IsWritable Determine if data can be written to the server

ListArticles Return a list of articles in the currently selected newsgroup

ListGroups Return a list of newsgroups maintained by the server

NntpEventProc Callback method that processes events generated by the client

OpenArticle Open the specified article in the currently selected newsgroup

OpenNextArticle Open the next available article

OpenPreviousArticle Open the previous article

PostArticle Post a new article to the news server

Read Read data returned by the news server

RegisterEvent Register an event callback function

Reset Reset the client

SelectGroup Select the specified newsgroup to retrieve articles from

SetLastError Set the last error code

SetTimeout Set the number of seconds until an operation times out

ShowError Display a message box with a description of the specified error

StoreArticle Store the specified article to a file on the local system

Write Write data to the news server

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/nntp/class/nntpeventproc.html

 CNntpClient::CNntpClient Method

CNntpClient();

The CNntpClient constructor initializes the class library and validates the license key at runtime.

Remarks
If the constructor fails to validate the runtime license, subsequent methods in this class will fail. If
the product is installed with an evaluation license, then the application will only function on the
development system and cannot be redistributed.

The constructor calls the NntpInitialize function to initialize the library, which dynamically loads
other system libraries and allocates thread local storage. If you are using this class within another
DLL, it is important that you do not create or destroy an instance of the class from within the
DllMain function because it can result in deadlocks or access violation errors. You should not
declare static or global instances of this class within another DLL if it is linked with the C runtime
library (CRT) because it will automatically call the constructors and destructors for static and global
C++ objects and has the same restrictions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
~CNntpClient, IsInitialized

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::~CNntpClient

~CNntpClient();

The CNntpClient destructor releases resources allocated by the current instance of the
CNntpClient object. It also uninitializes the library if there are no other concurrent uses of the
class.

Remarks
When a CNntpClient object goes out of scope, the destructor is automatically called to allow the
library to free any resources allocated on behalf of the process. Any pending blocking or
asynchronous calls in this process are canceled without posting any notification messages, and all
handles that were created for the client session are destroyed.

The destructor is not called explicitly by the application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CNntpClient

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::AttachHandle Method

VOID AttachHandle(
 HCLIENT hClient
);

The AttachHandle method attaches the specified client handle to the current instance of the
class.

Parameters
hClient

The handle to the client session that will be attached to the current instance of the class object.

Return Value
None.

Remarks
This method is used to attach a client handle created outside of the class using the SocketTools
API. Once the client handle is attached to the class, the other class member functions may be used
with that client session.

If a client handle already has been created for the class, that handle will be released when the new
handle is attached to the class object. If you want to prevent the previous client session from being
terminated, you must call the DetachHandle method. Failure to release the detached handle may
result in a resource leak in your application.

Note that the hClient parameter is presumed to be a valid client handle and no checks are
performed to ensure that the handle is valid. Specifying an invalid client handle will cause
subsequent method calls to fail.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
AttachThread, DetachHandle, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::AttachThread Method

DWORD AttachThread(
 DWORD dwThreadId
);

The AttachThread method attaches the specified client handle to another thread.

Parameters
dwThreadId

The ID of the thread that will become the new owner of the handle. A value of zero specifies
that the current thread should become the owner of the client handle.

Return Value
If the method succeeds, the return value is the thread ID of the previous owner. If the method fails,
the return value is NNTP_ERROR. To get extended error information, call GetLastError.

Remarks
When a client handle is created, it is associated with the current thread that created it. Normally, if
another thread attempts to perform an operation using that handle, an error is returned since it
does not own the handle. This is used to ensure that other threads cannot interfere with an
operation being performed by the owner thread. In some cases, it may be desirable for one
thread in a client application to create the client handle, and then pass that handle to another
worker thread. The AttachThread method can be used to change the ownership of the handle to
the new worker thread. By preserving the return value from the method, the original owner of the
handle can be restored before the worker thread terminates.

This method should be called by the new thread immediately after it has been created, and if the
new thread does not release the handle itself, the ownership of the handle should be restored to
the parent thread before it terminates. Under no circumstances should AttachThread be used to
forcibly release a handle allocated by another thread while a blocking operation is in progress. To
cancel an operation, use the Cancel method and then release the handle after the blocking
method exits and control is returned to the current thread.

Note that the dwThreadId parameter is presumed to be a valid thread ID and no checks are
performed to ensure that the thread actually exists. Specifying an invalid thread ID will orphan the
client handle used by the class until the destructor is called.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
AttachHandle, Cancel, Connect, DetachHandle, Disconnect, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::Authenticate Method

INT Authenticate(
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword
);

The Authenticate method is used to authenticate access to the news server. Not all news servers
require authentication by the client.

Parameters
lpszUserName

Pointer to a string which specifies the user name required for authentication on the news server.

lpszPassword

Pointer to a string which specifies the password required for authentication on the news server.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is NNTP_ERROR. To get extended error information, call GetLastError.

Remarks
This method should only be called if the server requires authentication. Two authentication
methods, "original" and "simple" authentication, are recognized by the library.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Connect, ListArticles, ListGroups

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::Cancel Method

INT Cancel();

The Cancel method cancels any outstanding blocking operation in the client, causing the blocking
method to fail. The application may then retry the operation or terminate the client session.

Parameters
None.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
NNTP_ERROR. To get extended error information, call GetLastError.

Remarks
When the Cancel method is called, the blocking method will not immediately fail. An internal flag
is set which causes the blocking operation to exit with an error. This means that the application
cannot cancel an operation and immediately perform some other operation. Instead it must allow
the calling stack to unwind, returning back to the blocking operation before making any further
function calls.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
IsBlocking

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::CloseArticle Method

INT CloseArticle();

The CloseArticle method closes the current article that has been opened or created.

Parameters
None.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is NNTP_ERROR. To get extended error information, call GetLastError.

Remarks
If an article is being created, this method actually submits the article to the server. Note that the
client application is responsible for generating the message headers as well as the body of the
message. News articles conform to the same general characteristics of an email message.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
CreateArticle, OpenArticle, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::Command Method

INT Command(
 LPCTSTR lpszCommand,
 LPCTSTR lpszParameter,
 BOOL bMultiLine
);

The Command method sends a command to the server, and returns the result code back to the
caller. This method is typically used for site-specific commands not directly supported by the class.

Parameters
lpszCommand

The command which will be executed by the server.

lpszParameter

An optional command parameter. If the command requires more than one parameter, then
they should be combined into a single string, with a space separating each parameter. If the
command does not accept any parameters, this value may be NULL.

bMultiLine

An optional boolean argument used to specify if multiple lines of data will be returned by the
server as the result of the command. Unlike a single line response, which consists of a result
code and result string, a multi-line response consists of one or more lines of text, terminated by
a special end-of-data marker. If this argument is omitted, bMultiLine is FALSE.

Return Value
If the method succeeds, the return value is the result code returned by the server. If the method
fails, the return value is NNTP_ERROR. To get extended error information, call GetLastError.

Remarks
A list of valid commands can be found in the technical specification for the protocol. Many servers
will list supported commands when the HELP command is used.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetResultCode, GetResultString

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::Connect Method

BOOL Connect(
 LPCTSTR lpszRemoteHost,
 UINT nRemotePort,
 UINT nTimeout,
 DWORD dwOptions
);

The Connect method establishes a connection with the specified server.

Parameters
lpszRemoteHost

A pointer to the name of the server to connect to; this may be a fully-qualified domain name or
an IP address.

nRemotePort

The port number the server is listening on; a value of zero specifies that the default port
number should be used. For standard connections, the default port number is NN. For secure
connections, the default port number is NN.

nTimeout

The number of seconds that the client will wait for a response from the server before failing the
current operation.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

NNTP_OPTION_NONE No connection options specified. A standard
connection to the server will be established using
the specified host name and port number.

NNTP_OPTION_TUNNEL This option specifies that a tunneled TCP
connection and/or port-forwarding is being used
to establish the connection to the server. This
changes the behavior of the client with regards
to internal checks of the destination IP address
and remote port number, default capability
selection and how the connection is established.

NNTP_OPTION_TRUSTEDSITE This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option
only affects connections using either the SSL or
TLS protocols.

NNTP_OPTION_SECURE This option specifies the client should attempt to
establish a secure connection with the server.
Note that the server must support secure
connections using either the SSL or TLS protocol.

NNTP_OPTION_SECURE_FALLBACK This option specifies the client should permit the

use of less secure cipher suites for compatibility
with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

NNTP_OPTION_FREETHREAD This option specifies that this instance of the class
may be used by any thread, and is not limited to
the thread which created it. The application is
responsible for ensuring that access to the class
instance is synchronized across multiple threads.

Return Value
If the method succeeds, the return value is a non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
This method will block the current thread until a connection has been established or the timeout
period has elapsed. To prevent it from blocking the main user interface thread, the application
should create a background worker thread and establish a connection by calling the Connect
method in that thread. If the application requires multiple simultaneous connections, it is
recommended you create a worker thread for each connection.

The dwOptions argument can be used to specify the threading model that is used by the library
when a connection is established. By default, the class instance is initially attached to the thread
that created it. From that point on, until the it is released, only the owner may call functions using
that instance of the class. The ownership of the class instance may be transferred from one thread
to another using the AttachThread method.

Specifying the NNTP_OPTION_FREETHREAD option enables any thread to call any method in that
instance of the class, regardless of which thread created it. It is important to note that this option
disables certain internal safety checks which are performed by the library and may result in
unexpected behavior unless access to the class instance is synchronized. If one thread calls a
function in the library, it must ensure that no other thread will call another function at the same
time using the same instance.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CreateSecurityCredentials, Disconnect, GetSecurityInformation

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::CreateArticle Method

INT CreateArticle();

The CreateArticle method creates a new article in the current newsgroup.

Parameters
None.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is NNTP_ERROR. To get extended error information, call GetLastError.

Remarks
This method sends the POST command to the news server. Not all servers permit clients to post
articles. The client application is responsible for generating the message headers as well as the
body of the message. News articles conform to the same general characteristics of an email
message.

The CloseArticle method must be called once the contents of the article has been written to the
server.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
CloseArticle, GetCurrentDate, ListArticles, OpenArticle, OpenNextArticle, OpenPreviousArticle,
Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::CreateSecurityCredentials Method

BOOL CreateSecurityCredentials(
 DWORD dwProtocol,
 DWORD dwOptions,
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword,
 LPCTSTR lpszCertStore,
 LPCTSTR lpszCertName
);

BOOL CreateSecurityCredentials(
 LPCTSTR lpszCertStore,
 LPCTSTR lpszCertName
);

BOOL CreateSecurityCredentials(
 LPCTSTR lpszCertName
);

The CreateSecurityCredentials method establishes the security credentials for the client session.

Parameters
dwProtocol

A bitmask of supported security protocols. This parameter is constructed by using a bitwise
operator with any of the following values:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The
correct protocol is automatically selected, based on
what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.

This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is
supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

dwOptions

A value which specifies one or options. This member is constructed by using a bitwise operator
with any of the following values:

Constant Description

CREDENTIAL_STORE_CURRENT_USER The library will attempt to open a store for
the current user using the certificate store
name provided in this structure. If no options
are specified, then this is the default
behavior.

CREDENTIAL_STORE_LOCAL_MACHINE The library will attempt to open a local
machine store using the certificate store
name provided in this structure. If this option
is specified, the library will always search for a
local machine store before searching for the

store by that name for the current user.

CREDENTIAL_STORE_FILENAME The certificate store name is a file that
contains the certificate and private key that
will be used.

lpszUserName

A pointer to a string which specifies the certificate owner's username. A value of NULL specifies
that no username is required. Currently this parameter is not used and any value specified will
be ignored.

lpszPassword

A pointer to a string which specifies the certificate owner's password. A value of NULL specifies
that no password is required. This parameter is only used if a PKCS #12 (PFX) certificate file is
specified and that certificate has been secured with a password. This value will be ignored the
current user or local machine certificate store is specified.

lpszCertStore

A pointer to a string which specifies the name of the certificate store to open. A certificate store
is a collection of certificates and their private keys, typically organized by how they are used. If
this value is NULL or points to an empty string, the default certificate store "MY" will be used.

Store Name Description

CA Certification authority certificates. These are certificates that are issued by
entities which are entrusted to issue certificates to other individuals or
organizations. Companies such as VeriSign and Thawte act as
certification authorities.

MY Personal certificates and their associated private keys for the current user.
This store typically holds the client certificates used to establish a user's
credentials. This corresponds to the "Personal" store that is displayed by
the certificate manager utility and is the default store used by the library.

ROOT Certificates that have been self-signed by a certificate authority. Root
certificates for a number of different certification authorities such as
VeriSign and Thawte are installed as part of the operating system and
periodically updated by Microsoft.

lpszCertName

A pointer to a null terminated string which specifies the name of the certificate to use. The
function will first search the certificate store for a certificate with a matching "friendly name"; this
is a name for the certificate that is assigned by the user. Note that the name must match
completely, but the comparison is not case sensitive. If no matching certificate is found, the
function will then attempt to find a certificate that has a matching common name (also called
the certificate subject). This comparison is less stringent, and the first partial match will be
returned. If this second search fails, the function will return an error indicating that the certificate
could not be found.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Example

pClient->CreateSecurityCredentials(
 SECURITY_PROTOCOL_DEFAULT,
 0,
 NULL,
 NULL,
 lpszCertStore,
 lpszCertName);

bConnected = pClient->Connect(lpszHostName,
 NNTP_PORT_SECURE,
 NNTP_TIMEOUT,
 NNTP_OPTION_SECURE);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Connect, DeleteSecurityCredentials, GetSecurityInformation, SECURITYCREDENTIALS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::DeleteSecurityCredentials Method

VOID DeleteSecurityCredentials();

The DeleteSecurityCredentials method releases the security credentials for the current session.

Parameters
None.

Return Value
None.

Remarks
This method can be used to release the memory allocated to the client or server credentials after
a secure connection has been terminated. The security credentials are released when the class
destructor is called, so it is normally not required that the application explicitly call this method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CreateSecurityCredentials

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::DetachHandle Method

HCLIENT DetachHandle();

The DetachHandle method detaches the client handle associated with the current instance of the
class.

Parameters
None.

Return Value
This method returns the client handle associated with the current instance of the class object. If
there is no active client session, the value INVALID_CLIENT will be returned.

Remarks
This method is used to detach a client handle created by the class for use with the SocketTools
API. Once the client handle is detached from the class, no other class member functions may be
called. Note that the handle must be explicitly released at some later point by the process or a
resource leak will occur.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
AttachHandle, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::DisableEvents Method

INT DisableEvents();

The DisableEvents method disables the event notification mechanism, preventing subsequent
event notification messages from being posted to the application's message queue.

This method has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Parameters
None.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
NNTP_ERROR. To get extended error information, call GetLastError.

Remarks
The DisableEvents method is used to disable event message posting for the specified client
session. Although this will immediately prevent any new events from being generated, it is possible
that messages could be waiting in the message queue. Therefore, an application must be
prepared to handle client event messages after this method has been called.

This method is automatically called if the client has event notification enabled, and the Disconnect
method is called. The same issues regarding outstanding event messages also applies in this
situation, requiring that the application handle event messages that may reference a client handle
that is no longer valid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
EnableEvents, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::DisableTrace Method

BOOL DisableTrace();

The DisableTrace method disables the logging of socket function calls to the trace log.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, a value of zero is
returned.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
EnableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::Disconnect Method

VOID Disconnect();

The Disconnect method terminates the connection with the server, closing the socket and
releasing the memory allocated for the client session.

Parameters
None.

Return Value
None.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
Connect, IsConnected

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::EnableEvents Method

INT EnableEvents(
 HWND hEventWnd,
 UINT uEventMsg
);

The EnableEvents method enables event notifications using Windows messages.

This method has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Applications should use the RegisterEvent method to register an event handler which is invoked
when an event occurs.

Parameters
hEventWnd

Handle to the window which will receive the client notification messages. This parameter must
specify a valid window handle. If a NULL handle is specified, event notification will be disabled.

uEventMsg

The message that is received when a client event occurs. This value must be greater than 1024.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
NNTP_ERROR. To get extended error information, call GetLastError.

Remarks
The EnableEvents method is used to request that notification messages be posted to the
specified window whenever a client event occurs. This allows an application to monitor the status
of different client operations, such as a file transfer.

The wParam argument will contain the client handle, the low word of the lParam argument will
contain the event ID, and the high word will contain any error code. If no error has occurred, the
high word will always have a value of zero. The following events may be generated:

Constant Description

NNTP_EVENT_CONNECT The connection to the server has completed. The high word of
the lParam parameter should be checked, since this notification
message will be posted if an error has occurred.

NNTP_EVENT_DISCONNECT The server has closed the connection to the client. The client
should read any remaining data and disconnect.

NNTP_EVENT_READ Data is available to read by the calling process. No additional
messages will be posted until the client has read at least some of
the data. This event is only generated if the client is in
asynchronous mode.

NNTP_EVENT_WRITE The client can now write data. This notification is sent after a
connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking

operation. This event is only generated if the client is in
asynchronous mode.

NNTP_EVENT_TIMEOUT The network operation has exceeded the specified timeout
period. The client application may attempt to retry the operation,
or may disconnect from the server and report an error to the
user.

NNTP_EVENT_CANCEL The current operation has been canceled. Under most
circumstances the client should disconnect from the server and
re-connect if needed. After an operation has been canceled, the
server may abort the connection or refuse to accept further
commands from the client.

NNTP_EVENT_COMMAND A command has been issued by the client and the server
response has been received and processed. This event can be
used to log the result codes and messages returned by the
server in response to actions taken by the client.

NNTP_EVENT_PROGRESS The client is in the process of sending or receiving a file on the
data channel. This event is called periodically during a transfer so
that the client can update any user interface components such as
a status control or progress bar.

It is not required that the client be placed in asynchronous mode in order to receive command
and progress event notifications. To disable event notification, call the DisableEvents method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
DisableEvents, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::EnableTrace Method

BOOL EnableTrace(
 LPCTSTR lpszTraceFile,
 DWORD dwTraceFlags
);

The EnableTrace method enables the logging of socket function calls to a file.

Parameters
lpszTraceFile

A pointer to a string which specifies the name of the trace log file. If this parameter is NULL or
an empty string, the default file name cstrace.log is used. The file is stored in the directory
specified by the TEMP environment variable, if it is defined; otherwise, the current working
directory is used.

dwTraceFlags

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

TRACE_INFO All function calls are written to the trace file. This is the default
value.

TRACE_ERROR Only those function calls which fail are recorded in the trace file.

TRACE_WARNING Only those function calls which fail or return values which indicate
a warning are recorded in the trace file.

TRACE_HEXDUMP All functions calls are written to the trace file, plus all the data that
is sent or received is displayed, in both ASCII and hexadecimal
format.

TRACE_PROCESS All function calls in the current process are logged, rather than
only those functions in the current thread. This option is useful for
multithreaded applications that are using worker threads.

Return Value
If the method succeeds, the return value is non-zero. A return value of zero indicates an error.
Failure typically indicates that the tracing library cstrcv11.dll cannot be loaded on the local
system.

Remarks
When trace logging is enabled, the file is opened, appended to and closed for each socket
function call. This makes it possible for an application to append its own logging information,
however care should be taken to ensure that the file is closed before the next network operation is
performed. To limit the size of the log files, enable and disable logging only around those sections
of code that you wish to trace.

Note that the TRACE_HEXDUMP trace level generates very large log files since it includes all of the
data exchanged between your application and the server.

Trace method logging is managed on a per-thread basis, not for each client handle. This means
that all SocketTools libraries and components share the same settings in the current thread. If you

are using multiple SocketTools libraries or components in your application, you only need to
enable logging once.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DisableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::FreezeEvents Method

INT FreezeEvents(
 BOOL bFreeze
);

The FreezeEvents method is used to suspend and resume event handling by the client.

Parameters
bFreeze

A non-zero value specifies that event handling should be suspended by the client. A zero value
specifies that event handling should be resumed.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
NNTP_ERROR. To get extended error information, call GetLastError.

Remarks
This method should be used when the application does not want to process events, such as when
a modal dialog is being displayed. When events are suspended, all client events are queued. If
events are re-enabled at a later point, those queued events will be sent to the application for
processing. Note that only one of each event will be generated. For example, if the client has
suspended event handling, and four read events occur, once event handling is resumed only one
of those read events will be posted to the client. This prevents the application from being flooded
by a potentially large number of queued events.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DisableEvents, EnableEvents, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::GetArticle Method

INT GetArticle(
 LONG nArticleId,
 LPBYTE lpBuffer,
 LPDWORD lpdwLength
);

INT GetArticle(
 LONG nArticleId,
 HGLOBAL* lpBuffer,
 LPDWORD lpdwLength
);

INT GetArticle(
 LONG nArticleId,
 CString& strBuffer
);

INT GetArticle(
 LPCTSTR lpszMessageId,
 LPBYTE lpBuffer,
 LPDWORD lpdwLength
);

INT GetArticle(
 LPCTSTR lpszMessageId,
 HGLOBAL* lpBuffer,
 LPDWORD lpdwLength
);

INT GetArticle(
 LPCTSTR lpszMessageId,
 CString& strBuffer
);

The GetArticle method retrieves the specified article and copies the contents to a local buffer.

Parameters
nArticleId

An integer value which specifies the number of the article to retrieve from the server. This value
must be greater than zero. Overloaded versions of this method also support article IDs that are
64-bit integers.

lpszMessageId

A pointer to a string which specifies the message ID of the article to retrieve from the server.
This parameter cannot be NULL or specify an empty string.

lpBuffer

A pointer to a byte buffer which will contain the data transferred from the server, or a pointer to
a global memory handle which will reference the data when the method returns.

lpdwLength

A pointer to an unsigned integer which should be initialized to the maximum number of bytes
that can be copied to the buffer specified by the lpBuffer parameter. If the lpBuffer parameter
points to a global memory handle, the length value should be initialized to zero. When the
method returns, this value will be updated with the actual length of the file that was

downloaded.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is NNTP_ERROR. To get extended error information, call GetLastError.

Remarks
The GetArticle method is used to retrieve an article from the server and copy it into a local buffer.
The method may be used in one of two ways, depending on the needs of the application. The first
method is to pre-allocate a buffer large enough to store the contents of the article. In this case,
the lpBuffer parameter will point to the buffer that was allocated, the value that the lpdwLength
parameter points to should be initialized to the size of that buffer.

The second method that can be used is have the lpBuffer parameter point to a global memory
handle which will contain the article data when the method returns. In this case, the value that the
lpdwLength parameter points to must be initialized to zero. It is important to note that the
memory handle returned by the method must be freed by the application, otherwise a memory
leak will occur. See the example code below.

This method will cause the current thread to block until the complete article has been retrieved, a
timeout occurs or the operation is canceled. During the transfer, the NNTP_EVENT_PROGRESS
event will be periodically fired, enabling the application to update any user interface controls.
Event notification must be enabled, either by calling EnableEvents, or by registering a callback
function using the RegisterEvent method.

To determine the current status of a transfer while it is in progress, use the GetTransferStatus
method.

Example
HGLOBAL hgblBuffer = (HGLOBAL)NULL;
LPBYTE lpBuffer = (LPBYTE)NULL;
DWORD cbBuffer = 0;

// Return the article into block of global memory allocated by
// the GlobalAlloc function; the handle to this memory will be
// returned in the hgblBuffer parameter
nResult = pClient->GetArticle(nArticleId, &hgblBuffer, &cbBuffer);

if (nResult != NNTP_ERROR)
{
 // Lock the global memory handle, returning a pointer to the
 // article text
 lpBuffer = (LPBYTE)GlobalLock(hgblBuffer);

 // After the data has been used, the handle must be unlocked
 // and freed, otherwise a memory leak will occur
 GlobalUnlock(hgblBuffer);
 GlobalFree(hgblBuffer);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

Unicode: Implemented as Unicode and ANSI versions.

See Also
CreateArticle, EnableEvents, GetArticleHeaders, GetTransferStatus, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::GetArticleHeaders Method

INT GetArticleHeaders(
 LONG nArticleId,
 LPBYTE lpHeaders,
 LPDWORD lpdwLength
);

INT GetArticleHeaders(
 LONG nArticleId,
 HGLOBAL* lpHeaders,
 LPDWORD lpdwLength
);

INT GetArticleHeaders(
 LONG nArticleId,
 CString& strHeaders
);

The GetArticleHeaders method retrieves the headers for the specified article from the server.

Parameters
nArticleId

Number of article to retrieve from the server. This value must be greater than zero. Overloaded
versions of this method also support article IDs that are 64-bit integers.

lpHeaders

A pointer to a byte buffer which will contain the data transferred from the server, or a pointer to
a global memory handle which will reference the data when the method returns.

lpdwLength

A pointer to an unsigned integer which should be initialized to the maximum number of bytes
that can be copied to the buffer specified by the lpHeaders parameter. If the lpHeaders
parameter points to a global memory handle, the length value should be initialized to zero.
When the method returns, this value will be updated with the actual length of the message that
was downloaded.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
NNTP_ERROR. To get extended error information, call GetLastError.

Remarks
The GetArticleHeaders method is used to retrieve an article header block from the server and
copy it into a local buffer. The method may be used in one of two ways, depending on the needs
of the application. The first method is to pre-allocate a buffer large enough to store the contents
of the file. In this case, the lpHeaders parameter will point to the buffer that was allocated, the
value that the lpdwLength parameter points to should be initialized to the size of that buffer.

The second method that can be used is have the lpHeaders parameter point to a global memory
handle which will contain the message headers when the method returns. In this case, the value
that the lpdwLength parameter points to must be initialized to zero. It is important to note that
the memory handle returned by the method must be freed by the application, otherwise a
memory leak will occur.

This method will cause the current thread to block until the transfer completes, a timeout occurs

or the transfer is canceled. During the transfer, the NNTP_EVENT_PROGRESS event will be
periodically fired, enabling the application to update any user interface controls. Event notification
must be enabled, either by calling EnableEvents, or by registering a callback function using the
RegisterEvent method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
GetArticle, GetArticleRange, ListArticles, PostArticle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::GetArticleMessageId Method

INT GetArticleMessageId(
 LONG nArticleId,
 LPTSTR lpszMessageId,
 INT cbMessageId
);

INT GetArticleMessageId(
 LONG nArticleId,
 CString& strMessageId
);

The GetArticleMessageId method returns the message identifier for the specified article in the current newsgroup.

Parameters
nArticleId

Article number to retrieve the message identifier for. The value may be zero, in which case the current article number is used.

lpszMessageId

Pointer to a string buffer which will contain the message identifier for the specified article.

cbMessageId

Maximum number of characters that may be copied into the buffer, including the terminating null character.

Return Value
If the method succeeds, the return value is the length of the message identifier string. If the method fails, the return value is NNTP_ERROR. To get extended error information, call GetLastError.

Remarks
The message identifier is a string which can uniquely identify the message on the news server. This value may be used to retrieve the contents of the article.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetMessageIdArticle, ListArticles

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::GetArticleRange Method

BOOL GetArticleRange(
 LONG * lpnFirstArticle,
 LONG * lpnLastArticle,
 LONG * lpnArticleCount
);

BOOL GetArticleRange(
 ULONGLONG * lpnFirstArticle,
 ULONGLONG * lpnLastArticle
 ULONGLONG * lpnArticleCount
);

The GetArticleRange method returns the first and last article numbers for the currently selected
newsgroup.

Parameters
lpnFirstArticle

Pointer to an integer that will contain the first article number in the currently selected
newsgroup. If this parameter is NULL, it will be ignored.

lpnLastArticle

Pointer to an integer that will contain the last article number in the currently selected
newsgroup. If this parameter is NULL, it will be ignored.

lpnArticleCount

Pointer to an integer that will contain the total number of articles in currently selected
newsgroup. If this parameter is NULL, it will be ignored.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
It is possible that there will be gaps in the articles within the range of the first and last articles in
the newsgroup. This may be due to a message being canceled or expired. If the server can
potentially return very large ID values, it is recommended your application use ULONGLONGs (64-
bit unsigned integers) instead of LONGs (32-bit signed integers) to store article numbers.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
OpenArticle, ListArticles

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::GetCurrentArticle Method

BOOL GetCurrentArticle(
 LONG * lpnArticleId
);

BOOL GetCurrentArticle(
 ULONGLONG * lpnArticleId
);

The GetCurrentArticle method returns the current article number for the currently selected
newsgroup.

Parameters
lpnArticleId

Pointer to an integer variable that will contain the current article number when the method
returns.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
If the server can potentially return very large ID values, it is recommended your application use
ULONGLONGs (64-bit unsigned integers) instead of LONGs (32-bit signed integers) to store article
numbers.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
OpenArticle, GetArticleRange, GetFirstArticle, GetNextArticle, ListArticles

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::GetCurrentDate Method

INT GetCurrentDate(
 LPTSTR lpszDate,
 INT nMaxLength
);

INT GetCurrentDate(
 CString& strDate
);

The GetCurrentDate method copies the current date and time to the specified buffer in a format
that is commonly used in news articles. This date format should be used in all date-related fields in
the message header.

Parameters
lpszDate

Pointer to a string buffer that will contain the current date and time when the method returns.

nMaxLength

The maximum number of characters that can be copied into the string buffer.

Return Values

If the method succeeds, the return value is the number of characters copied into the buffer, not
including the null-terminator. If the method fails, the return value is NNTP_ERROR. To get
extended error information, call GetLastError.

Remarks
The date value that is returned is adjusted for the local timezone.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CreateArticle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::GetErrorString Method

INT GetErrorString(
 DWORD dwErrorCode,
 LPTSTR lpszDescription,
 INT cbDescription
);

INT GetErrorString(
 DWORD dwErrorCode,
 CString& strDescription
);

The GetErrorString method is used to return a description of a specific error code. Typically this is
used in conjunction with the GetLastError method for use with warning dialogs or as diagnostic
messages.

Parameters
dwErrorCode

The error code for which a description is returned.

lpszDescription

A pointer to the buffer that will contain a description of the specified error code. This buffer
should be at least 128 characters in length. An alternate form of the method accepts a CString
variable which will contain the error description.

cbDescription

The maximum number of characters that may be copied into the description buffer.

Return Value
If the method succeeds, the return value is the length of the description string. If the method fails,
the return value is zero, meaning that no description exists for the specified error code. Typically
this indicates that the error code passed to the method is invalid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetLastError, SetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::GetFirstArticle Method

BOOL GetFirstArticle(
 LPNEWSARTICLE lpArticle
);

BOOL GetFirstArticle(
 LPNEWSARTICLEEX lpArticle
);

The GetFirstArticle method returns information about the first article in the currently selected
newsgroup.

Parameters
lpArticle

A pointer to a NEWSARTICLE or NEWSARTICLEEX structure which will contain information about
the first article in the currently selected directory. If the server can potentially return very large
article IDs, it is recommended that you use the NEWSARTICLEEX structure.

Return Value
If the method succeeds, the return value is non-zero. If there are no articles in the current
newsgroup, or the method fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
The GetFirstArticle method returns information about the first article in the currently selected
newsgroup. This method is used in conjunction with the GetNextArticle method to enumerate all
of the articles in the newsgroup. Typically this is used to provide the user with a list of articles to
access.

While the articles in the newsgroup are being listed, the client cannot retrieve the contents of a
specific article. For example, the GetArticle method cannot be called while inside a loop calling
GetNextArticle. The client should store those articles which it wants to retrieve in an array, and
then once all of the articles have been listed, it can begin calling NttpGetArticle for each article
number to retrieve the article text.

The date and time that the article was posted is returned in the stPosted member of the
NEWSARTICLE structure. This value is returned in Universal Coordinated Time (UTC) and can be
converted to local time using the SystemTimeToTzSpecificLocalTime function.

Example
// List all articles in the current group
if (pClient->ListArticles() == NNTP_ERROR)
 pClient->ShowError();
else
{
 NEWSARTICLE newsArticle;
 BOOL bResult;

 // Get each article in the current newsgroup, printing the article
 // number and the subject of the article
 bResult = pClient->GetFirstArticle(&newsArticle);
 while (bResult)
 {

file:///C|/Projects/cstools11/pdf/nntp/class/newsarticleex.html

 _tprintf(_T("%ld %s\n"), newsArticle.nArticleId, newsArticle.szSubject);
 bResult = pClient->GetNextArticle(&newsArticle);
 }
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetArticle, GetFirstGroup, GetNextArticle, GetNextGroup, ListArticles, ListGroups, SelectGroup,
NEWSARTICLE, NEWSGROUP

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::GetFirstGroup Method

BOOL GetFirstGroup(
 LPNEWSGROUP lpGroup
);

BOOL GetFirstGroup(
 LPNEWSGROUPEX lpGroup
);

The GetFirstGroup method returns information about the first available newsgroup.

Parameters
lpGroup

A pointer to a NEWSGROUP or NEWSGROUPEX structure which will contain information about
the first available newsgroup. If the server can potentially return very large article IDs, it is
recommended that you use the NEWSGROUPEX structure.

Return Value
If the method succeeds, the return value is non-zero. If there are no newsgroups available, or the
method fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
The GetFirstGroup method returns information about the first newsgroup on the server. This
method is used in conjunction with the GetNextGroup method to enumerate all of the available
newsgroups. Typically this is used to provide the user with a list of newsgroups to select.

While the the newsgroups are being listed, the client cannot select a newsgroup or retrieve the
contents of a specific article. The client should store those newsgroups which it wants to retrieve
articles from, and then once all of the newsgroups have been listed, it can then select each
newsgroup and retrieve the available articles from that group.

Note that if no newsgroups are returned by the server, it may indicate that it requires the client to
authenticate itself prior to requesting a list of groups or articles.

Example
// List all available newsgroups
if (pClient->ListGroups() == NNTP_ERROR)
 pClient->ShowError();
else
{
 NEWSGROUP newsGroup;
 BOOL bResult;

 // Get each newsgroup, printing the article range and
 // the name of the group
 bResult = pClient->GetFirstGroup(&newsGroup);
 while (bResult)
 {
 printf("%ld %ld %s\n", newsGroup.nFirstArticle,
 newsGroup.nLastArticle,
 newsGroup.szName);
 bResult = pClient->GetNextGroup(&newsGroup);
 }
}

file:///C|/Projects/cstools11/pdf/nntp/class/newsgroupex.html

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetFirstArticle, GetNextArticle, GetNextGroup, ListArticles, ListGroups, SelectGroup, NEWSARTICLE,
NEWSGROUP

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::GetGroupName Method

INT GetGroupName(
 LPTSTR lpszGroupName,
 INT nMaxLength
);

INT GetGroupName(
 CString& strGroupName
);

The GetGroupName method returns the name of the currently selected newsgroup.

Parameters
lpszGroupName

Pointer to a string buffer that will contain the name of the currently selected newsgroup.

nMaxLength

The maximum number of characters that may be copied into the buffer, including the
terminating null character.

Return Value
If the method succeeds, the return value is the length of the newsgroup name. If no newsgroup
has been selected, the method will return a value of zero. If the method fails, the return value is
NNTP_ERROR. To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetGroupTitle, ListGroups, SelectGroup

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::GetGroupTitle Method

INT GetGroupTitle(
 LPTSTR lpszGroupTitle,
 INT nMaxLength
);

INT GetGroupTitle(
 CString& strGroupTitle
);

The GetGroupTitle method returns a description of the currently selected newsgroup.

Parameters
lpszGroupTitle

Pointer to a string buffer that will contain a description of the currently selected newsgroup.

nMaxLength

The maximum number of characters that may be copied into the buffer, including the
terminating null character.

Return Value
If the method succeeds, the return value is the length of the description. If no newsgroup has
been selected, the method will return a value of zero. If the method fails, the return value is
NNTP_ERROR. To get extended error information, call GetLastError.

Remarks
The news server must support the XGTITLE command so that the group description can be
obtained when the newsgroup is selected. If this command is not recognized, then no description
will be returned.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetGroupName, ListGroups, SelectGroup

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::GetHandle Method

HCLIENT GetHandle();

The GetHandle method returns the client handle associated with the current instance of the class.

Parameters
None.

Return Value
This method returns the client handle associated with the current instance of the class object. If
there is no active client session, the value INVALID_CLIENT will be returned.

Remarks
This method is used to obtain the client handle created by the class for use with the SocketTools
API.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
AttachHandle, DetachHandle, IsInitialized

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::GetLastError Method

DWORD GetLastError();

DWORD GetLastError(
 CString& strDescription
);

Parameters
strDescription

A string which will contain a description of the last error code value when the method returns. If
no error has been set, or the last error code has been cleared, this string will be empty.

Return Value
The return value is the last error code value for the current thread. Functions set this value by
calling the SetLastError method. The Return Value section of each reference page notes the
conditions under which the method sets the last error code.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. You should call
the GetLastError method immediately when a method's return value indicates that an error has
occurred. That is because some methods call SetLastError(0) when they succeed, clearing the
error code set by the most recently failed method.

Most methods will set the last error code value when they fail; a few methods set it when they
succeed. Function failure is typically indicated by a return value such as FALSE, NULL,
INVALID_CLIENT or NNTP_ERROR. Those methods which call SetLastError when they succeed are
noted on the method reference page.

The description of the error code is the same string that is returned by the GetErrorString
method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
GetErrorString, SetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::GetMessageIdArticle Method

BOOL GetMessageIdArticle(
 LPCTSTR lpszMessageId,
 LONG * lpnMessageId
);

BOOL GetMessageIdArticle(
 LPCTSTR lpszMessageId,
 ULONGLONG * lpnMessageId
);

The GetMessageIdArticle method returns the article number associated with the specified
message identifier in the current newsgroup.

Parameters
lpszMessageId

A pointer to the message identifier string.

lpnArticleId

Pointer to an integer variable that will contain the article number associated with the message
ID.

Return Value
If the method succeeds, the return value is the article number. If the method fails, the return value
is NNTP_ERROR. To get extended error information, call GetLastError.

Remarks
If the server can potentially return very large ID values, it is recommended your application use
ULONGLONGs (64-bit unsigned integers) instead of LONGs (32-bit signed integers) to store article
numbers.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetArticleMessageId, ListArticles

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::GetNextArticle Method

BOOL GetNextArticle(
 LPNEWSARTICLE lpArticle
);

BOOL GetNextArticle(
 LPNEWSARTICLEEX lpArticle
);

The GetNextArticle method returns information about the next article in the currently selected
newsgroup.

Parameters
lpArticle

A pointer to a NEWSARTICLE or NEWSARTICLEEX structure which will contain information about
the next available article in the currently selected directory. If the server can potentially return
very large article IDs, it is recommended that you use the NEWSARTICLEEX structure.

Return Value
If the method succeeds, the return value is non-zero. If there are no more articles in the current
newsgroup, or the method fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
The GetNextArticle method returns information about the next available article in the currently
selected newsgroup. This method is used in conjunction with the GetFirstArticle method to
enumerate all of the articles in the newsgroup. Typically this is used to provide the user with a list
of articles to access.

While the articles in the newsgroup are being listed, the client cannot retrieve the contents of a
specific article. For example, the GetArticle method cannot be called while inside a loop calling
GetNextArticle. The client should store those articles which it wants to retrieve in an array, and
then once all of the articles have been listed, it can begin calling NttpGetArticle for each article
number to retrieve the article text.

Example
// List all articles in the current group
if (pClient->ListArticles() == NNTP_ERROR)
 pClient->ShowError();
else
{
 NEWSARTICLE newsArticle;
 BOOL bResult;

 // Get each article in the current newsgroup, printing the article
 // number and the subject of the article
 bResult = pClient->GetFirstArticle(&newsArticle);
 while (bResult)
 {
 _tprintf(_T("%ld %s\n"), newsArticle.nArticleId, newsArticle.szSubject);
 bResult = pClient->GetNextArticle(&newsArticle);
 }
}

file:///C|/Projects/cstools11/pdf/nntp/class/newsarticleex.html

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetArticle, GetFirstArticle, GetFirstGroup, GetNextGroup, ListArticles, ListGroups, SelectGroup,
NEWSARTICLE, NEWSGROUP

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::GetNextGroup Method

BOOL GetNextGroup(
 LPNEWSGROUP lpGroup
);

BOOL GetNextGroup(
 LPNEWSGROUPEX lpGroup
);

The GetNextGroup method returns information about the next available newsgroup.

Parameters
lpGroup

A pointer to a NEWSGROUP or NEWSGROUPEX structure which will contain information about
the next available newsgroup. If the server can potentially return very large article IDs, it is
recommended that you use the NEWSGROUPEX structure.

Return Value
If the method succeeds, the return value is non-zero. If there are no more newsgroups available,
or the method fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
The GetNextGroup method returns information about the next newsgroup on the server. This
method is used in conjunction with the GetFirstGroup method to enumerate all of the available
newsgroups. Typically this is used to provide the user with a list of newsgroups to select.

While the the newsgroups are being listed, the client cannot select a newsgroup or retrieve the
contents of a specific article. The client should store those newsgroups which it wants to retrieve
articles from, and then once all of the newsgroups have been listed, it can then select each
newsgroup and retrieve the available articles from that group.

Example
// List all available newsgroups
if (pClient->ListGroups() == NNTP_ERROR)
 pClient->ShowError();
else
{
 NEWSGROUP newsGroup;
 BOOL bResult;

 // Get each newsgroup, printing the article range and
 // the name of the group
 bResult = pClient->GetFirstGroup(&newsGroup);
 while (bResult)
 {
 printf("%ld %ld %s\n", newsGroup.nFirstArticle,
 newsGroup.nLastArticle,
 newsGroup.szName);
 bResult = pClient->GetNextGroup(&newsGroup);
 }
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)

file:///C|/Projects/cstools11/pdf/nntp/class/newsgroupex.html

Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetFirstArticle, GetFirstGroup, GetNextArticle, ListArticles, ListGroups, SelectGroup, NEWSARTICLE,
NEWSGROUP

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::GetResultCode Method

INT GetResultCode();

The GetResultCode method reads the result code returned by the server in response to a
command. The result code is a three-digit numeric code, and indicates if the operation succeeded,
failed or requires additional action by the client.

Parameters
None.

Return Value
If the method succeeds, the return value is the result code. If the method fails, the return value is
NNTP_ERROR. To get extended error information, call GetLastError.

Remarks
Result codes are three-digit numeric values returned by the server. They may be broken down into
the following ranges:

Value Description

100-
199

Positive preliminary result. This indicates that the requested action is being initiated, and
the client should expect another reply from the server before proceeding.

200-
299

Positive completion result. This indicates that the server has successfully completed the
requested action.

300-
399

Positive intermediate result. This indicates that the requested action cannot complete
until additional information is provided to the server.

400-
499

Transient negative completion result. This indicates that the requested action did not
take place, but the error condition is temporary and may be attempted again.

500-
599

Permanent negative completion result. This indicates that the requested action did not
take place.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
Command, GetResultString

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::GetResultString Method

INT GetResultString(
 LPTSTR lpszResult,
 INT cbResult
);

INT GetResultString(
 CString& strResult
);

The GetResultString method returns the last message sent by the server along with the result
code.

Parameters
lpszResult

A pointer to the buffer that will contain the result string returned by the server. An alternate
form of the method accepts a CString argument which will contain the result string returned by
the server.

cbResult

The maximum number of characters that may be copied into the result string buffer, including
the terminating null character.

Return Value
If the method succeeds, the return value is the length of the result string. If a value of zero is
returned, this means that no result string was sent by the server. If the method fails, the return
value is NNTP_ERROR. To get extended error information, call GetLastError.

Remarks
The GetResultString method is most useful when an error occurs because the server will typically
include a brief description of the cause of the error. This can then be parsed by the application or
displayed to the user. The result string is updated each time the client sends a command to the
server and then calls GetResultCode to obtain the result code for the operation.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Command, GetResultCode

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::GetSecurityInformation Method

BOOL GetSecurityInformation(
 LPSECURITYINFO lpSecurityInfo
);

The GetSecurityInformation method returns security protocol, encryption and certificate
information about the current client connection.

Parameters
lpSecurityInfo

A pointer to a SECURITYINFO structure which contains information about the current client
connection. The dwSize member of this structure must be initialized to the size of the structure
before passing the address of the structure to this method.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
This method is used to obtain security related information about the current client connection to
the server. It can be used to determine if a secure connection has been established, what security
protocol was selected, and information about the server certificate. Note that a secure connection
has not been established, the dwProtocol structure member will contain the value
SECURITY_PROTOCOL_NONE.

Example
The following example notifies the user if the connection is secure or not:

SECURITYINFO securityInfo;
securityInfo.dwSize = sizeof(SECURITYINFO);

if (pClient->GetSecurityInformation(&securityInfo))
{
 if (securityInfo.dwProtocol == SECURITY_PROTOCOL_NONE)
 {
 MessageBox(NULL, _T("The connection is not secure"),
 _T("Connection"), MB_OK);
 }
 else
 {
 if (securityInfo.dwCertStatus == SECURITY_CERTIFICATE_VALID)
 {
 MessageBox(NULL, _T("The connection is secure"),
 _T("Connection"), MB_OK);
 }
 else
 {
 MessageBox(NULL, _T("The server certificate not valid"),
 _T("Connection"), MB_OK);
 }
 }
}

Requirements

Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Connect, CreateSecurityCredentials, SECURITYINFO

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::GetStatus Method

INT GetStatus();

The GetStatus method the current status of the client session.

Parameters
None.

Return Value
If the method succeeds, the return value is the client status code. If the method fails, the return
value is NNTP_ERROR. To get extended error information, call GetLastError.

Remarks
The GetStatus method returns a numeric code which identifies the current state of the client
session. The following values may be returned:

Value Constant Description

0 NNTP_STATUS_UNUSED No connection has been established.

1 NNTP_STATUS_IDLE The client is current idle and not sending or
receiving data.

2 NNTP_STATUS_CONNECT The client is establishing a connection with the
server.

3 NNTP_STATUS_READ The client is reading data from the server.

4 NNTP_STATUS_WRITE The client is writing data to the server.

5 NNTP_STATUS_DISCONNECT The client is disconnecting from the server.

In a multithreaded application, any thread in the current process may call this method to obtain
status information for the specified client session. To obtain status information about a file transfer,
use the GetTransferStatus method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
IsBlocking, IsInitialized, IsReadable, IsWritable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::GetTimeout Method

INT GetTimeout();

The GetTimeout method returns the number of seconds the client will wait for a response from
the server. Once the specified number of seconds has elapsed, the method will fail and return to
the caller.

Parameters
None.

Return Value
If the method succeeds, the return value is the timeout period in seconds. If the method fails, the
return value is NNTP_ERROR. To get extended error information, call GetLastError.

Remarks
The timeout value is only used with blocking client connections. A value of zero indicates that the
default timeout period of 20 seconds should be used.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
Connect, IsReadable, IsWritable, Read, SetTimeout, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::GetTransferStatus Method

INT GetTransferStatus(
 LPNNTPTRANSFERSTATUS lpStatus
);

INT GetTransferStatus(
 LPNNTPTRANSFERSTATUSEX lpStatus
);

The GetTransferStatus method returns information about the current data transfer in progress.

Parameters
lpStatus

A pointer to an NNTPTRANSFERSTATUS or NNTPTRANSFERSTATUSEX structure which contains
information about the status of the current data transfer. If the server can potentially return very
large article IDs, it is recommended that you use the NNTPTRANSFERSTATUSEX structure.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
NNTP_ERROR. To get extended error information, call GetLastError.

Remarks
The GetTransferStatus method returns information about the current data transfer, including the
average number of bytes transferred per second and the estimated amount of time until the
transfer completes. If no article is currently being retrieved or submitted to the server, this function
will return the status of the last successful data transfer made by the client.

In a multithreaded application, any thread in the current process may call this method to obtain
status information for the specified client session.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
EnableEvents, GetStatus, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/nntp/class/nntptransferstatusex.html

 CNntpClient::IsBlocking Method

BOOL IsBlocking();

The IsBlocking method is used to determine if the client is currently performing a blocking
operation.

Parameters
None.

Return Value
If the client is performing a blocking operation, the method returns a non-zero value. If the client
is not performing a blocking operation, or the client handle is invalid, the method returns zero.

Remarks
Because a blocking operation can allow the application to be re-entered (for example, by pressing
a button while the operation is being performed), it is possible that another blocking method may
be called while it is in progress. Since only one thread of execution may perform a blocking
operation at any one time, an error would occur. The IsBlocking method can be used to
determine if the client is already blocked, and if so, take some other action (such as warning the
user that they must wait for the operation to complete).

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Cancel, GetStatus, IsConnected, IsInitialized, IsReadable, IsWritable, Read, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::IsConnected Method

BOOL IsConnected();

The IsConnected method is used to determine if the client is currently connected to a server.

Parameters
None.

Return Value
If the client is connected to a server, the method returns a non-zero value. If the client is not
connected, or the client handle is invalid, the method returns zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
GetStatus, IsBlocking, IsInitialized, IsReadable, IsWritable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::IsInitialized Method

BOOL IsInitialized();

The IsInitialized method returns whether or not the class object has been successfully initialized.

Parameters
None.

Return Value
This method returns a non-zero value if the class object has been successfully initialized. A return
value of zero indicates that the runtime license key could not be validated or the networking
library could not be loaded by the current process.

Remarks
When an instance of the class is created, the class constructor will attempt to initialize the
component with the runtime license key that was created when SocketTools was installed. If the
constructor is unable to validate the license key or load the networking libraries, this initialization
will fail.

If SocketTools was installed with an evaluation license, the application cannot be redistributed to
another system. The class object will fail to initialize if the application is executed on another
system, or if the evaluation period has expired. To redistribute your application, you must
purchase a development license which will include the runtime key that is needed to redistribute
your software to other systems. Refer to the Developer's Guide for more information.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
CNntpClient, IsBlocking, IsConnected

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::IsReadable Method

BOOL IsReadable(
 INT nTimeout,
 LPDWORD lpdwAvail
);

The IsReadable method is used to determine if data is available to be read from the server.

Parameters
nTimeout

Timeout for server response, in seconds. A value of zero specifies that the connection should be
polled without blocking the current thread.

lpdwAvail

A pointer to an unsigned integer which will contain the number of bytes available to read. This
parameter may be NULL if this information is not required.

Return Value
If the client can read data from the server within the specified timeout period, the method returns
a non-zero value. If the client cannot read any data, the method returns zero.

Remarks
On some platforms, this value will not exceed the size of the receive buffer (typically 64K bytes).
Because of differences between TCP/IP stack implementations, it is not recommended that your
application exclusively depend on this value to determine the exact number of bytes available.
Instead, it should be used as a general indicator that there is data available to be read.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
GetStatus, IsBlocking, IsConnected, IsInitialized, IsWritable, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::IsWritable Method

BOOL IsWritable(
 INT nTimeout
);

The IsWritable method is used to determine if data can be written to the server.

Parameters
nTimeout

Timeout for server response, in seconds. A value of zero specifies that the connection should be
polled without blocking the current thread.

Return Value
If the client can write data to the server within the specified timeout period, the method returns a
non-zero value. If the client cannot write any data, the method returns zero.

Remarks
Although this method can be used to determine if some amount of data can be sent to the
remote process it does not indicate the amount of data that can be written without blocking the
client. In most cases, it is recommended that large amounts of data be broken into smaller logical
blocks, typically some multiple of 512 bytes in length.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
GetStatus, IsBlocking, IsConnected, IsInitialized, IsReadable, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::ListArticles Method

INT ListArticles(
 LONG nFirstArticle,
 LONG nLastArticle
);

INT ListArticles(
 ULONGLONG nFirstArticle,
 ULONGLONG nLastArticle
);

The ListArticles method returns a list of articles in the currently selected newsgroup, within the
specified article range.

Parameters
nFirstArticle

The first newsgroup article to be returned in the list. If this value is -1, the list will begin with the
first available article in the newsgroup.

nLastArticle

The last newsgroup article to be returned in the list. If the value is -1, the list will end with the
last available article in the newsgroup.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is NNTP_ERROR. To get extended error information, call GetLastError.

Remarks
It is possible that there will be gaps in the articles within the range of the first and last articles in
the newsgroup. This may be due to a message being canceled or expired. Use the GetFirstArticle
and GetNextArticle methods to read the list of articles returned by the server. If the server can
potentially return very large ID values, it is recommended your application use ULONGLONGs (64-
bit unsigned integers) instead of LONGs (32-bit signed integers) to store article numbers.

Example
// List all articles in the current group
if (pClient->ListArticles() == NNTP_ERROR)
 pClient->ShowError();
else
{
 NEWSARTICLE newsArticle;
 BOOL bResult;

 // Get each article in the current newsgroup, printing the article
 // number and the subject of the article
 bResult = pClient->GetFirstArticle(&newsArticle);
 while (bResult)
 {
 printf("%ld %s %s\n", newsArticle.nArticleId, newsArticle.szSubject);
 bResult = pClient->GetNextArticle(&newsArticle);
 }
}

Requirements

Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetArticleRange, GetCurrentArticle, GetFirstArticle, GetNextArticle, ListGroups

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::ListGroups Method

INT ListGroups(
 LPCTSTR lpszLastUpdated,
 BOOL bLocalTime
);

The ListGroups method instructs the server to begin sending a list of newsgroups that were
created since the specified date.

Parameters
lpszLastUpdated

Pointer to a string which specifies the date and time that the list of newsgroups were last
retrieved from the server. This parameter may be NULL or an empty string, in which case all
available newsgroups will be listed by the server.

bLocalTime

A boolean value which indicates if the time specified in the lpszLastUpdated parameter is for
the current timezone. If the value is non-zero, the time is assumed to be in the local timezone. If
the value is zero, the time is assumed to be in Coordinated Universal Time (UTC).

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is NNTP_ERROR. To get extended error information, call GetLastError.

Remarks
The ListGroups method is used in conjunction with the GetFirstGroup and GetNextGroup
methods to enumerate all of the newsgroups that were added to the server since a specific date
and time. Typically this is used to provide the user with a list of updated newsgroups to select. To
list all of the newsgroups available on the server, omit the arguments to this method.

While the newsgroups are being listed, the client cannot select a newsgroup or retrieve the
contents of a specific article. The client should store those newsgroups which it wants to retrieve
articles from, and then once all of the newsgroups have been listed, it can then select each
newsgroup and retrieve the available articles from that group.

Example
LPCTSTR lpszUpdated = _T("1/1/2004 12:00 AM");

// List all newsgroups that were added after a specific date
if (pClient->ListGroups(lpszUpdated, TRUE) == NNTP_ERROR)
 pClient->ShowError();
else
{
 NEWSGROUP newsGroup;
 BOOL bResult;

 // Get each newsgroup, printing the article range and
 // the name of the group
 bResult = pClient->GetFirstGroup(&newsGroup);
 while (bResult)
 {
 printf("%ld %ld %s\n", newsGroup.nFirstArticle,
 newsGroup.nLastArticle,

 newsGroup.szName);
 bResult = pClient->GetNextGroup(&newsGroup);
 }
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetArticleRange, GetFirstGroup, GetNextGroup, ListGroups, SelectGroup

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::OpenArticle Method

INT OpenArticle(
 LONG nArticleId
);

INT OpenArticle(
 LPCTSTR lpszMessageId
);

The OpenArticle method opens the specified article in the currently selected newsgroup.

Parameters
nArticleId

Number that specifies which article in the current newsgroup to retrieve. This value may be
zero, which specifies that the current article should be returned.

lpszMessageId

Pointer to a string which contains the message identifier for the article in the current
newsgroup.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
NNTP_ERROR. To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
CloseArticle, GetArticle, GetArticleRange, GetCurrentArticle, ListArticles, OpenNextArticle,
OpenPreviousArticle, Read

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::OpenNextArticle Method

INT OpenNextArticle();

The OpenNextArticle method opens the next available article in the current newsgroup.

Parameters
None.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is NNTP_ERROR. To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
CloseArticle, GetArticle, GetArticleRange, GetCurrentArticle, ListArticles, OpenPreviousArticle, Read

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::OpenPreviousArticle Method

INT OpenPreviousArticle();

The OpenPreviousArticle method opens the previous article in the current newsgroup.

Parameters
None.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is NNTP_ERROR. To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
CloseArticle, GetArticle, GetArticleRange, GetCurrentArticle, ListArticles, OpenNextArticle, Read

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::PostArticle Method

INT PostArticle(
 LPCTSTR lpBuffer,
 DWORD dwLength
);

The PostArticle method post the contents of the specified buffer to the server as a new article in
the current newsgroup.

Parameters
lpBuffer

A pointer to a character buffer which contains the article to be posted to the currently selected
newsgroup.

dwLength

Specifies the length of the string which contains the article. If this parameter is -1, the actual
length of the string is calculated by searching the buffer for a terminating null byte.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
NNTP_ERROR. To get extended error information, call GetLastError.

Remarks
The PostArticle method is used to post the contents of the specified buffer to the server as a new
article in the current newsgroup. Not all newsgroups permit new articles to be posted, and some
newsgroups may require that you email the article to a moderator for approval instead of posting
directly to the group. It may be required that the client authenticate itself using the Authenticate
method prior to posting the article.

A news article is similar to an email message in that it contains one or more header fields, followed
by an empty line, followed by the body of the article. Each line of text should be terminated by a
carriage return/linefeed sequence of characters. The Mail Message library can be used to
compose a message if needed. Note that the article header must contain a header field named
"Newsgroups" with a value that specifies the newsgroup or newsgroups the article is being posted
to. If this header field is missing, the news server will reject the article.

This method will cause the current thread to block until the transfer has completed, a timeout
occurs or the transfer is canceled. During the transfer, the HTTP_EVENT_PROGRESS event will be
periodically fired, enabling the application to update any user interface controls. Event notification
must be enabled, either by calling EnableEvents, or by registering a callback function using the
RegisterEvent method.

To determine the current status of a transfer while it is in progress, use the GetTransferStatus
method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also

GetTransferStatus, IsBlocking, IsWritable, Read, Reset, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::Read Method

INT Read(
 LPBYTE lpBuffer,
 INT cbBuffer
);

INT Read(
 CString& strBuffer,
 INT cbBuffer
);

The Read method reads the specified number of bytes from the client socket and copies them
into the buffer. The data may be of any type, and is not terminated with a null character.

Parameters
lpBuffer

Pointer to the buffer in which the data will be copied. An alternate form of this method allows a
CString variable to be passed and data read from the socket will be returned in that string.

cbBuffer

The maximum number of bytes to read and copy into the specified buffer. This value must be
greater than zero.

Return Value
If the method succeeds, the return value is the number of bytes actually read. A return value of
zero indicates that the server has closed the connection and there is no more data available to be
read. If the method fails, the return value is NNTP_ERROR. To get extended error information, call
GetLastError.

Remarks
When Read is called and the client is in non-blocking mode, it is possible that the method will fail
because there is no available data to read at that time. This should not be considered a fatal error.
Instead, the application should simply wait to receive the next asynchronous notification that data
is available.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
EnableEvents, IsBlocking, IsReadable, IsWritable, RegisterEvent, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::RegisterEvent Method

INT RegisterEvent(
 UINT nEventId,
 NNTPEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

The RegisterEvent method registers an event handler for the specified event.

Parameters
nEventId

An unsigned integer which specifies which event should be registered with the specified callback
function. One of the following values may be used:

Constant Description

NNTP_EVENT_CONNECT The connection to the server has completed.

NNTP_EVENT_DISCONNECT The server has closed the connection to the client. The client
should read any remaining data and disconnect.

NNTP_EVENT_READ Data is available to read by the calling process. No additional
messages will be posted until the client has read at least some of
the data. This event is only generated if the client is in
asynchronous mode.

NNTP_EVENT_WRITE The client can now write data. This notification is sent after a
connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking
operation. This event is only generated if the client is in
asynchronous mode.

NNTP_EVENT_TIMEOUT The network operation has exceeded the specified timeout
period. The client application may attempt to retry the operation,
or may disconnect from the server and report an error to the
user.

NNTP_EVENT_CANCEL The current operation has been canceled. Under most
circumstances the client should disconnect from the server and
re-connect if needed. After an operation has been canceled, the
server may abort the connection or refuse to accept further
commands from the client.

NNTP_EVENT_COMMAND A command has been issued by the client and the server
response has been received and processed. This event can be
used to log the result codes and messages returned by the
server in response to actions taken by the client.

NNTP_EVENT_PROGRESS The client is in the process of sending or receiving a file on the
data channel. This event is called periodically during a transfer so
that the client can update any user interface components such as
a status control or progress bar.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the NntpEventProc callback
function. If this parameter is NULL, the callback for the specified event is disabled.

dwParam

A user-defined integer value that is passed to the callback function. If the application targets the
x86 (32-bit) platform, this parameter must be a 32-bit unsigned integer. If the application
targets the x64 (64-bit) platform, this parameter must be a 64-bit unsigned integer.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
NNTP_ERROR. To get extended error information, call GetLastError.

Remarks
The RegisterEvent method associates a callback function with a specific event. The event handler
is an NntpEventProc function that is invoked when the event occurs. Arguments are passed to
the function to identify the client session, the event type and the user-defined value specified
when the event handler is registered. If the event occurs because of an error condition, the error
code will be provided to the handler.

This method is typically used to register an event handler that is invoked while a news article is
being uploaded or downloaded. The NNTP_EVENT_PROGRESS event will only be generated
periodically during the transfer to ensure the application is not flooded with event notifications. It
is guaranteed that at least one NNTP_EVENT_PROGRESS notification will occur at the beginning of
the transfer, and one at the end of the transfer when it has completed.

The callback function specified by the lpEventProc parameter must be declared using the
__stdcall calling convention. This ensures the arguments passed to the event handler are pushed
on to the stack in the correct order. Failure to use the correct calling convention will corrupt the
stack and cause the application to terminate abnormally.

The dwParam parameter is commonly used to identify the class instance which is associated with
the event that has occurred. Applications will cast the this pointer to a DWORD_PTR value when
calling this function, and then the event handler will cast it back to a pointer to the class instance.
This gives the handler access to the class member variables and methods.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
DisableEvents, EnableEvents, FreezeEvents, NntpEventProc

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/nntp/class/nntpeventproc.html

 CNntpClient::Reset Method

INT Reset();

The Reset method resets the client state and resynchronizes with the server. This method is
typically called after an unexpected error has occurred, or an operation has been canceled.

Parameters
None.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
NNTP_ERROR. To get extended error information, call GetLastError.

Remarks
The client cannot be reset while it is in a blocked state.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
Cancel, IsBlocking

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::SelectGroup Method

INT SelectGroup(
 LPCTSTR lpszGroupName
);

The SelectGroup method selects the specified newsgroup from which articles will be retrieved.

Parameters
lpszGroupName

Pointer to a string which specifies the newsgroup to be selected. This value may be NULL, in
which case the current newsgroup is unchanged, but the article count is updated.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is NNTP_ERROR. To get extended error information, call GetLastError.

Remarks
This method selects the newsgroup and obtains a description and the first and last article numbers
for that group.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetGroupName, GetGroupTitle, ListGroups

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::SetLastError Method

VOID SetLastError(
 DWORD dwErrorCode
);

The SetLastError method sets the last error code for the current thread. This method is typically
used to clear the last error by specifying a value of zero as the parameter.

Parameters
dwErrorCode

Specifies the last error code for the current thread.

Return Value
None.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. Most methods will
set the last error code value when they fail; a few methods set it when they succeed. Function
failure is typically indicated by a return value such as FALSE, NULL, INVALID_CLIENT or
NNTP_ERROR. Those methods which call SetLastError when they succeed are noted on the
method reference page.

Applications can retrieve the value saved by this method by using the GetLastError method. The
use of GetLastError is optional; an application can call the method to determine the specific
reason for a method failure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
GetErrorString, GetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::SetTimeout Method

INT SetTimeout(
 UINT nTimeout
);

The SetTimeout method sets the number of seconds the client will wait for a response from the
server. Once the specified number of seconds has elapsed, the method will fail and return to the
caller.

Parameters
nTimeout

The number of seconds to wait for a blocking operation to complete.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
NNTP_ERROR. To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
Connect, GetTimeout, IsReadable, IsWritable, Read, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::ShowError Method

INT ShowError(
 LPCTSTR lpszAppTitle,
 UINT uType,
 DWORD dwErrorCode
);

The ShowError method displays a message box which describes the specified error.

Parameters
lpszAppTitle

A pointer to a string which specifies the title of the message box that is displayed. If this
argument is NULL or omitted, then the default title of "Error" will be displayed.

uType

An unsigned integer which specifies the type of message box that will be displayed. This is the
same value that is used by the MessageBox method in the Windows API. If a value of zero is
specified, then a message box with a single OK button will be displayed. Refer to that method
for a complete list of options.

dwErrorCode

Specifies the error code that will be used when displaying the message box. If this argument is
zero, then the last error that occurred in the current thread will be displayed.

Return Value
If the method is successful, the return value will be the return value from the MessageBox
function. If the method fails, it will return a value of zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetErrorString, GetLastError, SetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::StoreArticle Method

INT StoreArticle(
 LONG nArticleId,
 LPCTSTR lpszFileName
);

The StoreMessage method retrieves an article from the current newsgroup and stores it in a local
file.

Parameters
nArticleId

Number of the article to retrieve. This value must be greater than zero.

lpszFileName

Pointer to a string which specifies the file that the article will be stored in. If the file does not
exist, it will be created. If the file does exist, it will be overwritten with the contents of the article.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
NNTP_ERROR. To get extended error information, call GetLastError.

Remarks
The StoreArticle method provides a method of retrieving and storing an article on the local
system. The contents of the article is stored as a text file, using the specified file name. This
method always causes the caller to block until the entire message has been retrieved, even if the
client has been put in asynchronous mode.

If event handling is enabled, the NNTP_EVENT_PROGRESS event will fire periodically during the
transfer of the article to the local system. An application can determine how much of the article
has been retrieved by calling the GetTransferStatus method.

To retrieve the message into a global memory buffer so that it can be passed to the MIME library,
use the GetArticle method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetArticle, GetArticleHeaders, GetTransferStatus

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNntpClient::Write Method

INT Write(
 LPBYTE lpBuffer,
 INT cbBuffer
);

INT Write(
 LPCTSTR lpszBuffer
 INT cbBuffer
);

The Write method sends the specified number of bytes to the server.

Parameters
lpBuffer

The pointer to the buffer which contains the data that is to be sent to the server. In an alternate
form of the method, the pointer is to a string.

cbBuffer

The number of bytes to send from the specified buffer. This value must be greater than zero,
unless a pointer to a string buffer is passed as the parameter. In that case, if the value is -1, all of
the characters in the string, up to but not including the terminating null character, will be sent to
the server.

Return Value
If the method succeeds, the return value is the number of bytes actually written. If the method
fails, the return value is NNTP_ERROR. To get extended error information, call GetLastError.

Remarks
The return value may be less than the number of bytes specified by the cbBuffer parameter. In this
case, the data has been partially written and it is the responsibility of the client application to send
the remaining data at some later point. For non-blocking clients, the client must wait for the next
asynchronous notification message before it resumes sending data.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
EnableEvents, IsBlocking, IsReadable, IsWritable, Read, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Network News Transfer Protocol Data Structures

NEWSARTICLE
NEWSGROUP
NNTPTRANSFERSTATUS
SECURITYCREDENTIALS
SECURITYINFO
SYSTEMTIME

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NEWSARTICLE Structure

This structure is used by the GetFirstArticle and GetNextArticle methods to return information
about articles in the currently selected directory.

typedef struct _NEWSARTICLE
{
 LONG nArticleId;
 LONG nBytes;
 LONG nLines;
 TCHAR szSubject[NNTP_MAXSUBJLEN];
 TCHAR szAuthor[NNTP_MAXAUTHLEN];
 TCHAR szMessageId[NNTP_MAXMSGIDLEN];
 TCHAR szReferences[NNTP_MAXREFLEN];
 SYSTEMTIME stPosted;
} NEWSARTICLE, *LPNEWSARTICLE;

Members
nArticleId

A long integer which specifies the article number.

nBytes

The length of the news article in bytes.

nLines

The length of the news article specified as the number of lines of text.

szSubject

A pointer to a string which specifies the subject of the article.

szAuthor

A pointer to a string which specifies the email address of the user who posted the article.

szMessageId

A pointer to a string which specifies the message ID for the article.

szReferences

A pointer to a string which specifies references to the article.

stPosted

A SYSTEMTIME structure which specifies when the article was posted in Universal Coodinated
Time (UTC).

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NEWSGROUP Structure

This structure is used by the GetFirstGroup and GetNextGroup methods to return information
about available newsgroups.

typedef struct _NEWSGROUP
{
 LONG nFirstArticle;
 LONG nLastArticle;
 DWORD dwAccess;
 TCHAR szName[NNTP_MAXGRPNAMLEN];
} NEWSGROUP, *LPNEWSGROUP;

Members
nFirstArticle

A long integer which specifies the article number of the first available article in the newsgroup.

nLastArticle

A long integer which specifies the article number of the last available article in the newsgroup.
Note that posted articles may not be contiguous in the range between the first and last article
numbers. Some servers may assign numbers in a different order than the articles were posted,
or there may be gaps where articles have been removed.

dwAccess

An unsigned integer which specifies the access mode for the group. It may be one of the
following values:

Constant Description

NNTP_GROUP_READONLY The group is read-only and cannot be modified.
Attempts to post articles to the newsgroup will result in
an error.

NNTP_GROUP_READWRITE Articles can be posted to the newsgroup. Even though a
newsgroup is read-write, it may require that the client
authenticate before being given permission to post
articles to the server.

NNTP_GROUP_MODERATED The newsgroup is moderated and articles can only be
posted by the group moderator. To request that an
article be posted to the newsgroup, you must email the
message to the moderator.

szName

A pointer to a string which specifies the name of the newsgroup.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NNTPTRANSFERSTATUS Structure

This structure is used by the GetTransferStatus method to return information about an article
transfer in progress.

typedef struct _NNTPTRANSFERSTATUS
{
 UINT nArticleId;
 DWORD dwBytesTotal;
 DWORD dwBytesCopied;
 DWORD dwBytesPerSecond;
 DWORD dwTimeElapsed;
 DWORD dwTimeEstimated;
} NNTPTRANSFERSTATUS, *LPNNTPTRANSFERSTATUS;

Members
nArticleId

The article ID of the current article that is being transferred. If an article is being posted, this
member will be set to zero.

dwBytesTotal

The total number of bytes that will be transferred. If the article is being copied from the server
to the local host, this is the size of the article on the server. If the article is being posted to the
server, it is the size of article on the local system. If the article size cannot be determined, this
value will be zero.

dwBytesCopied

The total number of bytes that have been copied.

dwBytesPerSecond

The average number of bytes that have been copied per second.

dwTimeElapsed

The number of seconds that have elapsed since the transfer started.

dwTimeEstimated

The estimated number of seconds until the transfer is completed. This is based on the average
number of bytes transferred per second.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SECURITYCREDENTIALS Structure

The SECURITYCREDENTIALS structure specifies the information needed by the library to specify
additional security credentials, such as a client certificate or private key, when establishing a secure
connection.

typedef struct _SECURITYCREDENTIALS
{
 DWORD dwSize;
 DWORD dwProtocol;
 DWORD dwOptions;
 DWORD dwReserved;
 LPCTSTR lpszHostName;
 LPCTSTR lpszUserName;
 LPCTSTR lpszPassword;
 LPCTSTR lpszCertStore;
 LPCTSTR lpszCertName;
 LPCTSTR lpszKeyFile;
} SECURITYCREDENTIALS, *LPSECURITYCREDENTIALS;

Members
dwSize

Size of this structure. If the structure is being allocated dynamically, this member must be set to
the size of the structure and all other unused structure members must be initialized to a value of
zero or NULL.

dwProtocol

A bitmask of supported security protocols. The value of this structure member is constructed by
using a bitwise operator with any of the following values:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The
correct protocol is automatically selected, based on

what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.
This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is
supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

dwOptions

A value which specifies one or options. This member is constructed by using a bitwise operator
with any of the following values:

Constant Description

CREDENTIAL_STORE_CURRENT_USER The library will attempt to open a store for
the current user using the certificate store
name provided in this structure. If no options
are specified, then this is the default
behavior.

CREDENTIAL_STORE_LOCAL_MACHINE The library will attempt to open a local
machine store using the certificate store

name provided in this structure. If this option
is specified, the library will always search for a
local machine store before searching for the
store by that name for the current user.

CREDENTIAL_STORE_FILENAME The certificate store name is a file that
contains the certificate and private key that
will be used.

dwReserved

This structure member is reserved for future use and should always be initialized to zero.

lpszHostName

A pointer to a null terminated string which specifies the hostname that will be used when
validating the server certificate. If this member is NULL, then the server certificate will be
validated against the hostname used to establish the connection.

lpszUserName

A pointer to a null terminated string which identifies the owner of client certificate. Currently this
member is not used by the library and should always be initialized as a NULL pointer.

lpszPassword

A pointer to a null terminated string which specifies the password needed to access the
certificate. Currently this member is only used if the CREDENTIAL_STORE_FILENAME option has
been specified. If there is no password associated with the certificate, then this member should
be initialized as a NULL pointer.

lpszCertStore

A pointer to a null terminated string which specifies the name of the certificate store to open. A
certificate store is a collection of certificates and their private keys, typically organized by how
they are used. If this value is NULL or points to an empty string, the default certificate store "MY"
will be used.

Store
Name

Description

CA
Certification authority certificates. These are certificates that are issued by entities
which are entrusted to issue certificates to other individuals or organizations.
Companies such as VeriSign and Thawte act as certification authorities.

MY

Personal certificates and their associated private keys for the current user. This
store typically holds the client certificates used to establish a user's credentials.
This corresponds to the "Personal" store that is displayed by the certificate
manager utility and is the default store used by the library.

ROOT
Certificates that have been self-signed by a certificate authority. Root certificates
for a number of different certification authorities such as VeriSign and Thawte are
installed as part of the operating system and periodically updated by Microsoft.

lpszCertName

A pointer to a null terminated string which specifies the name of the certificate to use. The
library will first search the certificate store for a certificate with a matching "friendly name"; this is
a name for the certificate that is assigned by the user. Note that the name must match
completely, but the comparison is not case sensitive. If no matching certificate is found, the
library will then attempt to find a certificate that has a matching common name (also called the
certificate subject). This comparison is less stringent, and the first partial match will be returned.

If this second search fails, the library will return an error indicating that the certificate could not
be found. If the SECURITY_PROTOCOL_SSH protocol has been specified, this member should
be NULL.

lpszKeyFile

A pointer to a null terminated string which specifies the name of the file which contains the
private key required to establish the connection. This member is only used for SSH connections
and should always be NULL when establishing a secure connection using SSL or TLS.

Remarks
A client application only needs to create this structure if the server requires that the client provide
a certificate as part of the process of negotiating the secure session. If a certificate is required,
note that it must have a private key associated with it. Attempting to use a certificate that does not
have a private key will result in an error during the connection process indicating that the client
credentials could not be established.

If you are using a local certificate store, with the certificate and private key stored in the registry,
you can explicitly specify whether the certificate store for the current user or the local machine (all
users) should be used. This is done by prefixing the certificate store name with "HKCU:" for the
current user, or "HKLM:" for the local machine. For example, a certificate store name of
"HKLM:MY" would specify the personal certificate store for the local machine, rather than the
current user. If neither prefix is specified, then it will default to the certificate store for the current
user. You can manage these certificates using the CertMgr.msc Microsoft Management Console
(MMC) snap-in.

It is possible to load the certificate from a file rather than from current user's certificate store. The
dwOptions member should be set to CREDENTIAL_STORE_FILENAME and the lpszCertStore
member should specify the name of the file that contains the certificate and its private key. The file
must be in Private Information Exchange (PFX) format, also known as PKCS #12. These certificate
files typically have an extension of .pfx or .p12. Note that if a password was specified when the
certificate file was created, it must be provided in the lpszPassword member or the library will be
unable to access the certificate.

Note that the lpszUserName and lpszPassword members are values which are used to access the
certificate store or private key file. They are not the credentials which are used when establishing
the connection with the remote host or authenticating the client session.

The TLS 1.1 and TLS 1.2 protocols are only supported on Windows 7, Windows Server 2008 R2
and later versions of the platform. If these options are specified and the application is running on
Windows XP or Windows Vista, the protocol version will be downgraded to TLS 1.0 for backwards
compatibility with those platforms.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SECURITYINFO Structure

This structure contains information about a secure connection that has been established.

typedef struct _SECURITYINFO
{
 DWORD dwSize;
 DWORD dwProtocol;
 DWORD dwCipher;
 DWORD dwCipherStrength;
 DWORD dwHash;
 DWORD dwHashStrength;
 DWORD dwKeyExchange;
 DWORD dwCertStatus;
 SYSTEMTIME stCertIssued;
 SYSTEMTIME stCertExpires;
 LPCTSTR lpszCertIssuer;
 LPCTSTR lpszCertSubject;
 LPCTSTR lpszFingerprint;
} SECURITYINFO, *LPSECURITYINFO;

Members
dwSize

Specifies the size of the data structure. This member must always be initialized to
sizeof(SECURITYINFO) prior to passing the address of this structure to the function. Note that
if this member is not initialized, an error will be returned indicating that an invalid parameter has
been passed to the function.

dwProtocol

A numeric value which specifies the protocol that was selected to establish the secure
connection. One of the following values will be returned:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The

correct protocol is automatically selected, based on
what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.
This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is
supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

dwCipher

A numeric value which specifies the cipher that was selected when establishing the secure
connection. One of the following values will be returned:

Constant Description

SECURITY_CIPHER_RC2 The RC2 block cipher was selected. This is a variable
key length cipher which supports keys between 40 and
128 bits, in 8-bit increments.

SECURITY_CIPHER_RC4 The RC4 stream cipher was selected. This is a variable
key length cipher which supports keys between 40 and
128 bits, in 8-bit increments.

SECURITY_CIPHER_RC5 The RC5 block cipher was selected. This is a variable
key length cipher which supports keys up to 2040 bits,
in 8-bit increments.

SECURITY_CIPHER_DES The DES (Data Encryption Standard) block cipher was
selected. This is a fixed key length cipher, using 56-bit
keys.

SECURITY_CIPHER_DES3 The Triple DES block cipher was selected. This cipher
encrypts the data three times using different keys,
effectively providing a 168-bit length key.

SECURITY_CIPHER_DESX A variant of the DES block cipher which XORs an extra
64-bits of the key before and after the plaintext has
been encrypted, increasing the key size to 184 bits.

SECURITY_CIPHER_AES The Advanced Encryption Standard cipher (also known
as the Rijndael cipher) is a fixed block size cipher which
use a key size of 128, 192 or 256 bits. This cipher is
supported on Windows XP SP3 and later versions of
the operating system.

SECURITY_CIPHER_SKIPJACK The Skipjack block cipher was selected. This is a fixed
key length cipher, using 80-bit keys.

SECURITY_CIPHER_BLOWFISH The Blowfish block cipher was selected. This is a
variable key length cipher up to 448 bits, using a 64-bit
block size.

dwCipherStrength

A numeric value which specifies the strength (the length of the cipher key in bits) of the cipher
that was selected. Typically this value will be 128 or 256. 40-bit and 56-bit key lengths are
considered weak encryption, and subject to brute force attacks. 128-bit and 256-bit key lengths
are considered to be secure, and are the recommended key length for secure communications.

dwHash

A numeric value which specifies the hash algorithm which was selected. One of the following
values will be returned:

Constant Description

SECURITY_HASH_MD5 The MD5 algorithm was selected. Its use has been
deprecated and is no longer considered to be
cryptographically secure.

SECURITY_HASH_SHA1 The SHA-1 algorithm was selected. Its use has been
deprecated and is no longer considered to be
cryptographically secure.

SECURITY_HASH_SHA256 The SHA-256 algorithm was selected.

SECURITY_HASH_SHA384 The SHA-384 algorithm was selected.

SECURITY_HASH_SHA512 The SHA-512 algorithm was selected.

dwHashStrength

A numeric value which specifies the strength (the length in bits) of the message digest that was

selected.

dwKeyExchange

A numeric value which specifies the key exchange algorithm which was selected. One of the
following values will be returned:

Constant Description

SECURITY_KEYEX_RSA The RSA public key algorithm was selected.

SECURITY_KEYEX_KEA The Key Exchange Algorithm (KEA) was selected. This is an
improved version of the Diffie-Hellman public key algorithm.

SECURITY_KEYEX_DH The Diffie-Hellman key exchange algorithm was selected.

SECURITY_KEYEX_ECDH The Elliptic Curve Diffie-Hellman key exchange algorithm was
selected. This is a variant of the Diffie-Hellman algorithm
which uses elliptic curve cryptography. This key exchange
algorithm is only supported on Windows XP SP3 and later
versions of the operating system.

dwCertStatus

A numeric value which specifies the status of the certificate returned by the secure server. This
member only has meaning for connections using the SSL or TLS protocols. One of the following
values will be returned:

Constant Description

SECURITY_CERTIFICATE_VALID The certificate is valid.

SECURITY_CERTIFICATE_NOMATCH The certificate is valid, but the domain name
does not match the common name in the
certificate.

SECURITY_CERTIFICATE_EXPIRED The certificate is valid, but has expired.

SECURITY_CERTIFICATE_REVOKED The certificate has been revoked and is no
longer valid.

SECURITY_CERTIFICATE_UNTRUSTED The certificate or certificate authority is not
trusted on the local system.

SECURITY_CERTIFICATE_INVALID The certificate is invalid. This typically indicates
that the internal structure of the certificate has
been damaged.

stCertIssued

A structure which contains the date and time that the certificate was issued by the certificate
authority. If the issue date cannot be determined for the certificate, the SYSTEMTIME structure
members will have zero values. This member only has meaning for connections using the SSL or
TLS protocols.

stCertExpires

A structure which contains the date and time that the certificate expires. If the expiration date
cannot be determined for the certificate, the SYSTEMTIME structure members will have zero
values. This member only has meaning for connections using the SSL or TLS protocols.

lpszCertIssuer

A pointer to a string which contains information about the organization that issued the
certificate. This string consists of one or more comma-separated tokens. Each token consists of
an identifier, followed by an equal sign and a value. If the certificate issuer could not be
determined, this member may be NULL. This member only has meaning for connections using
the SSL or TLS protocols.

lpszCertSubject

A pointer to a string which contains information about the organization that the certificate was
issued to. This string consists of one or more comma-separated tokens. Each token consists of
an identifier, followed by an equal sign and a value. If the certificate subject could not be
determined, this member may be NULL. This member only has meaning for connections using
the SSL or TLS protocols.

lpszFingerprint

A pointer to a string which contains a sequence of hexadecimal values that uniquely identify the
server. This member is only used when a connection has been established using the Secure
Shell (SSH) protocol.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SYSTEMTIME Structure

The SYSTEMTIME structure represents a date and time using individual members for the month,
day, year, weekday, hour, minute, second, and millisecond.

typedef struct _SYSTEMTIME
{
 WORD wYear;
 WORD wMonth;
 WORD wDayOfWeek;
 WORD wDay;
 WORD wHour;
 WORD wMinute;
 WORD wSecond;
 WORD wMilliseconds;
} SYSTEMTIME, *LPSYSTEMTIME;

Members
wYear

Specifies the current year. The year value must be greater than 1601.

wMonth

Specifies the current month. January is 1, February is 2 and so on.

wDayOfWeek

Specifies the current day of the week. Sunday is 0, Monday is 1 and so on.

wDay

Specifies the current day of the month

wHour

Specifies the current hour.

wMinute

Specifies the current minute

wSecond

Specifies the current second.

wMilliseconds

Specifies the current millisecond.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include windows.h.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

News Feed Class Library

Retrieve and process the contents of a syndicated news feed.

Reference

Class Methods
Data Structures
Error Codes

Library Information

Class Name CNewsFeed

File Name CSRSSV11.DLL

Version 11.0.2180.1635

LibID D282B848-5BCB-4ACC-B2A0-D141527A87EA

Import Library CSRSSV11.LIB

Dependencies None

Overview
Really Simple Syndication (RSS) is a collection of standardized formats that are used to publish
information about content that is frequently changed. A news feed is published in XML format,
which contains one or more items that includes summary text, hyperlinks to source content and
additional metadata that is used to describe the item. News feeds can be used for a variety of
purposes, including providing updates for weblogs, news headlines, video and audio content. RSS
can also be used for other purposes, such as a software updates, where new updates are listed as
items in the feed.

News feeds can be accessed remotely from a web server, or locally as an XML formatted text file.
The source of the feed is determined by the URI scheme that is specified. If the http or https
scheme is specified, then the feed is retrieved from a web server. If the file scheme is used, the
feed is considered to be local and is accessed from the disk or local network. The CNewsFeed class
provides an interface that enables you to open a feed by URL and iterate through each of the
items in the feed or search for a specific feed item. The class also provides a method that can be
used to parse a string that contains XML data in RSS format, where the feed may have been
retrieved from other sources such as a database.

Requirements
The SocketTools Library Edition libraries are compatible with any programming language which
supports calling functions exported from a standard dynamic link library (DLL). If you are using
Visual C++ 6.0 it is required that you have Service Pack 6 (SP6) installed. You should install all
updates for your development tools and have the current Windows SDK installed. The minimum
recommended version of Visual Studio is Visual Studio 2010.

This library is supported on Windows 7, Windows Server 2008 R2 and later versions of the desktop
and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1) installed as
a minimum requirement. It is recommended that you install the current service pack and all critical
updates available for your version of the operating system.

This product includes both 32-bit and 64-bit libraries. Native 64-bit CPU support requires the 64-

bit version of Windows 7 or later versions of the Windows operating system.

Distribution
When you distribute your application that uses this library, it is recommended that you install the
file in the same folder as your application executable. If you install the library into a shared location
on the system, it is important that you distribute the correct version for the target platform and it
should be registered as a shared DLL. This is a standard Windows dynamic link library, not an
ActiveX component, and does not require COM registration.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 News Feed Class Methods

Class Description

CNewsFeed Constructor which initializes the current instance of the class

~CNewsFeed Destructor which releases resources allocated by the class

Method Description

AttachHandle Attach the specified client handle to this instance of the class

CloseFeed Close the specified news feed and release memory allocated for the channel

DetachHandle Detach the handle for the current instance of this class

DisableTrace Disable logging of network function calls

EnableTrace Enable logging of network function calls to a text file

FindItem Find a specific news feed item using its unique identifier (GUID) property

GetErrorString Return a description for the specified error code

GetFirstItem Return information about the first item in the news feed channel

GetHandle Return the client handle used by this instance of the class

GetItem Return information about the specified news feed item

GetItemCount Return the number of news feed items in the channel

GetItemProperty Return the value of the specified news feed item property or attribute

GetItemText Return the text description of the specified news feed item

GetLastError Return the last error code

GetNextItem Return information about the next item in the news feed channel

IsInitialized Determine if the class has been successfully initialized

OpenFeed Open the specified news feed and return information about the channel

ParseFeed Parse the contents of a string and return information about the channel

RefreshFeed Refresh the specified news feed, updating the items in the channel

SetLastError Set the last error code

ShowError Display a message box with a description of the specified error

StoreFeed Store the contents of the specified news feed in an XML formatted text file

ValidateFeed Validate the contents of the specified news feed, returning the number of items in the
feed

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNewsFeed::CNewsFeed Method

CNewsFeed();

The CNewsFeed constructor initializes the class library and validates the license key at runtime.

Remarks
If the constructor fails to validate the runtime license, subsequent methods in this class will fail. If
the product is installed with an evaluation license, then the application will only function on the
development system and cannot be redistributed.

The constructor calls the RssInitialize function to initialize the library, which dynamically loads
other system libraries and allocates thread local storage. If you are using this class within another
DLL, it is important that you do not create or destroy an instance of the class from within the
DllMain function because it can result in deadlocks or access violation errors. You should not
declare static or global instances of this class within another DLL if it is linked with the C runtime
library (CRT) because it will automatically call the constructors and destructors for static and global
C++ objects and has the same restrictions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrssv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
~CNewsFeed, IsInitialized

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNewsFeed::~CNewsFeed

~CNewsFeed();

The CNewsFeed destructor releases resources allocated by the current instance of the
CNewsFeed object. It also uninitializes the library if there are no other concurrent uses of the
class.

Remarks
When a CNewsFeed object goes out of scope, the destructor is automatically called to allow the
library to free any resources allocated on behalf of the process. Any pending blocking or
asynchronous calls in this process are canceled without posting any notification messages, and all
handles that were created for the client session are destroyed.

The destructor is not called explicitly by the application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrssv11.lib

See Also
CNewsFeed

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNewsFeed::AttachHandle Method

VOID AttachHandle(
 HCHANNEL hChannel
);

The AttachHandle method attaches the specified handle to the current instance of the class.

Parameters
hChannel

The handle to the channel that will be attached to the current instance of the class object.

Return Value
None.

Remarks
This method is used to attach a handle created outside of the class using the SocketTools API.
Once the handle is attached to the class, the other class member functions may be used with that
news feed channel.

If a handle already has been created for the class, that handle will be released when the new
handle is attached to the class object. If you want to prevent the previous news feed channel from
being closed, you must call the DetachHandle method. Failure to close the detached handle may
result in a resource leak in your application.

Note that the hChannel parameter is presumed to be valid and no checks are performed to
ensure its validity. Specifying an invalid handle value will cause subsequent method calls to fail.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrssv11.lib

See Also
DetachHandle, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNewsFeed::CloseFeed Method

BOOL CloseFeed();

The CloseFeed method closes the specified news feed and releases memory allocated for the
channel.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The CloseFeed method must be called whenever the application has completed processing the
news feed. It is important to note that the memory allocated for the channel will be released when
this function is called, which means that any data referenced in the RSSCHANNEL and
RSSCHANNELITEM structures will no longer be valid and must not be used by the application after
the feed has been closed.

This method can fail if the feed is currently being updated, such as when the RefreshFeed
method is called. In this case, the channel handle will not be released and the application must
attempt to close the feed at a later time.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrssv11.lib

See Also
OpenFeed ParseFeed StoreFeed

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNewsFeed::DetachHandle Method

HCHANNEL DetachHandle();

The DetachHandle method detaches the handle associated with the current instance of the class.

Parameters
None.

Return Value
This method returns the handle associated with the current instance of the class object. If there is
no open news feed, the value INVALID_CHANNEL will be returned.

Remarks
This method is used to detach a handle created by the class for use with the SocketTools API.
Once the handle is detached from the class, no other class member functions may be called. Note
that the handle must be explicitly closed at some later point by the process or a resource leak will
occur.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrssv11.lib

See Also
AttachHandle, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNewsFeed::DisableTrace Method

BOOL DisableTrace();

The DisableTrace method disables the logging of socket function calls to the trace log.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, a value of zero is
returned.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrssv11.lib

See Also
EnableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNewsFeed::EnableTrace Method

BOOL EnableTrace(
 LPCTSTR lpszTraceFile,
 DWORD dwTraceFlags
);

The EnableTrace method enables the logging of socket function calls to a file.

Parameters
lpszTraceFile

A pointer to a string which specifies the name of the trace log file. If this parameter is NULL or
an empty string, the default file name cstrace.log is used. The file is stored in the directory
specified by the TEMP environment variable, if it is defined; otherwise, the current working
directory is used.

dwTraceFlags

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

TRACE_INFO All function calls are written to the trace file. This is the default
value.

TRACE_ERROR Only those function calls which fail are recorded in the trace file.

TRACE_WARNING Only those function calls which fail or return values which indicate
a warning are recorded in the trace file.

TRACE_HEXDUMP All functions calls are written to the trace file, plus all the data that
is sent or received is displayed, in both ASCII and hexadecimal
format.

TRACE_PROCESS All function calls in the current process are logged, rather than
only those functions in the current thread. This option is useful for
multithreaded applications that are using worker threads.

Return Value
If the method succeeds, the return value is non-zero. A return value of zero indicates an error.
Failure typically indicates that the tracing library cstrcv11.dll cannot be loaded on the local
system.

Remarks
When trace logging is enabled, the file is opened, appended to and closed for each socket
function call. This makes it possible for an application to append its own logging information,
however care should be taken to ensure that the file is closed before the next network operation is
performed. To limit the size of the log files, enable and disable logging only around those sections
of code that you wish to trace.

Note that the TRACE_HEXDUMP trace level generates very large log files since it includes all of the
data exchanged between your application and the server.

Trace method logging is managed on a per-thread basis, not for each client handle. This means
that all SocketTools libraries and components share the same settings in the current thread. If you

are using multiple SocketTools libraries or components in your application, you only need to
enable logging once.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrssv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DisableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNewsFeed::FindItem Method

BOOL FindItem(
 LPCTSTR lpszValue,
 DWORD dwOptions,
 LPRSSCHANNELITEM lpItem
);

BOOL FindItem(
 LPCTSTR lpszValue,
 LPRSSCHANNELITEM lpItem
);

The FindItem method searches for an item in the news feed channel which matches the unique
identifier (GUID) value and returns information about that item.

Parameters
lpszValue

A pointer to a string which specifies the value of the item being searched for. This value should
uniquely identify the item in the feed, and this parameter cannot be an empty string or NULL
pointer.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

RSS_FIND_GUID Search the feed for items with a matching GUID property value.
This is the default option, and is the only item property that is
guaranteed to be unique in the feed. The search is case-
sensitive, requiring that the lpszValue parameter match the
property value exactly.

RSS_FIND_LINK Search the feed for items with a matching link property value.
For feeds that do not specify a GUID property, this is the
recommended option for searching for an item. The search is
not case-sensitive.

RSS_FIND_TITLE Search the feed for items with a matching title. This option
should not be used if you must ensure that the item returned is
unique in the feed because there may be multiple items with the
same title in the feed. The search is not case-sensitive.

RSS_FIND_PUBDATE Search the feed for items with a matching publishing date. This
option should not be used if you must ensure that the item
returned is unique in the feed because more than one item may
have the same publishing date. The format of the date string
must match the standard format used with the RSS protocol and
the match is not case-sensitive.

lpItem

A pointer to a RSSCHANNELITEM structure which contains information about the specified
item in the news feed. This structure is initialized by the method and the parameter can never

be specified as a NULL pointer.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
It is recommended that you use the RSS_FIND_GUID option with news feeds that are using version
2.0 or later of the RSS specification. If the feed uses an earlier version, items may not include a
GUID property. It is also possible that a feed may omit the GUID property even though it is
considered a requirement for the current RSS specification. For the broadest compatibility with all
news feeds, an application should not depend on being able to search for a specific news feed
item by its GUID.

Only the GUID property is guaranteed to be unique in the feed. If the feed does not specify GUIDs
for the news items, the application must use an alternate criteria such as the item hyperlink or
publishing date. If there are multiple items that match the lpszValue value, the first matching item
will be returned.

The data referenced in the RSSCHANNELITEM structure should be considered read-only and
never modified by the application. Not all members of the structure may contain valid values, in
which case those members will either have a value of zero or will specify NULL pointers. When the
feed is closed, the members of this structure will no longer be valid, and therefore should never be
stored by the application. If the application needs to store or modify this information, it should
create its own private copy of the data.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrssv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetFirstItem, GetItem, GetItemProperty, GetItemText, GetNextItem, RSSCHANNELITEM

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNewsFeed::GetErrorString Method

INT GetErrorString(
 DWORD dwErrorCode,
 LPTSTR lpszDescription,
 INT cbDescription
);

INT GetErrorString(
 DWORD dwErrorCode,
 CString& strDescription
);

The GetErrorString method is used to return a description of a specific error code. Typically this is
used in conjunction with the GetLastError method for use with warning dialogs or as diagnostic
messages.

Parameters
dwErrorCode

The error code for which a description is returned.

lpszDescription

A pointer to the buffer that will contain a description of the specified error code. This buffer
should be at least 128 characters in length. An alternate form of the method accepts a CString
variable which will contain the error description.

cbDescription

The maximum number of characters that may be copied into the description buffer.

Return Value
If the method succeeds, the return value is the length of the description string. If the method fails,
the return value is zero, meaning that no description exists for the specified error code. Typically
this indicates that the error code passed to the method is invalid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrssv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetLastError, SetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNewsFeed::GetFirstItem Method

BOOL GetFirstItem(
 LPRSSCHANNELITEM lpItem
);

The GetFirstItem method returns information about the first item in the news feed channel.

Parameters
lpItem

A pointer to a RSSCHANNELITEM structure which contains information about the first item in
the news feed. This structure is initialized by the method and the parameter can never be
specified as a NULL pointer.

Return Value
If the method succeeds, it returns a non-zero value. If the method fails, the return value is zero. To
get extended error information, call GetLastError.

Remarks
The GetFirstItem method is used in conjunction with the GetNextItem method to enumerate the
available items in the specified news feed channel. If this method fails, it typically indicates that the
channel does not contain any valid news items or that the format of the news feed is invalid.

The data referenced in the RSSCHANNELITEM structure should be considered read-only and
never modified by the application. Not all members of the structure may contain valid values, in
which case those members will either have a value of zero or will specify NULL pointers. When the
feed is closed, the members of this structure will no longer be valid, and therefore should never be
stored by the application. If the application needs to store or modify this information, it should
create its own private copy of the data.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrssv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FindItem, GetItem, GetItemProperty, GetItemText, GetNextItem, RSSCHANNELITEM

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNewsFeed::GetHandle Method

HCHANNEL GetHandle();

The GetHandle method returns the handle associated with the current instance of the class.

Parameters
None.

Return Value
This method returns the handle associated with the current instance of the class object. If there is
no open news feed, the value INVALID_CHANNEL will be returned.

Remarks
This method is used to obtain the handle created by the class for use with the SocketTools API.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrssv11.lib

See Also
AttachHandle, DetachHandle, IsInitialized

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNewsFeed::GetItem Method

BOOL GetItem(
 UINT nItemId,
 LPRSSCHANNELITEM lpItem
);

The GetItem method returns information about the specified item in the news feed channel.

Parameters
nItemId

An integer value which identifies the news feed item. The first item identifier in the news feed
has a value of one, and that value is incremented for each additional item in the feed. If this
parameter is zero or specifies a value larger than the number of items in the feed, this method
will fail.

lpItem

A pointer to a RSSCHANNELITEM structure which contains information about the specified
item in the news feed. This structure is initialized by the method and the parameter can never
be specified as a NULL pointer.

Return Value
If the method succeeds, it returns a non-zero value. If the method fails, the return value is zero. To
get extended error information, call GetLastError.

Remarks
The GetItem method is used to return information about a specific item in the news feed. If this
method fails, it typically indicates that the item ID is invalid or that the feed does not contain any
valid news items. The GetItemCount method can be used to determine the number of items
contained in the feed channel.

The data referenced in the RSSCHANNELITEM structure should be considered read-only and
never modified by the application. Not all members of the structure may contain valid values, in
which case those members will either have a value of zero or will specify NULL pointers. When the
feed is closed, the members of this structure will no longer be valid, and therefore should never be
stored by the application. If the application needs to store or modify this information, it should
create its own private copy of the data.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrssv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FindItem, GetFirstItem, GetItemCount, GetItemProperty, GetItemText, GetNextItem,
RSSCHANNELITEM

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNewsFeed::GetItemCount Method

INT GetItemCount();

The GetItemCount method returns the number of items in the news feed channel.

Parameters
None.

Return Value
If the method succeeds, the return value is the number of items in the news feed. A value of zero
indicates that the feed channel is empty. If the method fails, the return value is RSS_ERROR. To get
extended error information, call GetLastError.

Remarks
The GetItemCount method is used to determine the number of items that are contained in the
news feed channel, and therefore determine the maximum value of the item identifier which can
be used to reference a specific item in the feed. This value is the same as the value specified by
the nItemCount member of the RSSCHANNEL structure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrssv11.lib

See Also
FindItem, GetItem, GetItemProperty, GetItemText, RSSCHANNEL

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNewsFeed::GetItemProperty Method

INT GetItemProperty(
 UINT nItemId,
 LPCTSTR lpszProperty,
 LPCTSTR lpszAttribute,
 LPTSTR lpszValue,
 INT nMaxLength
);

INT GetItemProperty(
 UINT nItemId,
 LPCTSTR lpszProperty,
 LPCTSTR lpszAttribute,
 CString& strValue
);

The GetItemProperty method is used to return the value of a property for the specified item in
the news feed channel.

Parameters
nItemId

An integer value which identifies the news feed item. The first item identifier in the news feed
has a value of one, and that value is incremented for each additional item in the feed. If this
parameter is zero or specifies a value larger than the number of items in the feed, this method
will fail.

lpszProperty

A pointer to a string which specifies the name of the item property. This parameter cannot point
to an empty string or specify a NULL pointer.

lpszAttribute

A pointer to a string which specifies the name of an attribute for the property. If this parameter
is an empty string or NULL pointer, the method will return the value of the property, rather than
an attribute of the specified property.

lpszValue

A pointer to a string buffer which will contain the value of the specified item property or
attribute. This string should be large enough to contain the property value. If this parameter is a
NULL pointer, it will be ignored and the method will only return the length of value for the
specified property.

nMaxLength

The maximum number of characters that may be copied into the property value buffer. If the
value of this parameter is zero, then the lpszValue parameter is ignored and the method will
only return the length of the value for the specified property.

Return Value
If the method succeeds, the return value is the length of the property value string. A return value
of zero indicates that the property does not contain any value. If the method fails, the return value
is RSS_ERROR. To get extended error information, call GetLastError.

Remarks
The GetItemProperty method is primarily used with custom item properties that may be used

with extensions to the news feed. The standard properties for an item such as the title, link and
description can be obtained using GetItem and related methods. However, if items in the feed
contain custom properties that are not part of the standard RSS format, this method can be used
to obtain those values.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrssv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FindItem, GetItem, GetItemText, RSSCHANNELITEM

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNewsFeed::GetItemText Method

INT GetItemText(
 UINT nItemId,
 LPTSTR lpszBuffer,
 INT nMaxLength
);

INT GetItemText(
 UINT nItemId,
 CString& strBuffer
);

The GetItemText method is used to return a copy of an item's description.

Parameters
nItemId

An integer value which identifies the news feed item. The first item identifier in the news feed
has a value of one, and that value is incremented for each additional item in the feed. If this
parameter is zero or specifies a value larger than the number of items in the feed, this method
will fail.

lpszBuffer

A pointer to a string buffer which will contain the value of the item description. If this parameter
is a NULL pointer, it will be ignored and the method will only return the length of the item
description.

nMaxLength

The maximum number of characters that may be copied into the description buffer. If the value
of this parameter is zero, then the lpszValue parameter is ignored and the method will only
return the length of the item description.

Return Value
If the method succeeds, the return value is the length of the item description. A return value of
zero indicates that the item does not have a description. If the method fails, the return value is
RSS_ERROR. To get extended error information, call GetLastError.

RRemarks

The GetItemText function is used to obtain a copy of the string that describes the specified item.
Typically this is text that provides a summary of the news feed item and is used in conjunction with
the item's title and hyperlink to additional content.

The content of an item description is typically either plain text or HTML formatted text. It is the
responsibility of the application to display the content in a format is appropriate for the end-user.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrssv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FindItem GetItem, GetItemProperty, RSSCHANNELITEM

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNewsFeed::GetLastError Method

DWORD GetLastError();

DWORD GetLastError(
 CString& strDescription
);

Parameters
strDescription

A string which will contain a description of the last error code value when the method returns. If
no error has been set, or the last error code has been cleared, this string will be empty.

Return Value
The return value is the last error code value for the current thread. Functions set this value by
calling the SetLastError method. The Return Value section of each reference page notes the
conditions under which the method sets the last error code.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. You should call
the GetLastError method immediately when a method's return value indicates that an error has
occurred. That is because some methods call SetLastError(0) when they succeed, clearing the
error code set by the most recently failed method.

Most methods will set the last error code value when they fail; a few methods set it when they
succeed. Function failure is typically indicated by a return value such as FALSE, NULL,
INVALID_CLIENT or RSS_ERROR. Those methods which call SetLastError when they succeed are
noted on the method reference page.

The description of the error code is the same string that is returned by the GetErrorString
method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrssv11.lib

See Also
GetErrorString, SetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNewsFeed::GetNextItem Method

BOOL GetNextItem(
 LPRSSCHANNELITEM lpItem
);

The GetNextItem method returns information about the next item in the news feed channel.

Parameters
lpItem

A pointer to a RSSCHANNELITEM structure which contains information about the next item in
the news feed. This structure is initialized by the method and the parameter can never be
specified as a NULL pointer.

Return Value
If the method succeeds, it returns a non-zero value. If the method fails, the return value is zero. To
get extended error information, call GetLastError.

Remarks
The GetNextItem method is used in conjunction with the GetFirstItem method to enumerate the
available items in the specified news feed channel. If this method fails, it typically indicates that
there are no more items in the news feed channel.

The data referenced in the RSSCHANNELITEM structure should be considered read-only and
never modified by the application. Not all members of the structure may contain valid values, in
which case those members will either have a value of zero or will specify NULL pointers. When the
feed is closed, the members of this structure will no longer be valid, and therefore should never be
stored by the application. If the application needs to store or modify this information, it should
create its own private copy of the data.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrssv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FindItem, GetFirstItem, GetItem, GetItemProperty, GetItemText, RSSCHANNELITEM

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNewsFeed::IsInitialized Method

BOOL IsInitialized();

The IsInitialized method returns whether or not the class object has been successfully initialized.

Parameters
None.

Return Value
This method returns a non-zero value if the class object has been successfully initialized. A return
value of zero indicates that the runtime license key could not be validated or the networking
library could not be loaded by the current process.

Remarks
When an instance of the class is created, the class constructor will attempt to initialize the
component with the runtime license key that was created when SocketTools was installed. If the
constructor is unable to validate the license key or load the networking libraries, this initialization
will fail.

If SocketTools was installed with an evaluation license, the application cannot be redistributed to
another system. The class object will fail to initialize if the application is executed on another
system, or if the evaluation period has expired. To redistribute your application, you must
purchase a development license which will include the runtime key that is needed to redistribute
your software to other systems. Refer to the Developer's Guide for more information.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrssv11.lib

See Also
CNewsFeed

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNewsFeed::OpenFeed Method

BOOL OpenFeed(
 LPCTSTR lpszFeedUrl,
 UINT nTimeout,
 DWORD dwOptions,
 LPRSSCHANNEL lpChannel
);

BOOL OpenFeed(
 LPCTSTR lpszFeedUrl,
 UINT nTimeout,
 LPRSSCHANNEL lpChannel
);

BOOL OpenFeed(
 LPCTSTR lpszFeedUrl,
 LPRSSCHANNEL lpChannel
);

The OpenFeed method is used to open a news feed and return a handle which can be used to
access the individual news items in the feed.

Parameters
lpszFeedUrl

A pointer to a string which specifies the URL for the news feed. To access a news feed on a web
server, a standard http or https URL may be specified. To access a file on the local system or
network share, a file name or file URL may be specified.

nTimeout

The number of seconds that the client will wait for a response from the server before failing the
current operation. This parameter is ignored if the lpszFeedUrl parameter specifies a local file
name or URL.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

RSS_OPTION_NONE No additional options are specified and the news feed is
processed using relaxed rules when checking the validity of the
feed. The library will attempt to automatically compensate for a
feed that is malformed or does not strictly conform to the RSS
standard.

RSS_OPTION_STRICT The news feed content should be processed using strict rules to
ensure that the feed meets the appropriate RSS standard
specification and all feed property values are case-sensitive. By
default, relaxed rules are used which allows the application to
open a feed that may not strictly conform to the standard
specification.

lpChannel

A pointer to an RSSCHANNEL structure which contains information about the news feed

channel such as the feed title, hyperlink and description. If the parameter is not NULL, the
structure is initialized by the method. If the parameter is NULL, it is ignored and no information
is returned.

Return Value
If the method succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
A news feed may be local or remote, depending on the URL that is specified. If a local file name or
file URL is specified for the feed, then it is opened locally and no network access is required. If an
http or https URL is specified, then OpenFeed will attempt to download the feed from the server
and store it temporarily on the local system. Accessing a remote feed requires that the application
has permission to establish a connection with the server and will cause the application to block
until the feed has been downloaded, the operation times out or an error occurs.

Although the OpenFeed method will meet the needs of most applications, if you require more
complex functionality such as retrieving the feed asynchronously in the background or event
notifications for large transfers, you can use the SocketTools Hypertext Transfer Protocol API to
download the news feed and then use the ParseFeed method to parse the contents.

The data referenced in the RSSCHANNEL structure should be considered read-only and never
modified by the application. Not all members of the structure may contain valid values, in which
case those members will either have a value of zero or will specify NULL pointers. When the feed
is closed, the members of this structure will no longer be valid, and therefore should never be
stored by the application. If the application needs to store or modify this information, it should
create its own private copy of the data.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrssv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CloseFeed, ParseFeed, RefreshFeed, StoreFeed, RSSCHANNEL

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNewsFeed::ParseFeed Method

BOOL ParseFeed(
 LPCTSTR lpszFeedXml,
 DWORD dwOptions,
 LPRSSCHANNEL lpChannel
);

BOOL ParseFeed(
 LPCTSTR lpszFeedXml,
 LPRSSCHANNEL lpChannel
);

The ParseFeed method is used to parse the contents of a news feed, returning a handle which
can be used to access the individual news items in the feed.

Parameters
lpszFeedXml

A pointer to a string which contains the contents of the news feed. The string must contain XML
formatted data that conforms to the RSS standard specification. This parameter cannot specify
an empty string or a NULL pointer.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

RSS_OPTION_NONE No additional options are specified.

RSS_OPTION_STRICT The news feed content should be processed using strict rules to
ensure that the feed meets the appropriate RSS standard
specification and all feed property values are case-sensitive. By
default, relaxed rules are used which allows the application to
open a feed that may not strictly conform to the standard
specification.

lpChannel

A pointer to an RSSCHANNEL structure which contains information about the news feed
channel such as the feed title, hyperlink and description. If the parameter is not NULL, the
structure is initialized by the method. If the parameter is NULL, it is ignored and no information
is returned.

Return Value
If the method succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The ParseFeed method is an alternative to the OpenFeed method, enabling the application to
process a news feed from alternative sources such as a database or compressed file. It is important
to note that the string which contains the news feed XML must be properly formatted and
conform to the RSS standard specification.

The data referenced in the RSSCHANNEL structure should be considered read-only and never

modified by the application. Not all members of the structure may contain valid values, in which
case those members will either have a value of zero or will specify NULL pointers. When the feed
is closed, the members of this structure will no longer be valid, and therefore should never be
stored by the application. If the application needs to store or modify this information, it should
create its own private copy of the data.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrssv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CloseFeed, OpenFeed, RefreshFeed, StoreFeed, RSSCHANNEL

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNewsFeed::RefreshFeed Method

BOOL RefreshFeed(
 LPRSSCHANNEL lpChannel
);

The RefreshFeed method reloads the news feed and updates the items in the channel.

Parameters
lpChannel

A pointer to an RSSCHANNEL structure which contains information about the news feed
channel such as the feed title, hyperlink and description. If the parameter is not NULL, the
structure is initialized by the method. If the parameter is NULL, it is ignored and no information
is returned.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
When the RefreshFeed method is called, the news feed is reloaded from the original source and
the items in the channel are updated. For news feeds that are frequently updated, the
nTimeToLive member of the RSSCHANNEL structure can provide a hint to the application as to
how frequently the feed should be refreshed.

If the news feed was originally opened using an http or https URL, this method will download the
updated feed from the server and store it temporarily on the local system. Accessing a remote
feed requires that the application has permission to establish a connection with the server and will
cause the application to block until the feed has been downloaded, the operation times out or an
error occurs. The same timeout period and options will be used as when the feed was originally
opened.

The RefreshFeed method should only be used if the feed was opened using the OpenFeed
method, otherwise the method will fail with an error indicating that the operation is not supported.

The data referenced in the RSSCHANNEL structure should be considered read-only and never
modified by the application. The members of this structure returned by previous calls to either the
OpenFeed or RefreshFeed methods will no longer be valid and should not be referenced.
Likewise, the members of an RSSCHANNELITEM structure will no longer be valid after this
method returns.

It is important that the application does not make any assumptions about the number of news
items in the channel, or the content associated with those items after the RefreshFeed function
has been called. For example, never assume that the number of items in the channel remains the
same, or that the item IDs for each item remains the same. If you need to find a specific item in
the news feed, use the FindItem method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrssv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CloseFeed, FindItem, GetItem, OpenFeed, StoreFeed, RSSCHANNEL

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNewsFeed::SetLastError Method

VOID SetLastError(
 DWORD dwErrorCode
);

The SetLastError method sets the last error code for the current thread. This method is typically
used to clear the last error by specifying a value of zero as the parameter.

Parameters
dwErrorCode

Specifies the last error code for the current thread.

Return Value
None.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. Most methods will
set the last error code value when they fail; a few methods set it when they succeed. Function
failure is typically indicated by a return value such as FALSE, NULL, INVALID_CLIENT or
RSS_ERROR. Those methods which call SetLastError when they succeed are noted on the method
reference page.

Applications can retrieve the value saved by this method by using the GetLastError method. The
use of GetLastError is optional; an application can call the method to determine the specific
reason for a method failure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrssv11.lib

See Also
GetErrorString, GetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNewsFeed::ShowError Method

INT ShowError(
 LPCTSTR lpszAppTitle,
 UINT uType,
 DWORD dwErrorCode
);

The ShowError method displays a message box which describes the specified error.

Parameters
lpszAppTitle

A pointer to a string which specifies the title of the message box that is displayed. If this
argument is NULL or omitted, then the default title of "Error" will be displayed.

uType

An unsigned integer which specifies the type of message box that will be displayed. This is the
same value that is used by the MessageBox method in the Windows API. If a value of zero is
specified, then a message box with a single OK button will be displayed. Refer to that method
for a complete list of options.

dwErrorCode

Specifies the error code that will be used when displaying the message box. If this argument is
zero, then the last error that occurred in the current thread will be displayed.

Return Value
If the method is successful, the return value will be the return value from the MessageBox
function. If the method fails, it will return a value of zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrssv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetErrorString, GetLastError, SetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNewsFeed::StoreFeed Method

BOOL StoreFeed(
 LPCTSTR lpszFileName
);

The StoreFeed method stores the contents of the news feed in an XML formatted text file.

Parameters
lpszFileName

A pointer to a string which specifies the name of the file on the local system. The contents of the
news feed will be stored in this file. If the file does not exist, it will be created; otherwise it will
overwrite the contents of the file.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrssv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
OpenFeed, ParseFeed

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CNewsFeed::ValidateFeed Method

INT ValidateFeed(
 LPCTSTR lpszFeedUrl,
 UINT nTimeout,
 DWORD dwOptions,
 LPSYSTEMTIME lpstModified
);

INT ValidateFeed(
 LPCTSTR lpszFeedUrl,
 LPSYSTEMTIME lpstModified
);

INT ValidateFeed(
 LPCTSTR lpszFeedUrl
);

The RssValidateFeed method is used to validate a news feed, returning the number of items in
the feed and the date it was last modified.

Parameters
lpszFeedUrl

A pointer to a string which specifies the URL for the news feed. To access a news feed on a web
server, a standard http or https URL may be specified. To access a file on the local system or
network share, a file name or file URL may be specified.

nTimeout

The number of seconds that the client will wait for a response from the server before failing the
current operation. This parameter is ignored if the lpszFeedUrl parameter specifies a local file
name or URL.

dwOptions

An unsigned integer that specifies one or more options. This parameter is reserved for future
use an should always have a value of zero.

lpstModified

A pointer to a SYSTEMTIME structure which will specify the date that the feed was last modified
when the method returns. If the parameter is NULL, it is ignored and no information is returned.

Return Value
If the method succeeds, the return value is the number of items in the news feed channel. If the
method fails, the return value is RSS_ERROR. To get extended error information, call
RssGetLastError.

Remarks
The RssValidateFeed method can be used to check that a news feed exists and is properly
formatted. If the contents of the feed are valid, the method will return the number of items in the
feed and the date that it was last modified. This can be useful for applications that want to
periodically check a news feed and determine if the contents have changed.

The SYSTEMTIME structure that is populated by the method specifies the date when the feed was
last modified. The method first checks the value of the lastBuildDate property of the feed channel.
If that property is not defined, then it will use the value of the pubDate property. If neither are
defined, then the structure members will have a value of zero.

The validation process imposes strict checks on the structure of the news feed and requires that it
conform to the RSS specification. For example, the feed must have a title, link and description.
Each item in the feed must have either a title or description, and the hyperlinks specified in the
feed must be valid. If the feed XML is malformed, or a required property of the feed is invalid or
missing, this method will fail.

If a news feed cannot be validated, it still may be possible to open the feed using the OpenFeed
method. By default, relaxed rules are used when parsing the contents of the feed and it does not
check to ensure all required properties are defined and have valid values.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrssv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
RssOpenFeed, RssParseFeed, RssRefreshFeed, RssStoreFeed, SYSTEMTIME

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 News Feed Data Structures

RSSCHANNEL
RSSCHANNELITEM
SYSTEMTIME

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RSSCHANNEL Structure

This structure contains information about the properties of the news feed channel.

typedef struct _RSSCHANNEL
{
 UINT nItemCount;
 UINT nTimeToLive;
 WORD wVersionMajor;
 WORD wVersionMinor;
 DWORD dwFlags;
 DWORD dwReserved;
 LPCTSTR lpszTitle;
 LPCTSTR lpszLink;
 LPCTSTR lpszDescription;
 LPCTSTR lpszCategory;
 LPCTSTR lpszLanguage;
 LPCTSTR lpszCopyright;
 LPCTSTR lpszEditor;
 LPCTSTR lpszWebmaster;
 LPCTSTR lpszGenerator;
 LPCTSTR lpszImageLink;
 LPCTSTR lpszImageTitle;
 LPCTSTR lpszImageUrl;
 SYSTEMTIME stPublished;
 SYSTEMTIME stLastBuild;
} RSSCHANNEL, *LPRSSCHANNEL;

Members
nItemCount

An integer value which specifies number of news items in the channel.

nTimeToLive

An integer value which specifies the frequency in seconds at which the feed should be refreshed
to obtain updated information. Not all feeds specify a time-to-live, in which case this member
will have a value of zero.

wVersionMajor

A word value which specifies the major version number for the news feed.

wVersionMinor

A word value which specifies the minor version number for the news feed.

dwFlags

A value which specifies one or more option flags for the news feed channel. Currently there are
no option flags defined and this member is reserved for future expansion.

dwReserved

A value reserved for future expansion.

lpszTitle

A pointer to a string which specifies the name of the channel. If the content of the news feed
corresponds to a website, this is typically the same as the title of the website. If a title has not
been specified, this member will be NULL. Note that a strictly conforming news feed requires a
title.

lpszLink

A pointer to a string which specifies a URL to the website corresponding to the channel. Note
that this is not the URL of the news feed itself. Typically it is a link to the home page of the site
which owns the news feed. If a link has not been specified, this member will be NULL. Note that
strictly conforming news feed requires a link.

lpszDescription

A pointer to a string which describes the channel. This provides an overview of the news feed
and the type of information that is provided. If a description of the feed has not been specified,
this member will be NULL. Note that a strictly conforming news feed requires a description.

lpszCategory

A pointer to a string which defines the category or categories that the channel belongs to. This
property is optional and the category names themselves are user-defined. If a category has not
been specified, this member will be NULL.

lpszLanguage

A pointer to a string which defines the language the channel is written in, using the standard
language codes. This property is optional and if this member is NULL, the English language is
typically presumed to be the default.

lpszCopyright

A pointer to a string which specifies a copyright notice for the content. If a copyright has not
been specified, this member will be NULL.

lpszEditor

A pointer to a string which identifies the person responsible for managing the content of the
news feed. If this property is defined, it is typically the name and email address of the feed
editor. If an editor has not been specified, this member will be NULL.

lpszWebmaster

A pointer to a string which identifies the person responsible for technical issues related to the
news feed. If this property is defined, it is typically the name and email address of a system
administrator. If a webmaster has not been specified, this member will be NULL.

lpszGenerator

A pointer to a string which identifies the application that was used to create the news feed. If
the application that generated the feed has not been specified, this member will be NULL.

lpszImageLink

A pointer to a string which specifies a URL to the website corresponding to the channel. In most
cases, this is the same URL that is specified by the lpszLink member. If an image link has not
been specified, this member will be NULL.

lpszImageTitle

A pointer to a string which identifies the image associated with the channel. This is usually a
brief description of the image, and may be the same as the value specified by the lpszTitle
member. If an image title has not been specified, this member will be NULL.

lpszImageUrl

A pointer to a string which specifies a URL for the image associated with the channel. An
application can download this image and display it with the contents of the news feed. If an
image URL has not been specified, this member will be NULL.

stPublished

The date that the news feed was published. For example, a feed that is associated with a weekly
print publication may update this value once per week. Note that this is not necessarily the date

that the feed was last modified. If the channel does not specify the publish date, this structure
will contain all zeroes.

stLastBuild

The date that the content of the channel was last modified. If the channel does not specify the
build date, this structure will contain all zeroes.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RSSCHANNELITEM Structure

This structure contains information about the properties of an item in a news feed channel.

typedef struct _RSSCHANNELITEM
{
 UINT nItemId;
 DWORD dwFlags;
 DWORD dwReserved;
 LPCTSTR lpszTitle;
 LPCTSTR lpszLink;
 LPCTSTR lpszText;
 LPCTSTR lpszGuid;
 LPCTSTR lpszAuthor;
 LPCTSTR lpszSource;
 LPCTSTR lpszComments;
 LPCTSTR lpszEnclosure;
 SYSTEMTIME stPublished;
} RSSCHANNELITEM, *LPRSSCHANNELITEM;

Members
nItemId

An integer which identifies this item in the channel.

dwFlags

A value which specifies one or more option flags for the item. Currently there are no option
flags defined and this member is reserved for future expansion.

dwReserved

A value reserved for future expansion.

lpszTitle

A pointer to a string which specifies the title of the item. If a title for the item has not been
specified, this member will be NULL.

lpszLink

A pointer to a string which specifies a URL that typically links to additional information related to
the item. If a link for the item has not been specified, this member will be NULL.

lpszText

A pointer to a string which specifies a summary or description of the item. This may contain
either plain text or HTML formatted text, and there is no fixed limit to the length of the text. If no
text has been specified for the item, this member will be NULL.

lpszGuid

A pointer to a string which uniquely identifies the item in the channel. If this property is defined,
it is guaranteed to be a unique, persistent value. It is important to note that this string does not
have to be a standard GUID reference number, it can be any unique string. In many cases it is
the same value as the item hyperlink specified by the lpszLink member, although an application
should never depend on this behavior. If there is no unique identifier associated with the item,
this member will be NULL.

lpszAuthor

A pointer to a string which identifies the author of the item. If this property is defined, it is
typically the name and email address of the person who created the content that the item links
to. If the author is not specified, this member will be NULL.

lpszSource

A pointer to a string which identifies the source of the item, specified as a URL for the original
news feed that contained it. This typically used to propagate credit for items that are
aggregated by a third-party and re-published in their own channel. If the source is not
specified, this member will be NULL.

lpszComments

A pointer to a string which specifies a URL that links to further discussion about the item.
Typically this is a link to the comment area of a weblog or a forum topic specific to the item. If a
comment link is not specified, this member will be NULL.

lpszEnclosure

A pointer to a string which specifies a URL that links to a file related to the item. This is similar to
an attachment in an email message, however instead of the item containing the contents of the
attached file, it only specifies a link to the file. Enclosures are most commonly used with
podcasting where an item is linked to an audio or video file, however the link may reference any
type of file. If there is no enclosure specified for the item, this member will be NULL.

stPublished

The date that the item was published. If the item does not specify the publish date, this structure
will contain all zeroes.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SYSTEMTIME Structure

The SYSTEMTIME structure represents a date and time using individual members for the month,
day, year, weekday, hour, minute, second, and millisecond.

typedef struct _SYSTEMTIME
{
 WORD wYear;
 WORD wMonth;
 WORD wDayOfWeek;
 WORD wDay;
 WORD wHour;
 WORD wMinute;
 WORD wSecond;
 WORD wMilliseconds;
} SYSTEMTIME, *LPSYSTEMTIME;

Members
wYear

Specifies the current year. The year value must be greater than 1601.

wMonth

Specifies the current month. January is 1, February is 2 and so on.

wDayOfWeek

Specifies the current day of the week. Sunday is 0, Monday is 1 and so on.

wDay

Specifies the current day of the month

wHour

Specifies the current hour.

wMinute

Specifies the current minute

wSecond

Specifies the current second.

wMilliseconds

Specifies the current millisecond.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include windows.h.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Post Office Protocol Class Library

List and retrieve email messages from a mail server.

Reference

Class Methods
Data Structures
Error Codes

Library Information

Class Name CPopClient

File Name CSPOPV11.DLL

Version 11.0.2180.1635

LibID 445B1DC1-914F-473D-9648-82748F785587

Import Library CSPOPV11.LIB

Dependencies None

Standards RFC 1939

Overview
The Post Office Protocol (POP3) provides access to a user's new email messages on a mail server.
Functions are provided for listing available messages and then retrieving those messages, storing
them either in files or in memory. Once a user's messages have been downloaded to the local
system, they are typically removed from the server. This is the most popular email protocol used
by Internet Service Providers (ISPs) and the library provides a complete interface for managing a
user's mailbox. This library is typically used in conjunction with the Mail Message library, which is
used to process the messages that are retrieved from the server.

This library supports secure connections using the standard SSL and TLS protocols. Both implicit
and explicit SSL connections can be established, enabling the library to work with a wide variety of
servers.

Requirements
The SocketTools Library Edition libraries are compatible with any programming language which
supports calling functions exported from a standard dynamic link library (DLL). If you are using
Visual C++ 6.0 it is required that you have Service Pack 6 (SP6) installed. You should install all
updates for your development tools and have the current Windows SDK installed. The minimum
recommended version of Visual Studio is Visual Studio 2010.

This library is supported on Windows 7, Windows Server 2008 R2 and later versions of the desktop
and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1) installed as
a minimum requirement. It is recommended that you install the current service pack and all critical
updates available for your version of the operating system.

This product includes both 32-bit and 64-bit libraries. Native 64-bit CPU support requires the 64-
bit version of Windows 7 or later versions of the Windows operating system.

Distribution

When you distribute your application that uses this library, it is recommended that you install the
file in the same folder as your application executable. If you install the library into a shared location
on the system, it is important that you distribute the correct version for the target platform and it
should be registered as a shared DLL. This is a standard Windows dynamic link library, not an
ActiveX component, and does not require COM registration.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Post Office Protocol Class Methods

Class Description

CPopClient Constructor which initializes the current instance of the class

~CPopClient Destructor which releases resources allocated by the class

Method Description

AttachHandle Attach the specified client handle to this instance of the class

AttachThread Attach the specified client handle to another thread

Cancel Cancel the current blocking operation

ChangePassword Change the specified mail account password

Command Send a command to the server

Connect Connect to the specified server

CreateSecurityCredentials Allocate a structure to establish client security credentials

DeleteMessage Delete the specified message from the mailbox

DeleteSecurityCredentials Delete the specified client security credentials

DetachHandle Detach the handle for the current instance of this class

DisableEvents Disable the event notification mechanism

DisableTrace Disable logging of network function calls to the trace log

Disconnect Disconnect from the current server

EnableEvents Enable the client event notification mechanism

EnableTrace Enable logging of network function calls to a file

FreezeEvents Suspend and resume event handling by the client

GetErrorString Return a description for the specified error code

GetHandle Return the client handle used by this instance of the class

GetHeaderValue Return the value of the specified header field

GetLastError Return the last error code

GetMessage Retrieve the specified message from the server

GetMessageCount Return the number of messages available in the mailbox

GetMessageHeaders Retrieve the specified message header from the server

GetMessageId Return the message ID string for the specified message

GetMessageSender Return the address of the message sender

GetMessageSize Return the size of the specified message

GetMessageUID Return the unique identifier for the specified message

GetResultCode Return the result code from the previous command

GetResultString Return the result string from the previous command

GetSecurityInformation Return security information about the current client connection

GetStatus Return the current status of the client

GetTimeout Return the number of seconds until an operation times out

GetTransferStatus Return data transfer statistics

IsBlocking Determine if the client is blocked, waiting for information

IsConnected Determine if the client is connected to the server

IsInitialized Determine if the class has been successfully initialized

IsReadable Determine if data can be read from the server

IsWritable Determine if data can be written to the server

Login Login to the server

OpenMessage Open the specified message for reading on the server

PopEventProc Callback method that processes events generated by the client

Read Read data returned by the server

RegisterEvent Register an event handler for the specified event

Reset Reset the client and return to a command state

SendMessage Send a message through the mail server

SetLastError Set the last error code

SetTimeout Set the number of seconds until an operation times out

ShowError Display a message box with a description of the specified error

StoreMessage Store the contents of a message in the specified file

Write Write data to the server

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/pop3/class/popeventproc.html

 CPopClient::CPopClient Method

CPopClient();

The CPopClient constructor initializes the class library and validates the license key at runtime.

Remarks
If the constructor fails to validate the runtime license, subsequent methods in this class will fail. If
the product is installed with an evaluation license, then the application will only function on the
development system and cannot be redistributed.

The constructor calls the PopInitialize function to initialize the library, which dynamically loads
other system libraries and allocates thread local storage. If you are using this class within another
DLL, it is important that you do not create or destroy an instance of the class from within the
DllMain function because it can result in deadlocks or access violation errors. You should not
declare static or global instances of this class within another DLL if it is linked with the C runtime
library (CRT) because it will automatically call the constructors and destructors for static and global
C++ objects and has the same restrictions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
~CPopClient, IsInitialized

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CPopClient::~CPopClient

~CPopClient();

The CPopClient destructor releases resources allocated by the current instance of the CPopClient
object. It also uninitializes the library if there are no other concurrent uses of the class.

Remarks
When a CPopClient object goes out of scope, the destructor is automatically called to allow the
library to free any resources allocated on behalf of the process. Any pending blocking or
asynchronous calls in this process are canceled without posting any notification messages, and all
handles that were created for the client session are destroyed.

The destructor is not called explicitly by the application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CPopClient

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CPopClient::AttachHandle Method

VOID AttachHandle(
 HCLIENT hClient
);

The AttachHandle method attaches the specified client handle to the current instance of the
class.

Parameters
hClient

The handle to the client session that will be attached to the current instance of the class object.

Return Value
None.

Remarks
This method is used to attach a client handle created outside of the class using the SocketTools
API. Once the client handle is attached to the class, the other class member functions may be used
with that client session.

If a client handle already has been created for the class, that handle will be released when the new
handle is attached to the class object. If you want to prevent the previous client session from being
terminated, you must call the DetachHandle method. Failure to release the detached handle may
result in a resource leak in your application.

Note that the hClient parameter is presumed to be a valid client handle and no checks are
performed to ensure that the handle is valid. Specifying an invalid client handle will cause
subsequent method calls to fail.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
AttachThread, DetachHandle, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CPopClient::AttachThread Method

DWORD AttachThread(
 DWORD dwThreadId
);

The AttachThread method attaches the specified client handle to another thread.

Parameters
dwThreadId

The ID of the thread that will become the new owner of the handle. A value of zero specifies
that the current thread should become the owner of the client handle.

Return Value
If the method succeeds, the return value is the thread ID of the previous owner. If the method fails,
the return value is POP_ERROR. To get extended error information, call GetLastError.

Remarks
When a client handle is created, it is associated with the current thread that created it. Normally, if
another thread attempts to perform an operation using that handle, an error is returned since it
does not own the handle. This is used to ensure that other threads cannot interfere with an
operation being performed by the owner thread. In some cases, it may be desirable for one
thread in a client application to create the client handle, and then pass that handle to another
worker thread. The AttachThread method can be used to change the ownership of the handle to
the new worker thread. By preserving the return value from the method, the original owner of the
handle can be restored before the worker thread terminates.

This method should be called by the new thread immediately after it has been created, and if the
new thread does not release the handle itself, the ownership of the handle should be restored to
the parent thread before it terminates. Under no circumstances should AttachThread be used to
forcibly release a handle allocated by another thread while a blocking operation is in progress. To
cancel an operation, use the Cancel method and then release the handle after the blocking
method exits and control is returned to the current thread.

Note that the dwThreadId parameter is presumed to be a valid thread ID and no checks are
performed to ensure that the thread actually exists. Specifying an invalid thread ID will orphan the
client handle used by the class until the destructor is called.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
AttachHandle, Cancel, Connect, DetachHandle, Disconnect, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CPopClient::Cancel Method

INT Cancel();

The Cancel method cancels any outstanding blocking operation in the client, causing the blocking
method to fail. The application may then retry the operation or terminate the client session.

Parameters
None.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
POP_ERROR. To get extended error information, call GetLastError.

Remarks
When the Cancel method is called, the blocking method will not immediately fail. An internal flag
is set which causes the blocking operation to exit with an error. This means that the application
cannot cancel an operation and immediately perform some other operation. Instead it must allow
the calling stack to unwind, returning back to the blocking operation before making any further
function calls.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
IsBlocking

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CPopClient::ChangePassword Method

BOOL ChangePassword(
 LPCTSTR lpszUserName,
 LPCTSTR lpszOldPassword,
 LPCTSTR lpszNewPassword
);

The ChangePassword method changes the account password for the specified user.

Parameters
lpszUserName

Pointer to a string which specifies the user name of the account who's password will be
changed. It is not required that this be the same user name that was used to login to the mail
server.

lpszOldPassword

Pointer to a string which specifies the current account password.

lpszNewPassword

Pointer to a string which specifies the new account password. When the method returns, the
user's mailbox password will be set to this value.

Return Value
If the method succeeds, it will return a non-zero value. If the method fails, it will return zero. To
get extended error information, call GetLastError.

Remarks
The ChangePassword method is used to change the password associated with the specified
account on the server. The method establishes a connection to a separate service running on the
server, and does not use the POP3 protocol. For this method to succeed, the server must be
configured to allow password changes using the "poppass" service, running on port 106.

Because passwords are sent over the network as clear text, this service is considered to be
insecure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Connect, Login

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CPopClient::CloseMessage Method

INT CloseMessage(
 HCLIENT hClient
);

The CloseMessage method closes the current message that has been opened or created.

Parameters
hClient

Handle to the client session.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is POP_ERROR. To get extended error information, call GetLastError.

Remarks
If an message is being created, this method actually submits the message to the server. Note that
the client application is responsible for generating the message headers as well as the body of the
message. News messages conform to the same general characteristics of an email message.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
OpenMessage, Read

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CPopClient::Command Method

INT Command(
 LPCTSTR lpszCommand,
 LPCTSTR lpszParameter,
 BOOL bMultiLine
);

The Command method sends a command to the server, and returns the result code back to the
caller. This method is typically used for site-specific commands not directly supported by the class.

Parameters
lpszCommand

The command which will be executed by the server.

lpszParameter

An optional command parameter. If the command requires more than one parameter, then
they should be combined into a single string, with a space separating each parameter. If the
command does not accept any parameters, this value may be NULL.

bMultiLine

An optional boolean argument used to specify if multiple lines of data will be returned by the
server as the result of the command. Unlike a single line response, which consists of a result
code and result string, a multi-line response consists of one or more lines of text, terminated by
a special end-of-data marker. If this argument is omitted, bMultiLine is FALSE.

Return Value
If the method succeeds, the return value is the result code returned by the server. If the method
fails, the return value is POP_ERROR. To get extended error information, call GetLastError.

Remarks
A list of valid commands can be found in the technical specification for the protocol. Many servers
will list supported commands when the HELP command is used.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetResultCode, GetResultString

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CPopClient::Connect Method

BOOL Connect(
 LPCTSTR lpszRemoteHost,
 UINT nRemotePort,
 UINT nTimeout,
 DWORD dwOptions
);

The Connect method is used to establish a connection with the server.

Parameters
lpszRemoteHost

A pointer to the name of the server to connect to; this may be a fully-qualified domain name or
an IP address.

nRemotePort

The port number the server is listening on. A value of zero specifies that the default port
number should be used. For standard connections, the default port number is 110. For secure
connections, the default port number is 995. If the secure port number is specified, an implicit
SSL/TLS connection will be established by default.

nTimeout

The number of seconds that the client will wait for a response from the server before failing the
current operation.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

POP_OPTION_NONE No connection options specified. A standard
connection to the server will be established using
the specified host name and port number.

POP_OPTION_LINEBREAK Message data that is received from the server is
read as individual lines of text terminated by a
carriage return and linefeed control sequence. This
option can be useful for applications that need to
use the lower level network I/O functions and must
process the message text on a line-by-line basis.
This option is not recommended for most
applications because it can have a negative impact
on performance when retrieving large messages
from the server.

POP_OPTION_TUNNEL This option specifies that a tunneled TCP
connection and/or port-forwarding is being used
to establish the connection to the server. This
changes the behavior of the client with regards to
internal checks of the destination IP address and
remote port number, default capability selection
and how the connection is established.

POP_OPTION_TRUSTEDSITE This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option
only affects connections using either the SSL or TLS
protocols.

POP_OPTION_SECURE This option specifies that a secure connection
should be established with the server and requires
that the server support either the SSL or TLS
protocol. This option is the same as specifying
POP_OPTION_SECURE_EXPLICIT, which initiates
the secure session using the STLS command.

POP_OPTION_SECURE_EXPLICIT This option specifies the client should attempt to
establish a secure connection with the server. The
server must support secure connections using
either the SSL or TLS protocol and the STLS
command.

POP_OPTION_SECURE_IMPLICIT This option specifies the client should attempt to
establish a secure connection with the server. It
should only be used when the server expects an
implicit SSL connection or does not implement RFC
2595 where the STLS command is used to
negotiate a secure connection with the server.

POP_OPTION_SECURE_FALLBACK This option specifies the client should permit the
use of less secure cipher suites for compatibility
with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

POP_OPTION_PREFER_IPV6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be resolved
to both an IPv6 and IPv4 address. This option is
ignored if the local system does not have IPv6
enabled, or when the hostname can only be
resolved to an IPv4 address. If the server hostname
can only be resolved to an IPv6 address, the client
will attempt to establish a connection using IPv6
regardless if this option has been specified.

POP_OPTION_FREETHREAD This option specifies that this instance of the class
may be used by any thread, and is not limited to
the thread which created it. The application is
responsible for ensuring that access to the class
instance is synchronized across multiple threads.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks

This method will block the current thread until a connection has been established or the timeout
period has elapsed. To prevent it from blocking the main user interface thread, the application
should create a background worker thread and establish a connection by calling the Connect
method in that thread. If the application requires multiple simultaneous connections, it is
recommended you create a worker thread for each connection.

The dwOptions argument can be used to specify the threading model that is used by the library
when a connection is established. By default, the class instance is initially attached to the thread
that created it. From that point on, until the it is released, only the owner may call methods using
that instance of the class. The ownership of the class instance may be transferred from one thread
to another using the AttachThread method.

Specifying the POP_OPTION_FREETHREAD option enables any thread to call any method in that
instance of the class, regardless of which thread created it. It is important to note that this option
disables certain internal safety checks which are performed by the library and may result in
unexpected behavior unless access to the class instance is synchronized. If one thread calls a
function in the library, it must ensure that no other thread will call another function at the same
time using the same instance.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Disconnect, Login

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CPopClient::CreateSecurityCredentials Method

BOOL CreateSecurityCredentials(
 DWORD dwProtocol,
 DWORD dwOptions,
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword,
 LPCTSTR lpszCertStore,
 LPCTSTR lpszCertName
);

BOOL CreateSecurityCredentials(
 LPCTSTR lpszCertStore,
 LPCTSTR lpszCertName
);

BOOL CreateSecurityCredentials(
 LPCTSTR lpszCertName
);

The CreateSecurityCredentials method establishes the security credentials for the client session.

Parameters
dwProtocol

A bitmask of supported security protocols. This parameter is constructed by using a bitwise
operator with any of the following values:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The
correct protocol is automatically selected, based on
what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.

This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is
supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

dwOptions

A value which specifies one or options. This member is constructed by using a bitwise operator
with any of the following values:

Constant Description

CREDENTIAL_STORE_CURRENT_USER The library will attempt to open a store for
the current user using the certificate store
name provided in this structure. If no options
are specified, then this is the default
behavior.

CREDENTIAL_STORE_LOCAL_MACHINE The library will attempt to open a local
machine store using the certificate store
name provided in this structure. If this option
is specified, the library will always search for a
local machine store before searching for the

store by that name for the current user.

CREDENTIAL_STORE_FILENAME The certificate store name is a file that
contains the certificate and private key that
will be used.

lpszUserName

A pointer to a string which specifies the certificate owner's username. A value of NULL specifies
that no username is required. Currently this parameter is not used and any value specified will
be ignored.

lpszPassword

A pointer to a string which specifies the certificate owner's password. A value of NULL specifies
that no password is required. This parameter is only used if a PKCS #12 (PFX) certificate file is
specified and that certificate has been secured with a password. This value will be ignored the
current user or local machine certificate store is specified.

lpszCertStore

A pointer to a string which specifies the name of the certificate store to open. A certificate store
is a collection of certificates and their private keys, typically organized by how they are used. If
this value is NULL or points to an empty string, the default certificate store "MY" will be used.

Store Name Description

CA Certification authority certificates. These are certificates that are issued by
entities which are entrusted to issue certificates to other individuals or
organizations. Companies such as VeriSign and Thawte act as
certification authorities.

MY Personal certificates and their associated private keys for the current user.
This store typically holds the client certificates used to establish a user's
credentials. This corresponds to the "Personal" store that is displayed by
the certificate manager utility and is the default store used by the library.

ROOT Certificates that have been self-signed by a certificate authority. Root
certificates for a number of different certification authorities such as
VeriSign and Thawte are installed as part of the operating system and
periodically updated by Microsoft.

lpszCertName

A pointer to a null terminated string which specifies the name of the certificate to use. The
function will first search the certificate store for a certificate with a matching "friendly name"; this
is a name for the certificate that is assigned by the user. Note that the name must match
completely, but the comparison is not case sensitive. If no matching certificate is found, the
function will then attempt to find a certificate that has a matching common name (also called
the certificate subject). This comparison is less stringent, and the first partial match will be
returned. If this second search fails, the function will return an error indicating that the certificate
could not be found.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Example

pClient->CreateSecurityCredentials(
 SECURITY_PROTOCOL_DEFAULT,
 0,
 NULL,
 NULL,
 lpszCertStore,
 lpszCertName);

bConnected = pClient->Connect(lpszHostName,
 POP_PORT_SECURE,
 POP_TIMEOUT,
 POP_OPTION_SECURE);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Connect, DeleteSecurityCredentials, GetSecurityInformation, SECURITYCREDENTIALS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CPopClient::DeleteMessage Method

INT DeleteMessage(
 UINT nMessage
);

The DeleteMessage method marks the specified message for deletion from the mailbox.

Parameters
nMessage

Number of message to delete from the server. This value must be greater than zero. The first
message in the mailbox is message number one.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
POP_ERROR. To get extended error information, call GetLastError.

Remarks
This method only marks the message for deletion. The message is not actually deleted until the
user disconnects from the server. To prevent one or more marked messages from actually being
deleted from the mailbox, call the Reset method to reset the client session.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetMessage, GetMessageCount, Reset

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CPopClient::DeleteSecurityCredentials Method

VOID DeleteSecurityCredentials();

The DeleteSecurityCredentials method releases the security credentials for the current session.

Parameters
None.

Return Value
None.

Remarks
This method can be used to release the memory allocated to the client or server credentials after
a secure connection has been terminated. The security credentials are released when the class
destructor is called, so it is normally not required that the application explicitly call this method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CreateSecurityCredentials

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CPopClient::DetachHandle Method

HCLIENT DetachHandle();

The DetachHandle method detaches the client handle associated with the current instance of the
class.

Parameters
None.

Return Value
This method returns the client handle associated with the current instance of the class object. If
there is no active client session, the value INVALID_CLIENT will be returned.

Remarks
This method is used to detach a client handle created by the class for use with the SocketTools
API. Once the client handle is detached from the class, no other class member functions may be
called. Note that the handle must be explicitly released at some later point by the process or a
resource leak will occur.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
AttachHandle, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CPopClient::DisableEvents Method

INT DisableEvents();

The DisableEvents method disables the event notification mechanism, preventing subsequent
event notification messages from being posted to the application's message queue.

This method has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Parameters
None.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
POP_ERROR. To get extended error information, call GetLastError.

Remarks
The DisableEvents method is used to disable event message posting for the specified client
session. Although this will immediately prevent any new events from being generated, it is possible
that messages could be waiting in the message queue. Therefore, an application must be
prepared to handle client event messages after this method has been called.

This method is automatically called if the client has event notification enabled, and the Disconnect
method is called. The same issues regarding outstanding event messages also applies in this
situation, requiring that the application handle event messages that may reference a client handle
that is no longer valid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
EnableEvents, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CPopClient::DisableTrace Method

BOOL DisableTrace();

The DisableTrace method disables the logging of socket function calls to the trace log.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, a value of zero is
returned.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
EnableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CPopClient::Disconnect Method

VOID Disconnect();

The Disconnect method terminates the connection with the server, closing the socket and
releasing the memory allocated for the client session.

Parameters
None.

Return Value
None.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
Connect, IsConnected

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CPopClient::EnableEvents Method

INT EnableEvents(
 HWND hEventWnd,
 UINT uEventMsg
);

The EnableEvents method enables event notifications using Windows messages.

This method has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Applications should use the RegisterEvent method to register an event handler which is invoked
when an event occurs.

Parameters
hEventWnd

Handle to the window which will receive the client notification messages. This parameter must
specify a valid window handle. If a NULL handle is specified, event notification will be disabled.

uEventMsg

The message that is received when a client event occurs. This value must be greater than 1024.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
POP_ERROR. To get extended error information, call GetLastError.

Remarks
The EnableEvents method is used to request that notification messages be posted to the
specified window whenever a client event occurs. This allows an application to monitor the status
of different client operations, such as a file transfer.

The wParam argument will contain the client handle, the low word of the lParam argument will
contain the event ID, and the high word will contain any error code. If no error has occurred, the
high word will always have a value of zero. The following events may be generated:

Constant Description

POP_EVENT_CONNECT The connection to the server has completed. The high word of the
lParam parameter should be checked, since this notification
message will be posted if an error has occurred.

POP_EVENT_DISCONNECT The server has closed the connection to the client. The client
should read any remaining data and disconnect.

POP_EVENT_READ Data is available to read by the calling process. No additional
messages will be posted until the client has read at least some of
the data. This event is only generated if the client is in
asynchronous mode.

POP_EVENT_WRITE The client can now write data. This notification is sent after a
connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking

operation. This event is only generated if the client is in
asynchronous mode.

POP_EVENT_TIMEOUT The network operation has exceeded the specified timeout period.
The client application may attempt to retry the operation, or may
disconnect from the server and report an error to the user.

POP_EVENT_CANCEL The current operation has been canceled. Under most
circumstances the client should disconnect from the server and re-
connect if needed. After an operation has been canceled, the
server may abort the connection or refuse to accept further
commands from the client.

POP_EVENT_COMMAND A command has been issued by the client and the server response
has been received and processed. This event can be used to log
the result codes and messages returned by the server in response
to actions taken by the client.

POP_EVENT_PROGRESS The client is in the process of sending or receiving a file on the
data channel. This event is called periodically during a transfer so
that the client can update any user interface components such as a
status control or progress bar.

It is not required that the client be placed in asynchronous mode in order to receive command
and progress event notifications. To disable event notification, call the DisableEvents method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
DisableEvents, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CPopClient::EnableTrace Method

BOOL EnableTrace(
 LPCTSTR lpszTraceFile,
 DWORD dwTraceFlags
);

The EnableTrace method enables the logging of socket function calls to a file.

Parameters
lpszTraceFile

A pointer to a string which specifies the name of the trace log file. If this parameter is NULL or
an empty string, the default file name cstrace.log is used. The file is stored in the directory
specified by the TEMP environment variable, if it is defined; otherwise, the current working
directory is used.

dwTraceFlags

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

TRACE_INFO All function calls are written to the trace file. This is the default
value.

TRACE_ERROR Only those function calls which fail are recorded in the trace file.

TRACE_WARNING Only those function calls which fail or return values which indicate
a warning are recorded in the trace file.

TRACE_HEXDUMP All functions calls are written to the trace file, plus all the data that
is sent or received is displayed, in both ASCII and hexadecimal
format.

TRACE_PROCESS All function calls in the current process are logged, rather than
only those functions in the current thread. This option is useful for
multithreaded applications that are using worker threads.

Return Value
If the method succeeds, the return value is non-zero. A return value of zero indicates an error.
Failure typically indicates that the tracing library cstrcv11.dll cannot be loaded on the local
system.

Remarks
When trace logging is enabled, the file is opened, appended to and closed for each socket
function call. This makes it possible for an application to append its own logging information,
however care should be taken to ensure that the file is closed before the next network operation is
performed. To limit the size of the log files, enable and disable logging only around those sections
of code that you wish to trace.

Note that the TRACE_HEXDUMP trace level generates very large log files since it includes all of the
data exchanged between your application and the server.

Trace method logging is managed on a per-thread basis, not for each client handle. This means
that all SocketTools libraries and components share the same settings in the current thread. If you

are using multiple SocketTools libraries or components in your application, you only need to
enable logging once.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DisableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CPopClient::FreezeEvents Method

INT FreezeEvents(
 BOOL bFreeze
);

The FreezeEvents method is used to suspend and resume event handling by the client.

Parameters
bFreeze

A non-zero value specifies that event handling should be suspended by the client. A zero value
specifies that event handling should be resumed.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
POP_ERROR. To get extended error information, call GetLastError.

Remarks
This method should be used when the application does not want to process events, such as when
a modal dialog is being displayed. When events are suspended, all client events are queued. If
events are re-enabled at a later point, those queued events will be sent to the application for
processing. Note that only one of each event will be generated. For example, if the client has
suspended event handling, and four read events occur, once event handling is resumed only one
of those read events will be posted to the client. This prevents the application from being flooded
by a potentially large number of queued events.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DisableEvents, EnableEvents, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CPopClient::GetErrorString Method

INT GetErrorString(
 DWORD dwErrorCode,
 LPTSTR lpszDescription,
 INT cbDescription
);

INT GetErrorString(
 DWORD dwErrorCode,
 CString& strDescription
);

The GetErrorString method is used to return a description of a specific error code. Typically this is
used in conjunction with the GetLastError method for use with warning dialogs or as diagnostic
messages.

Parameters
dwErrorCode

The error code for which a description is returned.

lpszDescription

A pointer to the buffer that will contain a description of the specified error code. This buffer
should be at least 128 characters in length. An alternate form of the method accepts a CString
variable which will contain the error description.

cbDescription

The maximum number of characters that may be copied into the description buffer.

Return Value
If the method succeeds, the return value is the length of the description string. If the method fails,
the return value is zero, meaning that no description exists for the specified error code. Typically
this indicates that the error code passed to the method is invalid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetLastError, SetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CPopClient::GetHandle Method

HCLIENT GetHandle();

The GetHandle method returns the client handle associated with the current instance of the class.

Parameters
None.

Return Value
This method returns the client handle associated with the current instance of the class object. If
there is no active client session, the value INVALID_CLIENT will be returned.

Remarks
This method is used to obtain the client handle created by the class for use with the SocketTools
API.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
AttachHandle, DetachHandle, IsInitialized

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CPopClient::GetHeaderValue Method

INT GetHeaderValue(
 UINT nMessageId,
 LPCTSTR lpszHeader,
 LPTSTR lpszValue,
 INT nMaxLength
);

INT GetHeaderValue(
 UINT nMessageId,
 LPCTSTR lpszHeader,
 CString& strValue
);

The GetHeaderValue method returns the value of a header field in the specified message.

Parameters
nMessageId

Number of message to retrieve header value from. This value must be greater than zero. The
first message in the mailbox is message number one.

lpszHeader

Pointer to a string which specifies the message header to retrieve. The colon should not be
included in this string.

lpszValue

Pointer to a string buffer that will contain the value of the specified message header.

nMaxLength

The maximum number of characters that may be copied into the buffer, including the
terminating null character.

Return Value
If the method succeeds, the method returns the length of the header field value. If the header field
is not present in the message, the method will return a value of zero. If the method fails, the return
value is POP_ERROR. To get extended error information, call GetLastError.

Remarks
The GetHeaderValue method returns the value of a header field from the specified message. This
allows an application to be able to easily determine the value of a header (such as the sender, or
the subject of the message) without downloading the entire message header and parsing the
contents.

This method uses the XTND XLST command, which is an extension to the POP3 protocol. If this
command is not supported by the server, the method will attempt to retrieve the entire message
header and return the value for the specified header field. This enables an application to use this
method even if the server does not support command extensions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

Unicode: Implemented as Unicode and ANSI versions.

See Also
GetMessageHeaders, GetMessageId, GetMessageSender

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CPopClient::GetLastError Method

DWORD GetLastError();

DWORD GetLastError(
 CString& strDescription
);

Parameters
strDescription

A string which will contain a description of the last error code value when the method returns. If
no error has been set, or the last error code has been cleared, this string will be empty.

Return Value
The return value is the last error code value for the current thread. Functions set this value by
calling the SetLastError method. The Return Value section of each reference page notes the
conditions under which the method sets the last error code.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. You should call
the GetLastError method immediately when a method's return value indicates that an error has
occurred. That is because some methods call SetLastError(0) when they succeed, clearing the
error code set by the most recently failed method.

Most methods will set the last error code value when they fail; a few methods set it when they
succeed. Function failure is typically indicated by a return value such as FALSE, NULL,
INVALID_CLIENT or POP_ERROR. Those methods which call SetLastError when they succeed are
noted on the method reference page.

The description of the error code is the same string that is returned by the GetErrorString
method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
GetErrorString, SetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CPopClient::GetMessage Method

INT GetMessage(
 LONG nMessageId,
 LPBYTE lpBuffer,
 LPDWORD lpdwLength
);

INT GetMessage(
 LONG nMessageId,
 HGLOBAL* lpBuffer,
 LPDWORD lpdwLength
);

INT GetMessage(
 LONG nMessageId,
 CString& strBuffer
);

The GetMessage method retrieves the specified message and copies the contents to a local
buffer.

Parameters
nMessageId

Number of message to retrieve from the server. This value must be greater than zero.

lpBuffer

A pointer to a byte buffer which will contain the data transferred from the server, or a pointer to
a global memory handle which will reference the data when the method returns.

lpdwLength

A pointer to an unsigned integer which should be initialized to the maximum number of bytes
that can be copied to the buffer specified by the lpBuffer parameter. If the lpBuffer parameter
points to a global memory handle, the length value should be initialized to zero. When the
method returns, this value will be updated with the actual length of the file that was
downloaded.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is POP_ERROR. To get extended error information, call GetLastError.

Remarks
The GetMessage method is used to retrieve an message from the server and copy it into a local
buffer. The method may be used in one of two ways, depending on the needs of the application.
The first method is to pre-allocate a buffer large enough to store the contents of the message. In
this case, the lpBuffer parameter will point to the buffer that was allocated, the value that the
lpdwLength parameter points to should be initialized to the size of that buffer.

The second method that can be used is have the lpBuffer parameter point to a global memory
handle which will contain the message data when the method returns. In this case, the value that
the lpdwLength parameter points to must be initialized to zero. It is important to note that the
memory handle returned by the method must be freed by the application, otherwise a memory
leak will occur. See the example code below.

This method will cause the current thread to block until the complete message has been retrieved,

a timeout occurs or the operation is canceled. During the transfer, the POP_EVENT_PROGRESS
event will be periodically fired, enabling the application to update any user interface controls.
Event notification must be enabled, either by calling EnableEvents, or by registering a callback
function using the RegisterEvent method.

To determine the current status of a transfer while it is in progress, use the GetTransferStatus
method.

Example
HGLOBAL hgblBuffer = (HGLOBAL)NULL;
LPBYTE lpBuffer = (LPBYTE)NULL;
DWORD cbBuffer = 0;

// Return the message into block of global memory allocated by
// the GlobalAlloc function; the handle to this memory will be
// returned in the hgblBuffer parameter
nResult = pClient->GetMessage(nMessageId, &hgblBuffer, &cbBuffer);

if (nResult != POP_ERROR)
{
 // Lock the global memory handle, returning a pointer to the
 // message text
 lpBuffer = (LPBYTE)GlobalLock(hgblBuffer);

 // After the data has been used, the handle must be unlocked
 // and freed, otherwise a memory leak will occur
 GlobalUnlock(hgblBuffer);
 GlobalFree(hgblBuffer);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
EnableEvents, GetMessageHeaders, GetTransferStatus, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CPopClient::GetMessageCount Method

INT GetMessageCount(
 UINT *lpnLastMessage,
 DWORD *lpdwMailboxSize
);

The GetMessageCount method returns the number of messages available in the mailbox, the last
valid message number in the mailbox and the current size of the mailbox in bytes.

Parameters
lpnLastMessage

Address of a variable that receives the number of the last valid message in the mailbox. If a
NULL value is specified, this argument is ignored.

lpdwMailboxSize

Address of a variable that receives the current size of the mailbox. This value will decrease as
messages are deleted. If a NULL value is specified, this argument is ignored.

Return Value
If the method succeeds, it returns the number of messages that are currently available. If no
messages are available, either because the mailbox is empty or all of the messages have been
deleted, this method will return zero. If the method fails, the return value is POP_ERROR. To get
extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
DeleteMessage, GetHeaderValue, GetMessage, GetMessageHeaders, StoreMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CPopClient::GetMessageHeaders Method

INT GetMessageHeaders(
 LONG nMessageId,
 LPBYTE lpHeaders,
 LPDWORD lpdwLength
);

INT GetMessageHeaders(
 LONG nMessageId,
 HGLOBAL* lpHeaders,
 LPDWORD lpdwLength
);

INT GetMessageHeaders(
 LONG nMessageId,
 CString& strHeaders
);

The GetMessageHeaders method retrieves the headers for the specified message from the
server.

Parameters
nMessageId

Number of message to retrieve from the server. This value must be greater than zero.

lpHeaders

A pointer to a byte buffer which will contain the data transferred from the server, or a pointer to
a global memory handle which will reference the data when the method returns.

lpdwLength

A pointer to an unsigned integer which should be initialized to the maximum number of bytes
that can be copied to the buffer specified by the lpHeaders parameter. If the lpHeaders
parameter points to a global memory handle, the length value should be initialized to zero.
When the method returns, this value will be updated with the actual length of the message that
was downloaded.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
POP_ERROR. To get extended error information, call GetLastError.

Remarks
The GetMessageHeaders method is used to retrieve an message header block from the server
and copy it into a local buffer. The method may be used in one of two ways, depending on the
needs of the application. The first method is to pre-allocate a buffer large enough to store the
contents of the file. In this case, the lpHeaders parameter will point to the buffer that was
allocated, the value that the lpdwLength parameter points to should be initialized to the size of
that buffer.

The second method that can be used is have the lpHeaders parameter point to a global memory
handle which will contain the message headers when the method returns. In this case, the value
that the lpdwLength parameter points to must be initialized to zero. It is important to note that
the memory handle returned by the method must be freed by the application, otherwise a
memory leak will occur.

This method will cause the current thread to block until the transfer completes, a timeout occurs
or the transfer is canceled. During the transfer, the POP_EVENT_PROGRESS event will be
periodically fired, enabling the application to update any user interface controls. Event notification
must be enabled, either by calling EnableEvents, or by registering a callback function using the
RegisterEvent method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
GetHeaderValue, GetMessage, GetMessageId, OpenMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CPopClient::GetMessageId Method

INT GetMessageId(
 UINT nMessageId,
 LPTSTR lpszMessageId,
 INT nMaxLength
);

INT GetMessageId(
 UINT nMessageId,
 CString& strMessageId
);

The GetMessageId method returns the message identifier for the specified message.

Parameters
nMessageId

Number of message to retrieve the unique identifier for. This value must be greater than zero.
The first message in the mailbox is message number one.

lpszMessageId

Address of a string buffer to receive the message identifier. This should be at least 64 bytes in
length. This argument may also be a CString object which will contain the message identifier
when the method returns.

nMaxLength

The maximum length of the string buffer.

Return Value
If the method succeeds, the return value is the length of the unique identifier string. If the method
fails, the return value is POP_ERROR. To get extended error information, call GetLastError.

Remarks
The GetMessageId method returns the message identifier from the Message-ID header of the
specified message. The returned value is a typically a string which specifies the domain, date and
timestamp for the message that is created when the message is submitted to the mail server for
delivery. To obtain a unique identifier for the message in the mailbox, it is recommended that you
use the GetMessageUID method instead.

This method uses the XTND XLST command to obtain the value of the "Message-ID" header field.
If this command is not supported by the server, the method will attempt to retrieve the entire
message header and return the header value . This enables an application to use this method
even if the server does not support command extensions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetHeaderValue, GetMessage, GetMessageHeaders, GetMessageSender, GetMessageUID

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CPopClient::GetMessageSender Method

INT GetMessageSender(
 UINT nMessageId,
 LPTSTR lpszAddress,
 INT nMaxLength
);

INT GetMessageSender(
 UINT nMessageId,
 CString& strAddress
);

The GetMessageSender method returns the sender's address for the specified message.

Parameters
nMessageId

Number of message to retrieve header value from. This value must be greater than zero. The
first message in the mailbox is message number one.

lpszAddress

Pointer to a string buffer that will contain the address of the message sender. This argument
may also be a CString object which will contain the address when the method returns.

nMaxLength

The maximum number of characters that may be copied into the buffer, including the
terminating null character.

Return Value
If the method succeeds, the method returns the length of the address. If the sender cannot be
determined, the method will return a value of zero. If the method fails, the return value is
POP_ERROR. To get extended error information, call GetLastError.

Remarks
The GetMessageSender method returns the email address of the user who sent the specified
message. This allows an application to be able to easily determine the sender, without
downloading the entire header block or contents of the message.

This method uses the XSENDER command, which is an extension to the POP3 protocol, to
determine the address of the authenticated sender of the message. If the command is not
supported, or the server was unable to authenticate the sender, the method will use the XTND
XLST command to obtain the value of the "From" header field. If this command is not supported
by the server, the method will attempt to retrieve the entire message header and return the value
for the specified header field. This enables an application to use this method even if the server
does not support command extensions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetHeaderValue, GetMessageHeaders, GetMessageId, GetMessageUID

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CPopClient::GetMessageSize Method

DWORD GetMessageSize(
 UINT nMessageId
);

The GetMessageSize method returns the size of the specified message.

Parameters
nMessageId

Number of message to retrieve size of. This value must be greater than zero. The first message
in the mailbox is message number one.

Return Value
If the method succeeds, the return value is the size of the specified message in bytes. If the
method fails, the return value is POP_ERROR. To get extended error information, call
GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
GetHeaderValue, GetMessageHeaders, GetMessageId, GetMessageSender, GetTransferStatus

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CPopClient::GetMessageUID Method

INT GetMessageUID(
 UINT nMessageId,
 LPTSTR lpszMessageUID,
 INT nMaxLength
);

INT GetMessageUID(
 UINT nMessageId,
 CString& strMessageUID
);

The GetMessageUID method returns the unique identifier (UID) for the specified message in the
current mailbox.

Parameters
nMessageId

Number of message to retrieve the unique identifier for. This value must be greater than zero.
The first message in the mailbox is message number one.

lpszMessageUID

Address of a string buffer to receive the unique identifier for the specified message. This should
be at least 64 bytes in length. This argument may also be a CString object which will contain
the UID string when the method returns.

nMaxLength

The maximum length of the string buffer for the message UID.

Return Value
If the method succeeds, it returns a non-zero value. If no unique identifier is assigned to the
message, the method will return zero. If an error occurs, the method returns POP_ERROR. To get
extended error information, call GetLastError.

Remarks
The GetMessageUID method returns the unique message identifier for the specified message.
The returned value is a string which can be used to uniquely identify a specific message in the
mailbox across multiple client sessions. This is commonly used by mail clients to determine if they
have already retrieved a message from the server in a previous session. The UID can also be used
as a key or component of the file name to reference the message after it has been stored on the
local system.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
GetHeaderValue, GetMessage, GetMessageHeaders, GetMessageId, GetMessageSender

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CPopClient::GetResultCode Method

BOOL GetResultCode();

The GetResultCode method reads the result code returned by the server in response to a
command. The result code is a boolean value, and indicates if the operation succeeded or failed.

Parameters
None.

Return Value
If the previous command was successful, the function returns a non-zero value. If the previous
command failed, the function returns zero. To get extended error information, call GetLastError.

Remarks
Unlike most other Internet application protocols, the Post Office Protocol does not return numeric
result codes to indicate success or failure. If a command is successful, the server will respond with
the string "+OK" and this is indicated by the GetResultCode method returning a non-zero value.
If the command fails, the server will respond with the string "-ERR" along with a description of the
error, and this is indicated by the method returning a value of zero. The description of the error
returned by the server can be obtained by calling the GetResultString method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
Command, GetResultString

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CPopClient::GetResultString Method

INT GetResultString(
 LPTSTR lpszResult,
 INT cbResult
);

INT GetResultString(
 CString& strResult
);

The GetResultString method returns the last message sent by the server along with the result
code.

Parameters
lpszResult

A pointer to the buffer that will contain the result string returned by the server. An alternate
form of the method accepts a CString argument which will contain the result string returned by
the server.

cbResult

The maximum number of characters that may be copied into the result string buffer, including
the terminating null character.

Return Value
If the method succeeds, the return value is the length of the result string. If a value of zero is
returned, this means that no result string was sent by the server. If the method fails, the return
value is POP_ERROR. To get extended error information, call GetLastError.

Remarks
The GetResultString method is most useful when an error occurs because the server will typically
include a brief description of the cause of the error. This can then be parsed by the application or
displayed to the user. The result string is updated each time the client sends a command to the
server and then calls GetResultCode to obtain the result code for the operation.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Command, GetResultCode

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CPopClient::GetSecurityInformation Method

BOOL GetSecurityInformation(
 LPSECURITYINFO lpSecurityInfo
);

The GetSecurityInformation method returns security protocol, encryption and certificate
information about the current client connection.

Parameters
lpSecurityInfo

A pointer to a SECURITYINFO structure which contains information about the current client
connection. The dwSize member of this structure must be initialized to the size of the structure
before passing the address of the structure to this method.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
This method is used to obtain security related information about the current client connection to
the server. It can be used to determine if a secure connection has been established, what security
protocol was selected, and information about the server certificate. Note that a secure connection
has not been established, the dwProtocol structure member will contain the value
SECURITY_PROTOCOL_NONE.

Example
The following example notifies the user if the connection is secure or not:

SECURITYINFO securityInfo;
securityInfo.dwSize = sizeof(SECURITYINFO);

if (pClient->GetSecurityInformation(&securityInfo))
{
 if (securityInfo.dwProtocol == SECURITY_PROTOCOL_NONE)
 {
 MessageBox(NULL, _T("The connection is not secure"),
 _T("Connection"), MB_OK);
 }
 else
 {
 if (securityInfo.dwCertStatus == SECURITY_CERTIFICATE_VALID)
 {
 MessageBox(NULL, _T("The connection is secure"),
 _T("Connection"), MB_OK);
 }
 else
 {
 MessageBox(NULL, _T("The server certificate not valid"),
 _T("Connection"), MB_OK);
 }
 }
}

Requirements

Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Connect, CreateSecurityCredentials, SECURITYINFO

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CPopClient::GetStatus Method

INT GetStatus();

The GetStatus method the current status of the client session.

Parameters
None.

Return Value
If the method succeeds, the return value is the client status code. If the method fails, the return
value is POP_ERROR. To get extended error information, call GetLastError.

Remarks
The GetStatus method returns a numeric code which identifies the current state of the client
session. The following values may be returned:

Value Constant Description

0 POP_STATUS_UNUSED No connection has been established.

1 POP_STATUS_IDLE The client is current idle and not sending or
receiving data.

2 POP_STATUS_CONNECT The client is establishing a connection with the
server.

3 POP_STATUS_READ The client is reading data from the server.

4 POP_STATUS_WRITE The client is writing data to the server.

5 POP_STATUS_DISCONNECT The client is disconnecting from the server.

In a multithreaded application, any thread in the current process may call this method to obtain
status information for the specified client session.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
IsBlocking, IsConnected, IsReadable, IsWritable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CPopClient::GetTimeout Method

INT GetTimeout();

The GetTimeout method returns the number of seconds the client will wait for a response from
the server. Once the specified number of seconds has elapsed, the method will fail and return to
the caller.

Parameters
None.

Return Value
If the method succeeds, the return value is the timeout period in seconds. If the method fails, the
return value is POP_ERROR. To get extended error information, call GetLastError.

Remarks
The timeout value is only used with blocking client connections. A value of zero indicates that the
default timeout period of 20 seconds should be used.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
Connect, IsReadable, IsWritable, Read, SetTimeout, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CPopClient::GetTransferStatus Method

INT GetTransferStatus(
 LPPOPTRANSFERSTATUS lpStatus
);

The GetTransferStatus method returns information about the current file transfer in progress.

Parameters
lpStatus

A pointer to an POPTRANSFERSTATUS structure which contains information about the status of
the current file transfer.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
POP_ERROR. To get extended error information, call GetLastError.

Remarks
The GetTransferStatus method returns information about the current file transfer, including the
average number of bytes transferred per second and the estimated amount of time until the
transfer completes. If there is no file currently being transferred, this method will return the status
of the last successful transfer made by the client.

In a multithreaded application, any thread in the current process may call this method to obtain
status information for the specified client session.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
EnableEvents, GetStatus, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CPopClient::IsBlocking Method

BOOL IsBlocking();

The IsBlocking method is used to determine if the client is currently performing a blocking
operation.

Parameters
None.

Return Value
If the client is performing a blocking operation, the method returns a non-zero value. If the client
is not performing a blocking operation, or the client handle is invalid, the method returns zero.

Remarks
Because a blocking operation can allow the application to be re-entered (for example, by pressing
a button while the operation is being performed), it is possible that another blocking method may
be called while it is in progress. Since only one thread of execution may perform a blocking
operation at any one time, an error would occur. The IsBlocking method can be used to
determine if the client is already blocked, and if so, take some other action (such as warning the
user that they must wait for the operation to complete).

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Cancel, GetStatus, IsConnected, IsInitialized, IsReadable, IsWritable, Read, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CPopClient::IsConnected Method

BOOL IsConnected();

The IsConnected method is used to determine if the client is currently connected to a server.

Parameters
None.

Return Value
If the client is connected to a server, the method returns a non-zero value. If the client is not
connected, or the client handle is invalid, the method returns zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
GetStatus, IsBlocking, IsInitialized, IsReadable, IsWritable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CPopClient::IsInitialized Method

BOOL IsInitialized();

The IsInitialized method returns whether or not the class object has been successfully initialized.

Parameters
None.

Return Value
This method returns a non-zero value if the class object has been successfully initialized. A return
value of zero indicates that the runtime license key could not be validated or the networking
library could not be loaded by the current process.

Remarks
When an instance of the class is created, the class constructor will attempt to initialize the
component with the runtime license key that was created when SocketTools was installed. If the
constructor is unable to validate the license key or load the networking libraries, this initialization
will fail.

If SocketTools was installed with an evaluation license, the application cannot be redistributed to
another system. The class object will fail to initialize if the application is executed on another
system, or if the evaluation period has expired. To redistribute your application, you must
purchase a development license which will include the runtime key that is needed to redistribute
your software to other systems. Refer to the Developer's Guide for more information.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
CPopClient, IsBlocking, IsConnected

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CPopClient::IsReadable Method

BOOL IsReadable(
 INT nTimeout,
 LPDWORD lpdwAvail
);

The IsReadable method is used to determine if data is available to be read from the server.

Parameters
nTimeout

Timeout for server response, in seconds. A value of zero specifies that the connection should be
polled without blocking the current thread.

lpdwAvail

A pointer to an unsigned integer which will contain the number of bytes available to read. This
parameter may be NULL if this information is not required.

Return Value
If the client can read data from the server within the specified timeout period, the method returns
a non-zero value. If the client cannot read any data, the method returns zero.

Remarks
On some platforms, this value will not exceed the size of the receive buffer (typically 64K bytes).
Because of differences between TCP/IP stack implementations, it is not recommended that your
application exclusively depend on this value to determine the exact number of bytes available.
Instead, it should be used as a general indicator that there is data available to be read.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
GetStatus, IsBlocking, IsConnected, IsInitialized, IsWritable, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CPopClient::IsWritable Method

BOOL IsWritable(
 INT nTimeout
);

The IsWritable method is used to determine if data can be written to the server.

Parameters
nTimeout

Timeout for server response, in seconds. A value of zero specifies that the connection should be
polled without blocking the current thread.

Return Value
If the client can write data to the server within the specified timeout period, the method returns a
non-zero value. If the client cannot write any data, the method returns zero.

Remarks
Although this method can be used to determine if some amount of data can be sent to the
remote process it does not indicate the amount of data that can be written without blocking the
client. In most cases, it is recommended that large amounts of data be broken into smaller logical
blocks, typically some multiple of 512 bytes in length.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
GetStatus, IsBlocking, IsConnected, IsInitialized, IsReadable, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CPopClient::Login Method

INT Login(
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword,
 UINT nAuthType
);

The Login method authenticates the specified user in on the server. This method must be called
after the connection has been established, and before attempting to retrieve messages or perform
any other method on the server.

Parameters
lpszUserName

A null terminated string which specifies the user name to be used to authenticate the current
client session. For many service providers, the user name is the full email address of the user
which owns the mailbox. In some cases, this may only be the portion of their email address
before the domain name.

lpszPassword

A null terminated string which specifies the password to be used when authenticating the
current client session. If you are using the POP_AUTH_XOAUTH2 or POP_AUTH_BEARER
authentication methods, this parameter is not a password, instead it specifies the OAuth 2.0
bearer token provided by the mail service.

nAuthType

Identifies the type of authentication that should be used when the client logs in to the mail
server. The following authentication methods are supported:

Constant Description

POP_AUTH_DEFAULT The default authentication scheme which sends the username
and password as cleartext to the server. Because the user
credentials are not encrypted, this method should only be
used over a secure connection. This is the same as specifying
POP_AUTH_PASS as the authentication method.

POP_AUTH_PASS The username and password is sent to the server using the
USER and PASS commands. This authentication method is
supported by most servers and is the default authentication
type. The credentials are not encrypted and this method
should only be used over secure connections.

POP_AUTH_APOP The APOP authentication method which uses an MD5 digest
of the password. This method has been deprecated is not
supported by all servers. It should only be used if required by
legacy mail servers which do not support the SASL
authentication methods.

POP_AUTH_LOGIN This authentication type will use the LOGIN method to
authenticate the client session. This encodes the username
and password in a specific format, but the credentials are not
encrypted. It should be used over a secure connection. The
server must support the Simple Authentication and Security

Layer (SASL) mechanism as defined in RFC 4422.

POP_AUTH_PLAIN This authentication type will use the PLAIN method to
authenticate the client session. This encodes the username
and password in a specific format, but the credentials are not
encrypted. It should be used over a secure connection. The
server must support the PLAIN Simple Authentication and
Security Layer (SASL) mechanism as defined in RFC 4616.

POP_AUTH_XOAUTH2 This authentication type will use the XOAUTH2 method to
authenticate the client session. This authentication method
does not require the user password, instead the lpszPassword
parameter must specify the bearer token issued by the service
provider. The application must provide a valid access token
which has not expired, or this method will fail.

POP_AUTH_BEARER This authentication type will use the OAUTHBEARER method
to authenticate the client session as defined in RFC 7628. This
authentication method does not require the user password,
instead the lpszPassword parameter must specify the bearer
token issued by the service provider. The application must
provide a valid access token which has not expired, or this
method will fail.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
POP_ERROR. To get extended error information, call GetLastError.

Remarks
The POP_AUTH_LOGIN and POP_AUTH_PLAIN authentication methods require the mail server
support the Simple Authentication and Security Layer (SASL) AUTH command as defined in RFC
5034. Most modern mail servers do support one or both of these methods, and they are generally
preferred over the POP_AUTH_PASS method when possible. However, for backwards compatibility
with legacy servers, the class will default to using POP_AUTH_PASS for client authentication.

You should only use an OAuth 2.0 authentication method if you understand the process of how to
request the access token. Obtaining an access token requires registering your application with the
mail service provider (e.g.: Microsoft or Google), getting a unique client ID associated with your
application and then requesting the access token using the appropriate scope for the service.
Obtaining the initial token will typically involve interactive confirmation on the part of the user,
requiring they grant permission to your application to access their mail account.

The POP_AUTH_XOAUTH2 and POP_AUTH_BEARER authentication methods are similar, but they
are not interchangeable. Both use an OAuth 2.0 bearer token to authenticate the client session,
but they differ in how the token is presented to the server. It is currently preferable to use the
XOAUTH2 method because it is more widely available and some service providers do not yet
support the OAUTHBEARER method.

Your application should not store an OAuth 2.0 bearer token for later use. They have a relatively
short lifespan, typically about an hour, and are designed to be used with that session. You should
specify offline access as part of the OAuth 2.0 scope if necessary and store the refresh token
provided by the service. The refresh token has a much longer validity period and can be used to
obtain a new bearer token when needed.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Connect, GetMessage, GetMessageCount

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CPopClient::OpenMessage Method

INT OpenMessage(
 UINT nMessageId
);

The OpenMessage method opens the specified message for reading.

Parameters
nMessageId

Number that specifies which message to open. This value must be greater than zero. The first
message in the mailbox is message one.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
POP_ERROR. To get extended error information, call GetLastError.

Remarks
The OpenMessage method is used to begin the process of reading the contents of a message
from the from the server. Similar to how a file is opened and read, this method is followed by one
or more calls to the Read method. When the entire contents of the message has been read, the
CloseMessage method is used to close the message, completing the transaction on the server.

This is a lower-level method which enables the application to process the message as the contents
are being returned by the server. In general, it is recommended that most applications use the
GetMessage method instead, which provides a simpler interface for retrieving the contents of a
message.

It is important to note that you cannot use this method to read the partial contents of a message.
Opening a message on the server begins a process where the entire message contents must be
read and the message closed before the next command can be issued to the server. If you only
want to obtain the headers for a message, use the GetMessageHeaders method instead.

Example
// Connect to the mail server using the default settings
if (popClient.Connect(strHostName))
{
 // Authenticate the user and display an error if the
 // server does not accept the username or password
 if (popClient.Login(strUserName, strPassword) == POP_ERROR)
 {
 popClient.ShowError();
 popClient.Disconnect();
 return;
 }

 // Open the specified message
 if (popClient.OpenMessage(nMessageId) == POP_ERROR)
 {
 popClient.ShowError();
 popClient.Disconnect();
 return;
 }

 CString strMessage;

 CString strBuffer;
 INT nResult;

 // Read the contents of the message in a loop; a return value
 // of zero indicates that there is no more data to read
 do
 {
 if ((nResult = popClient.Read(strBuffer)) > 0)
 strMessage = strMessage + strBuffer;
 }
 while (nResult > 0);

 // If an error occurred while reading reading the message,
 // display an error message
 if (nResult == POP_ERROR)
 {
 popClient.ShowError();
 popClient.Disconnect();
 return;
 }

 // Close the message and disconnect from the server
 popClient.CloseMessage();
 popClient.Disconnect();
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
CloseMessage, GetMessage, GetMessageHeaders, IsReadable, Read

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CPopClient::Read Method

INT Read(
 LPBYTE lpBuffer,
 INT cbBuffer
);

INT Read(
 CString& strBuffer,
 INT cbBuffer
);

The Read method reads the specified number of bytes from the client socket and copies them
into the buffer. The data may be of any type, and is not terminated with a null character.

Parameters
lpBuffer

Pointer to the buffer in which the data will be copied. An alternate form of this method allows a
CString variable to be passed and data read from the socket will be returned in that string.

cbBuffer

The maximum number of bytes to read and copy into the specified buffer. This value must be
greater than zero.

Return Value
If the method succeeds, the return value is the number of bytes actually read. A return value of
zero indicates that the server has closed the connection and there is no more data available to be
read. If the method fails, the return value is POP_ERROR. To get extended error information, call
GetLastError.

Remarks
When Read is called and the client is in non-blocking mode, it is possible that the method will fail
because there is no available data to read at that time. This should not be considered a fatal error.
Instead, the application should simply wait to receive the next asynchronous notification that data
is available.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
EnableEvents, IsBlocking, IsReadable, IsWritable, RegisterEvent, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CPopClient::RegisterEvent Method

INT RegisterEvent(
 UINT nEventId,
 POPEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

The RegisterEvent method registers an event handler for the specified event.

Parameters
nEventId

An unsigned integer which specifies which event should be registered with the specified callback
function. One of the following values may be used:

Constant Description

POP_EVENT_CONNECT The connection to the server has completed.

POP_EVENT_DISCONNECT The server has closed the connection to the client. The client
should read any remaining data and disconnect.

POP_EVENT_READ Data is available to read by the calling process. No additional
messages will be posted until the client has read at least some of
the data. This event is only generated if the client is in
asynchronous mode.

POP_EVENT_WRITE The client can now write data. This notification is sent after a
connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking
operation. This event is only generated if the client is in
asynchronous mode.

POP_EVENT_TIMEOUT The network operation has exceeded the specified timeout period.
The client application may attempt to retry the operation, or may
disconnect from the server and report an error to the user.

POP_EVENT_CANCEL The current operation has been canceled. Under most
circumstances the client should disconnect from the server and re-
connect if needed. After an operation has been canceled, the
server may abort the connection or refuse to accept further
commands from the client.

POP_EVENT_COMMAND A command has been issued by the client and the server response
has been received and processed. This event can be used to log
the result codes and messages returned by the server in response
to actions taken by the client.

POP_EVENT_PROGRESS The client is in the process of sending or receiving a file on the
data channel. This event is called periodically during a transfer so
that the client can update any user interface components such as a
status control or progress bar.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more

information about the callback function, see the description of the PopEventProc callback
function. If this parameter is NULL, the callback for the specified event is disabled.

dwParam

A user-defined integer value that is passed to the callback function. If the application targets the
x86 (32-bit) platform, this parameter must be a 32-bit unsigned integer. If the application
targets the x64 (64-bit) platform, this parameter must be a 64-bit unsigned integer.

Remarks
The RegisterEvent method associates a callback function with a specific event. The event handler
is an PopEventProc function that is invoked when the event occurs. Arguments are passed to the
function to identify the client session, the event type and the user-defined value specified when
the event handler is registered. If the event occurs because of an error condition, the error code
will be provided to the handler.

This method is typically used to register an event handler that is invoked while a message is being
retrieved. The POP_EVENT_PROGRESS event will only be generated periodically during the
transfer to ensure the application is not flooded with event notifications. It is guaranteed that at
least one POP_EVENT_PROGRESS notification will occur at the beginning of the transfer, and one
at the end of the transfer when it has completed.

The callback function specified by the lpEventProc parameter must be declared using the
__stdcall calling convention. This ensures the arguments passed to the event handler are pushed
on to the stack in the correct order. Failure to use the correct calling convention will corrupt the
stack and cause the application to terminate abnormally.

The dwParam parameter is commonly used to identify the class instance which is associated with
the event that has occurred. Applications will cast the this pointer to a DWORD_PTR value when
calling this function, and then the event handler will cast it back to a pointer to the class instance.
This gives the handler access to the class member variables and methods.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
POP_ERROR. To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
DisableEvents, EnableEvents, FreezeEvents, PopEventProc

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/pop3/class/popeventproc.html

 CPopClient::Reset Method

BOOL Reset();

The Reset method resets the client state and resynchronizes with the server. This method is
typically called after an unexpected error has occurred, or an operation has been canceled.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
This method will prevent any messages marked for deletion from actually being deleted from the
mailbox. The client cannot be reset while the client is in a blocked state.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
Cancel, DeleteMessage, IsBlocking

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CPopClient::SendMessage Method

INT SendMessage(
 LPCTSTR lpszMessage,
 INT nLength
);

The SendMessage method sends a message to the specified recipients.

Parameters
lpszMessage

Pointer to a string buffer which contains the message to be submitted to the mail server for
delivery.

nLength

The length of the string buffer. This specifies the number of characters to be written to the mail
server. This value must be greater than zero. If this value is -1, then the length of the string up
to the terminating null character is used.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
POP_ERROR. To get extended error information, call GetLastError.

Remarks
The SendMessage method sends a message through the POP3 server using the XTND XMIT
command. The specified file must be in the standard format as described in RFC 822, with the
recipient addresses specified in the To: and Cc: header fields. Some servers may support blind
carbon copies by using addresses specified in a Bcc: header field, and then removing those
addresses from the header before delivering the message.

Note that not all POP3 servers support this command, and it is recommended that you use the
Simple Mail Transfer Protocol (SMTP) for general mail delivery purposes.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetMessage, StoreMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CPopClient::SetLastError Method

VOID SetLastError(
 DWORD dwErrorCode
);

The SetLastError method sets the last error code for the current thread. This method is typically
used to clear the last error by specifying a value of zero as the parameter.

Parameters
dwErrorCode

Specifies the last error code for the current thread.

Return Value
None.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. Most methods will
set the last error code value when they fail; a few methods set it when they succeed. Function
failure is typically indicated by a return value such as FALSE, NULL, INVALID_CLIENT or
POP_ERROR. Those methods which call SetLastError when they succeed are noted on the
method reference page.

Applications can retrieve the value saved by this method by using the GetLastError method. The
use of GetLastError is optional; an application can call the method to determine the specific
reason for a method failure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
GetErrorString, GetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CPopClient::SetTimeout Method

INT SetTimeout(
 UINT nTimeout
);

The SetTimeout method sets the number of seconds the client will wait for a response from the
server. Once the specified number of seconds has elapsed, the method will fail and return to the
caller.

Parameters
nTimeout

The number of seconds to wait for a blocking operation to complete.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
POP_ERROR. To get extended error information, call GetLastError.

Remarks
The timeout value is only used with blocking client connections.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
Connect, GetTimeout, IsReadable, IsWritable, Read, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CPopClient::ShowError Method

INT ShowError(
 LPCTSTR lpszAppTitle,
 UINT uType,
 DWORD dwErrorCode
);

The ShowError method displays a message box which describes the specified error.

Parameters
lpszAppTitle

A pointer to a string which specifies the title of the message box that is displayed. If this
argument is NULL or omitted, then the default title of "Error" will be displayed.

uType

An unsigned integer which specifies the type of message box that will be displayed. This is the
same value that is used by the MessageBox method in the Windows API. If a value of zero is
specified, then a message box with a single OK button will be displayed. Refer to that method
for a complete list of options.

dwErrorCode

Specifies the error code that will be used when displaying the message box. If this argument is
zero, then the last error that occurred in the current thread will be displayed.

Return Value
If the method is successful, the return value will be the return value from the MessageBox
function. If the method fails, it will return a value of zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetErrorString, GetLastError, SetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CPopClient::StoreMessage Method

INT StoreMessage(
 UINT nMessageId,
 LPCTSTR lpszFileName
);

The StoreMessage method stores a message in the specified file.

Parameters
nMessageId

Number of the message to retrieve. This value must be greater than zero. The first message in
the mailbox is message number one.

lpszFileName

Pointer to a string which specifies the file that the message will be stored in. If an empty string
or NULL pointer is passed as an argument, the message is copied to the system clipboard.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
POP_ERROR. To get extended error information, call GetLastError.

Remarks
The StoreMessage method provides a method of retrieving and storing a message on the local
system. The contents of the message is stored as a text file, using the specified file name. This
method always causes the caller to block until the entire message has been retrieved, even if the
client has been put in asynchronous mode.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetMessage, GetMessageHeaders, GetTransferStatus, SendMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CPopClient::Write Method

INT Write(
 LPBYTE lpBuffer,
 INT cbBuffer
);

INT Write(
 LPCTSTR lpszBuffer
 INT cbBuffer
);

The Write method sends the specified number of bytes to the server.

Parameters
lpBuffer

The pointer to the buffer which contains the data that is to be sent to the server. In an alternate
form of the method, the pointer is to a string.

cbBuffer

The number of bytes to send from the specified buffer. This value must be greater than zero,
unless a pointer to a string buffer is passed as the parameter. In that case, if the value is -1, all of
the characters in the string, up to but not including the terminating null character, will be sent to
the server.

Return Value
If the method succeeds, the return value is the number of bytes actually written. If the method
fails, the return value is POP_ERROR. To get extended error information, call GetLastError.

Remarks
The return value may be less than the number of bytes specified by the cbBuffer parameter. In this
case, the data has been partially written and it is the responsibility of the client application to send
the remaining data at some later point. For non-blocking clients, the client must wait for the next
asynchronous notification message before it resumes sending data.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
EnableEvents, IsBlocking, IsReadable, IsWritable, Read, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Post Office Protocol Data Structures

POPTRANSFERSTATUS
SECURITYCREDENTIALS
SECURITYINFO
SYSTEMTIME

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 POPTRANSFERSTATUS Structure

This structure is used by the GetTransferStatus method to return information about a message
transfer in progress.

typedef struct _POPTRANSFERSTATUS
{
 UINT nMessageId;
 DWORD dwBytesTotal;
 DWORD dwBytesCopied;
 DWORD dwBytesPerSecond;
 DWORD dwTimeElapsed;
 DWORD dwTimeEstimated;
} POPTRANSFERSTATUS, *LPPOPTRANSFERSTATUS;

Members
nMessageId

The message ID of the current message that is being transferred.

dwBytesTotal

The total number of bytes that will be transferred. If the message is being copied from the
server to the local host, this is the size of the message on the server. If the message is being
posted to the server, it is the size of message on the local system. If the message size cannot be
determined, this value will be zero.

dwBytesCopied

The total number of bytes that have been copied.

dwBytesPerSecond

The average number of bytes that have been copied per second.

dwTimeElapsed

The number of seconds that have elapsed since the transfer started.

dwTimeEstimated

The estimated number of seconds until the transfer is completed. This is based on the average
number of bytes transferred per second.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SECURITYCREDENTIALS Structure

The SECURITYCREDENTIALS structure specifies the information needed by the library to specify
additional security credentials, such as a client certificate or private key, when establishing a secure
connection.

typedef struct _SECURITYCREDENTIALS
{
 DWORD dwSize;
 DWORD dwProtocol;
 DWORD dwOptions;
 DWORD dwReserved;
 LPCTSTR lpszHostName;
 LPCTSTR lpszUserName;
 LPCTSTR lpszPassword;
 LPCTSTR lpszCertStore;
 LPCTSTR lpszCertName;
 LPCTSTR lpszKeyFile;
} SECURITYCREDENTIALS, *LPSECURITYCREDENTIALS;

Members
dwSize

Size of this structure. If the structure is being allocated dynamically, this member must be set to
the size of the structure and all other unused structure members must be initialized to a value of
zero or NULL.

dwProtocol

A bitmask of supported security protocols. The value of this structure member is constructed by
using a bitwise operator with any of the following values:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The
correct protocol is automatically selected, based on

what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.
This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is
supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

dwOptions

A value which specifies one or options. This member is constructed by using a bitwise operator
with any of the following values:

Constant Description

CREDENTIAL_STORE_CURRENT_USER The library will attempt to open a store for
the current user using the certificate store
name provided in this structure. If no options
are specified, then this is the default
behavior.

CREDENTIAL_STORE_LOCAL_MACHINE The library will attempt to open a local
machine store using the certificate store

name provided in this structure. If this option
is specified, the library will always search for a
local machine store before searching for the
store by that name for the current user.

CREDENTIAL_STORE_FILENAME The certificate store name is a file that
contains the certificate and private key that
will be used.

dwReserved

This structure member is reserved for future use and should always be initialized to zero.

lpszHostName

A pointer to a null terminated string which specifies the hostname that will be used when
validating the server certificate. If this member is NULL, then the server certificate will be
validated against the hostname used to establish the connection.

lpszUserName

A pointer to a null terminated string which identifies the owner of client certificate. Currently this
member is not used by the library and should always be initialized as a NULL pointer.

lpszPassword

A pointer to a null terminated string which specifies the password needed to access the
certificate. Currently this member is only used if the CREDENTIAL_STORE_FILENAME option has
been specified. If there is no password associated with the certificate, then this member should
be initialized as a NULL pointer.

lpszCertStore

A pointer to a null terminated string which specifies the name of the certificate store to open. A
certificate store is a collection of certificates and their private keys, typically organized by how
they are used. If this value is NULL or points to an empty string, the default certificate store "MY"
will be used.

Store
Name

Description

CA
Certification authority certificates. These are certificates that are issued by entities
which are entrusted to issue certificates to other individuals or organizations.
Companies such as VeriSign and Thawte act as certification authorities.

MY

Personal certificates and their associated private keys for the current user. This
store typically holds the client certificates used to establish a user's credentials.
This corresponds to the "Personal" store that is displayed by the certificate
manager utility and is the default store used by the library.

ROOT
Certificates that have been self-signed by a certificate authority. Root certificates
for a number of different certification authorities such as VeriSign and Thawte are
installed as part of the operating system and periodically updated by Microsoft.

lpszCertName

A pointer to a null terminated string which specifies the name of the certificate to use. The
library will first search the certificate store for a certificate with a matching "friendly name"; this is
a name for the certificate that is assigned by the user. Note that the name must match
completely, but the comparison is not case sensitive. If no matching certificate is found, the
library will then attempt to find a certificate that has a matching common name (also called the
certificate subject). This comparison is less stringent, and the first partial match will be returned.

If this second search fails, the library will return an error indicating that the certificate could not
be found. If the SECURITY_PROTOCOL_SSH protocol has been specified, this member should
be NULL.

lpszKeyFile

A pointer to a null terminated string which specifies the name of the file which contains the
private key required to establish the connection. This member is only used for SSH connections
and should always be NULL when establishing a secure connection using SSL or TLS.

Remarks
A client application only needs to create this structure if the server requires that the client provide
a certificate as part of the process of negotiating the secure session. If a certificate is required,
note that it must have a private key associated with it. Attempting to use a certificate that does not
have a private key will result in an error during the connection process indicating that the client
credentials could not be established.

If you are using a local certificate store, with the certificate and private key stored in the registry,
you can explicitly specify whether the certificate store for the current user or the local machine (all
users) should be used. This is done by prefixing the certificate store name with "HKCU:" for the
current user, or "HKLM:" for the local machine. For example, a certificate store name of
"HKLM:MY" would specify the personal certificate store for the local machine, rather than the
current user. If neither prefix is specified, then it will default to the certificate store for the current
user. You can manage these certificates using the CertMgr.msc Microsoft Management Console
(MMC) snap-in.

It is possible to load the certificate from a file rather than from current user's certificate store. The
dwOptions member should be set to CREDENTIAL_STORE_FILENAME and the lpszCertStore
member should specify the name of the file that contains the certificate and its private key. The file
must be in Private Information Exchange (PFX) format, also known as PKCS #12. These certificate
files typically have an extension of .pfx or .p12. Note that if a password was specified when the
certificate file was created, it must be provided in the lpszPassword member or the library will be
unable to access the certificate.

Note that the lpszUserName and lpszPassword members are values which are used to access the
certificate store or private key file. They are not the credentials which are used when establishing
the connection with the remote host or authenticating the client session.

The TLS 1.1 and TLS 1.2 protocols are only supported on Windows 7, Windows Server 2008 R2
and later versions of the platform. If these options are specified and the application is running on
Windows XP or Windows Vista, the protocol version will be downgraded to TLS 1.0 for backwards
compatibility with those platforms.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SECURITYINFO Structure

This structure contains information about a secure connection that has been established.

typedef struct _SECURITYINFO
{
 DWORD dwSize;
 DWORD dwProtocol;
 DWORD dwCipher;
 DWORD dwCipherStrength;
 DWORD dwHash;
 DWORD dwHashStrength;
 DWORD dwKeyExchange;
 DWORD dwCertStatus;
 SYSTEMTIME stCertIssued;
 SYSTEMTIME stCertExpires;
 LPCTSTR lpszCertIssuer;
 LPCTSTR lpszCertSubject;
 LPCTSTR lpszFingerprint;
} SECURITYINFO, *LPSECURITYINFO;

Members
dwSize

Specifies the size of the data structure. This member must always be initialized to
sizeof(SECURITYINFO) prior to passing the address of this structure to the function. Note that
if this member is not initialized, an error will be returned indicating that an invalid parameter has
been passed to the function.

dwProtocol

A numeric value which specifies the protocol that was selected to establish the secure
connection. One of the following values will be returned:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The

correct protocol is automatically selected, based on
what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.
This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is
supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

dwCipher

A numeric value which specifies the cipher that was selected when establishing the secure
connection. One of the following values will be returned:

Constant Description

SECURITY_CIPHER_RC2 The RC2 block cipher was selected. This is a variable
key length cipher which supports keys between 40 and
128 bits, in 8-bit increments.

SECURITY_CIPHER_RC4 The RC4 stream cipher was selected. This is a variable
key length cipher which supports keys between 40 and
128 bits, in 8-bit increments.

SECURITY_CIPHER_RC5 The RC5 block cipher was selected. This is a variable
key length cipher which supports keys up to 2040 bits,
in 8-bit increments.

SECURITY_CIPHER_DES The DES (Data Encryption Standard) block cipher was
selected. This is a fixed key length cipher, using 56-bit
keys.

SECURITY_CIPHER_DES3 The Triple DES block cipher was selected. This cipher
encrypts the data three times using different keys,
effectively providing a 168-bit length key.

SECURITY_CIPHER_DESX A variant of the DES block cipher which XORs an extra
64-bits of the key before and after the plaintext has
been encrypted, increasing the key size to 184 bits.

SECURITY_CIPHER_AES The Advanced Encryption Standard cipher (also known
as the Rijndael cipher) is a fixed block size cipher which
use a key size of 128, 192 or 256 bits. This cipher is
supported on Windows XP SP3 and later versions of
the operating system.

SECURITY_CIPHER_SKIPJACK The Skipjack block cipher was selected. This is a fixed
key length cipher, using 80-bit keys.

SECURITY_CIPHER_BLOWFISH The Blowfish block cipher was selected. This is a
variable key length cipher up to 448 bits, using a 64-bit
block size.

dwCipherStrength

A numeric value which specifies the strength (the length of the cipher key in bits) of the cipher
that was selected. Typically this value will be 128 or 256. 40-bit and 56-bit key lengths are
considered weak encryption, and subject to brute force attacks. 128-bit and 256-bit key lengths
are considered to be secure, and are the recommended key length for secure communications.

dwHash

A numeric value which specifies the hash algorithm which was selected. One of the following
values will be returned:

Constant Description

SECURITY_HASH_MD5 The MD5 algorithm was selected. Its use has been
deprecated and is no longer considered to be
cryptographically secure.

SECURITY_HASH_SHA1 The SHA-1 algorithm was selected. Its use has been
deprecated and is no longer considered to be
cryptographically secure.

SECURITY_HASH_SHA256 The SHA-256 algorithm was selected.

SECURITY_HASH_SHA384 The SHA-384 algorithm was selected.

SECURITY_HASH_SHA512 The SHA-512 algorithm was selected.

dwHashStrength

A numeric value which specifies the strength (the length in bits) of the message digest that was

selected.

dwKeyExchange

A numeric value which specifies the key exchange algorithm which was selected. One of the
following values will be returned:

Constant Description

SECURITY_KEYEX_RSA The RSA public key algorithm was selected.

SECURITY_KEYEX_KEA The Key Exchange Algorithm (KEA) was selected. This is an
improved version of the Diffie-Hellman public key algorithm.

SECURITY_KEYEX_DH The Diffie-Hellman key exchange algorithm was selected.

SECURITY_KEYEX_ECDH The Elliptic Curve Diffie-Hellman key exchange algorithm was
selected. This is a variant of the Diffie-Hellman algorithm
which uses elliptic curve cryptography. This key exchange
algorithm is only supported on Windows XP SP3 and later
versions of the operating system.

dwCertStatus

A numeric value which specifies the status of the certificate returned by the secure server. This
member only has meaning for connections using the SSL or TLS protocols. One of the following
values will be returned:

Constant Description

SECURITY_CERTIFICATE_VALID The certificate is valid.

SECURITY_CERTIFICATE_NOMATCH The certificate is valid, but the domain name
does not match the common name in the
certificate.

SECURITY_CERTIFICATE_EXPIRED The certificate is valid, but has expired.

SECURITY_CERTIFICATE_REVOKED The certificate has been revoked and is no
longer valid.

SECURITY_CERTIFICATE_UNTRUSTED The certificate or certificate authority is not
trusted on the local system.

SECURITY_CERTIFICATE_INVALID The certificate is invalid. This typically indicates
that the internal structure of the certificate has
been damaged.

stCertIssued

A structure which contains the date and time that the certificate was issued by the certificate
authority. If the issue date cannot be determined for the certificate, the SYSTEMTIME structure
members will have zero values. This member only has meaning for connections using the SSL or
TLS protocols.

stCertExpires

A structure which contains the date and time that the certificate expires. If the expiration date
cannot be determined for the certificate, the SYSTEMTIME structure members will have zero
values. This member only has meaning for connections using the SSL or TLS protocols.

lpszCertIssuer

A pointer to a string which contains information about the organization that issued the
certificate. This string consists of one or more comma-separated tokens. Each token consists of
an identifier, followed by an equal sign and a value. If the certificate issuer could not be
determined, this member may be NULL. This member only has meaning for connections using
the SSL or TLS protocols.

lpszCertSubject

A pointer to a string which contains information about the organization that the certificate was
issued to. This string consists of one or more comma-separated tokens. Each token consists of
an identifier, followed by an equal sign and a value. If the certificate subject could not be
determined, this member may be NULL. This member only has meaning for connections using
the SSL or TLS protocols.

lpszFingerprint

A pointer to a string which contains a sequence of hexadecimal values that uniquely identify the
server. This member is only used when a connection has been established using the Secure
Shell (SSH) protocol.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SYSTEMTIME Structure

The SYSTEMTIME structure represents a date and time using individual members for the month,
day, year, weekday, hour, minute, second, and millisecond.

typedef struct _SYSTEMTIME
{
 WORD wYear;
 WORD wMonth;
 WORD wDayOfWeek;
 WORD wDay;
 WORD wHour;
 WORD wMinute;
 WORD wSecond;
 WORD wMilliseconds;
} SYSTEMTIME, *LPSYSTEMTIME;

Members
wYear

Specifies the current year. The year value must be greater than 1601.

wMonth

Specifies the current month. January is 1, February is 2 and so on.

wDayOfWeek

Specifies the current day of the week. Sunday is 0, Monday is 1 and so on.

wDay

Specifies the current day of the month

wHour

Specifies the current hour.

wMinute

Specifies the current minute

wSecond

Specifies the current second.

wMilliseconds

Specifies the current millisecond.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include windows.h.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Remote Command Protocol Class Library

Execute commands on a server or establish an interactive terminal session.

Reference

Class Methods
Error Codes

Library Information

Class Name CRshClient

File Name CSRSHV11.DLL

Version 11.0.2180.1635

LibID DE4D501A-D5F2-4FDF-8762-79955F246A1B

Import Library CSRSHV11.LIB

Dependencies None

Standards RFC 1282

Overview
The Remote Command protocol is used to execute a command on a server and return the output
of that command to the client. This is most commonly used with UNIX based servers, although
there are implementations of remote command servers for the Windows operating system. The
library supports both the rcmd and rshell remote execution protocols and provides methods which
can be used to search the data stream for specific sequences of characters. This makes it
extremely easy to write Windows applications which serve as light-weight client interfaces to
commands being executed on a UNIX server or another Windows system. The library can also be
used to establish a remote terminal session using the rlogin protocol, which is similar to the Telnet
protocol.

This protocol should not be used when connecting to a server on a public network because the
user credentials are sent as unencrypted text. For secure remote command execution and
interactive terminal sessions, it is recommended you use the CSshClient class.

Requirements
The SocketTools Library Edition libraries are compatible with any programming language which
supports calling functions exported from a standard dynamic link library (DLL). If you are using
Visual C++ 6.0 it is required that you have Service Pack 6 (SP6) installed. You should install all
updates for your development tools and have the current Windows SDK installed. The minimum
recommended version of Visual Studio is Visual Studio 2010.

This library is supported on Windows 7, Windows Server 2008 R2 and later versions of the desktop
and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1) installed as
a minimum requirement. It is recommended that you install the current service pack and all critical
updates available for your version of the operating system.

This product includes both 32-bit and 64-bit libraries. Native 64-bit CPU support requires the 64-
bit version of Windows 7 or later versions of the Windows operating system.

Distribution

When you distribute your application that uses this library, it is recommended that you install the
file in the same folder as your application executable. If you install the library into a shared location
on the system, it is important that you distribute the correct version for the target platform and it
should be registered as a shared DLL. This is a standard Windows dynamic link library, not an
ActiveX component, and does not require COM registration.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Remote Command Protocol Class Methods

Class Description

CRshClient Constructor which initializes the current instance of the class

~CRshClient Destructor which releases resources allocated by the class

Method Description

AttachHandle Attach the specified client handle to this instance of the class

AttachThread Attach the specified client handle to another thread

Cancel Cancel the current blocking operation

DetachHandle Detach the handle for the current instance of this class

DisableEvents Disable asynchronous event notification

DisableTrace Disable logging of network function calls to the trace log

Disconnect Disconnect from the current server

EnableEvents Enable asynchronous event notification

EnableTrace Enable logging of network function calls to a file

Execute Execute a command on the server

FreezeEvents Suspend asynchronous event processing

GetErrorString Return a description for the specified error code

GetHandle Return the client handle used by this instance of the class

GetLastError Return the last error code

GetStatus Return the current client status

GetTimeout Return the number of seconds until an operation times out

IsBlocking Determine if the client is blocked, waiting for information

IsConnected Determine if the client is connected to the server

IsInitialized Determine if the class has been successfully initialized

IsReadable Determine if data can be read from the server

IsWritable Determine if data can be written to the server

Login Establish a login session with the specified server

Read Read data returned by the server

RegisterEvent Register an event callback function

RshEventProc Callback method that processes events generated by the client

Search Search for a specific character sequence in the data stream

SetLastError Set the last error code

SetTimeout Set the number of seconds until an operation times out

ShowError Display a message box with a description of the specified error

file:///C|/Projects/cstools11/pdf/rsh/class/rsheventproc.html

Write Write data to the server

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CRshClient::CRshClient

CRshClient();

The CRshClient constructor initializes the class library and validates the license key at runtime.

Remarks
If the constructor fails to validate the runtime license, subsequent methods in this class will fail. If
the product is installed with an evaluation license, then the application will only function on the
development system and cannot be redistributed.

The constructor calls the RshInitialize function to initialize the library, which dynamically loads
other system libraries and allocates thread local storage. If you are using this class within another
DLL, it is important that you do not create or destroy an instance of the class from within the
DllMain function because it can result in deadlocks or access violation errors. You should not
declare static or global instances of this class within another DLL if it is linked with the C runtime
library (CRT) because it will automatically call the constructors and destructors for static and global
C++ objects and has the same restrictions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
~CRshClient, IsInitialized

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CRshClient::~CRshClient

~CRshClient();

The CRshClient destructor releases resources allocated by the current instance of the CRshClient
object. It also uninitializes the library if there are no other concurrent uses of the class.

Remarks
When a CRshClient object goes out of scope, the destructor is automatically called to allow the
library to free any resources allocated on behalf of the process. Any pending blocking or
asynchronous calls in this process are canceled without posting any notification messages, and all
handles that were created for the client session are destroyed.

The destructor is not called explicitly by the application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CRshClient

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CRshClient::AttachHandle

VOID AttachHandle(
 HCLIENT hClient
);

The AttachHandle method attaches the specified client handle to the current instance of the
class.

Parameters
hClient

The handle to the client session that will be attached to the current instance of the class object.

Return Value
None.

Remarks
This method is used to attach a client handle created outside of the class using the SocketTools
API. Once the client handle is attached to the class, the other class member functions may be used
with that client session.

If a client handle already has been created for the class, that handle will be released when the new
handle is attached to the class object. If you want to prevent the previous client session from being
terminated, you must call the DetachHandle method. Failure to release the detached handle may
result in a resource leak in your application.

Note that the hClient parameter is presumed to be a valid client handle and no checks are
performed to ensure that the handle is valid. Specifying an invalid client handle will cause
subsequent method calls to fail.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib

See Also
AttachThread, DetachHandle, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CRshClient::AttachThread

DWORD AttachThread(
 DWORD dwThreadId
);

The AttachThread method attaches the specified client handle to another thread.

Parameters
dwThreadId

The ID of the thread that will become the new owner of the handle. A value of zero specifies
that the current thread should become the owner of the client handle.

Return Value
If the method succeeds, the return value is the thread ID of the previous owner. If the method fails,
the return value is RSH_ERROR. To get extended error information, call GetLastError.

Remarks
When a client handle is created, it is associated with the current thread that created it. Normally, if
another thread attempts to perform an operation using that handle, an error is returned since it
does not own the handle. This is used to ensure that other threads cannot interfere with an
operation being performed by the owner thread. In some cases, it may be desirable for one
thread in a client application to create the client handle, and then pass that handle to another
worker thread. The AttachThread method can be used to change the ownership of the handle to
the new worker thread. By preserving the return value from the method, the original owner of the
handle can be restored before the worker thread terminates.

This method should be called by the new thread immediately after it has been created, and if the
new thread does not release the handle itself, the ownership of the handle should be restored to
the parent thread before it terminates. Under no circumstances should AttachThread be used to
forcibly release a handle allocated by another thread while a blocking operation is in progress. To
cancel an operation, use the Cancel method and then release the handle after the blocking
method exits and control is returned to the current thread.

Note that the dwThreadId parameter is presumed to be a valid thread ID and no checks are
performed to ensure that the thread actually exists. Specifying an invalid thread ID will orphan the
client handle used by the class until the destructor is called.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib

See Also
AttachHandle, Cancel, DetachHandle, Disconnect, Execute, GetHandle, Login

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CRshClient::Cancel

INT Cancel();

The Cancel method cancels any outstanding blocking operation in the client, causing the blocking
method to fail. The application may then retry the operation or terminate the client session.

Parameters
None.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
RSH_ERROR. To get extended error information, call GetLastError.

Remarks
When the Cancel method is called, the blocking method will not immediately fail. An internal flag
is set which causes the blocking operation to exit with an error. This means that the application
cannot cancel an operation and immediately perform some other operation. Instead it must allow
the calling stack to unwind, returning back to the blocking operation before making any further
function calls.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib

See Also
IsBlocking

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CRshClient::DetachHandle

HCLIENT DetachHandle();

The DetachHandle method detaches the client handle associated with the current instance of the
class.

Parameters
None.

Return Value
This method returns the client handle associated with the current instance of the class object. If
there is no active client session, the value INVALID_CLIENT will be returned.

Remarks
This method is used to detach a client handle created by the class for use with the SocketTools
API. Once the client handle is detached from the class, no other class member functions may be
called. Note that the handle must be explicitly released at some later point by the process or a
resource leak will occur.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib

See Also
AttachHandle, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CRshClient::DisableEvents

INT DisableEvents();

The DisableEvents method disables the event notification mechanism, preventing subsequent
event notification messages from being posted to the application's message queue.

This method has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Parameters
None.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
RSH_ERROR. To get extended error information, call GetLastError.

Remarks
The DisableEvents method is used to disable event message posting for the specified client
session. Although this will immediately prevent any new events from being generated, it is possible
that messages could be waiting in the message queue. Therefore, an application must be
prepared to handle client event messages after this method has been called.

This method is automatically called if the client has event notification enabled, and the Disconnect
method is called. The same issues regarding outstanding event messages also applies in this
situation, requiring that the application handle event messages that may reference a client handle
that is no longer valid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib

See Also
EnableEvents, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CRshClient::DisableTrace

BOOL DisableTrace();

The DisableTrace method disables the logging of socket function calls to the trace log.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, a value of zero is
returned.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib

See Also
EnableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CRshClient::Disconnect

VOID Disconnect();

The Disconnect method terminates the connection with the server, closing the socket and
releasing the memory allocated for the client session.

Parameters
None.

Return Value
None.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib

See Also
Execute, Login

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CRshClient::EnableEvents

INT EnableEvents(
 HWND hEventWnd,
 UINT uEventMsg
);

The EnableEvents method enables event notifications using Windows messages.

This method has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Applications should use the RegisterEvent method to register an event handler which is invoked
when an event occurs.

Parameters
hEventWnd

Handle to the window which will receive the client notification messages. This parameter must
specify a valid window handle. If a NULL handle is specified, event notification will be disabled.

uEventMsg

The message that is received when a client event occurs. This value must be greater than 1024.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
RSH_ERROR. To get extended error information, call GetLastError.

Remarks
The EnableEvents method is used to request that notification messages be posted to the
specified window whenever a client event occurs. This allows an application to monitor the status
of different client operations, such as a file transfer.

The wParam argument will contain the client handle, the low word of the lParam argument will
contain the event ID, and the high word will contain any error code. If no error has occurred, the
high word will always have a value of zero. The following events may be generated:

Constant Description

RSH_EVENT_CONNECT The connection to the server has completed. The high word of the
lParam parameter should be checked, since this notification
message will be posted if an error has occurred.

RSH_EVENT_DISCONNECT The server has closed the connection to the client. The client
should read any remaining data and disconnect.

RSH_EVENT_READ Data is available to read by the calling process. No additional
messages will be posted until the client has read at least some of
the data. This event is only generated if the client is in
asynchronous mode.

RSH_EVENT_WRITE The client can now write data. This notification is sent after a
connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking

operation. This event is only generated if the client is in
asynchronous mode.

RSH_EVENT_TIMEOUT The network operation has exceeded the specified timeout period.
The client application may attempt to retry the operation, or may
disconnect from the server and report an error to the user.

RSH_EVENT_CANCEL The current operation has been canceled. Under most
circumstances the client should disconnect from the server and re-
connect if needed. After an operation has been canceled, the
server may abort the connection or refuse to accept further
commands from the client.

To disable event notification, call the DisableEvents method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib

See Also
DisableEvents, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CRshClient::EnableTrace

BOOL EnableTrace(
 LPCTSTR lpszTraceFile,
 DWORD dwTraceFlags
);

The EnableTrace method enables the logging of socket function calls to a file.

Parameters
lpszTraceFile

A pointer to a string which specifies the name of the trace log file. If this parameter is NULL or
an empty string, the default file name cstrace.log is used. The file is stored in the directory
specified by the TEMP environment variable, if it is defined; otherwise, the current working
directory is used.

dwTraceFlags

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

TRACE_INFO All function calls are written to the trace file. This is the default
value.

TRACE_ERROR Only those function calls which fail are recorded in the trace file.

TRACE_WARNING Only those function calls which fail or return values which indicate
a warning are recorded in the trace file.

TRACE_HEXDUMP All functions calls are written to the trace file, plus all the data that
is sent or received is displayed, in both ASCII and hexadecimal
format.

TRACE_PROCESS All function calls in the current process are logged, rather than
only those functions in the current thread. This option is useful for
multithreaded applications that are using worker threads.

Return Value
If the method succeeds, the return value is non-zero. A return value of zero indicates an error.
Failure typically indicates that the tracing library cstrcv11.dll cannot be loaded on the local
system.

Remarks
When trace logging is enabled, the file is opened, appended to and closed for each socket
function call. This makes it possible for an application to append its own logging information,
however care should be taken to ensure that the file is closed before the next network operation is
performed. To limit the size of the log files, enable and disable logging only around those sections
of code that you wish to trace.

Note that the TRACE_HEXDUMP trace level generates very large log files since it includes all of the
data exchanged between your application and the server.

Trace method logging is managed on a per-thread basis, not for each client handle. This means
that all SocketTools libraries and components share the same settings in the current thread. If you

are using multiple SocketTools libraries or components in your application, you only need to
enable logging once.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DisableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CRshClient::Execute

BOOL Execute(
 LPCTSTR lpszRemoteHost,
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword,
 LPCTSTR lpszCommand,
 UINT nRemotePort,
 UINT nTimeout,
 DWORD dwOptions
);

BOOL Execute(
 LPCTSTR lpszRemoteHost,
 LPCTSTR lpszUserName,
 LPCTSTR lpszCommand,
 UINT nRemotePort,
 UINT nTimeout,
 DWORD dwOptions
);

The Execute method is used to establish a connection with the server and execute the specified
command.

Parameters
lpszRemoteHost

A pointer to the name of the server to connect to; this may be a fully-qualified domain name or
an IP address.

lpszUserName

A pointer to a string which specifies the username used to authenticate the client session.

lpszPassword

A pointer to a string which specifies the password used to authenticate the client session.

lpszCommand

A pointer to a string which specifies the command to execute on the server.

nRemotePort

The port number the server is listening on. One of the following values should be used:

Constant Description

RSH_PORT_REXEC A connection is established with the server using port 512, the
rexec service. This service requires that the client provide a
username and password to execute the specified command. This
is the default port used when calling the version of the method
which specifies a password.

RSH_PORT_RSHELL A connection is established with the server using port 514, the
rshell service. This service uses host equivalence to authenticate
the user. With host equivalence, the server considers the client to
be equivalent to itself, and as long as the specified user exists on
the server, the client is permitted to execute commands on behalf
of the user without requiring a password. Host equivalence is

configured by the server administrator. This is the default port
used when calling the version of the method that does not specify
a password.

nTimeout

The number of seconds that the client will wait for a response from the server before failing the
current operation.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

RSH_OPTION_RESERVEDPORT This option specifies that a reserved port should be
used to establish the connection. Reserved ports are
those port numbers which are less than 1024. This
option should be specified when connecting on the
RSH_PORT_RSHELL port.

RSH_OPTION_PREFER_IPV6 This option specifies the client should prefer the use of
IPv6 if the server hostname can be resolved to both
an IPv6 and IPv4 address. This option is ignored if the
local system does not have IPv6 enabled, or when the
hostname can only be resolved to an IPv4 address. If
the server hostname can only be resolved to an IPv6
address, the client will attempt to establish a
connection using IPv6 regardless if this option has
been specified.

RSH_OPTION_FREETHREAD This option specifies that this instance of the class may
be used by any thread, and is not limited to the thread
which created it. The application is responsible for
ensuring that access to the class instance is
synchronized across multiple threads.

Return Value
If the method succeeds, the return value non-zero. If the method fails, the return value is zero. To
get extended error information, call GetLastError.

Remarks
This protocol should not be used when connecting to a server on a public network because the
user credentials are sent as unencrypted text. For secure remote command execution and
interactive terminal sessions, it is recommended you use the CSshClient class.

This method will block the current thread until a connection has been established or the timeout
period has elapsed. To prevent it from blocking the main user interface thread, the application
should create a background worker thread and establish a connection by calling the Connect
method in that thread. If the application requires multiple simultaneous connections, it is
recommended you create a worker thread for each connection.

The dwOptions argument can be used to specify the threading model that is used by the library
when a connection is established. By default, the class instance is initially attached to the thread
that created it. From that point on, until the it is released, only the owner may call methods using

that instance of the class. The ownership of the class instance may be transferred from one thread
to another using the AttachThread method.

Specifying the POP_OPTION_FREETHREAD option enables any thread to call any method in that
instance of the class, regardless of which thread created it. It is important to note that this option
disables certain internal safety checks which are performed by the library and may result in
unexpected behavior unless access to the class instance is synchronized. If one thread calls a
function in the library, it must ensure that no other thread will call another function at the same
time using the same instance.

Example
The following example demonstrates connecting to a server, executing a command on the server,
reading the output and storing it in a string. This uses the rexec service on port 512, and requires
a username and password.

CRshClient rshClient;
BOOL bConnected;

// Establish a connection with the server and execute
// the command as the specified user
bConnected = rshClient.Execute(strHostName,
 strUserName,
 strPassword,
 strCommand);

// If the connection could not be established or the command
// could not be executed, display an error message
if (bConnected == FALSE)
{
 rshClient.ShowError();
 return;
}

CString strBuffer;
CString strResult;
INT nResult;

// Read the output from the command and store it in the strResult
// string; note that a UNIX server terminates each line of output
// with a bare linefeed, which is something that should be kept
// in mind when parsing the string
do
{
 if ((nResult = rshClient.Read(strBuffer)) > 0)
 strResult += strBuffer;
}
while (nResult > 0);

// If there was an error reading the output from the server, then
// display the error and disconnect
if (nResult == RSH_ERROR)
{
 rshClient.ShowError();
 rshClient.Disconnect();
 return;
}

rshClient.Disconnect();

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Disconnect, Login

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CRshClient::FreezeEvents

INT FreezeEvents(
 BOOL bFreeze
);

The FreezeEvents method is used to suspend and resume event handling by the client.

Parameters
bFreeze

A non-zero value specifies that event handling should be suspended by the client. A zero value
specifies that event handling should be resumed.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
RSH_ERROR. To get extended error information, call GetLastError.

Remarks
This method should be used when the application does not want to process events, such as when
a modal dialog is being displayed. When events are suspended, all client events are queued. If
events are re-enabled at a later point, those queued events will be sent to the application for
processing. Note that only one of each event will be generated. For example, if the client has
suspended event handling, and four read events occur, once event handling is resumed only one
of those read events will be posted to the client. This prevents the application from being flooded
by a potentially large number of queued events.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DisableEvents, EnableEvents, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CRshClient::GetErrorString

INT GetErrorString(
 DWORD dwErrorCode,
 LPTSTR lpszDescription,
 INT cbDescription
);

INT GetErrorString(
 DWORD dwErrorCode,
 CString& strDescription
);

The GetErrorString method is used to return a description of a specific error code. Typically this is
used in conjunction with the GetLastError method for use with warning dialogs or as diagnostic
messages.

Parameters
dwErrorCode

The error code for which a description is returned.

lpszDescription

A pointer to the buffer that will contain a description of the specified error code. This buffer
should be at least 128 characters in length. An alternate form of the method accepts a CString
variable which will contain the error description.

cbDescription

The maximum number of characters that may be copied into the description buffer.

Return Value
If the method succeeds, the return value is the length of the description string. If the method fails,
the return value is zero, meaning that no description exists for the specified error code. Typically
this indicates that the error code passed to the method is invalid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetLastError, SetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CRshClient::GetHandle

HCLIENT GetHandle();

The GetHandle method returns the client handle associated with the current instance of the class.

Parameters
None.

Return Value
This method returns the client handle associated with the current instance of the class object. If
there is no active client session, the value INVALID_CLIENT will be returned.

Remarks
This method is used to obtain the client handle created by the class for use with the SocketTools
API.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib

See Also
AttachHandle, DetachHandle, IsInitialized

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CRshClient::GetLastError

DWORD GetLastError();

DWORD GetLastError(
 CString& strDescription
);

Parameters
strDescription

A string which will contain a description of the last error code value when the method returns. If
no error has been set, or the last error code has been cleared, this string will be empty.

Return Value
The return value is the last error code value for the current thread. Functions set this value by
calling the SetLastError method. The Return Value section of each reference page notes the
conditions under which the method sets the last error code.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. You should call
the GetLastError method immediately when a method's return value indicates that an error has
occurred. That is because some methods call SetLastError(0) when they succeed, clearing the
error code set by the most recently failed method.

Most methods will set the last error code value when they fail; a few methods set it when they
succeed. Function failure is typically indicated by a return value such as FALSE, NULL,
INVALID_CLIENT or RSH_ERROR. Those methods which call SetLastError when they succeed are
noted on the method reference page.

The description of the error code is the same string that is returned by the GetErrorString
method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib

See Also
GetErrorString, SetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CRshClient::GetStatus

INT GetStatus();

The GetStatus method the current status of the client session.

Parameters
None.

Return Value
If the method succeeds, the return value is the client status code. If the method fails, the return
value is RSH_ERROR. To get extended error information, call GetLastError.

Remarks
The GetStatus method returns a numeric code which identifies the current state of the client
session. The following values may be returned:

Value Constant Description

0 RSH_STATUS_UNUSED No connection has been established.

1 RSH_STATUS_IDLE The client is current idle and not sending or
receiving data.

2 RSH_STATUS_CONNECT The client is establishing a connection with the
server.

3 RSH_STATUS_READ The client is reading data from the server.

4 RSH_STATUS_WRITE The client is writing data to the server.

5 RSH_STATUS_DISCONNECT The client is disconnecting from the server.

In a multithreaded application, any thread in the current process may call this method to obtain
status information for the specified client session.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib

See Also
IsBlocking, IsConnected, IsReadable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CRshClient::GetTimeout

INT GetTimeout();

The GetTimeout method returns the number of seconds the client will wait for a response from
the server. Once the specified number of seconds has elapsed, the method will fail and return to
the caller.

Parameters
None.

Return Value
If the method succeeds, the return value is the timeout period in seconds. If the method fails, the
return value is RSH_ERROR. To get extended error information, call GetLastError.

Remarks
The timeout value is only used with blocking client connections. A value of zero indicates that the
default timeout period of 20 seconds should be used.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib

See Also
IsReadable, IsWritable, Read, SetTimeout, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CRshClient::IsBlocking

BOOL IsBlocking();

The IsBlocking method is used to determine if the client is currently performing a blocking
operation.

Parameters
None.

Return Value
If the client is performing a blocking operation, the method returns a non-zero value. If the client
is not performing a blocking operation, or the client handle is invalid, the method returns zero.

Remarks
Because a blocking operation can allow the application to be re-entered (for example, by pressing
a button while the operation is being performed), it is possible that another blocking method may
be called while it is in progress. Since only one thread of execution may perform a blocking
operation at any one time, an error would occur. The IsBlocking method can be used to
determine if the client is already blocked, and if so, take some other action (such as warning the
user that they must wait for the operation to complete).

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Cancel, GetStatus, IsConnected, IsInitialized, IsReadable, IsWritable, Read, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CRshClient::IsConnected

BOOL IsConnected();

The IsConnected method is used to determine if the client is currently connected to a server.

Parameters
None.

Return Value
If the client is connected to a server, the method returns a non-zero value. If the client is not
connected, or the client handle is invalid, the method returns zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib

See Also
GetStatus, IsBlocking, IsInitialized, IsReadable, IsWritable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CRshClient::IsInitialized

BOOL IsInitialized();

The IsInitialized method returns whether or not the class object has been successfully initialized.

Parameters
None.

Return Value
This method returns a non-zero value if the class object has been successfully initialized. A return
value of zero indicates that the runtime license key could not be validated or the networking
library could not be loaded by the current process.

Remarks
When an instance of the class is created, the class constructor will attempt to initialize the
component with the runtime license key that was created when SocketTools was installed. If the
constructor is unable to validate the license key or load the networking libraries, this initialization
will fail.

If SocketTools was installed with an evaluation license, the application cannot be redistributed to
another system. The class object will fail to initialize if the application is executed on another
system, or if the evaluation period has expired. To redistribute your application, you must
purchase a development license which will include the runtime key that is needed to redistribute
your software to other systems. Refer to the Developer's Guide for more information.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib

See Also
CRshClient, IsBlocking, IsConnected

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CRshClient::IsReadable

BOOL IsReadable(
 INT nTimeout,
 LPDWORD lpdwAvail
);

The IsReadable method is used to determine if data is available to be read from the server.

Parameters
nTimeout

Timeout for server response, in seconds. A value of zero specifies that the connection should be
polled without blocking the current thread.

lpdwAvail

A pointer to an unsigned integer which will contain the number of bytes available to read. This
parameter may be NULL if this information is not required.

Return Value
If the client can read data from the server within the specified timeout period, the method returns
a non-zero value. If the client cannot read any data, the method returns zero.

Remarks
On some platforms, this value will not exceed the size of the receive buffer (typically 64K bytes).
Because of differences between TCP/IP stack implementations, it is not recommended that your
application exclusively depend on this value to determine the exact number of bytes available.
Instead, it should be used as a general indicator that there is data available to be read.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib

See Also
GetStatus, IsBlocking, IsConnected, IsInitialized, IsWritable, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CRshClient::IsWritable

BOOL IsWritable(
 INT nTimeout
);

The IsWritable method is used to determine if data can be written to the server.

Parameters
nTimeout

Timeout for server response, in seconds. A value of zero specifies that the connection should be
polled without blocking the current thread.

Return Value
If the client can write data to the server within the specified timeout period, the method returns a
non-zero value. If the client cannot write any data, the method returns zero.

Remarks
Although this method can be used to determine if some amount of data can be sent to the
remote process it does not indicate the amount of data that can be written without blocking the
client. In most cases, it is recommended that large amounts of data be broken into smaller logical
blocks, typically some multiple of 512 bytes in length.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib

See Also
GetStatus, IsBlocking, IsConnected, IsInitialized, IsReadable, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CRshClient::Login

BOOL Login(
 LPCTSTR lpszRemoteHost,
 LPCTSTR lpszUserName,
 LPCTSTR lpszTerminal,
 UINT nRemotePort,
 UINT nTimeout
);

The Login method is used to establish a connection with the server.

Parameters
lpszRemoteHost

A pointer to the name of the server to connect to; this may be a fully-qualified domain name or
an IP address.

lpszUserName

A pointer to a string which specifies the username used to authenticate the client session.

lpszTerminal

A pointer to a string which specifies the terminal type which the client will be identified as using
during the session. If no particular terminal emulation is required, this parameter may be NULL.

nRemotePort

The port number the server is listening on. A value of zero specifies that the default port of 513
should be used.

nTimeout

The number of seconds that the client will wait for a response from the server before failing the
current operation.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
This protocol should not be used when connecting to a server on a public network because the
user credentials are sent as unencrypted text. For secure remote command execution and
interactive terminal sessions, it is recommended you use the CSshClient class.

The Login method uses host equivalence, where the client is permitted to login without requiring
a password. Host equivalence must be configured by the server administrator and it is typically
restricted to specific users. Note that if configured improperly, host equivalence can introduce a
significant security loophole. Refer to your UNIX system documentation for more information
about host equivalence and the various remote command services.

On UNIX based systems, the terminal name specified by the lpszTerminal parameter corresponds
to a termcap or terminfo entry as set in the TERM environment variable. On Windows based
systems which implement the rlogin service, this parameter may be ignored and the server will
assume that the client is capable of displaying ANSI escape sequences. On VMS systems, the
terminal name should correspond to the terminal type used with the SET TERMINAL/DEVICE
command.

If this parameter is passed as NULL pointer or an empty string, a default terminal type named

"unknown" will be used. On most UNIX and VMS systems this defines a terminal which is not
capable of cursor positioning using control or escape sequences. This terminal type may not be
recognized and an error may be displayed when the user logs in indicating that the terminal type
is invalid.

Refer to the documentation for the server system to determine what terminal type names are
available to you. Remember that on UNIX systems, the terminal type is case-sensitive. Some of the
more common terminal types are:

Terminal Type Description

ansi This terminal type is usually available on UNIX based servers. This
specifies that the client is capable of displaying standard ANSI escape
sequences for cursor control.

dumb This terminal type typically specifies a terminal display which does not
support control or escape sequences for cursor positioning. If you do
not want escape sequences embedded in the data stream and the
server returns an error if the terminal type is not specified, try using this
terminal type.

pcansi This terminal type is usually available on UNIX based servers. This
specifies that the client is a using a PC terminal emulator that supports
basic ANSI escape sequences for cursor control. This may also enable
escape sequences which can set the display colors.

vt100 This terminal type is usually available on UNIX and VMS based servers.
On some VMS systems this string may need to be specified as DEC-
VT100. This specifies that the client is capable of emulating a DEC
VT100 terminal. The VT100 supports many of the same cursor control
sequences as an ANSI terminal.

vt220 This terminal type is usually available on UNIX and VMS based servers.
On some VMS systems this string may need to be specified as DEC-
VT220. This specifies that the client is capable of emulating a DEC
VT220 terminal, which is a later version of the VT100.

vt320 This terminal type is usually available on UNIX and VMS based servers.
On some VMS systems this string may need to be specified as DEC-
VT320. This specifies that the client is capable of emulating a DEC
VT320 terminal, which is similar to the VT100 and VT220 and provides
advanced features such as the ability to set display colors.

xterm This terminal type is may be available on UNIX based servers which
have X Windows installed. This specifies that the client is a using the X
Windows xterm emulator which supports standard ANSI escape
sequences for cursor control.

This method will block the current thread until a connection has been established or the timeout
period has elapsed. To prevent it from blocking the main user interface thread, the application
should create a background worker thread and establish a connection by calling the Connect
method in that thread. If the application requires multiple simultaneous connections, it is
recommended you create a worker thread for each connection.

Requirements

Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Disconnect, Execute

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CRshClient::Read

INT Read(
 LPBYTE lpBuffer,
 INT cbBuffer
);

INT Read(
 CString& strBuffer,
 INT cbBuffer
);

The Read method reads the specified number of bytes from the client socket and copies them
into the buffer. The data may be of any type, and is not terminated with a null character.

Parameters
lpBuffer

Pointer to the buffer in which the data will be copied. An alternate form of this method allows a
CString variable to be passed and data read from the socket will be returned in that string.

cbBuffer

The maximum number of bytes to read and copy into the specified buffer. This value must be
greater than zero.

Return Value
If the method succeeds, the return value is the number of bytes actually read. A return value of
zero indicates that the server has closed the connection and there is no more data available to be
read. If the method fails, the return value is RSH_ERROR. To get extended error information, call
GetLastError.

Remarks
When Read is called and the client is in non-blocking mode, it is possible that the method will fail
because there is no available data to read at that time. This should not be considered a fatal error.
Instead, the application should simply wait to receive the next asynchronous notification that data
is available.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib

See Also
EnableEvents, IsBlocking, IsReadable, IsWritable, RegisterEvent, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CRshClient::RegisterEvent

INT RegisterEvent(
 UINT nEventId,
 RSHEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

The RegisterEvent method registers an event handler for the specified event.

Parameters
nEventId

An unsigned integer which specifies which event should be registered with the specified callback
function. One of the following values may be used:

Constant Description

RSH_EVENT_CONNECT The connection to the server has completed.

RSH_EVENT_DISCONNECT The server has closed the connection to the client. The client
should read any remaining data and disconnect.

RSH_EVENT_READ Data is available to read by the calling process. No additional
messages will be posted until the client has read at least some of
the data. This event is only generated if the client is in
asynchronous mode.

RSH_EVENT_WRITE The client can now write data. This notification is sent after a
connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking
operation. This event is only generated if the client is in
asynchronous mode.

RSH_EVENT_TIMEOUT The network operation has exceeded the specified timeout period.
The client application may attempt to retry the operation, or may
disconnect from the server and report an error to the user.

RSH_EVENT_CANCEL The current operation has been canceled. Under most
circumstances the client should disconnect from the server and re-
connect if needed. After an operation has been canceled, the
server may abort the connection or refuse to accept further
commands from the client.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the RshEventProc callback
function. If this parameter is NULL, the callback for the specified event is disabled.

dwParam

A user-defined integer value that is passed to the callback function. If the application targets the
x86 (32-bit) platform, this parameter must be a 32-bit unsigned integer. If the application
targets the x64 (64-bit) platform, this parameter must be a 64-bit unsigned integer.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is

RSH_ERROR. To get extended error information, call GetLastError.

Remarks
The RegisterEvent method associates a callback function with a specific event. The event handler
is an RshEventProc function that is invoked when the event occurs. Arguments are passed to the
function to identify the client session, the event type and the user-defined value specified when
the event handler is registered. If the event occurs because of an error condition, the error code
will be provided to the handler.

The callback function specified by the lpEventProc parameter must be declared using the
__stdcall calling convention. This ensures the arguments passed to the event handler are pushed
on to the stack in the correct order. Failure to use the correct calling convention will corrupt the
stack and cause the application to terminate abnormally.

The dwParam parameter is commonly used to identify the class instance which is associated with
the event that has occurred. Applications will cast the this pointer to a DWORD_PTR value when
calling this function, and then the event handler will cast it back to a pointer to the class instance.
This gives the handler access to the class member variables and methods.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib

See Also
DisableEvents, EnableEvents, FreezeEvents, RshEventProc

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/rsh/class/rsheventproc.html

 CRshClient::Search

BOOL Search(
 LPCTSTR lpszString
);

BOOL Search(
 LPCTSTR lpszString,
 LPVOID lpBuffer,
 LPDWORD lpdwLength
);

BOOL Search(
 LPCTSTR lpszString,
 HGLOBAL* lpBuffer,
 LPDWORD lpdwLength
);

BOOL Search(
 LPCTSTR lpszString,
 CString& strBuffer
);

The Search method searches for a specific character sequence in the data stream and stops
reading if the sequence is encountered.

Parameters
lpszString

A pointer to a string which specifies the sequence of characters to search for in the data stream.
This parameter cannot be NULL or point to an empty string.

lpBuffer

A pointer to a byte buffer which will contain the output from the server, or a pointer to a global
memory handle which will reference the output when the method returns. An alternate form of
this method accepts a CString object which will contain the output when the method returns. If
the output from the server is not required, this parameter may be NULL.

lpdwLength

A pointer to an unsigned integer which should be initialized to the maximum number of bytes
that can be copied to the buffer specified by the lpBuffer parameter. If the lpBuffer parameter
points to a global memory handle, the length value should be initialized to zero. When the
method returns, this value will be updated with the actual number of bytes of output stored in
the buffer. If the lpBuffer parameter is NULL, this parameter should also be NULL.

Return Value
If the method succeeds and the character sequences was found in the data stream, the return
value is non-zero. If the method fails or a timeout occurs before the sequence is found, the return
value is zero. To get extended error information, call GetLastError.

Remarks
The Search method searches for a character sequence in the data stream and stops reading when
it is found. This is useful when the client wants to automate responses to the server, such as
executing a command and processing the output. The method collects the output from the server
and stores it in the buffer specified by the lpBuffer parameter. When the method returns, the

buffer will contain everything sent by the server up to and including the search string.

The lpBuffer parameter may be specified in one of two ways, depending on the needs of the
application. The first method is to pre-allocate a buffer large enough to store the a fixed amount
of output. In this case, the lpBuffer parameter will point to the buffer that was allocated, the value
that the lpdwLength parameter points to should be initialized to the size of that buffer. If the
server sends more output than can be stored in the buffer, the remaining output will be discarded.

The second method that can be used is have the lpBuffer parameter point to a global memory
handle which will contain the output when the method returns. In this case, the value that the
lpdwLength parameter points to must be initialized to zero. It is important to note that the
memory handle returned by the method must be freed by the application, otherwise a memory
leak will occur. This method is preferred if the client application does not have a general idea of
how much output will be generated until the search string is found.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Execute, IsBlocking, IsReadable, Login, Read

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CRshClient::SetLastError

VOID SetLastError(
 DWORD dwErrorCode
);

The SetLastError method sets the last error code for the current thread. This method is typically
used to clear the last error by specifying a value of zero as the parameter.

Parameters
dwErrorCode

Specifies the last error code for the current thread.

Return Value
None.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. Most methods will
set the last error code value when they fail; a few methods set it when they succeed. Function
failure is typically indicated by a return value such as FALSE, NULL, INVALID_CLIENT or
RSH_ERROR. Those methods which call SetLastError when they succeed are noted on the
method reference page.

Applications can retrieve the value saved by this method by using the GetLastError method. The
use of GetLastError is optional; an application can call the method to determine the specific
reason for a method failure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib

See Also
GetErrorString, GetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CRshClient::SetTimeout

INT SetTimeout(
 UINT nTimeout
);

The SetTimeout method sets the number of seconds the client will wait for a response from the
server. Once the specified number of seconds has elapsed, the method will fail and return to the
caller.

Parameters
nTimeout

The number of seconds to wait for a blocking operation to complete.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
RSH_ERROR. To get extended error information, call GetLastError.

Remarks
The timeout value is only used with blocking client connections.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib

See Also
Execute, GetTimeout, IsReadable, IsWritable, Login, Read, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CRshClient::ShowError

INT ShowError(
 LPCTSTR lpszAppTitle,
 UINT uType,
 DWORD dwErrorCode
);

The ShowError method displays a message box which describes the specified error.

Parameters
lpszAppTitle

A pointer to a string which specifies the title of the message box that is displayed. If this
argument is NULL or omitted, then the default title of "Error" will be displayed.

uType

An unsigned integer which specifies the type of message box that will be displayed. This is the
same value that is used by the MessageBox method in the Windows API. If a value of zero is
specified, then a message box with a single OK button will be displayed. Refer to that method
for a complete list of options.

dwErrorCode

Specifies the error code that will be used when displaying the message box. If this argument is
zero, then the last error that occurred in the current thread will be displayed.

Return Value
If the method is successful, the return value will be the return value from the MessageBox
function. If the method fails, it will return a value of zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetErrorString, GetLastError, SetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CRshClient::Write

INT Write(
 LPBYTE lpBuffer,
 INT cbBuffer
);

INT Write(
 LPCTSTR lpszBuffer
 INT cbBuffer
);

The Write method sends the specified number of bytes to the server.

Parameters
lpBuffer

The pointer to the buffer which contains the data that is to be sent to the server. In an alternate
form of the method, the pointer is to a string.

cbBuffer

The number of bytes to send from the specified buffer. This value must be greater than zero,
unless a pointer to a string buffer is passed as the parameter. In that case, if the value is -1, all of
the characters in the string, up to but not including the terminating null character, will be sent to
the server.

Return Value
If the method succeeds, the return value is the number of bytes actually written. If the method
fails, the return value is RSH_ERROR. To get extended error information, call GetLastError.

Remarks
The return value may be less than the number of bytes specified by the cbBuffer parameter. In this
case, the data has been partially written and it is the responsibility of the client application to send
the remaining data at some later point. For non-blocking clients, the client must wait for the next
asynchronous notification message before it resumes sending data.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
EnableEvents, IsBlocking, IsReadable, IsWritable, Read, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Secure Shell Protocol Class Library

Establish an interactive terminal session with an SSH server and execute remote commands.

Reference

Class Methods
Data Structures
Error Codes

Library Information

Class Name CSshClient

File Name CSTSHV11.DLL

Version 11.0.2180.1635

LibID CC5C4328-4DED-4C40-AA58-00A9A09EA7DD

Import Library CSTSHV11.LIB

Dependencies None

Standards RFC 4251

Overview
The Secure Shell (SSH) protocol is used to establish a secure connection with a server which
provides a virtual terminal session for a user. Its functionality is similar to how character based
consoles and serial terminals work, enabling a user to login to the server, execute commands and
interact with applications running on the server. The SSH library provides an API for establishing
the connection and handling the standard I/O functions needed by the program. The library also
provides functions that enable a program to easily scan the data stream for specific sequences of
characters, making it very simple to write light-weight client interfaces to applications running on
the server. This library can be combined with the Terminal Emulation library to provide complete
terminal emulation services for a standard ANSI or DEC-VT220 terminal.

Requirements
The SocketTools Library Edition libraries are compatible with any programming language which
supports calling functions exported from a standard dynamic link library (DLL). If you are using
Visual C++ 6.0 it is required that you have Service Pack 6 (SP6) installed. You should install all
updates for your development tools and have the current Windows SDK installed. The minimum
recommended version of Visual Studio is Visual Studio 2010.

This library is supported on Windows 7, Windows Server 2008 R2 and later versions of the desktop
and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1) installed as
a minimum requirement. It is recommended that you install the current service pack and all critical
updates available for your version of the operating system.

This product includes both 32-bit and 64-bit libraries. Native 64-bit CPU support requires the 64-
bit version of Windows 7 or later versions of the Windows operating system.

Distribution
When you distribute your application that uses this library, it is recommended that you install the
file in the same folder as your application executable. If you install the library into a shared location

on the system, it is important that you distribute the correct version for the target platform and it
should be registered as a shared DLL. This is a standard Windows dynamic link library, not an
ActiveX component, and does not require COM registration.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SSH Protocol Class Methods

Class Description

CSshClient Constructor which initializes the current instance of the class

~CSshClient Destructor which releases resources allocated by the class

Method Description

AttachHandle Attach the specified client handle to this instance of the class

AttachThread Attach the specified client handle to another thread

Break Send a break signal to the server

Cancel Cancel the current blocking operation

Connect Connect to the specified server

Control Send a control message to the server

CreateSecurityCredentials Create a new security credentials structure

DeleteSecurityCredentials Delete a previously created security credentials structure

DetachHandle Detach the handle for the current instance of this class

DisableEvents Disable asynchronous event notification

DisableTrace Disable logging of network function calls to the trace log

Disconnect Disconnect from the current server

EnableEvents Enable asynchronous event notification

EnableTrace Enable logging of network function calls to a file

Execute Execute a command on a server and return the output in the specified buffer

FreezeEvents Suspend asynchronous event processing

GetErrorString Return a description for the specified error code

GetExitCode Return the exit code for the remote session

GetHandle Return the client handle used by this instance of the class

GetLastError Return the last error code

GetLineMode Return the current mode used to send end-of-line character sequences

GetSecurityInformation Return security information about the current client connection

GetStatus Return the current client status

GetTimeout Return the number of seconds until an operation times out

IsBlocking Determine if the client is blocked, waiting for information

IsConnected Determine if the client is connected to the server

IsInitialized Determine if the class has been successfully initialized

IsReadable Determine if data can be read from the server

IsWritable Determine if data can be written to the server

Peek Examine data in the receive buffer, but do not remove it

Read Read data returned by the server

ReadLine Read a line of data from the server and return it in a string buffer

RegisterEvent Register an event callback function

Search Search for a specific character sequence in the data stream

SetLastError Set the last error code

SetLineMode Change how end-of-line character sequences are sent to the server

SetTimeout Set the number of seconds until an operation times out

ShowError Display a message box with a description of the specified error

SshEventProc Callback function that processes events generated by the client

Write Write data to the server

WriteLine Write a line of data to the server

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/ssh/class/ssheventproc.html

 CSshClient::CSshClient Method

CSshClient();

The CSshClient constructor initializes the class library and validates the license key at runtime.

Remarks
If the constructor fails to validate the runtime license, subsequent methods in this class will fail. If
the product is installed with an evaluation license, then the application will only function on the
development system and cannot be redistributed.

The constructor calls the SshInitialize function to initialize the library, which dynamically loads
other system libraries and allocates thread local storage. If you are using this class within another
DLL, it is important that you do not create or destroy an instance of the class from within the
DllMain function because it can result in deadlocks or access violation errors. You should not
declare static or global instances of this class within another DLL if it is linked with the C runtime
library (CRT) because it will automatically call the constructors and destructors for static and global
C++ objects and has the same restrictions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
~CSshClient, IsInitialized

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSshClient::~CSshClient

~CSshClient();

The CSshClient destructor releases resources allocated by the current instance of the CSshClient
object. It also uninitializes the library if there are no other concurrent uses of the class.

Remarks
When a CSshClient object goes out of scope, the destructor is automatically called to allow the
library to free any resources allocated on behalf of the process. Any pending blocking or
asynchronous calls in this process are canceled without posting any notification messages, and all
handles that were created for the client session are destroyed.

The destructor is not called explicitly by the application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CSshClient

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSshClient::AttachHandle Method

VOID AttachHandle(
 HCLIENT hClient
);

The AttachHandle method attaches the specified client handle to the current instance of the
class.

Parameters
hClient

The handle to the client session that will be attached to the current instance of the class object.

Return Value
None.

Remarks
This method is used to attach a client handle created outside of the class using the SocketTools
API. Once the client handle is attached to the class, the other class member functions may be used
with that client session.

If a client handle already has been created for the class, that handle will be released when the new
handle is attached to the class object. If you want to prevent the previous client session from being
terminated, you must call the DetachHandle method. Failure to release the detached handle may
result in a resource leak in your application.

Note that the hClient parameter is presumed to be a valid client handle and no checks are
performed to ensure that the handle is valid. Specifying an invalid client handle will cause
subsequent method calls to fail.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib

See Also
AttachThread, DetachHandle, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSshClient::AttachThread Method

DWORD AttachThread(
 DWORD dwThreadId
);

The AttachThread method attaches the specified client handle to another thread.

Parameters
dwThreadId

The ID of the thread that will become the new owner of the handle. A value of zero specifies
that the current thread should become the owner of the client handle.

Return Value
If the method succeeds, the return value is the thread ID of the previous owner. If the method fails,
the return value is SSH_ERROR. To get extended error information, call GetLastError.

Remarks
When a client handle is created, it is associated with the current thread that created it. Normally, if
another thread attempts to perform an operation using that handle, an error is returned since it
does not own the handle. This is used to ensure that other threads cannot interfere with an
operation being performed by the owner thread. In some cases, it may be desirable for one
thread in a client application to create the client handle, and then pass that handle to another
worker thread. The AttachThread method can be used to change the ownership of the handle to
the new worker thread. By preserving the return value from the method, the original owner of the
handle can be restored before the worker thread terminates.

This method should be called by the new thread immediately after it has been created, and if the
new thread does not release the handle itself, the ownership of the handle should be restored to
the parent thread before it terminates. Under no circumstances should AttachThread be used to
forcibly release a handle allocated by another thread while a blocking operation is in progress. To
cancel an operation, use the Cancel method and then release the handle after the blocking
method exits and control is returned to the current thread.

Note that the dwThreadId parameter is presumed to be a valid thread ID and no checks are
performed to ensure that the thread actually exists. Specifying an invalid thread ID will orphan the
client handle used by the class until the destructor is called.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib

See Also
AttachHandle, Cancel, Connect, DetachHandle, Disconnect, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSshClient::Break Method

INT Break();

The Break method sends a signal to the server.

Parameters
None.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
SSH_ERROR. To get extended error information, call GetLastError.

Remarks
The Break method sends a control message to the server which simulates a break signal on a
physical terminal. This is used by some operating systems as an instruction to enter a privileged
configuration mode. Note that this is not the same as sending an interrupt character such as
Ctrl+C to the server. This control code is ignored for SSH 1.0 sessions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Cancel, Control, Read, ReadLine, Write, WriteLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSshClient::Cancel Method

INT Cancel();

The Cancel method cancels any outstanding blocking operation in the client, causing the blocking
method to fail. The application may then retry the operation or terminate the client session.

Parameters
None.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
SSH_ERROR. To get extended error information, call GetLastError.

Remarks
When the Cancel method is called, the blocking method will not immediately fail. An internal flag
is set which causes the blocking operation to exit with an error. This means that the application
cannot cancel an operation and immediately perform some other operation. Instead it must allow
the calling stack to unwind, returning back to the blocking operation before making any further
function calls.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib

See Also
Break, IsBlocking

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSshClient::Connect Method

BOOL Connect(
 LPCTSTR lpszRemoteHost,
 UINT nRemotePort,
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword,
 UINT nTimeout,
 DWORD dwOptions,
 LPSSHOPTIONDATA lpOptions
);

The Connect method establishes a connection with the specified server.

Parameters
lpszRemoteHost

A pointer to the name of the server to connect to; this may be a fully-qualified domain name or
an IP address.

nRemotePort

The port number the server is listening on. A value of zero specifies that the default port
number 22 should be used.

lpszUserName

A pointer to a string which specifies the user name which will be used to authenticate the client
session. This parameter must specify a valid user name and cannot be NULL or an empty string.

lpszPassword

A pointer to a string which specifies the password which will be used to authenticate the client
session. If the user does not have a password, this parameter can be NULL or an empty string.

nTimeout

The number of seconds that the client will wait for a response from the server before failing the
current operation.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

SSH_OPTION_NONE No options specified. A standard terminal session will
be established with the default terminal type.

SSH_OPTION_KEEPALIVE This option specifies the library should attempt to
maintain an idle client session for long periods of time.
This option is only necessary if you expect that the
connection will be held open for more than two hours.

SSH_OPTION_NOPTY This option specifies that a pseudoterminal (PTY)
should not be created for the client session. This
option is automatically set if the
SSH_OPTION_COMMAND option has been specified.

SSH_OPTION_NOSHELL This option specifies that a command shell should not
be used when executing a command on the server.

SSH_OPTION_NOAUTHRSA This option specifies that RSA authentication should
not be used with SSH-1 connections. This option is
ignored with SSH-2 connections and should only be
specified if required by the server.

SSH_OPTION_NOPWDNULL This option specifies the user password cannot be
terminated with a null character. This option is ignored
with SSH-2 connections and should only be specified if
required by the server.

SSH_OPTION_NOREKEY This option specifies the client should never attempt a
repeat key exchange with the server. Some SSH
servers do not support rekeying the session, and this
can cause the client to become non-responsive or
abort the connection after being connected for an
hour.

SSH_OPTION_COMPATSID This compatibility option changes how the session ID is
handled during public key authentication with older
SSH servers. This option should only be specified when
connecting to servers that use OpenSSH 2.2.0 or
earlier versions.

SSH_OPTION_COMPATHMAC This compatibility option changes how the HMAC
authentication codes are generated. This option
should only be specified when connecting to servers
that use OpenSSH 2.2.0 or earlier versions.

SSH_OPTION_TERMINAL This option specifies the client session will use terminal
emulation and the SSHOPTIONDATA structure
specifies the characteristics of the virtual terminal. This
enables the caller to specify the dimensions of the
virtual display (in columns and rows) and the type of
terminal that will be emulated. If this option is omitted,
the session will default to a virtual display that is 80
columns, 25 rows.

SSH_OPTION_COMMAND This option specifies the client session will be used to
issue a command that is executed on the server, and
the output will be returned to the caller. If this option is
specified, the session will not be interactive and no
pseudoterminal is created for the client. The
szCommandLine member of the SSHOPTIONDATA
structure specifies the command string that will be sent
to the server.

SSH_OPTION_PROXYSERVER This option specifies the client should establish a
connection through a proxy server. The two protocols
that are supported are SSH_PROXY_HTTP and
SSH_PROXY_TELNET, which specifies the protocol that
the proxy connection is created through. The proxy-
related members of the SSHOPTIONDATA structure
should be set to the appropriate values.

SSH_OPTION_PREFER_IPV6 This option specifies the client should prefer the use of
IPv6 if the server hostname can be resolved to both an
IPv6 and IPv4 address. This option is ignored if the
local system does not have IPv6 enabled, or when the
hostname can only be resolved to an IPv4 address. If
the server hostname can only be resolved to an IPv6
address, the client will attempt to establish a
connection using IPv6 regardless if this option has
been specified.

SSH_OPTION_FREETHREAD This option specifies the handle returned by this
function may be used by any thread, and is not limited
to the thread which created it. The application is
responsible for ensuring that access to the handle is
synchronized across multiple threads.

lpOptions

A pointer to a SSHOPTIONDATA structure which specifies additional information for one or
more options. If no optional data is required, a NULL pointer may be specified.

hEventWnd

The handle to the event notification window. This window receives messages which notify the
client of various asynchronous network events that occur. If this argument is NULL, then the
client session will be blocking and no network events will be sent to the client.

uEventMsg

The message identifier that is used when an asynchronous network event occurs. This value
should be greater than WM_USER as defined in the Windows header files. If the hEventWnd
argument is NULL, this argument should be specified as WM_NULL.

Return Value
If the method succeeds, the return value is a non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
This method will block the current thread until a connection has been established or the timeout
period has elapsed. To prevent it from blocking the main user interface thread, the application
should create a background worker thread and establish a connection by calling the Connect
method in that thread. If the application requires multiple simultaneous connections, it is
recommended you create a worker thread for each connection.

The dwOptions argument can be used to specify the threading model that is used by the library
when a connection is established. By default, the class instance is initially attached to the thread
that created it. From that point on, until the it is released, only the owner may call methods using
that instance of the class. The ownership of the class instance may be transferred from one thread
to another using the AttachThread method.

Specifying the SSH_OPTION_FREETHREAD option enables any thread to call any method in that
instance of the class, regardless of which thread created it. It is important to note that this option
disables certain internal safety checks which are performed by the library and may result in
unexpected behavior unless access to the class instance is synchronized. If one thread calls a
function in the library, it must ensure that no other thread will call another function at the same
time using the same instance.

Example
CSshClient sshClient;
SSHOPTIONDATA sshOptions;
BOOL bConnected;

// Initialize the SSHOPTIONDATA structure and specify the
// command that should be executed on the server
ZeroMemory(&sshOptions, sizeof(sshOptions));
lstrcpyn(sshOptions.szCommandLine, strCommand, SSH_MAXCOMMANDLEN);

// Establish a connection with the SSH server

bConnected = sshClient.Connect(strHostName,
 SSH_PORT_DEFAULT,
 strUserName,
 strPassword,
 SSH_TIMEOUT,
 SSH_OPTION_COMMAND,
 &sshOptions);

// If the connection attempt fails, then get a description of
// the error and display it in a message box

if (!bConnected)
{
 sshClient.ShowError();
 return;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CreateSecurityCredentials, Disconnect, GetSecurityInformation, SECURITYCREDENTIALS,
SSHOPTIONDATA

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SshClient::Control Method

INT Control(
 DWORD dwControlCode
);

The SshControl function sends a control message to the server.

Parameters
dwControlCode

A numeric control code which specifies the control message which should be sent to the server.
This may be one of the following values:

Constant Description

SSH_CONTROL_BREAK Sends a control message to the server which simulates a
break signal on a physical terminal. This is used by some
operating systems as an instruction to enter a privileged
configuration mode. Note that this is not the same as sending
an interrupt character such as Ctrl+C to the server. This
control code is ignored for SSH 1.0 sessions.

SSH_CONTROL_NOOP Sends a control message to the server, but it does not
perform any operation. This is typically used by clients to
prevent the server from automatically closing a session that
has been idle for a long period of time.

SSH_CONTROL_EOF Sends a control message to the server indicating that the
client has finished sending data. Note that this option is
normally not used with interactive terminal sessions, and
should only be used when required by the server.

SSH_CONTROL_PING Sends a control message to the server which is used to test
whether or not the server is responsive to the client. This is
typically used by clients to attempt to detect if the connection
to the server is still active.

SSH_CONTROL_REKEY Sends a control message to the server requesting that the key
exchange be performed again. This control code is ignored
for SSH 1.0 sessions.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
SSH_ERROR. To get extended error information, call the GetLastError method.

Remarks
The Control method enables an application to send control messages to the server, which can
cause it to take specific actions such as simulate a terminal break or request that the key
exchanged be performed again. Some control messages are not supported by the SSH 1.0
protocol, in which case the control message is ignored.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)

Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib

See Also
Break, Cancel, IsBlocking

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSshClient::CreateSecurityCredentials Method

BOOL CreateSecurityCredentials(
 DWORD dwProtocol,
 DWORD dwOptions,
 LPCTSTR lpszKeyFile,
 LPCTSTR lpszPassword
);

BOOL CreateSecurityCredentials(
 LPCTSTR lpszKeyFile,
 LPCTSTR lpszPassword
);

BOOL CreateSecurityCredentials(
 LPCTSTR lpszKeyFile
);

The CreateSecurityCredentials method establishes the security credentials for the client session.

Parameters
dwProtocol

A bitmask of supported security protocols. This parameter is constructed by using a bitwise
operator with any of the following values:

Constant Description

SECURITY_PROTOCOL_SSH Select either version 1.0 or 2.0 of the Secure Shell
protocol. The actual protocol version that is selected is
determined automatically. This is the recommended
value.

SECURITY_PROTOCOL_SSH1 Version 1.0 of the Secure Shell protocol. This protocol
has been deprecated and its use widely used. It is not
recommended that this protocol be used when
establishing secure connections.

SECURITY_PROTOCOL_SSH2 Version 2.0 of the Secure Shell protocol. This is currently
the most commonly used version of the protocol, and
most servers will require this version when establishing a
connection.

dwOptions

Credentials options. This argument is reserved for future use. Set it to zero when using this
method.

lpszKeyFile

A pointer to a string which specifies the name of a private key file that used when authenticating
the client connection. If a private key is not required, value of NULL should be specified.

lpszPassword

A pointer to a string which specifies the password for the private key file. A value of NULL
specifies that no password is required.

Return Value

If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Example
pClient->CreateSecurityCredentials(
 SECURITY_PROTOCOL_SSH,
 0,
 lpszKeyFile,
 lpszPassword);

bConnected = pClient->Connect(lpszHostName,
 SSH_PORT_DEFAULT,
 lpszUserName,
 lpszPassword,
 SSH_TIMEOUT,
 SSH_OPTION_KEEPALIVE);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Connect, DeleteSecurityCredentials, GetSecurityInformation, SECURITYCREDENTIALS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSshClient::DeleteSecurityCredentials Method

VOID DeleteSecurityCredentials();

The DeleteSecurityCredentials method releases the security credentials for the current session.

Parameters
None.

Return Value
None.

Remarks
This method can be used to release the memory allocated to the client or server credentials after
a secure connection has been terminated. The security credentials are released when the class
destructor is called, so it is normally not required that the application explicitly call this method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CreateSecurityCredentials

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSshClient::DetachHandle Method

HCLIENT DetachHandle();

The DetachHandle method detaches the client handle associated with the current instance of the
class.

Parameters
None.

Return Value
This method returns the client handle associated with the current instance of the class object. If
there is no active client session, the value INVALID_CLIENT will be returned.

Remarks
This method is used to detach a client handle created by the class for use with the SocketTools
API. Once the client handle is detached from the class, no other class member functions may be
called. Note that the handle must be explicitly released at some later point by the process or a
resource leak will occur.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib

See Also
AttachHandle, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSshClient::DisableEvents Method

INT DisableEvents();

The DisableEvents method disables the event notification mechanism, preventing subsequent
event notification messages from being posted to the application's message queue.

This method has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Parameters
None.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
SSH_ERROR. To get extended error information, call GetLastError.

Remarks
The DisableEvents method is used to disable event message posting for the specified client
session. Although this will immediately prevent any new events from being generated, it is possible
that messages could be waiting in the message queue. Therefore, an application must be
prepared to handle client event messages after this method has been called.

This method is automatically called if the client has event notification enabled, and the Disconnect
method is called. The same issues regarding outstanding event messages also applies in this
situation, requiring that the application handle event messages that may reference a client handle
that is no longer valid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib

See Also
EnableEvents, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSshClient::DisableTrace Method

BOOL DisableTrace();

The DisableTrace method disables the logging of socket function calls to the trace log.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, a value of zero is
returned.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib

See Also
EnableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSshClient::Disconnect Method

VOID Disconnect();

The Disconnect method terminates the connection with the server, closing the socket and
releasing the memory allocated for the client session.

Parameters
None.

Return Value
None.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib

See Also
Connect, IsConnected

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSshClient::EnableEvents Method

INT EnableEvents(
 HWND hEventWnd,
 UINT uEventMsg
);

The EnableEvents method enables event notifications using Windows messages.

This method has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Applications should use the RegisterEvent method to register an event handler which is invoked
when an event occurs.

Parameters
hEventWnd

Handle to the window which will receive the client notification messages. This parameter must
specify a valid window handle. If a NULL handle is specified, event notification will be disabled.

uEventMsg

The message that is received when a client event occurs. This value must be greater than 1024.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
SSH_ERROR. To get extended error information, call GetLastError.

Remarks
The EnableEvents method is used to request that notification messages be posted to the
specified window whenever a client event occurs. This allows an application to monitor the status
of different client operations, such as a file transfer.

The wParam argument will contain the client handle, the low word of the lParam argument will
contain the event ID, and the high word will contain any error code. If no error has occurred, the
high word will always have a value of zero. The following events may be generated:

Constant Description

SSH_EVENT_CONNECT The connection to the server has completed. The high word of the
lParam parameter should be checked, since this notification
message will be posted if an error has occurred.

SSH_EVENT_DISCONNECT The server has closed the connection to the client. The client
should read any remaining data and disconnect.

SSH_EVENT_READ Data is available to read by the calling process. No additional
messages will be posted until the client has read at least some of
the data. This event is only generated if the client is in
asynchronous mode.

SSH_EVENT_WRITE The client can now write data. This notification is sent after a
connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking

operation. This event is only generated if the client is in
asynchronous mode.

SSH_EVENT_TIMEOUT The network operation has exceeded the specified timeout period.
The client application may attempt to retry the operation, or may
disconnect from the server and report an error to the user.

SSH_EVENT_CANCEL The current operation has been canceled. Under most
circumstances the client should disconnect from the server and re-
connect if needed. After an operation has been canceled, the
server may abort the connection or refuse to accept further
commands from the client.

To disable event notification, call the DisableEvents method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib

See Also
DisableEvents, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSshClient::EnableTrace Method

BOOL EnableTrace(
 LPCTSTR lpszTraceFile,
 DWORD dwTraceFlags
);

The EnableTrace method enables the logging of socket function calls to a file.

Parameters
lpszTraceFile

A pointer to a string which specifies the name of the trace log file. If this parameter is NULL or
an empty string, the default file name cstrace.log is used. The file is stored in the directory
specified by the TEMP environment variable, if it is defined; otherwise, the current working
directory is used.

dwTraceFlags

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

TRACE_INFO All function calls are written to the trace file. This is the default
value.

TRACE_ERROR Only those function calls which fail are recorded in the trace file.

TRACE_WARNING Only those function calls which fail or return values which indicate
a warning are recorded in the trace file.

TRACE_HEXDUMP All functions calls are written to the trace file, plus all the data that
is sent or received is displayed, in both ASCII and hexadecimal
format.

TRACE_PROCESS All function calls in the current process are logged, rather than
only those functions in the current thread. This option is useful for
multithreaded applications that are using worker threads.

Return Value
If the method succeeds, the return value is non-zero. A return value of zero indicates an error.
Failure typically indicates that the tracing library cstrcv11.dll cannot be loaded on the local
system.

Remarks
When trace logging is enabled, the file is opened, appended to and closed for each socket
function call. This makes it possible for an application to append its own logging information,
however care should be taken to ensure that the file is closed before the next network operation is
performed. To limit the size of the log files, enable and disable logging only around those sections
of code that you wish to trace.

Note that the TRACE_HEXDUMP trace level generates very large log files since it includes all of the
data exchanged between your application and the server.

Trace method logging is managed on a per-thread basis, not for each client handle. This means
that all SocketTools libraries and components share the same settings in the current thread. If you

are using multiple SocketTools libraries or components in your application, you only need to
enable logging once.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DisableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSshClient::Execute Method

INT Execute(
 LPCTSTR lpszRemoteHost,
 UINT nRemotePort,
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword,
 LPCTSTR lpszCommandLine,
 UINT nTimeout,
 DWORD dwOptions,
 HGLOBAL* lphgblBuffer,
 LPDWORD lpdwLength
);

INT Execute(
 LPCTSTR lpszRemoteHost,
 UINT nRemotePort,
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword,
 LPCTSTR lpszCommandLine,
 UINT nTimeout,
 DWORD dwOptions,
 LPBYTE lpBuffer,
 LPDWORD lpdwLength
);

INT Execute(
 LPCTSTR lpszRemoteHost,
 UINT nRemotePort,
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword,
 LPCTSTR lpszCommandLine,
 UINT nTimeout,
 DWORD dwOptions,
 CString& strBuffer
);

The Execute method executes a command on the server and returns the output in the specified
buffer.

Parameters
lpszRemoteHost

A pointer to a string which specifies the name of the server. This may either be a fully-qualified
domain name, or an IP address. This parameter cannot be NULL.

nRemotePort

The port number the server is listening on. A value of zero specifies that the default port
number 22 should be used.

lpszUserName

A pointer to a string which specifies the user name which will be used to authenticate the client
session.

lpszPassword

A pointer to a string which specifies the password which will be used to authenticate the client

session.

nTimeout

The number of seconds that the client will wait for a response from the server before failing the
current operation.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

SSH_OPTION_NONE No options specified. A standard terminal session will
be established with the default terminal type.

SSH_OPTION_KEEPALIVE This option specifies the library should attempt to
maintain an idle client session for long periods of time.
This option is only necessary if you expect that the
connection will be held open for more than two hours.

SSH_OPTION_NOPTY This option specifies that a pseudoterminal (PTY)
should not be created for the client session. This
option is automatically set if the
SSH_OPTION_COMMAND option has been specified.

SSH_OPTION_NOSHELL This option specifies that a command shell should not
be used when executing a command on the server.

SSH_OPTION_NOAUTHRSA This option specifies that RSA authentication should
not be used with SSH-1 connections. This option is
ignored with SSH-2 connections and should only be
specified if required by the server.

SSH_OPTION_NOPWDNULL This option specifies the user password cannot be
terminated with a null character. This option is ignored
with SSH-2 connections and should only be specified if
required by the server.

SSH_OPTION_NOREKEY This option specifies the client should never attempt a
repeat key exchange with the server. Some SSH
servers do not support rekeying the session, and this
can cause the client to become non-responsive or
abort the connection after being connected for an
hour.

SSH_OPTION_COMPATSID This compatibility option changes how the session ID is
handled during public key authentication with older
SSH servers. This option should only be specified when
connecting to servers that use OpenSSH 2.2.0 or
earlier versions.

SSH_OPTION_COMPATHMAC This compatibility option changes how the HMAC
authentication codes are generated. This option
should only be specified when connecting to servers
that use OpenSSH 2.2.0 or earlier versions.

lpBuffer, lphgblBuffer or strBuffer

A pointer to a byte buffer which will contain the data transferred from the server, or a pointer to
a global memory handle which will reference the data when the function returns. If the
application is using MFC, then a CString variable may also be specified, in which case the data is
returned in the string

lpdwLength

A pointer to an unsigned integer which should be initialized to the maximum number of bytes
that can be copied to the buffer specified by the lpvBuffer parameter. If the lpvBuffer
parameter points to a global memory handle, the length value should be initialized to zero.
When the function returns, this value will be updated with the actual length of the file that was
downloaded.

lpCredentials

A pointer to a SECURITYCREDENTIALS structure which specifies additional security-related
information required to establish the connection. This parameter may be NULL, in which case
default values will be used. Note that the dwSize member must be initialized to the size of the
SECURITYCREDENTIALS structure that is being passed to the function.

Return Value
If the function succeeds, the return value is the exit code from the program that was executed on
the server. If the function fails, the return value is SSH_ERROR. To get extended error information,
call SshGetLastError.

Remarks
The Execute method is used to execute a command on a server, read the output from that
command and copy it into a local buffer. This method cannot be used if the connection to the
server must be established through a proxy server; if a proxy server must be used, then you
should use the Connect method to establish the connection, and then use either the Read or
ReadLine methods to read the output.

This method may be used in one of two ways, depending on the needs of the application. The first
method is to pre-allocate a buffer large enough to store the command output. In this case, the
lpBuffer parameter will point to the buffer that was allocated, the value that the lpdwLength
parameter points to should be initialized to the size of that buffer.

The second method that can be used is have the lphgblBuffer parameter point to a global
memory handle which will contain the output when the function returns. In this case, the value that
the lpdwLength parameter points to must be initialized to zero. It is important to note that the
memory handle returned by the function must be freed by the application, otherwise a memory
leak will occur. See the example code below.

When the command output is being read from the server, this method will automatically convert
the data to match the end-of-line convention used on the Windows platform. This is useful when
executing a command on a UNIX based system where the end-of-line is indicated by a single
linefeed, while on Windows it is a carriage-return and linefeed pair. If the output contains
embedded nulls or escape sequences, then this conversion will not be performed.

This method will cause the current thread to block until the command completes or a timeout
occurs.

Example
HGLOBAL hgblBuffer = (HGLOBAL)NULL;
LPBYTE lpBuffer = (LPBYTE)NULL;
DWORD cbBuffer = 0;

// Execute a command on the server and return the data into block
// of global memory allocated by the GlobalAlloc function; the handle
// to this memory will be returned in the hgblBuffer parameter
nResult = sshClient.Execute(strHostName,
 SSH_PORT_DEFAULT,
 strUserName,
 strPassword,
 strCommandLine,
 SSH_TIMEOUT,
 SSH_OPTION_NONE,
 &hgblBuffer,
 &cbBuffer);

if (nResult != SSH_ERROR)
{
 // Lock the global memory handle, returning a pointer to the
 // resource data
 lpBuffer = (LPBYTE)::GlobalLock(hgblBuffer);

 // After the data has been used, the handle must be unlocked
 // and freed, otherwise a memory leak will occur
 ::GlobalUnlock(hgblBuffer);
 ::GlobalFree(hgblBuffer);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Server: Requires Windows Server 2003 or Windows 2000 Server.
Header File: cstools11.h
Import Library: cstshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Connect, GetExitCode, Read, ReadLine, Write, WriteLine, SECURITYCREDENTIALS,
SSHOPTIONDATA

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSshClient::FreezeEvents Method

INT FreezeEvents(
 BOOL bFreeze
);

The FreezeEvents method is used to suspend and resume event handling by the client.

Parameters
bFreeze

A non-zero value specifies that event handling should be suspended by the client. A zero value
specifies that event handling should be resumed.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
SSH_ERROR. To get extended error information, call GetLastError.

Remarks
This method should be used when the application does not want to process events, such as when
a modal dialog is being displayed. When events are suspended, all client events are queued. If
events are re-enabled at a later point, those queued events will be sent to the application for
processing. Note that only one of each event will be generated. For example, if the client has
suspended event handling, and four read events occur, once event handling is resumed only one
of those read events will be posted to the client. This prevents the application from being flooded
by a potentially large number of queued events.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DisableEvents, EnableEvents, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSshClient::GetErrorString Method

INT GetErrorString(
 DWORD dwErrorCode,
 LPTSTR lpszDescription,
 INT cbDescription
);

INT GetErrorString(
 DWORD dwErrorCode,
 CString& strDescription
);

The GetErrorString method is used to return a description of a specific error code. Typically this is
used in conjunction with the GetLastError method for use with warning dialogs or as diagnostic
messages.

Parameters
dwErrorCode

The error code for which a description is returned.

lpszDescription

A pointer to the buffer that will contain a description of the specified error code. This buffer
should be at least 128 characters in length. An alternate form of the method accepts a CString
variable which will contain the error description.

cbDescription

The maximum number of characters that may be copied into the description buffer.

Return Value
If the method succeeds, the return value is the length of the description string. If the method fails,
the return value is zero, meaning that no description exists for the specified error code. Typically
this indicates that the error code passed to the method is invalid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetLastError, SetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSshClient::GetExitCode Method

INT GetExitCode();

The GetExitCode function returns the exit code for the remote session.

Parameters
None.

Return Value
If the method succeeds, the return value is the numeric exit code. If the function fails, the return
value is SSH_ERROR. To get extended error information, call the GetLastError method.

Remarks
This method should only be called after the command has completed and the Read method has
returned a value of zero. In most cases, an exit code value of zero indicates success, while any
other value indicates an error condition.

Note that the actual value is application dependent and is only meaningful in the context of that
particular program. A program may choose or use exit codes in a non-standard way, such as
having certain non-zero values indicate success.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib

See Also
GetStatus

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSshClient::GetHandle Method

HCLIENT GetHandle();

The GetHandle method returns the client handle associated with the current instance of the class.

Parameters
None.

Return Value
This method returns the client handle associated with the current instance of the class object. If
there is no active client session, the value INVALID_CLIENT will be returned.

Remarks
This method is used to obtain the client handle created by the class for use with the SocketTools
API.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib

See Also
AttachHandle, DetachHandle, IsInitialized

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSshClient::GetLastError Method

DWORD GetLastError();

DWORD GetLastError(
 CString& strDescription
);

Parameters
strDescription

A string which will contain a description of the last error code value when the method returns. If
no error has been set, or the last error code has been cleared, this string will be empty.

Return Value
The return value is the last error code value for the current thread. Functions set this value by
calling the SetLastError method. The Return Value section of each reference page notes the
conditions under which the method sets the last error code.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. You should call
the GetLastError method immediately when a method's return value indicates that an error has
occurred. That is because some methods call SetLastError(0) when they succeed, clearing the
error code set by the most recently failed method.

Most methods will set the last error code value when they fail; a few methods set it when they
succeed. Function failure is typically indicated by a return value such as FALSE, NULL,
INVALID_CLIENT or SSH_ERROR. Those methods which call SetLastError when they succeed are
noted on the method reference page.

The description of the error code is the same string that is returned by the GetErrorString
method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib

See Also
GetErrorString, SetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSshClient::GetLineMode Method

INT GetLineMode();

The GetLineMode method returns the current line mode.

Parameters
None.

Return Value
If the method succeeds, the return value is the current line mode. If the method fails, the return
value is SSH_ERROR. To get extended error information, call GetLastError.

Remarks
The GetLineMode method returns an integer value that specifies how end-of-line character
sequences are sent to the server. For more information about how newlines are processed by the
class and the available options, refer to the SetLineMode method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib

See Also
SetLineMode, Write, WriteLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSshClient::GetSecurityInformation Method

BOOL GetSecurityInformation(
 LPSECURITYINFO lpSecurityInfo
);

The GetSecurityInformation method returns security protocol, encryption and certificate
information about the current client connection.

Parameters
lpSecurityInfo

A pointer to a SECURITYINFO structure which contains information about the current client
connection. The dwSize member of this structure must be initialized to the size of the structure
before passing the address of the structure to this method.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
This method is used to obtain security related information about the current client connection to
the server. It can be used to determine if a secure connection has been established, what security
protocol was selected, and information about the server certificate. Note that a secure connection
has not been established, the dwProtocol structure member will contain the value
SECURITY_PROTOCOL_NONE.

Example
The following example demonstrates how to obtain the fingerprint for the server:

SECURITYINFO securityInfo;

ZeroMemory(&securityInfo, sizeof(SECURITYINFO));
securityInfo.dwSize = sizeof(SECURITYINFO);

if (sshClient.GetSecurityInformation(&securityInfo))
{
 if (securityInfo.lpszFingerprint != NULL)
 {
 TCHAR szMessage[256];
 wsprintf(szMessage, _T("The fingerprint is %s",
securityInfo.lpszFingerprint);
 MessageBox(NULL, szMessage, "Connection", MB_OK);
 }
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Connect, CreateSecurityCredentials, SECURITYINFO

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSshClient::GetStatus Method

INT GetStatus();

The GetStatus method the current status of the client session.

Parameters
None.

Return Value
If the method succeeds, the return value is the client status code. If the method fails, the return
value is SSH_ERROR. To get extended error information, call GetLastError.

Remarks
The GetStatus method returns a numeric code which identifies the current state of the client
session. The following values may be returned:

Value Constant Description

0 SSH_STATUS_UNUSED No connection has been established.

1 SSH_STATUS_IDLE The client is current idle and not sending or
receiving data.

2 SSH_STATUS_CONNECT The client is establishing a connection with the
server.

3 SSH_STATUS_AUTHENTICATE The client is authenticating the session with the
server.

4 SSH_STATUS_READ The client is reading data from the server.

5 SSH_STATUS_WRITE The client is writing data to the server.

6 SSH_STATUS_DISCONNECT The client is disconnecting from the server.

In a multithreaded application, any thread in the current process may call this method to obtain
status information for the specified client session.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib

See Also
IsBlocking, IsConnected, IsReadable, IsWritable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSshClient::GetTimeout Method

INT GetTimeout();

The GetTimeout method returns the number of seconds the client will wait for a response from
the server. Once the specified number of seconds has elapsed, the method will fail and return to
the caller.

Parameters
None.

Return Value
If the method succeeds, the return value is the timeout period in seconds. If the method fails, the
return value is SSH_ERROR. To get extended error information, call GetLastError.

Remarks
The timeout value is only used with blocking client connections. A value of zero indicates that the
default timeout period of 20 seconds should be used.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib

See Also
Connect, IsReadable, IsWritable, Read, SetTimeout, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSshClient::IsBlocking Method

BOOL IsBlocking();

The IsBlocking method is used to determine if the client is currently performing a blocking
operation.

Parameters
None.

Return Value
If the client is performing a blocking operation, the method returns a non-zero value. If the client
is not performing a blocking operation, or the client handle is invalid, the method returns zero.

Remarks
Because a blocking operation can allow the application to be re-entered (for example, by pressing
a button while the operation is being performed), it is possible that another blocking method may
be called while it is in progress. Since only one thread of execution may perform a blocking
operation at any one time, an error would occur. The IsBlocking method can be used to
determine if the client is already blocked, and if so, take some other action (such as warning the
user that they must wait for the operation to complete).

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Cancel, GetStatus, IsConnected, IsInitialized, IsReadable, IsWritable, Read, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSshClient::IsConnected Method

BOOL IsConnected();

The IsConnected method is used to determine if the client is currently connected to a server.

Parameters
None.

Return Value
If the client is connected to a server, the method returns a non-zero value. If the client is not
connected, or the client handle is invalid, the method returns zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib

See Also
GetStatus, IsBlocking, IsInitialized, IsReadable, IsWritable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSshClient::IsInitialized Method

BOOL IsInitialized();

The IsInitialized method returns whether or not the class object has been successfully initialized.

Parameters
None.

Return Value
This method returns a non-zero value if the class object has been successfully initialized. A return
value of zero indicates that the runtime license key could not be validated or the networking
library could not be loaded by the current process.

Remarks
When an instance of the class is created, the class constructor will attempt to initialize the
component with the runtime license key that was created when SocketTools was installed. If the
constructor is unable to validate the license key or load the networking libraries, this initialization
will fail.

If SocketTools was installed with an evaluation license, the application cannot be redistributed to
another system. The class object will fail to initialize if the application is executed on another
system, or if the evaluation period has expired. To redistribute your application, you must
purchase a development license which will include the runtime key that is needed to redistribute
your software to other systems. Refer to the Developer's Guide for more information.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib

See Also
CSshClient, IsBlocking, IsConnected

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSshClient::IsReadable Method

BOOL IsReadable(
 INT nTimeout,
 LPDWORD lpdwAvail
);

The IsReadable method is used to determine if data is available to be read from the server.

Parameters
nTimeout

Timeout for server response, in seconds. A value of zero specifies that the connection should be
polled without blocking the current thread.

lpdwAvail

A pointer to an unsigned integer which will contain the number of bytes available to read. This
parameter may be NULL if this information is not required.

Return Value
If the client can read data from the server within the specified timeout period, the method returns
a non-zero value. If the client cannot read any data, the method returns zero.

Remarks
On some platforms, this value will not exceed the size of the receive buffer (typically 8192 bytes).
Because of differences between TCP/IP stack implementations, it is not recommended that your
application exclusively depend on this value to determine the exact number of bytes available.
Instead, it should be used as a general indicator that there is data available to be read.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib

See Also
GetStatus, IsBlocking, IsConnected, IsInitialized, IsWritable, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSshClient::IsWritable Method

BOOL IsWritable(
 INT nTimeout
);

The IsWritable method is used to determine if data can be written to the server.

Parameters
nTimeout

Timeout for server response, in seconds. A value of zero specifies that the connection should be
polled without blocking the current thread.

Return Value
If the client can write data to the server within the specified timeout period, the method returns a
non-zero value. If the client cannot write any data, the method returns zero.

Remarks
Although this method can be used to determine if some amount of data can be sent to the
remote process it does not indicate the amount of data that can be written without blocking the
client. In most cases, it is recommended that large amounts of data be broken into smaller logical
blocks, typically some multiple of 512 bytes in length.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib

See Also
GetStatus, IsBlocking, IsConnected, IsInitialized, IsReadable, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSshClient::Peek Method

INT Peek(
 LPBYTE lpBuffer,
 INT cbBuffer
);

INT Peek(
 CString& strBuffer,
 INT cbBuffer
);

The Peek method reads the specified number of bytes from the server and copies them into the
buffer, but it does not remove the data from the internal receive buffer. The data may be of any
type, and is not terminated with a null character.

Parameters
lpBuffer

Pointer to the buffer in which the data will be copied. An alternate form of this method allows a
CString variable to be passed and data read from the socket will be returned in that string.

cbBuffer

The maximum number of bytes to read and copy into the specified buffer. This value must be
greater than zero.

Return Value
If the method succeeds, the return value is the number of bytes actually read. A return value of
zero indicates that the server has closed the connection and there is no more data available to be
read. If the method fails, the return value is SSH_ERROR. To get extended error information, call
GetLastError.

Remarks
The Peek method can be used to examine the data that is available to be read from the internal
receive buffer. If there is no data in the receive buffer at that time, a value of zero is returned. It
should be noted that this differs from the Read method, where a return value of zero indicates
that there is no more data available to be read and the connection has been closed. The Peek
method will never cause the client to block, and so may be safely used with asynchronous
connections.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib

See Also
IsBlocking, IsReadable, Read, ReadLine, Write, WriteLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSshClient::Read Method

INT Read(
 LPBYTE lpBuffer,
 INT cbBuffer
);

INT Read(
 CString& strBuffer,
 INT cbBuffer
);

The Read method reads the specified number of bytes from the client socket and copies them
into the buffer. The data may be of any type, and is not terminated with a null character.

Parameters
lpBuffer

Pointer to the buffer in which the data will be copied. An alternate form of this method allows a
CString variable to be passed and data read from the socket will be returned in that string.

cbBuffer

The maximum number of bytes to read and copy into the specified buffer. This value must be
greater than zero.

Return Value
If the method succeeds, the return value is the number of bytes actually read. A return value of
zero indicates that the server has closed the connection and there is no more data available to be
read. If the method fails, the return value is SSH_ERROR. To get extended error information, call
GetLastError.

Remarks
When Read is called and the client is in non-blocking mode, it is possible that the method will fail
because there is no available data to read at that time. This should not be considered a fatal error.
Instead, the application should simply wait to receive the next asynchronous notification that data
is available.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib

See Also
IsBlocking, IsReadable, Peek, ReadLine, Write, WriteLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSshClient::ReadLine Method

BOOL ReadLine(
 LPTSTR lpszBuffer,
 LPINT lpnLength
);

BOOL ReadLine(
 LPTSTR lpszBuffer,
 INT nMaxLength
);

BOOL ReadLine(
 CString& strBuffer,
 INT nMaxLength
);

The ReadLine method reads up to a line of data from the server and returns it in a string buffer.

Parameters
lpszBuffer

Pointer to the string buffer that will contain the data when the method returns. The string will be
terminated with a null character, and will not contain the end-of-line characters. An alternate
form of the method accepts a CString argument which will contain the line of text returned by
the server.

lpnLength

A pointer to an integer value which specifies the length of the buffer. The value should be
initialized to the maximum number of characters that can be copied into the string buffer,
including the terminating null character. When the method returns, its value will updated with
the actual length of the string.

nMaxLength

An integer value which specifies the maximum length of the buffer.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The ReadLine method reads data from the server and copies into a specified string buffer. Unlike
the Read method which reads arbitrary bytes of data, this method is specifically designed to
return a single line of text data in a string. When an end-of-line character sequence is
encountered, the method will stop and return the data up to that point. The string buffer is
guaranteed to be null-terminated and will not contain the end-of-line characters.

There are some limitations when using ReadLine. The method should only be used to read text,
never binary data. In particular, the method will discard nulls, linefeed and carriage return control
characters. The Unicode version of this method will return a Unicode string, however it does not
support reading raw Unicode data from the socket. Any data read from the socket is internally
buffered as octets (eight-bit bytes) and converted to Unicode using the MultiByteToWideChar
function.

This method will force the thread to block until an end-of-line character sequence is processed,
the read operation times out or the server closes its end of the socket connection. If this method is

 called with asynchronous events enabled, it will automatically switch the socket into a blocking
mode, read the data and then restore the socket to asynchronous operation. If another socket
operation is attempted while ReadLine is blocked waiting for data from the server, an error will
occur. It is recommended that this method only be used with blocking (synchronous) socket
connections; if the application needs to establish multiple simultaneous connections, it should
create worker threads to manage each connection.

The Read and ReadLine method calls can be intermixed, however be aware that Read will
consume any data that has already been buffered by the ReadLine method and this may have
unexpected results.

Unlike the Read method, it is possible for data to be returned in the string buffer even if the return
value is zero. Applications should check the length of the string to determine if any data was
copied into the buffer. For example, if a timeout occurs while the method is waiting for more data
to arrive on the socket, it will return zero; however, data may have already been copied into the
string buffer prior to the error condition. It is the responsibility of the application to process that
data, regardless of the return value.

Example
CString strBuffer;
BOOL bResult;

do
{
 bResult = pClient->ReadLine(strBuffer);

 if (strBuffer.GetLength() > 0)
 {
 // Process the line of data returned in the string
 // buffer; the string is always null-terminated
 }
} while (bResult);

DWORD dwError = pClient->GetLastError();

if (dwError == ST_ERROR_CONNECTION_CLOSED)
{
 // The server has closed its side of the connection and
 // there is no more data available to be read
}
else if (dwError != 0)
{
 // An error has occurred while reading a line of data
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
IsReadable, Peek, Read, Write, WriteLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSshClient::RegisterEvent Method

INT RegisterEvent(
 UINT nEventId,
 SSHEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

The RegisterEvent method registers an event handler for the specified event.

Parameters
nEventId

An unsigned integer which specifies which event should be registered with the specified callback
function. One of the following values may be used:

Constant Description

SSH_EVENT_CONNECT The connection to the server has completed.

SSH_EVENT_DISCONNECT The server has closed the connection to the client. The client
should read any remaining data and disconnect.

SSH_EVENT_READ Data is available to read by the calling process. No additional
messages will be posted until the client has read at least some of
the data. This event is only generated if the client is in
asynchronous mode.

SSH_EVENT_WRITE The client can now write data. This notification is sent after a
connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking
operation. This event is only generated if the client is in
asynchronous mode.

SSH_EVENT_TIMEOUT The network operation has exceeded the specified timeout period.
The client application may attempt to retry the operation, or may
disconnect from the server and report an error to the user.

SSH_EVENT_CANCEL The current operation has been canceled. Under most
circumstances the client should disconnect from the server and re-
connect if needed. After an operation has been canceled, the
server may abort the connection or refuse to accept further
commands from the client.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the SshEventProc callback
function. If this parameter is NULL, the callback for the specified event is disabled.

dwParam

A user-defined integer value that is passed to the callback function. If the application targets the
x86 (32-bit) platform, this parameter must be a 32-bit unsigned integer. If the application
targets the x64 (64-bit) platform, this parameter must be a 64-bit unsigned integer.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is

SSH_ERROR. To get extended error information, call GetLastError.

Remarks
The RegisterEvent method associates a callback function with a specific event. The event handler
is an SshEventProc function that is invoked when the event occurs. Arguments are passed to the
function to identify the client session, the event type and the user-defined value specified when
the event handler is registered. If the event occurs because of an error condition, the error code
will be provided to the handler.

The callback function specified by the lpEventProc parameter must be declared using the
__stdcall calling convention. This ensures the arguments passed to the event handler are pushed
on to the stack in the correct order. Failure to use the correct calling convention will corrupt the
stack and cause the application to terminate abnormally.

The dwParam parameter is commonly used to identify the class instance which is associated with
the event that has occurred. Applications will cast the this pointer to a DWORD_PTR value when
calling this function, and then the event handler will cast it back to a pointer to the class instance.
This gives the handler access to the class member variables and methods.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib

See Also
DisableEvents, EnableEvents, FreezeEvents, SshEventProc

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/ssh/class/ssheventproc.html

 CSshClient::Search Method

BOOL Search(
 LPCTSTR lpszString
);

BOOL Search(
 LPCTSTR lpszString,
 LPBYTE lpBuffer,
 LPDWORD lpdwLength
);

BOOL Search(
 LPCTSTR lpszString,
 HGLOBAL* lpBuffer,
 LPDWORD lpdwLength
);

BOOL Search(
 LPCTSTR lpszString,
 CString& strBuffer
);

The Search method searches for a specific character sequence in the data stream and stops
reading if the sequence is encountered.

Parameters
lpszString

A pointer to a string which specifies the sequence of characters to search for in the data stream.
This parameter cannot be NULL or point to an empty string.

lpBuffer

A pointer to a byte buffer which will contain the output from the server, or a pointer to a global
memory handle which will reference the output when the method returns. If the output from
the server is not required, this parameter may be NULL.

lpdwLength

A pointer to an unsigned integer which should be initialized to the maximum number of bytes
that can be copied to the buffer specified by the lpBuffer parameter. If the lpBuffer parameter
points to a global memory handle, the length value should be initialized to zero. When the
method returns, this value will be updated with the actual number of bytes of output stored in
the buffer. If the lpBuffer parameter is NULL, this parameter should also be NULL.

Return Value
If the method succeeds and the character sequences was found in the data stream, the return
value is non-zero. If the method fails or a timeout occurs before the sequence is found, the return
value is zero. To get extended error information, call GetLastError.

Remarks
The Search method searches for a character sequence in the data stream and stops reading when
it is found. This is useful when the client wants to automate responses to the server, such as
logging in a user and executing a command. The method collects the output from the server and
stores it in the buffer specified by the lpBuffer parameter. When the method returns, the buffer
will contain everything sent by the server up to and including the search string.

The lpBuffer parameter may be specified in one of two ways, depending on the needs of the
application. The first method is to pre-allocate a buffer large enough to store the a fixed amount
of output. In this case, the lpBuffer parameter will point to the buffer that was allocated, the value
that the lpdwLength parameter points to should be initialized to the size of that buffer. If the
server sends more output than can be stored in the buffer, the remaining output will be discarded.

The second method that can be used is have the lpBuffer parameter point to a global memory
handle which will contain the output when the method returns. In this case, the value that the
lpdwLength parameter points to must be initialized to zero. It is important to note that the
memory handle returned by the method must be freed by the application, otherwise a memory
leak will occur. This method is preferred if the client application does not have a general idea of
how much output will be generated until the search string is found.

Example
LPCTSTR lpszCommand = _T("/bin/ls -l\r\n");
LPCTSTR lpszPrompt = _T("$ ");
HGLOBAL hgblOutput = NULL;
DWORD cbOutput = 0;
BOOL bResult;

// Search for a command prompt issued by the server

bResult = pClient->Search(lpszPrompt, NULL, NULL, 0);

// If the shell prompt was found, issue the command
// and capture the output into the hgblBuffer global
// memory buffer; the cbBuffer variable will contain
// the actual number of bytes in the buffer when the
// function returns

if (bResult)
{
 pClient->Write((LPBYTE)lpszCommand, lstrlen(lpszCommand));

 bResult = pClient->Search(lpszPrompt,
 &hgblOutput,
 &cbOutput,
 0);
}

// Write the contents of the output buffer to the
// standard output stream

if (bResult)
{
 LPBYTE lpBuffer = (LPBYTE)GlobalLock(hgblBuffer);

 if (lpBuffer)
 fwrite(lpBuffer, 1, cbBuffer, stdout);

 GlobalUnlock(hgblBuffer);
 GlobalFree(hgblBuffer);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)

Header File: cstools11.h
Import Library: cstshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
IsBlocking, IsReadable, Peek, Read, ReadLine, Write, WriteLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSshClient::SetLastError Method

VOID SetLastError(
 DWORD dwErrorCode
);

The SetLastError method sets the last error code for the current thread. This method is typically
used to clear the last error by specifying a value of zero as the parameter.

Parameters
dwErrorCode

Specifies the last error code for the current thread.

Return Value
None.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. Most methods will
set the last error code value when they fail; a few methods set it when they succeed. Function
failure is typically indicated by a return value such as FALSE, NULL, INVALID_CLIENT or
SSH_ERROR. Those methods which call SetLastError when they succeed are noted on the method
reference page.

Applications can retrieve the value saved by this method by using the GetLastError method. The
use of GetLastError is optional; an application can call the method to determine the specific
reason for a method failure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib

See Also
GetErrorString, GetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSshClient::SetLineMode Method

INT SetLineMode(
 INT nLineMode
);

The SetLineMode method changes the current line mode for the client session.

Parameters
nLineMode

An integer value which specifies how the newlines are sent by the class. It must be one of the
following values:

Value Constant Description

0 SSH_NEWLINE_DEFAULT There are no changes to how data is sent to the
server. Any carriage return or linefeed characters
that are sent using the Write method will be sent
as-is. The WriteLine method will terminate each line
of text with a carriage return and linefeed (CRLF)
sequence. This is the default line mode that is set
when a new connection is established.

1 SSH_NEWLINE_CR A carriage return is used as the end-of-line
character. Any data sent using the Write method
that contains only a linefeed (LF) character or a
carriage return and linefeed (CRLF) sequence to
indicate the end-of-line will be replaced by a
carriage return (CR) character. The WriteLine
method will terminate each line of text with a single
carriage return character.

2 SSH_NEWLINE_LF A linefeed is used as the end-of-line character. Any
data sent using the Write method that contains only
a carriage return (CR) character or a carriage return
an linefeed (CRLF) sequence to indicate the end-of-
line will be replaced by a linefeed (LF) character. The
WriteLine method will terminate each line of text
with a single linefeed character.

3 SSH_NEWLINE_CRLF A carriage return and linefeed (CRLF) character
sequence is used to indicate the end-of-line. Any
data sent using the Write method that contains only
a carriage return (CR) or linefeed (LF) will be
replaced by a carriage return and linefeed. The
WriteLine method will terminate each line of text
with a carriage return and linefeed sequence.

Return Value
If the method succeeds, the return value is the previous line mode for the client session. If the
method fails, the return value is SSH_ERROR. To get extended error information, call GetLastError.

Remarks

When a connection is initially established with the server, it determines what characters are used to
indicate the end-of-line and how they are displayed. On UNIX based systems, this is controlled by
the settings for the pseudo-terminal that is allocated for the client session, and can be changed
using the stty command. In most cases, the client line mode can be left at the default. However, in
some cases you may need to change the line mode, particularly if you intend to send data from a
Windows text file or copied from the clipboard.

Windows uses a carriage return and linefeed (CRLF) sequence to indicate the end-of-line and a
UNIX based server may interpret that as multiple newlines. To prevent this, use the SetLineMode
method to change the current line mode to SSH_NEWLINE_CR and the CRLF sequence in the
text will be replaced by a single carriage return.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib

See Also
GetLineMode, Write, WriteLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSshClient::SetTimeout Method

INT SetTimeout(
 UINT nTimeout
);

The SetTimeout method sets the number of seconds the client will wait for a response from the
server. Once the specified number of seconds has elapsed, the method will fail and return to the
caller.

Parameters
nTimeout

The number of seconds to wait for a blocking operation to complete.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
SSH_ERROR. To get extended error information, call GetLastError.

Remarks
The timeout value is only used with blocking client connections.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib

See Also
Connect, GetTimeout, IsReadable, IsWritable, Read, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSshClient::ShowError Method

INT ShowError(
 LPCTSTR lpszAppTitle,
 UINT uType,
 DWORD dwErrorCode
);

The ShowError method displays a message box which describes the specified error.

Parameters
lpszAppTitle

A pointer to a string which specifies the title of the message box that is displayed. If this
argument is NULL or omitted, then the default title of "Error" will be displayed.

uType

An unsigned integer which specifies the type of message box that will be displayed. This is the
same value that is used by the MessageBox method in the Windows API. If a value of zero is
specified, then a message box with a single OK button will be displayed. Refer to that method
for a complete list of options.

dwErrorCode

Specifies the error code that will be used when displaying the message box. If this argument is
zero, then the last error that occurred in the current thread will be displayed.

Return Value
If the method is successful, the return value will be the return value from the MessageBox
function. If the method fails, it will return a value of zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetErrorString, GetLastError, SetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSshClient::Write Method

INT Write(
 LPBYTE lpBuffer,
 INT cbBuffer
);

INT Write(
 LPCTSTR lpszBuffer
 INT cbBuffer
);

The Write method sends the specified number of bytes to the server.

Parameters
lpBuffer

The pointer to the buffer which contains the data that is to be sent to the server. In an alternate
form of the method, the pointer is to a string.

cbBuffer

The number of bytes to send from the specified buffer. This value must be greater than zero,
unless a pointer to a string buffer is passed as the parameter. In that case, if the value is -1, all of
the characters in the string, up to but not including the terminating null character, will be sent to
the server.

Return Value
If the method succeeds, the return value is the number of bytes actually written. If the method
fails, the return value is SSH_ERROR. To get extended error information, call GetLastError.

Remarks
The return value may be less than the number of bytes specified by the cbBuffer parameter. In this
case, the data has been partially written and it is the responsibility of the client application to send
the remaining data at some later point. For non-blocking clients, the client must wait for the next
asynchronous notification message before it resumes sending data.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
IsBlocking, IsWritable, Peek, Read, ReadLine, SetLineMode, WriteLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSshClient::WriteLine Method

BOOL WriteLine(
 LPCTSTR lpszBuffer,
 LPINT lpnLength
);

The WriteLine function sends a line of text to the server, terminated by a carriage-return and
linefeed.

Parameters
lpszBuffer

The pointer to a string buffer which contains the data that will be sent to the server. All
characters up to, but not including, the terminating null character will be written to the socket.
The data will always be terminated with a carriage-return and linefeed control character
sequence. If this parameter points to an empty string or NULL pointer, then a only a carriage-
return and linefeed are written to the socket.

lpnLength

A pointer to an integer value which will contain the number of characters written to the socket,
including the carriage-return and linefeed sequence. If this information is not required, a NULL
pointer may be specified.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The WriteLine method writes a line of text to the server and terminates the line with a carriage-
return and linefeed control character sequence. Unlike the Write method which writes arbitrary
bytes of data to the socket, this method is specifically designed to write a single line of text data
from a string.

If the lpszBuffer string is terminated with a linefeed (LF) or carriage return (CR) character, it will be
automatically converted to a standard CRLF end-of-line sequence. Because the string will be sent
with a terminating CRLF sequence, the value returned in the lpnLength parameter will typically be
larger than the original string length (reflecting the additional CR and LF characters), unless the
string was already terminated with CRLF.

There are some limitations when using WriteLine. This method should only be used to send text,
never binary data. In particular, it will discard nulls and append linefeed and carriage return control
characters to the data stream. The Unicode version of this method will accept a Unicode string,
however it does not support writing raw Unicode data to the socket. Unicode strings will be
automatically converted to UTF-8 encoding using the WideCharToMultiByte function and then
written to the socket as a stream of bytes.

This method will force the thread to block until the complete line of text has been written, the
write operation times out or the server aborts the connection. If this method is called with
asynchronous events enabled, it will automatically switch the socket into a blocking mode, send
the data and then restore the socket to asynchronous operation. If another socket operation is
attempted while WriteLine is blocked sending data to the server, an error will occur. It is
recommended that this method only be used with blocking (synchronous) socket connections; if
the application needs to establish multiple simultaneous connections, it should create worker

threads to manage each connection.

The Write and WriteLine methods can be safely intermixed.

Unlike the Write function, it is possible for data to have been written to the socket if the return
value is zero. For example, if a timeout occurs while the method is waiting to send more data to
the server, it will return zero; however, some data may have already been written prior to the error
condition. If this is the case, the lpnLength argument will specify the number of characters actually
written up to that point.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
IsWritable, Peek, Read, ReadLine, SetLineMode, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SSH Protocol Data Structures

SECURITYCREDENTIALS
SECURITYINFO
SSHOPTIONDATA

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SECURITYCREDENTIALS Structure

The SECURITYCREDENTIALS structure specifies the information needed by the library to specify
additional security credentials, such as a client certificate or private key, when establishing a secure
connection.

typedef struct _SECURITYCREDENTIALS
{
 DWORD dwSize;
 DWORD dwProtocol;
 DWORD dwOptions;
 DWORD dwReserved;
 LPCTSTR lpszHostName;
 LPCTSTR lpszUserName;
 LPCTSTR lpszPassword;
 LPCTSTR lpszCertStore;
 LPCTSTR lpszCertName;
 LPCTSTR lpszKeyFile;
} SECURITYCREDENTIALS, *LPSECURITYCREDENTIALS;

Members
dwSize

Size of this structure. If the structure is being allocated dynamically, this member must be set to
the size of the structure and all other unused structure members must be initialized to a value of
zero or NULL.

dwProtocol

A value which specifies which security protocols are supported:

Constant Description

SECURITY_PROTOCOL_SSH Either version 1.0 or 2.0 of the Secure Shell protocol
should be used when establishing the connection. The
correct protocol is automatically selected based on the
version of the protocol that is supported by the server.

SECURITY_PROTOCOL_SSH1 The Secure Shell 1.0 protocol should be used when
establishing the connection. This is an older version of
the protocol which should not be used unless explicitly
required by the server. Most modern SSH server
support version 2.0 of the protocol.

SECURITY_PROTOCOL_SSH2 The Secure Shell 2.0 protocol should be used when
establishing the connection. This is the default version of
the protocol that is supported by most SSH servers.

dwOptions

This structure member is reserved for use with SSL and TLS connections and should always be
initialized to zero.

dwReserved

This structure member is reserved for future use and should always be initialized to zero.

lpszHostName

A pointer to a null terminated string which specifies the hostname that will be used when

validating a server certificate. This member should always be initialized as a NULL pointer for
connections using the SSH protocol.

lpszUserName

A pointer to a null terminated string which identifies the owner of client certificate. Currently this
member is not used by the library and should always be initialized as a NULL pointer.

lpszPassword

A pointer to a null terminated string which specifies the password needed to access the
certificate. Currently this member is only used if a private key file has been specified. If there is
no password associated with the certificate, then this member should be initialized as a NULL
pointer.

lpszCertStore

A pointer to a null terminated string which specifies the name of the certificate store to open.
This member should always be initialized as a NULL pointer for connections using the SSH
protocol.

lpszCertName

A pointer to a null terminated string which specifies the name of the certificate to use. This
member should always be initialized as a NULL pointer for connections using the SSH protocol.

lpszKeyFile

A pointer to a null terminated string which specifies the name of the file which contains the
private key required to establish the connection. This member is only used with the SSH
protocol. If the member is NULL, then no private key is used.

Remarks
A client application typically only needs to create this structure if the server requires that the client
provide a private key as part of the process of negotiating the secure session.

Note that the lpszUserName and lpszPassword members are values which are used to access the
private key file. They are not the credentials which are used when establishing the connection with
the server or authenticating the client session.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SECURITYINFO Structure

This structure contains information about a secure connection that has been established with a
server.

typedef struct _SECURITYINFO
{
 DWORD dwSize;
 DWORD dwProtocol;
 DWORD dwCipher;
 DWORD dwCipherStrength;
 DWORD dwHash;
 DWORD dwHashStrength;
 DWORD dwKeyExchange;
 DWORD dwCertStatus;
 SYSTEMTIME stCertIssued;
 SYSTEMTIME stCertExpires;
 LPCTSTR lpszCertIssuer;
 LPCTSTR lpszCertSubject;
 LPCTSTR lpszFingerprint;
} SECURITYINFO, *LPSECURITYINFO;

Members
dwSize

Specifies the size of the data structure. This member must always be initialized to
sizeof(SECURITYINFO) prior to passing the address of this structure to the function. Note that
if this member is not initialized, an error will be returned indicating that an invalid parameter has
been passed to the function.

dwProtocol

A numeric value which specifies the protocol that was selected to establish the secure
connection. One of the following values will be returned:

Constant Description

SECURITY_PROTOCOL_NONE No security protocol has been selected. A secure
connection has not been established with the server.
The remaining member values in this structure are not
valid and should be ignored.

SECURITY_PROTOCOL_SSH1 The Secure Shell 1.0 protocol should be used. This
protocol has been deprecated and is no longer widely
used. It is not recommended that this protocol be used
when establishing secure connections. This protocol
can only be specified when connecting to an SSH
server and is not supported with any other application
protocol.

SECURITY_PROTOCOL_SSH2 The Secure Shell 2.0 protocol should be used. This is
the most commonly used version of the protocol. It is
recommended that this version of the protocol be
used unless the server explicitly requires the client to
use an earlier version. This protocol can only be
specified when connecting to an SSH server and is not
supported with any other application protocol.

dwCipher

A numeric value which specifies the cipher that was selected when establishing the secure
connection. One of the following values will be returned:

Constant Description

SECURITY_CIPHER_RC5 The RC5 block cipher was selected. This is a variable key
length cipher which supports keys up to 2040 bits, in 8-bit
increments.

SECURITY_CIPHER_DES The DES (Data Encryption Standard) block cipher was
selected. This is a fixed key length cipher, using 56-bit keys.

SECURITY_CIPHER_DES3 The Triple DES block cipher was selected. This cipher
encrypts the data three times using different keys, effectively
providing a 168-bit length key.

SECURITY_CIPHER_DESX A variant of the DES block cipher which XORs an extra 64-
bits of the key before and after the plaintext has been
encrypted, increasing the key size to 184 bits.

SECURITY_CIPHER_AES The Advanced Encryption Standard cipher (also known as
the Rijndael cipher) is a fixed block size cipher which use a
key size of 128, 192 or 256 bits. This cipher is supported on
Windows XP SP3 and later versions of the operating system.

dwCipherStrength

A numeric value which specifies the strength (the length of the cipher key in bits) of the cipher
that was selected. Typically this value will be 128 or 256. 40-bit and 56-bit key lengths are
considered weak encryption, and subject to brute force attacks. 128-bit and 256-bit key lengths
are considered to be secure and are the recommended key length for secure communications.

dwHash

A numeric value which specifies the hash algorithm which was selected. One of the following
values will be returned:

Constant Description

SECURITY_HASH_MD5 The MD5 algorithm was selected. Its use has been
deprecated and is no longer considered to be
cryptographically secure.

SECURITY_HASH_SHA1 The SHA-1 algorithm was selected. Its use has been
deprecated and is no longer considered to be
cryptographically secure.

SECURITY_HASH_SHA256 The SHA-256 algorithm was selected.

dwHashStrength

A numeric value which specifies the strength (the length in bits) of the message digest that was
selected.

dwKeyExchange

A numeric value which specifies the key exchange algorithm which was selected. One of the
following values will be returned:

Constant Description

SECURITY_KEYEX_RSA The RSA public key algorithm was selected.

SECURITY_KEYEX_KEA The Key Exchange Algorithm (KEA) was selected. This is an
improved version of the Diffie-Hellman public key algorithm.

SECURITY_KEYEX_DH The Diffie-Hellman key exchange algorithm was selected.

SECURITY_KEYEX_ECDH The Elliptic Curve Diffie-Hellman key exchange algorithm was
selected. This is a variant of the Diffie-Hellman algorithm
which uses elliptic curve cryptography. This key exchange
algorithm is only supported on Windows XP SP3 and later
versions of the operating system.

dwCertStatus

A numeric value which specifies the status of the certificate returned by the secure server. This
member only has meaning for connections using the SSL or TLS protocols.

stCertIssued

A structure which contains the date and time that the certificate was issued by the certificate
authority. If the issue date cannot be determined for the certificate, the SYSTEMTIME structure
members will have zero values. This member only has meaning for connections using the SSL or
TLS protocols.

stCertExpires

A structure which contains the date and time that the certificate expires. If the expiration date
cannot be determined for the certificate, the SYSTEMTIME structure members will have zero
values. This member only has meaning for connections using the SSL or TLS protocols.

lpszCertIssuer

A pointer to a string which contains information about the organization that issued the
certificate. This string consists of one or more comma-separated tokens. Each token consists of
an identifier, followed by an equal sign and a value. If the certificate issuer could not be
determined, this member may be NULL. This member only has meaning for connections using
the SSL or TLS protocols.

lpszCertSubject

A pointer to a string which contains information about the organization that the certificate was
issued to. This string consists of one or more comma-separated tokens. Each token consists of
an identifier, followed by an equal sign and a value. If the certificate subject could not be
determined, this member may be NULL. This member only has meaning for connections using
the SSL or TLS protocols.

lpszFingerprint

A pointer to a string which contains a sequence of hexadecimal values that uniquely identify the
server. This member is only used when a connection has been established using the Secure
Shell (SSH) protocol.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SSHOPTIONDATA Structure

This structure specifies additional option information for the client session. A pointer to this
structure can be passed to the Connect method.

#define SSH_MAXTERMNAMELEN 32
#define SSH_MAXHOSTNAMELEN 128
#define SSH_MAXUSERNAMELEN 128
#define SSH_MAXPASSWORDLEN 128
#define SSH_MAXCOMMANDLEN 512

typedef struct _SSHOPTIONDATA
{
 DWORD dwSize;
 DWORD dwReserved;
 UINT nProxyType;
 UINT nProxyPort;
 TCHAR szProxyHost[SSH_MAXHOSTNAMELEN];
 TCHAR szProxyUser[SSH_MAXUSERNAMELEN];
 TCHAR szProxyPassword[SSH_MAXPASSWORDLEN];
 UINT nTermCols;
 UINT nTermRows;
 TCHAR szTermName[SSH_MAXTERMNAMELEN];
 TCHAR szCommandLine[SSH_MAXCOMMANDLEN];
} SSHOPTIONDATA, *LPSSHOPTIONDATA;

Members
dwSize

An unsigned integer value which specifies the size of the SSHOPTIONDATA structure. This
member must be initialized prior to passing the structure to the Connect method.

dwReserved

An unsigned integer value that is reserved for internal use, and should always be initialized to a
value of zero.

nProxyType

An unsigned integer value that specifies the type of proxy that the client should connect
through. This structure member is only used if the option SSH_OPTION_PROXYSERVER has
been specified. Possible values are:

Constant Description

SSH_PROXY_NONE No proxy server should be used when establishing the
connection.

SSH_PROXY_HTTP The connection should be established on port 80 using HTTP.
An alternate port number can be specified by setting the
nProxyPort structure member to the desired value.

SSH_PROXY_TELNET The connection should be established on port 23 using TELNET.
An alternate port number can be specified by setting the
nProxyPort structure member to the desired value.

nProxyPort

An unsigned integer value that specifies the port number which should be used to establish the
proxy connection. A value of zero specifies that the default port number appropriate for the

selected protocol should be used. This structure member is only used if the option
SSH_OPTION_PROXYSERVER has been specified.

szProxyHost

A null terminated string which specifies the host name or IP address of the proxy server. This
structure member is only used if the option SSH_OPTION_PROXYSERVER has been specified.

szProxyUser

A null terminated string which specifies the user name which is used to authenticate the
connection through the proxy server. This structure member is only used if the option
SSH_OPTION_PROXYSERVER has been specified.

szProxyPassword

A null terminated string which specifies the password which is used to authenticate the
connection through the proxy server. This structure member is only used if the option
SSH_OPTION_PROXYSERVER has been specified.

nTermCols

An unsigned integer value which specifies the number of columns for the virtual terminal
allocated for the client session. The default number of columns is 80. This structure member is
only used if the option SSH_OPTION_TERMINAL has been specified.

nTermRows

An unsigned integer value which specifies the number of rows for the virtual terminal allocated
for the client session. The default number of rows is 25. This structure member is only used if
the option SSH_OPTION_TERMINAL has been specified.

szTermName

A null terminated string which specifies the name of the terminal emulation type. On UNIX
based systems, this name typically corresponds to an entry in the terminal capability database
(either termcap or terminfo). If the name is not specified, then the default name terminal name
of "unknown" will be used. This structure member is only used if the option
SSH_OPTION_TERMINAL has been specified.

szCommandLine

A null terminated string which specifies the command that should be executed on the server.
The output from the command is returned to the client, and the session is terminated. This
structure member is only used if the option SSH_OPTION_COMMAND has been specified.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Simple Mail Transfer Protocol Class Library

Submit email messages for delivery to one or more recipients.

Reference

Class Methods
Data Structures
Error Codes

Library Information

Class Name CSmtpClient

File Name CSMTPV11.DLL

Version 11.0.2180.1635

LibID 3764CDB1-DB3D-4458-B23C-FFEFA4040608

Import Library CSMTPV11.LIB

Dependencies None

Standards RFC 821, RFC 1425, RFC 1869, RFC 2821

Overview
The Simple Mail Transfer Protocol (SMTP) enables applications to deliver email messages to one or
more recipients. The class library provides an interface for addressing and delivering messages,
and extended features such as user authentication and delivery status notification. Unlike
Microsoft's Messaging API (MAPI) or Collaboration Data Objects (CDO), there is no requirement to
have certain third-party email applications installed or specific types of servers installed on the
local system. The CSmtpClient class can be used to deliver mail through a wide variety of systems,
from standard UNIX based mail servers to Windows systems running Microsoft Exchange.

Using this class library, messages can be delivered directly to the recipient, or they can be routed
through a relay server, such as an Internet service provider's mail system. The SocketTools
CMailMessage class can be integrated with this class in order to provide an extremely simple, yet
flexible interface for composing and delivering messages.

This class library supports secure connections using the standard SSL and TLS protocols. Both
implicit and explicit SSL connections are supported, as well as client certificates used for
authentication.

Requirements
The SocketTools Library Edition libraries are compatible with any programming language which
supports calling functions exported from a standard dynamic link library (DLL). If you are using
Visual C++ 6.0 it is required that you have Service Pack 6 (SP6) installed. You should install all
updates for your development tools and have the current Windows SDK installed. The minimum
recommended version of Visual Studio is Visual Studio 2010.

This library is supported on Windows 7, Windows Server 2008 R2 and later versions of the desktop
and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1) installed as
a minimum requirement. It is recommended that you install the current service pack and all critical
updates available for your version of the operating system.

This product includes both 32-bit and 64-bit libraries. Native 64-bit CPU support requires the 64-
bit version of Windows 7 or later versions of the Windows operating system.

Distribution
When you distribute your application that uses this library, it is recommended that you install the
file in the same folder as your application executable. If you install the library into a shared location
on the system, it is important that you distribute the correct version for the target platform and it
should be registered as a shared DLL. This is a standard Windows dynamic link library, not an
ActiveX component, and does not require COM registration.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Simple Mail Transfer Protocol Class Methods

Class Description

CSmtpClient Constructor which initializes the current instance of the class

~CSmtpClient Destructor which releases resources allocated by the class

Method Description

AddRecipient Add an address to the recipient list

AppendMessage Append contents of specified file to the current message

AttachHandle Attach the specified client handle to this instance of the class

AttachThread Attach the specified client handle to another thread

Authenticate Authenticate the client session with a user name and password

Cancel Cancel the current blocking operation

CloseMessage Close the message being composed and submit for delivery

Command Send a command to the server

Connect Establish a connection with a server

CreateMessage Create a new message

CreateSecurityCredentials Allocate a structure to establish client security credentials

DeleteSecurityCredentials Delete the specified client security credentials

DetachHandle Detach the handle for the current instance of this class

DisableEvents Disable all event notification, including event callbacks

DisableTrace Disable logging of network function calls to the trace log

Disconnect Disconnect from the current server

EnableEvents Enable event handling by the library

EnableTrace Enable logging of network function calls to a file

ExpandAddress Expand the specified address

FreezeEvents Suspend and resume event handling by the client

GetCurrentDate Return the current date and time

GetDeliveryOptions Return the delivery options for the current session

GetErrorString Return a description for the specified error code

GetExtendedOptions Return the extended options supported by the server

GetHandle Return the client handle used by this instance of the class

GetLastError Return the last error code

GetLocalName Return the local host name assigned for the client session

GetResultCode Return the result code from the previous command

GetResultString Return the result string from the previous command

GetSecurityInformation Return security information about the current client connection

GetStatus Return the current status of the client

GetTimeout Return the number of seconds until an operation times out

GetTransferStatus Return data transfer statistics

IsBlocking Determine if the client is blocked, waiting for information

IsConnected Determine if the client is connected to the server

IsInitialized Determine if the class has been successfully initialized

IsReadable Determine if data can be read from the server

IsWritable Determine if data can be written to the server

RegisterEvent Register an event handler for the specified event

Reset Reset the client and return to a command state

SendMessage Send message to the specified recipient

SetDeliveryOptions Set the delivery options for the current session

SetLastError Set the last error code

SetLocalName Set the local host name to be used for the client session

SetTimeout Set the number of seconds until an operation times out

ShowError Display a message box with a description of the specified error

SmtpEventProc Process events generated by the client

SubmitMessage Compose and submit a message for delivery to the specified mail server

VerifyAddress Verify that the specified address is valid

Write Write data to the server

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/smtp/class/smtpeventproc.html

 CSmtpClient::CSmtpClient Method

CSmtpClient();

The CSmtpClient constructor initializes the class library and validates the license key at runtime.

Remarks
If the constructor fails to validate the runtime license, subsequent methods in this class will fail. If
the product is installed with an evaluation license, then the application will only function on the
development system and cannot be redistributed.

The constructor calls the SmtpInitialize function to initialize the library, which dynamically loads
other system libraries and allocates thread local storage. If you are using this class within another
DLL, it is important that you do not create or destroy an instance of the class from within the
DllMain function because it can result in deadlocks or access violation errors. You should not
declare static or global instances of this class within another DLL if it is linked with the C runtime
library (CRT) because it will automatically call the constructors and destructors for static and global
C++ objects and has the same restrictions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
~CSmtpClient, IsInitialized

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSmtpClient::~CSmtpClient

~CSmtpClient();

The CSmtpClient destructor releases resources allocated by the current instance of the
CSmtpClient object. It also uninitializes the library if there are no other concurrent uses of the
class.

Remarks
When a CSmtpClient object goes out of scope, the destructor is automatically called to allow the
library to free any resources allocated on behalf of the process. Any pending blocking or
asynchronous calls in this process are canceled without posting any notification messages, and all
handles that were created for the client session are destroyed.

The destructor is not called explicitly by the application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CSmtpClient

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSmtpClient::AddRecipient Method

INT AddRecipient(
 LPCTSTR lpszAddress
);

The AddRecipient method adds the specified address to the recipient list for the current
message. This method should be called once for each recipient.

Parameters
lpszAddress

Points to a string which specifies the address to be added to the recipient list.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is SMTP_ERROR. To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CloseMessage, CreateMessage, ExpandAddress, VerifyAddress

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSmtpClient::AppendMessage Method

INT AppendMessage(
 LPCTSTR lpszFileName
);

INT AppendMessage(
 LPBYTE lpMessage,
 DWORD dwMessageSize
);

INT AppendMessage(
 HGLOBAL hgblMessage,
 DWORD dwMessageSize
);

The AppendMessage method writes the contents of a specified file or buffer to the data stream,
appending it to the current message contents.

Parameters
lpszFileName

A pointer to a string which specifies the name of a file. The contents of the file are appended to
the current message being submitted to the mail server for delivery.

lpMessage

Pointer to a buffer which contains the message data to be appended to the current message.

hgblMessage

A global memory handle which references data that is to be appended to the current message.

dwMessageSize

An unsigned integer which specifies the length of the message in bytes.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
SMTP_ERROR. To get extended error information, call GetLastError.

Remarks
The AppendMessage method is used to append the contents of a file, memory buffer, or global
memory handle to the current message that is being composed for delivery. To send a complete
RFC 822 formatted message, refer to the SendMessage method.

This method will cause the current thread to block until the complete message has been written, a
timeout occurs or the operation is canceled. During the transfer, the SMTP_EVENT_PROGRESS
event will be periodically fired, enabling the application to update any user interface controls.
Event notification must be enabled, either by calling EnableEvents, or by registering a callback
function using the RegisterEvent method.

To determine the current status of a transfer while it is in progress, use the GetTransferStatus
method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CloseMessage, CreateMessage, SendMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSmtpClient::AttachHandle Method

VOID AttachHandle(
 HCLIENT hClient
);

The AttachHandle method attaches the specified client handle to the current instance of the
class.

Parameters
hClient

The handle to the client session that will be attached to the current instance of the class object.

Return Value
None.

Remarks
This method is used to attach a client handle created outside of the class using the SocketTools
API. Once the client handle is attached to the class, the other class member functions may be used
with that client session.

If a client handle already has been created for the class, that handle will be released when the new
handle is attached to the class object. If you want to prevent the previous client session from being
terminated, you must call the DetachHandle method. Failure to release the detached handle may
result in a resource leak in your application.

Note that the hClient parameter is presumed to be a valid client handle and no checks are
performed to ensure that the handle is valid. Specifying an invalid client handle will cause
subsequent method calls to fail.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib

See Also
AttachThread, DetachHandle, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSmtpClient::AttachThread Method

DWORD AttachThread(
 DWORD dwThreadId
);

The AttachThread method attaches the specified client handle to another thread.

Parameters
dwThreadId

The ID of the thread that will become the new owner of the handle. A value of zero specifies
that the current thread should become the owner of the client handle.

Return Value
If the method succeeds, the return value is the thread ID of the previous owner. If the method fails,
the return value is SMTP_ERROR. To get extended error information, call GetLastError.

Remarks
When a client handle is created, it is associated with the current thread that created it. Normally, if
another thread attempts to perform an operation using that handle, an error is returned since it
does not own the handle. This is used to ensure that other threads cannot interfere with an
operation being performed by the owner thread. In some cases, it may be desirable for one
thread in a client application to create the client handle, and then pass that handle to another
worker thread. The AttachThread method can be used to change the ownership of the handle to
the new worker thread. By preserving the return value from the method, the original owner of the
handle can be restored before the worker thread terminates.

This method should be called by the new thread immediately after it has been created, and if the
new thread does not release the handle itself, the ownership of the handle should be restored to
the parent thread before it terminates. Under no circumstances should AttachThread be used to
forcibly release a handle allocated by another thread while a blocking operation is in progress. To
cancel an operation, use the Cancel method and then release the handle after the blocking
method exits and control is returned to the current thread.

Note that the dwThreadId parameter is presumed to be a valid thread ID and no checks are
performed to ensure that the thread actually exists. Specifying an invalid thread ID will orphan the
client handle used by the class until the destructor is called.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib

See Also
AttachHandle, Cancel, Connect, DetachHandle, Disconnect, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSmtpClient::Authenticate Method

INT Authenticate(
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword,
 UINT nAuthType
);

The Authenticate method provides client authentication information to the server.

Parameters
lpszUserName

A null terminated string which specifies the account name for the user authorized to send mail
through the server.

lpszPassword

A null terminated string which specifies the password to be used when authenticating the
current client session. If you are using the SMTP_AUTH_XOAUTH2 or SMTP_AUTH_BEARER
authentication methods, this parameter is not a password, instead it specifies the bearer token
provided by the mail service.

nAuthType

An integer value which specifies which method the library should use to authenticate the client
session. This parameter should be set to one of the following values:

Constant Description

SMTP_AUTH_LOGIN The client will authenticate using the AUTH LOGIN
command. This encodes the username and password,
however the credentials are not encrypted and it is
recommended you use a secure connection. This is the
default method accepted by most mail servers and is the
preferred authentication type for most clients.

SMTP_AUTH_PLAIN The client will authenticate using the AUTH PLAIN command.
This encodes the username and password, however the
credentials are not encrypted and it is recommended you use
a secure connection. The server must support the PLAIN
Simple Authentication and Security Layer (SASL) mechanism
as defined in RFC 4616.

SMTP_AUTH_XOAUTH2 The client will authenticate using the AUTH XOAUTH2
command. This authentication method does not require the
user password, instead the lpszPassword parameter must
specify the bearer token issued by the service provider. The
application must provide a valid access token which has not
expired, or this method will fail.

SMTP_AUTH_BEARER The client will authenticate using the AUTH OAUTHBEARER
command as defined in RFC 7628. This authentication
method does not require the user password, instead the
lpszPassword parameter must specify the bearer token
issued by the service provider. The application must provide
a valid access token which has not expired, or this method

will fail.

Return Value
If the method succeeds, the return value is the command result code. If the method fails, the
return value is SMTP_ERROR. To get extended error information, call GetLastError.

Remarks
To submit a mail message for delivery, virtually all public mail servers require clients to
authenticate and will only accept messages from authorized users. In some cases, they may also
require the sender email address match the account being used to authenticate the session. It is
also typical for most public mail servers to reject authentication attempts over a standard (non-
secure) connection. You should always use a secure connection whenever possible.

All authentication methods require the mail server to support the standard service extensions for
authentication as specified in the RFC 4954. The server must support the ESMTP protocol
extensions and the AUTH command. A user name and password are required for authentication. If
you wish to authenticate without a user password, you must use one of the OAuth 2.0
authentication methods.

If the nAuthType parameter is omitted, it will default to using SMTP_AUTH_LOGIN and this is
accepted by most mail servers. It is common for mail servers to allow the SMTP_AUTH_PLAIN
method as well, however it is recommended you explicitly check whether the server supports the
desired authentication method by calling the GetExtendedOptions method. If you attempt to use
an authentication type which is not supported by the server, this method will fail and the last error
code will be set to ST_ERROR_INVALID_AUTHENTICATION_TYPE.

You should only use an OAuth 2.0 authentication method if you understand the process of how to
request the access token. Obtaining an access token requires registering your application with the
mail service provider (e.g.: Microsoft or Google), getting a unique client ID associated with your
application and then requesting the access token using the appropriate scope for the service.
Obtaining the initial token will typically involve interactive confirmation on the part of the user,
requiring they grant permission to your application to access their mail account.

The SMTP_AUTH_XOAUTH2 and SMTP_AUTH_BEARER authentication methods are similar, but
they are not interchangeable. Both use an OAuth 2.0 bearer token to authenticate the client
session, but they differ in how the token is presented to the server. It is currently preferable to use
the XOAUTH2 method because it is more widely available and some service providers do not yet
support the OAUTHBEARER method.

Your application should not store an OAuth 2.0 bearer token for later use. They have a relatively
short lifespan, typically about an hour, and are designed to be used with that session. You should
specify offline access as part of the OAuth 2.0 scope if necessary and store the refresh token
provided by the service. The refresh token has a much longer validity period and can be used to
obtain a new bearer token when needed.

Example
DWORD dwOptions = 0;

// Determine which extended options and authentication methods
// are supported by this server

BOOL bExtended = pClient->GetExtendedOptions(&dwOptions);

if (bUseBearerToken)
{

 if (bExtended && (dwOptions & SMTP_EXTOPT_XOAUTH2))
 {
 INT nResult = pClient->Authenticate(lpszUserName, lpszBearerToken,
SMTP_AUTH_XOAUTH2);

 if (nResult == SMTP_ERROR)
 {
 // An error occurred during authentication; when using an
 // OAuth 2.0 bearer token, this typically means that the token
 // has expired and must be refreshed
 return;
 }
 }
 else
 {
 // The server does not support XOAUTH2
 return;
 }
}
else
{
 if (bExtended && (dwOptions & SMTP_EXTOPT_AUTHLOGIN))
 {
 INT nResult = pClient->Authenticate(lpszUserName, lpszPassword);

 if (nResult == SMTP_ERROR)
 {
 // An error occurred during authentication
 return;
 }
 }
 else
 {
 // The server does not support AUTH LOGIN
 return;
 }
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Connect, GetExtendedOptions

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSmtpClient::Cancel Method

INT Cancel();

The Cancel method cancels any outstanding blocking operation in the client, causing the blocking
method to fail. The application may then retry the operation or terminate the client session.

Parameters
None.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
SMTP_ERROR. To get extended error information, call GetLastError.

Remarks
When the Cancel method is called, the blocking method will not immediately fail. An internal flag
is set which causes the blocking operation to exit with an error. This means that the application
cannot cancel an operation and immediately perform some other operation. Instead it must allow
the calling stack to unwind, returning back to the blocking operation before making any further
function calls.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib

See Also
IsBlocking

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSmtpClient::CloseMessage Method

INT CloseMessage();

The CloseMessage method ends the composition of the current message. The server then
queues the message for delivery to each recipient specified by the client.

Parameters
None.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
SMTP_ERROR. To get extended error information, call GetLastError.

Remarks
The CloseMessage method should be called after all of the message data has been written to the
data stream.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AppendMessage, CreateMessage, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSmtpClient::Command Method

INT Command(
 LPCTSTR lpszCommand,
 LPCTSTR lpszParameter
);

The Command method sends a command to the server, and returns the result code back to the
caller. This method is typically used for site-specific commands not directly supported by the API.

Parameters
lpszCommand

The command which will be executed by the server.

lpszParameter

An optional command parameter. If the command requires more than one parameter, then
they should be combined into a single string, with a space separating each parameter. If the
command does not accept any parameters, this value may be NULL.

Return Value
If the command was successful, the method returns the result code. If the command failed, the
method returns SMTP_ERROR. To get extended error information, call GetLastError.

Remarks
A list of valid commands can be found in the technical specification for the protocol. Many servers
will list supported commands when the HELP command is used.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetResultCode, GetResultString

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSmtpClient::Connect Method

BOOL Connect(
 LPCTSTR lpszRemoteHost,
 UINT nRemotePort,
 UINT nTimeout,
 DWORD dwOptions
);

The Connect method is used to establish a connection with the server.

Parameters
lpszRemoteHost

A pointer to the name of the server to connect to; this may be a fully-qualified domain name or
an IP address.

nRemotePort

The port number the server is listening on. A value of zero specifies that the default port
number should be used. For standard connections, the default port number is 25. An alternative
port is 587, which is commonly used by authenticated clients to submit messages for delivery.
For implicit SSL connections, the default port number is 465.

nTimeout

The number of seconds that the client will wait for a response from the server before failing the
current operation.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

SMTP_OPTION_NONE No additional options are specified when
establishing a connection with the server. A
standard, non-secure connection will be used and
the client will not attempt to use extended
(ESMTP) features of the protocol. Note that if the
mail server requires authentication, the
SMTP_OPTION_EXTENDED option must be
specified.

SMTP_OPTION_EXTENDED Extended SMTP commands should be used if
possible. This option enables features such as
authentication and delivery status notification. If
this option is not specified, the library will not
attempt to use any extended features. This option
is automatically enabled if the connection is
established on port 587 because submitting
messages for delivery using this port typically
requires client authentication.

SMTP_OPTION_TUNNEL This option specifies that a tunneled TCP
connection and/or port-forwarding is being used
to establish the connection to the server. This

changes the behavior of the client with regards to
internal checks of the destination IP address and
remote port number, default capability selection
and how the connection is established.

SMTP_OPTION_TRUSTEDSITE This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option
only affects connections using either the SSL or
TLS protocols.

SMTP_OPTION_SECURE This option specifies that a secure connection
should be established with the server and
requires that the server support either the SSL or
TLS protocol. The client will initiate the secure
session using the STARTTLS command.

SMTP_OPTION_SECURE_IMPLICIT This option specifies the client should attempt to
establish a secure connection with the server. The
server must support secure connections using
either the SSL or TLS protocol, and the secure
session must be negotiated immediately after the
connection has been established.

SMTP_OPTION_SECURE_FALLBACK This option specifies the client should permit the
use of less secure cipher suites for compatibility
with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

SMTP_OPTION_PREFER_IPV6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be
resolved to both an IPv6 and IPv4 address. This
option is ignored if the local system does not
have IPv6 enabled, or when the hostname can
only be resolved to an IPv4 address. If the server
hostname can only be resolved to an IPv6
address, the client will attempt to establish a
connection using IPv6 regardless if this option has
been specified.

SMTP_OPTION_FREETHREAD This option specifies that this instance of the class
may be used by any thread, and is not limited to
the thread which created it. The application is
responsible for ensuring that access to the class
instance is synchronized across multiple threads.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
This method will block the current thread until a connection has been established or the timeout
period has elapsed. To prevent it from blocking the main user interface thread, the application

should create a background worker thread and establish a connection by calling the Connect
method in that thread. If the application requires multiple simultaneous connections, it is
recommended you create a worker thread for each connection.

The dwOptions argument can be used to specify the threading model that is used by the library
when a connection is established. By default, the class instance is initially attached to the thread
that created it. From that point on, until the it is released, only the owner may call methods using
that instance of the class. The ownership of the class instance may be transferred from one thread
to another using the AttachThread method.

Specifying the SMTP_OPTION_FREETHREAD option enables any thread to call any method in that
instance of the class, regardless of which thread created it. It is important to note that this option
disables certain internal safety checks which are performed by the library and may result in
unexpected behavior unless access to the class instance is synchronized. If one thread calls a
function in the library, it must ensure that no other thread will call another function at the same
time using the same instance.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Authenticate, Disconnect, GetExtendedOptions

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSmtpClient::CreateMessage Method

INT CreateMessage(
 LPCTSTR lpszSender,
 DWORD dwMessageSize
);

The CreateMessage method creates a new message for delivery.

Parameters
lpszSender

A pointer to a string which specifies the email address of the user sending the message. This
typically corresponds to the address in the From header of the message, but it is not required
that they be the same.

dwMessageSize

An unsigned integer which specifies the size of the message in bytes. If the size of the message
is unknown, this value should be zero. This parameter is ignored if the server does not support
extended features. If the message size is larger than what the server will accept, this method will
fail. Most Internet Service Providers impose a limit on the size of an email message, typically
between 5 and 10 megabytes.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
SMTP_ERROR. To get extended error information, call GetLastError.

Remarks
The CreateMessage method begins the composition of a new message to be submitted to the
mail server for delivery. There are several steps that must be followed when dynamically
composing a message for delivery:

1. Call the CreateMessage method to begin the message composition. The sender email
address should generally be the same address as the one used in the "From" header field in
the message.

2. Call the AddRecipient method for each recipient of the message. These addresses are
typically specified in the "To" and "Cc" header fields in the message. Additional addresses
may also be be provided which are not specified in the email message itself. This is how one
or more blind carbon copies of a message is delivered. Most servers have a limit on the
total number of recipients that may be specified for a single message. This limit is usually
around 100 addresses.

3. Call the Write method to write the contents of the message to the data stream. The
application may also choose to use the AppendMessage method to write out a large
amount of message data, or write the contents of a file to the data stream.

4. Call the CloseMessage method to close the message and submit it to the mail server for
delivery.

For applications that do not need to dynamically compose the message and already have the
message contents stored in a file or memory buffer, the SendMessage method is the preferred
method of submitting a message for delivery.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AddRecipient, AppendMessage, CloseMessage, SendMessage, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSmtpClient::CreateSecurityCredentials Method

BOOL CreateSecurityCredentials(
 DWORD dwProtocol,
 DWORD dwOptions,
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword,
 LPCTSTR lpszCertStore,
 LPCTSTR lpszCertName
);

BOOL CreateSecurityCredentials(
 LPCTSTR lpszCertStore,
 LPCTSTR lpszCertName
);

BOOL CreateSecurityCredentials(
 LPCTSTR lpszCertName
);

The CreateSecurityCredentials method establishes the security credentials for the client session.

Parameters
dwProtocol

A bitmask of supported security protocols. This parameter is constructed by using a bitwise
operator with any of the following values:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The
correct protocol is automatically selected, based on
what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.

This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is
supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

dwOptions

A value which specifies one or options. This member is constructed by using a bitwise operator
with any of the following values:

Constant Description

CREDENTIAL_STORE_CURRENT_USER The library will attempt to open a store for
the current user using the certificate store
name provided in this structure. If no options
are specified, then this is the default
behavior.

CREDENTIAL_STORE_LOCAL_MACHINE The library will attempt to open a local
machine store using the certificate store
name provided in this structure. If this option
is specified, the library will always search for a
local machine store before searching for the

store by that name for the current user.

CREDENTIAL_STORE_FILENAME The certificate store name is a file that
contains the certificate and private key that
will be used.

lpszUserName

A pointer to a string which specifies the certificate owner's username. A value of NULL specifies
that no username is required. Currently this parameter is not used and any value specified will
be ignored.

lpszPassword

A pointer to a string which specifies the certificate owner's password. A value of NULL specifies
that no password is required. This parameter is only used if a PKCS #12 (PFX) certificate file is
specified and that certificate has been secured with a password. This value will be ignored the
current user or local machine certificate store is specified.

lpszCertStore

A pointer to a string which specifies the name of the certificate store to open. A certificate store
is a collection of certificates and their private keys, typically organized by how they are used. If
this value is NULL or points to an empty string, the default certificate store "MY" will be used.

Store Name Description

CA Certification authority certificates. These are certificates that are issued by
entities which are entrusted to issue certificates to other individuals or
organizations. Companies such as VeriSign and Thawte act as
certification authorities.

MY Personal certificates and their associated private keys for the current user.
This store typically holds the client certificates used to establish a user's
credentials. This corresponds to the "Personal" store that is displayed by
the certificate manager utility and is the default store used by the library.

ROOT Certificates that have been self-signed by a certificate authority. Root
certificates for a number of different certification authorities such as
VeriSign and Thawte are installed as part of the operating system and
periodically updated by Microsoft.

lpszCertName

A pointer to a null terminated string which specifies the name of the certificate to use. The
function will first search the certificate store for a certificate with a matching "friendly name"; this
is a name for the certificate that is assigned by the user. Note that the name must match
completely, but the comparison is not case sensitive. If no matching certificate is found, the
function will then attempt to find a certificate that has a matching common name (also called
the certificate subject). This comparison is less stringent, and the first partial match will be
returned. If this second search fails, the function will return an error indicating that the certificate
could not be found.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Example

pClient->CreateSecurityCredentials(
 SECURITY_PROTOCOL_DEFAULT,
 0,
 NULL,
 NULL,
 lpszCertStore,
 lpszCertName);

bConnected = pClient->Connect(lpszHostName,
 SMTP_PORT_SECURE,
 SMTP_TIMEOUT,
 SMTP_OPTION_SECURE);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Connect, DeleteSecurityCredentials, GetSecurityInformation, SECURITYCREDENTIALS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSmtpClient::DeleteSecurityCredentials Method

VOID DeleteSecurityCredentials();

The DeleteSecurityCredentials method releases the security credentials for the current session.

Parameters
None.

Return Value
None.

Remarks
This method can be used to release the memory allocated to the client or server credentials after
a secure connection has been terminated. The security credentials are released when the class
destructor is called, so it is normally not required that the application explicitly call this method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CreateSecurityCredentials

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSmtpClient::DetachHandle Method

HCLIENT DetachHandle();

The DetachHandle method detaches the client handle associated with the current instance of the
class.

Parameters
None.

Return Value
This method returns the client handle associated with the current instance of the class object. If
there is no active client session, the value INVALID_CLIENT will be returned.

Remarks
This method is used to detach a client handle created by the class for use with the SocketTools
API. Once the client handle is detached from the class, no other class member functions may be
called. Note that the handle must be explicitly released at some later point by the process or a
resource leak will occur.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib

See Also
AttachHandle, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSmtpClient::DisableEvents Method

INT DisableEvents();

The DisableEvents method disables the event notification mechanism, preventing subsequent
event notification messages from being posted to the application's message queue.

This method has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Parameters
None.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
SMTP_ERROR. To get extended error information, call GetLastError.

Remarks
The DisableEvents method is used to disable event message posting for the specified client
session. Although this will immediately prevent any new events from being generated, it is possible
that messages could be waiting in the message queue. Therefore, an application must be
prepared to handle client event messages after this method has been called.

This method is automatically called if the client has event notification enabled, and the Disconnect
method is called. The same issues regarding outstanding event messages also applies in this
situation, requiring that the application handle event messages that may reference a client handle
that is no longer valid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib

See Also
EnableEvents, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSmtpClient::DisableTrace Method

BOOL DisableTrace();

The DisableTrace method disables the logging of socket function calls to the trace log.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, a value of zero is
returned.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib

See Also
EnableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSmtpClient::Disconnect Method

VOID Disconnect();

The Disconnect method terminates the connection with the server, closing the socket and
releasing the memory allocated for the client session.

Parameters
None.

Return Value
None.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib

See Also
Connect, IsConnected

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSmtpClient::EnableEvents Method

INT EnableEvents(
 HWND hEventWnd,
 UINT uEventMsg
);

The EnableEvents method enables event notifications using Windows messages.

This method has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Applications should use the RegisterEvent method to register an event handler which is invoked
when an event occurs.

Parameters
hEventWnd

Handle to the window which will receive the client notification messages. This parameter must
specify a valid window handle. If a NULL handle is specified, event notification will be disabled.

uEventMsg

The message that is received when a client event occurs. This value must be greater than 1024.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
SMTP_ERROR. To get extended error information, call GetLastError.

Remarks
The EnableEvents method is used to request that notification messages be posted to the
specified window whenever a client event occurs. This allows an application to monitor the status
of different client operations, such as a file transfer.

The wParam argument will contain the client handle, the low word of the lParam argument will
contain the event ID, and the high word will contain any error code. If no error has occurred, the
high word will always have a value of zero. The following events may be generated:

Constant Description

SMTP_EVENT_CONNECT The connection to the server has completed. The high word of
the lParam parameter should be checked, since this notification
message will be posted if an error has occurred.

SMTP_EVENT_DISCONNECT The server has closed the connection to the client. The client
should read any remaining data and disconnect.

SMTP_EVENT_READ Data is available to read by the calling process. No additional
messages will be posted until the client has read at least some of
the data. This event is only generated if the client is in
asynchronous mode.

SMTP_EVENT_WRITE The client can now write data. This notification is sent after a
connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking

operation. This event is only generated if the client is in
asynchronous mode.

SMTP_EVENT_TIMEOUT The network operation has exceeded the specified timeout
period. The client application may attempt to retry the operation,
or may disconnect from the server and report an error to the
user.

SMTP_EVENT_CANCEL The current operation has been canceled. Under most
circumstances the client should disconnect from the server and
re-connect if needed. After an operation has been canceled, the
server may abort the connection or refuse to accept further
commands from the client.

SMTP_EVENT_COMMAND A command has been issued by the client and the server
response has been received and processed. This event can be
used to log the result codes and messages returned by the server
in response to actions taken by the client.

SMTP_EVENT_PROGRESS The client is in the process of sending or receiving a file on the
data channel. This event is called periodically during a transfer so
that the client can update any user interface components such as
a status control or progress bar.

It is not required that the client be placed in asynchronous mode in order to receive command
and progress event notifications. To disable event notification, call the DisableEvents method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib

See Also
DisableEvents, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSmtpClient::EnableTrace Method

BOOL EnableTrace(
 LPCTSTR lpszTraceFile,
 DWORD dwTraceFlags
);

The EnableTrace method enables the logging of socket function calls to a file.

Parameters
lpszTraceFile

A pointer to a string which specifies the name of the trace log file. If this parameter is NULL or
an empty string, the default file name cstrace.log is used. The file is stored in the directory
specified by the TEMP environment variable, if it is defined; otherwise, the current working
directory is used.

dwTraceFlags

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

TRACE_INFO All function calls are written to the trace file. This is the default
value.

TRACE_ERROR Only those function calls which fail are recorded in the trace file.

TRACE_WARNING Only those function calls which fail or return values which indicate
a warning are recorded in the trace file.

TRACE_HEXDUMP All functions calls are written to the trace file, plus all the data that
is sent or received is displayed, in both ASCII and hexadecimal
format.

TRACE_PROCESS All function calls in the current process are logged, rather than
only those functions in the current thread. This option is useful for
multithreaded applications that are using worker threads.

Return Value
If the method succeeds, the return value is non-zero. A return value of zero indicates an error.
Failure typically indicates that the tracing library cstrcv11.dll cannot be loaded on the local
system.

Remarks
When trace logging is enabled, the file is opened, appended to and closed for each socket
function call. This makes it possible for an application to append its own logging information,
however care should be taken to ensure that the file is closed before the next network operation is
performed. To limit the size of the log files, enable and disable logging only around those sections
of code that you wish to trace.

Note that the TRACE_HEXDUMP trace level generates very large log files since it includes all of the
data exchanged between your application and the server.

Trace method logging is managed on a per-thread basis, not for each client handle. This means
that all SocketTools libraries and components share the same settings in the current thread. If you

are using multiple SocketTools libraries or components in your application, you only need to
enable logging once.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DisableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSmtpClient::ExpandAddress Method

INT ExpandAddress(
 LPCTSTR lpszMailingList,
 LPTSTR lpszAddresses,
 INT nMaxLength
);

INT ExpandAddress(
 LPCTSTR lpszMailingList,
 CString& strAddresses
);

The ExpandAddress method expands the specified mailing list, returning the membership of that
list.

Parameters
lpszMailingList

Points to a string which specifies the mailing list that the server should expand into full
addresses.

lpszAddresses

Points to a buffer that the expanded addresses will be copied into. This argument may also be a
CString object which will contain the expanded addresses when the method returns.

nMaxLength

Maximum number of characters that may be copied into the buffer, including the terminating
null character.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is SMTP_ERROR. To get extended error information, call GetLastError.

Remarks
The ExpandAddress method requests that the server expand the specified email address.
Typically this is used to expand aliases which refer to a mailing list, returning all of the members of
that list. A server may not support this command, or may restrict its usage. An application should
not depend on the ability to expand addresses.

This method cannot be called while a mail message is being composed.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AddRecipient, VerifyAddress

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSmtpClient::FreezeEvents Method

INT FreezeEvents(
 BOOL bFreeze
);

The FreezeEvents method is used to suspend and resume event handling by the client.

Parameters
bFreeze

A non-zero value specifies that event handling should be suspended by the client. A zero value
specifies that event handling should be resumed.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
SMTP_ERROR. To get extended error information, call GetLastError.

Remarks
This method should be used when the application does not want to process events, such as when
a modal dialog is being displayed. When events are suspended, all client events are queued. If
events are re-enabled at a later point, those queued events will be sent to the application for
processing. Note that only one of each event will be generated. For example, if the client has
suspended event handling, and four read events occur, once event handling is resumed only one
of those read events will be posted to the client. This prevents the application from being flooded
by a potentially large number of queued events.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DisableEvents, EnableEvents, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSmtpClient::GetCurrentDate Method

INT GetCurrentDate(
 LPTSTR lpszDateString,
 INT nMaxLength
);

INT GetCurrentDate(
 CString& strDateString
);

The GetCurrentDate method copies the current date and time to the specified buffer in a format
that is commonly used in mail messages. This date format should be used in all date-related fields
in the message header.

Parameters
lpszDateString

Pointer to a string buffer that will contain the current date and time when the method returns.
This argument may also be a CString object.

nMaxLength

The maximum number of characters that can be copied into the string buffer.

Return Values

If the method succeeds, the return value is the number of characters copied into the buffer, not
including the null-terminator. If the method fails, the return value is SMTP_ERROR. To get
extended error information, call GetLastError.

Remarks
The date value that is returned is adjusted for the local timezone.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CloseMessage, CreateMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSmtpClient::GetDeliveryOptions Method

BOOL GetDeliveryOptions(
 LPDWORD lpdwOptions
);

The GetDeliveryOptions method returns the delivery status notification options for the current
session.

Parameters
lpdwOptions

Address of a variable that will be set to the current delivery options. This bitmask is created by
combining one or more of the following values with a bitwise Or operator:

Constant Description

SMTP_NOTIFY_NEVER Never return information about the success or failure of
the message delivery process.

SMTP_NOTIFY_SUCCESS Return a message to the sender if the message has been
successfully delivered to the recipient's mail server.

SMTP_NOTIFY_FAILURE Return a message to the sender if the message could not
be delivered to the recipient's mail server.

SMTP_NOTIFY_DELAY Return a message to the sender if delivery of the message
was delayed.

SMTP_RETURN_HEADERS Return only the message headers to the sender.

SMTP_RETURN_MESSAGE Return the complete message headers and body to the
sender.

Return Values

If the method succeeds, the return value is a non-zero value. If the method fails, the return value is
zero. To get extended error information, call GetLastError.

Remarks
The GetDeliveryOptions method returns the current delivery options for the client session. Note
that delivery options are only available on those mail servers which support delivery status
notification (DSN) using the extended SMTP protocol. The client must connect specifying
SMTP_OPTION_EXTENDED in order to use extended server options.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib

See Also
Connect, GetExtendedOptions, SetDeliveryOptions

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSmtpClient::GetErrorString Method

INT GetErrorString(
 DWORD dwErrorCode,
 LPTSTR lpszDescription,
 INT cbDescription
);

INT GetErrorString(
 DWORD dwErrorCode,
 CString& strDescription
);

The GetErrorString method is used to return a description of a specific error code. Typically this is
used in conjunction with the GetLastError method for use with warning dialogs or as diagnostic
messages.

Parameters
dwErrorCode

The error code for which a description is returned.

lpszDescription

A pointer to the buffer that will contain a description of the specified error code. This buffer
should be at least 128 characters in length. An alternate form of the method accepts a CString
variable which will contain the error description.

cbDescription

The maximum number of characters that may be copied into the description buffer.

Return Value
If the method succeeds, the return value is the length of the description string. If the method fails,
the return value is zero, meaning that no description exists for the specified error code. Typically
this indicates that the error code passed to the method is invalid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetLastError, SetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSmtpClient::GetExtendedOptions Method

BOOL GetExtendedOptions(
 LPDWORD lpdwOptions
);

The GetExtendedOptions method returns the extended server options for the current session.

Parameters
lpdwOptions

Address of a variable that will be set to the current server options. This bitmask is created by
combining one or more of the following values with a bitwise Or operator:

Constant Description

SMTP_EXTOPT_EXPN The server supports address expansion using the EXPN
command. The ExpandAddress method can be used to
expand addresses, which typically returns the email
addresses associated with a mailing list. Most public mail
servers restrict or disable this functionality because it can
present a security risk. If a server does permit the use of the
command, it is often limited to specific authorized users.

SMTP_EXTOPT_VRFY The server supports verification of addresses using the
VRFY command. The VerifyAddress method can be used
to verify addresses. Most public mail servers restrict the
ability for clients to verify email addresses to prevent
potential abuse. If a server does permit the use of the
command, it is often limited to specific authorized users.

SMTP_EXTOPT_DSN The server supports delivery status notification (DSN) which
allows the sender to be notified when a message has been
delivered, or when an error occurs during the delivery
process. The SetDeliveryOptions method can be used to
specify the delivery options to be used in the current
session.

SMTP_EXTOPT_SIZE The server supports the use of the SIZE parameter, which
enables the client to determine the maximum message size
that may be delivered through the server. Most public mail
servers impose a limit of on the total size of a message,
including any encoded attachments.

SMTP_EXTOPT_ETRN The server supports the use of the ETRN command,
instructing the server to start processing its message
queues for a specific host. Most public mail servers do not
support this capability and its use has been deprecated.

SMTP_EXTOPT_8BITMIME The server supports the delivery of messages that contain
characters with the high bit set. Most servers support this
option, however it is recommended that you encode any
message text which contains non-ASCII characters to
ensure the broadest compatibility with other servers and
clients.

SMTP_EXTOPT_STARTTLS The server supports explicit TLS sessions. This extended
option is used internally to determine how secure
connections should be established, and if a secure
connection can be made using the standard submission
port.

SMTP_EXTOPT_UTF8 The server supports UTF-8 encoding in email addresses
and the message envelope. Not all mail servers will have
this extended capability enabled, and applications should
not depend on being able to provide internationalized user
and domain names unless this option bitflag has been set.

In addition, there are extended options which specify the authentication methods
supported by the server. A server will typically support multiple authentication methods
and may be one or more of the following values:

Constant Description

SMTP_EXTOPT_AUTHLOGIN The server supports client authentication using the
AUTH LOGIN command. This is the default
authentication method and is supported by most mail
servers. The user name and password are encoded in a
specific format, but are not encrypted. The client should
use a secure connection whenever possible.

SMTP_EXTOPT_AUTHPLAIN The server supports client authentication using the
AUTH PLAIN command. The use name and password
are encoded in a specific format, but are not encrypted.
If a server supports this authentication method, it is very
likely it also supports AUTH LOGIN. It is recommended
you use only use AUTH PLAIN authentication if the
server does not support AUTH LOGIN.

SMTP_EXTOPT_XOAUTH2 The server supports client authentication using AUTH
XOAUTH2 command. Instead of a password, an OAuth
2.0 bearer token is used to authenticate the user which
previously authorized access to the mail server using
their account information. The connection must be
secure to use this authentication method.

SMTP_EXTOPT_BEARER The server supports client authentication using AUTH
OAUTHBEARER command as specified in RFC 7628.
Instead of a password, an OAuth 2.0 bearer token is
used to authenticate the user which previously
authorized access to the mail server using their account
information. The connection must be secure to use this
authentication method. The connection must be secure
to use this authentication method.

Return Value
If the method succeeds, the return value is a non-zero value. If the method fails, the return value is
zero. To get extended error information, call GetLastError.

Remarks
The GetExtendedOptions method returns the extended options supported by the server. The
use of extended options requires that the server support the ESMTP protocol, and that the client
connect using the SMTP_OPTION_EXTENDED option.

You should check these options prior to calling Authenticate to determine which authentication
methods are acceptable to the server. If you wish to use an OAuth 2.0 bearer token, always check
to make sure either the SMTP_EXTOPT_XOAUTH2 or SMTP_EXTOPT_BEARER bitflags are set in
the options value returned by this method.

Example
BOOL bExtended = FALSE;
DWORD dwOptions = 0;

// Determine which extended options and authentication methods
// are supported by this server

bExtended = pClient->GetExtendedOptions(&dwOptions);

if (bExtended && (dwOptions & SMTP_EXTOPT_XOAUTH2))
{
 INT nResult = pClient->Authenticate(lpszUserName, lpszBearerToken,
SMTP_AUTH_XOAUTH2);

 if (nResult == SMTP_ERROR)
 {
 // An error occurred during authentication; when using an
 // OAuth 2.0 bearer token, this typically means that the token
 // has expired and must be refreshed
 return;
 }
}
else
{
 // The server does not support XOAUTH2
 return;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib

See Also
Authenticate, Connect, GetDeliveryOptions, SetDeliveryOptions

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSmtpClient::GetHandle Method

HCLIENT GetHandle();

The GetHandle method returns the client handle associated with the current instance of the class.

Parameters
None.

Return Value
This method returns the client handle associated with the current instance of the class object. If
there is no active client session, the value INVALID_CLIENT will be returned.

Remarks
This method is used to obtain the client handle created by the class for use with the SocketTools
API.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib

See Also
AttachHandle, DetachHandle, IsInitialized

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSmtpClient::GetLastError Method

DWORD GetLastError();

DWORD GetLastError(
 CString& strDescription
);

Parameters
strDescription

A string which will contain a description of the last error code value when the method returns. If
no error has been set, or the last error code has been cleared, this string will be empty.

Return Value
The return value is the last error code value for the current thread. Functions set this value by
calling the SetLastError method. The Return Value section of each reference page notes the
conditions under which the method sets the last error code.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. You should call
the GetLastError method immediately when a method's return value indicates that an error has
occurred. That is because some methods call SetLastError(0) when they succeed, clearing the
error code set by the most recently failed method.

Most methods will set the last error code value when they fail; a few methods set it when they
succeed. Function failure is typically indicated by a return value such as FALSE, NULL,
INVALID_CLIENT or SMTP_ERROR. Those methods which call SetLastError when they succeed are
noted on the method reference page.

The description of the error code is the same string that is returned by the GetErrorString
method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib

See Also
GetErrorString, SetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSmtpClient::GetLocalName Method

INT GetLocalName(
 LPTSTR lpszLocalName,
 INT nMaxLength
);

INT GetLocalName(
 CString& strLocalName
);

The GetLocalName method returns the local domain name used to identify the client to the mail
server.

Parameters
lpszLocalName

A pointer to the buffer that will contain the local domain name as a string. This may also be a
CString object which will contain the domain name when the method returns.

cbDescription

The maximum number of characters that may be copied into the string buffer.

Return Value
If the method succeeds, the return value is the length of the domain name string. If the method
fails, the return value is zero, meaning that no local domain name has been specified for this client
session.

Remarks
If no local domain name has been explicitly set, then the client will use the default domain name
for the local host as configured in the operating system. Note that this is not a general purpose
method which can be used to determine the domain name that as been assigned to the local
host. It will only return the local domain name set by a previous call to the SetLocalName
method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Connect, SetLocalName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSmtpClient::GetResultCode Method

INT GetResultCode();

The GetResultCode method reads the result code returned by the server in response to a
command. The result code is a three-digit numeric code, and indicates if the operation succeeded,
failed or requires additional action by the client.

Parameters
None.

Return Value
If the method succeeds, the return value is the result code. If the method fails, the return value is
SMTP_ERROR. To get extended error information, call GetLastError.

Remarks
Result codes are three-digit numeric values returned by the server. They may be broken down into
the following ranges:

Value Description

100-
199

Positive preliminary result. This indicates that the requested action is being initiated, and
the client should expect another reply from the server before proceeding.

200-
299

Positive completion result. This indicates that the server has successfully completed the
requested action.

300-
399

Positive intermediate result. This indicates that the requested action cannot complete
until additional information is provided to the server.

400-
499

Transient negative completion result. This indicates that the requested action did not
take place, but the error condition is temporary and may be attempted again.

500-
599

Permanent negative completion result. This indicates that the requested action did not
take place.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib

See Also
Command, GetResultString

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSmtpClient::GetResultString Method

INT GetResultString(
 LPTSTR lpszResult,
 INT cbResult
);

INT GetResultString(
 CString& strResult
);

The GetResultString method returns the last message sent by the server along with the result
code.

Parameters
lpszResult

A pointer to the buffer that will contain the result string returned by the server. An alternate
form of the method accepts a CString argument which will contain the result string returned by
the server.

cbResult

The maximum number of characters that may be copied into the result string buffer, including
the terminating null character.

Return Value
If the method succeeds, the return value is the length of the result string. If a value of zero is
returned, this means that no result string was sent by the server. If the method fails, the return
value is SMTP_ERROR. To get extended error information, call GetLastError.

Remarks
The GetResultString method is most useful when an error occurs because the server will typically
include a brief description of the cause of the error. This can then be parsed by the application or
displayed to the user. The result string is updated each time the client sends a command to the
server and then calls GetResultCode to obtain the result code for the operation.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Command, GetResultCode

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSmtpClient::GetSecurityInformation Method

BOOL GetSecurityInformation(
 LPSECURITYINFO lpSecurityInfo
);

The GetSecurityInformation method returns security protocol, encryption and certificate
information about the current client connection.

Parameters
lpSecurityInfo

A pointer to a SECURITYINFO structure which contains information about the current client
connection. The dwSize member of this structure must be initialized to the size of the structure
before passing the address of the structure to this method.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
This method is used to obtain security related information about the current client connection to
the server. It can be used to determine if a secure connection has been established, what security
protocol was selected, and information about the server certificate. Note that a secure connection
has not been established, the dwProtocol structure member will contain the value
SECURITY_PROTOCOL_NONE.

Example
The following example notifies the user if the connection is secure or not:

SECURITYINFO securityInfo;
securityInfo.dwSize = sizeof(SECURITYINFO);

if (pClient->GetSecurityInformation(&securityInfo))
{
 if (securityInfo.dwProtocol == SECURITY_PROTOCOL_NONE)
 {
 MessageBox(NULL, _T("The connection is not secure"),
 _T("Connection"), MB_OK);
 }
 else
 {
 if (securityInfo.dwCertStatus == SECURITY_CERTIFICATE_VALID)
 {
 MessageBox(NULL, _T("The connection is secure"),
 _T("Connection"), MB_OK);
 }
 else
 {
 MessageBox(NULL, _T("The server certificate not valid"),
 _T("Connection"), MB_OK);
 }
 }
}

Requirements

Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Connect, CreateSecurityCredentials, SECURITYINFO

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSmtpClient::GetStatus Method

INT GetStatus();

The GetStatus method the current status of the client session.

Parameters
None.

Return Value
If the method succeeds, the return value is the client status code. If the method fails, the return
value is SMTP_ERROR. To get extended error information, call GetLastError.

Remarks
The GetStatus method returns a numeric code which identifies the current state of the client
session. The following values may be returned:

Value Constant Description

0 SMTP_STATUS_UNUSED No connection has been established.

1 SMTP_STATUS_IDLE The client is current idle and not sending or
receiving data.

2 SMTP_STATUS_CONNECT The client is establishing a connection with the
server.

3 SMTP_STATUS_READ The client is reading data from the server.

4 SMTP_STATUS_WRITE The client is writing data to the server.

5 SMTP_STATUS_DISCONNECT The client is disconnecting from the server.

In a multithreaded application, any thread in the current process may call this method to obtain
status information for the specified client session.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib

See Also
IsBlocking, IsConnected, IsInitialized, IsReadable, IsWritable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSmtpClient::GetTimeout Method

INT GetTimeout();

The GetTimeout method returns the number of seconds the client will wait for a response from
the server. Once the specified number of seconds has elapsed, the method will fail and return to
the caller.

Parameters
None.

Return Value
If the method succeeds, the return value is the timeout period in seconds. If the method fails, the
return value is SMTP_ERROR. To get extended error information, call GetLastError.

Remarks
The timeout value is only used with blocking client connections. A value of zero indicates that the
default timeout period of 20 seconds should be used.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib

See Also
Connect, IsReadable, IsWritable, Read, SetTimeout, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSmtpClient::GetTransferStatus Method

INT GetTransferStatus(
 HCLIENT hClient,
 LPSMTPTRANSFERSTATUS lpStatus
);

The GetTransferStatus method returns information about the message being submitted to the
mail server.

Parameters
hClient

Handle to the client session.

lpStatus

A pointer to an SMTPTRANSFERSTATUS structure which contains information about the status
of the message being submitted for delivery.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
SMTP_ERROR. To get extended error information, call GetLastError.

Remarks
The GetTransferStatus method returns information about the current message being submitted,
including the average number of bytes transferred per second and the estimated amount of time
until the transfer completes. If there is no message currently being submitted, this method will
return the status of the last successful submission made by the client.

In a multithreaded application, any thread in the current process may call this method to obtain
the status of a submission for the specified client session.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
EnableEvents, GetStatus, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSmtpClient::IsBlocking Method

BOOL IsBlocking();

The IsBlocking method is used to determine if the client is currently performing a blocking
operation.

Parameters
None.

Return Value
If the client is performing a blocking operation, the method returns a non-zero value. If the client
is not performing a blocking operation, or the client handle is invalid, the method returns zero.

Remarks
Because a blocking operation can allow the application to be re-entered (for example, by pressing
a button while the operation is being performed), it is possible that another blocking method may
be called while it is in progress. Since only one thread of execution may perform a blocking
operation at any one time, an error would occur. The IsBlocking method can be used to
determine if the client is already blocked, and if so, take some other action (such as warning the
user that they must wait for the operation to complete).

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Cancel, GetStatus, IsConnected, IsInitialized, IsReadable, IsWritable, Read, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSmtpClient::IsConnected Method

BOOL IsConnected();

The IsConnected method is used to determine if the client is currently connected to a server.

Parameters
None.

Return Value
If the client is connected to a server, the method returns a non-zero value. If the client is not
connected, or the client handle is invalid, the method returns zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib

See Also
GetStatus, IsBlocking, IsInitialized, IsReadable, IsWritable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSmtpClient::IsInitialized Method

BOOL IsInitialized();

The IsInitialized method returns whether or not the class object has been successfully initialized.

Parameters
None.

Return Value
This method returns a non-zero value if the class object has been successfully initialized. A return
value of zero indicates that the runtime license key could not be validated or the networking
library could not be loaded by the current process.

Remarks
When an instance of the class is created, the class constructor will attempt to initialize the
component with the runtime license key that was created when SocketTools was installed. If the
constructor is unable to validate the license key or load the networking libraries, this initialization
will fail.

If SocketTools was installed with an evaluation license, the application cannot be redistributed to
another system. The class object will fail to initialize if the application is executed on another
system, or if the evaluation period has expired. To redistribute your application, you must
purchase a development license which will include the runtime key that is needed to redistribute
your software to other systems. Refer to the Developer's Guide for more information.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib

See Also
CSmtpClient, IsBlocking, IsConnected

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSmtpClient::IsReadable Method

BOOL IsReadable(
 INT nTimeout,
 LPDWORD lpdwAvail
);

The IsReadable method is used to determine if data is available to be read from the server.

Parameters
nTimeout

Timeout for server response, in seconds. A value of zero specifies that the connection should be
polled without blocking the current thread.

lpdwAvail

A pointer to an unsigned integer which will contain the number of bytes available to read. This
parameter may be NULL if this information is not required.

Return Value
If the client can read data from the server within the specified timeout period, the method returns
a non-zero value. If the client cannot read any data, the method returns zero.

Remarks
On some platforms, this value will not exceed the size of the receive buffer (typically 64K bytes).
Because of differences between TCP/IP stack implementations, it is not recommended that your
application exclusively depend on this value to determine the exact number of bytes available.
Instead, it should be used as a general indicator that there is data available to be read.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib

See Also
GetStatus, IsBlocking, IsConnected, IsInitialized, IsWritable, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSmtpClient::IsWritable Method

BOOL IsWritable(
 INT nTimeout
);

The IsWritable method is used to determine if data can be written to the server.

Parameters
nTimeout

Timeout for server response, in seconds. A value of zero specifies that the connection should be
polled without blocking the current thread.

Return Value
If the client can write data to the server within the specified timeout period, the method returns a
non-zero value. If the client cannot write any data, the method returns zero.

Remarks
Although this method can be used to determine if some amount of data can be sent to the
remote process it does not indicate the amount of data that can be written without blocking the
client. In most cases, it is recommended that large amounts of data be broken into smaller logical
blocks, typically some multiple of 512 bytes in length.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib

See Also
GetStatus, IsBlocking, IsConnected, IsInitialized, IsReadable, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSmtpClient::Read Method

INT Read(
 LPBYTE lpBuffer,
 INT cbBuffer
);

INT Read(
 CString& strBuffer,
 INT cbBuffer
);

The Read method reads the specified number of bytes from the client socket and copies them
into the buffer. The data may be of any type, and is not terminated with a null character.

Parameters
lpBuffer

Pointer to the buffer in which the data will be copied. An alternate form of this method allows a
CString variable to be passed and data read from the socket will be returned in that string.

cbBuffer

The maximum number of bytes to read and copy into the specified buffer. This value must be
greater than zero.

Return Value
If the method succeeds, the return value is the number of bytes actually read. A return value of
zero indicates that the server has closed the connection and there is no more data available to be
read. If the method fails, the return value is SMTP_ERROR. To get extended error information, call
GetLastError.

Remarks
When Read is called and the client is in non-blocking mode, it is possible that the method will fail
because there is no available data to read at that time. This should not be considered a fatal error.
Instead, the application should simply wait to receive the next asynchronous notification that data
is available.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib

See Also
EnableEvents, IsBlocking, IsReadable, IsWritable, RegisterEvent, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSmtpClient::RegisterEvent Method

INT RegisterEvent(
 UINT nEventId,
 SMTPEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

The RegisterEvent method registers an event handler for the specified event.

Parameters
nEventId

An unsigned integer which specifies which event should be registered with the specified callback
function. One of the following values may be used:

Constant Description

SMTP_EVENT_CONNECT The connection to the server has completed.

SMTP_EVENT_DISCONNECT The server has closed the connection to the client. The client
should read any remaining data and disconnect.

SMTP_EVENT_READ Data is available to read by the calling process. No additional
messages will be posted until the client has read at least some of
the data. This event is only generated if the client is in
asynchronous mode.

SMTP_EVENT_WRITE The client can now write data. This notification is sent after a
connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking
operation. This event is only generated if the client is in
asynchronous mode.

SMTP_EVENT_TIMEOUT The network operation has exceeded the specified timeout
period. The client application may attempt to retry the operation,
or may disconnect from the server and report an error to the
user.

SMTP_EVENT_CANCEL The current operation has been canceled. Under most
circumstances the client should disconnect from the server and
re-connect if needed. After an operation has been canceled, the
server may abort the connection or refuse to accept further
commands from the client.

SMTP_EVENT_COMMAND A command has been issued by the client and the server
response has been received and processed. This event can be
used to log the result codes and messages returned by the server
in response to actions taken by the client.

SMTP_EVENT_PROGRESS The client is in the process of sending or receiving a file on the
data channel. This event is called periodically during a transfer so
that the client can update any user interface components such as
a status control or progress bar.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the SmtpEventProc callback
function. If this parameter is NULL, the callback for the specified event is disabled.

dwParam

A user-defined integer value that is passed to the callback function. If the application targets the
x86 (32-bit) platform, this parameter must be a 32-bit unsigned integer. If the application
targets the x64 (64-bit) platform, this parameter must be a 64-bit unsigned integer.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
SMTP_ERROR. To get extended error information, call GetLastError.

Remarks
The RegisterEvent method associates a callback function with a specific event. The event handler
is an SmtpEventProc function that is invoked when the event occurs. Arguments are passed to
the function to identify the client session, the event type and the user-defined value specified
when the event handler is registered. If the event occurs because of an error condition, the error
code will be provided to the handler.

This method is typically used to register an event handler that is invoked while a message is being
submitted to the server for delivery. The SMTP_EVENT_PROGRESS event will only be generated
periodically during the transfer to ensure the application is not flooded with event notifications. It
is guaranteed that at least one SMTP_EVENT_PROGRESS notification will occur at the beginning of
the transfer, and one at the end of the transfer when it has completed.

The callback function specified by the lpEventProc parameter must be declared using the
__stdcall calling convention. This ensures the arguments passed to the event handler are pushed
on to the stack in the correct order. Failure to use the correct calling convention will corrupt the
stack and cause the application to terminate abnormally.

The dwParam parameter is commonly used to identify the class instance which is associated with
the event that has occurred. Applications will cast the this pointer to a DWORD_PTR value when
calling this function, and then the event handler will cast it back to a pointer to the class instance.
This gives the handler access to the class member variables and methods.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib

See Also
DisableEvents, EnableEvents, FreezeEvents, SmtpEventProc

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/smtp/class/smtpeventproc.html

 CSmtpClient::Reset Method

INT Reset();

The Reset method resets the client state and resynchronizes with the server. This method is
typically called after an unexpected error has occurred, or an operation has been canceled.

Parameters
None.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
SMTP_ERROR. To get extended error information, call GetLastError.

Remarks
The client cannot be reset while in a blocked state.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Cancel, CloseMessage, CreateMessage, IsBlocking

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSmtpClient::SendMessage Method

INT SendMessage(
 LPCTSTR lpszFrom,
 LPCTSTR lpszRecipient,
 LPCTSTR lpszFileName
);

INT SendMessage(
 LPCTSTR lpszFrom,
 LPCTSTR lpszRecipient,
 LPBYTE lpMessage,
 DWORD dwMessageSize
);

INT SendMessage(
 LPCTSTR lpszFrom,
 LPCTSTR lpszRecipient,
 HGLOBAL hgblMessage,
 DWORD dwMessageSize
);

The SendMessage method sends the contents of a file or buffer to the specified recipients.

Parameters
lpszFrom

Pointer to a string which specifies the email address of the sender.

lpszRecipient

Pointer to a string which specifies the recipient of the message. Multiple recipients may be
specified by separating each address with a comma.

lpszFileName

Pointer to a string which specifies a file that contains the message to be delivered.

lpMessage

Pointer to a buffer which contains the message to be delivered. This may also be a global
memory handle which references the message data.

dwMessageSize

An unsigned integer which specifies the length of the message in bytes.

Return Value
If the method succeeds, the return value is the result code from the server. If the method fails, the
return value is SMTP_ERROR. To get extended error information, call GetLastError.

Remarks
The SendMessage method is used to send the contents of a file, buffer or global memory handle
to the specified recipients. The message must be in the standard format as described in RFC 822.
The CMailMessage class can be used to compose and export a message in the correct format.

This protocol is only concerned with the delivery of a message and not its contents. Header fields
in the message are not parsed to determine the recipients. This recipient parameter should be a
concatenation of all recipients, including carbon copies and blind carbon copies, with each
address separated with a comma.

This method will cause the current thread to block until the complete message has been delivered,
a timeout occurs or the operation is canceled. During the transfer, the SMTP_EVENT_PROGRESS
event will be periodically fired, enabling the application to update any user interface controls.
Event notification must be enabled, either by calling EnableEvents, or by registering a callback
function using the RegisterEvent method.

To determine the current status of the transaction while it is in progress, use the
GetTransferStatus method.

An alternative approach to creating a message without using the CMailMessage class is the
SubmitMessage method. It accepts two structure parameters which define the message contents
and the connection information for the mail server. This enables the application to compose the
message and submit it for delivery in a single method call.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AppendMessage, CloseMessage, GetTransferStatus, SubmitMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSmtpClient::SetDeliveryOptions Method

BOOL SetDeliveryOptions(
 DWORD dwOptions
);

The SetDeliveryOptions method sets the delivery status notification options for the current
session.

Parameters
dwOptions

A bitmask that defines the current delivery options. This value is created by combining one or
more of the following constants with a bitwise Or operator:

Constant Description

SMTP_NOTIFY_NEVER Never return information about the success or failure of
the message delivery process.

SMTP_NOTIFY_SUCCESS Return a message to the sender if the message has been
successfully delivered to the recipient's mail server.

SMTP_NOTIFY_FAILURE Return a message to the sender if the message could not
be delivered to the recipient's mail server.

SMTP_NOTIFY_DELAY Return a message to the sender if delivery of the message
was delayed.

SMTP_RETURN_HEADERS Return only the message headers to the sender.

SMTP_RETURN_MESSAGE Return the complete message headers and body to the
sender.

Return Value
If the method succeeds, the return value is a non-zero value. If the method fails, the return value is
zero. To get extended error information, call GetLastError.

Remarks
The SetDeliveryOptions method sets the current delivery options for the client session. Note that
delivery options are only available on those mail servers which support delivery status notification
(DSN) using the extended SMTP protocol. The client must connect specifying
SMTP_OPTION_EXTENDED in order to use extended server options.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetDeliveryOptions, GetExtendedOptions

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSmtpClient::SetLastError Method

VOID SetLastError(
 DWORD dwErrorCode
);

The SetLastError method sets the last error code for the current thread. This method is typically
used to clear the last error by specifying a value of zero as the parameter.

Parameters
dwErrorCode

Specifies the last error code for the current thread.

Return Value
None.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. Most methods will
set the last error code value when they fail; a few methods set it when they succeed. Function
failure is typically indicated by a return value such as FALSE, NULL, INVALID_CLIENT or
SMTP_ERROR. Those methods which call SetLastError when they succeed are noted on the
method reference page.

Applications can retrieve the value saved by this method by using the GetLastError method. The
use of GetLastError is optional; an application can call the method to determine the specific
reason for a method failure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib

See Also
GetErrorString, GetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSmtpClient::SetLocalName Method

BOOL SetLocalName(
 LPCTSTR lpszLocalName
);

The SetLocalName method sets the local domain name used to identify the client to the mail
server.

Parameters
lpszLocalName

A pointer to a string which specifies the local domain name to be used by the client when
establishing a connection with the mail server. A value of NULL or an empty string clears the
domain name.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The SetLocalName method should only be used to specify a domain name if it is absolutely
necessary. In most cases, it is preferable to allow the library to automatically determine the correct
domain name to use. Providing an invalid domain name may cause the mail server to reject the
connection.

This method may only be called prior to establishing a connection with the mail server using the
Connect method. After the connection has been made, this method will fail. To change the local
domain name used by the client, you must first terminate the current session.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Connect, GetLocalName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSmtpClient::SetTimeout Method

INT SetTimeout(
 UINT nTimeout
);

The SetTimeout method sets the number of seconds the client will wait for a response from the
server. Once the specified number of seconds has elapsed, the method will fail and return to the
caller.

Parameters
nTimeout

The number of seconds to wait for a blocking operation to complete.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
SMTP_ERROR. To get extended error information, call GetLastError.

Remarks
The timeout value is only used with blocking client connections.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib

See Also
Connect, GetTimeout, IsReadable, IsWritable, Read, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSmtpClient::ShowError Method

INT ShowError(
 LPCTSTR lpszAppTitle,
 UINT uType,
 DWORD dwErrorCode
);

The ShowError method displays a message box which describes the specified error.

Parameters
lpszAppTitle

A pointer to a string which specifies the title of the message box that is displayed. If this
argument is NULL or omitted, then the default title of "Error" will be displayed.

uType

An unsigned integer which specifies the type of message box that will be displayed. This is the
same value that is used by the MessageBox method in the Windows API. If a value of zero is
specified, then a message box with a single OK button will be displayed. Refer to that method
for a complete list of options.

dwErrorCode

Specifies the error code that will be used when displaying the message box. If this argument is
zero, then the last error that occurred in the current thread will be displayed.

Return Value
If the method is successful, the return value will be the return value from the MessageBox
function. If the method fails, it will return a value of zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetErrorString, GetLastError, SetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSmtpClient::SubmitMessage Method

BOOL SubmitMessage(
 LPSMTPSERVER lpServer,
 LPSMTPMESSAGE lpMessage,
 SMTPEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

BOOL SubmitMessage(
 LPSMTPSERVER lpServer,
 LPSMTPMESSAGEEX lpMessage,
 SMTPEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

The SubmitMessage method composes and submits a message for delivery to the specified mail
server.

Parameters
lpServer

A pointer to an SMTPSERVER structure that contains information about the mail server that the
message will be submitted to for delivery. This parameter cannot be NULL and the structure
members must be properly initialized prior to calling this function.

lpMessage

A pointer to an SMTPMESSAGE or SMTPMESSAGEEX structure that contains information
about the message, including the sender, recipients and the body of the message. This
parameter cannot be NULL and the structure members must be property initialized prior to
calling this function.

lpEventProc

An optional pointer to the procedure-instance address of an application defined callback
function. For more information about event handling and the callback function, see the
description of the SmtpEventProc callback function. If this parameter is NULL or is omitted,
event notification is disabled.

dwParam

An optional user-defined integer value that is passed to the callback function. If the lpEventProc
parameter is NULL, this value should be zero.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call SmtpGetLastError.

Remarks
The SubmitMessage method provides a high-level interface that enables an application to send
an email message with a single function call. The SMTPSERVER and SMTPMESSAGE structures
are used to provide the function with information about the mail server that will accept the
message and the contents of the message itself. Note that this method does not require you to
call the Connect method prior to calling this function.

If you need to specify additional custom headers in the message that is submitted for delivery, you
should use the SMTPMESSAGEEX structure. It is an extended version of the message structure

which will allow you to define custom headers to be included in the message.

This method will cause the calling thread to block until the message has been submitted for
delivery, an error occurs or the connection to the mail server times out. If an event handler is
specified, then the callback function will be periodically invoked as the message is being sent. For
large messages, the SMTP_EVENT_PROGRESS event can be used to monitor the submission
process and update the user interface. The GetTransferStatus method can be used within the
callback function to obtain information about the current status of the submission.

Example
CSmtpClient smtpClient;

SMTPSERVER mailServer;
ZeroMemory(&mailServer, sizeof(mailServer));
mailServer.lpszHostName = _T("smtp.gmail.com");
mailServer.nHostPort = SMTP_PORT_SUBMIT;
mailServer.lpszUserName = m_strSender;
mailServer.lpszPassword = m_strPassword;
mailServer.dwOptions = SMTP_OPTION_SECURE;

SMTPMESSAGE mailMessage;
ZeroMemory(&mailMessage, sizeof(mailMessage));
mailMessage.lpszFrom = m_strSender;
mailMessage.lpszTo = m_strRecipients;
mailMessage.lpszSubject = m_strSubject;
mailMessage.lpszText = m_strMessage;

if (smtpClient.SubmitMessage(&mailServer, &mailMessage))
 _tprintf(_T("SubmitMessage was successful\n"));
else
{
 CString strError;
 smtpClient.GetErrorString(strError);
 _tprintf(_T("SubmitMessage failed: %s\n"), strError);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SendMessage, SmtpEventProc, SMTPMESSAGE, SMTPMESSAGEEX, SMTPSERVER

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/smtp/class/smtpeventproc.html

 CSmtpClient::VerifyAddress Method

INT VerifyAddress(
 LPCTSTR lpszAddress,
 LPTSTR lpszBuffer,
 INT nMaxLength
);

INT VerifyAddress(
 LPCTSTR lpszAddress,
 CString& strBuffer
);

The VerifyAddress method verifies the specified address is valid.

Parameters
lpszAddress

Points to a string which specifies the address that the server should verify.

lpszBuffer

Points to a buffer that the verified address will be copied into. This argument may also be a
CString object which will contain the verified address when the method returns.

nMaxLength

Maximum number of characters that may be copied into the buffer, including the terminating
null character.

Return Value
If the method succeeds, the return value is the server result code. If the method fails, the return
value is SMTP_ERROR. To get extended error information, call GetLastError.

Remarks
The VerifyAddress method requests that the server verify the specified email address. Typically
this is used to verify that a recipient address is valid, and return a fully qualified email address for
that recipient. A server may not support this command, or may restrict its usage. An application
should not depend on the ability to verify addresses.

This method cannot be called while a mail message is being composed.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AddRecipient, ExpandAddress

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSmtpClient::Write Method

INT Write(
 LPBYTE lpBuffer,
 INT cbBuffer
);

INT Write(
 LPCTSTR lpszBuffer
 INT cbBuffer
);

The Write method sends the specified number of bytes to the server.

Parameters
lpBuffer

The pointer to the buffer which contains the data that is to be sent to the server. In an alternate
form of the method, the pointer is to a string.

cbBuffer

The number of bytes to send from the specified buffer. This value must be greater than zero,
unless a pointer to a string buffer is passed as the parameter. In that case, if the value is -1, all of
the characters in the string, up to but not including the terminating null character, will be sent to
the server.

Return Value
If the method succeeds, the return value is the number of bytes actually written. If the method
fails, the return value is SMTP_ERROR. To get extended error information, call GetLastError.

Remarks
The return value may be less than the number of bytes specified by the cbBuffer parameter. In this
case, the data has been partially written and it is the responsibility of the client application to send
the remaining data at some later point. For non-blocking clients, the client must wait for the next
asynchronous notification message before it resumes sending data.

If the Write method is used to send the message contents to the server, the application must first
call the CreateMessage method to specify the sender and the length of the message, followed by
one or more calls to the AddRecipient method to specify each recipient of the message. When all
of the message text has been submitted to the server, the application must call the CloseMessage
method.

The message text is filtered by the Write method, and it will automatically normalize end-of-line
character sequences to ensure the message meets the protocol requirements. The message itself
must be in a standard RFC 822 or multi-part MIME message format, or the server may reject the
message. Binary data, such as file attachments, should always be encoded. The CMailMessage
class can be used to compose and export a message in the correct format, which can then be
submitted to the server.

It is recommended that most applications use the SendMessage method to submit the message
for delivery.

An alternative approach to creating a message without using the CMailMessage class is the
SubmitMessage method. It accepts two structure parameters which define the message contents
and the connection information for the mail server. This enables the application to compose the

message and submit it for delivery in a single method call.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AddRecipient, AppendMessage, CloseMessage, CreateMessage, SendMessage, SubmitMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Simple Message Transfer Protocol Data Structures

SECURITYCREDENTIALS
SECURITYINFO
SMTPMESSAGE
SMTPMESSAGEEX
SMTPSERVER
SMTPTRANSFERSTATUS
SYSTEMTIME

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SECURITYCREDENTIALS Structure

The SECURITYCREDENTIALS structure specifies the information needed by the library to specify
additional security credentials, such as a client certificate or private key, when establishing a secure
connection.

typedef struct _SECURITYCREDENTIALS
{
 DWORD dwSize;
 DWORD dwProtocol;
 DWORD dwOptions;
 DWORD dwReserved;
 LPCTSTR lpszHostName;
 LPCTSTR lpszUserName;
 LPCTSTR lpszPassword;
 LPCTSTR lpszCertStore;
 LPCTSTR lpszCertName;
 LPCTSTR lpszKeyFile;
} SECURITYCREDENTIALS, *LPSECURITYCREDENTIALS;

Members
dwSize

Size of this structure. If the structure is being allocated dynamically, this member must be set to
the size of the structure and all other unused structure members must be initialized to a value of
zero or NULL.

dwProtocol

A bitmask of supported security protocols. The value of this structure member is constructed by
using a bitwise operator with any of the following values:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The
correct protocol is automatically selected, based on

what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.
This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is
supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

dwOptions

A value which specifies one or options. This member is constructed by using a bitwise operator
with any of the following values:

Constant Description

CREDENTIAL_STORE_CURRENT_USER The library will attempt to open a store for
the current user using the certificate store
name provided in this structure. If no options
are specified, then this is the default
behavior.

CREDENTIAL_STORE_LOCAL_MACHINE The library will attempt to open a local
machine store using the certificate store

name provided in this structure. If this option
is specified, the library will always search for a
local machine store before searching for the
store by that name for the current user.

CREDENTIAL_STORE_FILENAME The certificate store name is a file that
contains the certificate and private key that
will be used.

dwReserved

This structure member is reserved for future use and should always be initialized to zero.

lpszHostName

A pointer to a null terminated string which specifies the hostname that will be used when
validating the server certificate. If this member is NULL, then the server certificate will be
validated against the hostname used to establish the connection.

lpszUserName

A pointer to a null terminated string which identifies the owner of client certificate. Currently this
member is not used by the library and should always be initialized as a NULL pointer.

lpszPassword

A pointer to a null terminated string which specifies the password needed to access the
certificate. Currently this member is only used if the CREDENTIAL_STORE_FILENAME option has
been specified. If there is no password associated with the certificate, then this member should
be initialized as a NULL pointer.

lpszCertStore

A pointer to a null terminated string which specifies the name of the certificate store to open. A
certificate store is a collection of certificates and their private keys, typically organized by how
they are used. If this value is NULL or points to an empty string, the default certificate store "MY"
will be used.

Store
Name

Description

CA
Certification authority certificates. These are certificates that are issued by entities
which are entrusted to issue certificates to other individuals or organizations.
Companies such as VeriSign and Thawte act as certification authorities.

MY

Personal certificates and their associated private keys for the current user. This
store typically holds the client certificates used to establish a user's credentials.
This corresponds to the "Personal" store that is displayed by the certificate
manager utility and is the default store used by the library.

ROOT
Certificates that have been self-signed by a certificate authority. Root certificates
for a number of different certification authorities such as VeriSign and Thawte are
installed as part of the operating system and periodically updated by Microsoft.

lpszCertName

A pointer to a null terminated string which specifies the name of the certificate to use. The
library will first search the certificate store for a certificate with a matching "friendly name"; this is
a name for the certificate that is assigned by the user. Note that the name must match
completely, but the comparison is not case sensitive. If no matching certificate is found, the
library will then attempt to find a certificate that has a matching common name (also called the
certificate subject). This comparison is less stringent, and the first partial match will be returned.

If this second search fails, the library will return an error indicating that the certificate could not
be found. If the SECURITY_PROTOCOL_SSH protocol has been specified, this member should
be NULL.

lpszKeyFile

A pointer to a null terminated string which specifies the name of the file which contains the
private key required to establish the connection. This member is only used for SSH connections
and should always be NULL when establishing a secure connection using SSL or TLS.

Remarks
A client application only needs to create this structure if the server requires that the client provide
a certificate as part of the process of negotiating the secure session. If a certificate is required,
note that it must have a private key associated with it. Attempting to use a certificate that does not
have a private key will result in an error during the connection process indicating that the client
credentials could not be established.

If you are using a local certificate store, with the certificate and private key stored in the registry,
you can explicitly specify whether the certificate store for the current user or the local machine (all
users) should be used. This is done by prefixing the certificate store name with "HKCU:" for the
current user, or "HKLM:" for the local machine. For example, a certificate store name of
"HKLM:MY" would specify the personal certificate store for the local machine, rather than the
current user. If neither prefix is specified, then it will default to the certificate store for the current
user. You can manage these certificates using the CertMgr.msc Microsoft Management Console
(MMC) snap-in.

It is possible to load the certificate from a file rather than from current user's certificate store. The
dwOptions member should be set to CREDENTIAL_STORE_FILENAME and the lpszCertStore
member should specify the name of the file that contains the certificate and its private key. The file
must be in Private Information Exchange (PFX) format, also known as PKCS #12. These certificate
files typically have an extension of .pfx or .p12. Note that if a password was specified when the
certificate file was created, it must be provided in the lpszPassword member or the library will be
unable to access the certificate.

Note that the lpszUserName and lpszPassword members are values which are used to access the
certificate store or private key file. They are not the credentials which are used when establishing
the connection with the remote host or authenticating the client session.

The TLS 1.1 and TLS 1.2 protocols are only supported on Windows 7, Windows Server 2008 R2
and later versions of the platform. If these options are specified and the application is running on
Windows XP or Windows Vista, the protocol version will be downgraded to TLS 1.0 for backwards
compatibility with those platforms.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SECURITYINFO Structure

This structure contains information about a secure connection that has been established.

typedef struct _SECURITYINFO
{
 DWORD dwSize;
 DWORD dwProtocol;
 DWORD dwCipher;
 DWORD dwCipherStrength;
 DWORD dwHash;
 DWORD dwHashStrength;
 DWORD dwKeyExchange;
 DWORD dwCertStatus;
 SYSTEMTIME stCertIssued;
 SYSTEMTIME stCertExpires;
 LPCTSTR lpszCertIssuer;
 LPCTSTR lpszCertSubject;
 LPCTSTR lpszFingerprint;
} SECURITYINFO, *LPSECURITYINFO;

Members
dwSize

Specifies the size of the data structure. This member must always be initialized to
sizeof(SECURITYINFO) prior to passing the address of this structure to the function. Note that
if this member is not initialized, an error will be returned indicating that an invalid parameter has
been passed to the function.

dwProtocol

A numeric value which specifies the protocol that was selected to establish the secure
connection. One of the following values will be returned:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The

correct protocol is automatically selected, based on
what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.
This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is
supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

dwCipher

A numeric value which specifies the cipher that was selected when establishing the secure
connection. One of the following values will be returned:

Constant Description

SECURITY_CIPHER_RC2 The RC2 block cipher was selected. This is a variable
key length cipher which supports keys between 40 and
128 bits, in 8-bit increments.

SECURITY_CIPHER_RC4 The RC4 stream cipher was selected. This is a variable
key length cipher which supports keys between 40 and
128 bits, in 8-bit increments.

SECURITY_CIPHER_RC5 The RC5 block cipher was selected. This is a variable
key length cipher which supports keys up to 2040 bits,
in 8-bit increments.

SECURITY_CIPHER_DES The DES (Data Encryption Standard) block cipher was
selected. This is a fixed key length cipher, using 56-bit
keys.

SECURITY_CIPHER_DES3 The Triple DES block cipher was selected. This cipher
encrypts the data three times using different keys,
effectively providing a 168-bit length key.

SECURITY_CIPHER_DESX A variant of the DES block cipher which XORs an extra
64-bits of the key before and after the plaintext has
been encrypted, increasing the key size to 184 bits.

SECURITY_CIPHER_AES The Advanced Encryption Standard cipher (also known
as the Rijndael cipher) is a fixed block size cipher which
use a key size of 128, 192 or 256 bits. This cipher is
supported on Windows XP SP3 and later versions of
the operating system.

SECURITY_CIPHER_SKIPJACK The Skipjack block cipher was selected. This is a fixed
key length cipher, using 80-bit keys.

SECURITY_CIPHER_BLOWFISH The Blowfish block cipher was selected. This is a
variable key length cipher up to 448 bits, using a 64-bit
block size.

dwCipherStrength

A numeric value which specifies the strength (the length of the cipher key in bits) of the cipher
that was selected. Typically this value will be 128 or 256. 40-bit and 56-bit key lengths are
considered weak encryption, and subject to brute force attacks. 128-bit and 256-bit key lengths
are considered to be secure, and are the recommended key length for secure communications.

dwHash

A numeric value which specifies the hash algorithm which was selected. One of the following
values will be returned:

Constant Description

SECURITY_HASH_MD5 The MD5 algorithm was selected. Its use has been
deprecated and is no longer considered to be
cryptographically secure.

SECURITY_HASH_SHA1 The SHA-1 algorithm was selected. Its use has been
deprecated and is no longer considered to be
cryptographically secure.

SECURITY_HASH_SHA256 The SHA-256 algorithm was selected.

SECURITY_HASH_SHA384 The SHA-384 algorithm was selected.

SECURITY_HASH_SHA512 The SHA-512 algorithm was selected.

dwHashStrength

A numeric value which specifies the strength (the length in bits) of the message digest that was

selected.

dwKeyExchange

A numeric value which specifies the key exchange algorithm which was selected. One of the
following values will be returned:

Constant Description

SECURITY_KEYEX_RSA The RSA public key algorithm was selected.

SECURITY_KEYEX_KEA The Key Exchange Algorithm (KEA) was selected. This is an
improved version of the Diffie-Hellman public key algorithm.

SECURITY_KEYEX_DH The Diffie-Hellman key exchange algorithm was selected.

SECURITY_KEYEX_ECDH The Elliptic Curve Diffie-Hellman key exchange algorithm was
selected. This is a variant of the Diffie-Hellman algorithm
which uses elliptic curve cryptography. This key exchange
algorithm is only supported on Windows XP SP3 and later
versions of the operating system.

dwCertStatus

A numeric value which specifies the status of the certificate returned by the secure server. This
member only has meaning for connections using the SSL or TLS protocols. One of the following
values will be returned:

Constant Description

SECURITY_CERTIFICATE_VALID The certificate is valid.

SECURITY_CERTIFICATE_NOMATCH The certificate is valid, but the domain name
does not match the common name in the
certificate.

SECURITY_CERTIFICATE_EXPIRED The certificate is valid, but has expired.

SECURITY_CERTIFICATE_REVOKED The certificate has been revoked and is no
longer valid.

SECURITY_CERTIFICATE_UNTRUSTED The certificate or certificate authority is not
trusted on the local system.

SECURITY_CERTIFICATE_INVALID The certificate is invalid. This typically indicates
that the internal structure of the certificate has
been damaged.

stCertIssued

A structure which contains the date and time that the certificate was issued by the certificate
authority. If the issue date cannot be determined for the certificate, the SYSTEMTIME structure
members will have zero values. This member only has meaning for connections using the SSL or
TLS protocols.

stCertExpires

A structure which contains the date and time that the certificate expires. If the expiration date
cannot be determined for the certificate, the SYSTEMTIME structure members will have zero
values. This member only has meaning for connections using the SSL or TLS protocols.

lpszCertIssuer

A pointer to a string which contains information about the organization that issued the
certificate. This string consists of one or more comma-separated tokens. Each token consists of
an identifier, followed by an equal sign and a value. If the certificate issuer could not be
determined, this member may be NULL. This member only has meaning for connections using
the SSL or TLS protocols.

lpszCertSubject

A pointer to a string which contains information about the organization that the certificate was
issued to. This string consists of one or more comma-separated tokens. Each token consists of
an identifier, followed by an equal sign and a value. If the certificate subject could not be
determined, this member may be NULL. This member only has meaning for connections using
the SSL or TLS protocols.

lpszFingerprint

A pointer to a string which contains a sequence of hexadecimal values that uniquely identify the
server. This member is only used when a connection has been established using the Secure
Shell (SSH) protocol.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SMTPMESSAGE Structure

This structure provides information about the contents of a message and is used by the
SubmitMessage method.

typedef struct _SMTPMESSAGE
{
 LPCTSTR lpszFrom;
 LPCTSTR lpszTo;
 LPCTSTR lpszCc;
 LPCTSTR lpszBcc;
 LPCTSTR lpszSubject;
 LPCTSTR lpszText;
 LPCTSTR lpszHTML;
 LPCTSTR lpszAttach;
 UINT nCharSet;
 UINT nEncType;
 DWORD dwReserved;
} SMTPMESSAGE, *LPSMTPMESSAGE;

Members
lpszFrom

A pointer to a string that specifies the email address of the person sending the message. This
structure member must point to a valid address and cannot be NULL.

lpszTo

A pointer to a string that specifies the email addresses of one or more recipients. If multiple
addresses are provided, they must be separated by commas or semi-colons. This structure
member must point to at least one valid address and cannot be NULL.

lpszCc

A pointer to a string that specifies the email addresses of one or more recipients that will receive
copies of the message. If multiple addresses are provided, they must be separated by commas
or semi-colons. This structure member may be NULL or point to an empty string.

lpszBcc

A pointer to a string that specifies the email addresses of one or more recipients that will receive
blind copies of the message. If multiple addresses are provided, they must be separated by
commas or semi-colons. This structure member may be NULL or point to an empty string.
Unlike the recipients specified by the lpszTo and lpszCc members, any addresses specified by
this member will not be included in the header of the email message.

lpszSubject

A pointer to a string that specifies the subject of the message. This structure member may be
NULL, in which case no subject will be included in the message.

lpszText

A pointer to a string which contains the body of the message as plain text. Each line of text
contained in the string should be terminated with a carriage-return and linefeed (CRLF) pair,
which is recognized as the end-of-line. If this structure member is NULL or points to an empty
string, then the lpszHTML member must specify the body of the message.

lpszHTML

A pointer to a string which contains the message using HTML formatting. If the lpszText
member is not NULL, then a multipart message will be created with both plain text and HTML

text as the alternative. This allows mail clients to select which message body they wish to display.
If the lpszText member is NULL or points to an empty string, then the message will only contain
HTML. Although this is supported, it is not recommended because older mail clients may be
unable to display the message correctly.

lpszAttach

A pointer to a string which specifies one or more file attachments for the message. If multiple
files are to be attached to the message, each file name must be separated by a semi-colon. It is
recommended that you provide the complete path to the file. If this structure member is NULL
or points to an empty string, the message will be created without attachments.

nCharSet

A integer value which specifies the character set to use when composing the message. A value
of zero specifies that the default USASCII character set should be used. The following values
may also be used:

Constant Description

MIME_CHARSET_USASCII Each character is encoded in one or more bytes, with
each byte being 8 bits long, with the first bit cleared. This
encoding is most commonly used with plain text using
the US-ASCII character set, where each character is
represented by a single byte in the range of 20h to 7Eh.

MIME_CHARSET_ISO8859_1 An 8-bit character set for most western European
languages such as English, French, Spanish and German.
This character set is also commonly referred to as Latin1.

MIME_CHARSET_ISO8859_2 An 8-bit character set for most central and eastern
European languages such as Czech, Hungarian, Polish
and Romanian. This character set is also commonly
referred to as Latin2.

MIME_CHARSET_ISO8859_5 An 8-bit character set for Cyrillic languages such as
Russian, Bulgarian and Serbian.

MIME_CHARSET_ISO8859_6 An 8-bit character set for Arabic languages. Note that
the application is responsible for displaying text that uses
this character set. In particular, any display engine needs
to be able to handle the reverse writing direction and
analyze the context of the message to correctly combine
the glyphs.

MIME_CHARSET_ISO8859_7 An 8-bit character set for the Greek language.

MIME_CHARSET_ISO8859_8 An 8-bit character set for the Hebrew language. Note
that similar to Arabic, Hebrew uses a reverse writing
direction. An application which displays this character
should be capable of processing bi-directional text where
a single message may include both right-to-left and left-
to-right languages, such as Hebrew and English.

MIME_CHARSET_ISO8859_9 An 8-bit character set for the Turkish language. This
character set is also commonly referred to as Latin5.

nEncType

A numeric identifier which specifies the encoding type to use when composing the message. A
value of zero specifies that default 7bit encoding should be used. The following values may also
be used:

Constant Description

MIME_ENCODING_7BIT Each character is encoded in one or more bytes, with
each byte being 8 bits long, with the most significant bit
cleared. This encoding is most commonly used with
plain text using the US-ASCII character set, where each
character is represented by a single byte in the range of
20h to 7Eh.

MIME_ENCODING_8BIT Each character is encoded in one or more bytes, with
each byte being 8 bits long and all bits are used. 8-bit
encoding is typically used with multibyte character sets
and is the default encoding used with Unicode text.

MIME_ENCODING_QUOTED Quoted-printable encoding is designed for textual
messages where most of the characters are represented
by the ASCII character set and is generally human-
readable. Non-printable characters or 8-bit characters
with the high bit set are encoded as hexadecimal values
and represented as 7-bit text. Quoted-printable
encoding is typically used for messages which use
character sets such as ISO-8859-1, as well as those
which use HTML.

dwReserved

An unsigned integer value reserved for future use. This structure member should always have a
value of zero.

Remarks
This structure is used to define the contents of a message that will be submitted for delivery using
the SmtpSubmitMessage function. It is required that you specify a sender, at least one recipient
and a message body. All other structure members may be NULL or have a value of zero to
indicate that either the value is not required, or that a default should be used. It is recommended
that you initialize all of the structure members to a value of zero using the ZeroMemory function
prior to populating the structure.

email addresses may be specified as simple addresses, or as commented addresses that include
the sender's name or other information. For example, any one of these address formats are
acceptable:

user@domain.tld
User Name <user@domain.tld>
user@domain.tld (User Name)

To specify multiple addresses, you should separate each address by a comma or semi-colon. Note
that the lpszFrom member cannot specify multiple addresses, however it is permitted with the
lpszTo, lpszCc and lpszBcc structure members. Each message must have at least one valid
recipient, or the message cannot be submitted for delivery.

To send a message that contains HTML, it is recommended that you provide both a plain text
version of the message body and an HTML formatted version. While it is permitted to send a

message that only contains HTML, some older mail clients may not be capable of displaying the
message correctly. In some cases, anti-spam software will increase the spam score of messages
that do not contain a plain text message body. This can result in your message being rejected or
quarantined by the mail server.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

See Also
SMTPSERVER

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SMTPMESSAGEEX Structure

This structure provides information about the contents of a message and is used by the
SubmitMessage method.

typedef struct _SMTPMESSAGEEX
{
 DWORD dwSize
 LPCTSTR lpszFrom;
 LPCTSTR lpszTo;
 LPCTSTR lpszCc;
 LPCTSTR lpszBcc;
 LPCTSTR lpszDate;
 LPCTSTR lpszSubject;
 LPCTSTR lpszHeaders;
 LPCTSTR lpszText;
 LPCTSTR lpszHTML;
 LPCTSTR lpszAttach;
 UINT nCharSet;
 UINT nEncType;
 DWORD dwReserved;
} SMTPMESSAGEEX, *LPSMTPMESSAGEEX;

Members
dwSize

An integer value that specifies the size of the SMTPMESSAGEEX data structure. This must
always be explicitly defined, and if the value is incorrect, an error will be returned. This structure
member is used to ensure that the correct version of the structure is being passed to the
method.

lpszFrom

A pointer to a string that specifies the email address of the person sending the message. This
structure member must point to a valid address and cannot be NULL.

lpszTo

A pointer to a string that specifies the email addresses of one or more recipients. If multiple
addresses are provided, they must be separated by commas or semi-colons. This structure
member must point to at least one valid address and cannot be NULL.

lpszCc

A pointer to a string that specifies the email addresses of one or more recipients that will receive
copies of the message. If multiple addresses are provided, they must be separated by commas
or semi-colons. This structure member may be NULL or point to an empty string.

lpszBcc

A pointer to a string that specifies the email addresses of one or more recipients that will receive
blind copies of the message. If multiple addresses are provided, they must be separated by
commas or semi-colons. This structure member may be NULL or point to an empty string.
Unlike the recipients specified by the lpszTo and lpszCc members, any addresses specified by
this member will not be included in the header of the email message.

lpszDate

A pointer to a string that specifies the date and time for the message. This structure member
may be NULL or point to an empty string. If the date is not specified, then the current date and
time will be used by default. If a date is specified, it should be in the standard format as defined

by RFC822.

lpszSubject

A pointer to a string that specifies the subject of the message. This structure member may be
NULL, in which case no subject will be included in the message.

lpszHeaders

A pointer to a string that specifies additional headers that should be included in the message.
Header names should be separated from values by a colon, and multiple headers may be
defined by separating them with a newline character. This structure member may be NULL, in
which case no additional headers will be included in the message.

lpszText

A pointer to a string which contains the body of the message as plain text. Each line of text
contained in the string should be terminated with a carriage-return and linefeed (CRLF) pair,
which is recognized as the end-of-line. If this structure member is NULL or points to an empty
string, then the lpszHTML member must specify the body of the message.

lpszHTML

A pointer to a string which contains the message using HTML formatting. If the lpszText
member is not NULL, then a multipart message will be created with both plain text and HTML
text as the alternative. This allows mail clients to select which message body they wish to display.
If the lpszText member is NULL or points to an empty string, then the message will only contain
HTML. Although this is supported, it is not recommended because older mail clients may be
unable to display the message correctly.

lpszAttach

A pointer to a string which specifies one or more file attachments for the message. If multiple
files are to be attached to the message, each file name must be separated by a semi-colon. It is
recommended that you provide the complete path to the file. If this structure member is NULL
or points to an empty string, the message will be created without attachments.

nCharSet

A integer value which specifies the character set to use when composing the message. A value
of zero specifies that the default USASCII character set should be used. The following values
may also be used:

Constant Description

MIME_CHARSET_USASCII Each character is encoded in one or more bytes, with
each byte being 8 bits long, with the first bit cleared. This
encoding is most commonly used with plain text using
the US-ASCII character set, where each character is
represented by a single byte in the range of 20h to 7Eh.

MIME_CHARSET_ISO8859_1 An 8-bit character set for most western European
languages such as English, French, Spanish and German.
This character set is also commonly referred to as Latin1.

MIME_CHARSET_ISO8859_2 An 8-bit character set for most central and eastern
European languages such as Czech, Hungarian, Polish
and Romanian. This character set is also commonly
referred to as Latin2.

MIME_CHARSET_ISO8859_5 An 8-bit character set for Cyrillic languages such as
Russian, Bulgarian and Serbian.

MIME_CHARSET_ISO8859_6 An 8-bit character set for Arabic languages. Note that
the application is responsible for displaying text that uses
this character set. In particular, any display engine needs
to be able to handle the reverse writing direction and
analyze the context of the message to correctly combine
the glyphs.

MIME_CHARSET_ISO8859_7 An 8-bit character set for the Greek language.

MIME_CHARSET_ISO8859_8 An 8-bit character set for the Hebrew language. Note
that similar to Arabic, Hebrew uses a reverse writing
direction. An application which displays this character
should be capable of processing bi-directional text where
a single message may include both right-to-left and left-
to-right languages, such as Hebrew and English.

MIME_CHARSET_ISO8859_9 An 8-bit character set for the Turkish language. This
character set is also commonly referred to as Latin5.

nEncType

A numeric identifier which specifies the encoding type to use when composing the message. A
value of zero specifies that default 7bit encoding should be used. The following values may also
be used:

Constant Description

MIME_ENCODING_7BIT Each character is encoded in one or more bytes, with
each byte being 8 bits long, with the most significant bit
cleared. This encoding is most commonly used with
plain text using the US-ASCII character set, where each
character is represented by a single byte in the range of
20h to 7Eh.

MIME_ENCODING_8BIT Each character is encoded in one or more bytes, with
each byte being 8 bits long and all bits are used. 8-bit
encoding is typically used with multibyte character sets
and is the default encoding used with Unicode text.

MIME_ENCODING_QUOTED Quoted-printable encoding is designed for textual
messages where most of the characters are represented
by the ASCII character set and is generally human-
readable. Non-printable characters or 8-bit characters
with the high bit set are encoded as hexadecimal values
and represented as 7-bit text. Quoted-printable
encoding is typically used for messages which use
character sets such as ISO-8859-1, as well as those
which use HTML.

dwReserved

An unsigned integer value reserved for future use. This structure member should always have a
value of zero.

Remarks
This structure is used to define the contents of a message that will be submitted for delivery using

the SubmitMessage method. It is required that you specify a sender, at least one recipient and a
message body. Other structure members may be NULL or have a value of zero to indicate that
either the value is not required, or that a default should be used. It is recommended that you
initialize all of the structure members to a value of zero using the ZeroMemory function prior to
populating the structure.

Note that you must explicitly define the size of the structure by setting the value of the dwSize
member variable. This ensures that the correct version of the structure is being passed to the
method.

Email addresses may be specified as simple addresses, or as commented addresses that include
the sender's name or other information. For example, any one of these address formats are
acceptable:

user@domain.tld
User Name <user@domain.tld>
user@domain.tld (User Name)

To specify multiple addresses, you should separate each address by a comma or semi-colon. Note
that the lpszFrom member cannot specify multiple addresses, however it is permitted with the
lpszTo, lpszCc and lpszBcc structure members. Each message must have at least one valid
recipient, or the message cannot be submitted for delivery.

If you specify a message date by assigning a value to the lpszDate member, and it does not
include any timezone information, Coordinated Universal Time (UTC) will be used by default. This
is an important consideration if you provide input from a user, because in most cases they will not
include the timezone and will assume the date and time they enter is for their current timezone.

If you wish to include additional headers in the message, you can specify them in a string. Each
header consists of a name and value, separated by a colon (":") character. If you wish to define
multiple headers, then you can separate them with a newline (e.g.: a linefeed character or
combination of a carriage-return and linefeed). Extraneous leading and trailing whitespace are
trimmed from header names and values. Invalid names or values will be ignored and will not
generate an error.

To send a message that contains HTML, it is recommended that you provide both a plain text
version of the message body and an HTML formatted version. While it is permitted to send a
message that only contains HTML, some older mail clients may not be capable of displaying the
message correctly. In some cases, anti-spam software will increase the spam score of messages
that do not contain a plain text message body. This can result in your message being rejected or
quarantined by the mail server.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

See Also
SMTPSERVER

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SMTPSERVER Structure

This structure provides connection information for a mail server and is used by the
SubmitMessage method.

typedef struct _SMTPSERVER
{
 LPCTSTR lpszHostName;
 LPCTSTR lpszUserName;
 LPCTSTR lpszPassword;
 UINT nHostPort;
 UINT nTimeout;
 DWORD dwOptions;
 DWORD dwReserved;
} SMTPSERVER, *LPSMTPSERVER;

Members
lpszHostName

A pointer to a string that specifies the host name or IP address of the mail server. This structure
member cannot be NULL.

lpszUserName

A pointer to a string that specifies the username that will be used to authenticate the client
session. If the mail server does not require authentication, this structure member can be NULL
or point to an empty string.

lpszPassword

A pointer to a string that specifies the password that will be used to authenticate the client
session. If the mail server does not require authentication, this structure member can be NULL
or point to an empty string.

nHostPort

An integer value that specifies the port number used to establish the connection. A value of
zero specifies that the default port number should be used. For standard connections, the
default port number is 25. An alternative port is 587, which is commonly used by authenticated
clients to submit messages for delivery. For implicit SSL connections, the default port number is
465.

nTimeout

An integer value that specifies the number of seconds that the client will wait for a response
from the server before failing the operation. A value of zero specifies the default timeout period
of 20 seconds.

dwOptions

An unsigned integer that specifies one or more options. The value of this structure member is
constructed by using a bitwise operator with any of the following values:

Constant Description

SMTP_OPTION_NONE No additional options are specified when
establishing a connection with the server. A
standard, non-secure connection will be used.

SMTP_OPTION_EXTENDED Extended SMTP commands should be used if
possible. This option enables features such as

authentication and delivery status notification. If
this option is not specified, the library will not
attempt to use any extended features. This option
is automatically enabled if a username and
password are specified, or if the connection is
established on port 587, because submitting
messages for delivery using this port typically
requires client authentication.

SMTP_OPTION_TUNNEL This option specifies that a tunneled TCP
connection and/or port-forwarding is being used
to establish the connection to the server. This
changes the behavior of the client with regards to
internal checks of the destination IP address and
remote port number, default capability selection
and how the connection is established.

SMTP_OPTION_TRUSTEDSITE This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option
only affects connections using either the SSL or TLS
protocols.

SMTP_OPTION_SECURE This option specifies that a secure connection
should be established with the server and requires
that the server support either the SSL or TLS
protocol. The client will initiate the secure session
using the STARTTLS command.

SMTP_OPTION_SECURE_IMPLICIT This option specifies the client should attempt to
establish a secure connection with the server. The
server must support secure connections using
either the SSL or TLS protocol, and the secure
session must be negotiated immediately after the
connection has been established.

dwReserved

An unsigned integer value reserved for future use. This structure member should always have a
value of zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

See Also
SMTPMESSAGE

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SMTPTRANSFERSTATUS Structure

This structure is used by the GetTransferStatus method to return information about a message
being submitted for delivery.

typedef struct _SMTPTRANSFERSTATUS
{
 DWORD dwBytesTotal;
 DWORD dwBytesCopied;
 DWORD dwBytesPerSecond;
 DWORD dwTimeElapsed;
 DWORD dwTimeEstimated;
} SMTPTRANSFERSTATUS, *LPSMTPTRANSFERSTATUS;

Members
dwBytesTotal

The total number of bytes that will be transferred. If the size of the message cannot be
determined, this value will be zero.

dwBytesCopied

The total number of bytes that have been copied.

dwBytesPerSecond

The average number of bytes that have been copied per second.

dwTimeElapsed

The number of seconds that have elapsed since the file transfer started.

dwTimeEstimated

The estimated number of seconds until the transfer is completed. This is based on the average
number of bytes transferred per second.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SYSTEMTIME Structure

The SYSTEMTIME structure represents a date and time using individual members for the month,
day, year, weekday, hour, minute, second, and millisecond.

typedef struct _SYSTEMTIME
{
 WORD wYear;
 WORD wMonth;
 WORD wDayOfWeek;
 WORD wDay;
 WORD wHour;
 WORD wMinute;
 WORD wSecond;
 WORD wMilliseconds;
} SYSTEMTIME, *LPSYSTEMTIME;

Members
wYear

Specifies the current year. The year value must be greater than 1601.

wMonth

Specifies the current month. January is 1, February is 2 and so on.

wDayOfWeek

Specifies the current day of the week. Sunday is 0, Monday is 1 and so on.

wDay

Specifies the current day of the month

wHour

Specifies the current hour.

wMinute

Specifies the current minute

wSecond

Specifies the current second.

wMilliseconds

Specifies the current millisecond.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include windows.h.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench Class Library

A general purpose TCP/IP networking library for developing client and server applications.

Reference

Class Methods
Data Structures
Error Codes

Library Information

Class Name CSocketWrench

File Name CSWSKV11.DLL

Version 11.0.2180.1635

LibID EC6DE93D-FBB8-4928-B2D5-C09758C644EE

Import Library CSWSKV11.LIB

Dependencies None

Standards RFC 768, RFC 791, RFC 793

Overview
At the core of all of the SocketTools networking libraries is the Windows Sockets API. This provides
a low level interface for sending and receiving data over the Internet or a local intranet using the
Transmission Control Protocol (TCP) and/or User Datagram Protocol (UDP). The SocketWrench
class library provides a simpler interface to the Windows Sockets API, without sacrificing features
or functionality. Using SocketWrench, you can easily create client and server applications while
avoiding many of the mundane tasks and common problems that developers face when building
Internet applications.

This class library supports secure connections using the TLS 1.2 protocol and can also be used to
create secure, customized server applications. Both implicit and explicit SSL connections are
supported, enabling the class to work with a wide variety of client and server applications without
requiring that you use third-party libraries or Microsoft's CryptoAPI.

Requirements
The SocketTools Library Edition libraries are compatible with any programming language which
supports calling functions exported from a standard dynamic link library (DLL). If you are using
Visual C++ 6.0 it is required that you have Service Pack 6 (SP6) installed. You should install all
updates for your development tools and have the current Windows SDK installed. The minimum
recommended version of Visual Studio is Visual Studio 2010.

This library is supported on Windows 7, Windows Server 2008 R2 and later versions of the desktop
and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1) installed as
a minimum requirement. It is recommended that you install the current service pack and all critical
updates available for your version of the operating system.

This class provides an implementation of a multithreaded server which should only be used with
languages that support the creation of multithreaded applications. It is important that you do not
link against static libraries which were not built with support for threading.

This product includes both 32-bit and 64-bit libraries. Native 64-bit CPU support requires the 64-
bit version of Windows 7 or later versions of the Windows operating system.

Distribution
When you distribute your application that uses this library, it is recommended that you install the
file in the same folder as your application executable. If you install the library into a shared location
on the system, it is important that you distribute the correct version for the target platform and it
should be registered as a shared DLL. This is a standard Windows dynamic link library, not an
ActiveX component, and does not require COM registration.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SocketWrench Class Methods

Class Description

CSocketWrench Constructor which initializes the current instance of the class

~CSocketWrench Destructor which releases resources allocated by the class

Method Description

Abort Abort the connection and immediately close the socket

Accept Accept a connection request from a remote host

AttachHandle Attach the specified client handle to this instance of the class

AttachThread Attach the specified socket to another thread

Cancel Cancel a blocking operation

CompareAddress Compare two IP addresses to determine if they are identical

Connect Connect to the specified server

ConnectUrl Connect to the specified server using a URL

CreateSecurityCredentials Create a new security credentials structure

DeleteSecurityCredentials Delete a previously created security credentials structure

DetachHandle Detach the handle for the current instance of this class

DisableEvents Disable asynchronous event notification

DisableSecurity Disable secure communication with the remote host

DisableTrace Disable logging of network function calls to the trace log

Disconnect Disconnect from the current server

EnableEvents Enable asynchronous event notification

EnableSecurity Enable secure communication with the remote host

EnableTrace Enable logging of network function calls to a file

EnumNetworkAddresses Return the list of network addresses that are configured for the local host

Flush Flush the send and receive buffers

FormatAddress Convert an IP address in binary format into a printable string

FreezeEvents Suspend or resume event handling by the application

GetAdapterAddress Return the IP or MAC assigned to the specified network adapter

GetAddress Convert an IP address string to a binary format

GetAddressFamily Return the address family for the specified IP address

GetDefaultHostFile Return the fully qualified path name of the host file on the local system

GetErrorString Return a description for the specified error code

GetExternalAddress Return the external IP address assigned to the local system

GetFirstAlias Return the first alias for the specified host name

GetHandle Return the client handle used by this instance of the class

GetHostAddress Return the IP address assigned to the specified hostname

GetHostFile Return the name of the host file

GetHostName Return the hostname assigned to the specified IP address

GetLastError Return the last error code

GetLocalAddress Return the local IP address and port number for a socket

GetLocalName Return the hostname assigned to the local system

GetNextAlias Return the next alias for the specified host name

GetOption Return the current socket options

GetPeerAddress Return the IP address of the peer that the socket is connected to

GetPeerPort Returns the remote port number used by the client to establish the connection

GetPhysicalAddress Return the media access control (MAC) address for the primary network adapter

GetSecurityInformation Return information about the security characteristics of a connection

GetServiceName Return the service name associated with a specified port number

GetServicePort Return the port number associated with a service name

GetStatus Report what sort of socket operation is in progress

GetStreamInfo Return information about the current stream read or write operation

GetTimeout Return the timeout interval for blocking operations, in seconds

GetUrlHostName Return the host name and port number specified in a URL

HostNameToUnicode Converts the canonical form of a host name to its Unicode version

InetEventProc Callback method that processes events generated on the socket

IsAddressNull Determine if the specified IP address is a null address

IsAddressRoutable Determine if the specified IP address is routable over the Internet

IsBlocking Determine if the socket is performing a blocking operation

IsClosed Determine if the remote host has closed its socket

IsConnected Determine if the socket is connected to a remote host

IsInitialized Determine if the class has been successfully initialized

IsListening Determine if the socket is listening for a connection

IsProtocolAvailable Determine if the specified protocol and address family are supported

IsReadable Determine if data can read from the socket without blocking

IsUrgent Determine if there is any out-of-band data available to be read

IsWritable Determine if data can be written to to the socket without blocking

Listen Listen for client connections on the specified socket

MatchHostName Match a host name against of list of addresses including wildcards

NormalizeHostName Return the canonical form of a host name

Peek Read data from the socket without removing it from the socket buffer

file:///C|/Projects/cstools11/pdf/winsock/class/getpeerport.html
file:///C|/Projects/cstools11/pdf/winsock/class/ineteventproc.html

Read Read data from the socket

ReadLine Read a line of data from the socket, storing it in a string buffer

ReadStream Read a stream of data from the socket

RegisterEvent Register an event callback function

Reject Reject a pending client connection

SetHostFile Specify the name of an alternate host table

SetLastError Set the last error code

SetOption Set one or more options for the current socket

SetTimeout Set the interval used when waiting for a blocking operation to complete

ShowError Display a message box with a description of the specified error

Shutdown Disable reception or transmission of data

StoreStream Read a stream of data from the socket and store it in a file

ValidateCertificate Validate the specified security certificate is installed on the local system

ValidateHostName Validate the specified host name and return the resolved IP address

Write Write data to the socket

WriteLine Write a line of data to the socket, terminated with a carriage-return and linefeed

WriteStream Write a stream of data to the socket

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::CSocketWrench Method

CSocketWrench();

The CSocketWrench constructor initializes the class library and validates the license key at
runtime.

Remarks
If the constructor fails to validate the runtime license, subsequent methods in this class will fail. If
the product is installed with an evaluation license, then the application will only function on the
development system and cannot be redistributed.

The constructor calls the InetInitialize function to initialize the library, which dynamically loads
other system libraries and allocates thread local storage. If you are using this class within another
DLL, it is important that you do not create or destroy an instance of the class from within the
DllMain function because it can result in deadlocks or access violation errors. You should not
declare static or global instances of this class within another DLL if it is linked with the C runtime
library (CRT) because it will automatically call the constructors and destructors for static and global
C++ objects and has the same restrictions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
~CSocketWrench, IsInitialized

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::~CSocketWrench

~CSocketWrench();

The CSocketWrench destructor releases resources allocated by the current instance of the
CSocketWrench object. It also uninitializes the library if there are no other concurrent uses of the
class.

Remarks
When a CSocketWrench object goes out of scope, the destructor is automatically called to allow
the library to free any resources allocated on behalf of the process. Any pending blocking or
asynchronous calls in this process are canceled without posting any notification messages, and all
handles that were created for the connection are destroyed.

The destructor is not called explicitly by the application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
CSocketWrench

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::Abort Method

BOOL Abort();

Immediately close the socket without waiting for any remaining data to be written out.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The Abort method should only be used when the connection must be closed immediately before
the application terminates. This method should only be used to abort client connections and
should not be used with passive (listening) sockets. Server applications that need to abort an
incoming client connection should use the Reject method.

In most cases, the application should call the Disconnect method to gracefully close the
connection to the remote host. Aborting the connection will discard any buffered data and may
cause errors or result in unpredictable behavior.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
Cancel, Disconnect, Reject

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::Accept Method

BOOL Accept(
 SOCKET hServer,
 UINT nTimeout,
 DWORD dwOptions
);

BOOL Accept(
 CSocketWrench& swServer,
 UINT nTimeout,
 DWORD dwOptions
);

The Accept method is used to accept a pending client connection.

This method has been deprecated and is included for backwards compatibility. Use the
CInternetServer class to create a server application.

Parameters
hServer

Handle to the listening socket. This argument may also reference a CSocketWrench object
which is listening for connections. In either case, the server socket must have been created by
calling the Listen method.

nTimeout

The number of seconds that the server will wait for a client connection before failing the
operation. This value is used only for blocking connections.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

INET_OPTION_KEEPALIVE This option specifies that packets are to be sent to
the remote system when no data is being
exchanged to keep the connection active. This is
only valid for stream sockets.

INET_OPTION_REUSEADDRESS This option specifies the local address can be
reused. This option is commonly used by server
applications.

INET_OPTION_NODELAY This option disables the Nagle algorithm, which
buffers unacknowledged data and insures that a
full-size packet can be sent to the remote host.

INET_OPTION_INLINE This option controls how urgent (out-of-band)
data is handled when reading data from the
socket. If set, urgent data is placed in the data
stream along with non-urgent data.

INET_OPTION_NOINHERIT This option prevents the socket handle from being
inherited by child processes created by the
application. Using this option can mitigate

situations in which a child process does not close
the handle, leaving it open after the parent
process has stopped the server.

INET_OPTION_TRUSTEDSITE This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option
only affects connections using either the SSL or
TLS protocols.

INET_OPTION_SECURE This option determines if a secure connection is
established with the remote host.

INET_OPTION_SECURE_FALLBACK This option specifies the server should permit the
use of less secure cipher suites for compatibility
with legacy clients. If this option is specified, the
server will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

INET_OPTION_FREETHREAD This option specifies that this instance of the class
may be used by any thread, and is not limited to
the thread which created it. The application is
responsible for ensuring that access to the class
instance is synchronized across multiple threads.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
When a connection is accepted by the server, the original listening socket continues to listen for
more connections. If no event notification window is specified, then Accept will block until a client
attempts to connect to the server or the timeout period expires.

The dwOptions argument can be used to specify the threading model that is used by the library
when a connection is established. By default, the class instance is initially attached to the thread
that created it. From that point on, until the it is released, only the owner may call methods using
that instance of the class. The ownership of the class instance may be transferred from one thread
to another using the AttachThread method.

Specifying the INET_OPTION_FREETHREAD option enables any thread to call any method in that
instance of the class, regardless of which thread created it. It is important to note that this option
disables certain internal safety checks which are performed by the library and may result in
unexpected behavior unless access to the class instance is synchronized. If one thread calls a
function in the library, it must ensure that no other thread will call another function at the same
time using the same instance.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Accept, Connect, Disconnect, Listen

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::AttachHandle Method

VOID AttachHandle(
 SOCKET hSocket
);

VOID AttachHandle(
 SOCKET hSocket,
 DWORD dwProcessId
);

The AttachHandle method attaches the specified socket handle to the current instance of the
class.

Parameters
hSocket

The socket handle that will be attached to the current instance of the class object.

dwProcessId

The process ID for the process that currently owns the socket handle. This value may be zero to
specify the current process.

Return Value
None.

Remarks
This method is used to attach a socket handle created outside of the class using the SocketWrench
API. Once the socket handle is attached to the class, the other class member functions may be
used with that socket. If the socket was created by a third-party library or the Windows Sockets
API, then the handle will be automatically inherited by the library.

If a socket handle already has been created for the class, that handle will be released when the
new handle is attached to the class object. If you want to prevent the previous socket connection
from being terminated, you must call the DetachHandle method. Failure to release the detached
handle may result in a resource leak in your application.

If the dwProcessId parameter specifies another process, the socket will be duplicated into the
current process, attached to the current thread and the original socket handle will be closed in the
other process. This enables an application to effectively take control of a connection created by
another process. The original socket handle must be inheritable by the by the current process and
must be an actual Windows socket handle, not a pseudo-handle. This functionality is only
supported on Windows NT 4.0 and later versions of the operating system with the Microsoft
TCP/IP stack. Note that Layered Service Providers (LSPs) may interfere with the ability to inherit
handles across processes.

If the socket was created by another process, it is initialized by the library in a blocking state, even
if was originally using asynchronous socket events. If the application requires that the socket use
events, it must explicitly call EnableEvents. A program should never try to attach to a secure
connection created by another process because the attached socket will not have the security
context required to encrypt and decrypt the data exchanged with the remote host.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)

Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
AttachThread, DetachHandle, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::AttachThread Method

DWORD AttachThread(
 DWORD dwThreadId
);

The AttachThread method attaches the specified client handle to another thread.

Parameters
dwThreadId

The ID of the thread that will become the new owner of the handle. A value of zero specifies
that the current thread should become the owner of the client handle.

Return Value
If the method succeeds, the return value is the thread ID of the previous owner. If the method fails,
the return value is INET_ERROR. To get extended error information, call GetLastError.

Remarks
When a client handle is created, it is associated with the current thread that created it. Normally, if
another thread attempts to perform an operation using that handle, an error is returned since it
does not own the handle. This is used to ensure that other threads cannot interfere with an
operation being performed by the owner thread. In some cases, it may be desirable for one
thread in a client application to create the client handle, and then pass that handle to another
worker thread. The AttachThread method can be used to change the ownership of the handle to
the new worker thread. By preserving the return value from the method, the original owner of the
handle can be restored before the worker thread terminates.

This method should be called by the new thread immediately after it has been created, and if the
new thread does not release the handle itself, the ownership of the handle should be restored to
the parent thread before it terminates. Under no circumstances should AttachThread be used to
forcibly release a handle allocated by another thread while a blocking operation is in progress. To
cancel an operation, use the Cancel method and then release the handle after the blocking
method exits and control is returned to the current thread.

Note that the dwThreadId parameter is presumed to be a valid thread ID and no checks are
performed to ensure that the thread actually exists. Specifying an invalid thread ID will orphan the
client handle used by the class until the destructor is called.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
AttachHandle, Cancel, Connect, DetachHandle, Disconnect, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::Cancel Method

BOOL Cancel(
 SOCKET hSocket
);

BOOL Cancel();

The Cancel method cancels any outstanding blocking socket operation, causing the blocking
method to fail. The application may then retry the operation or terminate the connection.

Parameters
hSocket

An optional parameter that specifies the handle to the socket. If this parameter is omitted, the
socket handle for the current class instance will be used.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
When the Cancel method is called, the blocking method will not immediately fail. An internal flag
is set which causes the blocking operation to exit with an error. This means that the application
cannot cancel an operation and immediately perform some other operation. Instead it must allow
the calling stack to unwind, returning back to the blocking operation before making any further
function calls.

This method is typically called from within an event handler to signal that the current blocking
operation should stop. It may also be used to cancel a blocking operation that is occurring on
another thread.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
Abort, Disconnect, IsBlocking

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::CompareAddress Method

BOOL CompareAddress(
 LPINTERNET_ADDRESS lpAddress1,
 LPINTERNET_ADDRESS lpAddress2
);

BOOL CompareAddress(
 LPCTSTR lpszAddress1,
 LPCTSTR lpszAddress2
);

Compare two IP addresses to determine if they are identical.

Parameters
lpAddress1

A pointer to an INTERNET_ADDRESS structure that contains the first IP address to be compared.
An alternate version of this method accepts a string that specifies the IP address to be
compared.

lpAddress2

A pointer to an INTERNET_ADDRESS structure that contains the second IP address to be
compared. An alternate version of this method accepts a string that specifies the IP address to
be compared.

Return Value
If the method succeeds and the two addresses are identical, the return value is non-zero. If the
method fails or the two addresses are not identical, the return value is zero. If either parameter is
NULL, or the address family for the two addresses are not the same, the last error code will be
updated. If the addresses are valid and in the same address family, but are not identical, the last
error code will be set to NO_ERROR.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetHostAddress, GetLocalAddress, GetPeerAddress, INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::Connect Method

BOOL Connect(
 LPCTSTR lpszRemoteHost,
 UINT nRemotePort
);

BOOL Connect(
 LPCTSTR lpszRemoteHost,
 UINT nRemotePort,
 UINT nProtocol,
 UINT nTimeout,
 DWORD dwOptions,
 LPCTSTR lpszLocalAddress,
 UINT nLocalPort
);

The Connect method is used to establish a connection with a server.

Parameters
lpszHostName

A pointer to a null-terminated string which specifies the host name or IP address of the system
you want to connect with. This parameter cannot be a URL and must only specify the name of
the remote host. If this parameter is NULL or an empty string, the method will fail with an error
indicating the host name is invalid.

nRemotePort

The port number used to establish the connection. Valid port numbers range in value from 1
through 65535 and a value outside if this range will cause the function to fail. Port numbers in
the range of 49152 and 65535 are referred to as dynamic ports and are generally reserved for
private use by client applications. You cannot specify a port number of zero when establishing
an outbound connection.

nProtocol

The protocol to be used when establishing the connection. This may be one of the following
values:

Constant Description

INET_PROTOCOL_TCP Specifies the Transmission Control Protocol. This protocol
provides a reliable, bi-directional byte stream. This is the
default protocol.

INET_PROTOCOL_UDP Specifies the User Datagram Protocol. This protocol is
message oriented, sending data in discrete packets. Note that
UDP is unreliable in that there is no way for the sender to
know that the receiver has actually received the datagram.

nTimeout

The number of seconds to wait for a response before failing the current operation.

dwOptions

An unsigned integer used to specify one or more socket options. This parameter is constructed
by using the bitwise Or operator with any of the following values:

Constant Description

INET_OPTION_BROADCAST This option specifies that broadcasting should be
enabled for datagrams. This option is invalid for
stream sockets.

INET_OPTION_DONTROUTE This option specifies default routing should not be
used. This option should not be specified unless
absolutely necessary.

INET_OPTION_KEEPALIVE This option specifies that packets are to be sent to
the remote system when no data is being
exchanged to keep the connection active. This is
only valid for stream sockets.

INET_OPTION_NODELAY This option disables the Nagle algorithm. By
default, small amounts of data written to the
socket are buffered, increasing efficiency and
reducing network congestion. However, this
buffering can negatively impact the responsiveness
of certain applications. This option disables this
buffering and immediately sends data packets as
they are written to the socket.

INET_OPTION_NOINHERIT This option prevents the socket handle from being
inherited by child processes created by the
application. Using this option can mitigate
situations in which a child process does not close
the handle, leaving it open after the parent
process has disconnected from the server.

INET_OPTION_TRUSTEDSITE This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option
only affects connections using either the SSL or
TLS protocols.

INET_OPTION_SECURE This option specifies that a secure connection
should be established with the remote host. The
specific version of TLS and other security related
options are provided in the lpCredentials
parameter. If the lpCredentials parameter is NULL,
the connection will default to using TLS 1.2 or later
and the strongest cipher suites available.

INET_OPTION_SECURE_FALLBACK This option specifies the client should permit the
use of less secure cipher suites for compatibility
with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

INET_OPTION_PREFER_IPV6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be resolved
to both an IPv6 and IPv4 address. This option is
ignored if the local system does not have IPv6

enabled, or when the hostname can only be
resolved to an IPv4 address. If the server hostname
can only be resolved to an IPv6 address, the client
will attempt to establish a connection using IPv6
regardless if this option has been specified.

INET_OPTION_FREETHREAD This option specifies that this instance of the class
may be used by any thread, and is not limited to
the thread which created it. The application is
responsible for ensuring that access to the class
instance is synchronized across multiple threads.

lpszLocalAddress

A pointer to a null terminated string that specifies the local IP address that the socket should be
bound to. If this parameter is NULL, then an appropriate address will automatically be used. A
specific address should only be used if it is required by the application.

nLocalPort

The local port number that the socket should be bound to. If this parameter is set to zero, then
an appropriate port number will automatically be used. A specific port number should only be
used if it is required by the application.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The lpszHostName parameter must specify a valid host name or IP address. Host names are
resolved into an IP address by first checking the local hosts file and if the name is not found, a
name server query will be performed to determine the IP address. If the Unicode version of this
function is called and the host name includes non-ASCII characters, the host name will be
automatically converted to an ASCII compatible format. Refer to the NormalizeHostName
method for more information. To establish a connection using a URL rather than a host name, use
the ConnectUrl method.

This method will block the current thread until a connection has been established or the timeout
period has elapsed. To prevent it from blocking the main user interface thread, the application
should create a background worker thread and establish a connection by calling the Connect
method in that thread. If the application requires multiple simultaneous connections, it is
recommended you create a worker thread for each connection.

If you use the INET_OPTION_SECURE option to enable a secure connection, the connection will
always use implicit TLS. This means a secure session will be initiated immediately after the socket
connection has been established with the server. A common example of a service which uses
implicit TLS is the HTTPS protocol. Another type of secure connection is one that uses explicit TLS.
This is when the client establishes a normal (non-secure) connection with the server and then
explicitly switches to using a secure connection, typically by sending a command. If the server you
are connecting to requires explicit TLS, you should not specify the INET_OPTION_SECURE option.
Instead, connect without this option and then call the EnableSecurity method when you are
ready to initiate the TLS handshake.

The dwOptions argument can be used to specify the threading model that is used by the library
when a connection is established. By default, the class instance is initially attached to the thread

that created it. From that point on, until the it is released, only the owner may call methods using
that instance of the class. The ownership of the class instance may be transferred from one thread
to another using the AttachThread method.

Specifying the INET_OPTION_FREETHREAD option enables any thread to call any method in that
instance of the class, regardless of which thread created it. It is important to note that this option
disables certain internal safety checks which are performed by the library and may result in
unexpected behavior unless access to the class instance is synchronized. If one thread calls a
function in the library, it must ensure that no other thread will call another function at the same
time using the same instance.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ConnectUrl, Disconnect, EnableSecurity, Read, ReadLine, RegisterEvent, Write, WriteLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ConnectUrl Method

BOOL ConnectUrl(
 LPCTSTR lpszUrl,
 UINT nTimeout,
 DWORD dwOptions
);

The ConnectUrl method is used to establish a TCP connection with a server using the information
provided in a URL.

Parameters
lpszUrl

A pointer to a null-terminated string which specifies a URL used when establishing the
connection. This parameter cannot be NULL or point to an empty string. If a non-standard URI
scheme is used, the port number must be explicitly specified or the method will fail. See the
remarks below for more information on the format supported by this method.

nTimeout

The number of seconds to wait for the connection to complete before failing the current
operation. This parameter is optional and if omitted or the value is zero, a default timeout
period will be used.

dwOptions

An unsigned integer used to specify one or more socket options. This parameter is optional and
if omitted, no additional options will be specified. This parameter value is constructed by using
the bitwise Or operator with any of the following values:

Constant Description

INET_OPTION_KEEPALIVE This option specifies that packets are to be sent to
the remote system when no data is being
exchanged to keep the connection active. This
option is not necessary for most connections,
particularly when the client will not be connected
to the server for an extended period of time.

INET_OPTION_NODELAY This option disables the Nagle algorithm. By
default, small amounts of data written to the
socket are buffered, increasing efficiency and
reducing network congestion. However, this
buffering can negatively impact the responsiveness
of certain applications. This option disables this
buffering and immediately sends data packets as
they are written to the socket.

INET_OPTION_NOINHERIT This option prevents the socket handle from being
inherited by child processes created by the
application. Using this option can mitigate
situations in which a child process does not close
the handle, leaving it open after the parent
process has disconnected from the server.

INET_OPTION_TRUSTEDSITE This option specifies the server is trusted. The

server certificate will not be validated and the
connection will always be permitted. This option
only affects secure connections using the TLS
protocol.

INET_OPTION_SECURE This option specifies that a secure connection
should be established with the remote host. The
connection will always default to using TLS 1.2 or
later and the strongest cipher suites available on
the client platform. This option may be
automatically enabled if the URL scheme specifies
a service which requires a secure connection. See
the remarks below for more information.

INET_OPTION_SECURE_FALLBACK This option specifies the client should permit the
use of less secure cipher suites for compatibility
with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

INET_OPTION_PREFER_IPV6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be resolved
to both an IPv6 and IPv4 address. This option is
ignored if the local system does not have IPv6
enabled, or when the hostname can only be
resolved to an IPv4 address. If the server hostname
can only be resolved to an IPv6 address, the client
will attempt to establish a connection using IPv6
regardless if this option has been specified.

INET_OPTION_FREETHREAD This option specifies the socket returned by this
function may be used by any thread, and is not
limited to the thread which created it. The
application is responsible for ensuring that access
to the socket is synchronized across multiple
threads.

Return Value
If the method succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call the GetLastError method.

Remarks
The ConnectUrl method provides a simplified interface which can be used to establish a
connection using a URL. This method can only be used to establish connections using TCP and
does not currently support the use of URLs to connect with a service which uses UDP. The general
format of the URL should look like this:

[scheme]:// [[username : password] @] hostname [:port] / [path;paramters
...]

This method recognizes most standard URI schemes which use this format. The host name and
port number specified in the URL will be used to establish a connection and the remaining
information will be discarded. If the URL does not explicitly specify a port number, the default port
number associated with the scheme will be used as the default value. For example, consider the

following:

https://www.example.com

In this example, there is no port number specified; instead, the default port for the https://
scheme would be used, which is port 443. The host name www.example.com would be resolved
into an IP address and the connection established on port 443. This method will also recognize a
simpler format which only includes the host name and port number without a URI scheme, such
as:

www.example.com:443

When used in this way, the port number must always be provided. Without a URI scheme or an
explicit port number, the method cannot determine what port number should be used when
establishing the connection. The same also applies if a custom, non-standard URI scheme is
provided which is not recognized.

If the URI scheme specifies a secure protocol which requires implicit TLS, this method will
automatically enable the INET_OPTION_SECURE option. For example, providing a URL which uses
the https:// scheme will automatically enable a secure connection regardless if the dwOptions
parameter includes that option. If a URI scheme is used in conjunction with a port number
associated with a secure service, security will also be enabled for that connection. For example:

http://www.example.com:443

The standard http:// scheme is used which does not indicate a secure connection. However, since
port 443 is the standard port designated for a secure HTTP connection, a secure connection will
be enabled by default, even if INET_OPTION_SECURE has not been specified by the caller.
Alternatively, if a custom port number is specified in the URL or the scheme is not recognized as
one which requires implicit TLS, security options will not be automatically enabled for the
connection.

The host name portion of the URL can be specified as either a domain name or an IP address.
Because an IPv6 address can contain colon characters, you must enclose the entire address in
bracket [] characters. If this is not done, this method will return an error indicating the port number
is invalid. For example, the URL https://[2001:db8:0:0:1::128]/ uses an IPv6 host address
and this would be considered valid. Without the brackets, this URL would not be accepted.

Important: The URL provided to this method will only be used to establish a connection with a
server. This is a general purpose method which does not enable support for any particular
application protocol and all implementation details are the responsibility of your application. If you
require higher-level support for a specific Internet protocol, the SocketTools API provides
comprehensive collection of higher-level classes which can be used to access those services.

If you use the INET_OPTION_SECURE option to enable a secure connection, the connection will
always use implicit TLS. This means a secure session will be initiated immediately after the socket
connection has been established with the server. A common example of a service which uses
implicit TLS is the HTTPS protocol. Another type of secure connection is one that uses explicit TLS.
This is when the client establishes a normal (non-secure) connection with the server and then
explicitly switches to using a secure connection, typically by sending a command. If the server you
are connecting to requires explicit TLS, you should not specify the INET_OPTION_SECURE option.
Instead, connect without this option and then call the InetEnableSecurity method when you are
ready to initiate the TLS handshake.

To prevent this method from blocking the main user interface thread, the application should
create a background worker thread and establish a connection by calling InetConnectUrl in that
thread. If the application requires multiple simultaneous connections, it is recommended you

create a worker thread for each client session.

The dwOptions argument can be used to specify the threading model that is used by the library
when a connection is established. By default, the handle is initially attached to the thread that
created it. From that point on, until the it is released, only the owner may call methods using that
handle. The ownership of the handle may be transferred from one thread to another using the
InetAttachThread method.

Specifying the INET_OPTION_FREETHREAD option enables any thread to call any method using
the socket handle, regardless of which thread created it. It is important to note that this option
disables certain internal safety checks which are performed by the library and may result in
unexpected behavior unless access to the socket is synchronized. If one thread calls a method in
the library, it must ensure that no other thread will call another method at the same time using the
same socket handle.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Connect, Disconnect, EnableSecurity, GetUrlHostName, Read, RegisterEvent, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::CreateSecurityCredentials Method

BOOL CreateSecurityCredentials(
 DWORD dwProtocol,
 DWORD dwOptions,
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword,
 LPCTSTR lpszCertStore,
 LPCTSTR lpszCertName
);

BOOL CreateSecurityCredentials(
 LPCTSTR lpszCertStore,
 LPCTSTR lpszCertName
);

BOOL CreateSecurityCredentials(
 LPCTSTR lpszCertName
);

The CreateSecurityCredentials method establishes the security credentials for the connection.

Parameters
dwProtocol

A bitmask of supported security protocols. This parameter is constructed by using a bitwise
operator with any of the following values:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The
correct protocol is automatically selected, based on
what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.

This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is
supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

dwOptions

A value which specifies one or options. This member is constructed by using a bitwise operator
with any of the following values:

Constant Description

CREDENTIAL_STORE_CURRENT_USER The library will attempt to open a store for
the current user using the certificate store
name provided in this structure. If no options
are specified, then this is the default
behavior.

CREDENTIAL_STORE_LOCAL_MACHINE The library will attempt to open a local
machine store using the certificate store
name provided in this structure. If this option
is specified, the library will always search for a
local machine store before searching for the

store by that name for the current user.

CREDENTIAL_STORE_FILENAME The certificate store name is a file that
contains the certificate and private key that
will be used.

lpszUserName

A pointer to a string which specifies the certificate owner's username. A value of NULL specifies
that no username is required. Currently this parameter is not used and any value specified will
be ignored.

lpszPassword

A pointer to a string which specifies the certificate owner's password. A value of NULL specifies
that no password is required. This parameter is only used if a PKCS #12 (PFX) certificate file is
specified and that certificate has been secured with a password. This value will be ignored the
current user or local machine certificate store is specified.

lpszCertStore

A pointer to a string which specifies the name of the certificate store to open. A certificate store
is a collection of certificates and their private keys, typically organized by how they are used. If
this value is NULL or points to an empty string, the default certificate store "MY" will be used.

Store Name Description

CA Certification authority certificates. These are certificates that are issued by
entities which are entrusted to issue certificates to other individuals or
organizations. Companies such as VeriSign and Thawte act as
certification authorities.

MY Personal certificates and their associated private keys for the current user.
This store typically holds the client certificates used to establish a user's
credentials. This corresponds to the "Personal" store that is displayed by
the certificate manager utility and is the default store used by the library.

ROOT Certificates that have been self-signed by a certificate authority. Root
certificates for a number of different certification authorities such as
VeriSign and Thawte are installed as part of the operating system and
periodically updated by Microsoft.

lpszCertName

A pointer to a null terminated string which specifies the name of the certificate to use. The
function will first search the certificate store for a certificate with a matching "friendly name"; this
is a name for the certificate that is assigned by the user. Note that the name must match
completely, but the comparison is not case sensitive. If no matching certificate is found, the
function will then attempt to find a certificate that has a matching common name (also called
the certificate subject). This comparison is less stringent, and the first partial match will be
returned. If this second search fails, the function will return an error indicating that the certificate
could not be found.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Example

pSocket->CreateSecurityCredentials(lpszCertName);

bConnected = pSocket->Connect(lpszHostName,
 INET_PORT_HTTP,
 INET_PROTOCOL_TCP,
 INET_TIMEOUT,
 INET_OPTION_SECURE);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Connect, DeleteSecurityCredentials, GetSecurityInformation, ValidateCertificate,
SECURITYCREDENTIALS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::DeleteSecurityCredentials Method

VOID DeleteSecurityCredentials();

The DeleteSecurityCredentials method releases the security credentials for the current
connection.

Parameters
None.

Return Value
None.

Remarks
This method can be used to release the memory allocated to the client or server credentials after
a secure connection has been terminated. The security credentials are released when the class
destructor is called, so it is normally not required that the application explicitly call this method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CreateSecurityCredentials, ValidateCertificate

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/winsock/class/validatecertifcate.html

 CSocketWrench::DetachHandle Method

SOCKET DetachHandle();

The DetachHandle method detaches the socket handle associated with the current instance of
the class.

Parameters
None.

Return Value
This method returns the client handle associated with the current instance of the class object. If
there is no active connection, the value INVALID_SOCKET will be returned.

Remarks
This method is used to detach a socket handle created by the class for use with the SocketWrench
API. Once the socket handle is detached from the class, no other class member functions may be
called. Note that the handle must be explicitly closed at some later point by the process or a
resource leak will occur.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
AttachHandle, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::DisableEvents Method

BOOL DisableEvents();

The DisableEvents method disables the event notification mechanism, preventing subsequent
event notification messages from being posted to the application's message queue.

This method has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The DisableEvents method is used to disable event message posting for the specified socket
handle. Although this will immediately prevent any new events from being generated, it is possible
that messages could be waiting in the message queue. Therefore, an application must be
prepared to handle client event messages after this method has been called.

This method is automatically called if the socket has event notification enabled, and the
Disconnect method is called. The same issues regarding outstanding event messages also applies
in this situation, requiring that the application handle event messages that may reference a socket
handle that is no longer valid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
EnableEvents, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::DisableSecurity Method

INT DisableSecurity();

The DisableSecurity method disables a secure session with the remote host.

Parameters
None.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
INET_ERROR. To get extended error information, call GetLastError.

Remarks
The DisableSecurity method disables a secure session, with subsequent calls to Read and Write
sending and receiving unencrypted data. It is important to note that because this method sends a
shutdown message to terminate the secure session, this may cause connection to be closed by the
remote host.

This method does not close the socket. Use the Disconnect method to close the socket and
release the resources allocated for the current session.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
CreateSecurityCredentials, DeleteSecurityCredentials, EnableSecurity

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::DisableTrace Method

BOOL DisableTrace();

The DisableTrace method disables the logging of socket function calls to the trace log.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, a value of zero is
returned.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
EnableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::Disconnect Method

BOOL Disconnect();

Terminate the connection, closing the socket and releasing the memory allocated for the session.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
Once the connection has been terminated, the class instance socket handle is no longer valid and
should no longer be used. Note that it is possible that the actual handle value may be re-used at a
later point when a new connection is established. An application should always consider the socket
handle to be opaque and never depend on it being a specific value.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
Abort, Accept, Connect, DisableEvents, EnableEvents, Listen

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::EnableEvents Method

BOOL EnableEvents(
 HWND hEventWnd,
 UINT uEventMsg
);

The EnableEvents method enables event notifications using Windows messages.

This method has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Applications should use the RegisterEvent method to register an event handler which is invoked
when an event occurs.

Parameters
hEventWnd

Handle to the window which will receive the socket notification messages. This parameter must
specify a valid window handle. If a NULL handle is specified, event notification will be disabled.

uEventMsg

The message that is received when a network event occurs. This value must be greater than
1024.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The EnableEvents method is used to request that notification messages be posted to the
specified window whenever a network event occurs. This allows an application to monitor the
status of different socket operations.

The wParam argument will contain the client handle, the low word of the lParam argument will
contain the event ID, and the high word will contain any error code. If no error has occurred, the
high word will always have a value of zero. The following events may be generated:

Constant Description

INET_EVENT_CONNECT The connection to the remote host has completed. The high word
of the lParam parameter should be checked, since this notification
message will be posted if an error has occurred.

INET_EVENT_DISCONNECT The remote host has closed the connection to the client. The client
should read any remaining data and disconnect.

INET_EVENT_READ Data is available to be read by the calling process. No additional
messages will be posted until the client has read at least some of
the data. This event is only generated if the client is in
asynchronous mode.

INET_EVENT_WRITE The application can now send data to the remote host. This
notification is sent after a connection has been established, or

after a previous attempt to write data has failed because it would
result in a blocking operation. This event is only generated if the
client is in asynchronous mode.

INET_EVENT_TIMEOUT The network operation has exceeded the specified timeout period.
The application may attempt to retry the operation, or may
disconnect from the remote host and report an error to the user.

INET_EVENT_CANCEL The current operation has been canceled. Under most
circumstances the client should disconnect from the server and re-
connect if needed. After an operation has been canceled, the
server may abort the connection or refuse to accept further
commands from the client.

To disable event notification, call the DisableEvents method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
DisableEvents, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::EnableSecurity Method

BOOL EnableSecurity();

BOOL EnableSecurity(
 LPCTSTR lpszCertName
);

BOOL EnableSecurity(
 LPCTSTR lpszCertStore,
 LPCTSTR lpszCertName
);

The EnableSecurity method enables a secure session with the remote host.

Parameters
lpszCertStore

A pointer to a string which specifies the name of certificate store.

lpszCertName

A pointer to a string which specifies the common name for the certificate that will be used.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The EnableSecurity method enables a secure communications session with the remote host,
automatically negotiating the encryption algorithm and validating the certificate. If the socket was
created using the Connect method to establish a client connection, then EnableSecurity will
initiate the handshake with the remote host to establish a secure session. If the Accept method
was used to accept a connection from a client, then the method will block and wait for the remote
host to initiate the handshake.

This method is useful if the application needs to establish an initial, non-secure connection to the
remote host and then negotiate a secure connection at a later point. If the method succeeds, all
subsequent calls to Read and Write to receive and send data will be encrypted.

If no arguments are specified, then the security credentials established with a previous call to
CreateSecurityCredentials will be used. If a certificate name is specified, then the current security
credentials will be updated to use that certificate.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
CreateSecurityCredentials, DeleteSecurityCredentials, DisableSecurity

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::EnableTrace Method

BOOL EnableTrace(
 LPCTSTR lpszTraceFile,
 DWORD dwTraceFlags
);

The EnableTrace method enables the logging of socket function calls to a file.

Parameters
lpszTraceFile

A pointer to a string which specifies the name of the trace log file. If this parameter is NULL or
an empty string, the default file name cstrace.log is used. The file is stored in the directory
specified by the TEMP environment variable, if it is defined; otherwise, the current working
directory is used.

dwTraceFlags

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

TRACE_INFO All function calls are written to the trace file. This is the default
value.

TRACE_ERROR Only those function calls which fail are recorded in the trace file.

TRACE_WARNING Only those function calls which fail or return values which indicate
a warning are recorded in the trace file.

TRACE_HEXDUMP All functions calls are written to the trace file, plus all the data that
is sent or received is displayed, in both ASCII and hexadecimal
format.

TRACE_PROCESS All function calls in the current process are logged, rather than
only those functions in the current thread. This option is useful for
multithreaded applications that are using worker threads.

Return Value
If the method succeeds, the return value is non-zero. A return value of zero indicates an error.
Failure typically indicates that the tracing library cstrcv11.dll cannot be loaded on the local
system.

Remarks
When trace logging is enabled, the file is opened, appended to and closed for each socket
function call. This makes it possible for an application to append its own logging information,
however care should be taken to ensure that the file is closed before the next network operation is
performed. To limit the size of the log files, enable and disable logging only around those sections
of code that you wish to trace.

Note that the TRACE_HEXDUMP trace level generates very large log files since it includes all of the
data exchanged between your application and the remote host.

Trace method logging is managed on a per-thread basis, not for each client handle. This means
that all SocketTools libraries and components share the same settings in the current thread. If you

are using multiple SocketTools libraries or components in your application, you only need to
enable logging once.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DisableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::EnumNetworkAddresses Method

INT EnumNetworkAddresses(
 INT nAddressFamily,
 LPINTERNET_ADDRESS lpAddressList,
 INT nMaxAddresses
);

INT EnumNetworkAddresses(
 LPINTERNET_ADDRESS lpAddressList,
 INT nMaxAddresses
);

The EnumNetworkAddresses method returns the list of network addresses that are configured
for the local host.

Parameters
nAddressFamily

An integer which identifies the type of IP address that should be returned by this method. It may
be one of the following values:

Constant Description

INET_ADDRESS_ANY Return both IPv4 or IPv6 addresses assigned to the local host,
depending on how the system is configured and which network
interfaces are enabled. This option is only recommended for
applications that require support for IPv6 connections.

INET_ADDRESS_IPV4 Return only the IPv4 addresses assigned to the local host. The
first four bytes of the ipNumber array are significant and
contains the IP address. The remaining bytes are not significant
and an application should not depend on them having any
particular value, including zero.

INET_ADDRESS_IPV6 Return only the IPv6 addresses assigned to the local host. All
bytes in the ipNumber array are significant. This option is only
recommended for those applications that require support for
IPv6 connections.

lpAddressList

A pointer to an array of INTERNET_ADDRESS structures that will contain the IP address of each
local network interface. This parameter may be NULL, in which case the method will only return
the number of available addresses.

nMaxAddresses

Maximum number of addresses to be returned. If the lpAddressList parameter is NULL, this
value must be zero.

Return Value
If the method succeeds, the return value is the number of network addresses that are configured
for the local host. If the method fails, the return value is INET_ERROR. To get extended error
information, call the GetLastError method.

Remarks

If the nAddressFamily parameter is specified as INET_ADDRESS_ANY, the application must be
prepared to accept IPv6 addresses returned by this method. On Windows Vista and later versions
of the operating system, IPv6 support is enabled and the local network adapter will have IPv6
addresses assigned to them by default. For legacy applications that only recognize IPv4 addresses,
the nAddressFamily parameter should always be specified as INET_ADDRESS_IPV4 to ensure that
only IPv4 addresses are returned.

This method will ignore addresses that are bound to a disabled interface, as well as those
addresses bound to a virtual loopback interface. For example, although the loopback address
127.0.0.1 is a valid network address, it will not be included in list of addresses returned by this
method.

The first IPv4 or IPv6 address returned by this method is typically the address assigned to the
primary network adapter on the local system. However, your application should not depend on
addresses being returned in any particular order. If the system has virtualization software installed,
this method may also include the IP addresses assigned to any virtualized network adapters
installed by that software.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetAdapterAddress, GetHostAddress, GetLocalAddress

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::Flush Method

BOOL Flush();

The Flush method flushes the internal send and receive buffers used by the socket.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The Flush method will flush any data waiting to be read or written to the remote host . It is
important to note that this method is not similar to flushing data to a disk file; it does not ensure
that a specific block of data has been written to the socket. For example, you should never call this
function immediately after calling the Write method or prior to calling the Disconnect method.

An application never needs to use the Flush method under normal circumstances. This method is
only to be used when the application needs to immediately return the socket to an inactive state
with no pending data to be read or written. Calling this function may result in data loss and should
only be used if you understand the implications of discarding any data which has been sent by the
remote host.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
IsReadable, IsWritable, Read, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::FormatAddress Method

INT FormatAddress(
 LPINTERNET_ADDRESS lpAddress,
 LPTSTR lpszAddress,
 INT cchAddress
);

INT FormatAddress(
 LPINTERNET_ADDRESS lpAddress,
 CString& strAddress
);

The FormatAddress method converts a numeric IP address to a printable string. The format of
the string depends on whether an IPv4 or IPv6 address is specified.

Parameters
lpAddress

A pointer to an INTERNET_ADDRESS structure which specifies the numeric IP address that
should be converted to a string.

lpszAddress

A pointer to the buffer that will contain the formatted IP address. This buffer should be at least
46 characters in length. This may also reference a CString object which will contain the
formatted address when the method returns.

cchAddress

The maximum number of characters that can be copied into the address buffer.

Return Value
If the method succeeds, the return value is the length of the IP address string. If the method fails,
the return value is INET_ERROR, meaning that the IP address could not be converted into a string.
Typically this indicates that the pointer to the INTERNET_ADDRESS structure is invalid, or the data
does not specify a valid IP address family.

Remarks
The format and length of IPv4 and IPv6 address strings are very different. An IPv4 address string
looks like "192.168.0.20", while an IPv6 address string can look something like
"fd7c:2f6a:4f4f:ba34::a32". If your application checks for the format of these address strings, it
needs to be aware of the differences. You also need to make sure that you're providing enough
space to display or store an address to avoid buffer overruns.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetHostAddress, GetLocalAddress, GetPeerAddress, INTERNET_ADDRESS

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::FreezeEvents Method

INT FreezeEvents(
 BOOL bFreeze
);

The FreezeEvents method is used to suspend and resume event handling by the application.

Parameters
bFreeze

A non-zero value specifies that event handling should be suspended by the client. A zero value
specifies that event handling should be resumed.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
INET_ERROR. To get extended error information, call GetLastError.

Remarks
This method should be used when the application does not want to process events, such as when
a modal dialog is being displayed. When events are suspended, all socket events are queued. If
events are re-enabled at a later point, those queued events will be sent to the application for
processing. Note that only one of each event will be generated. For example, if the program has
suspended event handling, and four read events occur, once event handling is resumed only one
of those read events will be posted to the client. This prevents the application from being flooded
by a potentially large number of queued events.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DisableEvents, EnableEvents, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::GetAdapterAddress Method

INT GetAdapterAddress(
 INT nAdapterIndex,
 INT nAddressType,
 LPTSTR lpszAddress,
 INT nMaxLength
);

INT GetAdapterAddress(
 INT nAdapterIndex,
 INT nAddressType,
 CString& strAddress
);

Return the IP or MAC assigned to the specified network adapter.

Parameters
nAdapterIndex

An integer value that identifies the network adapter.

nAddressType

An integer value which specifies the type of address that should be returned:

Constant Description

INET_ADAPTER_IPV4 The address string will contain the primary IPv4 unicast address
assigned to the network adapter.

INET_ADAPTER_IPV6 The address string will contain the primary IPv6 unicast address
assigned to the network adapter.

INET_ADAPTER_MAC The address string will contain the media access control (MAC)
address assigned to the network adapter.

lpszAddress

A string buffer that will contain the IP or MAC address assigned to the adapter. This parameter
cannot be NULL and it is recommended that it be at least 64 characters in length to provide
enough space for any address type. An alternate form of the method accepts a CString
argument which will contain the hostname.

nMaxLength

The maximum number of characters that can be copied into the string buffer, including the
terminating null character. If the buffer is too small to store the complete address, this method
will fail.

Return Value
If the method succeeds, the return value is the number of characters copied to the string buffer,
not including the terminating null character. A return value of zero indicates that the requested
address type has not been assigned to the adapter. If the method fails, the return value is
INET_ERROR and this typically indicates that either the adapter index is invalid or the string buffer
is not large enough to store the complete address. To get extended error information, call
GetLastError.

Remarks

The GetAdapterAddress method will return the IPv4, IPv6 or MAC address assigned to a specific
network adapter. The primary network adapter has an index value of zero, and it increments for
each adapter that is configured on the local system.

The media access control (MAC) address is a 48 bit or 64 bit value that is assigned to each
network interface and is used for identification and access control. All network devices on the
same subnet must be assigned their own unique MAC address. Unlike IP addresses which may be
assigned dynamically and can be frequently changed, MAC addresses are considered to be more
permanent because they are usually assigned by the device manufacturer and stored in firmware.
Note that in some cases it is possible to change the address assigned to a device, and virtual
network interfaces may have configurable MAC addresses.

This method returns the MAC address string as sequence of hexadecimal values separated by a
colon. An example of a 48 bit MAC address would be "01:23:45:67:89:AB". Note that some virtual
network adapters may not have a MAC address assigned to them, in which case this method
would return zero.

This method will ignore network adapters that have been disabled, as well as those that are bound
to a virtual loopback interface. If the system has dial-up networking or virtualization software
installed, this method may also return IP addresses assigned to a virtualized network adapters
installed by that software.

Example
// Display the IPv4 address assigned to each network adapter
for (INT nIndex = 0;; nIndex++)
{
 CString strAddress;

 if (pSocket->GetAdapterAddress(nIndex, INET_ADAPTER_IPV4, strAddress) ==
INET_ERROR)
 break;

 _tprintf(_T("Adapter %d: %s\n"), nIndex, szAddress);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
EnumNetworkAddresses, GetLocalAddress, GetLocalName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::GetAddress Method

INT GetAddress(
 LPCTSTR lpszAddress,
 INT nAddressFamily,
 LPINTERNET_ADDRESS lpAddress
);

INT GetAddress(
 LPCTSTR lpszAddress,
 LPINTERNET_ADDRESS lpAddress
);

The GetAddress method converts an IP address string to binary format.

Parameters
lpszAddress

A pointer to a null terminated string which specifies an IP address. This method recognizes the
format for both IPv4 and IPv6 format addresses.

nAddressFamily

An integer which identifies the type of IP address specified by the lpszAddress parameter. It may
be one of the following values:

Constant Description

INET_ADDRESS_UNKNOWN Return the IP address for the specified host in either IPv4
or IPv6 format, depending on the value of the
lpszAddress parameter.

INET_ADDRESS_IPV4 Specifies that the address should be in IPv4 format. The
first four bytes of the ipNumber array are significant and
contains the IP address. The remaining bytes are not
significant and an application should not depend on
them having any particular value, including zero. If the
lpszAddress parameter does not specify a valid IPv4
address string, this method will fail.

INET_ADDRESS_IPV6 Specifies that the address should be in IPv6 format. All
bytes in the ipNumber array are significant. If the
lpszAddress parameter does not specify a valid IPv6
address string, this method will fail.

lpAddress

A pointer to an INTERNET_ADDRESS structure that will contain the IP address.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
INET_ERROR. To get extended error information, call GetLastError.

Remarks
If the nAddressFamily parameter is specified as INET_ADDRESS_UNKNOWN, the application must
be prepared to handle IPv6 addresses because it is possible that an IPv6 address string has been
specified. For legacy applications that only recognize IPv4 addresses, the nAddressFamily member

should always be specified as INET_ADDRESS_IPV4 to ensure that only IPv4 addresses are
returned and any attempt to specify an IPv6 address string would result in an error.

To determine if the local system has an IPv6 TCP/IP stack installed and configured on the local
system, use the IsProtocolAvailable method. If an IPv6 stack is not installed, this method will fail if
the lpszAddress parameter specifies an IPv6 address, even if the address itself is valid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FormatAddress, IsAddressNull, IsAddressRoutable, IsProtocolAvailable, INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::GetAddressFamily Method

INT GetAddressFamily(
 LPCTSTR lpszAddress,
);

Return the address family for the specified IP address.

Parameters
lpszAddress

A pointer to a string which specifies an IP address. This method recognizes the format for both
IPv4 and IPv6 format addresses.

Return Value
If the method succeeds, the return value is the address family for the specified IP address and may
be one of the values listed below. If the method fails, the return value is
INET_ADDRESS_UNKNOWN. To get extended error information, call the GetLastError method.

Constant Description

INET_ADDRESS_IPV4 The address passed to the method is a valid IPv4 address.

INET_ADDRESS_IPV6 The address passed to the method is a valid IPv6 address.

Remarks
The GetAddressFamily method returns the address family associated with the specified IP
address string. This can be used to determine if a string specifies a valid IPv4 or IPv6 address that
can be passed to other methods such as Connect. Note that this method will not attempt to
resolve hostnames, it will only accept IP addresses.

To determine if the local system has an IPv6 TCP/IP stack installed and configured on the local
system, use the IsProtocolAvailable method. If an IPv6 stack is not installed, this method will fail if
the lpszAddress parameter specifies an IPv6 address, even if the address itself is valid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
IsAddressNull, IsAddressRoutable, IsProtocolAvailable, INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::GetDefaultHostFile Method

INT GetDefaultHostFile(
 LPTSTR lpszFileName,
 INT nMaxLength
);

INT GetDefaultHostFile(
 CString& lpszFileName
);

The GetDefaultHostFile method returns the fully qualified path name of the host file on the local
system. The host file is used as a database that maps an IP address to one or more hostnames,
and is used by the GetHostAddress and GetHostNames method. The file is a plain text file, with
each line in the file specifying a record, and each field separated by spaces or tabs. The format of
the file must be as follows:

ipaddress hostname [hostalias ...]

For example, one typical entry maps the name "localhost" to the local loopback IP address. This
would be entered as:

127.0.0.1 localhost

The hash character (#) may be used to specify a comment in the file, and all characters after it are
ignored up to the end of the line. Blank lines are ignored, as are any lines which do not follow the
required format.

The location of the default host file depends on the operating system. For Windows 95/98 and
Windows Me the file is stored in C:\Windows\hosts and for Windows NT and later versions the file
is stored in C:\Windows\system32\drivers\etc\hosts. Regardless of platform, there is no filename
extension and this file may or may not exist on a given system.

Parameters
lpszFileName

Pointer to a string buffer that will contain the fully qualified file name to the default host file. It is
recommended that this buffer be at least MAX_PATH characters in size. This parameter may be
NULL, in which case the method will return the length of the string, not including the
terminating null byte.

nMaxLength

The maximum number of characters that may be copied to the string buffer.

Return Value
If the method succeeds, the return value is length of the string. A return value of zero indicates
that the default host file could not be determined for the current platform. To get extended error
information, call GetLastError.

Remarks
This method only returns the default location of the host file and does not determine if the file
actually exists. It is not required that a host file be present on the system.

The default host file is processed before performing a nameserver lookup when resolving a
hostname into an IP address, or an IP address into a hostname.

To specify an alternate local host file, use the SetHostFile method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetHostAddress, GetHostFile, GetHostName, SetHostFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::GetErrorString Method

INT GetErrorString(
 DWORD dwErrorCode,
 LPTSTR lpszDescription,
 INT cbDescription
);

INT GetErrorString(
 DWORD dwErrorCode,
 CString& strDescription
);

The GetErrorString method is used to return a description of a specific error code. Typically this is
used in conjunction with the GetLastError method for use with warning dialogs or as diagnostic
messages.

Parameters
dwErrorCode

The error code for which a description is returned.

lpszDescription

A pointer to the buffer that will contain a description of the specified error code. This buffer
should be at least 128 characters in length. An alternate form of the method accepts a CString
variable which will contain the error description.

cbDescription

The maximum number of characters that may be copied into the description buffer.

Return Value
If the method succeeds, the return value is the length of the description string. If the method fails,
the return value is zero, meaning that no description exists for the specified error code. Typically
this indicates that the error code passed to the method is invalid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetLastError, SetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::GetExternalAddress Method

INT GetExternalAddress(
 INT nAddressFamily,
 LPINTERNET_ADDRESS lpAddress,
 INT nMaxLength
);

INT GetExternalAddress(
 INT nAddressFamily,
 LPTSTR lpszAddress,
 INT nMaxLength
);

INT GetExternalAddress(
 INT nAddressFamily,
 CString& strAddress
);

The GetExternalAddress method returns the external IP address for the local system.

Parameters
nAddressFamily

An integer which identifies the type of IP address that should be returned by this function. It
may be one of the following values:

Constant Description

INET_ADDRESS_IPV4 Specifies that the address should be in IPv4 format. The method
will attempt to determine the external IP address using an IPv4
network connection.

INET_ADDRESS_IPV6 Specifies that the address should be in IPv6 format. The method
will attempt to determine the external IP address using an IPv6
network connection and requires that the local host have an
IPv6 network interface installed and enabled.

lpAddress

A pointer to an INTERNET_ADDRESS structure that will contain the external IP address of the
local host in binary form.

lpszAddress

A pointer to a string buffer that will contain the external IP address of the local host.

nMaxLength

The maximum length of the string that will contain the IP address when the method returns.

Return Value
In the first form of the method, if it succeeds, the return value is the IP address of the local system
in numeric form. If the method fails, the return value is INET_ADDRESS_NONE. In the second form,
the return value is the length of the IP address string and an error is indicated by the return value
INET_ERROR. To get extended error information, call GetLastError.

Remarks
The GetExternalAddress method returns the IP address assigned to the router that connects the

local host to the Internet. This is typically used by an application executing on a system in a local
network that uses a router which performs Network Address Translation (NAT). In that network
configuration, the GetLocalAddress method will only return the IP address for the local system on
the LAN side of the network unless a connection has already been established to a remote host.
The GetExternalAddress function can be used to determine the IP address assigned to the router
on the Internet side of the connection and can be particularly useful for servers running on a
system behind a NAT router.

This method requires that you have an active connection to the Internet and calling this function
on a system that uses dial-up networking may cause the operating system to automatically
connect to the Internet service provider. An application should always check the return value in
case there is an error; never assume that the return value is always a valid address. The function
may be unable to determine the external IP address for the local host for a number of reasons,
particularly if the system is behind a firewall or uses a proxy server that restricts access to external
sites on the Internet. If the function is able to obtain a valid external address for the local host, that
address will be cached by the library for sixty minutes. Because dial-up connections typically have
different IP addresses assigned to them each time the system is connected to the Internet, it is
recommended that this function only be used with broadband connections where a NAT router is
being used.

Calling this function may cause the current thread to block until the external IP address can be
resolved and should never be used in conjunction with asynchronous socket connections. If you
need to call this function in an application which uses asynchronous sockets, it is recommended
that you create a new thread and call this function from within that thread.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetHostAddress, GetLocalAddress, GetPeerAddress

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::GetFirstAlias Method

BOOL GetFirstAlias(
 LPCTSTR lpszHostName,
 LPTSTR lpszHostAlias,
 INT nMaxLength
);

BOOL GetFirstAlias(
 LPCTSTR lpszHostName,
 CString& strHostAlias
);

The GetFirstAlias method returns the first alias for the specified host name.

Parameters
lpszHostName

A pointer to a string which specifies the host name that you wish to return aliases for. This
should be complete domain name.

lpszHostAlias

A string buffer which will contain the first alias for the specified host name. This string should be
at least 64 bytes in length. This argument may also reference a CString object which will
contain the host alias when the method returns.

nMaxLength

Maximum number of characters that can be copied into the lpszHostAlias string buffer,
including the terminating null byte.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Example
CSocketWrench sockClient;
CString strHostAlias;
BOOL bResult;

m_ctlListBox.ResetContent();

bResult = sockClient.GetFirstAlias(m_strHostName, strHostAlias);
if (bResult == FALSE)
{
 sockClient.ShowError();
 return;
}

while (bResult)
{
 m_ctlListBox.AddString(strHostAlias);
 bResult = sockClient.GetNextAlias(strHostAlias);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)

Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetHostAddress, GetHostName, GetNextAlias

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::GetHandle Method

SOCKET GetHandle();

The GetHandle method returns the socket handle associated with the current instance of the
class.

Parameters
None.

Return Value
This method returns the socket handle associated with the current instance of the class object. If
there is no active connection, the value INVALID_SOCKET will be returned.

Remarks
This method is used to obtain the client handle created by the class for use with the SocketTools
API.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
AttachHandle, DetachHandle, IsInitialized

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::GetHostAddress Method

INT GetHostAddress(
 LPCTSTR lpszHostName,
 INT nAddressFamily,
 LPINTERNET_ADDRESS lpAddress
);

INT GetHostAddress(
 LPCTSTR lpszHostName,
 LPINTERNET_ADDRESS lpAddress
);

The InetGetHostAddress method resolves the specified host name into an IP address in binary
format.

Parameters
lpszHostName

A pointer to the name of the host to resolve; this may be a fully-qualified domain name or an IP
address. This method recognizes the format for both IPv4 and IPv6 format addresses.

nAddressFamily

An integer which identifies the type of IP address to return. It may be one of the following
values:

Constant Description

INET_ADDRESS_UNKNOWN Return the IP address for the specified host in either IPv4
or IPv6 format, depending on how the host name can be
resolved. By default, a preference will be given for
returning an IPv4 address. However, if the host only has
an IPv6 address, that value will be returned.

INET_ADDRESS_IPV4 Specifies that the address should be returned in IPv4
format. The first four bytes of the ipNumber array are
significant and contains the IP address. The remaining
bytes are not significant and an application should not
depend on them having any particular value, including
zero.

INET_ADDRESS_IPV6 Specifies that the address should be returned in IPv6
format. All bytes in the ipNumber array are significant.
Note that it is possible for an IPv6 address to actually
represent an IPv4 address. This is indicated by the first 10
bytes of the address being zero.

lpAddress

A pointer to an INTERNET_ADDRESS structure that will contain the IP address of the specified
host.

Return Value
If the method succeeds, the return value is zero. If the function fails, the return value is
INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
This method can also be used to convert an address in dot notation to a binary format. If the
method must perform a DNS lookup to resolve the hostname, the calling thread will block. To
ensure future compatibility with IPv6 networks, it is important that the application does not make
any assumptions about the format of the address. If the function returns successfully, the ipFamily
member of the INTERNET_ADDRESS structure should always be checked to determine the type
of address.

The nAddressFamily parameter is used to specify a preference for the type of address returned,
however it is possible that a host may not have an IPv4 or IPv6 address record, in which case this
function will fail. Although IPv4 is still the most common address used at this time, an application
should not assume that because a given host name does not have an IPv4 address, that the host
name is invalid.

If the nAddressFamily parameter is specified as INET_ADDRESS_UNKNOWN, the application must
be prepared to handle IPv6 addresses because it is possible for a host name to have an IPv6
address assigned to it and no IPv4 address. For legacy applications that only recognize IPv4
addresses, the nAddressFamily member should always be specified as INET_ADDRESS_IPV4 to
ensure that only IPv4 addresses are returned.

To determine if the local system has an IPv6 TCP/IP stack installed and configured on the local
system, use the IsProtocolAvailable method. If an IPv6 stack is not installed, this method will fail if
the lpszHostName parameter specifies an host that only has an IPv6 (AAAA) DNS record.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetHostName, GetLocalAddress, GetLocalName, GetPeerAddress, IsProtocolAvailable,
INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::GetHostFile Method

INT GetHostFile(
 LPTSTR lpszFileName,
 INT nMaxLength
);

INT GetHostFile(
 CString& strFileName
);

The GetHostFile method returns the name of the host file previously set using the SetHostFile
method. The host file is used as a database that maps an IP address to one or more hostnames,
and is used by the GetHostAddress and GetHostNames method.

Parameters
lpszFileName

Pointer to a string buffer that will contain the host file name. It is recommended that this buffer
be at least MAX_PATH characters in size. This parameter may be NULL, in which case the
method will return the length of the string, not including the terminating null character.

nMaxLength

The maximum number of characters that may be copied to the string buffer.

Return Value
If the method succeeds, the return value is length of the string. A return value of zero indicates
that no host file has been specified or the method was unable to determine the file name. To get
extended error information, call GetLastError. If the last error is zero, this indicates that no host
file name has been specified for the current thread. If the last error is non-zero, this indicates the
reason that the method failed.

Remarks
This method only returns the name of the host file that is cached in memory for the current
thread. The contents of the file on the disk may have changed after the file was loaded into
memory. To reload the host file or clear the cache, call the SetHostFile method.

If a host file has been specified, it is processed before the default host file when resolving a
hostname into an IP address, or an IP address into a hostname. If the host name or address is not
found, or no host file has been specified, a nameserver lookup is performed.

The host file returned by this method may be different than the default host file for the local
system. To determine the file name for the default host file, use the GetDefaultHostFile method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetDefaultHostFile, GetHostAddress, GetHostName, SetHostFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::GetHostName Method

INT GetHostName(
 LPINTERNET_ADDRESS lpAddress,
 LPTSTR lpszHostName,
 INT cchHostName
);

INT GetHostName(
 LPINTERNET_ADDRESS lpAddress,
 CString& strHostName
);

The GetHostName method performs a reverse lookup, returning the host name associated with a
given IP address.

Parameters
lpAddress

A pointer to an INTERNET_ADDRESS structure which specifies the IP address that should be
resolved into a host name.

lpszHostName

A pointer to the buffer that will contain the host name. It is recommended that this buffer be at
least 256 characters in length to accommodate the longest possible fully qualified domain
name.

cchHostName

The maximum number of characters that can be copied into the buffer.

Return Value
If the method succeeds, the return value is the length of the hostname. If the method fails, the
return value is INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
If the method must perform a reverse DNS lookup to resolve the IP address into a host name, the
calling thread will block. This method requires that the host have a PTR record, otherwise it will fail.
Because many hosts do not have a PTR record, calling this method frequently may have a
negative impact on the overall performance of the application.

To determine if the local system has an IPv6 TCP/IP stack installed and configured on the local
system, use the IsProtocolAvailable method. If an IPv6 stack is not installed, this method will fail if
the lpAddress parameter specifies an IPv6 address, even if the address itself is valid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetHostAddress, GetLocalAddress, GetLocalName, GetPeerAddress, IsProtocolAvailable,
INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::GetLastError Method

DWORD GetLastError();

DWORD GetLastError(
 CString& strDescription
);

Parameters
strDescription

A string which will contain a description of the last error code value when the method returns. If
no error has been set, or the last error code has been cleared, this string will be empty.

Return Value
The return value is the last error code value for the current thread. Functions set this value by
calling the SetLastError method. The Return Value section of each reference page notes the
conditions under which the method sets the last error code.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. You should call
the GetLastError method immediately when a method's return value indicates that an error has
occurred. That is because some methods call SetLastError(0) when they succeed, clearing the
error code set by the most recently failed method.

Most methods will set the last error code value when they fail; a few methods set it when they
succeed. Function failure is typically indicated by a return value such as FALSE, NULL,
INVALID_SOCKET or INET_ERROR. Those methods which call SetLastError when they succeed are
noted on the method reference page.

The description of the error code is the same string that is returned by the GetErrorString
method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetErrorString, SetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::GetLocalAddress Method

INT GetLocalAddress(
 INT nAddressFamily,
 LPINTERNET_ADDRESS lpAddress,
 UINT * lpnPort
);

INT GetLocalAddress(
 LPTSTR lpszAddress,
 INT nMaxLength
);

INT GetLocalAddress(
 CString& strAddress,
 UINT * lpnPort
);

The GetLocalAddress method returns the local IP address and port number for the current
socket.

Parameters
nAddressFamily

An integer which identifies the type of IP address to return. It may be one of the following
values:

Constant Description

INET_ADDRESS_UNKNOWN Return the IP address for the specified host in either IPv4
or IPv6 format, depending on the type of connection
that was established. If the hSocket parameter is
INVALID_SOCKET, a preference will be given for
returning an IPv4 address. However, if the local host only
has an IPv6 address, that value will be returned.

INET_ADDRESS_IPV4 Specifies that the address should be returned in IPv4
format. The first four bytes of the ipNumber array are
significant and contains the IP address. The remaining
bytes are not significant and an application should not
depend on them having any particular value, including
zero.

INET_ADDRESS_IPV6 Specifies that the address should be returned in IPv6
format. All bytes in the ipNumber array are significant.
Note that it is possible for an IPv6 address to actually
represent an IPv4 address. This is indicated by the first 10
bytes of the address being zero.

lpAddress

A pointer to an INTERNET_ADDRESS structure that will contain the IP address of the local host. If
there is no active connection, this function will attempt to determine the IP address of the local
host assigned by the system. If the address is not required, this parameter may be NULL.

lpszAddress

A pointer to a null terminated string that will contain the IP address of the local host. If this

version of the method is used, the IP address is converted to a string format using the
FormatAddress method. The string should be able to store at least 46 characters to ensure
that both IPv4 and IPv6 formatted addresses can be returned without the possibility of a buffer
overrun. An alternate form of the method accepts a CString argument which will contain the
local address.

lpnPort

A pointer to an unsigned integer that will contain the local port number. If there is an active
connection, this parameter will be set to the local port that the socket is bound to. If there is no
active connection, this parameter is ignored. If the local port number is not required, this
parameter may be NULL.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
INET_ERROR. To get extended error information, call GetLastError.

Remarks
To ensure future compatibility with IPv6 networks, it is important that the application does not
make any assumptions about the format of the address. If the function returns successfully, the
ipFamily member of the INTERNET_ADDRESS structure should always be checked to determine
the type of address.

If the nAddressFamily parameter is specified as INET_ADDRESS_UNKNOWN, the application must
be prepared to handle IPv6 addresses because it is possible for the local host to have an IPv6
address assigned to it and no IPv4 address. For legacy applications that only recognize IPv4
addresses, the nAddressFamily member should always be specified as INET_ADDRESS_IPV4 to
ensure that only IPv4 addresses are returned.

If the system is connected to the Internet through a local network and/or uses a router that
performs Network Address Translation (NAT), the GetLocalAddress method will return the local,
non-routable IP address assigned to the local system. To determine the public IP address has
been assigned to the system, you should use the GetExternalAddress method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetExternalAddress, GetHostAddress, GetHostName, GetLocalName, GetPeerAddress,
INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::GetLocalName Method

INT GetLocalName(
 LPTSTR lpszHostName,
 INT cchHostName
);

INT GetLocalName(
 CString& strHostName
);

The GetLocalName method returns the hostname assigned to the local system.

Parameters
lpszHostName

A pointer to the buffer that will contain the hostname. This parameter cannot be NULL. An
alternate form of the method accepts a CString argument which will contain the local
hostname.

cchHostName

The maximum number of characters that can be copied into the address buffer.

Return Value
If the method succeeds, the return value is the length of the hostname. If the method fails, the
return value is INET_ERROR. To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetHostAddress, GetHostName, GetLocalAddress, GetPeerAddress

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::GetNextAlias Method

BOOL GetNextAlias(
 LPTSTR lpszHostAlias,
 INT nMaxLength
);

BOOL GetNextAlias(
 CString& strHostAlias
);

The GetNextAlias method returns the next alias for the host name specified in the call to
GetFirstAlias.

Parameters
lpszHostAlias

A string buffer which will contain the next alias for the specified host name. This string should be
at least 64 bytes in length. This argument may also reference a CString object which will
contain the host alias when the method returns.

nMaxLength

Maximum number of characters that can be copied into the lpszHostAlias string buffer,
including the terminating null byte.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Example
CSocketWrench sockClient;
CString strHostAlias;
BOOL bResult;

m_ctlListBox.ResetContent();

bResult = sockClient.GetFirstAlias(m_strHostName, strHostAlias);
if (bResult == FALSE)
{
 sockClient.ShowError();
 return;
}

while (bResult)
{
 m_ctlListBox.AddString(strHostAlias);
 bResult = sockClient.GetNextAlias(strHostAlias);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetFirstAlias, GetHostAddress, GetHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::GetOption Method

INT GetOption(
 DWORD dwOption,
 LPBOOL lpbEnabled
);

The GetOption method is used to determine if a specific socket option has been enabled.

Parameters
dwOption

An unsigned integer used to specify one of the socket options. These options cannot be
combined. The following values are recognized:

Constant Description

INET_OPTION_BROADCAST This option specifies that broadcasting should be
enabled for datagrams. This option is invalid for
stream sockets.

INET_OPTION_KEEPALIVE This option specifies that packets are to be sent to the
remote system when no data is being exchanged to
keep the connection active. This is only valid for
stream sockets.

INET_OPTION_REUSEADDRESS This option specifies the local address can be reused.
This option is commonly used by server applications.

INET_OPTION_NODELAY This option disables the Nagle algorithm, which
buffers unacknowledged data and insures that a full-
size packet can be sent to the remote host.

lpbEnabled

A pointer to a boolean flag. If the option is enabled, the flag is set to a non-zero value,
otherwise it is set to a value of zero.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
INET_ERROR. To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
Connect, SetOption

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::GetPeerAddress Method

INT GetPeerAddress(
 LPINTERNET_ADDRESS lpAddress,
 UINT * lpnRemotePort
);

INT GetPeerAddress(
 LPTSTR lpszAddress,
 INT nMaxLength
);

INT GetPeerAddress(
 CString& strAddress
);

The GetPeerAddress method returns the peer IP address and remote port number for the
specified socket.

Parameters
lpAddress

A pointer to an INTERNET_ADDRESS structure that will contain the IP address of the remote
host that is connected to the socket.

lpnRemotePort

A pointer to an unsigned integer that will contain the port number of the remote host that is
connected to the socket.

lpszAddress

A pointer to a string buffer that will contain the formatted IP address, terminated with a null
character. To accommodate both IPv4 and IPv6 addresses, this buffer should be at least 46
characters in length.

nMaxLength

The maximum number of characters that can be copied into the address buffer.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
INET_ERROR. To get extended error information, call GetLastError.

Remarks
If this method is called by a server application in response to a INET_EVENT_ACCEPT event, it will
return the IP address and port number for the client that is attempting to establish the connection.
If the peer address is unavailable, the ipFamily member of the INTERNET_ADDRESS structure will
be zero.

The format and length of IPv4 and IPv6 address strings are very different. An IPv4 address string
looks like "192.168.0.20", while an IPv6 address string can look something like
"fd7c:2f6a:4f4f:ba34::a32". If your application checks for the format of these address strings, it
needs to be aware of the differences. You also need to make sure that you're providing enough
space to display or store an address to avoid buffer overruns.

It is not recommended that you use the port number for anything other than informational and
logging purposes. Server applications should not make any assumptions about the specific port
number or range of port numbers that a client is using when establishing a connection to the

server. The ephemeral port number that a client is bound to can vary based on the client
operating system.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetHostAddress, GetHostName, GetLocalAddress, GetLocalName, GetPeerPort,
INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/winsock/class/getpeerport.html

 CSocketWrench::GetPhysicalAddress Method

BOOL GetPhysicalAddress(
 LPTSTR lpszAddress,
 UINT cchAddress
);

BOOL GetPhysicalAddress(
 CString& strAddress
);

Return the media access control (MAC) address for the primary network adapter.

Parameters
lpszAddress

A string buffer that will contain the address in a printable format when the function returns. This
parameter cannot be NULL. An alternate form of the method accepts a CString argument
which will contain the address.

cchAddress

The maximum number of characters that can be copied into the buffer, including the
terminating null character.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The GetPhysicalAddress method returns the media access control (MAC) address for the primary
network adapter. This is a 48 bit or 64 bit address that is assigned to each network interface and is
used for identification and access control. All network devices on the same subnet must be
assigned their own unique MAC address. Unlike IP addresses which may be assigned dynamically
and can be frequently changed, MAC addresses are considered to be more permanent because
they are usually assigned by the device manufacturer and stored in firmware. Note that in some
cases it is possible to change the address assigned to a device, and virtual network interfaces may
have configurable MAC addresses.

This method returns the MAC address as a printable string, with each byte of the address as a
two-digit hexadecimal value separated by a colon. The string buffer passed to the method should
be at least 20 characters long to accommodate the address and terminating null character. An
example of a 48 bit address would be "01:23:45:67:89:AB". If the local system is multi-homed
(having more than one network adapter) then this method will return the MAC address for the
primary network adapter.

This method is provided for backwards compatibility with previous versions of the library and it is
recommended that new applications use the GetAdapterAddress method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
EnumNetworkAddresses, GetAdapterAddress, GetLocalName, GetHostAddress

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::GetSecurityInformation Method

BOOL GetSecurityInformation(
 LPSECURITYINFO lpSecurityInfo
);

The GetSecurityInformation method returns security protocol, encryption and certificate
information about the current client connection.

Parameters
lpSecurityInfo

A pointer to a SECURITYINFO structure which contains information about the current client
connection. The dwSize member of this structure must be initialized to the size of the structure
before passing the address of the structure to this method.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
This method is used to obtain security related information about the current client connection to
the server. It can be used to determine if a secure connection has been established, what security
protocol was selected, and information about the server certificate. Note that a secure connection
has not been established, the dwProtocol structure member will contain the value
SECURITY_PROTOCOL_NONE.

Example
The following example notifies the user if the connection is secure or not:

SECURITYINFO securityInfo;
securityInfo.dwSize = sizeof(SECURITYINFO);

if (pSocket->GetSecurityInformation(&securityInfo))
{
 if (securityInfo.dwProtocol == SECURITY_PROTOCOL_NONE)
 {
 MessageBox(NULL, _T("The connection is not secure"),
 _T("Connection"), MB_OK);
 }
 else
 {
 if (securityInfo.dwCertStatus == SECURITY_CERTIFICATE_VALID)
 {
 MessageBox(NULL, _T("The connection is secure"),
 _T("Connection"), MB_OK);
 }
 else
 {
 MessageBox(NULL, _T("The server certificate not valid"),
 _T("Connection"), MB_OK);
 }
 }
}

Requirements

Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Connect, CreateSecurityCredentials, EnableSecurity, SECURITYINFO

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::GetServiceName Method

BOOL GetServiceName(
 UINT nServicePort,
 LPTSTR lpszServiceName,
 INT nMaxLength
);

BOOL GetServiceName(
 UINT nServicePort,
 CString& strServiceName
);

The GetServiceName method returns the service name associated with a specified port number.

Parameters
nServicePort

Port number associated with some network service.

lpszServiceName

A pointer to a string buffer that will contain the service name when the method returns. This
may also reference a CString object that will contain the service name.

nMaxLength

An integer value which specifies the maximum number of characters that can be copied into the
string buffer.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetServicePort

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::GetServicePort Method

UINT GetServicePort(
 LPCTSTR lpszServiceName
);

The GetServicePort method returns the port number associated with a service name.

Parameters
lpszServiceName

A pointer to a string which specifies the name of the service to return the port number for.

Return Value
If the method succeeds, the return value is the port number associated with a service name. If the
method fails, the return value is INET_ERROR. To get extended error information, call
GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetServiceName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::GetStatus Method

INT GetStatus();

The GetStatus method returns the current status of the socket.

Parameters
None.

Return Value
If the method succeeds, the return value is the client status code. If the method fails, the return
value is INET_ERROR. To get extended error information, call GetLastError.

Remarks
The return value is one of the following values:

Value Constant Description

0 INET_STATUS_UNUSED No connection has been established.

1 INET_STATUS_IDLE The socket is idle and not in a blocked state

2 INET_STATUS_LISTEN The socket is listening for inbound connections from a
client

3 INET_STATUS_CONNECT The socket is establishing a connection with a server

4 INET_STATUS_ACCEPT The socket is accepting a connection from a client

5 INET_STATUS_READ Data is being read from the socket

6 INET_STATUS_WRITE Data is being written to the socket

7 INET_STATUS_FLUSH The socket is being flushed; all data in the receive buffers
is being discarded

8 INET_STATUS_DISCONNECT The socket is disconnecting from the remote host

In a multithreaded application, any thread in the current process may call this method to obtain
status information for the specified socket.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
IsConnected, IsInitialized, IsListening, IsReadable, IsWritable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::GetStreamInfo Method

BOOL GetStreamInfo(
 LPINETSTREAMINFO lpStreamInfo
);

The GetStreamInfo function fills a structure with information about the current stream I/O
operation.

Parameters
lpSecurityInfo

A pointer to an INETSTREAMINFO structure which contains information about the status of the
current operation.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The GetStreamInfo method returns information about the current streaming socket operation,
including the average number of bytes transferred per second and the estimated amount of time
until the operation completes. If there is no operation currently in progress, this method will return
the status of the last successful streaming read or write performed by the client.

In a multithreaded application, any thread in the current process may call this method to obtain
status information for the specified socket.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
ReadStream, StoreStream, WriteStream, INETSTREAMINFO

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::GetTimeout Method

INT GetTimeout();

The GetTimeout method returns the number of seconds the client will wait for a response from
the remote host. Once the specified number of seconds has elapsed, the method will fail and
return to the caller.

Parameters
None.

Return Value
If the method succeeds, the return value is the timeout period in seconds. If the method fails, the
return value is INET_ERROR. To get extended error information, call GetLastError.

Remarks
The timeout value is only used with blocking client connections. A value of zero indicates that the
default timeout period of 20 seconds should be used.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
Connect, IsReadable, IsWritable, Read, SetTimeout, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 GetUrlHostName Method

INT GetUrlHostName(
 LPCTSTR lpszUrl,
 LPTSTR lpszHostName,
 INT nMaxLength,
 LPUINT lpnHostPort,
 LPUINT lpnProtocol,
 LPDWORD lpdwOptions
);

INT GetUrlHostName(
 LPCTSTR lpszUrl,
 CString& strHostName,
 LPUINT lpnHostPort,
 LPUINT lpnProtocol,
 LPDWORD lpdwOptions
);

The GetUrlHostName method returns the host name and port number specified in a URL.

Parameters
lpszUrl

A pointer to a null-terminated string which specifies a URL. This parameter cannot be NULL or
point to an empty string. If a non-standard URI scheme is used, the port number must be
explicitly specified or the method will fail. See the remarks below for more information on the
format supported by this method.

lpszHostName

Pointer to the string buffer that will contain the canonical form of the host name, including the
terminating null character. It is recommended that this buffer be at least 256 characters in size.
This parameter cannot be a NULL pointer and must be large enough to store the complete host
name. An alternate version of this method accepts a reference to a CString object if MFC or
ATL is used with the project.

nMaxLength

The maximum number of characters that can be copied to the lpszHostName string buffer. This
parameter cannot be zero, and must include the terminating null character.

lpnHostPort

Pointer to an optional unsigned integer value which will contain the port number specified in
the URL. This parameter value will always be initialized by the method with a value of zero. If
this parameter is omitted or NULL, it will be ignored and no port information will be returned.

lpnProtocol

Pointer to an optional unsigned integer value which will contain the protocol associated with the
URI scheme. This parameter value will always be initialized by the method with a value of zero. If
this parameter is omitted or NULL, it will be ignored and no protocol information will be
returned.

lpdwOptions

Pointer to an optional unsigned integer value which will contain any socket options required to
establish a connection based on the URI scheme or specified port. This parameter value will
always be initialized by the method with a value of zero. If this parameter is omitted or NULL, it

will be ignored.

Return Value
If the method succeeds, the return value is the number of characters copied into the
lpszHostName buffer. If the method fails, the return value is INET_ERROR. To get extended error
information, call the GetLastError method.

Remarks
The GetUrlHostName method will extract the host name and port number from a URL and
return the canonical form of the host name. If the lpnHostPort, lpnProtocol and lpdwOptions
parameters have been specified, they will contain the port number, protocol and additional
connection options associated with the URL scheme.

The general format of the URL should look like this:

[scheme]:// [[username : password] @] hostname [:port] / [path;paramters
...]

This method recognizes most standard URI schemes which use this format. The host name and
port number specified in the URL will be used to establish a connection and the remaining
information will be discarded. If the URL does not explicitly specify a port number, the default port
number associated with the scheme will be used as the default value. For example, consider the
following:

https://www.example.com/

In this example, there is no port number specified; instead, the default port for the https://
scheme would be used, which is port 443. This method will also recognize a simpler format which
only includes the host name and port number without a URI scheme, such as:

www.example.com:443

If the lpszUrl parameter only specifies a host name without a URI scheme or port number, this
method will ignore the lpnHostPort, lpnProtocol and lpdwOptions parameters and return the
canonical form of the host name in the lpszHostName string argument.

The host name portion of the URL can be specified as either a domain name or an IP address.
Because an IPv6 address can contain colon characters, you must enclose the entire address in
bracket [] characters. If this is not done, the method will return an error indicating the port number
is invalid. For example, the URL https://[2001:db8:0:0:1::128]/ uses an IPv6 host address
and this would be considered valid. Without the brackets, this URL would not be accepted.

If the URL uses an IP address instead of a host name, this method will return a copy of that IP
address in the lpszHostName string provided by the caller. The method will not attempt to resolve
the IP address into a host name, however you can use the GetHostName method to perform a
reverse DNS lookup if required.

The only URI schemes currently supported by this method use TCP stream connections. In
practical terms, this means the lpnProtocol parameter will always return with the value
INET_PROTOCOL_TCP when the method is successful. If the method fails, this value will be
INET_PROTOCOL_NONE.

Although this method performs checks to ensure that the lpszUrl parameter is in the correct
format and does not contain any illegal characters or malformed encoding, it does not validate the
host name. To check if the host name exists and has a valid IP address, use the
ValidateHostName method.

Requirements

Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ConnectUrl, GetHostAddress, GetHostName, HostNameToUnicode, NormalizeHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::HostNameToUnicode Method

INT HostNameToUnicode(
 LPCTSTR lpszHostName,
 LPTSTR lpszUnicodeName,
 INT nMaxLength
);

INT HostNameToUnicode(
 LPCTSTR lpszHostName,
 CString& strUnicodeName
);

The HostNameToUnicode method converts the canonical form of a host name to its Unicode
version.

Parameters
lpszHostName

Pointer to the host name as a null-terminated string. This parameter cannot be a NULL pointer
or a zero length string.

lpszUnicodeName

Pointer to the string buffer that will contain the original Unicode version of the host name,
including the terminating null character. It is recommended that this buffer be at least 256
characters in size. This parameter cannot be a NULL pointer. An alternate version of this method
accepts a reference to a CString object if MFC or ATL is used with the project.

nMaxLength

The maximum number of characters that can be copied to the lpszUnicodeName string buffer.
This parameter cannot be zero, and must include the terminating null character.

Return Value
If the method succeeds, the return value is the number of characters copied into the string buffer.
If the method fails, the return value is INET_ERROR. To get extended error information, call
GetLastError.

Remarks
The HostNameToUnicode method will convert the encoded ASCII version of a host name to its
Unicode version. Although any valid host name is accepted by this method, it is intended to
convert a Punycode encoded host name to its original Unicode character encoding.

If the application is compiled using the Unicode character set, the value returned in
lpszUnicodeName will be a Unicode string using UTF-16 encoding. If the ANSI character set is
used, the value returned will be a Unicode string using UTF-8 encoding. To display a UTF-8
encoded host name, your application will need to convert it to UTF-16 using the
MultiByteToWideChar function.

Although this method performs checks to ensure that the lpszHostName parameter is in the
correct format and does not contain any illegal characters or malformed encoding, it does not
validate the existence of the domain name. To check if the host name exists and has a valid IP
address, use the GetHostAddress method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)

Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetHostAddress, NormalizeHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::IsAddressNull Method

BOOL IsAddressNull(
 LPCTSTR lpszAddress
);

BOOL IsAddressNull(
 LPINTERNET_ADDRESS lpAddress
);

The IsAddressNull method determines if the IP address is null.

Parameters
lpszAddress

A string that specifies the IP address.

lpAddress

A pointer to an INTERNET_ADDRESS structure that specifies the IP address.

Return Value
If the method succeeds and the IP address is null, or the parameter is a NULL pointer, the return
value is non-zero. If the method fails or the address is not null, the return value is zero. If the
address family is not supported, the last error code will be updated. If the address is valid but not
null, the last error code will be set to NO_ERROR.

Remarks
A null IP address is one where all bits for the address (32 bits for IPv4 or 128 bits for IPv6) are zero.
This is a special address that is typically used when creating a passive socket that should listen for
connections on all available network interfaces.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetAddress, IsAddressRoutable, INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::IsAddressRoutable Method

BOOL IsAddressRoutable(
 LPCTSTR lpszAddress
);

BOOL IsAddressRoutable(
 LPINTERNET_ADDRESS lpAddress
);

The IsAddressRoutable method determines if the IP address is routable over the Internet.

Parameters
lpszAddress

A string that specifies the IP address.

lpAddress

A pointer to an INTERNET_ADDRESS structure that specifies the IP address.

Return Value
If the method succeeds and the IP address is routable over the Internet, the return value is non-
zero. If the method fails or the address is not routable, the return value is zero. If the parameter is
NULL, or the address family is not supported, the last error code will be updated. If the address is
valid but not routable, the last error code will be set to NO_ERROR.

Remarks
A routable IP address is one that can be reached by anyone over the public Internet. These are
also commonly referred to as "public addresses" which are typically assigned to networks and
individual hosts by an Internet service provider. There are also certain addresses that are not
routable over the Internet, and used to address systems over a local network or private intranet.
This function can be used to determine if a given IP address is public (routable) or private.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetAddress, GetExternalAddress, IsAddressNull, INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::IsBlocking Method

BOOL IsBlocking();

The IsBlocking method is used to determine if the socket is performing a blocking operation.

Parameters
None.

Return Value
If the socket is currently performing a blocking operation, the method returns a non-zero value. If
the socket is not performing a blocking operation, or the socket handle is invalid, the method
returns zero.

Remarks
This method is typically used to determine if a socket that is being used by another thread is
currently blocked. A socket may block when waiting to receive data from a remote host or while
data is actively being exchanged. Because there can only be one blocking socket operation per
thread, this method can be used to determine if a method such as Read or Write would fail
because another thread is currently sending or receiving data on that socket.

It is important to note that if this method returns a non-zero value, it does not guarantee that a
subsequent read or write on the socket will succeed. The application should always check the
return value from methods such as Read and Write to ensure they were successful.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
IsConnected, IsReadable, IsWritable, Read, ReadLine, Write, WriteLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::IsClosed Method

BOOL IsClosed();

The IsClosed method is used to determine if the remote host has closed its socket.

Parameters
None.

Return Value
If the remote host has closed its socket, the method returns a non-zero value. If the remote host
has not closed its connection, or the socket handle is invalid, the method returns zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
IsConnected, IsListening, IsReadable, IsWritable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::IsConnected Method

BOOL IsConnected();

The IsConnected method is used to determine if the socket is currently connected to a remote
host.

Parameters
None.

Return Value
If the client is connected to a remote host, the method returns a non-zero value. If the client is not
connected, or the client handle is invalid, the method returns zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetStatus, IsBlocking, IsInitialized, IsReadable, IsWritable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::IsInitialized Method

BOOL IsInitialized();

The IsInitialized method returns whether or not the class object has been successfully initialized.

Parameters
None.

Return Value
This method returns a non-zero value if the class object has been successfully initialized. A return
value of zero indicates that the runtime license key could not be validated or the networking
library could not be loaded by the current process.

Remarks
When an instance of the class is created, the class constructor will attempt to initialize the
component with the runtime license key that was created when SocketTools was installed. If the
constructor is unable to validate the license key or load the networking libraries, this initialization
will fail.

If SocketTools was installed with an evaluation license, the application cannot be redistributed to
another system. The class object will fail to initialize if the application is executed on another
system, or if the evaluation period has expired. To redistribute your application, you must
purchase a development license which will include the runtime key that is needed to redistribute
your software to other systems. Refer to the Developer's Guide for more information.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
CSocketWrench, IsBlocking, IsConnected

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::IsListening Method

BOOL IsListening();

The IsListening method determines if the socket is listening for connection requests.

Parameters
None.

Return Value
If the socket is being used to listen for connection requests, the method returns a non-zero value.
If the socket is not listening or the socket handle is invalid, the method returns zero.

Remarks
The IsListening method determines if the socket is being used in a server application to actively
listen for incoming connection requests from client applications. A listening socket can be created
using the Listen method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
IsReadable, IsWritable, IsConnected, Listen

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::IsProtocolAvailable Method

BOOL IsProtocolAvailable(
 INT nAddressFamily,
 INT nProtocol
);

The IsProtocolAvailable method determines if the operating system supports creating a socket
for the specified address family and protocol.

Parameters
nAddressFamily

An integer which identifies the address family that should be checked. It should be one of the
following values:

Constant Description

INET_ADDRESS_IPV4 Specifies that the function should determine if it can create an
Internet Protocol version 4 (IPv4) socket. This requires that the
system have an IPv4 TCP/IP stack bound to at least one network
adapter on the local system. All Windows systems include
support for IPv4 by default.

INET_ADDRESS_IPV6 Specifies that the function should determine if it can create an
Internet Protocol version 6 (IPv6) socket. This requires that the
system have an IPv6 TCP/IP stack bound to at least one network
adapter on the local system. Windows XP and Windows Server
2003 includes support for IPv6, however it is not installed by
default. Windows Vista and later versions include support for
IPv6 and enable it by default.

nProtocol

An integer which identifies the protocol that should be checked. It should be one of the
following values:

Constant Description

INET_PROTOCOL_TCP Specifies the Transmission Control Protocol. This protocol
provides a reliable, bi-directional byte stream. This requires
that the system be capable of creating a stream socket using
the specified address family.

INET_PROTOCOL_UDP Specifies the User Datagram Protocol. This protocol is
message oriented, sending data in discrete packets. This
requires that the system be capable of creating a datagram
socket using the specified address family.

Return Value
If the the system is capable of creating a socket using the specified address family and protocol,
this method will return a non-zero value. If the combination of address family and protocol is not
supported, this method will return a value of zero.

Remarks

The IsProtocolAvailable method is used to determine if the operating system supports creating a
particular type of socket. Typically it is used by an application to determine if the system has an
IPv6 TCP/IP stack installed and configured. By default, all Windows systems will have an IPv4 stack
installed if the system has a network adapter. However, not all systems may have an IPv6 stack
installed, particularly older Windows XP and Windows Server 2003 systems. Note that if an IPv6
stack is not installed, the library will not recognize IPv6 addresses and cannot resolve host names
that only have an IPv6 (AAAA) record, even if the address or host name is valid.

Example
if (!pSocket->IsProtocolAvailable(INET_ADDRESS_IPV6, INET_PROTOCOL_TCP))
{
 AfxMessageBox(_T("This system does not support IPv6"), MB_ICONEXCLAMATION);
 return;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetAddress, GetHostAddress, GetHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::IsReadable Method

BOOL IsReadable(
 INT nTimeout,
 LPDWORD lpdwAvail
);

The IsReadable method is used to determine if data is available to be read from the remote host.

Parameters
nTimeout

Timeout for remote host response, in seconds. A value of zero specifies that the connection
should be polled without blocking the current thread.

lpdwAvail

A pointer to an unsigned integer which will contain the number of bytes available to read. This
parameter may be NULL if this information is not required.

Return Value
If the current thread can read data from the socket without blocking, the method returns a non-
zero value. If the current thread cannot read any data without blocking, the function returns zero.

Remarks
On some platforms, this value will not exceed the size of the receive buffer (typically 64K bytes).
Because of differences between TCP/IP stack implementations, it is not recommended that your
application exclusively depend on this value to determine the exact number of bytes available.
Instead, it should be used as a general indicator that there is data available to be read.

If the connection is secure, the value returned in lpdwAvail will reflect the number of bytes
available in the encrypted data stream. The actual amount of data available to the application after
it has been decrypted will vary.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
IsWritable, Peek, Read, ReadLine, ReadStream

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::IsUrgent Method

BOOL IsUrgent();

The IsUrgent method determines if there is any out-of-band (OOB) data available to be read.

Parameters
None.

Return Value
If there is out-of-band data, the return value is non-zero. If there is no out-of-band data, or an
error occurs the return value is zero. To determine if an error has occurred, use the GetLastError
method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
SetOption (INET_OPTION_INLINE)

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::IsWritable Method

BOOL IsWritable(
 INT nTimeout
);

The IsWritable method is used to determine if data can be written to the remote host.

Parameters
nTimeout

Timeout for remote host response, in seconds. A value of zero specifies that the connection
should be polled without blocking the current thread.

Return Value
If data can be written to the socket within the specified timeout period, the method returns a non-
zero value. The method will return zero if the socket send buffer is full.

Remarks
The IsWritable method cannot be used to determine the amount of data that can be sent to the
remote host without blocking the current thread. A non-zero return value only indicates that the
send buffer is not full and can accept some data. In most cases, it is recommended that larger
blocks of data be broken into smaller logical blocks rather than attempting to send it all of the
data at once. For very large streams of data, it is recommended that you use the WriteStream
method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
IsReadable, Write, WriteLine, WriteStream

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::Listen Method

SOCKET Listen(
 LPCTSTR lpszLocalAddress,
 UINT nLocalPort,
 UINT nBacklog,
 DWORD dwOptions
);

The Listen method creates a listening socket and specifies the maximum number of connection
requests that will be queued.

This method has been deprecated and is included for backwards compatibility. Use the
CInternetServer class to create a server application.

Parameters
lpszLocalAddress

A pointer to a string which specifies the local IP address that the socket should be bound to. If
this parameter is NULL or points to an empty string, a client may establish a connection using
any valid network interface configured on the local system. If an address is specified, then a
client may only establish a connection with the system using that address.

nLocalPort

The local port number that the socket should be bound to. This value must be greater than
zero. Port numbers less than 1024 are considered reserved ports and may require that the
process execute with administrative privileges and/or require changes to the default firewall
rules to permit inbound connections.

nBacklog

The maximum length of queue of pending connections. On Windows workstations, the
maximum backlog value is 5. On Windows servers, the maximum value is 200.

dwOptions

An unsigned integer used to specify one or more socket options. The following values are
recognized:

Constant Description

INET_OPTION_NONE No option specified. If the address and port number
are in use by another application or a closed socket
which was listening on this port is still in the
TIME_WAIT state, the function will fail.

INET_OPTION_REUSEADDRESS This option enables a server application to listen for
connections using the specified address and port
number even if they were in use recently. This is
typically used to enable an application to close the
listening socket and immediately reopen it without
getting an error that the address is in use.

INET_OPTION_EXCLUSIVE This option specifies the local address and port
number is for the exclusive use by the current
process, preventing another application from forcibly
binding to the same address. If another process has

already bound a socket to the address provided by
the caller, this function will fail.

INET_OPTION_NOINHERIT This option prevents the socket handle from being
inherited by child processes created by the
application. Using this option can mitigate situations
in which a child process does not close the handle,
leaving it open after the parent process has
disconnected from the server.

Return Value
If the method succeeds, the return value is a handle to the socket. If the method fails, the return
value is INVALID_SOCKET. To get extended error information, call GetLastError.

Remarks
To listen for connections on any suitable IPv4 interface, specify the special dotted-quad address
"0.0.0.0". You can accept connections from clients using either IPv4 or IPv6 on the same socket by
specifying the special IPv6 address "::0", however this is only supported on Windows 7 and
Windows Server 2008 R2 or later platforms. If no local address is specified, then the server will only
listen for connections from clients using IPv4. This behavior is by design for backwards
compatibility with systems that do not have an IPv6 TCP/IP stack installed.

If the INET_OPTION_REUSEADDRESS option is not specified, an error may be returned if a
listening socket was recently created for the same local address and port number. By default, once
a listening socket is closed there is a period of time that all applications must wait before the
address can be reused (this is called the TIME_WAIT state). The actual amount of time depends on
the operating system and configuration parameters, but is typically two to four minutes. Specifying
this option enables an application to immediately re-use a local address and port number that was
previously in use. Note that this does not permit more than one server to bind to the same
address.

If the INET_OPTION_EXCLUSIVE option is specified, the local address and port number cannot be
used by another process until the listening socket is closed. This can prevent another application
from forcibly binding to the same listening address as your server. This option can be useful in
determining whether or not another process is already bound to the address you wish to use, but
it may also prevent your server application from restarting immediately, regardless if the
INET_OPTION_REUSEADDRESS option has also been specified.

If an IPv6 address is specified as the local address, the system must have an IPv6 stack installed
and configured, otherwise the method will fail.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Accept, DisableEvents, EnableEvents, Reject

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::MatchHostName Method

BOOL MatchHostName(
 LPCTSTR lpszHostName,
 LPCTSTR lpszHostMask
 BOOL bResolve
);

The MatchHostName method matches a host name against one more strings that may contain
wildcards.

Parameters
lpszHostName

A pointer to a string which specifies the host name or IP address to match.

lpszHostMask

A pointer to a string which specifies one or more values to match against the host name. The
asterisk character can be used to match any number of characters in the host name, and the
question mark can be used to match any single character. Multiple values may be specified by
separating them with a semicolon.

bResolve

A boolean value which specifies if the host name or IP address should be resolved when
matching the host against the mask string. If this parameter is non-zero, two checks against the
host mask string will be performed; once for the host name specified and once for its IP
address. If this parameter is zero, then the match is made only against the host name string
provided.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The MatchHostName method provides a convenient way for an application to determine if a
given host name matches one or more mask strings which may contain wildcard characters. For
example, the host name could be "www.microsoft.com" and the host mask string could be
"*.microsoft.com". In this example, the method would return a non-zero value indicating the host
name matched the mask. However, if the mask string was "*.net" then the method would return
zero, indicating that there was no match. Multiple mask values can be combined by separating
them with a semicolon; for example, the mask "*.com;*.org" would match any host name in either
the .com or .org top-level domains.

If an internationalized domain name (IDN) is specified, it will be converted internally to an ASCII
string using Punycode encoding. The host mask will be matched against this encoded version of
the host name, not its Unicode version.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetAddress, GetHostAddress, GetHostName, GetLocalAddress, GetPeerAddress

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NormalizeHostName Method

INT NormalizeHostName(
 LPCTSTR lpszHostName,
 LPTSTR lpszNormalized,
 INT nMaxLength
);

NormalizeHostName(
 LPCTSTR lpszHostName,
 CString& strNormalized
);

The NormalizeHostName method returns the canonical form of a host name in the specified
buffer.

Parameters
lpszHostName

Pointer to the host name as a null-terminated string. This parameter cannot be a NULL pointer
or a zero length string.

lpszNormalized

Pointer to the string buffer that will contain the canonical form of the host name, including the
terminating null character. It is recommended that this buffer be at least 256 characters in size.
This parameter cannot be a NULL pointer and must be large enough to store the complete host
name. An alternate form of this method will accept a reference to a CString object if MFC or
ATL is used with the project.

nMaxLength

The maximum number of characters that can be copied to the lpszNormalized string buffer.
This parameter cannot be zero, and must include the terminating null character.

Return Value
If the method succeeds, the return value is the number of characters copied into the string buffer.
If the method fails, the return value is INET_ERROR. To get extended error information, call
InetGetLastError.

Remarks
The NormalizeHostName method will remove all leading and trailing whitespace characters from
the host name and fold all upper-case characters to lower-case. If an internationalized domain
name (IDN) containing Unicode characters is passed to this method, it will be converted to an
ASCII compatible format for domain names.

The lpszHostName parameter should only specify a host name or IP address. If you want to
support the use of URLs to establish a connection, use the GetUrlHostName method which has
extended support for extracting the host name and port number specified in a URL.

If the Unicode version of this method is used, the host name will be converted from UTF-16 to
UTF-8 and then processed. If you are unsure if an internationalized domain name will be specified
as the host name, it is recommended you use the Unicode version.

Although this method performs checks to ensure that the lpszHostName parameter is in the
correct format and does not contain any illegal characters or malformed encoding, it does not
validate the existence of the domain name. To check if the host name exists and has a valid IP

address, use the ValidateHostName method.

It is recommended that you use this method if your application needs to store the host name, and
if accepts a host name as user input. It is not necessary to call this method prior to calling the
other SocketWrench methods which accept a host name as a parameter. Those methods already
normalize the host name and perform checks to ensure it is in the correct format.

If the lpszHostName parameter specifies a valid IPv4 or IPv6 address string instead of a host
name, this method will return a copy of that IP address in the buffer provided by the caller. This
allows the method to be used in cases where a user may input either a host name or IP address.
To determine if the IP address has a corresponding host name, use the GetHostName method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetHostAddress, GetHostName, GetUrlHostName, HostNameToUnicode, ValidateHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::Peek Method

INT Peek(
 LPBYTE lpBuffer,
 INT cbBuffer
);

The Peek method reads the specified number of bytes from the socket and copies them into the
buffer, but it does not remove the data from the internal socket buffer. The data may be of any
type, and is not terminated with a null character.

Parameters
lpBuffer

Pointer to the buffer in which the data will be stored. This argument may be NULL, in which
case no data is copied from the socket buffers, however the function will return the number of
bytes available to read.

cbBuffer

The maximum number of bytes to read and copy into the specified buffer. If the lpBuffer
parameter is not NULL, this value must be greater than zero.

Return Value
If the function succeeds, the return value is the number of bytes available to read from the socket.
A return value of zero indicates that there is no data available to read at that time. If the function
fails, the return value is INET_ERROR. To get extended error information, call GetLastError.

Remarks
The Peek method returns data that is available to read from the socket, up to the number of bytes
specified. The data returned by this method is not removed from the socket buffers. It must be
consumed by a subsequent call to the Read method. The return value indicates the number of
bytes that can be read in a single operation, up to the specified buffer size. However, it is
important to note that it may not indicate the total amount of data available to be read from the
socket at that time.

If no data is available to be read, the method will return a value of zero. Using this method in a
loop to poll a non-blocking socket may cause the application to become non-responsive. To
determine if there is data available to be read, use the IsReadable method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
EnableEvents, IsBlocking, IsReadable, IsWritable, Read, ReadLine, RegisterEvent, Write, WriteLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::Read Method

INT Read(
 LPBYTE lpBuffer,
 INT cbBuffer
);

INT Read(
 LPBYTE lpBuffer,
 INT cbBuffer,
 LPINTERNET_ADDRESS lpAddress,
 UINT* lpnRemotePort
);

The Read method reads the specified number of bytes from the socket and copies them into the
buffer. The data may be of any type, and is not terminated with a null character.

Parameters
lpBuffer

Pointer to the buffer in which the data will be stored.

cbBuffer

The maximum number of bytes to read and copy into the specified buffer. This value must be
greater than zero.

lpAddress

Pointer to an INTERNET_ADDRESS structure that which will contain the IP address of the remote
host that sent the data being read. If this information is not required, the parameter may be
specified as NULL.

lpnRemotePort

Pointer to an unsigned integer which will contain the remote port number. If this information is
not required, the parameter may be specified as NULL.

Return Value
If the method succeeds, the return value is the number of bytes actually read. A return value of
zero indicates that the remote host has closed the connection and there is no more data available
to be read. If the method fails, the return value is INET_ERROR. To get extended error information,
call GetLastError.

Remarks
The Read method will read up to the specified number of bytes and store the data in the buffer
provided by the caller. If there is no data available to be read at the time this method is invoked,
the session thread will block until at least one byte of data becomes available, the timeout period
elapses or an error occurs. This method will return if any amount of data is sent by the remote
host, and will not block until the entire buffer has been filled. To avoid blocking the current thread,
either create an asynchronous socket or use the IsReadable method to determine if there is data
available to be read prior to calling this function.

The application should never make an assumption about the amount of data that will be available
to read. TCP considers all data to be an arbitrary stream of bytes and does not impose any
structure on the data itself. For example, if the remote host is sending data to the server in fixed
512 byte blocks of data, it is possible that a single call to the Read method will return only a partial
block of data, or it may return multiple blocks combined together. It is the responsibility of the

application to buffer and process this data appropriately.

For applications that are built using the Unicode character set, it is important to note that the
buffer is an array of bytes, not characters. If the remote host is sending string data to the server, it
must be read as a stream of bytes and converted using the MultiByteToWideChar function. If
the remote host is sending lines of text terminated with a linefeed or carriage return and linefeed
pair, the ReadLine method will return a line of text at a time and perform this conversion for you.

When Read is called and the socket is in non-blocking mode, it is possible that the method will fail
because there is no available data to read at that time. This should not be considered a fatal error.
Instead, the application should simply wait to receive the next asynchronous notification that data
is available.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
EnableEvents, IsBlocking, IsReadable, IsWritable, Peek, ReadLine, RegisterEvent, Write, WriteLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::ReadLine Method

BOOL ReadLine(
 LPTSTR lpszBuffer,
 LPINT lpnLength
);

BOOL ReadLine(
 LPTSTR lpszBuffer,
 INT nMaxLength
);

BOOL ReadLine(
 CString& strBuffer,
 INT nMaxLength
);

The ReadLine method reads up to a line of data from the socket and returns it in a string buffer.

Parameters
lpszBuffer

Pointer to the string buffer that will contain the data when the method returns. The string will be
terminated with a null character, and will not contain the end-of-line characters. An alternate
form of the method accepts a CString argument which will contain the line of text returned by
the server.

lpnLength

A pointer to an integer value which specifies the length of the buffer. The value should be
initialized to the maximum number of characters that can be copied into the string buffer,
including the terminating null character. When the method returns, its value will updated with
the actual length of the string.

nMaxLength

An integer value which specifies the maximum length of the buffer.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The ReadLine method reads data from the socket and copies into a specified string buffer. Unlike
the Read method which reads arbitrary bytes of data, this method is specifically designed to
return a single line of text data in a string. When an end-of-line character sequence is
encountered, the method will stop and return the data up to that point. The string buffer is
guaranteed to be null-terminated and will not contain the end-of-line characters.

There are some limitations when using ReadLine. The method should only be used to read text,
never binary data. In particular, the method will discard nulls, linefeed and carriage return control
characters. The Unicode version of this method will return a Unicode string, however it does not
support reading raw Unicode data from the socket. Any data read from the socket is internally
buffered as octets (eight-bit bytes) and converted to Unicode using the MultiByteToWideChar
function.

This method will force the thread to block until an end-of-line character sequence is processed,
the read operation times out or the remote host closes its end of the socket connection. If this

 method is called with asynchronous events enabled, it will automatically switch the socket into a
blocking mode, read the data and then restore the socket to asynchronous operation. If another
socket operation is attempted while ReadLine is blocked waiting for data from the remote host,
an error will occur. It is recommended that this method only be used with blocking (synchronous)
socket connections; if the application needs to establish multiple simultaneous connections, it
should create worker threads to manage each connection.

The Read and ReadLine method calls can be intermixed, however be aware that Read will
consume any data that has already been buffered by the ReadLine method and this may have
unexpected results.

Unlike the Read method, it is possible for data to be returned in the string buffer even if the return
value is zero. Applications should check the length of the string to determine if any data was
copied into the buffer. For example, if a timeout occurs while the method is waiting for more data
to arrive on the socket, it will return zero; however, data may have already been copied into the
string buffer prior to the error condition. It is the responsibility of the application to process that
data, regardless of the return value.

Example
CString strBuffer;
BOOL bResult;

do
{
 bResult = pSocket->ReadLine(strBuffer);

 if (strBuffer.GetLength() > 0)
 {
 // Process the line of data returned in the string
 // buffer; the string is always null-terminated
 }
} while (bResult);

DWORD dwError = pSocket->GetLastError();

if (dwError == ST_ERROR_CONNECTION_CLOSED)
{
 // The remote host has closed its side of the connection and
 // there is no more data available to be read
}
else if (dwError != 0)
{
 // An error has occurred while reading a line of data
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
IsReadable, Peek, Read, ReadStream, Write, WriteLine, WriteStream

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::ReadStream Method

BOOL ReadStream(
 LPVOID lpvBuffer,
 LPDWORD lpdwLength,
 DWORD dwOptions,
 LPBYTE lpMarker,
 DWORD cbMarker
);

The ReadStream method reads the socket data stream and stores the contents in the specified
buffer.

Parameters
lpvBuffer

Pointer to the buffer that will contain or reference the data when the method returns. The actual
argument depends on the value of the dwOptions parameter which specifies how the data
stream will be stored.

lpdwLength

A pointer to an unsigned integer value which specifies the maximum length of the buffer and
contains the number of bytes read when the method returns. This argument should should
always point to an initialized value. If the lpvBuffer argument specifies a memory buffer, then
this argument cannot point to an initialized value of zero; if any other type of stream buffer is
used and the initialized value is zero, that indicates that all available data from the socket should
be returned until the end-of-stream marker is encountered or the remote host disconnects.

dwOptions

An unsigned integer value which specifies both the stream buffer type and any options to be
used when reading the data stream. One of the following stream types may be specified:

Constant Description

INET_STREAM_DEFAULT The default stream buffer type is determined by
the value passed as the lpvBuffer parameter. If the
argument specifies a pointer to a global memory
handle initialized to NULL, then the method will
return a handle which references the data;
otherwise, the method will consider the parameter
a pointer to a block of pre-allocated memory
which will contain the stream data when the
method returns. In most cases, it is recommended
that an application explicitly specify the stream
buffer type rather than using the default value.

INET_STREAM_MEMORY The lpvBuffer argument specifies a pointer to a
pre-allocated block of memory which will contain
the data read from the socket when the method
returns. If this stream buffer type is used, the
lpdwLength argument must point to an unsigned
integer which has been initialized with the
maximum length of the buffer.

INET_STREAM_HGLOBAL The lpvBuffer argument specifies a pointer to a
global memory handle. When the method returns,
the handle will reference a block of memory that
contains the stream data. The application should
take care to make sure that the handle passed to
the method does not currently reference a valid
block of memory; it is recommended that the
handle be initialized to NULL prior to calling this
method.

INET_STREAM_HANDLE The lpvBuffer argument specifies a Windows
handle to an open file, console or pipe. This should
be the same handle value returned by the
CreateFile function in the Windows API. The data
read from the socket will be written to this handle
using the WriteFile function.

INET_STREAM_SOCKET The lpvBuffer argument specifies a socket handle.
The data read from the socket specified by the
hSocket argument will be written to this socket.
The socket handle passed to this method must
have been created by this library; if it is a socket
created by an third-party library or directly by the
Windows Sockets API, you should either create
another instance of the class and attach the socket
using the AttachHandle method or use the
INET_STREAM_HANDLE stream buffer type instead.

In addition to the stream buffer types listed above, the dwOptions parameter may also
have one or more of the following bit flags set. Programs should use a bitwise operator
to combine values.

Constant Description

INET_STREAM_CONVERT The data stream is considered to be textual and
will be modified so that end-of-line character
sequences are converted to follow standard
Windows conventions. This will ensure that all lines
of text are terminated with a carriage-return and
linefeed sequence. Because this option modifies
the data stream, it should never be used with
binary data. Using this option may result in the
amount of data returned in the buffer to be larger
than the source data. For example, if the source
data only terminates a line of text with a single
linefeed, this option will have the effect of inserting
a carriage-return character before each linefeed.

INET_STREAM_UNICODE The data stream should be converted to Unicode.
This option should only be used with text data, and
will result in the stream data being returned as 16-
bit wide characters rather than 8-bit bytes. The
amount of data returned will be twice the amount

read from the source data stream; if the
application is using a pre-allocated memory buffer,
this must be considered before calling this method.

lpMarker

A pointer to an array of bytes which marks the end of the data stream. When this byte
sequence is encountered by the method, it will stop reading and return to the caller.
The buffer will contain all of the data read from the socket up to and including the
end-of-stream marker. If this argument is NULL, then the method will continue to read
from the socket until the maximum buffer size is reached, the remote host closes its
socket or an error is encountered.

cbMarker

An unsigned integer value which specifies the length of the end-of-stream marker in
bytes. If the lpMarker parameter is NULL, then this value must be zero.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value
is zero. To get extended error information, call GetLastError.

Remarks
The ReadStream method enables an application to read an arbitrarily large stream of
data and store it in memory, write it to a file or even another socket. Unlike the Read
method, which will return immediately when any amount of data has been read,
ReadStream will only return when the buffer is full as specified by the lpdwLength
parameter, the logical end-of-stream marker has been read, the socket closed by the
remote host or when an error occurs.

This method will force the thread to block until the operation completes. If this method is
called with asynchronous events enabled, it will automatically switch the socket into a
blocking mode, read the data stream and then restore the socket to asynchronous
operation when it has finished. If another socket operation is attempted while
ReadStream is blocked waiting for data from the remote host, an error will occur. It is
recommended that this method only be used with blocking (synchronous) socket
connections; if the application needs to establish multiple simultaneous connections, it
should create worker threads to manage each connection.

It is possible for data to be returned in the buffer even if the method returns a value of
zero. Applications should also check the value of the lpdwLength argument to determine
if any data was copied into the buffer. For example, if a timeout occurs while the method
is waiting for more data to arrive on the socket, it will return zero; however, data may
have already been copied into the buffer prior to the error condition. It is the
responsibility of the application to process that data, regardless of the method return
value.

Because ReadStream can potentially cause the application to block for long periods of
time as the data stream is being read, the method will periodically generate
INET_EVENT_PROGRESS events. An application can register an event handler using the
RegisterEvent method, and can obtain information about the current operation by
calling the GetStreamInfo method.

Example
HGLOBAL hgblBuffer = NULL; // Return data in a global memory buffer

DWORD cbBuffer = 102400; // Read up to 100K bytes
BOOL bResult;

bResult = pSocket->ReadStream(&hgblBuffer, &cbBuffer,
 INET_STREAM_HGLOBAL | INET_STREAM_CONVERT);

if (bResult && cbBuffer > 0)
{
 LPBYTE lpBuffer = (LPBYTE)GlobalLock(hgblBuffer);

 // Use data in the stream buffer

 GlobalUnlock(hgblBuffer);
 GlobalFree(hgblBuffer);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetStreamInfo, Read, ReadLine, StoreStream, Write, WriteLine, WriteStream

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::RegisterEvent Method

INT RegisterEvent(
 UINT nEventId,
 INETEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

The RegisterEvent method registers an event handler for the specified event.

Parameters
nEventId

An unsigned integer which specifies which event should be registered with the specified callback
function. One of the following values may be used:

Constant Description

INET_EVENT_CONNECT The connection to the remote host has completed.

INET_EVENT_DISCONNECT The remote host has closed the connection to the client. The client
should read any remaining data and disconnect.

INET_EVENT_READ A network event which indicates data is available to read. No
additional messages will be posted until the process has read at
least some of the data from the socket. This event is only
generated if the socket is in asynchronous mode.

INET_EVENT_WRITE A network event which indicates the application can send data to
the remote host. This notification is sent after a connection has
been established, or after a previous attempt to write data has
failed because it would result in a blocking operation. This event is
only generated if the socket is in asynchronous mode.

INET_EVENT_TIMEOUT The network operation has exceeded the specified timeout period.
The application may attempt to retry the operation, or may
disconnect from the remote host and report an error to the user.

INET_EVENT_CANCEL The current operation has been canceled. Under most
circumstances the client should disconnect from the server and re-
connect if needed. After an operation has been canceled, the
server may abort the connection or refuse to accept further
commands from the client.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the InetEventProc callback
function. If this parameter is NULL, the callback for the specified event is disabled.

dwParam

A user-defined integer value that is passed to the callback function. If the application targets the
x86 (32-bit) platform, this parameter must be a 32-bit unsigned integer. If the application
targets the x64 (64-bit) platform, this parameter must be a 64-bit unsigned integer.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is

INET_ERROR. To get extended error information, call GetLastError.

Remarks
The RegisterEvent method associates a callback function with a specific event. The event handler
is an InetEventProc function that is invoked when the event occurs. Arguments are passed to the
function to identify the client session, the event type and the user-defined value specified when
the event handler is registered. If the event occurs because of an error condition, the error code
will be provided to the handler.

The callback function specified by the lpEventProc parameter must be declared using the
__stdcall calling convention. This ensures the arguments passed to the event handler are pushed
on to the stack in the correct order. Failure to use the correct calling convention will corrupt the
stack and cause the application to terminate abnormally.

The dwParam parameter is commonly used to identify the class instance which is associated with
the event that has occurred. Applications will cast the this pointer to a DWORD_PTR value when
calling this function, and then the event handler will cast it back to a pointer to the class instance.
This gives the handler access to the class member variables and methods.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
DisableEvents, EnableEvents, FreezeEvents, InetEventProc

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/winsock/class/ineteventproc.html

 CSocketWrench::Reject Method

BOOL Reject();

The Reject method is used to reject a client connection request.

Parameters
None.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The Reject method rejects a pending client connection and the remote host will see this as the
connection being aborted. If there are no pending client connections at the time, this method will
immediately return with an error indicating that the operation would cause the thread to block.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
Accept, Listen

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::SetHostFile Method

INT SetHostFile(
 LPCTSTR lpszFileName
);

The SetHostFile method specifies the name of an alternate file to use when resolving hostnames
and IP addresses. The host file is used as a database that maps an IP address to one or more
hostnames, and is used by the GetHostAddress and GetHostNames method. The file is a plain
text file, with each line in the file specifying a record, and each field separated by spaces or tabs.
The format of the file must be as follows:

ipaddress hostname [hostalias ...]

For example, one typical entry maps the name "localhost" to the local loopback IP address. This
would be entered as:

127.0.0.1 localhost

The hash character (#) may be used to specify a comment in the file, and all characters after it are
ignored up to the end of the line. Blank lines are ignored, as are any lines which do not follow the
required format.

Parameters
lpszFileName

Pointer to a string that specifies the name of the file. If the parameter is NULL, then the current
host file is cleared from the cache and only the default host file will be used to resolve
hostnames and addresses.

Return Value
If the method succeeds, the return value is the number of entries in the host file. A return value of
INET_ERROR indicates failure. To get extended error information, call GetLastError.

Remarks
This method loads the file into memory allocated for the current thread. If the contents of the file
have changed after the method has been called, those changes will not be reflected when
resolving hostnames or addresses. To reload the host file from disk, call this method again with the
same file name. To remove the alternate host file from memory, specify a NULL pointer as the
parameter.

If a host file has been specified, it is processed before the default host file when resolving a
hostname into an IP address, or an IP address into a hostname. If the host name or address is not
found, or no host file has been specified, a nameserver lookup is performed.

To determine if an alternate host file has been specified, use the GetHostFile method. A return
value of zero indicates that no alternate host file has been cached for the current thread.

A system may have a default host file, which is used to resolve hostnames before performing a
nameserver lookup. To determine the name of this file, use the GetDefaultHostFile method. It is
not necessary to specify this default host file, since it is always used to resolve host names and
addresses.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)

Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetDefaultHostFile, GetHostAddress, GetHostFile, GetHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::SetLastError Method

VOID SetLastError(
 DWORD dwErrorCode
);

The SetLastError method sets the last error code for the current thread. This method is typically
used to clear the last error by specifying a value of zero as the parameter.

Parameters
dwErrorCode

Specifies the last error code for the current thread.

Return Value
None.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. Most methods will
set the last error code value when they fail; a few methods set it when they succeed. Function
failure is typically indicated by a return value such as FALSE, NULL, INVALID_SOCKET or
INET_ERROR. Those methods which call SetLastError when they succeed are noted on the
method reference page.

Applications can retrieve the value saved by this method by using the GetLastError method. The
use of GetLastError is optional; an application can call the method to determine the specific
reason for a method failure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetErrorString, GetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::SetOption Method

INT SetOption(
 DWORD dwOption,
 BOOL bEnabled
);

The SetOption method is used to enable or disable a specific socket option.

Parameters
dwOption

An unsigned integer used to specify one of the socket options. These options cannot be
combined. The following values are recognized:

Constant Description

INET_OPTION_BROADCAST This option specifies that broadcasting should be
enabled for datagrams. This option is invalid for
stream sockets.

INET_OPTION_KEEPALIVE This option specifies that packets are to be sent to the
remote system when no data is being exchanged to
keep the connection active. This is only valid for
stream sockets.

INET_OPTION_REUSEADDRESS This option specifies the local address can be reused.
This option is commonly used by server applications.

INET_OPTION_NODELAY This option disables the Nagle algorithm, which
buffers unacknowledged data and insures that a full-
size packet can be sent to the remote host.

bEnabled

A boolean flag. If the flag is set to a non-zero value, the option is enabled. Otherwise the socket
option is disabled.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
INET_ERROR. To get extended error information, call GetLastError.

Remarks
It is not recommend that you disable the Nagle algorithm by specifying the
INET_OPTION_NODELAY flag unless it is absolutely required. Doing so can have a significant,
negative impact on the performance of the application and network.

If if the INET_OPTION_KEEPALIVE option is enabled, keep-alive packets will start being generated
five seconds after the socket has become idle with no data being sent or received. Enabling this
option can be used by applications to detect when a physical network connection has been lost.
However, it is recommended that most applications query the remote host directly to determine if
the connection is still active. This is typically accomplished by sending specific commands to the
server to query its status, or checking the elapsed time since the last response from the server.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)

Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
Connect, GetOption

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::SetTimeout Method

INT SetTimeout(
 UINT nTimeout
);

The SetTimeout method sets the number of seconds the client will wait for a response from the
remote host. Once the specified number of seconds has elapsed, the method will fail and return to
the caller.

Parameters
nTimeout

The number of seconds to wait for a blocking operation to complete.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
INET_ERROR. To get extended error information, call GetLastError.

Remarks
The timeout value is only used with blocking client connections.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
Connect, GetTimeout, IsReadable, IsWritable, Read, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::ShowError Method

INT ShowError(
 LPCTSTR lpszAppTitle,
 UINT uType,
 DWORD dwErrorCode
);

The ShowError method displays a message box which describes the specified error.

Parameters
lpszAppTitle

A pointer to a string which specifies the title of the message box that is displayed. If this
argument is NULL or omitted, then the default title of "Error" will be displayed.

uType

An unsigned integer which specifies the type of message box that will be displayed. This is the
same value that is used by the MessageBox method in the Windows API. If a value of zero is
specified, then a message box with a single OK button will be displayed. Refer to that method
for a complete list of options.

dwErrorCode

Specifies the error code that will be used when displaying the message box. If this argument is
zero, then the last error that occurred in the current thread will be displayed.

Return Value
If the method is successful, the return value will be the return value from the MessageBox
function. If the method fails, it will return a value of zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetErrorString, GetLastError, SetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::Shutdown Method

INT Shutdown(
 DWORD dwOption
);

The Shutdown method is used to disable reception or transmission of data, or both.

Parameters
dwOption

An unsigned integer used to specify one of the shutdown options. These options cannot be
combined. The following values are recognized:

Value Constant Description

0 INET_SHUTDOWN_READ Disable reception of data.

1 INET_SHUTDOWN_WRITE Disable transmission of data.

2 INET_SHUTDOWN_BOTH Disable both reception and transmission of data.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
INET_ERROR. To get extended error information, call GetLastError.

Remarks
This method is rarely needed. It is provided as an interface to the Windows Sockets shutdown
method.

In some asynchronous applications, it may be desirable for a client to inform the server that no
further communication is wanted, while allowing the client to read any residual data that may
reside in internal buffers on the client side. Shutdown accomplishes this because the socket
handle is still valid after it has been called, although some or all communication with the remote
host has ceased.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
Abort, Connect, Disconnect

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::StoreStream Method

BOOL StoreStream(
 LPCTSTR lpszFileName,
 DWORD dwLength,
 LPDWORD lpdwCopied
 DWORD dwOffset,
 DWORD dwOptions
);

The StoreStream method reads the socket data stream and stores the contents in the specified
file.

Parameters
lpszFileName

Pointer to a string which specifies the name of the file to create or overwrite.

dwLength

An unsigned integer which specifies the maximum number of bytes to read from the socket and
write to the file. If this value is zero, then the method will continue to read data from the socket
until the remote host disconnects or an error occurs.

lpdwCopied

A pointer to an unsigned integer value which will contain the number of bytes written to the file
when the method returns.

dwOffset

An unsigned integer which specifies the byte offset into the file where the method will start
storing data read from the socket. Note that all data after this offset will be truncated. A value of
zero specifies that the file should be completely overwritten if it already exists.

dwOptions

An unsigned integer value which specifies one or more options. Programs can use a bitwise
operator to combine any of the following values:

Constant Description

INET_STREAM_CONVERT The data stream is considered to be textual and
will be modified so that end-of-line character
sequences are converted to follow standard
Windows conventions. This will ensure that all lines
of text are terminated with a carriage-return and
linefeed sequence. Because this option modifies
the data stream, it should never be used with
binary data. Using this option may result in the
amount of data written to the file to be larger than
the source data. For example, if the source data
only terminates a line of text with a single linefeed,
this option will have the effect of inserting a
carriage-return character before each linefeed.

INET_STREAM_UNICODE The data stream should be converted to Unicode.
This option should only be used with text data, and
will result in the stream data being written as 16-bit

wide characters rather than 8-bit bytes. The
amount of data returned will be twice the amount
read from the source data stream. If the dwOffset
parameter has a value of zero, the Unicode byte
order mark (BOM) will be written to the beginning
of the file.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value
is zero. To get extended error information, call GetLastError.

Remarks
The StoreStream method enables an application to read an arbitrarily large stream of
data and store it in a file. This method is essentially a simplified version of the
ReadStream method, designed specifically to be used with files rather than memory
buffers or handles.

This method will force the thread to block until the operation completes. If this method is
called with asynchronous events enabled, it will automatically switch the socket into a
blocking mode, read the data stream and then restore the socket to asynchronous
operation when it has finished. If another socket operation is attempted while
StoreStream is blocked waiting for data from the remote host, an error will occur. It is
recommended that this method only be used with blocking (synchronous) socket
connections; if the application needs to establish multiple simultaneous connections, it
should create worker threads to manage each connection.

Because StoreStream can potentially cause the application to block for long periods of
time as the data stream is being read, the method will periodically generate
INET_EVENT_PROGRESS events. An application can register an event handler using the
RegisterEvent method, and can obtain information about the current operation by
calling the GetStreamInfo method.

Example
DWORD dwCopied;
BOOL bResult;

bResult = pSocket->StoreStream(lpszFileName, 0, &dwCopied, 0,
 INET_STREAM_CONVERT);

if (bResult && dwCopied > 0)
{
 // The data has been written to the file
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetStreamInfo, Read, ReadLine, ReadStream, Write, WriteLine, WriteStream

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::ValidateCertificate Method

BOOL ValidateCertificate(
 LPCTSTR lpszCertStore,
 LPCTSTR lpszCertPassword,
 LPCTSTR lpszCertName
);

The ValidateCertificate method determines if the specified security certificate is installed on the
local system.

Parameters
lpszCertStore

A pointer to a null terminated string which specifies the name of the certificate store to open. A
certificate store is a collection of certificates and their private keys, typically organized by how
they are used. If this value is NULL or points to an empty string, the personal certificate store will
be used as the default. This parameter may also specify the name of a certificate file in PKCS
#12 (PFX) format.

Store Name Description

CA Certification authority certificates. These are certificates that are issued by
entities which are entrusted to issue certificates to other individuals or
organizations. Companies such as VeriSign and Thawte act as
certification authorities.

MY Personal certificates and their associated private keys for the current user.
This store typically holds the client certificates used to establish a user's
credentials. This corresponds to the "Personal" store that is displayed by
the certificate manager utility and is the default store used by the library.

ROOT Certificates that have been self-signed by a certificate authority. Root
certificates for a number of different certification authorities such as
VeriSign and Thawte are installed as part of the operating system and
periodically updated by Microsoft.

lpszCertPassword

A null terminated string which specifies the password associated with a certificate file. This
parameter is only used if the lpszCertStore parameter specifies a certificate file, otherwise it is
ignored. If the certificate file is not protected with a password, this parameter should be a NULL
pointer or empty string.

lpszCertName

A pointer to a null terminated string which specifies the name of the certificate to validate. The
method will first search the certificate store for a certificate with a matching "friendly name"; this
is a name for the certificate that is assigned by the user. Note that the name must match
completely, but the comparison is not case sensitive. If no matching certificate is found, the
method will then attempt to find a certificate that has a matching common name (also called
the certificate subject). This comparison is less stringent, and the first partial match will be
returned. If this second search fails, the method will return an error indicating that the certificate
could not be found.

Return Value

If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call InetGetLastError.

Remarks
If you are checking the validity of a certificate installed in the local certificate store, you can
explicitly specify whether the certificate store for the current user or the local machine (all users)
should be used. This is done by prefixing the certificate store name with "HKCU:" for the current
user, or "HKLM:" for the local machine. For example, a certificate store name of "HKLM:MY" would
specify the personal certificate store for the local machine, rather than the current user. If neither
prefix is specified, then it will default to the certificate store for the current user.

It is possible to validate a certificate file rather than one stored in the local certificate store. The
lpszCertStore member should specify the name of a file in Private Information Exchange (PFX)
format, also known as PKCS #12.These certificate files typically have an extension of .pfx or .p12. If
a password was specified when the certificate file was created, it must be provided in with the
lpszCertPassword parameter or this method will be unable to access the certificate.

This method can only validate certificate files in PFX format and cannot be used to validate a
certificate file in another format, such as PEM (base64 encoded) or DER (binary).

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CreateSecurityCredentials, DeleteSecurityCredentials

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ValidateHostName Method

BOOL ValidateHostName(
 LPCTSTR lpszHostName,
 LPTSTR lpszAddress,
 INT nMaxLength
);

BOOL ValidateHostName(
 LPCTSTR lpszHostName,
 CString& strAddress
);

The ValidateHostName method determines if the specified host name is valid and returns its IP
address.

Parameters
lpszHostName

A pointer to a null terminated string which specifies the host name. The method will fail If this
parameter is NULL or an empty string.

lpszAddress

A pointer to a string buffer which will contain the IP address of the host. If specified, this string
must be large enough to store the complete IP address, including the terminating null
character. If this parameter is NULL or the nMaxLength parameter is zero, it will be ignored and
the IP address will not be returned. An alternate version of this method accepts a reference to a
CString object if MFC or ATL is used with the project.

nMaxLength

An integer value that specifies the maximum number of characters which can be copied into the
lpszAddress string buffer. The buffer must be large enough to store the complete address.
Because this method can return either an IPv4 or IPv6 address, it is recommended the minimum
length for the buffer to be 46 characters. If this parameter is zero, the lpszAddress parameter
will be ignored.

Return Value
If the method succeeds, the host name is valid and the return value will be non-zero. If the
method fails, the host name could not be resolved to an IP address and the return value will be
zero. To get extended error information, call the GetLastError method.

Remarks
The ValidateHostName method provides a convenient way to determine if a host name is valid
by attempting to resolve the name into an IP address. It is similar to calling the
NormalizeHostName method to obtain the canonical form of the host name, calling
GetAddress to obtain the IP address and then calling FormatAddress to return the string
representation of the host's IP address.

If the Unicode version of this method is used, any non-ASCII characters in the host name will be
automatically encoded into a compatible format and then resolved to an IP address. If you are
unsure if an internationalized domain name will be specified as the host name, it is recommended
you use the Unicode version.

The lpszHostName parameter can only specify a host name or IP address and cannot be a URL. If
you want your application to support providing a URL in addition to a host name, use the

GetUrlHostName method to extract the host name from the URL. You can then provide the host
name to this method to obtain its IP address.

If the lpszHostName parameter specifies a valid IPv4 or IPv6 address string instead of a host
name, this method will return a copy of that IP address in the buffer provided by the caller. This
allows the method to be used in cases where a user may input either a host name or IP address.
To determine if the IP address has a corresponding host name, use the GetHostName method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FormatAddress, GetAddress, GetHostAddress, GetHostName, GetUrlHostName,
NormalizeHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::Write Method

INT Write(
 LPBYTE lpBuffer,
 INT cbBuffer
);

INT Write(
 LPBYTE lpBuffer,
 INT cbBuffer,
 LPINTERNET_ADDRESS lpAddress,
 UINT nRemotePort
);

The Write method sends the specified number of bytes to the remote host.

Parameters
lpBuffer

The pointer to the buffer which contains the data that is to be sent to the remote host.

cbBuffer

The number of bytes to send from the specified buffer. This value must be greater than zero.

lpAddress

Pointer to an INTERNET_ADDRESS structure that specifies the address of the remote host that is
to receive the data being written. For TCP stream sockets, this parameter must always be NULL
or specify the same address that was used to establish the connection. For UDP datagram
sockets, this may specify any valid IP address.

nRemotePort

The port number of the remote host that is to receive the data being written. For TCP stream
sockets, this value must always be zero, or specify the same port number that was used to
establish the connection. For UDP datagram sockets, this may specify any valid port number.

Return Value
If the method succeeds, the return value is the number of bytes actually written. If the method
fails, the return value is INET_ERROR. To get extended error information, call GetLastError.

Remarks
The return value may be less than the number of bytes specified by the cbBuffer parameter. In this
case, the data has been partially written and it is the responsibility of the client application to send
the remaining data at some later point. For non-blocking sockets, the client must wait for the next
asynchronous notification message before it resumes sending data.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
EnableEvents, IsBlocking, IsReadable, IsWritable, Read, ReadLine, RegisterEvent, WriteLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::WriteLine Method

BOOL WriteLine(
 LPCTSTR lpszBuffer,
 LPINT lpnLength
);

The WriteLine function sends a line of text to the remote host, terminated by a carriage-return
and linefeed.

Parameters
lpszBuffer

The pointer to a string buffer which contains the data that will be sent to the remote host. All
characters up to, but not including, the terminating null character will be written to the socket.
The data will always be terminated with a carriage-return and linefeed control character
sequence. If this parameter points to an empty string or NULL pointer, then a only a carriage-
return and linefeed are written to the socket.

lpnLength

A pointer to an integer value which will contain the number of characters written to the socket,
including the carriage-return and linefeed sequence. If this information is not required, a NULL
pointer may be specified.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The WriteLine method writes a line of text to the remote host and terminates the line with a
carriage-return and linefeed control character sequence. Unlike the Write method which writes
arbitrary bytes of data to the socket, this method is specifically designed to write a single line of
text data from a null-terminated string.

If the lpszBuffer string is terminated with a linefeed (LF) or carriage return (CR) character, it will be
automatically converted to a standard CRLF end-of-line sequence. Because the string will be sent
with a terminating CRLF sequence, the value returned in the lpnLength parameter will typically be
larger than the original string length (reflecting the additional CR and LF characters), unless the
string was already terminated with CRLF.

There are some limitations when using WriteLine. This method should only be used to send text,
never binary data. In particular, it will discard nulls and append linefeed and carriage return control
characters to the data stream. The Unicode version of this method will accept a Unicode string,
however it does not support writing raw Unicode data to the socket. Unicode strings will be
automatically converted to UTF-8 encoding using the WideCharToMultiByte function and then
written to the socket as a stream of bytes.

This method will force the thread to block until the complete line of text has been written, the
write operation times out or the remote host aborts the connection. If this method is called with
asynchronous events enabled, it will automatically switch the socket into a blocking mode, send
the data and then restore the socket to asynchronous operation. If another socket operation is
attempted while WriteLine is blocked sending data to the remote host, an error will occur. It is
recommended that this method only be used with blocking (synchronous) socket connections; if
the application needs to establish multiple simultaneous connections, it should create worker

threads to manage each connection.

The Write and WriteLine methods can be safely intermixed.

Unlike the Write function, it is possible for data to have been written to the socket if the return
value is zero. For example, if a timeout occurs while the method is waiting to send more data to
the remote host, it will return zero; however, some data may have already been written prior to
the error condition. If this is the case, the lpnLength argument will specify the number of
characters actually written up to that point.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
IsWritable, Read, ReadLine, ReadStream, Write, WriteStream

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::WriteStream Method

BOOL WriteStream(
 LPVOID lpvBuffer,
 LPDWORD lpdwLength,
 DWORD dwOptions
);

The WriteStream method writes data from the stream buffer to the specified socket.

Parameters
lpvBuffer

Pointer to the buffer that contains or references the data to be written to the socket. The actual
argument depends on the value of the dwOptions parameter which specifies how the data
stream will be accessed.

lpdwLength

A pointer to an unsigned integer value which specifies the size of the buffer and contains the
number of bytes written when the method returns. This argument should should always point to
an initialized value. If the lpvBuffer argument specifies a memory buffer or global memory
handle, then this argument cannot point to an initialized value of zero.

dwOptions

An unsigned integer value which specifies the stream buffer type to be used when writing the
data stream to the socket. One of the following stream types may be specified:

Constant Description

INET_STREAM_DEFAULT The default stream buffer type is determined by
the value passed as the lpvBuffer parameter. If the
argument specifies a a global memory handle,
then the method will write the data referenced by
that handle; otherwise, the method will consider
the parameter a pointer to a block of memory
which contains data to be written. In most cases, it
is recommended that an application explicitly
specify the stream buffer type rather than using the
default value.

INET_STREAM_MEMORY The lpvBuffer argument specifies a pointer to a
block of memory which contains the data to be
written to the socket. If this stream buffer type is
used, the lpdwLength argument must point to an
unsigned integer which has been initialized with
the size of the buffer.

INET_STREAM_HGLOBAL The lpvBuffer argument specifies a global memory
handle that references the data to be written to the
socket. The handle must have been created by a
call to the GlobalAlloc or GlobalReAlloc function. If
this stream buffer type is used, the lpdwLength
argument must point to an unsigned integer which
has been initialized with the size of the buffer.

INET_STREAM_HANDLE The lpvBuffer argument specifies a Windows
handle to an open file, console or pipe. This should
be the same handle value returned by the
CreateFile function in the Windows API. The data
read using the ReadFile function with this handle
will be written to the socket.

INET_STREAM_SOCKET The lpvBuffer argument specifies a socket handle.
The data read from the socket specified by this
handle will be written to the socket specified by the
hSocket parameter. The socket handle passed to
this method must have been created by this library;
if it is a socket created by an third-party library or
directly by the Windows Sockets API, you should
either create another instance of the class and
attach the socket using the AttachHandle method
or use the INET_STREAM_HANDLE stream buffer
type instead.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value
is zero. To get extended error information, call InetGetLastError.

Remarks
The WriteStream method enables an application to write an arbitrarily large stream of
data from memory or a file to the specified socket. Unlike the Write method, which may
not write all of the data in a single method call, WriteStream will only return when all of
the data has been written or an error occurs.

This method will force the thread to block until the operation completes. If this method is
called with asynchronous events enabled, it will automatically switch the socket into a
blocking mode, write the data stream and then restore the socket to asynchronous
operation when it has finished. If another socket operation is attempted while
WriteStream is blocked sending data to the remote host, an error will occur. It is
recommended that this method only be used with blocking (synchronous) socket
connections; if the application needs to establish multiple simultaneous connections, it
should create worker threads to manage each connection.

It is possible for some data to have been written even if the method returns a value of
zero. Applications should also check the value of the lpdwLength argument to determine
if any data was sent. For example, if a timeout occurs while the method is waiting to write
more data, it will return zero; however, some data may have already been written to the
socket prior to the error condition.

Because WriteStream can potentially cause the application to block for long periods of
time as the data stream is being written, the method will periodically generate
INET_EVENT_PROGRESS events. An application can register an event handler using the
RegisterEvent method, and can obtain information about the current operation by
calling the GetStreamInfo method.

Example
CFile *pFile = new CFile();
DWORD dwLength = 0;

if (!pFile->Open(strFileName, CFile::modeRead | CFile::shareDenyWrite))
 return;

dwLength = pFile->GetLength();

if (dwLength > 0)
{
 BOOL bResult = pSocket->WriteStream(
 pFile->m_hFile,
 &dwLength,
 INET_STREAM_HANDLE);
}

delete pFile;

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetStreamInfo, Read, ReadLine, ReadStream, StoreStream, Write, WriteLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SocketWrench Data Structures

INETSTREAMINFO
INTERNET_ADDRESS
SECURITYCREDENTIALS
SECURITYINFO

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 INETSTREAMINFO Structure

This structure contains information about the data stream being currently read or written.

typedef struct _INETSTREAMINFO
{
 DWORD dwStreamThread;
 DWORD dwStreamSize;
 DWORD dwStreamCopied;
 DWORD dwStreamMode;
 DWORD dwStreamError;
 DWORD dwBytesPerSecond;
 DWORD dwTimeElapsed;
 DWORD dwTimeEstimated;
} INETSTREAMINFO, *LPINETSTREAMINFO;

Members
dwStreamThread

Specifies the numeric ID for the thread that created the socket.

dwStreamSize

The maximum number of bytes that will be read or written. This is the same value as the buffer
length specified by the caller, and may be zero which indicates that no maximum size was
specified. Note that if this value is zero, the application will be unable to calculate a completion
percentage or estimate the amount of time for the operation to complete.

dwStreamCopied

The total number of bytes that have been copied to or from the stream buffer.

dwStreamMode

A numeric value which specifies the stream operation that is current being performed. It may be
one of the following values:

Constant Description

INET_STREAM_READ Data is being read from the socket and stored in the specified
stream buffer.

INET_STREAM_WRITE Data is being written from the specified stream buffer to the
socket.

dwStreamError

The last error that occurred when reading or writing the data stream. If no error has occurred,
this value will be zero.

dwBytesPerSecond

The average number of bytes that have been copied per second.

dwTimeElapsed

The number of seconds that have elapsed since the file transfer started.

dwTimeEstimated

The estimated number of seconds until the operation is completed. This is based on the
average number of bytes transferred per second and requires that a maximum stream buffer
size be specified by the caller.

Requirements

Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h

See Also
ReadStream, StoreStream, WriteStream

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 INTERNET_ADDRESS Structure

This structure represents a numeric IPv4 or IPv6 address in network byte order.

typedef struct _INTERNET_ADDRESS
{
 INT ipFamily;
 BYTE ipNumber[16];
} INTERNET_ADDRESS, *LPINTERNET_ADDRESS;

Members
ipFamily

An integer which identifies the type of IP address. It will be one of the following values:

Constant Description

INET_ADDRESS_UNKNOWN The address has not been specified or the bytes in the
ipNumber array does not represent a valid address.
Functions which populate this structure will use this value
to indicate that the address cannot be determined.

INET_ADDRESS_IPV4 Specifies that the address is in IPv4 format. The first four
bytes of the ipNumber array are significant and contains
the IP address. The remaining bytes are not significant
and an application should not depend on them having
any particular value, including zero.

INET_ADDRESS_IPV6 Specifies that the address is in IPv6 format. All bytes in
the ipNumber array are significant. Note that it is
possible for an IPv6 address to actually represent an IPv4
address. This is indicated by the first 10 bytes of the
address being zero.

ipNumber

A byte array which contains the numeric form of the IP address. This array is large enough to
store both IPv4 (32 bit) and IPv6 (128 bit) addresses. The values are stored in network byte
order.

Remarks
The INTERNET_ADDRESS structure is used by some functions to represent an Internet address in
a binary format that is compatible with both IPv4 and IPv6 addresses. Applications that use this
structure should consider it to be opaque, and should not modify the contents of the structure
directly.

For compatibility with legacy applications that expect an IP address to be 32 bits and stored in an
unsigned integer, you can copy the first four bytes of the ipNumber array using the
CopyMemory function or equivalent. Note that if this is done, your application should always
check the ipFamily member first to make sure that it is actually an IPv4 address.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SECURITYCREDENTIALS Structure

The SECURITYCREDENTIALS structure specifies the information needed by the library to specify
additional security credentials, such as a client certificate or private key, when establishing a secure
connection.

typedef struct _SECURITYCREDENTIALS
{
 DWORD dwSize;
 DWORD dwProtocol;
 DWORD dwOptions;
 DWORD dwReserved;
 LPCTSTR lpszHostName;
 LPCTSTR lpszUserName;
 LPCTSTR lpszPassword;
 LPCTSTR lpszCertStore;
 LPCTSTR lpszCertName;
 LPCTSTR lpszKeyFile;
} SECURITYCREDENTIALS, *LPSECURITYCREDENTIALS;

Members
dwSize

Size of this structure. If the structure is being allocated dynamically, this member must be set to
the size of the structure and all other unused structure members must be initialized to a value of
zero or NULL.

dwProtocol

A bitmask of supported security protocols. The value of this structure member is constructed by
using a bitwise operator with any of the following values:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The
correct protocol is automatically selected, based on

what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.
This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is
supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

dwOptions

A value which specifies one or options. This member is constructed by using a bitwise operator
with any of the following values:

Constant Description

CREDENTIAL_STORE_CURRENT_USER The library will attempt to open a store for
the current user using the certificate store
name provided in this structure. If no options
are specified, then this is the default
behavior.

CREDENTIAL_STORE_LOCAL_MACHINE The library will attempt to open a local
machine store using the certificate store

name provided in this structure. If this option
is specified, the library will always search for a
local machine store before searching for the
store by that name for the current user.

CREDENTIAL_STORE_FILENAME The certificate store name is a file that
contains the certificate and private key that
will be used.

dwReserved

This structure member is reserved for future use and should always be initialized to zero.

lpszHostName

A pointer to a null terminated string which specifies the hostname that will be used when
validating the server certificate. If this member is NULL, then the server certificate will be
validated against the hostname used to establish the connection.

lpszUserName

A pointer to a null terminated string which identifies the owner of client certificate. Currently this
member is not used by the library and should always be initialized as a NULL pointer.

lpszPassword

A pointer to a null terminated string which specifies the password needed to access the
certificate. Currently this member is only used if the CREDENTIAL_STORE_FILENAME option has
been specified. If there is no password associated with the certificate, then this member should
be initialized as a NULL pointer.

lpszCertStore

A pointer to a null terminated string which specifies the name of the certificate store to open. A
certificate store is a collection of certificates and their private keys, typically organized by how
they are used. If this value is NULL or points to an empty string, the default certificate store "MY"
will be used.

Store
Name

Description

CA
Certification authority certificates. These are certificates that are issued by entities
which are entrusted to issue certificates to other individuals or organizations.
Companies such as VeriSign and Thawte act as certification authorities.

MY

Personal certificates and their associated private keys for the current user. This
store typically holds the client certificates used to establish a user's credentials.
This corresponds to the "Personal" store that is displayed by the certificate
manager utility and is the default store used by the library.

ROOT
Certificates that have been self-signed by a certificate authority. Root certificates
for a number of different certification authorities such as VeriSign and Thawte are
installed as part of the operating system and periodically updated by Microsoft.

lpszCertName

A pointer to a null terminated string which specifies the name of the certificate to use. The
library will first search the certificate store for a certificate with a matching "friendly name"; this is
a name for the certificate that is assigned by the user. Note that the name must match
completely, but the comparison is not case sensitive. If no matching certificate is found, the
library will then attempt to find a certificate that has a matching common name (also called the
certificate subject). This comparison is less stringent, and the first partial match will be returned.

If this second search fails, the library will return an error indicating that the certificate could not
be found. If the SECURITY_PROTOCOL_SSH protocol has been specified, this member should
be NULL.

lpszKeyFile

A pointer to a null terminated string which specifies the name of the file which contains the
private key required to establish the connection. This member is only used for SSH connections
and should always be NULL when establishing a secure connection using SSL or TLS.

Remarks
A client application only needs to create this structure if the server requires that the client provide
a certificate as part of the process of negotiating the secure session. If a certificate is required,
note that it must have a private key associated with it. Attempting to use a certificate that does not
have a private key will result in an error during the connection process indicating that the client
credentials could not be established.

If you are using a local certificate store, with the certificate and private key stored in the registry,
you can explicitly specify whether the certificate store for the current user or the local machine (all
users) should be used. This is done by prefixing the certificate store name with "HKCU:" for the
current user, or "HKLM:" for the local machine. For example, a certificate store name of
"HKLM:MY" would specify the personal certificate store for the local machine, rather than the
current user. If neither prefix is specified, then it will default to the certificate store for the current
user. You can manage these certificates using the CertMgr.msc Microsoft Management Console
(MMC) snap-in.

It is possible to load the certificate from a file rather than from current user's certificate store. The
dwOptions member should be set to CREDENTIAL_STORE_FILENAME and the lpszCertStore
member should specify the name of the file that contains the certificate and its private key. The file
must be in Private Information Exchange (PFX) format, also known as PKCS #12. These certificate
files typically have an extension of .pfx or .p12. Note that if a password was specified when the
certificate file was created, it must be provided in the lpszPassword member or the library will be
unable to access the certificate.

Note that the lpszUserName and lpszPassword members are values which are used to access the
certificate store or private key file. They are not the credentials which are used when establishing
the connection with the remote host or authenticating the client session.

The TLS 1.1 and TLS 1.2 protocols are only supported on Windows 7, Windows Server 2008 R2
and later versions of the platform. If these options are specified and the application is running on
Windows XP or Windows Vista, the protocol version will be downgraded to TLS 1.0 for backwards
compatibility with those platforms.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SECURITYINFO Structure

This structure contains information about a secure connection that has been established.

typedef struct _SECURITYINFO
{
 DWORD dwSize;
 DWORD dwProtocol;
 DWORD dwCipher;
 DWORD dwCipherStrength;
 DWORD dwHash;
 DWORD dwHashStrength;
 DWORD dwKeyExchange;
 DWORD dwCertStatus;
 SYSTEMTIME stCertIssued;
 SYSTEMTIME stCertExpires;
 LPCTSTR lpszCertIssuer;
 LPCTSTR lpszCertSubject;
 LPCTSTR lpszFingerprint;
} SECURITYINFO, *LPSECURITYINFO;

Members
dwSize

Specifies the size of the data structure. This member must always be initialized to
sizeof(SECURITYINFO) prior to passing the address of this structure to the function. Note that
if this member is not initialized, an error will be returned indicating that an invalid parameter has
been passed to the function.

dwProtocol

A numeric value which specifies the protocol that was selected to establish the secure
connection. One of the following values will be returned:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The

correct protocol is automatically selected, based on
what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.
This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is
supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

dwCipher

A numeric value which specifies the cipher that was selected when establishing the secure
connection. One of the following values will be returned:

Constant Description

SECURITY_CIPHER_RC2 The RC2 block cipher was selected. This is a variable
key length cipher which supports keys between 40 and
128 bits, in 8-bit increments.

SECURITY_CIPHER_RC4 The RC4 stream cipher was selected. This is a variable
key length cipher which supports keys between 40 and
128 bits, in 8-bit increments.

SECURITY_CIPHER_RC5 The RC5 block cipher was selected. This is a variable
key length cipher which supports keys up to 2040 bits,
in 8-bit increments.

SECURITY_CIPHER_DES The DES (Data Encryption Standard) block cipher was
selected. This is a fixed key length cipher, using 56-bit
keys.

SECURITY_CIPHER_DES3 The Triple DES block cipher was selected. This cipher
encrypts the data three times using different keys,
effectively providing a 168-bit length key.

SECURITY_CIPHER_DESX A variant of the DES block cipher which XORs an extra
64-bits of the key before and after the plaintext has
been encrypted, increasing the key size to 184 bits.

SECURITY_CIPHER_AES The Advanced Encryption Standard cipher (also known
as the Rijndael cipher) is a fixed block size cipher which
use a key size of 128, 192 or 256 bits. This cipher is
supported on Windows XP SP3 and later versions of
the operating system.

SECURITY_CIPHER_SKIPJACK The Skipjack block cipher was selected. This is a fixed
key length cipher, using 80-bit keys.

SECURITY_CIPHER_BLOWFISH The Blowfish block cipher was selected. This is a
variable key length cipher up to 448 bits, using a 64-bit
block size.

dwCipherStrength

A numeric value which specifies the strength (the length of the cipher key in bits) of the cipher
that was selected. Typically this value will be 128 or 256. 40-bit and 56-bit key lengths are
considered weak encryption, and subject to brute force attacks. 128-bit and 256-bit key lengths
are considered to be secure, and are the recommended key length for secure communications.

dwHash

A numeric value which specifies the hash algorithm which was selected. One of the following
values will be returned:

Constant Description

SECURITY_HASH_MD5 The MD5 algorithm was selected. Its use has been
deprecated and is no longer considered to be
cryptographically secure.

SECURITY_HASH_SHA1 The SHA-1 algorithm was selected. Its use has been
deprecated and is no longer considered to be
cryptographically secure.

SECURITY_HASH_SHA256 The SHA-256 algorithm was selected.

SECURITY_HASH_SHA384 The SHA-384 algorithm was selected.

SECURITY_HASH_SHA512 The SHA-512 algorithm was selected.

dwHashStrength

A numeric value which specifies the strength (the length in bits) of the message digest that was

selected.

dwKeyExchange

A numeric value which specifies the key exchange algorithm which was selected. One of the
following values will be returned:

Constant Description

SECURITY_KEYEX_RSA The RSA public key algorithm was selected.

SECURITY_KEYEX_KEA The Key Exchange Algorithm (KEA) was selected. This is an
improved version of the Diffie-Hellman public key algorithm.

SECURITY_KEYEX_DH The Diffie-Hellman key exchange algorithm was selected.

SECURITY_KEYEX_ECDH The Elliptic Curve Diffie-Hellman key exchange algorithm was
selected. This is a variant of the Diffie-Hellman algorithm
which uses elliptic curve cryptography. This key exchange
algorithm is only supported on Windows XP SP3 and later
versions of the operating system.

dwCertStatus

A numeric value which specifies the status of the certificate returned by the secure server. This
member only has meaning for connections using the SSL or TLS protocols. One of the following
values will be returned:

Constant Description

SECURITY_CERTIFICATE_VALID The certificate is valid.

SECURITY_CERTIFICATE_NOMATCH The certificate is valid, but the domain name
does not match the common name in the
certificate.

SECURITY_CERTIFICATE_EXPIRED The certificate is valid, but has expired.

SECURITY_CERTIFICATE_REVOKED The certificate has been revoked and is no
longer valid.

SECURITY_CERTIFICATE_UNTRUSTED The certificate or certificate authority is not
trusted on the local system.

SECURITY_CERTIFICATE_INVALID The certificate is invalid. This typically indicates
that the internal structure of the certificate has
been damaged.

stCertIssued

A structure which contains the date and time that the certificate was issued by the certificate
authority. If the issue date cannot be determined for the certificate, the SYSTEMTIME structure
members will have zero values. This member only has meaning for connections using the SSL or
TLS protocols.

stCertExpires

A structure which contains the date and time that the certificate expires. If the expiration date
cannot be determined for the certificate, the SYSTEMTIME structure members will have zero
values. This member only has meaning for connections using the SSL or TLS protocols.

lpszCertIssuer

A pointer to a string which contains information about the organization that issued the
certificate. This string consists of one or more comma-separated tokens. Each token consists of
an identifier, followed by an equal sign and a value. If the certificate issuer could not be
determined, this member may be NULL. This member only has meaning for connections using
the SSL or TLS protocols.

lpszCertSubject

A pointer to a string which contains information about the organization that the certificate was
issued to. This string consists of one or more comma-separated tokens. Each token consists of
an identifier, followed by an equal sign and a value. If the certificate subject could not be
determined, this member may be NULL. This member only has meaning for connections using
the SSL or TLS protocols.

lpszFingerprint

A pointer to a string which contains a sequence of hexadecimal values that uniquely identify the
server. This member is only used when a connection has been established using the Secure
Shell (SSH) protocol.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SocketWrench Class Error Codes

Value Constant Description

0x80042711 ST_ERROR_NOT_HANDLE_OWNER Handle not owned by the current thread

0x80042712 ST_ERROR_FILE_NOT_FOUND The specified file or directory does not exist

0x80042713 ST_ERROR_FILE_NOT_CREATED The specified file could not be created

0x80042714 ST_ERROR_OPERATION_CANCELED The blocking operation has been canceled

0x80042715 ST_ERROR_INVALID_FILE_TYPE The specified file is a block or character
device, not a regular file

0x80042716 ST_ERROR_INVALID_DEVICE The specified device or address does not
exist

0x80042717 ST_ERROR_TOO_MANY_PARAMETERS The maximum number of method
parameters has been exceeded

0x80042718 ST_ERROR_INVALID_FILE_NAME The specified file name contains invalid
characters or is too long

0x80042719 ST_ERROR_INVALID_FILE_HANDLE Invalid file handle passed to method

0x8004271A ST_ERROR_FILE_READ_FAILED Unable to read data from the specified file

0x8004271B ST_ERROR_FILE_WRITE_FAILED Unable to write data to the specified file

0x8004271C ST_ERROR_OUT_OF_MEMORY Out of memory

0x8004271D ST_ERROR_ACCESS_DENIED Access denied

0x8004271E ST_ERROR_INVALID_PARAMETER Invalid argument passed to method

0x8004271F ST_ERROR_CLIPBOARD_UNAVAILABLE The system clipboard is currently unavailable

0x80042720 ST_ERROR_CLIPBOARD_EMPTY The system clipboard is empty or does not
contain any text data

0x80042721 ST_ERROR_FILE_EMPTY The specified file does not contain any data

0x80042722 ST_ERROR_FILE_EXISTS The specified file already exists

0x80042723 ST_ERROR_END_OF_FILE End of file

0x80042724 ST_ERROR_DEVICE_NOT_FOUND The specified device could not be found

0x80042725 ST_ERROR_DIRECTORY_NOT_FOUND The specified directory could not be found

0x80042726 ST_ERROR_INVALID_BUFFER Invalid memory address passed to method

0x80042728 ST_ERROR_NO_HANDLES No more handles available to this process

0x80042733 ST_ERROR_OPERATION_WOULD_BLOCK The specified operation would block the
current thread

0x80042734 ST_ERROR_OPERATION_IN_PROGRESS A blocking operation is currently in progress

0x80042735 ST_ERROR_ALREADY_IN_PROGRESS The specified operation is already in progress

0x80042736 ST_ERROR_INVALID_HANDLE Invalid handle passed to method

0x80042737 ST_ERROR_INVALID_ADDRESS Invalid network address specified

0x80042738 ST_ERROR_INVALID_SIZE Datagram is too large to fit in specified buffer

0x80042739 ST_ERROR_INVALID_PROTOCOL Invalid network protocol specified

0x8004273A ST_ERROR_PROTOCOL_NOT_AVAILABLE The specified network protocol is not
available

0x8004273B ST_ERROR_PROTOCOL_NOT_SUPPORTED The specified protocol is not supported

0x8004273C ST_ERROR_SOCKET_NOT_SUPPORTED The specified socket type is not supported

0x8004273D ST_ERROR_INVALID_OPTION The specified option is invalid

0x8004273E ST_ERROR_PROTOCOL_FAMILY Specified protocol family is not supported

0x8004273F ST_ERROR_PROTOCOL_ADDRESS The specified address is invalid for this
protocol family

0x80042740 ST_ERROR_ADDRESS_IN_USE The specified address is in use by another
process

0x80042741 ST_ERROR_ADDRESS_UNAVAILABLE The specified address cannot be assigned

0x80042742 ST_ERROR_NETWORK_UNAVAILABLE The networking subsystem is unavailable

0x80042743 ST_ERROR_NETWORK_UNREACHABLE The specified network is unreachable

0x80042744 ST_ERROR_NETWORK_RESET Network dropped connection on remote
reset

0x80042745 ST_ERROR_CONNECTION_ABORTED Connection was aborted due to timeout or
other failure

0x80042746 ST_ERROR_CONNECTION_RESET Connection was reset by remote network

0x80042747 ST_ERROR_OUT_OF_BUFFERS No buffer space is available

0x80042748 ST_ERROR_ALREADY_CONNECTED Connection already established with remote
host

0x80042749 ST_ERROR_NOT_CONNECTED No connection established with remote host

0x8004274A ST_ERROR_CONNECTION_SHUTDOWN Unable to send or receive data after
connection shutdown

0x8004274C ST_ERROR_OPERATION_TIMEOUT The specified operation has timed out

0x8004274D ST_ERROR_CONNECTION_REFUSED The connection has been refused by the
remote host

0x80042750 ST_ERROR_HOST_UNAVAILABLE The specified host is unavailable

0x80042751 ST_ERROR_HOST_UNREACHABLE Remote host is unreachable

0x80042753 ST_ERROR_TOO_MANY_PROCESSES Too many processes are using the
networking subsystem

0x8004276B ST_ERROR_NETWORK_NOT_READY Network subsystem is not ready for
communication

0x8004276C ST_ERROR_INVALID_VERSION This version of the operating system is not
supported

0x8004276D ST_ERROR_NETWORK_NOT_INITIALIZED The networking subsystem has not been
initialized

0x80042775 ST_ERROR_REMOTE_SHUTDOWN The remote host has initiated a graceful
shutdown sequence

0x80042AF9 ST_ERROR_INVALID_HOSTNAME The specified hostname is invalid or could
not be resolved

0x80042AFA ST_ERROR_HOSTNAME_NOT_FOUND The specified hostname could not be found

0x80042AFB ST_ERROR_HOSTNAME_REFUSED Unable to resolve hostname, request refused

0x80042AFC ST_ERROR_HOSTNAME_NOT_RESOLVED Unable to resolve hostname, no address for
specified host

0x80042EE1 ST_ERROR_INVALID_LICENSE The license for this product is invalid

0x80042EE2 ST_ERROR_PRODUCT_NOT_LICENSED This product is not licensed to perform this
operation

0x80042EE3 ST_ERROR_NOT_IMPLEMENTED This method has not been implemented on
this platform

0x80042EE4 ST_ERROR_UNKNOWN_LOCALHOST Unable to determine local host name

0x80042EE5 ST_ERROR_INVALID_HOSTADDRESS Invalid host address specified

0x80042EE6 ST_ERROR_INVALID_SERVICE_PORT Invalid service port number specified

0x80042EE7 ST_ERROR_INVALID_SERVICE_NAME Invalid or unknown service name specified

0x80042EE8 ST_ERROR_INVALID_EVENTID Invalid event identifier specified

0x80042EE9 ST_ERROR_OPERATION_NOT_BLOCKING No blocking operation in progress on this
socket

0x80042F45 ST_ERROR_SECURITY_NOT_INITIALIZED Unable to initialize security interface for this
process

0x80042F46 ST_ERROR_SECURITY_CONTEXT Unable to establish security context for this
session

0x80042F47 ST_ERROR_SECURITY_CREDENTIALS Unable to open client certificate store or
establish client credentials

0x80042F48 ST_ERROR_SECURITY_CERTIFICATE Unable to validate the certificate chain for
this session

0x80042F49 ST_ERROR_SECURITY_DECRYPTION Unable to decrypt data stream

0x80042F4A ST_ERROR_SECURITY_ENCRYPTION Unable to encrypt data stream

0x80043031 ST_ERROR_MAXIMUM_CONNECTIONS The maximum number of client connections
exceeded

0x80043032 ST_ERROR_THREAD_CREATION_FAILED Unable to create a new thread for the current
process

0x80043033 ST_ERROR_INVALID_THREAD_HANDLE The specified thread handle is no longer valid

0x80043034 ST_ERROR_THREAD_TERMINATED The specified thread has been terminated

0x80043035 ST_ERROR_THREAD_DEADLOCK The operation would result in the current

thread becoming deadlocked

0x80043036 ST_ERROR_INVALID_CLIENT_MONIKER The specified moniker is not associated with
any client session

0x80043037 ST_ERROR_CLIENT_MONIKER_EXISTS The specified moniker has been assigned to
another client session

0x80043038 ST_ERROR_SERVER_INACTIVE The specified server is not listening for client
connections

0x80043039 ST_ERROR_SERVER_SUSPENDED The specified server is suspended and not
accepting client connections

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Telnet Protocol Class Library

Establish an interactive terminal session with a server.

Reference

Class Methods
Data Structures
Error Codes

Library Information

Class Name CTelnetClient

File Name CSTNTV11.DLL

Version 11.0.2180.1635

LibID ED8B1962-CB47-46C9-9A25-3EFDCF59D4C5

Import Library CSTNTV11.LIB

Dependencies None

Standards RFC 854

Overview
The Telnet protocol is used to establish a connection with a server which provides a virtual
terminal session for a user. Its functionality is similar to how character based consoles and serial
terminals work, enabling a user to login to the server, execute commands and interact with
applications running on the server. The class provides an interface for establishing the connection,
negotiating certain options (such as whether characters will be echoed back to the client) and
handling the standard I/O functions needed by the program.

The class also provides methods that enable a program to easily scan the data stream for specific
sequences of characters, making it very simple to write light-weight client interfaces to applications
running on the server. The CTelnetClient class can be combined with the CTerminalEmulator class
to provide complete terminal emulation services for a standard ANSI or DEC-VT220 terminal.

This class supports secure connections using the standard SSL and TLS protocols. To establish a
secure connection to the server using the Secure Shell (SSH) protocol, use the SocketTools
CSshClient class.

Requirements
The SocketTools Library Edition libraries are compatible with any programming language which
supports calling functions exported from a standard dynamic link library (DLL). If you are using
Visual C++ 6.0 it is required that you have Service Pack 6 (SP6) installed. You should install all
updates for your development tools and have the current Windows SDK installed. The minimum
recommended version of Visual Studio is Visual Studio 2010.

This library is supported on Windows 7, Windows Server 2008 R2 and later versions of the desktop
and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1) installed as
a minimum requirement. It is recommended that you install the current service pack and all critical
updates available for your version of the operating system.

This product includes both 32-bit and 64-bit libraries. Native 64-bit CPU support requires the 64-

bit version of Windows 7 or later versions of the Windows operating system.

Distribution
When you distribute your application that uses this library, it is recommended that you install the
file in the same folder as your application executable. If you install the library into a shared location
on the system, it is important that you distribute the correct version for the target platform and it
should be registered as a shared DLL. This is a standard Windows dynamic link library, not an
ActiveX component, and does not require COM registration.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Telnet Protocol Class Methods

Class Description

CTelnetClient Constructor which initializes the current instance of the class

~CTelnetClient Destructor which releases resources allocated by the class

Method Description

Abort Abort the current session and close the connection with the server

AttachHandle Attach the specified client handle to this instance of the class

AttachThread Attach the specified client handle to another thread

Break Send a break signal to the server

Cancel Cancel the current blocking operation

Connect Connect to the specified server

CreateSecurityCredentials Create a new security credentials structure

DeleteSecurityCredentials Delete a previously created security credentials structure

DetachHandle Detach the handle for the current instance of this class

DisableEvents Disable asynchronous event notification

DisableTrace Disable logging of network function calls to the trace log

Disconnect Disconnect from the current server

EnableEvents Enable asynchronous event notification

EnableTrace Enable logging of network function calls to a file

FreezeEvents Suspend asynchronous event processing

GetErrorString Return a description for the specified error code

GetHandle Return the client handle used by this instance of the class

GetLastError Return the last error code

GetMode Return the current client mode

GetSecurityInformation Return security information about the current client connection

GetStatus Return the current client status

GetTerminalType Return the current terminal type

GetTimeout Return the number of seconds until an operation times out

IsBlocking Determine if the client is blocked, waiting for information

IsConnected Determine if the client is connected to the server

IsInitialized Determine if the class has been successfully initialized

IsReadable Determine if data can be read from the server

IsThere Determine if the server is available

IsWritable Determine if data can be written to the server

Login Login to the server using the specified username and password

Read Read data returned by the server

ReadLine Read a line of text from the server and return it in a string buffer

RegisterEvent Register an event callback function

Search Search for a specific character sequence in the data stream

SetLastError Set the last error code

SetMode Set the current client mode

SetTerminalType Set the current terminal type

SetTimeout Set the number of seconds until an operation times out

ShowError Display a message box with a description of the specified error

TelnetEventProc Callback function that processes events generated by the client

Write Write data to the server

WriteLine Write a line of text to the server

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/telnet/class/telneteventproc.html

 CTelnetClient::CTelnetClient Method

CTelnetClient();

The CTelnetClient constructor initializes the class library and validates the license key at runtime.

Remarks
If the constructor fails to validate the runtime license, subsequent methods in this class will fail. If
the product is installed with an evaluation license, then the application will only function on the
development system and cannot be redistributed.

The constructor calls the TelnetInitialize function to initialize the library, which dynamically loads
other system libraries and allocates thread local storage. If you are using this class within another
DLL, it is important that you do not create or destroy an instance of the class from within the
DllMain function because it can result in deadlocks or access violation errors. You should not
declare static or global instances of this class within another DLL if it is linked with the C runtime
library (CRT) because it will automatically call the constructors and destructors for static and global
C++ objects and has the same restrictions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
~CTelnetClient, IsInitialized

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTelnetClient::~CTelnetClient

~CTelnetClient();

The CTelnetClient destructor releases resources allocated by the current instance of the
CTelnetClient object. It also uninitializes the library if there are no other concurrent uses of the
class.

Remarks
When a CTelnetClient object goes out of scope, the destructor is automatically called to allow the
library to free any resources allocated on behalf of the process. Any pending blocking or
asynchronous calls in this process are canceled without posting any notification messages, and all
handles that were created for the client session are destroyed.

The destructor is not called explicitly by the application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CTelnetClient

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTelnetClient::Abort Method

INT Abort();

The Abort method aborts the current session and terminates the connection.

Parameters
None.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
TELNET_ERROR. To get extended error information, call GetLastError.

Remarks
When the Abort method is called, the abort sequence is sent to the server and the connection to
the server is terminated. Once this method returns, the client handle is no longer valid. If a
program is currently executing on the server at the time this method is called, that program may
be terminated as a result of the session being aborted. Applications should normally call
Disconnect to gracefully disconnect from the server and should only use this method when the
connection must be aborted immediately.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib

See Also
Break, Cancel, IsBlocking

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTelnetClient::AttachHandle Method

VOID AttachHandle(
 HCLIENT hClient
);

The AttachHandle method attaches the specified client handle to the current instance of the
class.

Parameters
hClient

The handle to the client session that will be attached to the current instance of the class object.

Return Value
None.

Remarks
This method is used to attach a client handle created outside of the class using the SocketTools
API. Once the client handle is attached to the class, the other class member functions may be used
with that client session.

If a client handle already has been created for the class, that handle will be released when the new
handle is attached to the class object. If you want to prevent the previous client session from being
terminated, you must call the DetachHandle method. Failure to release the detached handle may
result in a resource leak in your application.

Note that the hClient parameter is presumed to be a valid client handle and no checks are
performed to ensure that the handle is valid. Specifying an invalid client handle will cause
subsequent method calls to fail.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib

See Also
AttachThread, DetachHandle, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTelnetClient::AttachThread Method

DWORD AttachThread(
 DWORD dwThreadId
);

The AttachThread method attaches the specified client handle to another thread.

Parameters
dwThreadId

The ID of the thread that will become the new owner of the handle. A value of zero specifies
that the current thread should become the owner of the client handle.

Return Value
If the method succeeds, the return value is the thread ID of the previous owner. If the method fails,
the return value is TELNET_ERROR. To get extended error information, call GetLastError.

Remarks
When a client handle is created, it is associated with the current thread that created it. Normally, if
another thread attempts to perform an operation using that handle, an error is returned since it
does not own the handle. This is used to ensure that other threads cannot interfere with an
operation being performed by the owner thread. In some cases, it may be desirable for one
thread in a client application to create the client handle, and then pass that handle to another
worker thread. The AttachThread method can be used to change the ownership of the handle to
the new worker thread. By preserving the return value from the method, the original owner of the
handle can be restored before the worker thread terminates.

This method should be called by the new thread immediately after it has been created, and if the
new thread does not release the handle itself, the ownership of the handle should be restored to
the parent thread before it terminates. Under no circumstances should AttachThread be used to
forcibly release a handle allocated by another thread while a blocking operation is in progress. To
cancel an operation, use the Cancel method and then release the handle after the blocking
method exits and control is returned to the current thread.

Note that the dwThreadId parameter is presumed to be a valid thread ID and no checks are
performed to ensure that the thread actually exists. Specifying an invalid thread ID will orphan the
client handle used by the class until the destructor is called.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib

See Also
AttachHandle, Cancel, Connect, DetachHandle, Disconnect, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTelnetClient::Break Method

INT Break();

The Break method sends a signal to the server which may terminate an application that is
currently running. The actual response to the break signal depends on the application.

Parameters
None.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
TELNET_ERROR. To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Abort, Cancel, Read, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTelnetClient::Cancel Method

INT Cancel();

The Cancel method cancels any outstanding blocking operation in the client, causing the blocking
method to fail. The application may then retry the operation or terminate the client session.

Parameters
None.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
TELNET_ERROR. To get extended error information, call GetLastError.

Remarks
When the Cancel method is called, the blocking method will not immediately fail. An internal flag
is set which causes the blocking operation to exit with an error. This means that the application
cannot cancel an operation and immediately perform some other operation. Instead it must allow
the calling stack to unwind, returning back to the blocking operation before making any further
function calls.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib

See Also
Abort, Break, IsBlocking

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTelnetClient::Connect Method

BOOL Connect(
 LPCTSTR lpszRemoteHost,
 UINT nRemotePort,
 UINT nTimeout,
 DWORD dwOptions
);

The Connect method establishes a connection with the specified server.

Parameters
lpszRemoteHost

A pointer to the name of the server to connect to; this may be a fully-qualified domain name or
an IP address.

nRemotePort

The port number the server is listening on; a value of zero specifies that the default port
number should be used. For standard connections, the default port number is 23. For secure
connections, the default port number is 992.

nTimeout

The number of seconds that the client will wait for a response from the server before failing the
current operation.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

TELNET_OPTION_NONE No connection options specified. A standard
connection to the server will be established
using the specified host name and port
number.

TELNET_OPTION_TUNNEL This option specifies that a tunneled TCP
connection and/or port-forwarding is being
used to establish the connection to the server.
This changes the behavior of the client with
regards to internal checks of the destination IP
address and remote port number, default
capability selection and how the connection is
established.

TELNET_OPTION_TRUSTEDSITE This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option
only affects connections using either the SSL or
TLS protocols.

TELNET_OPTION_SECURE This option specifies the client should attempt
to establish a secure connection with the server.
Note that the server must support secure

connections using either the SSL or TLS
protocol.

TELNET_OPTION_SECURE_EXPLICIT This option specifies the client should attempt
to establish a secure connection with the server
using the START_TLS option. The client initiates
a standard connection with the server, then
requests a secure connection during the option
negotiation process.

TELNET_OPTION_SECURE_FALLBACK This option specifies the client should permit
the use of less secure cipher suites for
compatibility with legacy servers. If this option is
specified, the client will allow connections using
TLS 1.0 and cipher suites that use RC4, MD5
and SHA1.

TELNET_OPTION_PREFER_IPV6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be
resolved to both an IPv6 and IPv4 address. This
option is ignored if the local system does not
have IPv6 enabled, or when the hostname can
only be resolved to an IPv4 address. If the
server hostname can only be resolved to an
IPv6 address, the client will attempt to establish
a connection using IPv6 regardless if this option
has been specified.

TELNET_OPTION_FREETHREAD This option specifies the handle returned by this
function may be used by any thread, and is not
limited to the thread which created it. The
application is responsible for ensuring that
access to the handle is synchronized across
multiple threads.

hEventWnd

The handle to the event notification window. This window receives messages which notify the
client of various asynchronous network events that occur. If this argument is NULL, then the
client session will be blocking and no network events will be sent to the client.

uEventMsg

The message identifier that is used when an asynchronous network event occurs. This value
should be greater than WM_USER as defined in the Windows header files. If the hEventWnd
argument is NULL, this argument should be specified as WM_NULL.

Return Value
If the method succeeds, the return value is a non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
This method will block the current thread until a connection has been established or the timeout
period has elapsed. To prevent it from blocking the main user interface thread, the application
should create a background worker thread and establish a connection by calling the Connect

method in that thread. If the application requires multiple simultaneous connections, it is
recommended you create a worker thread for each connection.

The dwOptions argument can be used to specify the threading model that is used by the library
when a connection is established. By default, the class instance is initially attached to the thread
that created it. From that point on, until the it is released, only the owner may call methods using
that instance of the class. The ownership of the class instance may be transferred from one thread
to another using the AttachThread method.

Specifying the TELNET_OPTION_FREETHREAD option enables any thread to call any method in
that instance of the class, regardless of which thread created it. It is important to note that this
option disables certain internal safety checks which are performed by the library and may result in
unexpected behavior unless access to the class instance is synchronized. If one thread calls a
function in the library, it must ensure that no other thread will call another function at the same
time using the same instance.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CreateSecurityCredentials, Disconnect, GetSecurityInformation

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTelnetClient::CreateSecurityCredentials Method

BOOL CreateSecurityCredentials(
 DWORD dwProtocol,
 DWORD dwOptions,
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword,
 LPCTSTR lpszCertStore,
 LPCTSTR lpszCertName
);

BOOL CreateSecurityCredentials(
 LPCTSTR lpszCertStore,
 LPCTSTR lpszCertName
);

BOOL CreateSecurityCredentials(
 LPCTSTR lpszCertName
);

The CreateSecurityCredentials method establishes the security credentials for the client session.

Parameters
dwProtocol

A bitmask of supported security protocols. This parameter is constructed by using a bitwise
operator with any of the following values:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The
correct protocol is automatically selected, based on
what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.

This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is
supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

dwOptions

A value which specifies one or options. This member is constructed by using a bitwise operator
with any of the following values:

Constant Description

CREDENTIAL_STORE_CURRENT_USER The library will attempt to open a store for
the current user using the certificate store
name provided in this structure. If no options
are specified, then this is the default
behavior.

CREDENTIAL_STORE_LOCAL_MACHINE The library will attempt to open a local
machine store using the certificate store
name provided in this structure. If this option
is specified, the library will always search for a
local machine store before searching for the

store by that name for the current user.

CREDENTIAL_STORE_FILENAME The certificate store name is a file that
contains the certificate and private key that
will be used.

lpszUserName

A pointer to a string which specifies the certificate owner's username. A value of NULL specifies
that no username is required. Currently this parameter is not used and any value specified will
be ignored.

lpszPassword

A pointer to a string which specifies the certificate owner's password. A value of NULL specifies
that no password is required. This parameter is only used if a PKCS #12 (PFX) certificate file is
specified and that certificate has been secured with a password. This value will be ignored the
current user or local machine certificate store is specified.

lpszCertStore

A pointer to a string which specifies the name of the certificate store to open. A certificate store
is a collection of certificates and their private keys, typically organized by how they are used. If
this value is NULL or points to an empty string, the default certificate store "MY" will be used.

Store Name Description

CA Certification authority certificates. These are certificates that are issued by
entities which are entrusted to issue certificates to other individuals or
organizations. Companies such as VeriSign and Thawte act as
certification authorities.

MY Personal certificates and their associated private keys for the current user.
This store typically holds the client certificates used to establish a user's
credentials. This corresponds to the "Personal" store that is displayed by
the certificate manager utility and is the default store used by the library.

ROOT Certificates that have been self-signed by a certificate authority. Root
certificates for a number of different certification authorities such as
VeriSign and Thawte are installed as part of the operating system and
periodically updated by Microsoft.

lpszCertName

A pointer to a null terminated string which specifies the name of the certificate to use. The
function will first search the certificate store for a certificate with a matching "friendly name"; this
is a name for the certificate that is assigned by the user. Note that the name must match
completely, but the comparison is not case sensitive. If no matching certificate is found, the
function will then attempt to find a certificate that has a matching common name (also called
the certificate subject). This comparison is less stringent, and the first partial match will be
returned. If this second search fails, the function will return an error indicating that the certificate
could not be found.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Example

pClient->CreateSecurityCredentials(
 SECURITY_PROTOCOL_DEFAULT,
 0,
 NULL,
 NULL,
 lpszCertStore,
 lpszCertName);

bConnected = pClient->Connect(lpszHostName,
 TELNET_PORT_SECURE,
 TELNET_TIMEOUT,
 TELNET_OPTION_SECURE);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Connect, DeleteSecurityCredentials, GetSecurityInformation, SECURITYCREDENTIALS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTelnetClient::DeleteSecurityCredentials Method

VOID DeleteSecurityCredentials();

The DeleteSecurityCredentials method releases the security credentials for the current session.

Parameters
None.

Return Value
None.

Remarks
This method can be used to release the memory allocated to the client or server credentials after
a secure connection has been terminated. The security credentials are released when the class
destructor is called, so it is normally not required that the application explicitly call this method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CreateSecurityCredentials

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTelnetClient::DetachHandle Method

HCLIENT DetachHandle();

The DetachHandle method detaches the client handle associated with the current instance of the
class.

Parameters
None.

Return Value
This method returns the client handle associated with the current instance of the class object. If
there is no active client session, the value INVALID_CLIENT will be returned.

Remarks
This method is used to detach a client handle created by the class for use with the SocketTools
API. Once the client handle is detached from the class, no other class member functions may be
called. Note that the handle must be explicitly released at some later point by the process or a
resource leak will occur.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib

See Also
AttachHandle, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTelnetClient::DisableEvents Method

INT DisableEvents();

The DisableEvents method disables the event notification mechanism, preventing subsequent
event notification messages from being posted to the application's message queue.

This method has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Parameters
None.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
TELNET_ERROR. To get extended error information, call GetLastError.

Remarks
The DisableEvents method is used to disable event message posting for the specified client
session. Although this will immediately prevent any new events from being generated, it is possible
that messages could be waiting in the message queue. Therefore, an application must be
prepared to handle client event messages after this method has been called.

This method is automatically called if the client has event notification enabled, and the Disconnect
method is called. The same issues regarding outstanding event messages also applies in this
situation, requiring that the application handle event messages that may reference a client handle
that is no longer valid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib

See Also
EnableEvents, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTelnetClient::DisableTrace Method

BOOL DisableTrace();

The DisableTrace method disables the logging of socket function calls to the trace log.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, a value of zero is
returned.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib

See Also
EnableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTelnetClient::Disconnect Method

VOID Disconnect();

The Disconnect method terminates the connection with the server, closing the socket and
releasing the memory allocated for the client session.

Parameters
None.

Return Value
None.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib

See Also
Connect, IsConnected

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTelnetClient::EnableEvents Method

INT EnableEvents(
 HWND hEventWnd,
 UINT uEventMsg
);

The EnableEvents method enables event notifications using Windows messages.

This method has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Applications should use the RegisterEvent method to register an event handler which is invoked
when an event occurs.

Parameters
hEventWnd

Handle to the window which will receive the client notification messages. This parameter must
specify a valid window handle. If a NULL handle is specified, event notification will be disabled.

uEventMsg

The message that is received when a client event occurs. This value must be greater than 1024.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
TELNET_ERROR. To get extended error information, call GetLastError.

Remarks
The EnableEvents method is used to request that notification messages be posted to the
specified window whenever a client event occurs. This allows an application to monitor the status
of different client operations, such as a file transfer.

The wParam argument will contain the client handle, the low word of the lParam argument will
contain the event ID, and the high word will contain any error code. If no error has occurred, the
high word will always have a value of zero. The following events may be generated:

Constant Description

TELNET_EVENT_CONNECT The connection to the server has completed. The high word of
the lParam parameter should be checked, since this
notification message will be posted if an error has occurred.

TELNET_EVENT_DISCONNECT The server has closed the connection to the client. The client
should read any remaining data and disconnect.

TELNET_EVENT_READ Data is available to read by the calling process. No additional
messages will be posted until the client has read at least some
of the data. This event is only generated if the client is in
asynchronous mode.

TELNET_EVENT_WRITE The client can now write data. This notification is sent after a
connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking

operation. This event is only generated if the client is in
asynchronous mode.

TELNET_EVENT_TIMEOUT The network operation has exceeded the specified timeout
period. The client application may attempt to retry the
operation, or may disconnect from the server and report an
error to the user.

TELNET_EVENT_CANCEL The current operation has been canceled. Under most
circumstances the client should disconnect from the server and
re-connect if needed. After an operation has been canceled,
the server may abort the connection or refuse to accept further
commands from the client.

To disable event notification, call the DisableEvents method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib

See Also
DisableEvents, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTelnetClient::EnableTrace Method

BOOL EnableTrace(
 LPCTSTR lpszTraceFile,
 DWORD dwTraceFlags
);

The EnableTrace method enables the logging of socket function calls to a file.

Parameters
lpszTraceFile

A pointer to a string which specifies the name of the trace log file. If this parameter is NULL or
an empty string, the default file name cstrace.log is used. The file is stored in the directory
specified by the TEMP environment variable, if it is defined; otherwise, the current working
directory is used.

dwTraceFlags

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

TRACE_INFO All function calls are written to the trace file. This is the default
value.

TRACE_ERROR Only those function calls which fail are recorded in the trace file.

TRACE_WARNING Only those function calls which fail or return values which indicate
a warning are recorded in the trace file.

TRACE_HEXDUMP All functions calls are written to the trace file, plus all the data that
is sent or received is displayed, in both ASCII and hexadecimal
format.

TRACE_PROCESS All function calls in the current process are logged, rather than
only those functions in the current thread. This option is useful for
multithreaded applications that are using worker threads.

Return Value
If the method succeeds, the return value is non-zero. A return value of zero indicates an error.
Failure typically indicates that the tracing library cstrcv11.dll cannot be loaded on the local
system.

Remarks
When trace logging is enabled, the file is opened, appended to and closed for each socket
function call. This makes it possible for an application to append its own logging information,
however care should be taken to ensure that the file is closed before the next network operation is
performed. To limit the size of the log files, enable and disable logging only around those sections
of code that you wish to trace.

Note that the TRACE_HEXDUMP trace level generates very large log files since it includes all of the
data exchanged between your application and the server.

Trace method logging is managed on a per-thread basis, not for each client handle. This means
that all SocketTools libraries and components share the same settings in the current thread. If you

are using multiple SocketTools libraries or components in your application, you only need to
enable logging once.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DisableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTelnetClient::FreezeEvents Method

INT FreezeEvents(
 BOOL bFreeze
);

The FreezeEvents method is used to suspend and resume event handling by the client.

Parameters
bFreeze

A non-zero value specifies that event handling should be suspended by the client. A zero value
specifies that event handling should be resumed.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
TELNET_ERROR. To get extended error information, call GetLastError.

Remarks
This method should be used when the application does not want to process events, such as when
a modal dialog is being displayed. When events are suspended, all client events are queued. If
events are re-enabled at a later point, those queued events will be sent to the application for
processing. Note that only one of each event will be generated. For example, if the client has
suspended event handling, and four read events occur, once event handling is resumed only one
of those read events will be posted to the client. This prevents the application from being flooded
by a potentially large number of queued events.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DisableEvents, EnableEvents, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTelnetClient::GetErrorString Method

INT GetErrorString(
 DWORD dwErrorCode,
 LPTSTR lpszDescription,
 INT cbDescription
);

INT GetErrorString(
 DWORD dwErrorCode,
 CString& strDescription
);

The GetErrorString method is used to return a description of a specific error code. Typically this is
used in conjunction with the GetLastError method for use with warning dialogs or as diagnostic
messages.

Parameters
dwErrorCode

The error code for which a description is returned.

lpszDescription

A pointer to the buffer that will contain a description of the specified error code. This buffer
should be at least 128 characters in length. An alternate form of the method accepts a CString
variable which will contain the error description.

cbDescription

The maximum number of characters that may be copied into the description buffer.

Return Value
If the method succeeds, the return value is the length of the description string. If the method fails,
the return value is zero, meaning that no description exists for the specified error code. Typically
this indicates that the error code passed to the method is invalid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetLastError, SetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTelnetClient::GetHandle Method

HCLIENT GetHandle();

The GetHandle method returns the client handle associated with the current instance of the class.

Parameters
None.

Return Value
This method returns the client handle associated with the current instance of the class object. If
there is no active client session, the value INVALID_CLIENT will be returned.

Remarks
This method is used to obtain the client handle created by the class for use with the SocketTools
API.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib

See Also
AttachHandle, DetachHandle, IsInitialized

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTelnetClient::GetLastError Method

DWORD GetLastError();

DWORD GetLastError(
 CString& strDescription
);

Parameters
strDescription

A string which will contain a description of the last error code value when the method returns. If
no error has been set, or the last error code has been cleared, this string will be empty.

Return Value
The return value is the last error code value for the current thread. Functions set this value by
calling the SetLastError method. The Return Value section of each reference page notes the
conditions under which the method sets the last error code.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. You should call
the GetLastError method immediately when a method's return value indicates that an error has
occurred. That is because some methods call SetLastError(0) when they succeed, clearing the
error code set by the most recently failed method.

Most methods will set the last error code value when they fail; a few methods set it when they
succeed. Function failure is typically indicated by a return value such as FALSE, NULL,
INVALID_CLIENT or TELNET_ERROR. Those methods which call SetLastError when they succeed
are noted on the method reference page.

The description of the error code is the same string that is returned by the GetErrorString
method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib

See Also
GetErrorString, SetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTelnetClient::GetMode Method

UINT GetMode();

The GetMode method returns the current client mode.

Parameters
None.

Return Values

If the method succeeds, the return value is the current client mode. If the method fails, the return
value is TELNET_ERROR. To get extended error information, call GetLastError.

Remarks
The client mode is a combination of one or more flags which determines how the client handles
local character echo and character processing. The following values are recognized:

Value Description

TELNET_MODE_LOCALECHO The local client is responsible for echoing data entered by the
user. By default, this mode is not set which means that the
server is responsible for echoing back each character written to
it.

TELNET_MODE_BINARY Data exchanged between the client and server should not be
converted or line buffered. If this option is not specified, the
high-bit will be cleared on all characters and single linefeeds will
be automatically converted to carriage-return/linefeed
sequences.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SetMode

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTelnetClient::GetSecurityInformation Method

BOOL GetSecurityInformation(
 LPSECURITYINFO lpSecurityInfo
);

The GetSecurityInformation method returns security protocol, encryption and certificate
information about the current client connection.

Parameters
lpSecurityInfo

A pointer to a SECURITYINFO structure which contains information about the current client
connection. The dwSize member of this structure must be initialized to the size of the structure
before passing the address of the structure to this method.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
This method is used to obtain security related information about the current client connection to
the server. It can be used to determine if a secure connection has been established, what security
protocol was selected, and information about the server certificate. Note that a secure connection
has not been established, the dwProtocol structure member will contain the value
SECURITY_PROTOCOL_NONE.

Example
The following example notifies the user if the connection is secure or not:

SECURITYINFO securityInfo;
securityInfo.dwSize = sizeof(SECURITYINFO);

if (pClient->GetSecurityInformation(&securityInfo))
{
 if (securityInfo.dwProtocol == SECURITY_PROTOCOL_NONE)
 {
 MessageBox(NULL, _T("The connection is not secure"),
 _T("Connection"), MB_OK);
 }
 else
 {
 if (securityInfo.dwCertStatus == SECURITY_CERTIFICATE_VALID)
 {
 MessageBox(NULL, _T("The connection is secure"),
 _T("Connection"), MB_OK);
 }
 else
 {
 MessageBox(NULL, _T("The server certificate not valid"),
 _T("Connection"), MB_OK);
 }
 }
}

Requirements

Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Connect, CreateSecurityCredentials, SECURITYINFO

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTelnetClient::GetStatus Method

INT GetStatus();

The GetStatus method the current status of the client session.

Parameters
None.

Return Value
If the method succeeds, the return value is the client status code. If the method fails, the return
value is TELNET_ERROR. To get extended error information, call GetLastError.

Remarks
The GetStatus method returns a numeric code which identifies the current state of the client
session. The following values may be returned:

Value Constant Description

0 TELNET_STATUS_UNUSED No connection has been established.

1 TELNET_STATUS_IDLE The client is current idle and not sending or
receiving data.

2 TELNET_STATUS_CONNECT The client is establishing a connection with
the server.

3 TELNET_STATUS_READ The client is reading data from the server.

4 TELNET_STATUS_WRITE The client is writing data to the server.

5 TELNET_STATUS_DISCONNECT The client is disconnecting from the server.

In a multithreaded application, any thread in the current process may call this method to obtain
status information for the specified client session.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib

See Also
IsBlocking, IsConnected, IsReadable, IsWritable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTelnetClient::GetTerminalType Method

INT GetTerminalType(
 LPCTSTR lpszTermType,
 INT nMaxLength
);

INT GetTerminalType(
 CString& strTermType
);

The GetTerminalType method returns the terminal type for the current client session.

Parameters
lpszTermType

Points to a buffer which the current terminal type is copied into. This buffer should be at least
32 characters in length, including the terminating null character. This argument may also be a
CString object which will contain the terminal type when the method returns.

nMaxLength

Maximum number of characters that may be copied to the buffer, including the terminating null
character.

Return Value
If the method succeeds, the return value is the length of the terminal type name. A value of zero
indicates that no terminal type has been specified. If the method fails, the return value is
TELNET_ERROR. To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SetTerminalType

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTelnetClient::GetTimeout Method

INT GetTimeout();

The GetTimeout method returns the number of seconds the client will wait for a response from
the server. Once the specified number of seconds has elapsed, the method will fail and return to
the caller.

Parameters
None.

Return Value
If the method succeeds, the return value is the timeout period in seconds. If the method fails, the
return value is TELNET_ERROR. To get extended error information, call GetLastError.

Remarks
The timeout value is only used with blocking client connections. A value of zero indicates that the
default timeout period of 20 seconds should be used.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib

See Also
Connect, IsReadable, IsWritable, Read, SetTimeout, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTelnetClient::IsBlocking Method

BOOL IsBlocking();

The IsBlocking method is used to determine if the client is currently performing a blocking
operation.

Parameters
None.

Return Value
If the client is performing a blocking operation, the method returns a non-zero value. If the client
is not performing a blocking operation, or the client handle is invalid, the method returns zero.

Remarks
Because a blocking operation can allow the application to be re-entered (for example, by pressing
a button while the operation is being performed), it is possible that another blocking method may
be called while it is in progress. Since only one thread of execution may perform a blocking
operation at any one time, an error would occur. The IsBlocking method can be used to
determine if the client is already blocked, and if so, take some other action (such as warning the
user that they must wait for the operation to complete).

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Cancel, GetStatus, IsConnected, IsInitialized, IsReadable, IsWritable, Read, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTelnetClient::IsConnected Method

BOOL IsConnected();

The IsConnected method is used to determine if the client is currently connected to a server.

Parameters
None.

Return Value
If the client is connected to a server, the method returns a non-zero value. If the client is not
connected, or the client handle is invalid, the method returns zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib

See Also
GetStatus, IsBlocking, IsInitialized, IsReadable, IsWritable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTelnetClient::IsInitialized Method

BOOL IsInitialized();

The IsInitialized method returns whether or not the class object has been successfully initialized.

Parameters
None.

Return Value
This method returns a non-zero value if the class object has been successfully initialized. A return
value of zero indicates that the runtime license key could not be validated or the networking
library could not be loaded by the current process.

Remarks
When an instance of the class is created, the class constructor will attempt to initialize the
component with the runtime license key that was created when SocketTools was installed. If the
constructor is unable to validate the license key or load the networking libraries, this initialization
will fail.

If SocketTools was installed with an evaluation license, the application cannot be redistributed to
another system. The class object will fail to initialize if the application is executed on another
system, or if the evaluation period has expired. To redistribute your application, you must
purchase a development license which will include the runtime key that is needed to redistribute
your software to other systems. Refer to the Developer's Guide for more information.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib

See Also
CTelnetClient, IsBlocking, IsConnected

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTelnetClient::IsReadable Method

BOOL IsReadable(
 INT nTimeout,
 LPDWORD lpdwAvail
);

The IsReadable method is used to determine if data is available to be read from the server.

Parameters
nTimeout

Timeout for server response, in seconds. A value of zero specifies that the connection should be
polled without blocking the current thread.

lpdwAvail

A pointer to an unsigned integer which will contain the number of bytes available to read. This
parameter may be NULL if this information is not required.

Return Value
If the client can read data from the server within the specified timeout period, the method returns
a non-zero value. If the client cannot read any data, the method returns zero.

Remarks
On some platforms, this value will not exceed the size of the receive buffer (typically 64K bytes).
Because of differences between TCP/IP stack implementations, it is not recommended that your
application exclusively depend on this value to determine the exact number of bytes available.
Instead, it should be used as a general indicator that there is data available to be read.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib

See Also
GetStatus, IsBlocking, IsConnected, IsInitialized, IsWritable, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTelnetClient::IsThere Method

BOOL IsThere();

The IsThere method reports the response of the client to a "Are you there" command to the
telnet server.

Parameters
None.

Return Value
The method returns a non-zero value if the server acknowledges a specific control sequence used
to determine if a server is responsive. If the server does not respond, the method will return a
value of zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib

See Also
GetStatus, IsBlocking, IsConnected, IsReadable, IsWritable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTelnetClient::IsWritable Method

BOOL IsWritable(
 INT nTimeout
);

The IsWritable method is used to determine if data can be written to the server.

Parameters
nTimeout

Timeout for server response, in seconds. A value of zero specifies that the connection should be
polled without blocking the current thread.

Return Value
If the client can write data to the server within the specified timeout period, the method returns a
non-zero value. If the client cannot write any data, the method returns zero.

Remarks
Although this method can be used to determine if some amount of data can be sent to the
remote process it does not indicate the amount of data that can be written without blocking the
client. In most cases, it is recommended that large amounts of data be broken into smaller logical
blocks, typically some multiple of 512 bytes in length.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib

See Also
GetStatus, IsBlocking, IsConnected, IsInitialized, IsReadable, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTelnetClient::Login Method

BOOL Login(
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword
);

The Login method attempts to authenticate the user and log them in to the current session.

Parameters
lpszUserName

A pointer to a string which specifies the name of the user to authenticate.

lpszPassword

A pointer to a string which specifies the password to be used when authenticating the user. If
the user does not require a password, this parameter may be NULL.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The Login method is used to authenticate a user, logging them into the server. This method is
specifically designed to work with most UNIX based servers, and may work with other servers that
use a similar login process. The method works by scanning the data stream for a username
prompt and then replying with the specified username. If that is successful, it will then scan for a
password prompt and provide the specified password. If no recognized prompt is found, or if the
server responds with an error indicating that the username or password is invalid, the method will
fail.

If the Login method succeeds, the next call to Read by the client will return any welcome message
to the user. This is typically followed by a command prompt where the user can enter commands
to be executed on the server. The data sent by the server during the login process is discarded
and not available when the method returns. If the client requires this information, use the Search
method to automate the login process instead.

Because the Login method is designed for UNIX based systems, it may not work with servers
running on other operating system platforms such as Windows or VMS. In this case, applications
should use the Search method to search for the appropriate login prompts in the data stream.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Connect, IsConnected, IsReadable, Read, Search

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTelnetClient::Read Method

INT Read(
 LPBYTE lpBuffer,
 INT cbBuffer
);

INT Read(
 CString& strBuffer,
 INT cbBuffer
);

The Read method reads the specified number of bytes from the client socket and copies them
into the buffer. The data may be of any type, and is not terminated with a null character.

Parameters
lpBuffer

Pointer to the buffer in which the data will be copied. An alternate form of this method allows a
CString variable to be passed and data read from the socket will be returned in that string.

cbBuffer

The maximum number of bytes to read and copy into the specified buffer. This value must be
greater than zero.

Return Value
If the method succeeds, the return value is the number of bytes actually read. A return value of
zero indicates that the server has closed the connection and there is no more data available to be
read. If the method fails, the return value is TELNET_ERROR. To get extended error information,
call GetLastError.

Remarks
When Read is called and the client is in non-blocking mode, it is possible that the method will fail
because there is no available data to read at that time. This should not be considered a fatal error.
Instead, the application should simply wait to receive the next asynchronous notification that data
is available.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib

See Also
EnableEvents, IsBlocking, IsReadable, IsWritable, RegisterEvent, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTelnetClient::ReadLine Method

BOOL ReadLine(
 LPTSTR lpszBuffer,
 LPINT lpnLength
);

BOOL ReadLine(
 LPTSTR lpszBuffer,
 INT nMaxLength
);

BOOL ReadLine(
 CString& strBuffer,
 INT nMaxLength
);

The ReadLine method reads up to a line of data from the server and returns it in a string buffer.

Parameters
lpszBuffer

Pointer to the string buffer that will contain the data when the method returns. The string will be
terminated with a null character, and will not contain the end-of-line characters. An alternate
form of the method accepts a CString argument which will contain the line of text returned by
the server.

lpnLength

A pointer to an integer value which specifies the length of the buffer. The value should be
initialized to the maximum number of characters that can be copied into the string buffer,
including the terminating null character. When the method returns, its value will updated with
the actual length of the string.

nMaxLength

An integer value which specifies the maximum length of the buffer.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The ReadLine method reads data from the server and copies into a specified string buffer. Unlike
the Read method which reads arbitrary bytes of data, this method is specifically designed to
return a single line of text data in a string. When an end-of-line character sequence is
encountered, the method will stop and return the data up to that point. The string buffer is
guaranteed to be null-terminated and will not contain the end-of-line characters.

There are some limitations when using ReadLine. The method should only be used to read text,
never binary data. In particular, the method will discard nulls, linefeed and carriage return control
characters. The Unicode version of this method will return a Unicode string, however it does not
support reading raw Unicode data from the socket. Any data read from the socket is internally
buffered as octets (eight-bit bytes) and converted to Unicode using the MultiByteToWideChar
function.

This method will force the thread to block until an end-of-line character sequence is processed,
the read operation times out or the server closes its end of the socket connection. If this method is

 called with asynchronous events enabled, it will automatically switch the socket into a blocking
mode, read the data and then restore the socket to asynchronous operation. If another socket
operation is attempted while ReadLine is blocked waiting for data from the server, an error will
occur. It is recommended that this method only be used with blocking (synchronous) socket
connections; if the application needs to establish multiple simultaneous connections, it should
create worker threads to manage each connection.

The Read and ReadLine method calls can be intermixed, however be aware that Read will
consume any data that has already been buffered by the ReadLine method and this may have
unexpected results.

Unlike the Read method, it is possible for data to be returned in the string buffer even if the return
value is zero. Applications should check the length of the string to determine if any data was
copied into the buffer. For example, if a timeout occurs while the method is waiting for more data
to arrive on the socket, it will return zero; however, data may have already been copied into the
string buffer prior to the error condition. It is the responsibility of the application to process that
data, regardless of the return value.

Example
CString strBuffer;
BOOL bResult;

do
{
 bResult = pClient->ReadLine(strBuffer);

 if (strBuffer.GetLength() > 0)
 {
 // Process the line of data returned in the string
 // buffer; the string is always null-terminated
 }
} while (bResult);

DWORD dwError = pClient->GetLastError();

if (dwError == ST_ERROR_CONNECTION_CLOSED)
{
 // The server has closed its side of the connection and
 // there is no more data available to be read
}
else if (dwError != 0)
{
 // An error has occurred while reading a line of data
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
IsReadable, Read, Write, WriteLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTelnetClient::RegisterEvent Method

INT RegisterEvent(
 UINT nEventId,
 TELNETEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

The RegisterEvent method registers an event handler for the specified event.

Parameters
nEventId

An unsigned integer which specifies which event should be registered with the specified callback
function. One of the following values may be used:

Constant Description

TELNET_EVENT_CONNECT The connection to the server has completed.

TELNET_EVENT_DISCONNECT The server has closed the connection to the client. The client
should read any remaining data and disconnect.

TELNET_EVENT_READ Data is available to read by the calling process. No additional
messages will be posted until the client has read at least some
of the data. This event is only generated if the client is in
asynchronous mode.

TELNET_EVENT_WRITE The client can now write data. This notification is sent after a
connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking
operation. This event is only generated if the client is in
asynchronous mode.

TELNET_EVENT_TIMEOUT The network operation has exceeded the specified timeout
period. The client application may attempt to retry the
operation, or may disconnect from the server and report an
error to the user.

TELNET_EVENT_CANCEL The current operation has been canceled. Under most
circumstances the client should disconnect from the server and
re-connect if needed. After an operation has been canceled,
the server may abort the connection or refuse to accept further
commands from the client.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the TelnetEventProc callback
function. If this parameter is NULL, the callback for the specified event is disabled.

dwParam

A user-defined integer value that is passed to the callback function. If the application targets the
x86 (32-bit) platform, this parameter must be a 32-bit unsigned integer. If the application
targets the x64 (64-bit) platform, this parameter must be a 64-bit unsigned integer.

Return Value

If the method succeeds, the return value is zero. If the method fails, the return value is
TELNET_ERROR. To get extended error information, call GetLastError.

Remarks
The RegisterEvent method associates a callback function with a specific event. The event handler
is an TelnetEventProc function that is invoked when the event occurs. Arguments are passed to
the function to identify the client session, the event type and the user-defined value specified
when the event handler is registered. If the event occurs because of an error condition, the error
code will be provided to the handler.

The callback function specified by the lpEventProc parameter must be declared using the
__stdcall calling convention. This ensures the arguments passed to the event handler are pushed
on to the stack in the correct order. Failure to use the correct calling convention will corrupt the
stack and cause the application to terminate abnormally.

The dwParam parameter is commonly used to identify the class instance which is associated with
the event that has occurred. Applications will cast the this pointer to a DWORD_PTR value when
calling this function, and then the event handler will cast it back to a pointer to the class instance.
This gives the handler access to the class member variables and methods.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib

See Also
DisableEvents, EnableEvents, FreezeEvents, TelnetEventProc

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/telnet/class/telneteventproc.html

 CTelnetClient::Search Method

BOOL Search(
 LPCTSTR lpszString
);

BOOL Search(
 LPCTSTR lpszString,
 LPBYTE lpBuffer,
 LPDWORD lpdwLength
);

BOOL Search(
 LPCTSTR lpszString,
 HGLOBAL* lpBuffer,
 LPDWORD lpdwLength
);

BOOL Search(
 LPCTSTR lpszString,
 CString& strBuffer
);

The Search method searches for a specific character sequence in the data stream and stops
reading if the sequence is encountered.

Parameters
lpszString

A pointer to a string which specifies the sequence of characters to search for in the data stream.
This parameter cannot be NULL or point to an empty string.

lpBuffer

A pointer to a byte buffer which will contain the output from the server, or a pointer to a global
memory handle which will reference the output when the method returns. If the output from
the server is not required, this parameter may be NULL.

lpdwLength

A pointer to an unsigned integer which should be initialized to the maximum number of bytes
that can be copied to the buffer specified by the lpBuffer parameter. If the lpBuffer parameter
points to a global memory handle, the length value should be initialized to zero. When the
method returns, this value will be updated with the actual number of bytes of output stored in
the buffer. If the lpBuffer parameter is NULL, this parameter should also be NULL.

Return Value
If the method succeeds and the character sequences was found in the data stream, the return
value is non-zero. If the method fails or a timeout occurs before the sequence is found, the return
value is zero. To get extended error information, call GetLastError.

Remarks
The Search method searches for a character sequence in the data stream and stops reading when
it is found. This is useful when the client wants to automate responses to the server, such as
logging in a user and executing a command. The method collects the output from the server and
stores it in the buffer specified by the lpBuffer parameter. When the method returns, the buffer
will contain everything sent by the server up to and including the search string.

The lpBuffer parameter may be specified in one of two ways, depending on the needs of the
application. The first method is to pre-allocate a buffer large enough to store the a fixed amount
of output. In this case, the lpBuffer parameter will point to the buffer that was allocated, the value
that the lpdwLength parameter points to should be initialized to the size of that buffer. If the
server sends more output than can be stored in the buffer, the remaining output will be discarded.

The second method that can be used is have the lpBuffer parameter point to a global memory
handle which will contain the output when the method returns. In this case, the value that the
lpdwLength parameter points to must be initialized to zero. It is important to note that the
memory handle returned by the method must be freed by the application, otherwise a memory
leak will occur. This method is preferred if the client application does not have a general idea of
how much output will be generated until the search string is found.

Example
CString strOutput;
BOOL bResult;

// Search for the login prompt issued by the server

bResult = pClient->Search(T("ogin: ");

// If the Login: prompt was found, then write out the
// username and search for the Password: prompt; note
// that the username, password and command strings are
// terminated with a carriage-return/linefeed sequence
// which the server will see as the user pressing the
// Enter or Return key on the keyboard

if (bResult)
{
 pClient->Write(lpszUserName);
 bResult = pClient->Search(_T("word: "));
}

// If the Password: prompt was found, write out the
// password and then search for the shell prompt;
// the prompt may be different, depending on what
// operating system and shell is being used

if (bResult)
{
 pClient->Write(lpszPassword);
 bResult = Search(hClient, _T("$ "));
}

// If the shell prompt was found, issue the command
// and capture the output into the strOutput string
// and then write it to standard output

if (bResult)
{
 pClient->Write(lpszCommand);

 if (pClient->Search(_T("$ "), strOutput))
 cout << (LPCTSTR)strOutput << endl;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
IsBlocking, IsReadable, Login, Read

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTelnetClient::SetLastError Method

VOID SetLastError(
 DWORD dwErrorCode
);

The SetLastError method sets the last error code for the current thread. This method is typically
used to clear the last error by specifying a value of zero as the parameter.

Parameters
dwErrorCode

Specifies the last error code for the current thread.

Return Value
None.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. Most methods will
set the last error code value when they fail; a few methods set it when they succeed. Function
failure is typically indicated by a return value such as FALSE, NULL, INVALID_CLIENT or
TELNET_ERROR. Those methods which call SetLastError when they succeed are noted on the
method reference page.

Applications can retrieve the value saved by this method by using the GetLastError method. The
use of GetLastError is optional; an application can call the method to determine the specific
reason for a method failure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib

See Also
GetErrorString, GetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTelnetClient::SetMode Method

UINT SetMode(
 UINT nMode,
 BOOL bEnable
);

The SetMode method sets one or more client modes for the specified session.

Parameters
nMode

The client mode. This value is a combination of one or more flags which determines how the
client handles local character echo and character processing. The following values are
recognized:

Value Description

TELNET_MODE_LOCALECHO The local client is responsible for echoing data entered
by the user. By default, this mode is not set which
means that the server is responsible for echoing back
each character written to it.

TELNET_MODE_BINARY Data exchanged between the client and server should
not be converted or line buffered. If this option is not
specified, the high-bit will be cleared on all characters,
and single linefeed characters will be converted to
carriage-return/linefeed sequences.

bEnable

This boolean flag specifies if the specified mode is to be enabled or disabled.

Return Value
If the method succeeds, the return value is the previous mode. If the method fails, the return value
is TELNET_ERROR. To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib

See Also
GetMode

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTelnetClient::SetTerminalType Method

INT SetTerminalType(
 LPCTSTR lpszTermType
);

The SetTerminalType method sets the terminal type for the current client session.

Parameters
lpszTermType

Points to a string which specifies the terminal type.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
TELNET_ERROR. To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetTerminalType

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTelnetClient::SetTimeout Method

INT SetTimeout(
 UINT nTimeout
);

The SetTimeout method sets the number of seconds the client will wait for a response from the
server. Once the specified number of seconds has elapsed, the method will fail and return to the
caller.

Parameters
nTimeout

The number of seconds to wait for a blocking operation to complete.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
TELNET_ERROR. To get extended error information, call GetLastError.

Remarks
The timeout value is only used with blocking client connections.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib

See Also
Connect, GetTimeout, IsReadable, IsWritable, Read, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTelnetClient::ShowError Method

INT ShowError(
 LPCTSTR lpszAppTitle,
 UINT uType,
 DWORD dwErrorCode
);

The ShowError method displays a message box which describes the specified error.

Parameters
lpszAppTitle

A pointer to a string which specifies the title of the message box that is displayed. If this
argument is NULL or omitted, then the default title of "Error" will be displayed.

uType

An unsigned integer which specifies the type of message box that will be displayed. This is the
same value that is used by the MessageBox method in the Windows API. If a value of zero is
specified, then a message box with a single OK button will be displayed. Refer to that method
for a complete list of options.

dwErrorCode

Specifies the error code that will be used when displaying the message box. If this argument is
zero, then the last error that occurred in the current thread will be displayed.

Return Value
If the method is successful, the return value will be the return value from the MessageBox
function. If the method fails, it will return a value of zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetErrorString, GetLastError, SetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTelnetClient::Write Method

INT Write(
 LPBYTE lpBuffer,
 INT cbBuffer
);

INT Write(
 LPCTSTR lpszBuffer
 INT cbBuffer
);

The Write method sends the specified number of bytes to the server.

Parameters
lpBuffer

The pointer to the buffer which contains the data that is to be sent to the server. In an alternate
form of the method, the pointer is to a string.

cbBuffer

The number of bytes to send from the specified buffer. This value must be greater than zero,
unless a pointer to a string buffer is passed as the parameter. In that case, if the value is -1, all of
the characters in the string, up to but not including the terminating null character, will be sent to
the server.

Return Value
If the method succeeds, the return value is the number of bytes actually written. If the method
fails, the return value is TELNET_ERROR. To get extended error information, call GetLastError.

Remarks
The return value may be less than the number of bytes specified by the cbBuffer parameter. In this
case, the data has been partially written and it is the responsibility of the client application to send
the remaining data at some later point. For non-blocking clients, the client must wait for the next
asynchronous notification message before it resumes sending data.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
EnableEvents, IsBlocking, IsReadable, IsWritable, Read, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTelnetClient::WriteLine Method

BOOL WriteLine(
 LPCTSTR lpszBuffer,
 LPINT lpnLength
);

The WriteLine function sends a line of text to the server, terminated by a carriage-return and
linefeed.

Parameters
lpszBuffer

The pointer to a string buffer which contains the data that will be sent to the server. All
characters up to, but not including, the terminating null character will be written to the socket.
The data will always be terminated with a carriage-return and linefeed control character
sequence. If this parameter points to an empty string or NULL pointer, then a only a carriage-
return and linefeed are written to the socket.

lpnLength

A pointer to an integer value which will contain the number of characters written to the socket,
including the carriage-return and linefeed sequence. If this information is not required, a NULL
pointer may be specified.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The WriteLine method writes a line of text to the server and terminates the line with a carriage-
return and linefeed control character sequence. Unlike the Write method which writes arbitrary
bytes of data to the socket, this method is specifically designed to write a single line of text data
from a null-terminated string.

If the lpszBuffer string is terminated with a linefeed (LF) or carriage return (CR) character, it will be
automatically converted to a standard CRLF end-of-line sequence. Because the string will be sent
with a terminating CRLF sequence, the value returned in the lpnLength parameter will typically be
larger than the original string length (reflecting the additional CR and LF characters), unless the
string was already terminated with CRLF.

There are some limitations when using WriteLine. This method should only be used to send text,
never binary data. In particular, it will discard nulls and append linefeed and carriage return control
characters to the data stream. The Unicode version of this method will accept a Unicode string,
however it does not support writing raw Unicode data to the socket. Unicode strings will be
automatically converted to UTF-8 encoding using the WideCharToMultiByte function and then
written to the socket as a stream of bytes.

This method will force the thread to block until the complete line of text has been written, the
write operation times out or the server aborts the connection. If this method is called with
asynchronous events enabled, it will automatically switch the socket into a blocking mode, send
the data and then restore the socket to asynchronous operation. If another socket operation is
attempted while WriteLine is blocked sending data to the server, an error will occur. It is
recommended that this method only be used with blocking (synchronous) socket connections; if
the application needs to establish multiple simultaneous connections, it should create worker

threads to manage each connection.

The Write and WriteLine methods can be safely intermixed.

Unlike the Write function, it is possible for data to have been written to the socket if the return
value is zero. For example, if a timeout occurs while the method is waiting to send more data to
the server, it will return zero; however, some data may have already been written prior to the error
condition. If this is the case, the lpnLength argument will specify the number of characters actually
written up to that point.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
IsWritable, Read, ReadLine, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Telnet Protocol Data Structures

SECURITYCREDENTIALS
SECURITYINFO

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SECURITYCREDENTIALS Structure

The SECURITYCREDENTIALS structure specifies the information needed by the library to specify
additional security credentials, such as a client certificate or private key, when establishing a secure
connection.

typedef struct _SECURITYCREDENTIALS
{
 DWORD dwSize;
 DWORD dwProtocol;
 DWORD dwOptions;
 DWORD dwReserved;
 LPCTSTR lpszHostName;
 LPCTSTR lpszUserName;
 LPCTSTR lpszPassword;
 LPCTSTR lpszCertStore;
 LPCTSTR lpszCertName;
 LPCTSTR lpszKeyFile;
} SECURITYCREDENTIALS, *LPSECURITYCREDENTIALS;

Members
dwSize

Size of this structure. If the structure is being allocated dynamically, this member must be set to
the size of the structure and all other unused structure members must be initialized to a value of
zero or NULL.

dwProtocol

A bitmask of supported security protocols. The value of this structure member is constructed by
using a bitwise operator with any of the following values:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The
correct protocol is automatically selected, based on

what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.
This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is
supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

dwOptions

A value which specifies one or options. This member is constructed by using a bitwise operator
with any of the following values:

Constant Description

CREDENTIAL_STORE_CURRENT_USER The library will attempt to open a store for
the current user using the certificate store
name provided in this structure. If no options
are specified, then this is the default
behavior.

CREDENTIAL_STORE_LOCAL_MACHINE The library will attempt to open a local
machine store using the certificate store

name provided in this structure. If this option
is specified, the library will always search for a
local machine store before searching for the
store by that name for the current user.

CREDENTIAL_STORE_FILENAME The certificate store name is a file that
contains the certificate and private key that
will be used.

dwReserved

This structure member is reserved for future use and should always be initialized to zero.

lpszHostName

A pointer to a null terminated string which specifies the hostname that will be used when
validating the server certificate. If this member is NULL, then the server certificate will be
validated against the hostname used to establish the connection.

lpszUserName

A pointer to a null terminated string which identifies the owner of client certificate. Currently this
member is not used by the library and should always be initialized as a NULL pointer.

lpszPassword

A pointer to a null terminated string which specifies the password needed to access the
certificate. Currently this member is only used if the CREDENTIAL_STORE_FILENAME option has
been specified. If there is no password associated with the certificate, then this member should
be initialized as a NULL pointer.

lpszCertStore

A pointer to a null terminated string which specifies the name of the certificate store to open. A
certificate store is a collection of certificates and their private keys, typically organized by how
they are used. If this value is NULL or points to an empty string, the default certificate store "MY"
will be used.

Store
Name

Description

CA
Certification authority certificates. These are certificates that are issued by entities
which are entrusted to issue certificates to other individuals or organizations.
Companies such as VeriSign and Thawte act as certification authorities.

MY

Personal certificates and their associated private keys for the current user. This
store typically holds the client certificates used to establish a user's credentials.
This corresponds to the "Personal" store that is displayed by the certificate
manager utility and is the default store used by the library.

ROOT
Certificates that have been self-signed by a certificate authority. Root certificates
for a number of different certification authorities such as VeriSign and Thawte are
installed as part of the operating system and periodically updated by Microsoft.

lpszCertName

A pointer to a null terminated string which specifies the name of the certificate to use. The
library will first search the certificate store for a certificate with a matching "friendly name"; this is
a name for the certificate that is assigned by the user. Note that the name must match
completely, but the comparison is not case sensitive. If no matching certificate is found, the
library will then attempt to find a certificate that has a matching common name (also called the
certificate subject). This comparison is less stringent, and the first partial match will be returned.

If this second search fails, the library will return an error indicating that the certificate could not
be found. If the SECURITY_PROTOCOL_SSH protocol has been specified, this member should
be NULL.

lpszKeyFile

A pointer to a null terminated string which specifies the name of the file which contains the
private key required to establish the connection. This member is only used for SSH connections
and should always be NULL when establishing a secure connection using SSL or TLS.

Remarks
A client application only needs to create this structure if the server requires that the client provide
a certificate as part of the process of negotiating the secure session. If a certificate is required,
note that it must have a private key associated with it. Attempting to use a certificate that does not
have a private key will result in an error during the connection process indicating that the client
credentials could not be established.

If you are using a local certificate store, with the certificate and private key stored in the registry,
you can explicitly specify whether the certificate store for the current user or the local machine (all
users) should be used. This is done by prefixing the certificate store name with "HKCU:" for the
current user, or "HKLM:" for the local machine. For example, a certificate store name of
"HKLM:MY" would specify the personal certificate store for the local machine, rather than the
current user. If neither prefix is specified, then it will default to the certificate store for the current
user. You can manage these certificates using the CertMgr.msc Microsoft Management Console
(MMC) snap-in.

It is possible to load the certificate from a file rather than from current user's certificate store. The
dwOptions member should be set to CREDENTIAL_STORE_FILENAME and the lpszCertStore
member should specify the name of the file that contains the certificate and its private key. The file
must be in Private Information Exchange (PFX) format, also known as PKCS #12. These certificate
files typically have an extension of .pfx or .p12. Note that if a password was specified when the
certificate file was created, it must be provided in the lpszPassword member or the library will be
unable to access the certificate.

Note that the lpszUserName and lpszPassword members are values which are used to access the
certificate store or private key file. They are not the credentials which are used when establishing
the connection with the remote host or authenticating the client session.

The TLS 1.1 and TLS 1.2 protocols are only supported on Windows 7, Windows Server 2008 R2
and later versions of the platform. If these options are specified and the application is running on
Windows XP or Windows Vista, the protocol version will be downgraded to TLS 1.0 for backwards
compatibility with those platforms.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SECURITYINFO Structure

This structure contains information about a secure connection that has been established.

typedef struct _SECURITYINFO
{
 DWORD dwSize;
 DWORD dwProtocol;
 DWORD dwCipher;
 DWORD dwCipherStrength;
 DWORD dwHash;
 DWORD dwHashStrength;
 DWORD dwKeyExchange;
 DWORD dwCertStatus;
 SYSTEMTIME stCertIssued;
 SYSTEMTIME stCertExpires;
 LPCTSTR lpszCertIssuer;
 LPCTSTR lpszCertSubject;
 LPCTSTR lpszFingerprint;
} SECURITYINFO, *LPSECURITYINFO;

Members
dwSize

Specifies the size of the data structure. This member must always be initialized to
sizeof(SECURITYINFO) prior to passing the address of this structure to the function. Note that
if this member is not initialized, an error will be returned indicating that an invalid parameter has
been passed to the function.

dwProtocol

A numeric value which specifies the protocol that was selected to establish the secure
connection. One of the following values will be returned:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The

correct protocol is automatically selected, based on
what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.
This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is
supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

dwCipher

A numeric value which specifies the cipher that was selected when establishing the secure
connection. One of the following values will be returned:

Constant Description

SECURITY_CIPHER_RC2 The RC2 block cipher was selected. This is a variable
key length cipher which supports keys between 40 and
128 bits, in 8-bit increments.

SECURITY_CIPHER_RC4 The RC4 stream cipher was selected. This is a variable
key length cipher which supports keys between 40 and
128 bits, in 8-bit increments.

SECURITY_CIPHER_RC5 The RC5 block cipher was selected. This is a variable
key length cipher which supports keys up to 2040 bits,
in 8-bit increments.

SECURITY_CIPHER_DES The DES (Data Encryption Standard) block cipher was
selected. This is a fixed key length cipher, using 56-bit
keys.

SECURITY_CIPHER_DES3 The Triple DES block cipher was selected. This cipher
encrypts the data three times using different keys,
effectively providing a 168-bit length key.

SECURITY_CIPHER_DESX A variant of the DES block cipher which XORs an extra
64-bits of the key before and after the plaintext has
been encrypted, increasing the key size to 184 bits.

SECURITY_CIPHER_AES The Advanced Encryption Standard cipher (also known
as the Rijndael cipher) is a fixed block size cipher which
use a key size of 128, 192 or 256 bits. This cipher is
supported on Windows XP SP3 and later versions of
the operating system.

SECURITY_CIPHER_SKIPJACK The Skipjack block cipher was selected. This is a fixed
key length cipher, using 80-bit keys.

SECURITY_CIPHER_BLOWFISH The Blowfish block cipher was selected. This is a
variable key length cipher up to 448 bits, using a 64-bit
block size.

dwCipherStrength

A numeric value which specifies the strength (the length of the cipher key in bits) of the cipher
that was selected. Typically this value will be 128 or 256. 40-bit and 56-bit key lengths are
considered weak encryption, and subject to brute force attacks. 128-bit and 256-bit key lengths
are considered to be secure, and are the recommended key length for secure communications.

dwHash

A numeric value which specifies the hash algorithm which was selected. One of the following
values will be returned:

Constant Description

SECURITY_HASH_MD5 The MD5 algorithm was selected. Its use has been
deprecated and is no longer considered to be
cryptographically secure.

SECURITY_HASH_SHA1 The SHA-1 algorithm was selected. Its use has been
deprecated and is no longer considered to be
cryptographically secure.

SECURITY_HASH_SHA256 The SHA-256 algorithm was selected.

SECURITY_HASH_SHA384 The SHA-384 algorithm was selected.

SECURITY_HASH_SHA512 The SHA-512 algorithm was selected.

dwHashStrength

A numeric value which specifies the strength (the length in bits) of the message digest that was

selected.

dwKeyExchange

A numeric value which specifies the key exchange algorithm which was selected. One of the
following values will be returned:

Constant Description

SECURITY_KEYEX_RSA The RSA public key algorithm was selected.

SECURITY_KEYEX_KEA The Key Exchange Algorithm (KEA) was selected. This is an
improved version of the Diffie-Hellman public key algorithm.

SECURITY_KEYEX_DH The Diffie-Hellman key exchange algorithm was selected.

SECURITY_KEYEX_ECDH The Elliptic Curve Diffie-Hellman key exchange algorithm was
selected. This is a variant of the Diffie-Hellman algorithm
which uses elliptic curve cryptography. This key exchange
algorithm is only supported on Windows XP SP3 and later
versions of the operating system.

dwCertStatus

A numeric value which specifies the status of the certificate returned by the secure server. This
member only has meaning for connections using the SSL or TLS protocols. One of the following
values will be returned:

Constant Description

SECURITY_CERTIFICATE_VALID The certificate is valid.

SECURITY_CERTIFICATE_NOMATCH The certificate is valid, but the domain name
does not match the common name in the
certificate.

SECURITY_CERTIFICATE_EXPIRED The certificate is valid, but has expired.

SECURITY_CERTIFICATE_REVOKED The certificate has been revoked and is no
longer valid.

SECURITY_CERTIFICATE_UNTRUSTED The certificate or certificate authority is not
trusted on the local system.

SECURITY_CERTIFICATE_INVALID The certificate is invalid. This typically indicates
that the internal structure of the certificate has
been damaged.

stCertIssued

A structure which contains the date and time that the certificate was issued by the certificate
authority. If the issue date cannot be determined for the certificate, the SYSTEMTIME structure
members will have zero values. This member only has meaning for connections using the SSL or
TLS protocols.

stCertExpires

A structure which contains the date and time that the certificate expires. If the expiration date
cannot be determined for the certificate, the SYSTEMTIME structure members will have zero
values. This member only has meaning for connections using the SSL or TLS protocols.

lpszCertIssuer

A pointer to a string which contains information about the organization that issued the
certificate. This string consists of one or more comma-separated tokens. Each token consists of
an identifier, followed by an equal sign and a value. If the certificate issuer could not be
determined, this member may be NULL. This member only has meaning for connections using
the SSL or TLS protocols.

lpszCertSubject

A pointer to a string which contains information about the organization that the certificate was
issued to. This string consists of one or more comma-separated tokens. Each token consists of
an identifier, followed by an equal sign and a value. If the certificate subject could not be
determined, this member may be NULL. This member only has meaning for connections using
the SSL or TLS protocols.

lpszFingerprint

A pointer to a string which contains a sequence of hexadecimal values that uniquely identify the
server. This member is only used when a connection has been established using the Secure
Shell (SSH) protocol.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal Emulation Class Library

Emulate an ANSI or DEC VT-220 character mode display terminal.

Reference

Class Methods
Data Structures
Control Sequences
Error Codes

Library Information

Class Name CTerminalEmulator

File Name CSNVTV11.DLL

Version 11.0.2180.1635

LibID 9A302CB9-6BEE-4D11-9785-76E7624BD130

Import Library CSNVTV11.LIB

Dependencies None

Remarks
The Terminal Emulation library provides a comprehensive API for emulating an ANSI or DEC-
VT220 terminal, with full support for all standard escape and control sequences, color mapping
and other advanced features. The library methods provide both a high level interface for parsing
escape sequences and updating a display, as well as lower level primitives for directly managing
the virtual display, such as controlling the individual display cells, moving the cursor position and
specifying display attributes.

This class can be used in conjunction with the Remote Command, Secure Shell or Telnet Protocol
classes to provide terminal emulation services for an application, or it can be used independently.
For example, this class could be used to provide emulation services for a program that connects to
a device using an RS-232 serial port.

Requirements
The SocketTools Library Edition libraries are compatible with any programming language which
supports calling functions exported from a standard dynamic link library (DLL). If you are using
Visual C++ 6.0 it is required that you have Service Pack 6 (SP6) installed. You should install all
updates for your development tools and have the current Windows SDK installed. The minimum
recommended version of Visual Studio is Visual Studio 2010.

This library is supported on Windows 7, Windows Server 2008 R2 and later versions of the desktop
and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1) installed as
a minimum requirement. It is recommended that you install the current service pack and all critical
updates available for your version of the operating system.

This product includes both 32-bit and 64-bit libraries. Native 64-bit CPU support requires the 64-
bit version of Windows 7 or later versions of the Windows operating system.

Distribution
When you distribute your application that uses this library, it is recommended that you install the

file in the same folder as your application executable. If you install the library into a shared location
on the system, it is important that you distribute the correct version for the target platform and it
should be registered as a shared DLL. This is a standard Windows dynamic link library, not an
ActiveX component, and does not require COM registration.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Terminal Emulation Class Methods

Class Description

CTerminalEmulator Constructor which initializes the current instance of the class

~CTerminalEmulator Destructor which releases resources allocated by the class

Method Description

AttachHandle Attach the specified display handle to this instance of the class

Clear Clear the virtual display

ConvertPos Convert between pixel and screen coordinates

CopySelectedText Copy the selected text to the clipboard

Create Create a new virtual terminal emulation display

DeleteChar Delete the specified number of characters

DeleteLine Delete the current line, shifting remaining lines up

DetachHandle Detach the handle for the current instance of this class

EraseChar Erase the specified number of characters

EraseLine Erase the current line

GetAttributes Return the current display attributes

GetBackColor Return the current background color

GetCell Return information about the specified cell in the virtual display

GetCellSize Return the size of the display character cells

GetColor Get the current virtual display colors

GetColorMap Return the virtual display color table

GetCursorPos Return the current cursor position

GetDisplayInfo Return information about the virtual display

GetDC Get the current virtual display device context

GetEmulation Get the current terminal emulation type

GetFont Get the current virtual display font

GetForeColor Return the current foreground color

GetLine Return a line of text from the virtual display

GetMode Get the current virtual display mode

GetRect Return the rectangle for the display window client area

GetScrollPos Get the display scroll box position

GetSize Return the current size of the virtual display

GetText Get the specified block of text from the virtual display

GetWindow Get the current virtual display window

GetHandle Return the display handle used by this instance of the class

GetMappedKey Return the escape sequence for the mapped key

GetScrollRegion Return the current scrolling region

GetSelectedText Return the currently selected text

GetTextColor Return the current text foreground or background color

InsertChar Insert the specified number of characters

InsertLine Insert a line, shifting the remaining lines down

IsInitialized Determine if the class has been successfully initialized

Refresh Refresh the specified display

Reset Reset the virtual display

ResetMappedKeys Reset the mapped key table to default values

Resize Resize the virtual display

RestoreCursor Restore the saved cursor position and text attributes

SaveCursor Save the current cursor position and text attributes

Scroll Scroll the virtual display

SelectText Select a region of the virtual display

SetAttributes Set the current display attributes

SetBackColor Set the background color for the virtual display

SetBoldColor Set the bold color for the virtual display

SetCell Set the value of a character cell in the virtual display

SetColor Set the virtual display colors

SetColorMap Set the virtual display color table

SetCursorPos Set the current cursor position

SetDC Set the current virtual display device context

SetEmulation Set the current terminal emulation type

SetFocus Set the focus on the virtual display

SetFont Set the current virtual display font

SetForeColor Set the foreground color for the virtual display

SetMode Set the current virtual display mode

SetScrollPos Set the display scroll box position

SetSize Set the size of the virtual display

SetWindow Set the current virtual display window

SetMappedKey Set the escape sequence for the specified key

SetScrollRegion Set the current scrolling region

SetTextColor Set the current text foreground or background color

TranslateMappedKey Translate the keypress to a mapped key escape sequence

Update Update the window attached to the virtual display

UpdateCaret Update the display window caret

Write Write the specified buffer to the virtual display

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::CTerminalEmulator Method

CTerminalEmulator();

The CTerminalEmulator constructor initializes the class library and validates the license key at
runtime.

Remarks
If the constructor fails to validate the runtime license, subsequent methods in this class will fail. If
the product is installed with an evaluation license, then the application will only function on the
development system and cannot be redistributed.

The constructor calls the NvtInitialize function to initialize the library, which dynamically loads
other system libraries and allocates thread local storage. If you are using this class within another
DLL, it is important that you do not create or destroy an instance of the class from within the
DllMain function because it can result in deadlocks or access violation errors. You should not
declare static or global instances of this class within another DLL if it is linked with the C runtime
library (CRT) because it will automatically call the constructors and destructors for static and global
C++ objects and has the same restrictions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
~CTerminalEmulator, IsInitialized

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::~CTerminalEmulator

~CTerminalEmulator();

The CTerminalEmulator destructor releases resources allocated by the current instance of the
CTerminalEmulator object. It also uninitializes the library if there are no other concurrent uses of
the class.

Remarks
When a CTerminalEmulator object goes out of scope, the destructor is automatically called to
allow the library to free any resources allocated on behalf of the process. Any pending blocking or
asynchronous calls in this process are canceled without posting any notification messages, and all
handles that were created for the client session are destroyed.

The destructor is not called explicitly by the application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CTerminalEmulator

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::AttachHandle Method

VOID AttachHandle(
 HDISPLAY hDisplay
);

The AttachHandle method attaches the specified display handle to the current instance of the
class.

Parameters
hDisplay

The handle to the virtual display that will be attached to the current instance of the class object.

Return Value
None.

Remarks
This method is used to attach a display handle created outside of the class using the SocketTools
API. Once the handle is attached to the class, the other class member functions may be used with
that virtual display.

The virtual display for the current instance of the class will be destroyed when the new handle is
attached to the class object. If you want to prevent the display handle from being released, you
must call the DetachHandle method. Failure to release the detached handle may result in a
resource leak in your application.

Note that the hDisplay parameter is presumed to be a valid display handle and no checks are
performed to ensure that the handle is valid. Specifying an invalid handle will cause subsequent
method calls to fail.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
DetachHandle, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::Clear Method

BOOL Clear(
 UINT nMode
);

The Clear method clears the specified display, erasing the text and clearing any attributes.

Parameters
nMode

Mode which specifies how the display will be cleared. The following values may be used:

Constant Description

NVT_CLEAR_EOS The display is cleared from the current cursor position to the end of
the display. The cursor position is not changed.

NVT_CLEAR_TOS The display is cleared from the beginning of the display to the
current cursor position. The cursor position is not changed.

NVT_CLEAR_ALL The entire display is cleared and the cursor is repositioned to the
upper left corner of the display.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it returns zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
DeleteChar, DeleteLine, EraseChar, EraseLine, Reset

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::ConvertPos Method

BOOL ConvertPos(
 INT nMethod,
 INT xPos,
 INT yPos,
 LPPOINT lppt
);

BOOL ConvertPos(
 INT xPos,
 INT yPos,
 LPPOINT lppt
);

The ConvertPos method converts the specified X,Y position and stores the result in the POINT
structure provided by the caller.

Parameters
nMethod

An integer value which specifies the conversion method to use. This may be one of the
following values:

Constant Description

NVT_CURSOR_TO_PIXELS Convert cursor X,Y coordinates to the current window X,Y
pixel coordinates. An error is returned if the coordinates
are out of bounds for the current display.

NVT_PIXELS_TO_CURSOR Convert window X,Y pixel coordinates to cursor X,Y
coordinates. If the point is outside of the bounds of the
display, it is normalized to account for mouse capture.

xPos

An integer value which specifies the X position in the virtual display. This may either be the
cursor position or a pixel position, based on the value of the nMethod parameter.

yPos

An integer value which specifies the Y position in the virtual display. This may either be the
cursor position or a pixel position, based on the value of the nMethod parameter.

lppt

A pointer to a POINT structure which will contain the converted coordinates.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it returns zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also

GetCursorPos, GetCellSize, GetScrollPos, GetSize, SetCursorPos, SetScrollPos

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::CopySelectedText Method

BOOL CopySelectedText();

The CopySelectedText method copies any selected text to the system clipboard.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it returns zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
GetSelectedText, SelectText

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::Create Method

BOOL Create(
 HWND hWnd,
 HFONT hFont,
 UINT nEmulation,
 UINT nColumns,
 UINT nRows
);

The Create method creates a new virtual terminal emulation display using the specified window
and font.

Parameters
hWnd

Handle to the window that will be used to display the virtual terminal.

hFont

Handle to the font that will be used with the virtual terminal. This parameter may be NULL, in
which case a default fixed-width font will be used. If a font is specified, it must be fixed-width,
otherwise the virtual cursor positioning will be incorrect in some cases.

nEmulation

Identifies the virtual terminal emulation type. The following emulation types are currently
supported.

Constant Description

NVT_EMULATION_NONE The virtual display does not emulate any specific terminal
type, and does not process escape sequences.

NVT_EMULATION_ANSI The virtual display processes ANSI escape sequences for
screen management and cursor positioning. This emulation
also supports escape sequences to control the foreground
and background color. The default keymap for ANSI
function key escape sequences will be selected.

NVT_EMULATION_VT100 The virtual display processes DEC VT-100 escape
sequences for screen management and cursor positioning.
The default keymap for a DEC VT-100 terminal will be
selected.

NVT_EMULATION_VT220 The virtual display processes DEC VT-220 escape
sequences for screen management and cursor positioning.
This emulation also supports DEC VT-320 escape
sequences to control the foreground and background
color. The default keymap for a DEC VT-220 terminal will
be selected.

nColumns

The maximum number of columns used by the virtual display. This value must be at least 5, and
no greater than 255.

nRows

The maximum number of rows used by the virtual display. This value must be at least 5, and no

greater than 127.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.

Remarks
The default colors for the display is a black background and white foreground. If ANSI terminal
emulation is selected, bold characters will be displayed on a white background and blue
foreground.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
AttachHandle, DetachHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::DeleteChar Method

BOOL DeleteChar(
 INT nChars
);

The DeleteChar method deletes the specified number of characters from the display, shifting the
characters that follow to the left. The characters are deleted from the current cursor position.

Parameters
nChars

Number of characters to delete from the display.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it returns zero.

Remarks
This method does not change the current cursor position. To erase characters from the display
without affecting the characters that follow, use the EraseChar method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
Clear, DeleteLine, EraseChar, EraseLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::DeleteLine Method

BOOL DeleteLine();

The DeleteLine method deletes the current line, shifting up the lines that follow.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it returns zero.

Remarks
This method does not change the current cursor position. To erase a line from the display without
affecting the lines that follow, use the EraseLine method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
Clear, DeleteChar, EraseChar, EraseLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::DetachHandle Method

HDISPLAY DetachHandle();

The DetachHandle method detaches the display handle associated with the current instance of
the class.

Parameters
None.

Return Value
This method returns the display handle associated with the current instance of the class object. If
there is no virtual display associated with that instance of the class, the value INVALID_DISPLAY will
be returned.

Remarks
This method is used to detach a display handle created by the class for use with the SocketTools
API. Once the handle is detached from the class, no other class methods may be called. Note that
the handle must be explicitly released at some later point by the process or a resource leak will
occur.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
AttachHandle, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::EraseChar Method

BOOL EraseChar(
 INT nChars
);

The EraseChar method erases the specified number of characters from the display, without
affecting the position of the characters that follow. The characters are erased from the current
cursor position.

Parameters
nChars

Number of characters to erase from the display.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it returns zero.

Remarks
This method does not change the current cursor position. To delete characters from the display
and shift the remaining characters to the left, use the DeleteChar method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
Clear, DeleteChar, DeleteLine, EraseLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::EraseLine Method

BOOL EraseLine(
 UINT nMode
);

The EraseLine method erases the current line without affecting the lines that follow.

Parameters
nMode

Mode which specifies how the line will be erased. The following values may be used:

Value Description

0 The line is erased from the current cursor position to the end of the line.

1 The line is cleared from the beginning of the line to the current cursor position.

2 The entire line is cleared.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it returns zero.

Remarks
This method does not change the current cursor position. To delete a line from the display and
shift the remaining lines up, use the DeleteLine method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Clear, DeleteChar, DeleteLine, EraseChar

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::GetAttributes Method

UINT GetAttributes();

The GetAttributes method returns the current display attributes which have been set, either
explicitly by the client or as the result of an escape sequence parsed by the emulator.

Parameters
None.

Return Value
If the method succeeds, the return value the current display attributes. If the method fails, the
return value is NVT_ERROR.

The following table lists the valid attributes:

Constant Description

NVT_ATTRIBUTE_NORMAL Normal, default attributes.

NVT_ATTRIBUTE_REVERSE Foreground and background cell colors are reversed.

NVT_ATTRIBUTE_BOLD The character is displayed using a higher intensity color.

NVT_ATTRIBUTE_DIM The character is displayed using a lower intensity color.

NVT_ATTRIBUTE_UNDERLINE The character is displayed with an underline.

NVT_ATTRIBUTE_HIDDEN The character is stored in display memory, but not
shown.

NVT_ATTRIBUTE_PROTECT The character is protected and cannot be cleared.

One or more attributes may be combined using a bitwise Or operator. Certain attributes, such as
NVT_ATTRIBUTE_BOLD and NVT_ATTRIBUTE_DIM are mutually exclusive.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
GetCell, SetAttributes

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::GetBackColor Method

COLORREF GetBackColor();

The GetColor method returns the background color used by the current display.

Parameters
None.

Return Value
If the method succeeds, the return value is the RGB value of the background color. If the method
fails, it returns zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
GetForeColor, SetBackColor, SetBoldColor, SetColor, SetBackColor

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::GetCell Method

BOOL GetCell(
 INT xPos,
 INT yPos
 TCHAR* pChar
 UINT* pAttributes
);

BOOL GetCell(
 TCHAR* pChar
 UINT* pAttributes
);

The GetCell method returns information about the specified character cell in the virtual display.

Parameters
xPos

An integer value which specifies the X cursor position in the display. If this argument is omitted
or has the value -1, then the current position in the display is used.

yPos

An integer value which specifies the Y cursor position in the display. If this argument is omitted
or has the value -1, then the current position in the display is used.

pChar

A pointer to a buffer that will contain the character in the specified cell when the method
returns. If this argument is NULL, then no character is returned.

pAttributes

A pointer to an unsigned integer value which specifies the attributes for the specified character
cell. If this argument is NULL, then no attribute information is returned.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it returns zero. Failure
typically indicates that the X or Y position is invalid, or that a virtual display has not been created.

Remarks
The attribute value returned by the GetCell method may be one or more of the following values:

Constant Description

NVT_ATTRIBUTE_NORMAL Normal, default attributes.

NVT_ATTRIBUTE_REVERSE Foreground and background cell colors are reversed.

NVT_ATTRIBUTE_BOLD The character is displayed using a higher intensity color.

NVT_ATTRIBUTE_DIM The character is displayed using a lower intensity color.

NVT_ATTRIBUTE_UNDERLINE The character is displayed with an underline.

NVT_ATTRIBUTE_HIDDEN The character is stored in display memory, but not
shown.

NVT_ATTRIBUTE_PROTECT The character is protected and cannot be cleared.

One or more attributes may be combined using a bitwise Or operator. Certain attributes, such as

NVT_ATTRIBUTE_BOLD and NVT_ATTRIBUTE_DIM are mutually exclusive.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
GetAttributes, GetCellSize, SetAttributes

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::GetCellSize Method

BOOL GetCellSize(
 LPSIZE lpCellSize
);

BOOL GetCellSize(
 LPINT lpnWidth
 LPINT lpnHeight
);

The GetCellSize method returns the size of a character cell in pixels.

Parameters
lpCellSize

A pointer to a SIZE structure which will contain the size of a character cell in pixels when the
method returns.

lpnWidth

A pointer to an integer which will contain the width of a character cell in pixels when the
method returns.

lpnHeight

A pointer to an integer which will contain the height of a character cell in pixels when the
method returns.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it returns zero. Failure
typically indicates that the virtual display has not been created.

Remarks
The GetCellSize method is used to determine the size of a character cell in the display. This can
be useful when the application needs to determine where a display cell is physically located within
the virtual display window.

To convert between display and window coordinates, use the ConvertPos method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
ConvertPos, GetCell

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::GetColor Method

COLORREF GetColor(
 UINT nColorIndex,
 BOOL bForeground
);

The GetColor method returns the color used by the virtual display to display text with a specific
attribute.

Parameters
nColorIndex

The index into the virtual display color table. It may be one of the following values.

Value Description

NVT_COLOR_NORMAL The colors displayed for normal text. These are the
default colors used with the display.

NVT_COLOR_REVERSE The colors displayed for text with the reverse attribute
set. This is only used when emulation is enabled.

NVT_COLOR_BOLD The colors displayed for text with the bold attribute set.
This is only used when emulation is enabled.

NVT_COLOR_REVERSEBOLD The colors displayed for text with the reverse and bold
attributes set. This is only used when emulation is
enabled.

bForeground

A boolean flag which specifies if the color is a foreground color, used when displaying text, or a
background color.

Return Value
If the method succeeds, the return value is the RGB value of the specified color. If the method fails,
it returns zero.

Remarks
The default colors for the display is a black background and white foreground. Bold characters are
displayed on a white background and blue foreground.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
GetBackColor, GetForeColor, SetBackColor, SetBoldColor, SetColor, SetForeColor

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::GetColorMap Method

BOOL GetColorMap(
 COLORREF* lpColor,
 INT nMaxColors
);

The GetColorMap method returns the virtual display color table which determines what RGB
values are used to display foreground and background text color attributes.

Parameters
lpColor

A pointer to an array of COLORREF values which will contain the color values currently being
used in the virtual display.

nMaxColors

The maximum number of colors which may be stored in the color array. The minimum value for
this parameter is 1, and the maximum value is 16.

Return Value
If the method succeeds, the return value is a non-zero value. If the method fails, the return value is
zero. Failure indicates that the handle to the virtual display is invalid, the pointer to the color table
is NULL or the maximum number of color values is invalid.

Remarks
When the emulator processes an escape sequence that changes the current foreground or
background color, the actual RGB color value is determined by looking up the value in the virtual
display's color table. The GetColorMap method is useful for determining what values are being
used when a color attribute is set. The emulator currently supports a maximum of sixteen (16)
color values, and the index into the table corresponds to the color as defined by the standard for
ANSI terminals:

Index Color Default (Hex) Default (Integer) Default (RGB)

0 Black 0 0 RGB(0,0,0)

1 Red 000000A0h 160 RGB(160,0,0)

2 Green 0000A000h 40960 RGB(0,160,0)

3 Yellow 0000A0A0h 41120 RGB(160,160,0)

4 Blue 00A00000h 10485760 RGB(0,0,160)

5 Magenta 00A000A0h 10485920 RGB(160,0,160)

6 Cyan 00A0A000h 10526720 RGB(0,160,160)

7 White 00E0E0E0h 14737632 RGB(224,224,224)

8 Gray 00C0C0C0h 12632256 RGB(192,192,192)

9 Light Red 008080FFh 8421631 RGB(255,128,128)

10 Light Green 0090EE90h 9498256 RGB(144,238,144)

11 Light Yellow 00C0FFFFh 12648447 RGB(255,255,192)

12 Light Blue 00E6D8ADh 15128749 RGB(173,216,230)

13 Light Magenta 00FFC0FFh 16761087 RGB(255,192,255)

14 Light Cyan 00FFFFE0h 16777184 RGB(224,255,255)

15 High White 00FFFFFFh 16777215 RGB(255,255,255)

A standard ANSI color terminal supports eight standard colors (0-7). To select a foreground color,
you add 30 to the color index and pass that value as a parameter to the SGR (select graphic
rendition) escape sequence. To select a background color, you add 40 to the color index. For
example, to set the current foreground color to white and the background color to blue, you
could send the following escape sequence:

ESC [37;44 m

Note that if you wanted to set the foreground color to a bold version of standard yellow, you
would first set the bold attribute, and then use the index value of 3, such as:

ESC [1;33m

GetColorMap is typically used in conjunction with the SetColorMap method to load the current
color values and then make selective changes to the actual RGB color value that is used when a
color attribute is set. Note that changes to the color map will only affect new characters as they
are displayed, not any previously displayed characters.

Example
The following example will load the current color table for the virtual display and change the
standard white color attribute to use the same value as the high-intensity white:

COLORREF rgbColor[16];

if (pDisplay->GetColorMap(rgbColor, 16))
{
 rgbColor[7] = rgbColor[15];
 pDisplay->SetColorMap(rgbColor, 16);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetColor, GetTextColor, SetColor, SetColorMap, SetTextColor

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::GetCursorPos Method

BOOL GetCursorPos(
 LPINT lpnCursorX,
 LPINT lpnCursorY
);

The GetCursorPos method returns the current cursor column and row position on the virtual
display.

Parameters
lpnCursorX

Address of the variable that will be set to the column of the current cursor position. If this
argument is a NULL pointer, the argument is ignored.

lpnCursorY

Address of the variable that will be set to the row of the current cursor position. If this argument
is a NULL pointer, the argument is ignored.

Return Value
If the method succeeds, the return value is a non-zero value. If the handle to the virtual display is
invalid, the method will return zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
ConvertPos, SetCursorPos

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::GetDC Method

HDC GetDC();

The GetDC returns the device context that has been specified for the virtual display.

Parameters
None.

Return Value
If the method succeeds, the return value is a handle to the device context. If the method fails, or
no device context has been specified, the return value is NULL.

Remarks
Normally there is no device context explicitly set for the display. Instead, the device context is
dynamically created and released when the virtual display is updated.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
SetDC, Update

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::GetDisplayInfo Method

BOOL GetDisplayInfo(
 LPNVTDISPLAYINFO lpvdi
);

The GetDisplayInfo method returns information about the specified virtual display.

Parameters
lpvdi

Pointer to a NVTDISPLAYINFO structure which contains information about the virtual display,
including the display window, font, cursor and scrolling position.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it returns zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
GetCursorPos, GetFont, GetMode, GetRect, GetScrollPos

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::GetEmulation Method

UINT GetEmulation();

The GetEmulation method returns the current virtual terminal emulation type.

Parameters
None.

Return Value
If the method succeeds, the return value is the terminal emulation type and may contain one of
the following values:

Value Description

NVT_EMULATION_NONE The virtual display does not emulate any specific terminal type, and
does not process any escape sequences.

NVT_EMULATION_ANSI The virtual display will process ANSI escape sequences. The default
keymap for an ANSI console is loaded.

NVT_EMULATION_VT100 The virtual display will process DEC VT100 escape sequences. The
default keymap for a VT100 terminal is loaded.

NVT_EMULATION_VT220 The virtual display will process DEC VT220 escape sequences. The
default keymap for a VT220 terminal is loaded.

If the method fails, because an invalid display handle was specified, the return value will be
NVT_ERROR.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
Create, Reset, SetEmulation

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::GetFont Method

HFONT GetFont();

The GetFont method returns the current font handle being used by the virtual display.

Parameters
None.

Return Value
If the method succeeds, the return value is a handle to the font. If the method fails, it returns
NULL.

Remarks
The handle returned by this method should not be released, and the font object should never be
directly modified by the application. Functions that return information about the font, such as
GetTextMetrics, may be safely called.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
Create, SetFont

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::GetForeColor Method

COLORREF GetForeColor();

The GetColor method returns the foreground color used by the current display.

Parameters
None.

Return Value
If the method succeeds, the return value is the RGB value of the foreground color. If the method
fails, it returns zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
GetBackColor, SetBackColor, SetBoldColor, SetColor, SetForeColor

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::GetHandle Method

HDISPLAY GetHandle();

The GetHandle method returns the display handle associated with the current instance of the
class.

Parameters
None.

Return Value
This method returns the display handle associated with the current instance of the class object. If
there is no virtual display associated with that instance of the class, the value INVALID_DISPLAY will
be returned.

Remarks
This method is used to obtain the client handle created by the class for use with the SocketTools
API.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
AttachHandle, DetachHandle, IsInitialized

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::GetLine Method

INT GetLine(
 INT nRow,
 LPTSTR lpszBuffer,
 INT nMaxLength
);

INT GetLine(
 INT nRow,
 CString& strBuffer
);

The GetLine method copies a block of text from the specified virtual display into a string buffer.

Parameters
nRow

The row in the virtual display to return the line of text from. The first row in the display is zero. If
the value -1 is specified, the row where the cursor is currently located will be used.

lpszBuffer

Pointer to the buffer that the display text will be copied to, terminated with a null character
character.

cbBuffer

Maximum number of characters that may be copied into the specified buffer, including the null
character terminator.

Return Value
If the method succeeds, the return value is the number of characters copied into the buffer, not
including the null character terminator. If the method fails, it returns zero.

Remarks
The GetLine method allows the application to copy the contents of the display at a specific row.
Note that the buffer must be large enough to accommodate the text and the null character
terminator. Unlike the GetText method, any trailing whitespace in the specified row is not copied
to the buffer.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetText, Update, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::GetMappedKey Method

BOOL GetMappedKey(
 UINT nMappedKey,
 LPTSTR lpszKeyBuffer,
 UINT cchKeyBuffer
);

BOOL GetMappedKey(
 UINT nMappedKey,
 CString& strKeyBuffer
);

The GetMappedKey method returns the escape sequence mapped to the specified key.

Parameters
nMappedKey

The key which is an index into the display key mapping table. This defines the values returned
by special (method) keys for the current emulation.

lpszKeyBuffer

Address of the buffer which will receive the escape sequence mapped to the specified key. This
argument may also be a CString object which will contain the mapped key string when the
method returns.

cchKeyBuffer

The maximum number of characters that may be copied into the key buffer string, including the
terminating null character.

Return Value
If the method succeeds, the return value is non-zero and the escape sequence for the mapped
key is copied into the specified buffer. If the key has not been mapped, and there is no default
escape sequence defined, then the method will return zero.

Remarks
The GetMappedKey method returns the escape sequence that has been mapped to a special
key. This method can be used to determine what sequence of characters should be sent in
response to a keypress (for example, what sequence should be sent to a server when the user
presses the F1 method key). If a sequence has not been explicitly mapped through a call to
SetMappedKey, the default sequence for the current emulation will be returned.

Note that the current display mode, such as whether or not the emulator is in application mode or
not, should be considered when determining which mapped key to use. For example, if the
emulator is not in application mode and the user presses the up-arrow key, the sequence mapped
to the NVT_UP key should be sent to the server. However, if the emulator is in application mode,
the sequence mapped to the NVT_APPUP key should be sent instead. This is automatically
handled by the TranslateMappedKey method, so it is recommended that it be used when
mapping a virtual keypress to the appropriate escape sequence.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

Import Library: csnvtv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetMode, ResetMappedKeys, SetMode, SetMappedKey, TranslateMappedKey

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::GetMode Method

UINT GetMode();

The GetMode method returns the current virtual display modes.

Parameters
None.

Return Value
If the method succeeds, the return value is the display mode for the virtual display. If the method
fails, it returns zero.

Remarks
The display mode is a combination of one or more flags which determines how the emulator
handles automatic line wrapping, caret display, and other methods. The following values are
recognized.

Constant Description

NVT_MODE_AUTOWRAP The emulator will automatically wrap to the next line when a
character is written to the last column on the virtual display.

NVT_MODE_SHOWCARET The emulator will display a caret when the display receives the
focus.

NVT_MODE_BLOCKCARET The emulator will display a block carat that is the height of the
selected font characters. If this mode is not set, the caret is
displayed as an underline.

NVT_MODE_BELL The emulator will beep when a BEL character is processed.

NVT_MODE_CRLF The cursor will automatically be positioned at the first column when
a linefeed character is processed.

NVT_MODE_CRNL The cursor will automatically advance to the next row when a
carriage return character is processed.

NVT_MODE_APPCURSOR The emulator cursor keys are placed in application mode. This
mode changes the default key mappings used when the cursor
(arrow) keys are translated. This corresponds to the application
mode supported by DEC VT terminals.

NVT_MODE_APPKEYPAD The emulator keypad keys are placed in application mode. This
mode changes the default key mappings used when the keypad
keys are translated. This corresponds to the application keypad
mode supported by DEC VT terminals.

NVT_MODE_ORIGIN The emulator is in origin mode. If enabled, the cursor cannot be
positioned outside of the current scrolling region. Otherwise, the
cursor can be positioned at any valid location on the virtual display.

NVT_MODE_COLOR The emulator supports the use of escape sequences to change the
foreground and background colors. This option is enabled by
default if emulating an ANSI console or DEC VT220 terminal.

NVT_MODE_TABOVER The emulator will clear the character cells between the current

cursor position and the next tab stop when the HT (horizontal tab)
control sequence is processed. By default this mode is disabled,
and the cursor is simply positioned at the next tab stop.

NVT_MODE_HSCROLL The emulator will display a horizontal scroll bar if the number of
visible columns are less then that total number of columns in the
virtual display. Disabling this mode prevents a horizontal scrollbar
from being displayed, regardless of the number of visible columns.
By default, this mode is enabled.

NVT_MODE_VSCROLL The emulator will display a vertical scroll bar if the number of
visible rows are less then that total number of rows in the virtual
display. Disabling this mode prevents a vertical scrollbar from being
displayed, regardless of the number of visible rows. By default, this
mode is enabled.

NVT_MODE_NOREFRESH The emulator will not automatically refresh the window after any
change has been made to the virtual display, including changes in
the cursor position or display mode. This allows the caller to make
a sequence of changes, and then update the display all at one time
to prevent a flicker effect.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
GetEmulation, GetDisplayInfo, SetMode

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::GetRect Method

BOOL GetRect(
 LPRECT lprc
);

The GetRect returns the client rectangle for the virtual display window.

Parameters
lpRect

Pointer to a RECT structure which will contain the client rectangle values when the method
returns.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it returns zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
GetDisplayInfo, GetSize, Resize, SetSize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::GetScrollPos Method

INT GetScrollPos(
 INT nScrollBar
);

The GetScrollPos method gets the position of the scroll box for the specified scroll bar.

Parameters
nScrollBar

Specifies the scroll bar to return the position for. This parameter can be one of the following
values:

Constant Description

SB_HORZ Gets the position of the scroll box in the display's standard horizontal scroll
bar.

SB_VERT Gets the position of the scroll box in the display's standard vertical scroll
bar.

Return Value
If the method succeeds, the return value is the position of the scroll box. If the method fails, it
returns -1.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
SetScrollPos

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::GetScrollRegion Method

BOOL GetScrollRegion(
 LPINT lpnTop,
 LPINT lpnBottom
);

The GetScrollRegion method returns the top and bottom rows of the current scrolling region.

Parameters
lpnTop

Address of the variable that will be set to the top row of the current scrolling region. If no
scrolling region has been defined, the value will be 0, the first row in the virtual display. If a
NULL pointer is passed as the value, this argument will be ignored.

lpnBottom

Address of the variable that will be set to the bottom row of the current scrolling region. If no
scrolling region has been defined, the value will be one less than the maximum number of rows
in the virtual display. If a NULL pointer is passed as the value, this argument will be ignored.

Return Value
If the method succeeds, it will return zero. If the handle to the display is invalid, the method will
return zero.

Remarks
The GetScrollRegion method allows an application to determine the top and bottom rows of the
current scrolling region. By default, the scrolling region is the entire virtual display, however this
may be changed through a call to SetScrollRegion or an ANSI escape sequence. If the display is
in origin mode, note that the cursor cannot be positioned outside of the current scrolling region.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
GetMode, SetMode, SetScrollRegion

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::GetSelectedText Method

INT GetSelectedText(
 LPTSTR lpszBuffer,
 INT nMaxLength
);

INT GetSelectedText(
 CString& strBuffer
);

The GetSelectedText method copies the currently selected text into the specified buffer.

Parameters
lpszBuffer

Pointer to the buffer that the selected text will be copied to, terminated with a null character
character. This argument may also be a CString object which will contain the selected text when
the method returns.

nMaxLength

Maximum number of characters that may be copied into the specified buffer, including the null
character terminator.

Return Value
If the method succeeds, the return value is the number of characters copied into the buffer, not
including the null character terminator. If the method fails, it returns zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CopySelectedText, SelectText

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::GetSize Method

BOOL GetSize(
 LPSIZE lpSize
);

BOOL GetSize(
 LPINT lpnWidth,
 LPINT lpnHeight
);

The GetSize returns the size of the virtual display in columns and rows.

Parameters
lpRect

Pointer to a SIZE structure which will contain the size of the virtual display.

lpnWidth

Pointer to an integer which will contain the number of columns in the virtual display when the
method returns. If a NULL pointer is passed as the argument, this value is ignored.

lpnHeight

Pointer to an integer which will contain the number of rows in the virtual display when the
method returns. If a NULL pointer is passed as the argument, this value is ignored.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it returns zero.

Remarks
The GetSize method returns the number of columns and rows in the virtual display. To convert
this to pixels, use the GetCellSize method to determine the size of a character cell and multiply
that by the number of columns and/or rows.

Example
// Calculate the size of the client area in pixels
// for the virtual display

INT cxCell = 0, cyCell = 0;
INT cxDisplay = 0, cyDisplay = 0;

if (pDisplay->GetCellSize(&cxCell, &cyCell))
{
 INT nColumns, nRows;
 if (pDisplay->GetSize(&nColumns, &nRows))
 {
 cxDisplay = nColumns * cxCell;
 cyDisplay = nRows * cyCell;
 }
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
GetCellSize, GetDisplayInfo, GetRect

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::GetText Method

INT GetText(
 INT xPos,
 INT yPos,
 LPTSTR lpszBuffer,
 INT nLength
);

INT GetText(
 INT xPos,
 INT yPos,
 CString& strBuffer,
 INT nLength
);

INT GetText(
 LPTSTR lpszBuffer,
 INT nLength
);

INT GetText(
 CString& strBuffer,
 INT nLength
);

The GetText method copies a block of text from the specified virtual display into a string buffer.

Parameters
xPos

The starting column where the display text will be copied from. If the method is called where
this argument is omitted, the text will be copied from the current cursor position.

yPos

The starting row where the display text will be copied from. If the method is called where this
argument is omitted, the text will be copied from the current cursor position.

lpszBuffer

Pointer to the buffer that the display text will be copied to, terminated with a null character
character. This argument may also be a CString object which will contain the text when the
method returns.

nLength

Maximum number of characters that may be copied into the specified buffer, including the null
character terminator. If a CString object is passed to the method, this value may be -1 which
specifies that all of the text from the specified position to the last column and row should be
copied to the buffer.

Return Value
If the method succeeds, the return value is the number of characters copied into the buffer, not
including the null character terminator. If the method fails, it returns zero.

Remarks
The GetText method allows the application to copy the contents of the display at a specific
location. Note that the buffer must be large enough to accommodate the text and the null

character terminator. To copy an entire row of text in the display, use the GetLine method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetLine, Update, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::GetTextColor Method

BOOL GetTextColor(
 COLORREF *lprgbColor,
 BOOL bForeground
);

The GetTextColor method returns the current foreground or background text color.

Parameters
lprgbColor

A pointer to a COLORREF variable which will contain the current foreground or background text
color.

bForeground

A boolean value which determines if the foreground or background color is returned. A value of
TRUE indicates that the foreground color should be returned, otherwise the background color is
returned.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
Failure indicates that the handle to the display is invalid, the display does not support text color
attributes, or the pointer to the color value is NULL.

Remarks
This method is used to return the current foreground or background color, as determined by the
text attribute. The RGB color value for a color attribute is determined by the virtual display's color
table.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
GetColorMap, SetColorMap, SetTextColor

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::GetWindow Method

HWND GetWindow();

The GetWindow returns the handle to the window being used by the virtual display.

Parameters
None.

Return Value
If the method succeeds, the return value is a handle to the virtual display window. If the method
fails, it returns NULL.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
GetDisplayInfo

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::InsertChar Method

BOOL InsertChar(
 INT nChars
);

The InsertChar method inserts one or more space characters at the current cursor position.

Parameters
nChars

Number of space characters to insert at the current cursor position.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it returns zero.

Remarks
This method does not change the cursor position. Inserting space characters may cause the virtual
display to scroll.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
DeleteChar, EraseChar, InsertLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::InsertLine Method

BOOL InsertLine();

The InsertLine method inserts an empty line at the current row, shifting the remaining lines down.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it returns zero.

Remarks
This method does not change the cursor position. Inserting a line may cause the virtual display to
scroll.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
DeleteLine, EraseLine, InsertChar

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::IsInitialized Method

BOOL IsInitialized();

The IsInitialized method returns whether or not the class object has been successfully initialized.

Parameters
None.

Return Value
This method returns a non-zero value if the class object has been successfully initialized. A return
value of zero indicates that the runtime license key could not be validated or the networking
library could not be loaded by the current process.

Remarks
When an instance of the class is created, the class constructor will attempt to initialize the
component with the runtime license key that was created when SocketTools was installed. If the
constructor is unable to validate the license key or load the networking libraries, this initialization
will fail.

If SocketTools was installed with an evaluation license, the application cannot be redistributed to
another system. The class object will fail to initialize if the application is executed on another
system, or if the evaluation period has expired. To redistribute your application, you must
purchase a development license which will include the runtime key that is needed to redistribute
your software to other systems. Refer to the Developer's Guide for more information.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
CTerminalEmulator

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::Refresh Method

BOOL Refresh(
 BOOL bUpdate
);

The Refresh method refreshes the specified virtual display, updating the current scroll position
and caret.

Parameters
bUpdate

Boolean flags which specifies if the display window is to be updated. If set, the window client
area is invalidated and the virtual display is redrawn.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it returns zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
UpdateCaret, Update, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::Reset Method

BOOL Reset(
 HWND hWnd,
 HFONT hFont,
 UINT nColumns,
 UINT nRows
);

BOOL Reset(
 UINT nColumns,
 UINT nRows
);

The Reset resets the virtual terminal display, using the new window, font, columns and rows. This
method should be used when the virtual display must be attached to a different window, or the
number of rows or columns must be changed.

Parameters
hWnd

Handle to the window that will be used to display the virtual terminal. This parameter may be
NULL, in which case the current window will be used.

hFont

Handle to the font that will be used with the virtual terminal. This parameter may be NULL, in
which case the current font will be used. If a font is specified, it must be fixed-width, otherwise
the virtual cursor positioning will be incorrect in some cases.

nColumns

The maximum number of columns used by the virtual display. A value of zero specifies that the
same number of columns should be used. If a non-zero value is specified, it must be at least 5,
and no greater than 255.

nRows

The maximum number of rows used by the virtual display. A value of zero specifies that the
same number of columns should be used. If a non-zero value is specified, it must be at least 5,
and no greater than 127.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.

Remarks
This method will clear the display and reset the current text attributes.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
Clear, Create, Refresh, Resize, Update

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::ResetMappedKeys Method

BOOL ResetMappedKeys();

The ResetMappedKeys method resets all mapped method keys to their default values, based on
the current emulation.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the handle to the display is invalid, the
method will return zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
GetMappedKey, SetMappedKey, TranslateMappedKey

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::Resize Method

BOOL Resize(
 INT cxClient,
 INT cyClient
);

The Resize method resizes the virtual display to the specified width and height.

Parameters
cxClient

New width of the display window in pixels. If this value is zero, the width of the virtual display
remains unchanged.

cyClient

New height of the display window in pixels. If this value is zero, the height of the virtual display
remains unchanged.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it returns zero.

Remarks
This method resizes the virtual display and updates the scrolling information. Typically this method
is called when the display window receives a WM_SIZE message, causing the virtual display to
match the size of the window's client area.

This method will not change the size of the display window. To change the size of the display
window, use the SetWindowPos method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Create, GetRect, Refresh, Reset, Update

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::RestoreCursor Method

BOOL RestoreCursor();

The RestoreCursor method restores the cursor position and text attributes to their previous
values.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it returns zero.

Remarks
Use the SaveCursor method to save the current cursor position and text attributes. This method
may only be called once for each time that the cursor position is saved.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
GetCursorPos, SaveCursor, SetCursorPos, UpdateCaret, Update

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::SaveCursor Method

BOOL SaveCursor();

The SaveCursor method saves the current cursor position and text attributes.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it returns zero.

Remarks
Use the RestoreCursor method to restore the cursor position and text attributes to their previous
values.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
GetCursorPos, RestoreCursor, SetCursorPos, UpdateCaret, Update

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::Scroll Method

BOOL Scroll(
 BOOL bScrollUp
);

The Scroll method scrolls the virtual display up or down and updates the scroll box position if
necessary.

Parameters
bScrollUp

Boolean flag which specifies if the virtual display is scrolled up or down.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it returns zero.

Remarks
This method does not change the current cursor position. The Refresh method should be called
to update the window attached to the virtual display.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
GetScrollPos, Refresh, SetScrollPos

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::SelectText Method

BOOL SelectText(
 LPRECT lprc,
 DWORD dwOptions
);

The SelectText method selects or unselects a region of the virtual display.

Parameters
lprc

A pointer to a region of the display to select. The coordinates must be in display cursor
coordinates, not pixels. If this parameter is NULL, any selected text in the display is unselected.

dwOptions

One or more options which specifies how the region will be selected. These options may be
combined using a bitwise Or operator. The following values may be used:

Constant Description

NVT_SELECT_DEFAULT The default selection option. If there is a region of the
display already selected, it will be cleared and the new
region is selected.

NVT_SELECT_CLIPBOARD Copy the selected text to the clipboard. If this option is not
specified, the selected text is buffered and may be copied
at a later point.

NVT_SELECT_NOREFRESH The display is not refreshed when the region is selected.
This is useful if the application is going to be selecting
multiple regions of the display, or combining more than
one region, in order to minimize output to the window.

NVT_SELECT_NOBUFFER Do not buffer the text in the selected region of the display.
The display will show any text as being selected, but it will
not be available to be copied by the application. This can
be useful if the application is going to select multiple
regions and combine them.

NVT_SELECT_COMBINE If there is already a region of the display that has been
selected, the new region is combined with the previous
region, selecting all of the text.

NVT_SELECT_UNSELECT Unselect the specified region of the display.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it returns zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also

CopySelectedText, GetSelectedText

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::SetAttributes Method

UINT SetAttributes(
 UINT nAttributes
);

The SetAttributes method sets the current display attributes.

Parameters
nAttributes

An unsigned integer value which specifies the new display attributes. This may be one or more
of the following values:

Constant Description

NVT_ATTRIBUTE_NORMAL Normal, default attributes.

NVT_ATTRIBUTE_REVERSE Foreground and background cell colors are reversed.

NVT_ATTRIBUTE_BOLD The character is displayed using a higher intensity color.

NVT_ATTRIBUTE_DIM The character is displayed using a lower intensity color.

NVT_ATTRIBUTE_UNDERLINE The character is displayed with an underline.

NVT_ATTRIBUTE_HIDDEN The character is stored in display memory, but not
shown.

NVT_ATTRIBUTE_PROTECT The character is protected and cannot be cleared.

Return Value
If the method succeeds, the return value is the previous display attributes. If the method fails, the
return value is 0xFFFFFFFF.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
GetAttributes, GetCell

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::SetBackColor Method

BOOL SetBackColor(
 COLORREF rgbBackground
);

The SetBackColor sets the background color used by the virtual display.

Parameters
rgbBackground

The background color specified as a 32-bit RGB value.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it returns zero.

Remarks
This method sets the background color for normal, reverse, bold and reverse-bold text attributes.
To set the background color for a specific attribute, use the SetColor method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
GetBackColor, GetColor, GetForeColor, SetBoldColor, SetColor, SetForeColor

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::SetBoldColor Method

BOOL SetBoldColor(
 COLORREF rgbBold
);

The SetBoldColor sets the color used by the virtual display to display text with the bold attribute
enabled.

Parameters
rgbBold

The bold attribute color specified as a 32-bit RGB value.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it returns zero.

Remarks
This method sets the foreground color for the bold and reverse-bold text attributes. To set the
color for a specific attribute, use the SetColor method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
GetColor, SetBackColor, SetColor, SetForeColor

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::SetCell Method

BOOL SetCell(
 INT xPos,
 INT yPos,
 TCHAR nChar
 UINT nAttributes
);

BOOL SetCell(
 TCHAR nChar
 UINT nAttributes
);

The SetCell method sets the value of the specified cell in the virtual display.

Parameters
xPos

An integer value which specifies the cell column in the virtual display. If this argument is omitted
or a value of -1 is specified, the cell at the current cursor position will be used.

yPos

An integer value which specifies the cell row in the virtual display. If this argument is omitted or
a value of -1 is specified, the cell at the current cursor position will be used.

nChar

The character that should be displayed at the specified location in the virtual display

nAttributes

An unsigned integer which specifies the attributes for the character in the virtual display. The
attributes may be one or more of the following values, combined using a bitwise Or operator:

Constant Description

NVT_ATTRIBUTE_NORMAL Normal, default attributes.

NVT_ATTRIBUTE_REVERSE Foreground and background cell colors are reversed.

NVT_ATTRIBUTE_BOLD The character is displayed using a higher intensity color.

NVT_ATTRIBUTE_DIM The character is displayed using a lower intensity color.

NVT_ATTRIBUTE_UNDERLINE The character is displayed with an underline.

NVT_ATTRIBUTE_HIDDEN The character is stored in display memory, but not
shown.

NVT_ATTRIBUTE_PROTECT The character is protected and cannot be cleared.

Note that certain attributes, such as NVT_ATTRIBUTE_BOLD and NVT_ATTRIBUTE_DIM
are mutually exclusive.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, it returns zero. Failure
typically indicates that the virtual display has not been created, or that the row and/or column
values are outside of the bounds of the display.

Remarks

The SetCell method is used to modify a specific character cell in the virtual display, changing both
the character and the attributes for that cell. Unlike the higher level methods such as Write which
process character strings and escape sequences, the GetCell and SetCell methods allow direct,
low-level access to the virtual display in memory. After one or more cells are modified using this
function, you should call the Refresh method to redraw the virtual display.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
GetAttributes, GetCell, Refresh, SetAttributes, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::SetColor Method

BOOL SetColor(
 UINT nColorIndex,
 COLORREF dwColor,
 BOOL bForeground
);

The SetColor method sets the colors used by the virtual display. Each display has a color table
which specifies the foreground and background colors used when displaying text with a specific
attribute.

Parameters
nColorIndex

The index into the virtual display color table. It may be one of the following values.

Constant Description

NVT_COLOR_NORMAL The colors displayed for normal text. These are the
default colors used with the display.

NVT_COLOR_REVERSE The colors displayed for text with the reverse attribute
set. This is only used when emulation is enabled.

NVT_COLOR_BOLD The colors displayed for text with the bold attribute set.
This is only used when emulation is enabled.

NVT_COLOR_REVERSEBOLD The colors displayed for text with the reverse and bold
attributes set. This is only used when emulation is
enabled.

dwColor

The RGB color value that will be used.

bForeground

A boolean flag which specifies if the color is a foreground color, used when displaying text, or a
background color.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it returns zero.

Remarks
The default colors for the display is a black background and white foreground. Bold characters are
displayed on a white background and blue foreground.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetColor, SetBackColor, SetBoldColor, SetForeColor

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::SetColorMap Method

BOOL SetColorMap(
 COLORREF *lpColor,
 INT nColors
);

The SetColorMap method modifies the virtual display color table which determines what RGB
values are used to display foreground and background text color attributes.

Parameters
lpColor

A pointer to an array of COLORREF values which specifies the values to be used by the
emulator when setting a color attribute. If this value is NULL, the default color table will be
loaded.

nColors

The number of colors which are stored in the array. The minimum value for this parameter is 1,
and the maximum value is 16.

Return Value
If the method succeeds, the return value is a non-zero value. If the method fails, the return value is
zero. Failure indicates that the handle to the virtual display is invalid or the number of color values
is invalid.

Remarks
When the emulator processes an escape sequence that changes the current foreground or
background color, the actual RGB color value is determined by looking up the value in the virtual
display's color table. The SetColorMap method is useful for changing what values are being used
when a color attribute it set. The emulator currently supports a maximum of sixteen (16) color
values, and the index into the table corresponds to the color as defined by the standard for ANSI
terminals:

Index Color Default (Hex) Default (Integer) Default (RGB)

0 Black 0 0 RGB(0,0,0)

1 Red 000000A0h 160 RGB(160,0,0)

2 Green 0000A000h 40960 RGB(0,160,0)

3 Yellow 0000A0A0h 41120 RGB(160,160,0)

4 Blue 00A00000h 10485760 RGB(0,0,160)

5 Magenta 00A000A0h 10485920 RGB(160,0,160)

6 Cyan 00A0A000h 10526720 RGB(0,160,160)

7 White 00E0E0E0h 14737632 RGB(224,224,224)

8 Gray 00C0C0C0h 12632256 RGB(192,192,192)

9 Light Red 008080FFh 8421631 RGB(255,128,128)

10 Light Green 0090EE90h 9498256 RGB(144,238,144)

11 Light Yellow 00C0FFFFh 12648447 RGB(255,255,192)

12 Light Blue 00E6D8ADh 15128749 RGB(173,216,230)

13 Light Magenta 00FFC0FFh 16761087 RGB(255,192,255)

14 Light Cyan 00FFFFE0h 16777184 RGB(224,255,255)

15 High White 00FFFFFFh 16777215 RGB(255,255,255)

A standard ANSI color terminal supports eight standard colors (0-7). To select a foreground color,
you add 30 to the color index and pass that value as a parameter to the SGR (select graphic
rendition) escape sequence. To select a background color, you add 40 to the color index. For
example, to set the current foreground color to white and the background color to blue, you
could send the following escape sequence:

ESC [37;44 m

Note that if you wanted to set the foreground color to a bold version of standard yellow, you
would first set the bold attribute, and then use the index value of 3, such as:

ESC [1;33m

The SetColorMap method is used to modify the actual color displayed by the emulator. For
example, if the emulator processes an escape sequence which sets the current foreground color to
white, the actual color displayed could be changed to light green. Passing a NULL pointer as the
second parameter restores the original color map back to the default values. Note that changes to
the color map will only affect new characters as they are displayed, not any previously displayed
characters.

Example
The following example will load the current color table for the virtual display and change the
standard white color attribute to use the same value as the high-intensity white:

COLORREF rgbColor[16];

if (pDisplay->GetColorMap(rgbColor, 16))
{
 rgbColor[7] = rgbColor[15];
 pDisplay->SetColorMap(rgbColor, 16);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
GetColor, GetColorMap, GetTextColor, SetColor, SetTextColor

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::SetCursorPos Method

BOOL SetCursorPos(
 INT nCursorX,
 INT nCursorY
);

The SetCursorPos method sets the current cursor column and row position on the virtual display.

Parameters
nCursorX

New cursor column position. If this value is greater than the maximum number of columns, the
current position is set to the last column on the display. The first column on the display is zero.

nCursorY

New cursor row position. If this value is greater than the maximum number of rows, the current
position is set to the last row on the display. The first row on the display is zero.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it will return a value of
zero. Typically this would indicate that the virtual display has not been created.

Remarks
The SetCursorPos method sets the current cursor position on the virtual display. If the display is in
origin mode (a scrolling region has been set), then the cursor row position is bound by the current
region.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetCursorPos

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::SetDC Method

BOOL SetDC(
 HDC hDC
);

The SetDC method sets the device context to be used by the virtual display when updating the
window.

Parameters
hDC

Handle to the device context. This parameter may be NULL, any device context that is currently
associated with the virtual display will be removed. Note that the application still has the
responsibility for deleting the device context, otherwise a handle leak will occur.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it returns zero.

Remarks
It is not required that the device context be explicitly set by the application. By default, the class
will use a device context created using the window attached to the virtual display. If a device
context is specified by the application, it must be released when it is no longer needed.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
GetDC, Update

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::SetEmulation Method

BOOL SetEmulation(
 UINT nEmulation
);

The SetEmulation method specifies the type of terminal emulation to be performed by the virtual
display.

Parameters
nEmulation

Identifies the virtual terminal emulation type. The following emulation types are currently
supported.

Value Description

NVT_EMULATION_NONE The virtual display does not emulate any specific terminal
type, and does not process any escape sequences.

NVT_EMULATION_ANSI The virtual display will process ANSI escape sequences. The
default keymap for an ANSI console is loaded.

NVT_EMULATION_VT100 The virtual display will process DEC VT100 escape
sequences. The default keymap for a VT100 terminal is
loaded.

NVT_EMULATION_VT220 The virtual display will process DEC VT220 escape
sequences. The default keymap for a VT220 terminal is
loaded.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it returns zero.

Remarks
Changing the emulation type will not affect the current display.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
GetEmulation, GetMode, Reset, SetMode

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::SetFocus Method

BOOL SetFocus(
 BOOL bFocus
);

The SetFocus method sets or removes the focus from the virtual display. This method should be
called when the display window receives or loses focus.

Parameters
bFocus

A boolean flag which specifies that the display should receive or lose focus.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it returns zero.

Remarks
When the virtual display receives focus, it updates the current cursor position and displays the
caret. When the display loses focus, the caret is hidden. This method should be called in response
to the display window receiving the WM_SETFOCUS and WM_KILLFOCUS messages.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
UpdateCaret

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::SetFont Method

BOOL SetFont(
 HFONT hFont
);

BOOL SetFont(
 LPTSTR lpszFontName,
 INT nFontSize
);

The SetFont sets the font that will be used when updating the display. The specified font must be
fixed-width, otherwise the virtual cursor positioning will be incorrect in some cases.

Parameters
hFont

Handle to the font that will be used with the virtual terminal. This parameter may be NULL, in
which case a default fixed-width font will be used.

lpszFontName

A pointer to a string which specifies the name of the font that will be loaded. If a NULL pointer
or an empty string is passed as the value, the default Terminal font will be used.

nFontSize

The point size of the font that will be loaded. If this value is zero, a default point size will be
used.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it returns zero.

Remarks
If the previous font was a default font created by the library as the result of a NULL font handle
being passed to a method, it will be released. However, if the previous font was created by the
application, the DeleteObject method must be called to release it.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
GetFont

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::SetForeColor Method

BOOL SetForeColor(
 COLORREF rgbForeground
);

The SetForeColor sets the foreground color used by the virtual display.

Parameters
rgbForeground

The foreground color specified as a 32-bit RGB value.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it returns zero.

Remarks
This method sets the foreground color for the normal and reverse text attributes. To set the
foreground color for a specific attribute, use the SetColor method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
GetBackColor, GetColor, GetForeColor, SetBackColor, SetBoldColor, SetColor

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::SetMappedKey Method

BOOL SetMappedKey(
 UINT nMappedKey,
 LPCTSTR lpszKeyBuffer
);

The SetMappedKey method maps an escape sequence to the specified key.

Parameters
nMappedKey

The key which is an index into the display key mapping table. This defines the values returned
by special (method) keys for the current emulation.

lpszKeyBuffer

Pointer to a string which defines the sequence of characters that are to be mapped to the
specified key. Passing an empty string or NULL pointer will delete the current sequence mapped
to the key and restore the default value, if one has been defined.

Return Value
If the method succeeds, the return value is non-zero and the escape sequence is mapped to the
specified key. If the key value is invalid or could not be mapped, then the method will return zero.

Remarks
The SetMappedKey method maps an escape sequence to a special key. This method can be
used to specify what sequence of characters should be sent in response to a keypress (for
example, what sequence should be sent to a server when the user presses the F1 method key).
There are a number of default sequences that are mapped to the method and cursor keys, based
on the current emulation. Calling this method will override the default sequence for a key, if one
has been defined.

The following special keys are defined:

Value Constant Description
0 NVT_F1 F1 method key
1 NVT_F2 F2 method key
2 NVT_F3 F3 method key
3 NVT_F4 F4 method key
4 NVT_F5 F5 method key
5 NVT_F6 F6 method key
6 NVT_F7 F7 method key
7 NVT_F8 F8 method key
8 NVT_F9 F9 method key
9 NVT_F10 F10 method key
10 NVT_F11 F11 method key
11 NVT_F12 F12 method key
12 NVT_SF1 Shift F1 method key
13 NVT_SF2 Shift F2 method key
14 NVT_SF3 Shift F3 method key
15 NVT_SF4 Shift F4 method key
16 NVT_SF5 Shift F5 method key

Value Constant Description
26 NVT_UP Cursor up key
27 NVT_DOWN Cursor down key
28 NVT_LEFT Cursor left key
29 NVT_RIGHT Cursor right key
30 NVT_INSERT Insert key
31 NVT_DELETE Delete key
32 NVT_HOME Home key
33 NVT_END End key
34 NVT_PGUP Page up key
35 NVT_PGDN Page down key
36 NVT_APPUP Up arrow key
37 NVT_APPDOWN Down arrow key
38 NVT_APPLEFT Left arrow key
39 NVT_APPRIGHT Right arrow key
40 NVT_APPENTER Keypad enter key
41 NVT_KEYPAD0 Numeric keypad 0
42 NVT_KEYPAD1 Numeric keypad 1

17 NVT_SF6 Shift F6 method key
18 NVT_SF7 Shift F7 method key
19 NVT_SF8 Shift F8 method key
20 NVT_SF9 Shift F9 method key
21 NVT_SF10 Shift F10 method key
22 NVT_SF11 Shift F11 method key
23 NVT_SF12 Shift F12 method key
24 NVT_ENTER Enter key
25 NVT_ERASE Backspace key

43 NVT_KEYPAD2 Numeric keypad 2
44 NVT_KEYPAD3 Numeric keypad 3
45 NVT_KEYPAD4 Numeric keypad 4
46 NVT_KEYPAD5 Numeric keypad 5
47 NVT_KEYPAD6 Numeric keypad 6
48 NVT_KEYPAD7 Numeric keypad 7
49 NVT_KEYPAD8 Numeric keypad 8
50 NVT_KEYPAD9 Numeric keypad 9

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetMode, GetMappedKey, ResetMappedKeys, SetMode, TranslateMappedKey

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::SetMode Method

BOOL SetMode(
 UINT nMode,
 BOOL bEnable
);

The SetMode method sets one or more display modes for the specified virtual display.

Parameters
nMode

The virtual display mode bitmask. This value is a combination of one or more flags which
determines how the emulator handles automatic line wrapping, caret display, and other
methods. The following values may be specified.

NVT_MODE_AUTOWRAP The emulator will automatically wrap to the next line when
a character is written to the last column on the virtual
display.

NVT_MODE_SHOWCARET The emulator will display a caret when the display receives
the focus.

NVT_MODE_BLOCKCARET The emulator will display a block carat that is the height of
the selected font characters. If this mode is not set, the
caret is displayed as an underline.

NVT_MODE_BELL The emulator will beep when a BEL character is processed.

NVT_MODE_CRLF The cursor will automatically be positioned at the first
column when a linefeed character is processed.

NVT_MODE_CRNL The cursor will automatically advance to the next row
when a carriage return character is processed.

NVT_MODE_APPCURSOR The emulator cursor keys are placed in application mode.
This mode changes the default key mappings used when
the cursor (arrow) keys are translated. This corresponds to
the application mode supported by DEC VT terminals.

NVT_MODE_APPKEYPAD The emulator keypad keys are placed in application mode.
This mode changes the default key mappings used when
the keypad keys are translated. This corresponds to the
application keypad mode supported by DEC VT terminals.

NVT_MODE_ORIGIN The emulator is in origin mode. If enabled, the cursor
cannot be positioned outside of the current scrolling
region. Otherwise, the cursor can be positioned at any
valid location on the virtual display.

NVT_MODE_COLOR The emulator supports the use of escape sequences to
change the foreground and background colors. This
option is enabled by default if emulating an ANSI console
or DEC VT220 terminal.

NVT_MODE_TABOVER The emulator will clear the character cells between the
current cursor position and the next tab stop when the HT

(horizontal tab) control sequence is processed. By default
this mode is disabled, and the cursor is simply positioned
at the next tab stop.

NVT_MODE_HSCROLL The emulator will display a horizontal scroll bar if the
number of visible columns are less then the total number
of columns in the virtual display. Disabling this mode
prevents a horizontal scroll bar from being displayed,
regardless of the number of visible columns. By default,
this mode is enabled.

NVT_MODE_VSCROLL The emulator will display a vertical scroll bar if the number
of visible rows are less then the total number of rows in
the virtual display. Disabling this mode prevents a vertical
scroll bar from being displayed, regardless of the number
of visible rows. By default, this mode is enabled.

NVT_MODE_NOREFRESH The emulator will not automatically refresh the window
after any change has been made to the virtual display,
including changes in the cursor position or display mode.
This allows the caller to make a sequence of changes, and
then update the display all at one time to prevent a flicker
effect.

bEnable

This boolean flag specifies if the specified mode is to be enabled or disabled.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it returns zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
Create, GetDisplayInfo, GetMode, SetEmulation

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::SetScrollPos Method

BOOL SetScrollPos(
 INT nScrollBar,
 INT nScrollPos
);

The SetScrollPos method sets the position of the scroll box for the specified scroll bar and
redraws the scroll bar to reflect the new position of the scroll box.

Parameters
nScrollBar

Specifies the scroll bar to be set. This parameter can be one of the following values:

Value Description

SB_HORZ Sets the position of the scroll box in the display's standard horizontal scroll
bar.

SB_VERT Sets the position of the scroll box in the display's standard vertical scroll
bar.

nScrollPos

Specifies the new row or column of the scroll box. The position must be within the scrolling
range.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it returns zero.

Remarks
This method should always be used to change the scroll box position. The SetScrollPos method
will result in unpredictable behavior if used on the virtual display window.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
GetScrollPos, Scroll, Update

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::SetScrollRegion Method

BOOL SetScrollRegion(
 INT nTop,
 INT nBottom
);

The SetScrollRegion method sets the top and bottom rows of the current scrolling region.

Parameters
nTop

The top row of the current scrolling region. If this value is greater than the bottom scrolling
region row or the total number of rows in the display, it will be silently adjusted.

nBottom

The bottom row of the current scrolling region. If this value is less than zero or the top scrolling
region row, it will be silently adjusted.

Return Value
If the method succeeds, it will return zero. If the handle to the display is invalid, the method will
return zero.

Remarks
The SetScrollRegion method allows an application to set the current scrolling region for the
virtual display. This specifies the region (between the top and bottom rows) in which text will
normally scroll. If the display is in origin mode, the cursor cannot be positioned outside of the
scrolling region.

The minimum scrolling region that may be defined is two rows. If a scrolling region is specified
that is less than two rows, the method will fail and the current scrolling region will remain
unchanged. Specifying values of -1 for both arguments will reset the scrolling region to the default
values (the full display).

The DEC STBM escape sequence is used to set or clear the scrolling region of the virtual display.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
GetMode, SetMode, SetScrollRegion

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::SetSize Method

BOOL SetSize(
 LPSIZE lpSize
);

BOOL SetSize(
 INT nColumns,
 INT nRows
);

The SetSize sets the size of the virtual display.

Parameters
lpRect

Pointer to a SIZE structure which specifies the new size of the virtual display. The width should
be specified in columns and the height should be specified in rows.

nColumns

The number of columns in the virtual display.

nRows

The number of rows in the virtual display.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it returns zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
GetDisplayInfo, GetRect

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::SetTextColor Method

BOOL SetTextColor(
 COLORREF rgbColor,
 BOOL bForeground
);

The SetTextColor method changes the current foreground or background text color.

Parameters
rgbColor

A color value which specifies the current foreground or background text color. The RGB macro
can be used to specify the red, green and blue values for the color.

bForeground

A boolean value which determines if the foreground or background color is changed. A value of
TRUE indicates that the foreground color should be changed, otherwise the background color is
changed.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
Failure indicates that the handle to the display is invalid or that the current display does not
support color text attributes.

Remarks
This method is used to change the current foreground or background color, as determined by the
text attribute. Note that changing the current foreground or background text color does not affect
the virtual display color table. To change how color attributes are mapped to an RGB color value,
use the SetColorMap method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
GetColorMap, GetTextColor, SetColorMap

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::SetWindow Method

BOOL SetWindow(
 HWND hWnd
);

The SetWindow method sets the window used by the virtual display.

Parameters
hWnd

Handle to the window that will be used by the virtual display. This parameter cannot be NULL.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it returns zero.

Remarks
This method will clear the display and reset the current text attributes.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
Create, GetDC, GetWindow, Reset, SetDC

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::TranslateMappedKey Method

BOOL TranslateMappedKey(
 UINT nKey,
 UINT nFlags,
 UINT * lpnMappedKey,
 LPTSTR lpszKeyBuffer,
 UINT cchBuffer
);

BOOL TranslateMappedKey(
 UINT nKey,
 UINT nFlags,
 UINT * lpnMappedKey,
 CString& strKeyBuffer
);

The TranslateMappedKey method translates a virtual key press to an escape sequence based on
the current terminal emulation that has been selected.

Parameters
nKey

The virtual key code for the specified key.

nFlags

The scan code, key-transition code, previous key state, and context code for the specified key.

lpnMappedKey

A pointer to an unsigned integer which will contain the index into the keymap table when the
method returns. This is the same value used with the GetMappedKey and SetMappedKey
method. If the index into the keymap is not required, this parameter can be NULL.

lpszKeyBuffer

Address of the buffer to receive the escape sequence mapped to the specified key. If the
mapped key string is not required, this parameter can be NULL.

cchBuffer

The maximum number of characters that can be copied into the key buffer, including the
terminating null character. If the lpszKeyBuffer parameter is NULL, this value must be zero.

Return Value
If the virtual key can be mapped to an escape sequence, the method will return a non-zero value.
If the key is not mapped, or one of the arguments is invalid, the method will return zero.

Remarks
The TranslateMappedKey method allows an application to map a virtual key code to an escape
sequence that is appropriate for the type of terminal that is being emulated. For example, it will
return the escape sequence for the F1 method key when passed the VK_F1 key value. This method
should be called when the WM_KEYDOWN message is processed by an application so that it may
send the correct sequence to the server.

This method should only be called in response to a keyboard message such as WM_KEYDOWN.
To determine if a specific key has been mapped to an escape sequence, use the GetMappedKey
method.

Example
case WM_KEYDOWN:
 /*
 * If the Num Lock key is pressed, then set the terminal into application
 * keypad mode. This will change how the TranslateMappedKey method will
 * translate the keypad keys.
 *
 * Note that the terminal may also be placed into application keypad mode
 * if emulating a DEC VT terminal and the DECNKM escape sequence is sent
 * by the host.
 */
 if (wParam == VK_NUMLOCK)
 pDisplay->SetMode(NVT_MODE_APPKEYPAD, !(GetKeyState(VK_NUMLOCK) & 1));
 else
 {
 BOOL bMapped;
 UINT nMappedKey;
 TCHAR szKey[128];

 bMapped = pDisplay->TranslateMappedKey(wParam, HIWORD(lParam),
 &nMappedKey, szKey, 128);

 if (bMapped)
 pTelnet->Write(szKey);
 }
 break;

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetMode, GetMappedKey, ResetMappedKeys, SetMode, SetMappedKey

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::Update Method

BOOL Update();

The Update method updates the window attached to the virtual display.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it returns zero.

Remarks
This method should be called when the display window receives a WM_PAINT message. If the
SetDC method has not been called to explicitly set the display device context, this method will
acquire one for the display window. In this case, the application should not create device context
for the window or call the BeginPaint and EndPaint methods.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
Refresh, Resize, SetDC, SetScrollPos, SetWindow

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::UpdateCaret Method

BOOL UpdateCaret();

The UpdateCaret method updates the position of the caret in the display window to the current
cursor position.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it returns zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
SetCursorPos, SetMode, Update

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTerminalEmulator::Write Method

BOOL Write(
 LPBYTE lpBuffer,
 INT cbBuffer
);

BOOL Write(
 LPCTSTR lpszBuffer,
 INT cbBuffer
);

BOOL Write(
 TCHAR nChar,
 INT nCount
);

The Write method writes the contents of the specified buffer to the virtual display.

Parameters
lpBuffer

Pointer to the buffer which contains the data to be written to the virtual display. This may also
specify a string which contains the characters to be written to the display.

cbBuffer

Number of bytes to write to the display. If the buffer is a string, this value may be -1, in which
case all characters up to the terminating null character will be written to the display.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it returns zero.

Remarks
This method writes the data at the current cursor location. Control characters are recognized by
this method and processed accordingly. If ANSI emulation is enabled, embedded escape
sequences will also be parsed and processed.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
GetText, Refresh, UpdateCaret, Update

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Terminal Emulation Data Structures

 NVTDISPLAYINFO

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NVTDISPLAYINFO Structure

This structure is used by the GetDisplayInfo method to return information about the specified
virtual terminal display. No member of this structure should be modified directly by the
application.

typedef struct _NVTDISPLAYINFO {
 HWND hWnd;
 HFONT hFont;
 INT xPos;
 INT yPos;
 INT cxClient;
 INT cyClient;
 INT cxChar;
 INT cyChar;
 INT nScrollCol;
 INT nScrollRow;
 INT nMaxScrollCol;
 INT nMaxScrollRow;
} NVTDISPLAYINFO, *LPNVTDISPLAYINFO;

Members
hWnd

The handle to the terminal emulation display window.

hFont

The handle to the current font.

xPos

The current display x coordinate.

yPos

The current display y coordinate.

cxClient

The width of the client window in pixels.

cyClient

The height of the client window in pixels.

cxChar

The width of the current font in pixels.

cyChar

The height of the current font in pixels.

nScrollCol

The current horizontal scrolling column.

nScrollRow

The current vertical scrolling row.

nMaxScrollCol

The maximum horizontal scrolling column.

nMaxScrollRow

The maximum vertical scrolling row.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Terminal Emulator Control Sequences

Terminal Control Sequences
<ESC>c Reset display to initial state
<ESC>8 Display alignment test

Cursor Control Sequences
<ESC>D Move cursor down to next line
<ESC>E Move cursor to first column and down one line
<ESC>M Move cursor up one line
<ESC>7 Save cursor position, attributes and colors
<ESC>8 Restore saved cursor position, attributes and colors
<ESC>[nA Move cursor up n lines
<ESC>[nB Move cursor down n lines
<ESC>[nC Move cursor forward n spaces
<ESC>[nD Move cursor backward n spaces
<ESC>[nE Move cursor to beginning of line, down n lines
<ESC>[nF Move cursor to beginning of line, up n lines
<ESC>[xG Move cursor to column x
<ESC>[y;xH Move cursor to line y, column x
<ESC>[nI Move cursor forward n tabstops
<ESC>[nZ Move cursor backwards n tabstops
<ESC>[na Move cursor forward n spaces
<ESC>[yd Move cursor to row y
<ESC>[ne Move cursor down n lines
<ESC>[y;xf Move cursor to line y, column x
<ESC>[s Save cursor position
<ESC>[u Return to saved cursor position
<ESC>[x` Move cursor to column x

Attribute and Color Sequence
Select display attributes and color

n Value Description

0 Reset to default attributes and colors

1 Bold attribute

2 Dim attribute

4 Underline attribute

5 Blink attribute (same as reverse)

7 Reverse attribute

8 Hidden attribute

22 Clear bold attribute

24 Clear underline attribute

25 Clear blink attribute

<ESC>[nm

27 Clear reverse attribute

29 Clear color attributes

30 Black foreground

31 Red foreground

32 Green foreground

33 Yellow foreground

34 Blue foreground

35 Magenta foreground

36 Cyan foreground

37 White foreground

40 Black background

41 Red background

42 Green background

43 Yellow background

44 Blue background

45 Magenta background

46 Cyan background

47 White background

Character Set Sequences
<ESC>(A Assign ISO Latin 1 character set to font bank G0
<ESC>(B Assign United States ASCII character set to font bank G0
<ESC>(0 Assign graphics character set to font bank G0
<ESC>)A Assign ISO Latin 1 character set to font bank G1
<ESC>)B Assign United States ASCII character set to font bank G1
<ESC>)0 Assign graphics character set to font bank G1

Erase Sequences
<ESC>[n@ Insert n blank spaces

<ESC>[nJ

Erase all or part of the display

n Value Description

0 From current position to end of display

1 From beginning of display to current position

2 Erase the entire display

<ESC>[nK

Erase all or part of a line

n Value Description

0 From current position to end of line

1 From beginning of line to current position

2 Erase the entire line

<ESC>[nL Insert n new blank lines

<ESC>[nM Delete n lines from current cursor position
<ESC>[nP Delete n characters from current cursor position

Scrolling Sequences
<ESC>[nS Scroll display up n lines
<ESC>[nT Scroll display down n lines
<ESC>[nX Erase n characters from the current position
<ESC>[y1;y2r Set scrolling region from lines y1 to y2

Keypad Sequences
<ESC>= Place keypad into applications mode
<ESC>> Place keypad into numeric mode

Emulation Option Sequences

<ESC>[?nh

Set emulation option

n Value Description

1 Enable cursor key application mode

2 Enable ANSI escape sequences

5 Reverse foreground and background colors

6 Enable origin mode

7 Enable auto-wrap mode

20 Enable linefeed/newline mode

25 Display caret

66 Place keypad in applications mode

<ESC>[?n1

Set emulation option

n Value Description

1 Disable cursor key application mode

2 Enable VT52 escape sequences

5 Restore foreground and background colors

6 Disable origin mode

7 Disable auto-wrap mode

20 Disable linefeed/newline mode

25 Hide caret

66 Place keypad in numeric mode

Console Escape Sequences
<ESC>[=nA Set the overscan color (ignored)
<ESC>[=n1;n2B Set bell sound (parameters ignored)
<ESC>[=n1;n2C Set the caret size

<ESC>[=nD

Set background color intensity

n Value Description

0 Decrease background color intensity

1 Increase background color intensity

<ESC>[=nE Set blink vs. bold attribute (ignored)
<ESC>[=nF Set normal foreground color
<ESC>[=nG Set normal background color
<ESC>[=nH Set reverse foreground color
<ESC>[=nI Set reverse background color
<ESC>[=nJ Set graphics foreground color

<ESC>[=nK

Set graphics background color

n Value Description

0 Black

1 Blue

2 Green

3 Cyan

4 Red

5 Magenta

6 Brown

7 White

8 Gray

9 Light blue

10 Light green

11 Light cyan

12 Light red

13 Light magenta

14 Yellow

15 High White

Control Character Sequences
<CTL>G Ring audible bell, if enabled
<CTL>H Move cursor one character backwards
<CTL>I Move cursor forward to next tabstop
<CTL>J Move cursor down to next line
<CTL>M Move cursor to beginning of line
<CTL>N Select G1 character set
<CTL>O Select G0 character set
<CTL>Z Abort current escape sequence
 Erase and move cursor one character backwards

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Text Message Class Library

Send text messages to a mobile communications device using a gateway service.

Reference

Class Methods
Data Structures
Error Codes

Library Information

Class Name CTextMessage

File Name CSTXTV11.DLL

Version 11.0.2180.1635

LibID D282B848-5BCB-4ACC-B2A0-D141527A87EA

Import Library CSTXTV11.LIB

Dependencies None

Overview
Short Message Service (SMS) is a text messaging service used by mobile communication devices
to exchange brief text messages. Most service providers also provide gateway servers that can be
used to send messages to a wireless device on their network using standard email protocols. The
CTextMessage class provides methods that can be used to determine the provider associated
with a specific telephone number and send a text message to the device using the provider's mail
gateway.

This library has been designed to assist developers in sending text message notifications as part of
their application. For example, it can be used to enable your software to automatically send
notifications when a specific event occurs, such as an error condition. This library is not designed
to be used with software that will send out a large number of text messages to many users, and
there are limitations on the number of messages that may be sent to different phone numbers
over a short period of time. Because many recipients must pay a fee for each text message they
receive, text messages should only be sent to those who explicitly request them.

Note: This class library only supports service providers in North America and cannot be used to
send text messages to mobile devices that use providers outside of the United States and Canada.

Requirements
The SocketTools Library Edition libraries are compatible with any programming language which
supports calling functions exported from a standard dynamic link library (DLL). If you are using
Visual C++ 6.0 it is required that you have Service Pack 6 (SP6) installed. You should install all
updates for your development tools and have the current Windows SDK installed. The minimum
recommended version of Visual Studio is Visual Studio 2010.

This library is supported on Windows 7, Windows Server 2008 R2 and later versions of the desktop
and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1) installed as
a minimum requirement. It is recommended that you install the current service pack and all critical
updates available for your version of the operating system.

This product includes both 32-bit and 64-bit libraries. Native 64-bit CPU support requires the 64-
bit version of Windows 7 or later versions of the Windows operating system.

Distribution
When you distribute your application that uses this library, it is recommended that you install the
file in the same folder as your application executable. If you install the library into a shared location
on the system, it is important that you distribute the correct version for the target platform and it
should be registered as a shared DLL. This is a standard Windows dynamic link library, not an
ActiveX component, and does not require COM registration.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Text Message Class Methods

Class Description

CTextMessage Constructor which initializes the current instance of the class

~CTextMessage Destructor which releases resources allocated by the class

Method Description

DisableRelay Disable the relaying of messages through another mail server

DisableTrace Disable logging of network function calls

EnableRelay Enable the relaying of messages through another mail server

EnableTrace Enable logging of network function calls to a text file

EnumProviders Enumerate the available wireless service providers

GetAddress Return the email address associated with the specified phone number.

GetErrorString Return a description for the specified error code

GetFirstProvider Return information about the first supported wireless service provider

GetGateway Return information about the gateway server for the specified phone number

GetLastError Return the last error code

GetNextProvider Return information about the next supported wireless service provider

GetProvider Return information about the wireless service provider for the specified phone number

GetTimeout Return the amount of time until an operation times out

IsInitialized Determine if the class has been successfully initialized

IsRelaying Determine if relaying through another mail server has been enabled

SendMessage Send a text message to the specified mobile device

SetLastError Set the last error code

SetTimeout Set the amount of time to wait before an operation times out

ShowError Display a message box with a description of the specified error

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTextMessage::CTextMessage Method

CTextMessage();

The CTextMessage constructor initializes the class library and validates the license key at runtime.

Remarks
If the constructor fails to validate the runtime license, subsequent methods in this class will fail. If
the product is installed with an evaluation license, then the application will only function on the
development system and cannot be redistributed.

The constructor calls the SmsInitialize function to initialize the library, which dynamically loads
other system libraries and allocates thread local storage. If you are using this class within another
DLL, it is important that you do not create or destroy an instance of the class from within the
DllMain function because it can result in deadlocks or access violation errors. You should not
declare static or global instances of this class within another DLL if it is linked with the C runtime
library (CRT) because it will automatically call the constructors and destructors for static and global
C++ objects and has the same restrictions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstxtv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
~CTextMessage, IsInitialized

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTextMessage::~CTextMessage

~CTextMessage();

The CTextMessage destructor releases resources allocated by the current instance of the
CTextMessage object. It also uninitializes the library if there are no other concurrent uses of the
class.

Remarks
When a CTextMessage object goes out of scope, the destructor is automatically called to allow
the library to free any resources allocated on behalf of the process. Any pending blocking or
asynchronous calls in this process are canceled without posting any notification messages, and all
handles that were created for the client session are destroyed.

The destructor is not called explicitly by the application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstxtv11.lib

See Also
CTextMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTextMessage::DisableRelay Method

VOID DisableRelay();

The DisableRelay method disables the relaying of text messages through another mail server.

Parameters
None.

Return Value
None.

Remarks
The DisableRelay method sets an internal flag that specifies that messages should not be relayed
through another mail server. When using the default SMTP service, this means that the library will
attempt to send the message directly to the gateway used by the wireless service provider.
Relaying is only enabled when the EnableRelay method is called.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstxtv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
EnableRelay, IsRelaying, SendMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTextMessage::DisableTrace Method

BOOL DisableTrace();

The DisableTrace method disables the logging of socket function calls to the trace log.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, a value of zero is
returned.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstxtv11.lib

See Also
EnableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTextMessage::EnableRelay Method

BOOL EnableRelay(
 LPCTSTR lpszHostName,
 UINT nHostPort,
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword,
 DWORD dwOptions,
);

BOOL EnableRelay(
 LPCTSTR lpszHostName,
 UINT nHostPort,
);

BOOL EnableRelay();

The EnableRelay method enables the relaying of messages through another mail server.

Parameters
lpszHostName

A pointer to a string that specifies the hostname or IP address of the mail server that the
messages will be relayed through. If this parameter is NULL or an empty string, then message
relaying will be disabled.

nHostPort

An integer value that specifies the port number that should be used to establish the connection
with the mail server. If this value is zero, then the default SMTP port will be used.

lpszUserName

A pointer to a string that specifies the user name that will be used to authenticate the session
with the mail server. If the server does not require authentication, this parameter can be NULL
or an empty string.

lpszPassword

A pointer to a string that specifies the password that will be used to authenticate the session
with the mail server. If the server does not require authentication, this parameter can be NULL
or an empty string.

dwOptions

An integer value which specifies one or more options.

Constant Description

SMS_OPTION_NONE No additional options specified. This is the default value.

SMS_OPTION_SECURE This option specifies that SSL/TLS will be used to establish a
secure, encrypted connection with the mail server. For some
servers, it may be required to connect to them securely and
this option will be enabled automatically.

Return Value
If the method succeeds and relaying is enabled, the return value is non-zero. If the method fails,
the return value is zero. To get extended error information, call GetLastError.

Remarks
When a text message is sent using the SMTP service, the default action is to attempt to connect
directly to the wireless service provider's gateway server. However, many residential Internet
service providers (ISPs) do not permit their customers to connect to third-party mail servers and
will block the outbound connection. Some wireless service providers may also reject messages that
originate from residential IP addresses.

To resolve this issue, the developer should allow the user to specify an alternate mail server that
will relay the message to the wireless service provider. For residential users, this will typically be the
mail server provided by their ISP. For business users, this will usually be their corporate mail server.
The EnableRelay method is used to specify the connection information for the mail server and the
SendMessage method will relay messages through that server.

Calling the EnableRelay method without any arguments will enable relaying through the mail
server specified by a previous call to the method. The EnableRelay method must be called at least
once with arguments to enable relaying. To temporarily disable relaying, call the DisableRelay
method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstxtv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DisableRelay, IsRelaying, SendMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTextMessage::EnableTrace Method

BOOL EnableTrace(
 LPCTSTR lpszTraceFile,
 DWORD dwTraceFlags
);

The EnableTrace method enables the logging of socket function calls to a file.

Parameters
lpszTraceFile

A pointer to a string which specifies the name of the trace log file. If this parameter is NULL or
an empty string, the default file name cstrace.log is used. The file is stored in the directory
specified by the TEMP environment variable, if it is defined; otherwise, the current working
directory is used.

dwTraceFlags

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

TRACE_INFO All function calls are written to the trace file. This is the default
value.

TRACE_ERROR Only those function calls which fail are recorded in the trace file.

TRACE_WARNING Only those function calls which fail or return values which indicate
a warning are recorded in the trace file.

TRACE_HEXDUMP All functions calls are written to the trace file, plus all the data that
is sent or received is displayed, in both ASCII and hexadecimal
format.

TRACE_PROCESS All function calls in the current process are logged, rather than
only those functions in the current thread. This option is useful for
multithreaded applications that are using worker threads.

Return Value
If the method succeeds, the return value is non-zero. A return value of zero indicates an error.
Failure typically indicates that the tracing library cstrcv11.dll cannot be loaded on the local
system.

Remarks
When trace logging is enabled, the file is opened, appended to and closed for each socket
function call. This makes it possible for an application to append its own logging information,
however care should be taken to ensure that the file is closed before the next network operation is
performed. To limit the size of the log files, enable and disable logging only around those sections
of code that you wish to trace.

Note that the TRACE_HEXDUMP trace level generates very large log files since it includes all of the
data exchanged between your application and the server.

Trace method logging is managed on a per-thread basis, not for each client handle. This means
that all SocketTools libraries and components share the same settings in the current thread. If you

are using multiple SocketTools libraries or components in your application, you only need to
enable logging once.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstxtv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DisableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTextMessage::EnumProviders Method

INT EnumProviders(
 LPSMSPROVIDER lpProviders,
 INT nMaxProviders,
);

The EnumProviders method enumerates the supported wireless service providers and populates
an array of SMSPROVIDER structures.

Parameters
lpProviders

A pointer to an array of SMSPROVIDER structures that will be populated with information about
each service provider. If this parameter is NULL, the method will return the number of service
providers that are known.

nMaxProviders

An integer value which specifies the maximum number of service providers that may be
enumerated by this method. If this parameter is zero, the method will return the number of
service providers that are known. If the lpProviders parameter is NULL, this value should be
zero.

Return Value
If the method succeeds, the return value is the number of known service providers. If the method
fails, the return value is SMS_ERROR. To get extended error information, call GetLastError. If the
lpProviders parameter is not NULL and the nMaxProviders parameter indicates the array is not
large enough to store all of the provider information, this method will fail with an error indicating
that the buffer is too small.

Remarks
The EnumProviders method is used to enumerate all of the supported wireless service providers,
populating an array of SMSPROVIDER structures that contains information about each provider,
such as their name, domain, region of the country they service and the maximum message size
they will accept. Typically this would be used to update a user interface control such as a listbox or
drop-down combobox, enabling a user to select a preferred service provider.

The GetFirstProvider and GetNextProvider methods offer an alternative way to enumerate the
available service providers.

To obtain information about a single service provider, use the GetProvider method.

Example
SMSPROVIDER smsProviders[MAXPROVIDERS];

INT nProviders = pTextMessage->EnumProviders(smsProviders, MAXPROVIDERS);
if (nProviders == SMS_ERROR)
{
 pTextMessage->ShowError();
}
else
{
 for (INT nIndex = 0; nIndex < nProviders; nIndex++)
 pComboBox->AddString(smsProviders[nIndex].szName));
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstxtv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetFirstProvider, GetGateway, GetNextProvider, GetProvider, SMSPROVIDER

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTextMessage::GetAddress Method

BOOL GetAddress(
 LPCTSTR lpszPhoneNumber,
 LPTSTR lpszAddress,
 INT nMaxLength,
);

BOOL GetAddress(
 LPCTSTR lpszPhoneNumber,
 CString& strAddress
);

The GetAddress method returns the email address associated with the specified phone number.

Parameters
lpszPhoneNumber

A pointer to a string that specifies the phone number of the mobile device.

lpszAddress

A pointer to a string that will contain the email address associated with the specified phone
number when the method returns. If MFC or ATL is being used, an alternate version of this
function will return the address in a CString type variable.

nMaxLength

The maximum number of characters that may be copied into the string buffer.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The GetAddress method is used to determine the email address associated with a mobile device.
Sending an email message to this address will forward that message to the device as a text
message. Internally, this method calls GetGateway and returns the address specified in the
SMSGATEWAY structure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstxtv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetGateway, GetProvider, SMSGATEWAY

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTextMessage::GetErrorString Method

INT GetErrorString(
 DWORD dwErrorCode,
 LPTSTR lpszDescription,
 INT cbDescription
);

INT GetErrorString(
 DWORD dwErrorCode,
 CString& strDescription
);

The GetErrorString method is used to return a description of a specific error code. Typically this is
used in conjunction with the GetLastError method for use with warning dialogs or as diagnostic
messages.

Return Value
If the method succeeds, the return value is the length of the description string. If the method fails,
the return value is zero, meaning that no description exists for the specified error code. Typically
this indicates that the error code passed to the method is invalid.

Parameters
dwErrorCode

The error code for which a description is returned.

lpszDescription

A pointer to the buffer that will contain a description of the specified error code. This buffer
should be at least 128 characters in length. An alternate form of the method accepts a CString
variable which will contain the error description.

cbDescription

The maximum number of characters that may be copied into the description buffer.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstxtv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetLastError, SetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTextMessage::GetFirstProvider Method

BOOL GetFirstProvider(
 LPSMSPROVIDER lpProvider
);

The GetFirstProvider method returns information about the first supported wireless service
provider.

Parameters
lpProvider

A pointer to an SMSPROVIDER structure that will contain information about the service provider.
This parameter cannot be NULL.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call SmsGetLastError.

Remarks
The GetFirstProvider method is used in conjunction with GetNextProvider to enumerate all of
the supported wireless providers available to the client. These two methods can be used as an
alternative to the EnumProviders method.

Example
SMSPROVIDER smsProvider;

BOOL bResult = pTextMessage->GetFirstProvider(&smsProvider);
while (bResult)
{
 pListBox->AddString(smsProvider.szName);
 bResult = pTextMessage->GetNextProvider(&smsProvider);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstxtv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
EnumProviders, GetGateway, GetNextProvider, SMSPROVIDER

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTextMessage::GetGateway Method

BOOL GetGateway(
 LPCTSTR lpszPhoneNumber,
 LPCTSTR lpszProvider,
 LPSMSGATEWAY lpGateway
);

BOOL GetGateway(
 LPCTSTR lpszPhoneNumber,
 LPSMSGATEWAY lpGateway
);

The GetGateway method returns text message service information for a phone number.

Parameters
lpszPhoneNumber

A pointer to a string which specifies the telephone number that you wish to obtain information
about. Any whitespace, punctuation or other non-numeric characters in the string will be
ignored. This parameter cannot be NULL.

lpszProvider

A pointer to a string which specifies the preferred service provider for this telephone number. If
the preferred service provider is unknown, this parameter can be omitted or specify a NULL
pointer and the default provider will be selected.

lpGateway

A pointer to an SMSGATEWAY structure that will contain information about the text message
gateway when the method returns. This includes information such as the name of the provider,
the server that will accept text messages for this phone number, and the recipient address that
should be used. This parameter cannot be NULL.

Return Value
If the method succeeds and relaying is enabled, the return value is non-zero. If the method fails,
the return value is zero. To get extended error information, call GetLastError.

Remarks
The GetGateway method returns information about the service provider and mail gateway for a
specific phone number, and can be used to determine if a given phone number is assigned to a
mobile device capable of receiving text messages. This is done by sending an query to a server
that will check the phone number against a database of known providers and the phone numbers
that have been allocated for wireless devices. If the phone number is valid, information will be
returned about the provider that is responsible for that number along with information about its
text message gateway service.

If the lpszProvider parameter is not NULL, this will identify a preferred provider for the phone
number specified. In the United States and Canada, most wireless common carriers are required to
provide wireless number portability (WNP) which allows a customer to continue to use their
current phone number even if they switch to another service provider. This can result in a situation
where a specific phone number is shown as allocated to one provider, but in actuality that user
has switched to a different provider. For example, a user may have originally purchased a phone
and service with AT&T and then later switched to Verizon, but decided to keep their phone
number. In this case, if Verizon was not specified as the preferred provider, the library would

attempt to send the message to the AT&T gateway, since that was the original provider who
allocated the phone number.

For most applications, the correct way to handle the situation in which a user may have switched
to a different service provider is to allow them to select an alternate service provider in your user
interface. For example, you could display a drop-down list of available service providers,
populated using the EnumProviders method. If they select a preferred provider, then you would
pass that value to this method. If they do not, then specify a NULL pointer and the default
provider will be selected.

This method sends an HTTP query to the server api.sockettools.com to obtain information about
the phone number and wireless service provider. This requires that the local system can establish a
standard network connection over port 80. If the client cannot connect to the server, the method
will fail and an appropriate error will be returned. The server imposes a limit on the maximum
number of connections that can be established and the maximum number of requests that can be
issued per minute. If this method is called multiple times over a short period, the library may also
force the application to block briefly. Server responses are cached per session, so calling this
method multiple times using the same phone number will not increase the request count.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstxtv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
EnumProviders, GetProvider, SMSGATEWAY

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTextMessage::GetLastError Method

DWORD GetLastError();

DWORD GetLastError(
 CString& strDescription
);

Parameters
strDescription

A string which will contain a description of the last error code value when the method returns. If
no error has been set, or the last error code has been cleared, this string will be empty.

Return Value
The return value is the last error code value for the current thread. Functions set this value by
calling the SetLastError method. The Return Value section of each reference page notes the
conditions under which the method sets the last error code.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. You should call
the GetLastError method immediately when a method's return value indicates that an error has
occurred. That is because some methods call SetLastError(0) when they succeed, clearing the
error code set by the most recently failed method.

Most methods will set the last error code value when they fail; a few methods set it when they
succeed. Function failure is typically indicated by a return value such as FALSE, NULL,
INVALID_CLIENT or SMS_ERROR. Those methods which call SetLastError when they succeed are
noted on the method reference page.

The description of the error code is the same string that is returned by the GetErrorString
method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstxtv11.lib

See Also
GetErrorString, SetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTextMessage::GetNextProvider Method

BOOL GetNextProvider(
 LPSMSPROVIDER lpProvider,
);

The GetNextProvider method returns information about the next supported wireless service
provider.

Parameters
lpProvider

A pointer to an SMSPROVIDER structure that will contain information about the service provider.
This parameter cannot be NULL.

Return Value
If the method succeeds, the return value is non-zero. If the last service provider has been
enumerated or the method fails, the return value is zero. To get extended error information, call
SmsGetLastError.

Remarks
The GetNextProvider method is used in conjunction with GetFirstProvider to enumerate all of
the supported wireless providers available to the client. These two methods can be used as an
alternative to the EnumProviders method.

Example
SMSPROVIDER smsProvider;

BOOL bResult = pTextMessage->GetFirstProvider(&smsProvider);
while (bResult)
{
 pListBox->AddString(smsProvider.szName);
 bResult = pTextMessage->GetNextProvider(&smsProvider);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstxtv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
EnumProviders, GetGateway, GetNextProvider, SMSPROVIDER

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTextMessage::GetProvider Method

BOOL GetProvider(
 LPCTSTR lpszPhoneNumber,
 LPSMSPROVIDER lpProvider
);

BOOL GetProvider(
 LPCTSTR lpszPhoneNumber,
 LPTSTR lpszProvider,
 INT nMaxLength
);

BOOL GetProvider(
 LPCTSTR lpszPhoneNumber,
 CString& strProvider
);

The GetProvider method returns information about the service provider for the specified phone
number.

Parameters
lpszPhoneNumber

A pointer to a string which specifies the telephone number that you wish to obtain information
about. Any whitespace, punctuation or other non-numeric characters in the string will be
ignored. This parameter cannot be NULL.

lpProvider

A pointer to an SMSPROVIDER structure that will contain information about the service provider
for the specified phone number.

lpszProvider

A pointer to a string that will contain the name of the wireless service provider associated with
the specified phone number when the method returns. If MFC or ATL is being used, an alternate
version of this function will return the address in a CString type variable.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string.

Return Value
If the method succeeds and relaying is enabled, the return value is non-zero. If the method fails,
the return value is zero. To get extended error information, call GetLastError.

Remarks
The GetProvider method returns information about the service provider associated with a phone
number. This is done by sending an query to a server that will check the phone number against a
database of known providers and the phone numbers that have been allocated for wireless
devices. If the phone number is valid, information will be returned about the provider that is
responsible for that number.

Because most wireless carriers in the United States and Canada must provide for wireless number
portability, there is the possibility that the provider information returned may no longer
correspond to the telephone number. It is recommended that you provide your end-user with the
ability to specify an alternate preferred provider to use when sending the text message. For more

information, refer to the GetGateway method.

This method sends an HTTP query to the server api.sockettools.com to obtain information about
the wireless service provider. This requires that the local system can establish a standard network
connection over port 80. If the client cannot connect to the server, the method will fail and an
appropriate error will be returned. The server imposes a limit on the maximum number of
connections that can be established and the maximum number of requests that can be issued per
minute. If this method is called multiple times over a short period, the library may also force the
application to block briefly. Server responses are cached per session, so calling this method
multiple times using the same phone number will not increase the request count.

For a list of all supported wireless service providers, use the EnumProviders method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstxtv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
EnumProviders, GetGateway, SMSPROVIDER

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTextMessage::GetTimeout Method

INT GetTimeout();

The GetTimeout method returns the number of seconds the client will wait for a response from
the server. Once the specified number of seconds has elapsed, the method will fail and return to
the caller.

Parameters
None.

Return Value
If the method succeeds, the return value is the timeout period in seconds. If the method fails, the
return value is SMS_ERROR. To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstxtv11.lib

See Also
EnableRelay, SendMessage, SetTimeout

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTextMessage::IsInitialized Method

BOOL IsInitialized();

The IsInitialized method returns whether or not the class object has been successfully initialized.

Parameters
None.

Return Value
This method returns a non-zero value if the class object has been successfully initialized. A return
value of zero indicates that the runtime license key could not be validated or the networking
library could not be loaded by the current process.

Remarks
When an instance of the class is created, the class constructor will attempt to initialize the
component with the runtime license key that was created when SocketTools was installed. If the
constructor is unable to validate the license key or load the networking libraries, this initialization
will fail.

If SocketTools was installed with an evaluation license, the application cannot be redistributed to
another system. The class object will fail to initialize if the application is executed on another
system, or if the evaluation period has expired. To redistribute your application, you must
purchase a development license which will include the runtime key that is needed to redistribute
your software to other systems. Refer to the Developer's Guide for more information.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstxtv11.lib

See Also
CTextMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTextMessage::IsRelaying Method

BOOL IsRelaying();

The IsRelaying method returns whether or not messages will be relayed through another mail
server.

Parameters
None.

Return Value
This method returns a non-zero value if relaying has been enabled, otherwise this method will
return zero.

Remarks
For more information about relaying text messages, refer to the EnableRelay method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstxtv11.lib

See Also
DisableRelay, EnableRelay, SendMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTextMessage::SendMessage Method

BOOL SendMessage(
 DWORD dwServiceType,
 LPCTSTR lpszProvider,
 LPCTSTR lpszPhoneNumber,
 LPCTSTR lpszSender,
 LPCTSTR lpszMessage
);

BOOL SendMessage(
 LPSMSSERVICE lpService,
 LPSMSMESSAGE lpMessage
);

The SendMessage method sends a text message to the specified mobile device.

Parameters
dwServiceType

An unsigned integer value which identifies the type of service being used to send the message.
Currently there is only one valid service type, SMS_SERVICE_SMTP which sends the message to
a mail gateway provided by the wireless service provider. This parameter is included for future
expansion when multiple alternative services may be used to send the message.

lpszProvider

A pointer to a string that identifies the wireless service provider that is responsible for the
specified phone number. If the service provider is unknown, this parameter can be NULL or an
empty string. In that case, the default provider for the phone number will be used.

lpszPhoneNumber

A pointer to a string that specifies the phone number for the mobile device. This can be a
standard E.164 formatted number or an unformatted number. Any extraneous whitespace,
punctuation or other non-numeric characters in the string will be ignored. This parameter
cannot be NULL.

lpszSender

A pointer to a string which identifies the sender of the message and should specify a valid email
address. If the recipient replies to the message, the reply will be sent to this address. This
parameter cannot be NULL.

lpszMessage

A pointer to a null terminated string that contains the message to be sent to the recipient. In
most cases, a message should not exceed 160 characters in length, although some service
providers may accept longer messages. If a message exceeds the maximum number of
characters accepted by a service provider, the message may be ignored or it may be split into
multiple messages.

lpService

A pointer to an SMSSERVICE structure that identifies the messaging service that will be used to
send the text message. The default service sends the message through the mail server gateway
for the wireless service provider associated with the recipient's phone number. This parameter
cannot be NULL.

lpMessage

A pointer to an SMSMESSAGE structure that contains information about the message to be
sent, including the sender, the recipient and the text message itself. This parameter cannot be
NULL.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The SendMessage method is used to send a text message to a mobile device. This API is
designed to support multiple methods of sending text messages, with the default method sending
the message through a server gateway established by the wireless service provider.

SMS_SERVICE_SMTP
This message service sends the message through the wireless service provider's mail gateway
using the SMTP protocol. However, it is important to note that many of these gateways will not
accept messages from a client that is connected to them using a residential Internet service
provider. If the application is being run on a system that uses a residential provider, that service
provider may also block outbound connections to all mail servers other than their own. These anti-
spam measures typically require that most end-user applications specify a relay mail server rather
than submitting the message directly to the wireless provider's gateway.

Because most wireless carriers in the United States and Canada must provide for wireless number
portability, there is the possibility that the provider information returned may no longer
correspond to the telephone number. It is recommended that you provide your end-user with the
ability to specify an alternate preferred provider to use when sending the text message. For more
information, refer to the GetGateway method.

This service also sends an HTTP query to the server api.sockettools.com to obtain information
about the phone number and wireless service provider. This requires that the local system can
establish a standard network connection over port 80. If the client cannot connect to the server,
the function will fail and an appropriate error will be returned. The server imposes a limit on the
maximum number of connections that can be established and the maximum number of requests
that can be issued per minute. If this method is called multiple times over a short period, the
library may also force the application to block briefly. Server responses are cached per session, so
calling this method multiple times using the same phone number will not increase the request
count.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstxtv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
EnableRelay, GetGateway, GetProvider, SMSMESSAGE, SMSSERVICE

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTextMessage::SetLastError Method

VOID SetLastError(
 DWORD dwErrorCode
);

The SetLastError method sets the last error code for the current thread. This method is typically
used to clear the last error by specifying a value of zero as the parameter.

Parameters
dwErrorCode

Specifies the last error code for the current thread.

Return Value
None.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. Most methods will
set the last error code value when they fail; a few methods set it when they succeed. Function
failure is typically indicated by a return value such as FALSE, NULL, INVALID_CLIENT or
SMS_ERROR. Those methods which call SetLastError when they succeed are noted on the
method reference page.

Applications can retrieve the value saved by this method by using the GetLastError method. The
use of GetLastError is optional; an application can call the method to determine the specific
reason for a method failure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstxtv11.lib

See Also
GetErrorString, GetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTextMessage::SetTimeout Method

INT SetTimeout(
 UINT nTimeout
);

The SetTimeout method sets the number of seconds the client will wait for a response from the
server. Once the specified number of seconds has elapsed, the blocking method will fail and
return to the caller.

Parameters
nTimeout

The number of seconds until a blocking operation fails. Setting this parameter to zero will use
the default timeout period.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
SMS_ERROR. To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstxtv11.lib

See Also
GetTimeout, EnableRelay, SendMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CTextMessage::ShowError Method

INT ShowError(
 LPCTSTR lpszAppTitle,
 UINT uType,
 DWORD dwErrorCode
);

The ShowError method displays a message box which describes the specified error.

Parameters
lpszAppTitle

A pointer to a string which specifies the title of the message box that is displayed. If this
argument is NULL or omitted, then the default title of "Error" will be displayed.

uType

An unsigned integer which specifies the type of message box that will be displayed. This is the
same value that is used by the MessageBox method in the Windows API. If a value of zero is
specified, then a message box with a single OK button will be displayed. Refer to that method
for a complete list of options.

dwErrorCode

Specifies the error code that will be used when displaying the message box. If this argument is
zero, then the last error that occurred in the current thread will be displayed.

Return Value
If the method is successful, the return value will be the return value from the MessageBox
function. If the method fails, it will return a value of zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstxtv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetErrorString, GetLastError, SetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Text Message Data Structures

SMSGATEWAY
SMSMESSAGE
SMSPROVIDER
SMSSERVICE

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SMSGATEWAY Structure

This structure contains information about a text message gateway server and the recipient.

typedef struct _SMSGATEWAY
{
 INT nGatewayId;
 INT nCountryCode;
 INT nAreaCode;
 INT nExchange;
 INT nMessageLength;
 DWORD dwReserved;
 TCHAR szProvider[SMS_MAXPROVIDERNAMELEN];
 TCHAR szDomain[SMS_MAXDOMAINNAMELEN];
 TCHAR szServer[SMS_MAXMAILSERVERLEN];
 TCHAR szAddress[SMS_MAXMAILADDRESSLEN];
} SMSCHANNEL, *LPSMSCHANNEL;

Members
nGatewayId

An integer value which identifies the gateway record. This value is used internally and an
application should not depend on the value not changing over time for a specific telephone
number. As new area codes are introduced, the provider database will be updated to reflect
these changes and that can result in a change to the gateway ID associated with a specific
telephone number.

nCountryCode

An integer value which specifies the ITU country calling code associated with the service
provider. Currently this value will always be 1, which is the country code used by North
American service providers. If the service provider database is expanded to include additional
countries in the future, this value will identify the country of origin.

nAreaCode

An integer value which specifies the Numbering Plan Area (NPA) code, commonly known as the
area code. For the United States and Canada, area codes are assigned by the North American
Numbering Plan Administration (NANPA). In North America, the area code is digits 1-3 for a 10-
digit telephone number. This value, along with the exchange, is used to determine which
company provides wireless service for a specific telephone number.

nExchange

An integer value which specifies the exchange area. In North America, the exchange is digits 4-6
for a 10-digit telephone number. This value, along with the area code, is used to determine
which company provides wireless service for a specific telephone number.

nMessageLength

An integer value which specifies the maximum number of characters that the service provider
will accept for a single text message. If the message exceeds this number of characters, the
service provider may reject the message, or it may split the message into multiple messages.

dwReserved

A value reserved for internal use.

szProvider

A pointer to a string which identifies the name of the service provider that is associated with the
specified telephone number. Note that this value may not represent the actual company that is

providing the wireless service.

szDomain

A pointer to a string which identifies the gateway domain name used by the service provider to
accept text messages for their customer. This domain name is used to determine the actual
name of the gateway mail server that is responsible for accepting messages.

szServer

A pointer to a string which identifies the host name or IP address of the mail server used to
accept text messages for the specified service provider. In some cases, a provider may have
multiple gateway servers and this value will represent the preferred mail server for the domain.

szAddress

A pointer to a string which contains the complete email address that should be used when
sending the text message through the gateway mail server. Different service providers can have
slightly different rules about how the address is formatted, but it typically is a combination of the
telephone number and the gateway domain name.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SMSMESSAGE Structure

This structure provides information about a text message.

typedef struct _SMSMESSAGE
{
 DWORD dwFormat;
 DWORD dwLength;
 DWORD dwFlags;
 DWORD dwReserved;
 LPCTSTR lpszProvider;
 LPCTSTR lpszPhoneNumber;
 LPCTSTR lpszSender;
 LPCTSTR lpszMessage;
} SMSMESSAGE, *LPSMSMESSAGE;

Members
dwFormat

An integer value which specifies the format of the message message. This member is included
for future use where a service provider supports multiple message formats based on different
versions of the protocol. The default value for this member is SMS_FORMAT_TEXT.

dwLength

An integer value which specifies the length of the message. If this member is zero, the length
will be automatically calculated based on the length of the lpszMessage text that is terminated
by a null character. If this value is larger than the actual length of the message text, it will be
ignored.

dwFlags

An integer value which specifies one or more message options.

Constant Description

SMS_MESSAGE_DEFAULT The default value used with standard text messages.

SMS_MESSAGE_URGENT The text message should be flagged as urgent. For
messages that are sent through a mail gateway, this will set
the header to indicate that it is a high priority message.
Note that service providers handle urgent messages
differently and some may ignore the message priority.

dwReserved

Reserved for future use. This value should always be zero.

lpszProvider

A pointer to a null terminated string which specifies the name of the preferred wireless service
provider responsible for handling the message. If this member is NULL or an empty string, the
default provider assigned to the recipient's phone number will be used. This structure member
is only used with SMS_SERVICE_SMTP messages and is ignored for other message services.

lpszPhoneNumber

A pointer to a null terminated string which specifies the recipient's phone number. This can be a
standard E.164 formatted number or an unformatted number. Any extraneous whitespace,
punctuation or other non-numeric characters in the string will be ignored. This structure
member cannot be NULL.

lpszSender

A pointer to a null terminated string which identifies the sender of the message. For
SMS_SERVICE_SMTP messages, this string should be a valid email address. For other services,
this string may specify a phone number or shortcode. This structure member cannot be NULL.

lpszMessage

A pointer to a null terminated string that contains the message to be sent to the recipient. In
most cases, a message should not exceed 160 characters in length, although some service
providers may accept longer messages. If a message exceeds the maximum number of
characters accepted by a service provider, the message may be ignored or it may be split into
multiple messages.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

See Also
SendMessage, SMSSERVICE

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SMSPROVIDER Structure

This structure contains information about a wireless service provider.

typedef struct _SMSPROVIDER
{
 INT nProviderId;
 INT nCountryCode;
 INT nRegionCode;
 INT nMessageLength;
 DWORD dwFlags;
 DWORD dwReserved;
 TCHAR szGuid[SMS_MAXPROVIDERGUIDLEN];
 TCHAR szName[SMS_MAXPROVIDERNAMELEN];
 TCHAR szCompany[SMS_MAXCOMPANYNAMELEN];
 TCHAR szDomain[SMS_MAXDOMAINNAMELEN];
} SMSPROVIDER, *LPSMSPROVIDER;

Members
nProviderId

An integer value which identifies the provider record. This value is used internally and an
application should not depend on the value not changing over time for a specific service
provider. To uniquely identify a provider, use the szGuid member of the structure, which is
guaranteed not to change as providers are added and removed from the database.

nCountryCode

An integer value which specifies the ITU country calling code associated with the service
provider. Currently this value will always be 1, which is the country code used by North
American service providers. If the service provider database is expanded to include additional
countries in the future, this value will identify the country of origin.

nRegionCode

An integer value which identifies the region that the service provider covers. In North America,
each region consists of multiple states and/or provinces. If a provider services multiple regions,
this will identify the primary region where they provide coverage.

Constant Description

SMS_REGION_NATIONAL
0

All regions. This region code is used for
service providers that have national coverage
and do not exclusively provide service within
one or more specific geographical regions.

SMS_REGION_NORTH_EAST_ATLANTIC

1

Northeastern Atlantic region which includes
Connecticut, Maine, Massachusetts, New
Hampshire, New Brunswick, Newfoundland,
Nova Scotia, Rhode Island and Vermont.

SMS_REGION_MIDDLE_ATLANTIC
2

Middle Atlantic region which includes New
Jersey, New York, Delaware, District of
Columbia, Maryland, Pennsylvania, Quebec,
Virginia and West Virginia.

SMS_REGION_EAST_NORTH_CENTRAL
3

Northeastern central region which includes
Illinois, Indiana, Michigan, Ohio and

Wisconsin.

SMS_REGION_SOUTH_ATLANTIC
4

Southern Atlantic region which includes
Florida, Georgia, North Carolina and South
Carolina.

SMS_REGION_EAST_SOUTH_CENTRAL
5

Southeastern central region which includes
Alabama, Kentucky, Mississippi and
Tennessee.

SMS_REGION_WEST_NORTH_CENTRAL

6

Northwestern central region which includes
Iowa, Kansas, Manitoba, Minnesota, Missouri,
Nebraska, North Dakota, Ontario and South
Dakota.

SMS_REGION_WEST_SOUTH_CENTRAL

7

Southwestern central region which includes
Arkansas, Louisiana, Oklahoma and Texas.

SMS_REGION_MOUNTAIN
8

Mountain region which includes Alberta,
Arizona, Colorado, Idaho, Montana, Nevada,
New Mexico, Northwest Territories,
Saskatchewan, Utah and Wyoming.

SMS_REGION_PACIFIC
9

Pacific region which includes Alaska, British
Columbia, California, Hawaii, Oregon,
Washington and Yukon.

nMessageLength

An integer value which specifies the maximum number of characters that the service provider
will accept for a single text message. If the message exceeds this number of characters, the
service provider may reject the message, or it may split the message into multiple messages.

dwFlags

An unsigned integer value which specifies one or more flags that provides additional
information about the service provider. This value is constructed by using a bitwise operator
with any of the following constants:

Constant Description

SMS_PROVIDER_DEFAULT

0

A standard service provider. Typically this means that
customers have a service contract for their mobile device
and pay monthly access and service charges.

SMS_PROVIDER_PREPAID

1

A service provider that offers pre-paid calling cards or
fixed month-to-month payments that do not require long-
term service contracts.

dwReserved

A value reserved for internal use.

szGuid

A pointer to a string which uniquely identifies the service provider. The string is in a standard
format used for globally unique identifiers (GUIDs) and is guaranteed to not change for the
service provider it has been assigned to.

szName

A pointer to a string which specifies the name of service provider. Note that this value may not
represent the actual company that is providing the wireless service.

szCompany

A pointer to a string which specifies the name of the company associated with the service
provider. This may be the same as name of the service provider itself or it may be the name of a
parent company that owns the service provider.

szDomain

A pointer to a string which identifies the gateway domain name used by the service provider to
accept text messages for their customer. This domain name is used to determine the actual
name of the gateway mail server that is responsible for accepting messages.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SMSSERVICE Structure

This structure provides information about the service used to send a text message.

typedef struct _SMSSERVICE
{
 DWORD dwServiceType;
 DWORD dwAuthType;
 DWORD dwVersion;
 DWORD dwTimeout;
 DWORD dwOptions;
 DWORD dwReserved;
 LPCTSTR lpszResource;
 LPCTSTR lpszAccount;
 LPCTSTR lpszUserName;
 LPCTSTR lpszPassword;
} SMSSERVICE, *LPSMSSERVICE;

Members
dwServiceType

An integer value which identifies the type of service that will be used to send the message. This
member can be one of the following values:

Constant Description

SMS_SERVICE_SMTP The text message will be sent through the mail gateway for the
specified service provider. This service uses SMTP to submit the
message for delivery, either directly to the server provider's mail
gateway server or through a relay server. This is the default
service type.

dwAuthType

An integer value which identifies the type of authentication used with the service. This member
can be one of the following values:

Constant Description

SMS_AUTH_DEFAULT The default authentication method for this service type
should be used. Most applications should use this value
unless a service type provides multiple authentication
methods.

SMS_AUTH_USERNAME The service requires authentication using a username and
password. This value can be used with an SMTP service that
requires user authentication and is typically needed when
using a mail server relay. For the SMS_SERVICE_SMTP service,
this is the default authentication method.

dwVersion

An integer value which identifies the interface version for the service being used. This member is
included for future use where a service may support multiple versions of their interface and
should normally be set to the value SMS_VERSION_DEFAULT.

dwTimeout

An integer value which specifies the amount of time in seconds that a function will wait for a

response from the service. If this value is zero, a default timeout period of 20 seconds will be
used. If the service does not respond within this time period, the function will fail.

dwOptions

An integer value which specifies one or more options.

Constant Description

SMS_OPTION_NONE No additional options for the service.

SMS_OPTION_SECURE This option specifies that SSL/TLS will be used to establish a
secure, encrypted connection with the service. For some
services, it may be required to connect to them securely and
this option will be enabled automatically.

dwReserved

Reserved for future use. This value should always be zero.

lpszResource

A pointer to a null terminated string that specifies a resource for the service. Typically this will be
either a fully qualified domain name or a URL. For gateways using SMTP, this string should
identify the mail server. An alternate port number can also be specified by appending it to the
hostname, separated by a colon. For example, smtp.company.com:587 would connect to the
server on port 587. If you are specifying an IPv6 address with an alternate port number, the
address must be enclosed in brackets. For services where a domain name or resource URL is not
required, this member will be ignored and can be NULL.

lpszAccount

A pointer to a null terminated string that specifies an account name or identifier. Some service
providers may require a unique account name or a token (application ID) in conjunction with
other credentials. This member is not used with mail gateways and ignored if the service type is
SMS_SERVICE_SMTP. If no account name is required for session authentication, this member
can be NULL.

lpszUserName

A pointer to a null terminated string that specifies a user name to authenticate the session. If the
authentication type is SMS_AUTH_USERNAME this member must specify a valid user name. If no
authentication is required, this member may be NULL. Note that some service providers may
use terminology other than "username" with their documentation; this member will always
specify the first of a pair of authentication tokens.

lpszPassword

A pointer to a null terminated string that specifies the password used to authenticate the
session. If the authentication type is SMS_AUTH_USERNAME this member must specify a valid
password. If no authentication is required, this member may be NULL. Note that some service
providers may use terminology other than "password" with their documentation; this member
will always specify the second of a pair of authentication tokens.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

See Also
SendMessage, SMSMESSAGE

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

CWebStorage Application Storage Class Library

The CWebStorage class provides data storage for applications.

Reference

Class Methods
Constants
Data Structures
Error Codes

Library Information

Class Name CWebStorage

File Name CSWEBV11.DLL

Version 11.0.2180.1635

LibID FB6CDDA2-571F-4EC0-B37A-FA3E7B8B306C

Import Library CSWEBV11.LIB

Dependencies None

Overview
The CWebStorage class enables an application to store and manage data remotely. These
methods use secure services provided by SocketTools API servers and do not require third-party
party APIs or accounts with other cloud service providers.

Requirements
The SocketTools Library Edition libraries are compatible with any programming language which
supports calling functions exported from a standard dynamic link library (DLL). If you are using
Visual C++ 6.0 it is required that you have Service Pack 6 (SP6) installed. You should install all
updates for your development tools and have the current Windows SDK installed. The minimum
recommended version of Visual Studio is Visual Studio 2010.

This library is supported on Windows 7, Windows Server 2008 R2 and later versions of the desktop
and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1) installed as
a minimum requirement. It is recommended that you install the current service pack and all critical
updates available for your version of the operating system.

This product includes both 32-bit and 64-bit libraries. Native 64-bit CPU support requires the 64-
bit version of Windows 7 or later versions of the Windows operating system.

Distribution
When you distribute your application that uses this library, it is recommended that you install the
file in the same folder as your application executable. If you install the library into a shared location
on the system, it is important that you distribute the correct version for the target platform and it
should be registered as a shared DLL. This is a standard Windows dynamic link library, not an
ActiveX component, and does not require COM registration.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/websvc/class/constants.html

 CWebStorage Class Methods

Class Description

CWebStorage Constructor which initializes the current instance of the class

~CWebStorage Destructor which releases resources allocated by the class

Method Description

Cancel Cancel a storage operation that is currently in progress

CloseStorage Close the storage container and release resources allocated for the client session

CompareFile Compare the contents of a stored object with a local file

CompareData Compare the contents of a stored object with a memory buffer

CompareText Compare the contents of a stored object with a string

CopyObject Copy a storage object to a new location and optionally rename the object label

DeleteObject Delete an existing storage object

DownloadFile Download the contents of a stored object to a local file

DisableTrace Disable logging of method calls to the trace log file

EnableTrace Enable logging of method calls to a log file

EnumObjects Enumerate all storage objects that match the specified label or content type

GetAccountId Return the current web services account identifier

GetData Download the contents of a storage object to a memory buffer

GetErrorString Return a description for the specified error code

GetFile Download the contents of a storage object to a local file

GetFirstApplication Return information about the first registered application

GetFirstObject Return information about the first object that matches search criteria

GetHandle Return the storage handle used by this instance of the class

GetLastError Return the last error code

GetNextApplication Return information about the next registered application

GetNextObject Return information about the next object that matches search criteria

GetObjectInformation Retrieve the metadata for the specified storage object

GetObjectSize Return the size of the specified storage object

GetStorageQuota Return quota limits assigned to your storage account

GetStorageId Return the returns the current storage container ID

GetTimeout Get the number of seconds until a storage operation times out

GetTransferStatus Return status information about the progress of a data transfer

IsBlocking Determine if the session waiting for a response from the storage server

IsConnected Determine if the client is connected to the storage server

IsInitialized Determine if the class has been successfully initialized

MoveObject Move a storage object to a new location and optionally rename the object label

OpenStorage Open a storage container and return a handle for the client session

PutData Upload the contents of a memory buffer and return information about the new
object

PutFile Upload the contents of a local file and return information about the new object

RegisterAppId Register a new application identifier used to store and retrieve data

RegisterEvent Register an event handler to receive notifications for the session

RenameObject Change the label associated with a storage object

ResetStorage Resets the application storage container and deletes all stored objects

SetLastError Set the last error code

SetTimeout Set the number of seconds until a storage operation times out

ShowError Display a message box with a description of the specified error

UnregisterAppId Unregister the application identifier and delete all associated storage objects

UnregisterEvent Unregister an event handler and stop receiving notifications for the session

UploadFile Upload the contents of a local file

ValidateAppId Validate the specified application identifier

ValidateLabel Check the specified string to ensure it is a valid object label

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWebStorage::CWebStorage

CWebStorage();

The CWebStorage constructor initializes the class library and validates the license key at runtime.

Remarks
If the constructor fails to validate the runtime license, subsequent methods in this class will fail. If
the product is installed with an evaluation license, then the application will only method on the
development system and cannot be redistributed.

The constructor calls the WebInitialize function to initialize the library, which dynamically loads
other system libraries and allocates thread local storage. If you are using this class within another
DLL, it is important that you do not create or destroy an instance of the class from within the
DllMain function because it can result in deadlocks or access violation errors.

You should not declare static or global instances of this class within another DLL if it is linked with
the C runtime library (CRT) because it will automatically call the constructors and destructors for
static and global C++ objects and has the same restrictions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
~CWebStorage, IsInitialized, WebInitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWebStorage::~CWebStorage

~CWebStorage();

The CWebStorage destructor releases resources allocated by the current instance of the
CWebStorage object. It also uninitializes the library if there are no other concurrent uses of the
class.

Remarks
When a CWebStorage object goes out of scope, the destructor is automatically called to allow
the library to free any resources allocated on behalf of the process. Any pending blocking or
asynchronous calls in this process are canceled without posting any notification messages, and all
handles that were created for the client session are destroyed.

The destructor is not called explicitly by the application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CWebStorage, IsConnected, IsInitialized

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWebStorage::Cancel Method

BOOL Cancel();

The Cancel method cancels the current data transfer in progress.

Parameters
None.

Return Value
If the method succeeds, the return value is a non-zero. If the method fails, the return value is zero.
To get extended error information, call the GetLastError method.

Remarks
The Cancel method will cancel the current data transfer and abort the connection to the storage
server. This method will fail if an active data transfer (either an upload or download) is not in
progress.

This would typically be used within an event handler to cancel an operation as the contents of an
object are being read or written. There is no mechanism to resume a canceled data transfer and
this method should only be used when absolutely necessary.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib

See Also
GetTransferStatus, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWebStorage::CloseStorage Method

BOOL CloseStorage();

The CloseStorage method closes the open storage container.

Parameters
None.

Return Value
If the method succeeds, the return value is a non-zero. If the method fails, the return value is zero.
To get extended error information, call the GetLastError method.

Remarks
The CloseStorage method must be called after all operations using the storage container have
completed. The access token granted to the application will be released and the memory
allocated for the session cache will be freed.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib

See Also
GetHandle, OpenStorage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWebStorage::CompareData Method

BOOL CompareData(
 LPCTSTR lpszObjectLabel,
 LPCVOID lpvBuffer,
 DWORD dwLength
);

The CompareData method compares the contents of a stored object with the data provided by
the caller.

Parameters
lpszObjectLabel

A pointer to a null terminated string which specifies the label of the object to be compared.

lpvBuffer

A pointer to a buffer that contains the data to be compared against the storage object.

dwLength

An unsigned integer which specifies the length of the data buffer to be compared.

Return Value
If the method succeeds, the return value is a non-zero and the data matches the contents of the
stored object. If the method fails, the return value is zero. To get extended error information, call
the GetLastError method.

Remarks
The CompareData method performs a binary comparison of the data in the specified buffer with
the contents of the storage object on the server. The dwLength parameter must match the size of
the stored object exactly, or this method will fail. Partial comparisons are not supported by this
method.

If you wish to compare the contents of a text object, it is recommended that you use
CompareText. This method ensures that Unicode text is compared correctly.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CompareFile, CompareText, GetObjectInformation

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWebStorage::CompareFile Method

BOOL CompareFile(
 LPCTSTR lpszObjectLabel,
 LPCTSTR lpszLocalFile
);

The CompareFile method compares the contents of a stored object with a local file.

Parameters
lpszObjectLabel

A pointer to a null terminated string which specifies the label of the object to be compared.

lpszLocalFile

A pointer to a null terminated string that specifies the name of the local file. If a path is not
specified, the file will be created in the current working directory.

Return Value
If the method succeeds, the return value is a non-zero and the contents of the file matches the
stored object. If the method fails, the return value is zero. To get extended error information, call
the GetLastError method.

Remarks
The CompareFile method performs a binary comparison of the contents of a local file with a
stored object on the server. The contents of the file must be identical to the contents of the stored
object or the method will fail.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CompareData, CompareText, GetObjectInformation

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWebStorage::CompareText Method

BOOL CompareText(
 LPCTSTR lpszObjectLabel,
 LPCTSTR lpszObjectText,
 INT cchObjectText
);

The CompareText method compares the contents of a stored object with the string provided by
the caller.

Parameters
lpszObjectLabel

A pointer to a null terminated string which specifies the label of the object to be compared.

lpszObjectText

A pointer to a null terminated string which contains the text to be compared with the stored
object.

cchObjectText

The number of characters in the lpszObjectText string to be compared. This value may be -1, in
which case the string length will be determined by counting the number of characters up to the
terminating null.

Return Value
If the method succeeds, the return value is a non-zero and the data matches the contents of the
stored object. If the method fails, the return value is zero. To get extended error information, call
the GetLastError method.

Remarks
The CompareText method performs a text comparison of the characters in the string with the
contents of the storage object on the server. The string length must match the amount of text in
the stored object exactly, or this function will fail. Partial comparisons are not supported by this
function.

Unicode strings will be automatically converted from UTF-16 to UTF-8 encoding in the same way
the PutData method does when storing text objects.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CompareFile, CompareData, GetData, GetObjectInformation, PutData

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWebStorage::CopyObject Method

BOOL CopyObject(
 LPCTSTR lpszOldLabel,
 LPCTSTR lpszNewLabel,
 DWORD dwStorageType,
 LPWEB_STORAGE_OBJECT lpObject
);

The CopyObject method creates a copy of an existing storage object using a new label.

Parameters
lpszOldLabel

A pointer to a null terminated string which specifies the label of the existing storage object to be
copied. This parameter must specify a valid object label and cannot be a NULL pointer or an
empty string.

lpszNewLabel

A pointer to a null terminated string which specifies the name of the new storage object that will
be created. This parameter may be NULL or point to an empty string, in which case the label
name is not changed. In this case, the dwStorageType parameter cannot be
WEB_STORAGE_DEFAULT.

dwStorageType

An integer value that identifies the storage container type. If this parameter is omitted, the value
WEB_STORAGE_DEFAULT will be used. One of the following values can be specified:

Constant Description

WEB_STORAGE_DEFAULT
(0)

The default storage type. If this value is specified, the new
object will be created using the same storage type as the
original storage object.

WEB_STORAGE_GLOBAL
(1)

Global storage. Objects stored using this storage type are
available to all users. Any changes made to objects using
this storage type will affect all users of the application.
Unless there is a specific need to limit access to the objects
stored by the application to specific domains, local
machines or users, it is recommended that you use this
storage type when creating new objects.

WEB_STORAGE_DOMAIN
(2)

Local domain storage. Objects stored using this storage
type are only available to users in the same local domain,
as defined by the domain name or workgroup name
assigned to the local system. If the domain or workgroup
name changes, objects previously stored using this
storage type will not be available to the application.

WEB_STORAGE_MACHINE
(3)

Local machine storage. Objects stored using this storage
type are only available to users on the same local
machine. The local machine is identified by unique
characteristics of the system, including the boot volume
GUID. Objects previously stored using this storage type will
not be available on that system if the boot disk is

reformatted.

WEB_STORAGE_USER
(4)

Current user storage. Objects stored using this storage
type are only available to the current user logged in on
the local machine. The user identifier is based on the
Windows user SID that is assigned when the user account
is created. If the user account is deleted, the objects
previously stored using this storage type will not be
available to the application.

lpObject

A pointer to a WEB_STORAGE_OBJECT structure that will contain information about the new
storage object. If this information is not required, this parameter may be omitted or a NULL
pointer.

Return Value
If the method succeeds, the return value is a non-zero. If the method fails, the return value is zero.
To get extended error information, call the GetLastError method.

Remarks
The CopyObject method is used to create a copy of an existing storage object. It may be used to
duplicate an object with a different label, or it may be used to copy the object to a new storage
container type. For example, it can copy an object originally created using WEB_STORAGE_USER
to a new object stored using WEB_STORAGE_MACHINE.

Copied objects are assigned their own unique ID and are not linked to one another. Any
subsequent changes made to the original object will not affect the copied object. Attempting to
copy an object to itself or another existing object will result in an error.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DeleteObject, MoveObject, RenameObject

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/websvc/class/bmoveobject.html
file:///C|/Projects/cstools11/pdf/websvc/class/brenameobject.html

 CWebStorage::DeleteObject Method

BOOL DeleteObject(
 LPCTSTR lpszObjectLabel
);

The DeleteObject method deletes an object from the storage container.

Parameters
lpszObjectLabel

A pointer to a null terminated string which specifies the label of the object to be deleted.

Return Value
If the method succeeds, the return value is a non-zero. If the method fails, the return value is zero.
To get extended error information, call the GetLastError method.

Remarks
The DeleteObject method permanently deletes the storage object and its associated data from
the server. Deleted objects cannot be recovered by the application. To remove all objects stored
in the container, use the ResetStorage method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CopyObject, MoveObject, RenameObject, ResetStorage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWebStorage::DisableTrace Method

BOOL DisableTrace();

The DisableTrace method disables the logging of socket function calls to the trace log.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, a value of zero is
returned.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib

See Also
EnableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWebStorage::DownloadFile Method

BOOL DownloadFile(
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszObjectLabel,
 LPWEB_STORAGE_OBJECT lpObject
);

BOOL DownloadFile(
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszObjectLabel,
 LPCTSTR lpszAppId,
 DWORD dwStorageType,
 DWORD dwTimeout,
 LPWEB_STORAGE_OBJECT lpObject,
 WEBEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

The DownloadFile method downloads the contents of a storage object and copies it to a local
file.

Parameters
lpszLocalFile

A pointer to a null terminated string that specifies the name of the local file that will be created
or overwritten with the contents of the storage object. If a path is not specified, the file will be
created in the current working directory.

lpszObjectLabel

A pointer to a null terminated string that specifies the label of the object that should be
retrieved from the server.

lpszAppId

A pointer to null terminated string which specifies the application ID for the storage container.
The application ID is a string that uniquely identifies the application and can only contain letters,
numbers, the period and the underscore character. If this parameter is NULL or an empty string,
the default identifier SocketTools.Storage.Default will be used.

dwStorageType

An integer value that identifies the storage container type. If this parameter is omitted,
WEB_STORAGE_GLOBAL will be used as the default. One of the following values can be
specified:

Constant Description

WEB_STORAGE_GLOBAL
(1)

Global storage. Objects stored using this storage type are
available to all users. Any changes made to objects using
this storage type will affect all users of the application.
Unless there is a specific need to limit access to the objects
stored by the application to specific domains, local
machines or users, it is recommended that you use this
storage type when creating new objects.

WEB_STORAGE_DOMAIN
(2)

Local domain storage. Objects stored using this storage
type are only available to users in the same local domain,

as defined by the domain name or workgroup name
assigned to the local system. If the domain or workgroup
name changes, objects previously stored using this
storage type will not be available to the application.

WEB_STORAGE_MACHINE
(3)

Local machine storage. Objects stored using this storage
type are only available to users on the same local
machine. The local machine is identified by unique
characteristics of the system, including the boot volume
GUID. Objects previously stored using this storage type will
not be available on that system if the boot disk is
reformatted.

WEB_STORAGE_USER
(4)

Current user storage. Objects stored using this storage
type are only available to the current user logged in on
the local machine. The user identifier is based on the
Windows user SID that is assigned when the user account
is created. If the user account is deleted, the objects
previously stored using this storage type will not be
available to the application.

dwTimeout

An integer value that specifies a timeout period in seconds. If this value is zero, a default
timeout period will be used.

lpObject

A pointer to a WEB_STORAGE_OBJECT structure that will contain additional information about
the object that has been downloaded. This parameter may be omitted or NULL if the
information is not required.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback method, see the description of the WebEventProc callback
method. If this parameter is omitted or NULL, no callback function will be invoked during the
data transfer.

dwParam

A user-defined integer value that is passed to the callback method specified by lpEventProc. If
the application targets the x86 (32-bit) platform, this parameter must be a 32-bit unsigned
integer. If the application targets the x64 (64-bit) platform, this parameter must be a 64-bit
unsigned integer.

Return Value
If the method succeeds, the return value is a non-zero. If the method fails, the return value is zero.
To get extended error information, call the GetLastError method.

Remarks
The DownloadFile method downloads the contents of the storage object and stores it in a local
file. Unlike the GetFile method, it is not required that you explicitly open a storage container using
the OpenStorage method prior to calling this method.

Additional metadata about the object will be returned in the WEB_STORAGE_OBJECT structure
provided by the caller, such as the date and time the object was created, the content type and the
SHA-256 hash of the object contents.

If you are downloading a large object and want your application to receive progress updates
during the data transfer, provide a pointer to a static callback function as the lpEventProc
parameter. That function will receive event notifications as the data is being downloaded.

Example
WEB_STORAGE_OBJECT webObject;

// Download the object from global storage to a local file
if (pStorage->DownloadFile(lpszObjectLabel, lpszLocalFile, &webObject))
{
 // The object was downloaded, display the metadata
 _tprintf(_T("Object: %s\n"), webObject.szObjectId);
 _tprintf(_T("Label: %s\n"), webObject.szLabel);
 _tprintf(_T("Size: %lu\n"), webObject.dwObjectSize);
 _tprintf(_T("Digest: %s\n"), webObject.szDigest);
 _tprintf(_T("Content: %s\n"), webObject.szContent);
}
else
{
 // The object could not be retrieved, display the error
 CString strError;

 pStorage->GetLastError(strError);
 _tprintf(_T("Unable to retrieve \"%s\" (%s)\n"), lpszObjectLabel,
(LPCTSTR)strError);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetFile, PutFile, UploadFile,

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWebStorage::EnableTrace Method

BOOL EnableTrace(
 LPCTSTR lpszTraceFile,
 DWORD dwTraceFlags
);

The EnableTrace method enables the logging of socket method calls to a file.

Parameters
lpszTraceFile

A pointer to a string which specifies the name of the trace log file. If this parameter is NULL or
an empty string, the default file name cstrace.log is used. The file is stored in the directory
specified by the TEMP environment variable, if it is defined; otherwise, the current working
directory is used.

dwTraceFlags

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

TRACE_INFO All method calls are written to the trace file. This is the default
value.

TRACE_ERROR Only those method calls which fail are recorded in the trace file.

TRACE_WARNING Only those method calls which fail or return values which indicate
a warning are recorded in the trace file.

TRACE_HEXDUMP All methods calls are written to the trace file, plus all the data that
is sent or received is displayed, in both ASCII and hexadecimal
format.

TRACE_PROCESS All method calls in the current process are logged, rather than only
those methods in the current thread. This option is useful for
multithreaded applications that are using worker threads.

Return Value
If the method succeeds, the return value is non-zero. A return value of zero indicates an error.
Failure typically indicates that the tracing library cstrcv11.dll cannot be loaded on the local
system.

Remarks
When trace logging is enabled, the file is opened, appended to and closed for each socket
method call. This makes it possible for an application to append its own logging information,
however care should be taken to ensure that the file is closed before the next network operation is
performed. To limit the size of the log files, enable and disable logging only around those sections
of code that you wish to trace.

Note that the TRACE_HEXDUMP trace level generates very large log files since it includes all of the
data exchanged between your application and the server.

Trace method logging is managed on a per-thread basis, not for each client handle. This means
that all SocketTools libraries and components share the same settings in the current thread. If you

are using multiple SocketTools libraries or components in your application, you only need to
enable logging once.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DisableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWebStorage::EnumObjects Method

BOOL EnumObjects(
 LPCTSTR lpszMatchLabel,
 LPCTSTR lpszContentType,
 LPWEB_STORAGE_OBJECT& lpObjects,
 DWORD& dwObjects
);

DWORD EnumObjects(
 LPCTSTR lpszMatchLabel,
 LPCTSTR lpszContentType
);

The EnumObjects method enumerates all storage objects that match the specified label or
content type.

Parameters
lpszMatchLabel

A pointer to a null terminated string which specifies the value to match against the object labels
in the container. The string may contain wildcard characters similar to those use with the
Windows filesystem. A "?" character matches any single character, and "*" matches any number
of characters in the label. If this value is a NULL pointer or an empty string, all objects in the
container will be matched.

lpszContentType

A pointer to a null terminated string which specifies the content type of the objects to be
enumerated. If this value is a NULL pointer or an empty string, the content type is ignored and
all matching objects are returned.

lpObjects

A pointer to an array of WEB_STORAGE_OBJECT structures that will contain information about
the enumerated objects. If this parameter is NULL, then no object information is returned.

lpdwObjects

A pointer to an unsigned integer that will contain the number of objects enumerated by this
method. If the lpObjects parameter points to an array of WEB_STORAGE_OBJECT structures,
this parameter must be initialized to the maximum size of the array being passed to the
method. If the lpObjects parameter is NULL, this value must be initialized to zero, and when the
method returns it will contain the number of matching objects.

Return Value
If the method succeeds, the return value is a non-zero. If the method fails, the return value is zero.
To get extended error information, call the GetLastError method.

Remarks
The EnumObjects method can be used to enumerate the number of objects that match a given
label, content type or both. If a content type is specified, it must be a valid MIME media content
type designated using the type/subtype nomenclature. For example, "text/plain" or "image/jpeg".
An invalid MIME type will cause the method to fail.

This method can be used in two ways. If the lpObjects parameter is NULL and the value passed by
reference in the lpdwObjects parameter is initialized to zero, the method will return the number of
matching objects in lpdwObjects. This can be used to dynamically determine the size of the

lpObjects array instead of declaring a fixed-size array in your application.

If the lpObjects parameter is not NULL, then the value referenced by lpdwObjects must be
initialized to the maximum size of the array that lpObjects points to. It is important to note that if
either parameter is not initialized correctly, it can result in memory corruption and/or an
unhandled exception.

There is an alternative version of EnumObjects which only returns a count of objects that match
the specified content type and/or object label name, without returning information about the
objects. This can be used to determine how many objects match the given criteria prior to
requesting the object metadata.

The GetFirstObject and GetNextObject methods can be used to iterate through all matching
storage objects without allocating memory to store all of the matching objects. Using
GetFirstObject and GetNextObject is more efficient when the container contains a large number
of objects that match the specified label and/or content type.

Example
DWORD dwObjects = 0;
LPWEB_STORAGE_OBJECT lpObjects = NULL;

if (pStorage->EnumObjects(_T("*.pdf"), NULL, lpObjects, dwObjects))
{
 // Print information about each object
 for (DWORD dwIndex = 0; dwIndex < dwObjects; dwIndex++)
 {
 _tprintf(_T("Object: %s\n"), lpObjects[dwIndex].szObjectId);
 _tprintf(_T("Label: %s\n"), lpObjects[dwIndex].szLabel);
 _tprintf(_T("Size: %lu\n"), lpObjects[dwIndex].dwObjectSize);
 _tprintf(_T("Digest: %s\n"), lpObjects[dwIndex].szDigest);
 _tprintf(_T("Content: %s\n"), lpObjects[dwIndex].szContent);

 if (dwObjects > 1 && dwIndex < dwObjects - 1)
 _tprintf(_T("\n"));
 }
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetFirstObject, GetNextObject, GetObjectInformation

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWebStorage::GetAccountId Method

BOOL GetAccountId(
 LPCTSTR lpszAccountId,
 INT nMaxLength
);

BOOL GetAccountId(
 CString& strAccountId
);

The GetAccountId method returns the web services account ID associated with the current
session.

Parameters
lpszAccountId

A pointer to a null-terminated string that will contain the account ID when the method returns.
This parameter cannot be NULL and must be at least 35 characters in length. An alternate form
of the method accepts a CString variable which will contain the account ID.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
lpszAccountId string parameter, including the terminating null character.

Return Value
If the method succeeds, the return value is a non-zero. If the method fails, the return value is zero.
To get extended error information, call the GetLastError method.

Remarks
The account ID is a string that uniquely identifies the web services account that is associated with
the session. The account ID corresponds with your product serial number and runtime license key,
but it is not identical to either of those values.

If you are using an evaluation license, the account ID is temporary and only valid
during the evaluation period. After the evaluation period has expired, the account ID
is revoked and objects stored using this ID will be deleted. It is not recommended
that you store critical application data using an evaluation license.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetStorageId

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWebStorage::GetErrorString Method

INT GetErrorString(
 DWORD dwErrorCode,
 LPTSTR lpszDescription,
 INT cbDescription
);

INT GetErrorString(
 DWORD dwErrorCode,
 CString& strDescription
);

The GetErrorString method is used to return a description of a specific error code. Typically this is
used in conjunction with the GetLastError method for use with warning dialogs or as diagnostic
messages.

Parameters
dwErrorCode

The error code for which a description is returned.

lpszDescription

A pointer to the buffer that will contain a description of the specified error code. This buffer
should be at least 128 characters in length. An alternate form of the method accepts a CString
variable which will contain the error description.

cbDescription

The maximum number of characters that may be copied into the description buffer.

Return Value
If the method succeeds, the return value is the length of the description string. If the method fails,
the return value is zero, meaning that no description exists for the specified error code. Typically
this indicates that the error code passed to the method is invalid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetLastError, SetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWebStorage::GetData Method

BOOL GetData(
 LPCTSTR lpszObjectLabel,
 LPBYTE lpBuffer,
 LPDWORD lpdwLength,
 LPWEB_STORAGE_OBJECT lpObject,
);

BOOL GetData(
 LPCTSTR lpszObjectLabel,
 HGLOBAL * lphgblBuffer,
 LPDWORD lpdwLength,
 LPWEB_STORAGE_OBJECT lpObject,
);

BOOL GetData(
 LPCTSTR lpszObjectLabel,
 LPTSTR lpszBuffer,
 INT nMaxLength,
 LPWEB_STORAGE_OBJECT lpObject,
);

BOOL GetData(
 LPCTSTR lpszObjectLabel,
 CString& strBuffer,
 LPWEB_STORAGE_OBJECT lpObject,
);

The GetData method retrieves the contents of a storage object and copies it to the memory
buffer that is provided. Additional information about the object is optionally returned to the caller.

Parameters
lpszObjectLabel

A pointer to a null terminated string that specifies the label of the object that should be
retrieved from the server.

lpBuffer

A pointer to a byte array which will contain the object's data. When this version of the method is
called, the buffer must be pre-allocated by the application and large enough to store all of the
data or the method will fail. The lpdwLength parameter must be initialized with the maximum
size of the byte array, and will be updated with the actual number of bytes copied into the
buffer when the method returns.

lphgblBuffer

A pointer to a HGLOBAL memory handle. When this version of the method returns, the handle
will reference a block of memory allocated by the GlobalAlloc function and the lpdwLength
parameter will contain the number of bytes copied. To obtain a pointer to the data, the
application must call the GlobalLock function. It is the responsibility of the application to free
the global memory handle when it is no longer needed.

lpszBuffer

A pointer to a string buffer which will contain the object's text when the method returns. When
this version of the method is called, the string will be populated with the object contents and
terminated with a null character. The nMaxLength parameter must specify the maximum

number of characters that can be copied into the string, including the terminating null. This
version of the function should only be used with text and must never be used with binary data.

strBuffer

A CString which will contain the object's text when the method returns. This version of the
method requires the application be compiled with MFC or ATL support. This version of the
function should only be used with text and must never be used with binary data.

lpdwLength

A pointer to an unsigned integer which should be initialized to the maximum number of bytes
that can be copied to the buffer specified by the lpBuffer parameter. If the lpBuffer parameter
points to a global memory handle, the length value should be initialized to zero. When the
method returns, this value will be updated with the actual length of the file that was
downloaded.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
lpszBuffer string buffer provided by the caller. This value must be large enough to contain the
entire contents of the object, including the terminating null character.

lpObject

A pointer to a WEB_STORAGE_OBJECT structure that will contain additional information about
the object. This parameter may be omitted or NULL if the information is not required.

Return Value
If the method succeeds, the return value is a non-zero. If the method fails, the return value is zero.
To get extended error information, call the GetLastError method.

Remarks
The GetData method is used to retrieve a stored object from the server and copy it into a local
buffer. The method may be used in one of several ways, depending on the needs of the
application. The first method is to pre-allocate a buffer large enough to store the contents of the
object. In this case, the lpBuffer parameter will point to the buffer that was allocated and the value
that the lpdwLength parameter points to should be initialized to the size of that buffer.

The second method that can be used is to provide a pointer to an HGLOBAL global memory
handle which will contain the file data when the method returns. In this case, the value that the
lpdwLength parameter points to must be initialized to zero. It is important to note that the
memory handle returned by the method must be freed by the application, otherwise a memory
leak will occur. See the example code below.

The third method is to provide a string buffer which will contain the contents of a text object. The
nMaxLength parameter must specify a size large enough to contain the entire object text,
including a terminating null character. If the PutData method was previously used to store UTF-16
encoded text, you must use a byte array to retrieve that data. This method only recognizes UTF-8
encoded text and considers UTF-16 encoded text to be binary data. This version of the method
should never be used to retrieve data from an object that does not contain text.

If you wish to retrieve the contents of an object and store it in a file, use the GetFile method.

Additional metadata about the object can be returned in a WEB_STORAGE_OBJECT structure
provided by the caller, such as the date and time the object was created, the content type and the
SHA-256 hash of the object contents.

Example

HGLOBAL hgblBuffer = (HGLOBAL)NULL;
DWORD dwLength = 0;
LPCTSTR lpszObjectLabel = _T("MyAppData");

// Open the default global storage container
if (!pStorage->OpenStorage(WEB_STORAGE_GLOBAL))
{
 _tprintf(_T("Unable to open global storage\n"));
 return;
}

// Return the file data into block of global memory allocated by
// the GlobalAlloc method; the handle to this memory will be
// returned in the hgblBuffer parameter
if (pStorage->GetData(lpszObjectLabel, &hgblBuffer, &dwLength))
{
 // Lock the global memory handle, returning a pointer to the
 // resource data
 LPBYTE lpBuffer = (LPBYTE)GlobalLock(hgblBuffer);

 // After the data has been used, the handle must be unlocked
 // and freed, otherwise a memory leak will occur
 GlobalUnlock(hgblBuffer);
 GlobalFree(hgblBuffer);
}
else
{
 // The GetData method failed
 _tprintf(_T("Unable to retrieve object \"%s\"\n"), lpszObjectLabel);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetFile, GetObjectSize, GetObjectTime, PutFile, PutData

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/websvc/class/getobjecsize.html
file:///C|/Projects/cstools11/pdf/websvc/class/getobjectime.html

 CWebStorage::GetFile Method

BOOL GetFile(
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszObjectLabel,
 LPWEB_STORAGE_OBJECT lpObject
);

The GetFile method downloads the contents of a storage object and copies it to a local file.

Parameters
lpszLocalFile

A pointer to a null terminated string that specifies the name of the local file that will be created
or overwritten with the contents of the storage object. If a path is not specified, the file will be
created in the current working directory.

lpszObjectLabel

A pointer to a null terminated string that specifies the label of the object that should be
retrieved from the server.

lpObject

A pointer to a WEB_STORAGE_OBJECT structure that will contain additional information about
the object. This parameter may be omitted or NULL if the information is not required.

Return Value
If the method succeeds, the return value is a non-zero. If the method fails, the return value is zero.
To get extended error information, call the GetLastError method.

Remarks
If you are downloading a large object and want your application to receive progress updates
during the data transfer, use the RegisterEvent method and provide a pointer to a static callback
function that will receive event notifications.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DownloadFile, GetData, PutFile, PutData, RegisterEvent, UploadFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 GetFirstApplication Method

BOOL GetFirstApplication(
 LPWEB_STORAGE_APPLICATION lpAppInfo
);

The GetFirstApplication method returns information about the first registered application for the
current storage account.

Parameters
lpAppInfo

A pointer to a WEB_STORAGE_APPLICATION structure that will contain information about the
registered application when the function returns. This parameter cannot be NULL.

Return Value
If the method succeeds, the return value is a non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The GetFirstApplication method returns information about the first registered application. It is
used in conjunction with the GetNextApplication method to enumerate all of the registered
application IDs associated with your storage account.

The cached application ID information used by this method is shared by the entire process.
Attempting to enumerate all registered application IDs in multiple threads at the same time can
yield unexpected results. It is recommended that multi-threaded clients use a critical section to
ensure that only a single thread is enumerating the AppIDs at any one time.

Example
WEB_STORAGE_APPLICATION webApp;

if (pStorage->GetFirstApplication(&webApp))
{
 do
 {
 // Print information for each registered application
 _tprintf(_T("AppId: %s\n"), webApp.szAppId);
 _tprintf(_T("Key: %s\n"), webApp.szApiKey);
 _tprintf(_T("LUID: %s\n"), webApp.szLuid);
 _tprintf(_T("Tokens: %lu\n"), webApp.dwTokens);
 _tprintf(_T("\n"));
 }
 while (pStorage->GetNextApplication(&webApp));
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetNextApplication, RegisterAppId, UnregisterAppId

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 GetFirstObject Method

BOOL GetFirstObject(
 LPWEB_STORAGE_OBJECT lpObject
);

BOOL GetFirstObject(
 LPCTSTR lpszMatchLabel,
 LPWEB_STORAGE_OBJECT lpObject
);

BOOL GetFirstObject(
 LPCTSTR lpszMatchLabel,
 LPCTSTR lpszContentType,
 LPWEB_STORAGE_OBJECT lpObject
);

The GetFirstObject method returns information about the first storage object that matches the
specified label or content type.

Parameters
lpszMatchLabel

A pointer to a null terminated string which specifies the value to match against the object labels
in the container. The string may contain wildcard characters similar to those use with the
Windows filesystem. A "?" character matches any single character, and "*" matches any number
of characters in the label. If this parameter is omitted, a NULL pointer or an empty string, all
objects in the container will be matched.

lpszContentType

A pointer to a null terminated string which specifies the content type of the objects to be
enumerated. If this parameter is omitted, a NULL pointer or an empty string, the content type is
ignored and all matching objects are returned. If a content type is specified, it must be a valid
MIME media content type designated using the type/subtype nomenclature.

lpObject

A pointer to a WEB_STORAGE_OBJECT structure that will contain information about the storage
object when the function returns. This parameter cannot be NULL.

Return Value
If the function succeeds, the return value is a non-zero. If the function fails, the return value is
zero. To get extended error information, call WebGetLastError.

Remarks
The GetFirstObject method returns information about the first object that matches a given label,
content type or both. It is used in conjunction with the GetNextObject method to enumerate all
of the matching objects in the storage container.

This method provides an alternative to the EnumObjects method, which populates an array of
WEB_STORAGE_OBJECT structures. In some cases, iterating over each object in a loop may be
preferred to preallocating memory for an array to store every matching object. Using
GetFirstObject and GetNextObject is more efficient when the container contains a large number
of objects that match the specified label and/or content type.

You cannot intermix calls between GetFirstObject and EnumObjects. The EnumObjects method
will reset the internal object cache for the client session and subsequent calls to GetNextObject

will fail.

Example
WEB_STORAGE_OBJECT webObject;

if (pStorage->GetFirstObject(&webObject))
{
 do
 {
 // Print information about each object
 _tprintf(_T("Object: %s\n"), webObject.szObjectId);
 _tprintf(_T("Label: %s\n"), webObject.szLabel);
 _tprintf(_T("Size: %lu\n"), webObject.dwObjectSize);
 _tprintf(_T("Digest: %s\n"), webObject.szDigest);
 _tprintf(_T("Content: %s\n"), webObject.szContent);
 _tprintf(_T("\n"));
 }
 while (pStorage->GetNextObject(&webObject));
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
EnumObjects, GetNextObject

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWebStorage::GetHandle Method

HSTORAGE GetHandle();

The GetHandle method returns the storage handle associated with the current instance of the
class.

Parameters
None.

Return Value
This method returns the client handle associated with the current instance of the class object. If
there is no active client session, the value INVALID_HANDLE will be returned.

Remarks
This method is used to obtain the storage handle created by the class for use with the SocketTools
API.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib

See Also
IsInitialized

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWebStorage::GetLastError Method

DWORD GetLastError();

DWORD GetLastError(
 CString& strDescription
);

Parameters
strDescription

A string which will contain a description of the last error code value when the method returns. If
no error has been set, or the last error code has been cleared, this string will be empty.

Return Value
The return value is the last error code value for the current thread. Methods set this value by
calling the SetLastError method. The Return Value section of each reference page notes the
conditions under which the method sets the last error code.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. You should call
the GetLastError method immediately when a method's return value indicates that an error has
occurred. That is because some methods call SetLastError(0) when they succeed, clearing the
error code set by the most recently failed method.

Most methods will set the last error code value when they fail; a few methods set it when they
succeed. Method failure is typically indicated by a return value such as FALSE, NULL,
INVALID_HANDLE or WEBAPI_ERROR. Those methods which call SetLastError when they succeed
are noted on the method reference page.

The description of the error code is the same string that is returned by the GetErrorString
method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib

See Also
GetErrorString, SetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 GetNextApplication Function

BOOL GetNextApplication(
 LPWEB_STORAGE_APPLICATION lpAppInfo
);

The GetNextApplication method returns information about the next registered application for
the current storage account.

Parameters
lpAppInfo

A pointer to a WEB_STORAGE_APPLICATION structure that will contain information about the
registered application when the function returns. This parameter cannot be NULL.

Return Value
If the method succeeds, the return value is a non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The GetNextApplication method returns information about the next registered application after
initially calling the GetFirstApplication method. It is used to enumerate all of the registered
application IDs associated with your storage account.

The cached application ID information used by this method is shared by the entire process.
Attempting to enumerate all registered application IDs in multiple threads at the same time can
yield unexpected results. It is recommended that multi-threaded clients use a critical section to
ensure that only a single thread is enumerating the AppIDs at any one time.

Example
WEB_STORAGE_APPLICATION webApp;

if (pStorage->GetFirstApplication(&webApp))
{
 do
 {
 // Print information for each registered application
 _tprintf(_T("AppId: %s\n"), webApp.szAppId);
 _tprintf(_T("Key: %s\n"), webApp.szApiKey);
 _tprintf(_T("LUID: %s\n"), webApp.szLuid);
 _tprintf(_T("Tokens: %lu\n"), webApp.dwTokens);
 _tprintf(_T("\n"));
 }
 while (pStorage->GetNextApplication(&webApp));
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetFirstApplication, RegisterAppId, UnregisterAppId

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 GetNextObject Method

BOOL GetNextObject(
 LPWEB_STORAGE_OBJECT lpObject
);

The GetNextObject method returns information about the next storage object that matches the
specified label or content type.

Parameters
lpObject

A pointer to a WEB_STORAGE_OBJECT structure that will contain information about the storage
object when the function returns. This parameter cannot be NULL.

Return Value
If the function succeeds, the return value is a non-zero. If the function fails, the return value is
zero. To get extended error information, call GetLastError.

Remarks
The GetNextObject method returns information about the next object that matches the label
and/or content type that was specified by the GetFirstObject method. This method may only be
called after GetFirstObject has been called, otherwise it will fail.

When all matching objects have been returned to the caller, this method will return zero (FALSE)
and the GetLastError method will return NO_ERROR. Any other error code indicates an
underlying problem with the request, such as an invalid parameter passed to the function.

You cannot intermix calls between GetNextObject and EnumObjects. The EnumObjects
method will reset the internal object cache for the client session and subsequent calls to
GetNextObject will fail.

Example
WEB_STORAGE_OBJECT webObject;

if (pStorage->GetFirstObject(&webObject))
{
 do
 {
 // Print information about each object
 _tprintf(_T("Object: %s\n"), webObject.szObjectId);
 _tprintf(_T("Label: %s\n"), webObject.szLabel);
 _tprintf(_T("Size: %lu\n"), webObject.dwObjectSize);
 _tprintf(_T("Digest: %s\n"), webObject.szDigest);
 _tprintf(_T("Content: %s\n"), webObject.szContent);
 _tprintf(_T("\n"));
 }
 while (pStorage->GetNextObject(&webObject));
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib

Unicode: Implemented as Unicode and ANSI versions.

See Also
EnumObjects, GetFirstObject

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWebStorage::GetObjectInformation Method

BOOL GetObjectInformation(
 LPCTSTR lpszObjectLabel,
 LPWEB_STORAGE_OBJECT lpObject
);

The GetObjectInformation method retrieves the metadata for a storage object.

Parameters
lpszObjectLabel

A pointer to a null terminated string that specifies the label of the storage object.

lpObject

A pointer to a WEB_STORAGE_OBJECT structure that will contain additional information about
the object. This parameter cannot be a NULL pointer.

Return Value
If the method succeeds, the return value is a non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The GetObjectInformation method is used to retrieve the metadata for a stored object on the
server, such as the date and time the object was created, the content type and the SHA-256 hash
of the object contents. This method can also be used as a simple method to determine if the
specified object exists without the overhead of requesting the server attempt to retrieve the
contents of an object.

Although storage object labels are similar to Windows file names, they are case-sensitive. When
requesting information about an object, your application must specify the label name exactly as it
was created. The object label cannot contain wildcard characters.

If you are only interested in obtaining the size of a stored object, you can use the GetObjectSize
method.

To obtain information about how much storage your applications are using and the total number
of stored objects, use the GetStorageQuota method.

Example
WEB_STORAGE_OBJECT webObject;

// Get information about the object
if (pStorage->GetObjectInformation(lpszObjectLabel, &webObject))
{
 // The object exists, display the metadata
 _tprintf(_T("Object: %s\n"), webObject.szObjectId);
 _tprintf(_T("Label: %s\n"), webObject.szLabel);
 _tprintf(_T("Size: %lu\n"), webObject.dwObjectSize);
 _tprintf(_T("Digest: %s\n"), webObject.szDigest);
 _tprintf(_T("Content: %s\n"), webObject.szContent);
}
else
{
 // The object does not exist, display the error
 CString strError;

 pStorage->GetLastError(strError);
 _tprintf(_T("Unable to get information on \"%s\" (%s)\n"), lpszObjectLabel,
(LPCTSTR)strError);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetFile, GetData, GetObjectSize, GetStorageQuota, PutFile, PutData

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWebStorage::GetObjectSize Method

DWORD GetObjectSize(
 LPCTSTR lpszObjectLabel
);

BOOL GetObjectSize(
 LPCTSTR lpszObjectLabel,
 LPDWORD lpdwObjectSize
);

The GetObjectSize method returns the size of the stored object.

Parameters
lpszObjectLabel

A pointer to a null terminated string that specifies the label of the storage object. This
parameter cannot be a NULL pointer.

lpdwObjectSize

A pointer to an unsigned integer value that will contain the size of the object. If this parameter is
NULL, the parameter is ignored and the method only checks for the existence of an object that
matches the specified label.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call the GetLastError method.

Remarks
The GetObjectSize method is used to retrieve the size of a stored object on the server. This
method can also be used as a simple method to determine if the specified object exists. An object
size of zero means the object exists, but currently has no data associated with it.

If the first version of this method is called, where the object size is a return value, you can
distinguish between an error and an empty object by calling the GetLastError method. If the last
error code is NO_ERROR then the object exists, but it has no data associated with it. Any other
error code value indicates the reason the object size could not be returned.

If the second version of this method is used and the lpObjectSize parameter is not NULL, its value
is initialized to zero when the method is called, and updated with the object size when the method
returns.

Although storage object labels are similar to Windows file names, they are case-sensitive. When
requesting the size of an object, your application must specify the label name exactly as it was
created. The object label cannot contain wildcard characters.

The GetObjectInformation method can be used to obtain the metadata associated with the
storage object, including the size, content type, creation date and a SHA-256 digest of the data.

To obtain information about how much storage your applications are using and the total number
of stored objects, use the GetStorageQuota method.

Example
// Check if the object exists
DWORD dwObjectSize = 0;

if (pStorage->GetObjectSize(lpszObjectLabel, &dwObjectSize))
{
 // The object exists, display the size in bytes
 _tprintf(_T("The size of \"%s\" is %lu bytes\n"), lpszObjectLabel,
dwObjectSize);
}
else
{
 // The object size could not be determined, display the error
 CString strError;

 pStorage->GetErrorString(strError);
 _tprintf(_T("Unable to get the size of \"%s\" (%s)\n"), lpszObjectLabel,
(LPCTSTR)strError);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetData, GetObjectInformation, GetStorageQuota, PutData

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWebStorage::GetStorageId Method

BOOL GetStorageId(
 LPCTSTR lpszStorageId,
 INT nMaxLength
);

BOOL GetStorageId(
 CString & strStorageId
);

The GetStorageId method returns the current storage container ID.

Parameters
lpszStorageId

A pointer to a null-terminated string that will contain the storage ID when the method returns.
This parameter cannot be NULL and must be at least 35 characters in length. An alternate
version of this method accepts a CString parameter if the application is compiled with support
for MFC or ATL.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
lpszStorageId string parameter, including the terminating null character.

Return Value
If the method succeeds, the return value is a non-zero. If the method fails, the return value is zero.
To get extended error information, call the GetLastError method.

Remarks
The storage ID is a string that identifies the storage container that was opened with the
OpenStorage method. The storage ID is associated with your account ID and development
license and is guaranteed to be a unique value.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetAccountId, OpenStorage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWebStorage::GetStorageQuota Method

BOOL GetStorageQuota(
 LPWEB_STORAGE_QUOTA lpQuota
);

The GetStorageQuota method returns quota limits assigned to your development account.

Parameters
lpQuota

A pointer to a WEB_STORAGE_QUOTA structure that will contain information the quota limits
for your account when the method returns. This parameter cannot be NULL.

Return Value
If the method succeeds, the return value is a non-zero. If the method fails, the return value is zero.
To get extended error information, call the GetLastError method.

Remarks
The GetStorageQuota method can be used to determine how much storage space is available to
your application. The ulBytesFree structure member will tell you how many bytes of storage you
have available, and the dwObjectSize member will tell you the maximum size of any individual
storage object. In addition to the bytes allocated for storage, there is also a limit on the total
number of objects that your application may create which is specified by the dwObjectLimit
member.

Accounts that are created with an evaluation license have much lower quota limits than a standard
account and should be used for testing purposes only. After the evaluation period has ended, all
objects stored using the evaluation license will be deleted.

Example
CWebStorage appStorage;
WEB_STORAGE_QUOTA appQuota;

// Display storage account usage and limits
if (appStorage.GetStorageQuota(&appQuota))
{
 _tprintf(_T("Objects Used: %lu\n"), appQuota.dwObjects);
 _tprintf(_T("Object Limit: %lu\n"), appQuota.dwObjectLimit);
 _tprintf(_T("Object Size: %lu\n"), appQuota.dwObjectSize);
 _tprintf(_T("Bytes Used: %I64u\n"), appQuota.ulBytesUsed);
 _tprintf(_T("Bytes Free: %I64u\n"), appQuota.ulBytesFree);
 _tprintf(_T("Storage Limit: %I64u\n"), appQuota.ulStorageLimit);
}
else
{
 // Unable to get the quota information for this account
 CString strError;

 appStorage.GetErrorString(strError);
 _tprintf(_T("Unable to get the account quota (%s)\n"), (LPCTSTR)strError);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)

Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetObjectInformation, GetObjectSize, WEB_STORAGE_QUOTA

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWebStorage::GetTimeout Method

INT GetTimeout();

The GetTimeout method returns the number of seconds the client will wait for a response from
the storage server. Once the specified number of seconds has elapsed, the method will fail and
return to the caller.

Parameters
None.

Return Value
If the method succeeds, the return value is the timeout period in seconds. If the method fails, the
return value is zero. To get extended error information, call the GetLastError method.

Remarks
The default timeout period is 10 seconds.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib

See Also
OpenStorage, SetTimeout

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWebStorage::GetTransferStatus Method

 LPWEB_STORAGE_TRANSFER lpStatus
);

The GetTransferStatus method returns information about the current data transfer in progress.

Parameters
lpStatus

A pointer to a WEB_STORAGE_TRANSFER structure which contains information about the status
of the current data transfer.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call the GetLastError method.

Remarks
The GetTransferStatus method returns information about the current data transfer, including the
average number of bytes transferred per second and the estimated amount of time until the
transfer completes. If there is no data currently being transferred, this method will return the status
of the last successful data transfer.

In a multithreaded application, any thread in the current process may call this method to obtain
status information for the storage session.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Cancel, GetData, PutData, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWebStorage::IsBlocking Method

BOOL IsBlocking();

The IsBlocking method is used to determine if the client is currently performing a blocking
operation.

Parameters
None.

Return Value
If the client is performing a blocking operation, the method returns a non-zero value. If the client
is not performing a blocking operation, or the client handle is invalid, the method returns zero.

Remarks
Because a blocking operation can potentially allow the application to be re-entered, it is possible
that another blocking method may be called while it is in progress. Because only one thread of
execution may perform a blocking operation at any one time, an error would occur. The
IsBlocking method can be used to determine if the storage client is already blocked, and if so,
take some other action (such as warning the user that they must wait for the operation to
complete).

If your application attempts to perform multiple operations simultaneously, such as downloading
multiple stored objects to the local system, each client session should be isolated in its own thread.
This will avoid potential situations where a request is refused because a blocking data transfer is
already in progress on the current thread.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Cancel, GetFile, GetData, IsConnected, IsInitialized, PutFile, PutData

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWebStorage::IsConnected Method

BOOL IsConnected();

The IsConnected method is used to determine if a connection has been established with the
storage server.

Parameters
None.

Return Value
If the client is connected to a server, the method returns a non-zero value. If the client is not
connected, or the client handle is invalid, the method returns zero. To get extended error
information, call the GetLastError method.

Remarks
The client does not maintain a continuous, persistent connection with the storage server. The
connection may be closed and reopened internally as needed. If the client session has been idle
for a period of time, this method can return zero.

 If the GetLastError method returns ST_ERROR_NOT_CONNECTED it means the client session is
valid, however it not currently connected to the storage server. The next call to store or retrieve an
object will the cause the client to reconnect automatically.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib

See Also
IsBlocking, IsInitialized

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWebStorage::IsInitialized Method

BOOL IsInitialized();

The IsInitialized method returns whether or not the class object has been successfully initialized.

Return Value
This method returns a non-zero value if the class object has been successfully initialized. A return
value of zero indicates that the runtime license key could not be validated or the networking
library could not be loaded by the current process.

Remarks
When an instance of the class is created, the class constructor will attempt to initialize the
component with the runtime license key that was created when SocketTools was installed. If the
constructor is unable to validate the license key or load the networking libraries, this initialization
will fail.

If SocketTools was installed with an evaluation license, the application cannot be redistributed to
another system. The class object will fail to initialize if the application is executed on a different
system, or if the evaluation period has expired. To redistribute your application, you must
purchase a development license which will include the runtime key that is needed to redistribute
your software to other systems. Refer to the Developer's Guide for more information.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib

See Also
CWebStorage, IsBlocking, IsConnected

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWebStorage::MoveObject Method

BOOL MoveObject(
 LPCTSTR lpszOldLabel,
 LPCTSTR lpszNewLabel,
 DWORD dwStorageType,
 LPWEB_STORAGE_OBJECT lpObject
);

The MoveObject method moves an existing object to a different storage container.

Parameters
lpszOldLabel

A pointer to a null terminated string which specifies the name of the existing storage object to
be moved. This parameter must specify a valid object label and cannot be a NULL pointer or an
empty string.

lpszNewLabel

A pointer to a null terminated string which specifies a new label for the storage object being
moved. This parameter may be NULL or point to an empty string, in which case the label name
is not changed.

dwStorageType

An integer value that identifies the storage container type. If this parameter is omitted, the
object is renamed and not moved to another container. One of the following values may be
specified:

Constant Description

WEB_STORAGE_GLOBAL
(1)

Global storage. Objects stored using this storage type are
available to all users. Any changes made to objects using
this storage type will affect all users of the application.
Unless there is a specific need to limit access to the objects
stored by the application to specific domains, local
machines or users, it is recommended that you use this
storage type when creating new objects.

WEB_STORAGE_DOMAIN
(2)

Local domain storage. Objects stored using this storage
type are only available to users in the same local domain,
as defined by the domain name or workgroup name
assigned to the local system. If the domain or workgroup
name changes, objects previously stored using this
storage type will not be available to the application.

WEB_STORAGE_MACHINE
(3)

Local machine storage. Objects stored using this storage
type are only available to users on the same local
machine. The local machine is identified by unique
characteristics of the system, including the boot volume
GUID. Objects previously stored using this storage type will
not be available on that system if the boot disk is
reformatted.

WEB_STORAGE_USER
(4)

Current user storage. Objects stored using this storage
type are only available to the current user logged in on

the local machine. The user identifier is based on the
Windows user SID that is assigned when the user account
is created. If the user account is deleted, the objects
previously stored using this storage type will not be
available to the application.

lpObject

A pointer to a WEB_STORAGE_OBJECT structure that will contain information about the new
storage object. If this information is not required, this parameter may be omitted or a NULL
pointer.

Return Value
If the method succeeds, the return value is a non-zero. If the method fails, the return value is zero.
To get extended error information, call the GetLastError method.

Remarks
The MoveObject method is used to move an existing storage object to a new container. For
example, it can move an object originally created using WEB_STORAGE_USER to the
WEB_STORAGE_MACHINE container. The dwStorageType parameter must specify a valid storage
container type and cannot be WEB_STORAGE_DEFAULT.

If the dwStorageType parameter specifies the same container that the object is currently in, and
the lpszNewLabel parameter specifies a new label name, this method will simply rename the
existing object and is effectively the same as calling the RenameObject method.

To duplicate an existing storage object, use the CopyObject method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CopyObject, DeleteObject, RenameObject

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWebStorage::OpenStorage Method

BOOL OpenStorage(
 DWORD dwStorageType
);

BOOL OpenStorage(
 LPCTSTR lpszAppId,
 DWORD dwStorageType
);

The OpenStorage method establishes a connection with the server and opens the storage
container associated with the specified storage type.

Parameters
lpszAppId

A pointer to null terminated string which specifies the application ID for the storage container.
The application ID is a string that uniquely identifies the application and can only contain letters,
numbers, the period and the underscore character. If this parameter is omitted, NULL or an
empty string, the default identifier SocketTools.Storage.Default will be used.

dwStorageType

An integer value that identifies the storage container type. If this parameter is omitted, the
WEB_STORAGE_GLOBAL container will be opened. One of the following values may be
specified:

Constant Description

WEB_STORAGE_GLOBAL
(1)

Global storage. Objects stored using this storage type are
available to all users. Any changes made to objects using
this storage type will affect all users of the application.
Unless there is a specific need to limit access to the objects
stored by the application to specific domains, local
machines or users, it is recommended that you use this
storage type when creating new objects.

WEB_STORAGE_DOMAIN
(2)

Local domain storage. Objects stored using this storage
type are only available to users in the same local domain,
as defined by the domain name or workgroup name
assigned to the local system. If the domain or workgroup
name changes, objects previously stored using this
storage type will not be available to the application.

WEB_STORAGE_MACHINE
(3)

Local machine storage. Objects stored using this storage
type are only available to users on the same local
machine. The local machine is identified by unique
characteristics of the system, including the boot volume
GUID. Objects previously stored using this storage type will
not be available on that system if the boot disk is
reformatted.

WEB_STORAGE_USER
(4)

Current user storage. Objects stored using this storage
type are only available to the current user logged in on
the local machine. The user identifier is based on the

Windows user SID that is assigned when the user account
is created. If the user account is deleted, the objects
previously stored using this storage type will not be
available to the application.

Return Value
If the method succeeds, the return value is a handle to the storage container. If the method fails,
the return value is INVALID_HANDLE. To get extended error information, call the GetLastError
method.

Remarks
The OpenStorage method opens the specified storage container and requests an access token
for the application. This is the first method that must be called prior to accessing any stored
objects.

The application ID is a string that uniquely identifies the application requesting the access and
must have been previously registered with the server by calling the RegisterAppId method. If the
lpszAppId parameter is NULL or an empty string, the method will use a default internal ID that is
allocated for each storage account. You can use this default ID if you wish to share data between
all of the applications you create.

The storage type specifies the type of container that objects will be stored in. In most cases, we
recommend using WEB_STORAGE_GLOBAL which means that stored objects will be accessible to
all users of your application. However, you can limit access to the stored objects based on the
local domain, local machine ID or the current user SID.

If you specify anything other than global storage, objects can be orphaned if the system
configuration changes. For example, if WEB_STORAGE_MACHINE is specified the objects that are
stored can only be accessed from that system. If the system is reconfigured (for example, the boot
volume formatted and Windows is reinstalled) the unique identifier for that system will change and
the previous objects that were stored by your application can no longer be accessed.

It is advisable is to store critical application data and configuration information using
WEB_STORAGE_GLOBAL and use other non-global storage containers for configuration
information that is unique to that system and/or user which is not critical and can be easily
recreated.

If a storage container was previously opened, calling this method will automatically close the
current container and open the new container specified by the dwStorageType parameter. This
can change the internal handle value used to reference the container and the old handle will no
longer be valid.

Example
CWebStorage appStorage;
LPCTSTR lpszAppId = _T("MyCompany.WebTest.1");
LPCTSTR lpszLocalFile = _T("TestDocument.pdf");
LPCTSTR lpszObjectLabel = _T("TestDocument.pdf");
WEB_STORAGE_OBJECT webObject = { 0, };

// Register the application ID which identifies the application
if (!appStorage.RegisterAppId(lpszAppId))
{
 tprintf(_T("Unable to register the application ID"));
 _exit(0);
}

// Open the application storage container
if (!appStorage.OpenStorage(lpszAppId, WEB_STORAGE_GLOBAL);
{
 tprintf(_T("Unable to open global storage for this application"));
 _exit(0);
}

// Upload a local file to the storage server and return information
// about the stored object when it completes
if (appStorage.PutFile(lpszLocalFile, lpszObjectLabel, &webObject))
{
 // Print information about the object that was created
 _tprintf(_T("Object: %s\n"), webObject.szObjectId);
 _tprintf(_T("Label: %s\n"), webObject.szLabel);
 _tprintf(_T("Size: %lu\n"), webObject.dwObjectSize);
 _tprintf(_T("Digest: %s\n"), webObject.szDigest);
 _tprintf(_T("Content: %s\n"), webObject.szContent);
}
else
{
 // The upload failed, display error information
 CString strError;

 appStorage.GetLastError(strError);
 _tprintf(_T("Cannot store \"%s\" (%s)\n"), lpszLocalFile,
(LPCTSTR)strError);
}

// Release the handle allocated for this storage session
appStorage.CloseStorage();

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CWebStorage::CloseStorage, CWebStorage::GetData, CWebStorage::GetFile,
CWebStorage::GetStorageId, CWebStorage::PutData, CWebStorage::PutFile,
CWebStorage::RegisterAppId

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/websvc/class/webclosestorage.html
file:///C|/Projects/cstools11/pdf/websvc/class/webgetdata.html
file:///C|/Projects/cstools11/pdf/websvc/class/webgetfile.html
file:///C|/Projects/cstools11/pdf/websvc/class/webgetstorageid.html
file:///C|/Projects/cstools11/pdf/websvc/class/webputdata.html
file:///C|/Projects/cstools11/pdf/websvc/class/webputfile.html
file:///C|/Projects/cstools11/pdf/websvc/class/webregisterappid.html

 CWebStorage::PutData Method

BOOL PutData(
 LPCTSTR lpszObjectLabel,
 LPCVOID lpvBuffer,
 DWORD dwLength,
 LPWEB_STORAGE_OBJECT lpObject
);

BOOL PutData(
 LPCTSTR lpszObjectLabel,
 LPCTSTR lpszObjectText,
 INT cchObjectText,
 LPWEB_STORAGE_OBJECT lpObject
);

BOOL PutData(
 LPCTSTR lpszObjectLabel,
 LPCVOID lpvBuffer,
 DWORD dwLength,
 LPCTSTR lpszContentType,
 DWORD dwAttributes,
 LPWEB_STORAGE_OBJECT lpObject
);

The PutData method stores the contents of buffer to a container and returns information about
the new object.

Parameters
lpszObjectLabel

A pointer to a null terminated string that specifies the label of the storage object that will be
created or replaced. This parameter cannot be NULL or a zero-length string. The method will
fail if the label contains any illegal characters.

lpvBuffer

A pointer to a buffer that contains the data to be stored. If this parameter is NULL, the
dwLength parameter must have a value of zero and a storage object will be created which has
no data associated with it.

dwLength

An unsigned integer value that specifies the number of bytes that will be copied from the
lpvBuffer parameter and stored in the object. If the lpvBuffer parameter is NULL, this value
must be zero or the method will fail.

lpszObjectText

A pointer to a null terminated string which is used with an alternate version of this method. The
string will be stored as a text object and the cchObjectText parameter will specify the number of
characters to be stored.

cchObjectText

An integer value that specifies the number of characters that will be copied from the
lpszObjectText string and stored in the object. If the lpszObjectText parameter is NULL, this
value must be zero or the method will fail. If this parameter is omitted, the length of the string
will be calculated by counting the number of characters up to the terminating null.

lpszContentType

A pointer to a null terminated string that identifies the contents of the buffer being stored. If this
parameter is omitted, a NULL pointer, or specifies a zero-length string, the method will attempt
to automatically determine the content type based on the object label and the contents of the
buffer.

dwAttributes

An unsigned integer that specifies the attributes associated with the storage object. If this
parameter is omitted, the default value WEB_OBJECT_NORMAL will be used. This value can be a
combination of one or more of the following bitflags using a bitwise OR operation:

Value Constant Description

0 WEB_OBJECT_DEFAULT Default object attributes. This value is used to
indicate the object can be modified, or that the
attributes for a previously existing object should
not be changed.

1 WEB_OBJECT_NORMAL A normal object that that can be read and
modified by the application. This is the default
attribute for new objects that are created by the
application.

2 WEB_OBJECT_READONLY A read-only object that can only be read by the
application. Attempts to modify or replace the
contents of the object will fail. Read-only objects
can be deleted.

4 WEB_OBJECT_HIDDEN A hidden object. Objects with this attribute are not
returned when enumerated using the
EnumObjects method. The object can only be
accessed directly when specifying its label.

lpObject

A pointer to a WEB_STORAGE_OBJECT structure that will contain additional information about
the object that was created or replaced. This parameter may be omitted or NULL if the
information is not required.

Return Value
If the method succeeds, the return value is a non-zero. If the method fails, the return value is zero.
To get extended error information, call the GetLastError method.

Remarks
The PutData method uploads the contents of a buffer to the current storage container. The
content type, which identifies the type of data stored in the object, and its attributes may be
specified by the caller or default values may be used.

If a content type is provided, it must specify a valid MIME media type and subtype. For example,
normal text files have a content type of text/plain while an XML-formatted text file would have a
content type of text/xml. Files that contain unstructured binary data are typically identified as
application/octet-stream.

If the label identifies an object that already exists in the container, and that object was created with
the WEB_OBJECT_READONLY attribute, this method will fail. To replace a read-only object, the
application must explicitly move, rename or delete the existing object.

If PutData method is used to store the contents of a string as a text object, the string should be
terminated with a null character and cannot contain embedded nulls. If the Unicode version of this
function is called, the contents of the string will be normalized prior to being converted to UTF-8
using canonical composition, where decomposed characters are combined to create their
canonical precomposed equivalent.

The size of the text object that is created can be different from the length of the string buffer
passed to this method, depending on how the text has been encoded and stored. This will almost
always be the case when the Unicode version of this function is called because the UTF-16 string
will be converted and stored as UTF-8 encoded text. This encoding will typically increase the size
of the stored object unless the string only contains ASCII characters.

The version of the PutData method which accepts a string should only be used to store textual
data in a null terminated string, and should never be used to store binary data. If you wish to
create or update an object which contains binary data, you should always use use a byte array.

If you want to upload the contents of a file, the PutFile method simplifies this process. The
example code below demonstrates how the Windows API can be used to read from a local file
and store the contents using PutData.

If you are storing a large amount of data and want your application to receive progress updates
during the data transfer, use the RegisterEvent method and provide a pointer to a static callback
function that will receive event notifications.

Example
HANDLE hFile = INVALID_HANDLE_VALUE;
LPBYTE lpContents = NULL;
DWORD dwLength = 0;
BOOL bFileRead = FALSE;
WEB_STORAGE_OBJECT webObject;

// Open a file on the local system and read the contents
// into a buffer that will be stored on the server
hFile = CreateFile(lpszLocalFile,
 GENERIC_READ,
 0,
 NULL,
 OPEN_EXISTING,
 FILE_ATTRIBUTE_NORMAL,
 NULL);

if (hFile == INVALID_HANDLE_VALUE)
{
 // Unable to open the file
 return;
}

// Get the size of the file and allocate a buffer large
// enough to store the contents of the file
dwLength = GetFileSize(hFile, NULL);
lpContents = (LPBYTE)LocalAlloc(LPTR, dwLength + 1);

if (lpContents == NULL)
{
 // Memory allocation failed
 return;
}

bFileRead = ReadFile(hFile, lpContents, dwLength, &dwLength, NULL);
CloseHandle(hFile);

if (!bFileRead)
{
 // Unable to read the contents of the file
 return;
}

// Store the contents of the buffer, identifying it as an unstructured
// stream of bytes, and the object is created with read/write access
if (pStorage->PutData(lpszObjectLabel, lpContents, dwLength, &webObject))
{
 // The object was created or replaced, display the metadata
 _tprintf(_T("Object: %s\n"), webObject.szObjectId);
 _tprintf(_T("Label: %s\n"), webObject.szLabel);
 _tprintf(_T("Size: %lu\n"), webObject.dwObjectSize);
 _tprintf(_T("Digest: %s\n"), webObject.szDigest);
 _tprintf(_T("Content: %s\n"), webObject.szContent);
}
else
{
 // The object could not be created
 CString strError;

 pStorage->GetLastError(strError);
 _tprintf(_T("Unable to create \"%s\" (%s)\n"), lpszObjectLabel,
(LPCTSTR)strError);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetFile, GetData, PutFile, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWebStorage::PutFile Method

BOOL PutFile(
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszObjectLabel,
 LPWEB_STORAGE_OBJECT lpObject

BOOL PutFile(
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszObjectLabel,
 LPCTSTR lpszContentType,
 DWORD dwAttributes,
 LPWEB_STORAGE_OBJECT lpObject
);

The PutFile method uploads the contents of a local file to a storage container and returns
information about the new object.

Parameters
lpszLocalFile

A pointer to a null terminated string that specifies the name of the local file that will be
uploaded. If a path is not specified, the file will be read from the current working directory. The
current user must have read access to the file, and an error will be returned if the method
cannot obtain an exclusive lock on the file during the upload process.

lpszObjectLabel

A pointer to a null terminated string that specifies the label of the storage object that will be
created or replaced. This parameter cannot be NULL or a zero-length string. The method will
fail if the label contains any illegal characters.

lpszContentType

A pointer to a null terminated string that identifies the contents of the file being uploaded. If this
parameter is omitted, a NULL pointer, or specifies a zero-length string, the method will attempt
to automatically determine the content type based on the file name extension and the contents
of the file.

dwAttributes

An unsigned integer that specifies the attributes associated with the storage object. If this
parameter is omitted, a default value of WEB_OBJECT_NORMAL will be used. This value can be
a combination of one or more of the following bitflags using a bitwise OR operation:

Value Constant Description

0 WEB_OBJECT_DEFAULT Default object attributes. This value is used to
indicate the object can be modified, or that the
attributes for a previously existing object should
not be changed.

1 WEB_OBJECT_NORMAL A normal object that that can be read and
modified by the application. This is the default
attribute for new objects that are created by the
application.

2 WEB_OBJECT_READONLY A read-only object that can only be read by the
application. Attempts to modify or replace the

contents of the object will fail. Read-only objects
can be deleted.

4 WEB_OBJECT_HIDDEN A hidden object. Objects with this attribute are not
returned when enumerated using the
EnumObjects method. The object can only be
accessed directly when specifying its label.

lpObject

A pointer to a WEB_STORAGE_OBJECT structure that will contain additional information about
the object. This parameter may be omitted or NULL if the information is not required.

Return Value
If the method succeeds, the return value is a non-zero. If the method fails, the return value is zero.
To get extended error information, call the GetLastError method.

Remarks
The PutFile method uploads the contents of a local file to the current storage container. The
content type, which identifies the type of data stored in the object, and its attributes may be
specified by the caller or default values may be used.

If a content type is provided, it must specify a valid MIME media type and subtype. For example,
normal text files have a content type of text/plain while an XML-formatted text file would have a
content type of text/xml. Files that contain unstructured binary data are typically identified as
application/octet-stream. If the content type is not explicitly specified, an attempt will be made
to identify it automatically based on contents of the file and the file extension.

If the label identifies an object that already exists in the container, and that object was created with
the WEB_OBJECT_READONLY attribute, this method will fail. To replace a read-only object, the
application must first move, rename or delete the existing object.

The ValidateLabel method can be used to ensure a label is valid prior to calling this method.
Refer to that method for more information about the difference between Windows file names and
object labels

If you are uploading a large file and want your application to receive progress updates during the
data transfer, use the RegisterEvent method and provide a pointer to a static callback function
that will receive event notifications.

Example
WEB_STORAGE_OBJECT webObject;

// Upload a local file to the storage container, automatically
// determining the content type with normal read/write access
if (pStorage->PutFile(lpszLocalFile, lpszObjectLabel, &webObject))
{
 // The file was uploaded, display the object metadata
 _tprintf(_T("Object: %s\n"), webObject.szObjectId);
 _tprintf(_T("Label: %s\n"), webObject.szLabel);
 _tprintf(_T("Size: %lu\n"), webObject.dwObjectSize);
 _tprintf(_T("Digest: %s\n"), webObject.szDigest);
 _tprintf(_T("Content: %s\n"), webObject.szContent);
}
else
{
 // The file could not be uploaded, display the error

 CString strError;

 pStorage->GetLastError(strError);
 _tprintf(_T("Unable to store \"%s\" (%s)\n"), lpszLocalFile,
(LPCTSTR)strError);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DownloadFile, GetFile, RegisterEvent, UploadFile, ValidateLabel

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWebStorage::RegisterAppId Method

BOOL RegisterAppId(
 LPCTSTR lpszAppId
);

The RegisterAppId method registers a unique application identifier with the server.

Parameters
lpszAppId

A pointer to a null terminated string which identifies the application requesting access. This
parameter cannot be NULL or point to a zero-length string. If the application ID contains illegal
characters, the method will fail. See the remarks below on the recommended method for
identifying your application.

Return Value
If the method succeeds, the return value is a non-zero. If the method fails, the return value is zero.
To get extended error information, call the GetLastError method.

Remarks
The RegisterAppId method registers an application ID with the server which uniquely identifies
the application that is requesting access to the storage container. The ID must only consist of
ASCII letters, numbers, the period and underscore character. Whitespace characters and non-
ASCII Unicode characters are not permitted. The maximum length of an application ID string is 64
characters, including the terminating null character.

 It is recommended that you use a standard format for the application ID that consists of your
company name, application name and optionally a version number. For example:

MyCompany.MyApplication

MyCompany.MyApplication.1

It is important to note that with these two example IDs, although they are similar, they reference
two different applications. Objects stored using the first ID will not be accessible using the second
ID. If you want to store objects that should be shared between all versions of the application, it is
recommended that you use the first form, without the version number. If you want to store objects
that should only be accessible to a specific version of your application, then it is recommended
that you use the second form that includes the version number.

It is safe to call this method with an application ID that was previously registered. If the provided
application ID has already been registered, this method will succeed. You can choose to call this
method every time your application starts to ensure the application has been registered correctly.

If you no longer wish to use an application ID you have previously registered, you can call the
UnregisterAppId method. Exercise caution when unregistering an application. This will cause all
objects stored using that ID to be deleted by the storage server. Once an application ID has been
unregistered, the operation is permanent. Calling UnregisterAppId and then RegisterAppId
again using the same ID will force the system to create new access tokens for your application.
You will not be able to regain access to the objects that were previously stored using that ID.

The application ID is intended to be an application defined human-readable string that uniquely
identifies your application. If you want to obtain the internal storage ID associated with your
application, use the GetStorageId method. The storage ID is a fixed-length string of letters and

numbers guaranteed to be unique across all applications that you register.

It is not required for your application to create a unique application ID. Each storage account has a
default internal application ID named SocketTools.Storage.Default. This default ID is used if
a NULL pointer or an empty string is specified to methods like OpenStorage. It is intended to
identify storage available to all applications that you create.

To enumerate the application IDs registered with your storage account, use the
GetFirstApplication and GetNextApplication methods.

Example
 CWebStorage appStorage;
LPCTSTR lpszAppId = _T("MyCompany.WebTest.1");
LPCTSTR lpszLocalFile = _T("TestDocument.pdf");
LPCTSTR lpszObjectLabel = _T("TestDocument.pdf");
WEB_STORAGE_OBJECT webObject = { 0, };

// Register the application ID which identifies the application
if (!appStorage.RegisterAppId(lpszAppId))
{
 tprintf(_T("Unable to register the application ID"));
 _exit(0);
}

// Open the application storage container
if (!appStorage.OpenStorage(lpszAppId, WEB_STORAGE_GLOBAL);
{
 tprintf(_T("Unable to open global storage for this application"));
 _exit(0);
}

// Upload a local file to the storage server and return information
// about the stored object when it completes
if (appStorage.PutFile(lpszLocalFile, lpszObjectLabel, &webObject))
{
 // Print information about the object that was created
 _tprintf(_T("Object: %s\n"), webObject.szObjectId);
 _tprintf(_T("Label: %s\n"), webObject.szLabel);
 _tprintf(_T("Size: %I64u\n"), webObject.dwObjectSize);
 _tprintf(_T("Digest: %s\n"), webObject.szDigest);
 _tprintf(_T("Content: %s\n"), webObject.szContent);
}
else
{
 // The upload failed, display error information
 CString strError;

 appStorage.GetLastError(strError);
 _tprintf(_T("Unable to upload \"%s\" (%s)\n"), lpszLocalFile,
(LPCTSTR)strError);
}

// Release the handle allocated for this storage session
appStorage.CloseStorage();

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)

Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CloseStorage, GetFirstApplication, GetNextApplication, GetStorageId, OpenStorage,
UnregisterAppId, ValidateAppId

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWebStorage::RegisterEvent Method

BOOL RegisterEvent(
 UINT nEventId,
 WEBEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

The RegisterEvent method registers an event handler for the specified event.

Parameters
nEventId

An unsigned integer which specifies which event should be registered with the specified
callback function. This parameter cannot be zero. The following values may be used:

Constant Description

WEB_EVENT_CONNECT
(1)

The connection to the storage server has been established
and the session has been authenticated. This is the first
event that occurs when initiating an operation to create or
retrieve a storage object.

WEB_EVENT_DISCONNECT
(2)

The connection to the storage server has been closed and
the session is terminating. This is the last event that occurs
after completing an operation to create or retrieve a storage
object.

WEB_EVENT_READ
(4)

The contents of an object is being read from the storage
container. This event occurs only once after the operation
has been initiated by the application. This event can also be
generated if there is an error during the process of retrieving
the object contents from the container.

WEB_EVENT_WRITE
(8)

The contents of an object is being written to the storage
container. This event occurs only once after the operation
has been initiated by the application. This event can also be
generated if there is an error during the process of
submitting the object contents to the container.

WEB_EVENT_TIMEOUT
(16)

The operation has exceeded the specified timeout period.
The application may attempt to retry the operation or report
an error to the user. This event typically indicates a
connectivity problem with the storage server.

WEB_EVENT_CANCEL
(32)

The operation has been canceled. This event occurs after the
application calls the Cancel method while an object is being
stored or retrieved.

WEB_EVENT_PROGRESS
(64)

A storage operation is in progress. This event periodically
occurs as the contents of a storage object is being read or
written from the container. To retrieve information about the
status of the operation, the application should register a
handler for this event and call the GetTransferStatus
method from within that handler.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For
more information about the callback method, see the description of the WebEventProc
callback method. If this parameter is NULL, the callback for the specified event is disabled.

dwParam
A user-defined integer value that is passed to the callback method specified by
lpEventProc. If the application targets the x86 (32-bit) platform, this parameter must be a
32-bit unsigned integer. If the application targets the x64 (64-bit) platform, this parameter
must be a 64-bit unsigned integer.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is
zero. To get extended error information, call the GetLastError method.

Remarks
The RegisterEvent method associates a static callback function with a specific event. The
event handler is a WebEventProc function that is invoked when the event occurs.
Arguments are passed to the method to identify the storage handle, the event type and the
user-defined value specified when the event handler is registered. If the event occurs
because of an error condition, the error code will be provided to the handler.

Events are only generated as the result of a call to the GetFile, GetData, PutFile and
PutData methods. Other storage methods will not generate event notifications.

This method is typically used to register an event handler that is invoked while the contents
of a storage object is being transferred. The WEB_EVENT_PROGRESS event will only be
generated periodically during the transfer to ensure the application is not flooded with
event notifications. It is guaranteed that at least one WEB_EVENT_PROGRESS notification will
occur at the beginning of the transfer, and one at the end of the transfer when it has
completed.

The callback function specified by the lpEventProc parameter must be declared using the
__stdcall calling convention. This ensures the arguments passed to the event handler are
pushed on to the stack in the correct order. Failure to use the correct calling convention will
corrupt the stack and cause the application to terminate abnormally.

The dwParam parameter is commonly used to identify the class instance which is associated
with the event that has occurred. Applications will cast the this pointer to a DWORD_PTR
value when calling this function, and then the event handler will cast it back to a pointer to
the class instance. This gives the handler access to the class member variables and methods.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Cancel, GetTransferStatus, UnregisterEvent, WebEventProc

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/websvc/class/webeventproc.html

 CWebStorage::RenameObject Method

BOOL RenameObject(
 LPCTSTR lpszOldLabel,
 LPCTSTR lpszNewLabel
);

The RenameObject method changes the label associated with the storage object.

Parameters
lpszOldLabel

A pointer to a null terminated string which specifies the name of the existing storage object to
be renamed. This parameter must specify a valid object label and cannot be a NULL pointer or
an empty string.

lpszNewLabel

A pointer to a null terminated string which specifies a new label for the storage object being
moved. This parameter may not be NULL or point to an empty string.

Return Value
If the method succeeds, the return value is a non-zero. If the method fails, the return value is zero.
To get extended error information, call the GetLastError method.

Remarks
The RenameObject method is used to change the label for an existing storage object. Although
storage object labels are similar to Windows file names, they are case-sensitive. When renaming
an object, your application must specify the original label name exactly as it was created. The
object label cannot contain wildcard characters.

To duplicate an existing storage object, use the CopyObject method. If you need to move the
object to a different storage container, use the MoveObject method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CopyObject, DeleteObject, MoveObject

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWebStorage::ResetStorage Method

BOOL ResetStorage();

The ResetStorage method resets the application storage container and deletes all stored objects.

Parameters
None.

Return Value
If the method succeeds, the return value is a non-zero. If the method fails, the return value is zero.
To get extended error information, call the GetLastError method.

Remarks
The storage container contains information for each of the objects that have been stored using
the handle returned by the OpenStorage method. Each of these objects are associated with both
the application ID and the storage type that was specified by the caller. This method instructs the
server to reset the container back to its initial state, deleting all of the objects that were stored in it.

Exercise caution when using this method. The reset operation is immediate and the
objects that are stored in the container are permanently deleted. They cannot be
recovered by your application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DeleteObject, OpenStorage, RegisterAppId, UnregisterAppId

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWebStorage::SetLastError Method

VOID SetLastError(
 DWORD dwErrorCode
);

The SetLastError method sets the last error code for the current thread. This method is typically
used to clear the last error by specifying a value of zero as the parameter.

Parameters
dwErrorCode

Specifies the last error code for the current thread.

Return Value
None.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. Most methods will
set the last error code value when they fail; a few methods set it when they succeed. Method
failure is typically indicated by a return value such as FALSE, NULL, INVALID_HANDLE or
WEBAPI_ERROR. Those methods which call SetLastError when they succeed are noted on the
method reference page.

Applications can retrieve the value saved by this method by using the GetLastError method. An
application can call the method to determine the specific reason for a method failure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib

See Also
GetErrorString, GetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWebStorage::SetTimeout Method

DWORD SetStorageTimeout(
 HSTORAGE hStorage,
 DWORD dwTimeout
);

The SetTimeout method sets the number of seconds the client will wait for a response from the
storage server. Once the specified number of seconds has elapsed, the method will fail and return
to the caller.

Parameters
hClient

Handle to the client session.

dwTimeout

The number of seconds to wait for a storage operation to complete.

Return Value
If the method succeeds, the return value is the previous timeout period for the session. If the
method fails, the return value is zero. To get extended error information, call the GetLastError
method.

Remarks
The default timeout period is 10 seconds. The minimum timeout period is 5 seconds, and the
maximum timeout period is 60 seconds. Values outside of this range will be normalized internally
and will not cause the method to fail.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib

See Also
GetTimeout, OpenStorage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWebStorage::ShowError Method

INT ShowError(
 LPCTSTR lpszAppTitle,
 UINT uType,
 DWORD dwErrorCode
);

The ShowError method displays a message box which describes the specified error.

Parameters
lpszAppTitle

A pointer to a string which specifies the title of the message box that is displayed. If this
argument is NULL or omitted, then the default title of "Error" will be displayed.

uType

An unsigned integer which specifies the type of message box that will be displayed. This is the
same value that is used by the MessageBox method in the Windows API. If a value of zero is
specified, then a message box with a single OK button will be displayed. Refer to that method
for a complete list of options.

dwErrorCode

Specifies the error code that will be used when displaying the message box. If this argument is
zero, then the last error that occurred in the current thread will be displayed.

Return Value
If the method is successful, the return value will be the return value from the MessageBox
method. If the method fails, it will return a value of zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetErrorString, GetLastError, SetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWebStorage::UnregisterAppId Method

BOOL UnregisterAppId(
 LPCTSTR lpszAppId
);

The UnregisterAppId method unregisters the application identifier and deletes all associated
storage objects.

Parameters
lpszAppId

A pointer to a null terminated string which specifies the application ID to be deleted. This
parameter cannot be NULL or point to a zero-length string. If the application ID contains illegal
characters, the method will fail.

Return Value
If the method succeeds, the return value is a non-zero. If the method fails, the return value is zero.
To get extended error information, call the GetLastError method.

Remarks
The UnregisterAppId method deletes the internal storage identifier associated with the
application ID and revokes all access tokens that were granted for the application. This operation is
immediate and permanent.

Exercise caution when using this method. This will permanently delete all objects that
were stored for the specified application. Calling UnregisterAppId and then
RegisterAppId again using the same ID will force the system to create new access
tokens for your application. You will not be able to regain access to the objects that
were previously stored using that ID.

This method cannot be used to unregister the default storage application ID
SocketTools.Storage.Default. If this ID is specified, the method will fail with an error
indicating that the ID is invalid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
OpenStorage, RegisterAppId, ResetStorage, ValidateAppId

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWebStorage::UnregisterEvent Method

BOOL RegisterEvent(
 UINT nEventId
);

The UnregisterEvent method removes an event handler for the specified event.

Parameters
nEventId

An unsigned integer which specifies which event should be registered with the specified
callback function. This parameter cannot be zero. The following values may be used:

Constant Description

WEB_EVENT_CONNECT
(1)

The connection to the storage server has been established
and the session has been authenticated. This is the first
event that occurs when initiating an operation to create or
retrieve a storage object.

WEB_EVENT_DISCONNECT
(2)

The connection to the storage server has been closed and
the session is terminating. This is the last event that occurs
after completing an operation to create or retrieve a storage
object.

WEB_EVENT_READ
(4)

The contents of an object is being read from the storage
container. This event occurs only once after the operation
has been initiated by the application. This event can also be
generated if there is an error during the process of retrieving
the object contents from the container.

WEB_EVENT_WRITE
(8)

The contents of an object is being written to the storage
container. This event occurs only once after the operation
has been initiated by the application. This event can also be
generated if there is an error during the process of
submitting the object contents to the container.

WEB_EVENT_TIMEOUT
(16)

The operation has exceeded the specified timeout period.
The application may attempt to retry the operation or report
an error to the user. This event typically indicates a
connectivity problem with the storage server.

WEB_EVENT_CANCEL
(32)

The operation has been canceled. This event occurs after the
application calls the Cancel method while an object is being
stored or retrieved.

WEB_EVENT_PROGRESS
(64)

A storage operation is in progress. This event periodically
occurs as the contents of a storage object is being read or
written from the container. To retrieve information about the
status of the operation, the application should register a
handler for this event and call the GetTransferStatus
method from within that handler.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is
zero. To get extended error information, call the GetLastError method.

Remarks
The UnregisterEvent method removes the association between a specific event and its
callback function. This method can be used if the application no longer requires the event
notification. All event handlers for the client session are automatically removed when the
CloseStorage method is called.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Cancel, GetTransferStatus, RegisterEvent, WebEventProc,

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/websvc/class/webeventproc.html

 CWebStorage::UploadFile Method

BOOL UploadFile(
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszObjectLabel,
 LPWEB_STORAGE_OBJECT lpObject
);

BOOL UploadFile(
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszObjectLabel,
 LPCTSTR lpszAppId,
 DWORD dwStorageType,
 DWORD dwAttributes,
 DWORD dwTimeout,
 LPWEB_STORAGE_OBJECT lpObject,
 WEBEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

The UploadFile method uploads the contents of a local file and creates or overwrites a storage
object.

Parameters
lpszLocalFile

A pointer to a null terminated string that specifies the name of the local file that will be created
or overwritten with the contents of the storage object. If a path is not specified, the file will be
created in the current working directory.

lpszObjectLabel

A pointer to a null terminated string that specifies the label of the object that should be
retrieved from the server.

lpszAppId

A pointer to null terminated string which specifies the application ID for the storage container.
The application ID is a string that uniquely identifies the application and can only contain letters,
numbers, the period and the underscore character. If this parameter is omitted, NULL or an
empty string, the default identifier SocketTools.Storage.Default will be used.

dwStorageType

An integer value that identifies the storage container type. If this parameter is omitted, the
default value of WEB_STORAGE_GLOBAL will be used. One of the following values may be
specified:

Constant Description

WEB_STORAGE_GLOBAL
(1)

Global storage. Objects stored using this storage type are
available to all users. Any changes made to objects using
this storage type will affect all users of the application.
Unless there is a specific need to limit access to the objects
stored by the application to specific domains, local
machines or users, it is recommended that you use this
storage type when creating new objects.

WEB_STORAGE_DOMAIN Local domain storage. Objects stored using this storage

(2) type are only available to users in the same local domain,
as defined by the domain name or workgroup name
assigned to the local system. If the domain or workgroup
name changes, objects previously stored using this
storage type will not be available to the application.

WEB_STORAGE_MACHINE
(3)

Local machine storage. Objects stored using this storage
type are only available to users on the same local
machine. The local machine is identified by unique
characteristics of the system, including the boot volume
GUID. Objects previously stored using this storage type will
not be available on that system if the boot disk is
reformatted.

WEB_STORAGE_USER
(4)

Current user storage. Objects stored using this storage
type are only available to the current user logged in on
the local machine. The user identifier is based on the
Windows user SID that is assigned when the user account
is created. If the user account is deleted, the objects
previously stored using this storage type will not be
available to the application.

dwAttributes

An unsigned integer that specifies the attributes associated with the storage object. If this
parameter is omitted, a default value of WEB_OBJECT_NORMAL will be used. This value can be
a combination of one or more of the following bitflags using a bitwise OR operation:

Value Constant Description

0 WEB_OBJECT_DEFAULT Default object attributes. This value is used to indicate the
object can be modified, or that the attributes for a
previously existing object should not be changed.

1 WEB_OBJECT_NORMAL A normal object that that can be read and modified by the
application. This is the default attribute for new objects that
are created by the application.

2 WEB_OBJECT_READONLY A read-only object that can only be read by the application.
Attempts to modify or replace the contents of the object will
fail. Read-only objects can be deleted.

4 WEB_OBJECT_HIDDEN A hidden object. Objects with this attribute are not returned
when enumerated using the CWebStorage::EnumObjects
method. The object can only be accessed directly when
specifying its label.

dwTimeout

An unsigned integer value that specifies a timeout period in seconds. If this value is zero, a
default timeout period will be used.

lpObject

A pointer to a WEB_STORAGE_OBJECT structure that will contain additional information about
the object that has been downloaded. This parameter may be NULL if the information is not
required.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback method, see the description of the WebEventProc callback
function. If this parameter is NULL, no callback function will be invoked during the data transfer.

dwParam

A user-defined integer value that is passed to the callback function specified by lpEventProc. If
the application targets the x86 (32-bit) platform, this parameter must be a 32-bit unsigned
integer. If the application targets the x64 (64-bit) platform, this parameter must be a 64-bit
unsigned integer.

Return Value
If the method succeeds, the return value is a non-zero. If the method fails, the return value is zero.
To get extended error information, call the GetLastError method.

Remarks
The UploadFile method uploads the contents of a local file and either creates a new storage
object, or replaces an object if one already exists with the same label. The UploadFile method
provides a simpler interface that defaults to uploading an object to the global storage container.

If the label identifies an object that already exists in the container, and that object was created with
the WEB_OBJECT_READONLY attribute, this method will fail. To replace a read-only object, the
application must explicitly move, rename or delete the existing object.

Additional metadata about the object will be returned in the WEB_STORAGE_OBJECT structure
provided by the caller, such as the date and time the object was created, the content type and the
SHA-256 hash of the object contents.

If you are uploading a large file and want your application to receive progress updates during the
data transfer, provide a pointer to a static callback function as the lpEventProc parameter. That
function will receive event notifications as the data is being uploaded.

Example
CWebStorage appStorage;
WEB_STORAGE_OBJECT webObject;

// Upload a local file to the global storage container
if (appStorage.UploadFile(lpszLocalFile, lpszObjectLabel, &webObject))
{
 // The object was uploaded, display the metadata
 _tprintf(_T("Object: %s\n"), webObject.szObjectId);
 _tprintf(_T("Label: %s\n"), webObject.szLabel);
 _tprintf(_T("Size: %lu\n"), webObject.dwObjectSize);
 _tprintf(_T("Digest: %s\n"), webObject.szDigest);
 _tprintf(_T("Content: %s\n"), webObject.szContent);
}
else
{
 // The object could not be uploaded, display the error
 CString strError;

 appStorage.GetLastError(strError);
 _tprintf(_T("Unable to upload \"%s\" (%s)\n"), lpszLocalFile,
(LPCTSTR)strError);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DownloadFile, GetFile, PutFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWebStorage::ValidateAppId Method

BOOL ValidateAppId(
 LPCTSTR lpszAppId
);

The ValidateAppId method validates the specified application identifier.

Parameters
lpszAppId

A pointer to a null terminated string which specifies the application ID to be validated. This
parameter cannot be NULL or point to a zero-length string. If the application ID contains illegal
characters, the method will fail.

Return Value
If the method succeeds, the return value is a non-zero. If the method fails, the return value is zero.
To get extended error information, call the GetLastError method.

Remarks
The ValidateAppId method is used to determine if the specified application identifier is valid and
has been previously registered using the RegisterAppId method. The ID must only consist of
ASCII letters, numbers, the period and underscore character. Whitespace characters and non-
ASCII Unicode characters are not permitted. The maximum length of an application ID string is 64
characters, including the terminating null character.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
RegisterAppId, UnregisterAppId, ValidateLabel

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWebStorage::ValidateLabel Method

BOOL ValidateLabel(
 LPCTSTR lpszObjectLabel
);

The ValidateLabel method validates the specified object label.

Parameters
lpszObjectLabel

A pointer to a null terminated string which specifies the object label to be validated. This
parameter cannot be NULL or point to a zero-length string.

Return Value
If the method succeeds, the return value is a non-zero. If the method fails, the return value is zero.
To get extended error information, call the GetLastError method.

Remarks
Object labels are similar to Windows file names, except they are case-sensitive. The maximum
length of a label string is 512 characters, including the terminating null character. Leading and
trailing whitespace (spaces, tabs, linebreaks, etc.) are ignored in label names.

Illegal characters include ASCII and Unicode control characters 1 through 31, single quotes (39),
double quotes (34), less than symbol (60), greater than symbol (62), pipe (124), asterisk (42) and
question mark (63). A null character (0) specifies the end of the label and any subsequent
characters are ignored. It is not possible to embed null characters in the label name.

Label names may contain forward slash (47) characters and backslash (92) characters, however it is
important to note that objects are not stored in a hierarchical structure. An application can create
its own folder-like structure to the labels it creates, but this structure is not imposed or enforced by
the library.

If the application is built to use Unicode, labels can contain Unicode characters which are internally
encoded as UTF-8. This is important to consider if you have an project built using a multi-byte
(ANSI) character set and it needs to access an object that was created using Unicode characters. In
that case, the ANSI application must be prepared to handle UTF-8 encoded names and display
them appropriately.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CWebStorage::RegisterAppId, CWebStorage::UnregisterAppId

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/websvc/class/webregisterappid.html
file:///C|/Projects/cstools11/pdf/websvc/class/webunregisterappid.html

 CWebStorage Data Structures

SYSTEMTIME
WEB_STORAGE_APPLICATION
WEB_STORAGE_QUOTA
WEB_STORAGE_OBJECT
WEB_STORAGE_TRANSFER

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SYSTEMTIME Structure

The SYSTEMTIME structure represents a date and time using individual members for the month,
day, year, weekday, hour, minute, second, and millisecond.

typedef struct _SYSTEMTIME
{
 WORD wYear;
 WORD wMonth;
 WORD wDayOfWeek;
 WORD wDay;
 WORD wHour;
 WORD wMinute;
 WORD wSecond;
 WORD wMilliseconds;
} SYSTEMTIME, *LPSYSTEMTIME;

Members
wYear

Specifies the current year. The year value must be greater than 1601.

wMonth

Specifies the current month. January is 1, February is 2 and so on.

wDayOfWeek

Specifies the current day of the week. Sunday is 0, Monday is 1 and so on.

wDay

Specifies the current day of the month

wHour

Specifies the current hour.

wMinute

Specifies the current minute

wSecond

Specifies the current second.

wMilliseconds

Specifies the current millisecond.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include windows.h.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WEB_STORAGE_APPLICATION Structure

The WEB_STORAGE_APPLICATION structure contains information about a registered
application.

typedef struct _WEB_STORAGE_APPLICATION
{
 TCHAR szAppId[64];
 TCHAR szApiKey[64];
 TCHAR szLuid[64];
 DWORD dwTokens;
 DWORD dwReserved;
 SYSTEMTIME stCreated;
 SYSTEMTIME stUpdated;
} WEB_STORAGE_APPLICATION, *LPWEB_STORAGE_APPLICATION;

Members
szAppId

A null-terminated string which contains the application ID that was registered using the
RegisterAppId method.

szApiKey

A null-terminated string which contains the API key value that is used internally by the storage
services. The AppID is effectively the human readable alias for this key value used to identify the
stored objects for the application. This value is guaranteed to be unique across all applications
registered with the storage service.

szLuid

A null-terminated string which specifies a locally unique value associated with the registered
application. This value is used internally by the storage service and guaranteed to be unique to
the storage account that has registered the application. Note that there are no functions that
currently accept the application LUID as parameter, but you may choose to use this value in
your own application for other purposes.

dwTokens

An unsigned integer value which specifies the number of access tokens associated with the
registered application. Typically there is only one access token associated with a given AppID at
any one time, although it is possible that the API may allocate additional access tokens under
some circumstances.

dwReserved

An unsigned integer value that is reserved for future use. This value will always be zero.

stCreated

A SYSTEMTIME structure that specifies the date and time the AppID was registered. This value is
represented using Coordinated Universal Time (UTC) and is not adjusted for the local time zone.

stUpdated

A SYSTEMTIME structure that specifies the date and time the AppID object was last updated.
This value is represented using Coordinated Universal Time (UTC) and is not adjusted for the
local time zone. When a storage object is first created, this value will be the same as the object
creation time.

Remarks
This structure is used in conjunction with the GetFirstApplication and GetNextApplication

methods which enumerate all registered applications for the current storage account.

To adjust the creation and update times to account for the local time zone, use the
SystemTimeToTzSpecificLocalTime function. If you prefer to use FILETIME values, use the
SystemTimeToFileTime function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WEB_STORAGE_OBJECT Structure

The WEB_STORAGE_OBJECT structure contains information about an individual storage object.

typedef struct _WEB_STORAGE_OBJECT
{
 TCHAR szObjectId[64];
 TCHAR szLabel[512];
 TCHAR szDigest[128];
 TCHAR szContent[128];
 DWORD dwAttributes;
 DWORD dwObjectSize;
 SYSTEMTIME stCreated;
 SYSTEMTIME stModified;
} WEB_STORAGE_OBJECT, *WEB_STORAGE_OBJECT;

Members
szObjectId

A null-terminated string which contains the unique identifier associated with this object. Object
IDs are guaranteed to be unique for each storage object that is created by the application. The
maximum length of an object ID is 64 characters, including the terminating null character.

szLabel

A null-terminated string which contains the label assigned to the object by the application.
Object labels are case-sensitive and must be unique for each object. An application uses labels
to reference an object with a human-recognizable name, rather than referencing them by their
object ID. The maximum length of an object label is 512 characters, including the terminating
null character.

szDigest

A null-terminated string which specifies the digest of the object contents, computed using an
SHA-256 hash. The maximum length of the szDigest string is 128 characters, including the
terminating null character. However, the digest value is always represented as a string of
hexadecimal numbers that is exactly 64 characters long. It is important to note that even a zero-
length object will have a digest, which is the standard SHA-256 NULL hash value.

szContent

A null-terminated string which specifies the MIME content type for the storage object. The
content type is determined by the object label and evaluating the contents of the object. It is
also possible for the application to explicitly specify the content type of the object when it is
created.

dwAttributes

An unsigned integer value that specifies the attributes for the storage object. The object
attributes are comprised of one or more bitflags:

Value Constant Description

0 WEB_OBJECT_DEFAULT Default object attributes. This value is used to
indicate the object can be modified, or that the
attributes for a previously existing object should
not be changed.

1 WEB_OBJECT_NORMAL A normal object that that can be read and
modified by the application. This is the default

attribute for new objects that are created by the
application.

2 WEB_OBJECT_READONLY A read-only object that can only be read by the
application. Attempts to modify or replace the
contents of the object will fail. Read-only objects
can be deleted.

4 WEB_OBJECT_HIDDEN A hidden object. Objects with this attribute are not
returned when enumerated using the
EnumObjects method. The object can only be
accessed directly when specifying its label.

dwObjectSize

An unsigned integer value that specifies the size of the storage object in bytes. The maximum
size of an individual object is determined by the storage quota limits established for the
account.

stCreated

A SYSTEMTIME structure that specifies the date and time the storage object was created. This
value is represented using Coordinated Universal Time (UTC) and is not adjusted for the local
time zone.

stModified

A SYSTEMTIME structure that specifies the date and time the storage object was last modified.
This value is represented using Coordinated Universal Time (UTC) and is not adjusted for the
local time zone. When a storage object is first created, this value will be the same as the object
creation time.

Remarks
The object content type will always be in the format type/subtype where the type specifies a
common media type (e.g.: text, audio, video, etc.) and subtype specifies the specific content. The
most common content type for text files is text/plain. If the content type is unknown, the default
content type is application/octet-stream.

Text objects may also optionally include the character encoding as part of the content type. For
example, if an object contains UTF-8 encoded text, the content type may be returned as
text/plain; charset=utf-8. If your application is parsing the content types, you must check if a
character encoding was also included in the value. Text objects that do not specify an encoding
either contain ASCII or text which uses the system code page. Unicode text will always be stored
using UTF-8 encoding.

To adjust the object creation and modification times to account for the local time zone, use the
SystemTimeToTzSpecificLocalTime method. If you prefer to use FILETIME values, use the
SystemTimeToFileTime method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WEB_STORAGE_QUOTA Structure

The WEB_STORAGE_QUOTA structure contains information about the current storage account
data usage and limits. This structure is used with the GetStorageQuota method.

typedef struct _WEB_STORAGE_QUOTA
{
 DWORD dwObjects;
 DWORD dwObjectLimit;
 DWORD dwObjectSize;
 ULONGLONG ulBytesUsed;
 ULONGLONG ulBytesFree;
 ULONGLONG ulStorageLimit;
} WEB_STORAGE_QUOTA, *LPWEB_STORAGE_QUOTA;

Members
dwObjects

An unsigned integer value which specifies the number of storage objects allocated for the
account. This value may not exceed the total number of objects specified by the dwObjectLimit
member.

dwObjectLimit

An unsigned integer value which specifies the maximum number of storage objects that may be
created. In addition to the limit on the total amount of storage that may be used, there is a limit
on the total number of objects that may be created by all applications.

dwObjectSize

An unsigned integer value which specifies the maximum size of an individual storage object. In
addition to a limit on the total amount of storage used and the number of objects created, each
object stored by the application cannot exceed this size.

ulBytesUsed

An unsigned 64-bit integer value which specifies the total number of bytes of data allocated for
all storage objects. This value may not exceed the total number of bytes of storage available,
which is specified by the ulStorageLimit member.

ulBytesFree

An unsigned 64-bit integer value which specifies the number of bytes available for the storage
of new objects. This value reflects the total amount of available storage across all applications
registered with the development account. If this value is zero, your storage account has reached
its storage limit.

ulStorageLimit

An unsigned 64-bit integer value which specifies the maximum number of bytes of data storage
available. This limit applies to all applications registered with the development account.

Remarks
Storage quota limits are assigned for each SocketTools development account. The
GetStorageQuota method will populate this structure with information about the limits on your
account. Accounts that are created with an evaluation license have much lower quota limits than a
standard account and should be used for testing purposes only. After the evaluation period has
ended, all objects stored using the evaluation license will be deleted.

These values do not represent limits on storage usage by a specific application. Quotas limits

apply to all applications that are registered with the development account, which is identified with
the runtime license key used to initialize the class instance.

If your storage quota has been exceeded, either because the total number of objects or the total
bytes of storage has reached their limit, your applications will be unable to create new objects.
Your application can continue to access existing objects, regardless of your current quota limits.

To free storage space, use the DeleteObject method to delete individual storage objects that are
no longer needed by your application, or use the ResetStorage method to delete all objects in a
container.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cstools11.h

See Also
DeleteObject, GetStorageQuota, ResetStorage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WEB_STORAGE_TRANSFER Structure

This structure is used by the CWebStorage::GetTransferStatus method to return information
about a data transfer in progress.

typedef struct _WEB_STORAGE_TRANSFER
{
 TCHAR szObjectLabel[512];
 DWORD dwStorageType;
 DWORD dwBytesTotal;
 DWORD dwBytesCopied;
 DWORD dwBytesPerSecond;
 DWORD dwTimeElapsed;
 DWORD dwTimeEstimated;
} WEB_STORAGE_TRANSFER, *LPWEB_STORAGE_TRANSFER

Members
szObjectLabel

A null-terminated string that specifies the label for the object that is being retrieved, created or
replaced.

dwStorageType

An integer value that identifies the storage container type. This will be one of the following
values:

Constant Description

WEB_STORAGE_GLOBAL
(1)

Global storage. Objects stored using this storage type are
available to all users. Any changes made to objects using
this storage type will affect all users of the application.
Unless there is a specific need to limit access to the objects
stored by the application to specific domains, local
machines or users, it is recommended that you use this
storage type when creating new objects.

WEB_STORAGE_DOMAIN
(2)

Local domain storage. Objects stored using this storage
type are only available to users in the same local domain,
as defined by the domain name or workgroup name
assigned to the local system. If the domain or workgroup
name changes, objects previously stored using this
storage type will not be available to the application.

WEB_STORAGE_MACHINE
(3)

Local machine storage. Objects stored using this storage
type are only available to users on the same local
machine. The local machine is identified by unique
characteristics of the system, including the boot volume
GUID. Objects previously stored using this storage type will
not be available on that system if the boot disk is
reformatted.

WEB_STORAGE_USER
(4)

Current user storage. Objects stored using this storage
type are only available to the current user logged in on
the local machine. The user identifier is based on the
Windows user SID that is assigned when the user account

is created. If the user account is deleted, the objects
previously stored using this storage type will not be
available to the application.

dwBytesTotal

An unsigned integer which specifies the total number of bytes that will be transferred. If the
object is being downloaded to the local host, this is the size of the stored object. If the data is
being uploaded from the local host to be stored on the server, it is the size of the buffer or local
file.

dwBytesCopied

An unsigned integer which specifies the total number of bytes that have been copied.

dwBytesPerSecond

The average number of bytes that have been copied per second.

dwTimeElapsed

The number of seconds that have elapsed since the file transfer started.

dwTimeEstimated

The estimated number of seconds until the data transfer is completed. This is based on the
average number of bytes transferred per second.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Whois Protocol Class Library

Request registration information for an Internet domain name.

Reference

Class Methods
Error Codes

Library Information

Class Name CWhoisClient

File Name CSWHOV11.DLL

Version 11.0.2180.1635

LibID A15BDF07-F8CC-43FD-9DCF-39EA5C66E56C

Import Library CSWHOV11.LIB

Dependencies None

Standards RFC 954

Overview
The Whois protocol library provides an interface for requesting registration information for an
Internet domain name. When a domain name is registered, the organization that registers the
domain must provide certain contact information along with technical information such as the
primary name servers for that domain. The library provides an API for requesting that information
and returning it to the program so that it can be displayed or processed. This library would be
most commonly used to query the server at whois.internic.net to obtain information about a
specific Internet domain name or an administrative contact at that domain.

Requirements
The SocketTools Library Edition libraries are compatible with any programming language which
supports calling functions exported from a standard dynamic link library (DLL). If you are using
Visual C++ 6.0 it is required that you have Service Pack 6 (SP6) installed. You should install all
updates for your development tools and have the current Windows SDK installed. The minimum
recommended version of Visual Studio is Visual Studio 2010.

This library is supported on Windows 7, Windows Server 2008 R2 and later versions of the desktop
and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1) installed as
a minimum requirement. It is recommended that you install the current service pack and all critical
updates available for your version of the operating system.

This product includes both 32-bit and 64-bit libraries. Native 64-bit CPU support requires the 64-
bit version of Windows 7 or later versions of the Windows operating system.

Distribution
When you distribute your application that uses this library, it is recommended that you install the
file in the same folder as your application executable. If you install the library into a shared location
on the system, it is important that you distribute the correct version for the target platform and it
should be registered as a shared DLL. This is a standard Windows dynamic link library, not an
ActiveX component, and does not require COM registration.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Whois Protocol Class Methods

Class Description

CWhoisClient Constructor which initializes the current instance of the class

~CWhoisClient Destructor which releases resources allocated by the class

Method Description

AttachHandle Attach the specified client handle to this instance of the class

AttachThread Attach the specified client handle to another thread

Cancel Cancel the current blocking operation

Connect Connect to the specified server

DetachHandle Detach the handle for the current instance of this class

DisableEvents Disable asynchronous event notification

DisableTrace Disable logging of network function calls to the trace log

Disconnect Disconnect from the current server

EnableEvents Enable asynchronous event notification

EnableTrace Enable logging of network function calls to a file

FreezeEvents Suspend or resume event handling by the calling process

GetErrorString Return a description for the specified error code

GetHandle Return the client handle used by this instance of the class

GetLastError Return the last error code

GetStatus Return the current client status.

GetTimeout Return the number of seconds until an operation times out

IsBlocking Determine if the client is blocked, waiting for information

IsConnected Determine if the client is connected to the server

IsInitialized Determine if the class has been successfully initialized

IsReadable Determine if there is data available to be read from the server

Read Read data returned by the server

RegisterEvent Register an event callback function

Search Search for the specified record

SetLastError Set the last error code

SetTimeout Set the number of seconds until an operation times out

ShowError Display a message box with a description of the specified error

WhoisEventProc Callback method that processes events generated by the client

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/whois/class/whoiseventproc.html

 CWhoisClient::CWhoisClient Method

CWhoisClient();

The CWhoisClient constructor initializes the class library and validates the license key at runtime.

Remarks
If the constructor fails to validate the runtime license, subsequent methods in this class will fail. If
the product is installed with an evaluation license, then the application will only function on the
development system and cannot be redistributed.

The constructor calls the WhoisInitialize function to initialize the library, which dynamically loads
other system libraries and allocates thread local storage. If you are using this class within another
DLL, it is important that you do not create or destroy an instance of the class from within the
DllMain function because it can result in deadlocks or access violation errors. You should not
declare static or global instances of this class within another DLL if it is linked with the C runtime
library (CRT) because it will automatically call the constructors and destructors for static and global
C++ objects and has the same restrictions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswhov11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
~CWhoisClient, IsInitialized

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWhoisClient::~CWhoisClient

~CWhoisClient();

The CWhoisClient destructor releases resources allocated by the current instance of the
CWhoisClient object. It also uninitializes the library if there are no other concurrent uses of the
class.

Remarks
When a CWhoisClient object goes out of scope, the destructor is automatically called to allow the
library to free any resources allocated on behalf of the process. Any pending blocking or
asynchronous calls in this process are canceled without posting any notification messages, and all
handles that were created for the client session are destroyed.

The destructor is not called explicitly by the application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswhov11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CWhoisClient

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWhoisClient::AttachHandle Method

VOID AttachHandle(
 HCLIENT hClient
);

The AttachHandle method attaches the specified client handle to the current instance of the
class.

Parameters
hClient

The handle to the client session that will be attached to the current instance of the class object.

Return Value
None.

Remarks
This method is used to attach a client handle created outside of the class using the SocketTools
API. Once the client handle is attached to the class, the other class member functions may be used
with that client session.

If a client handle already has been created for the class, that handle will be released when the new
handle is attached to the class object. If you want to prevent the previous client session from being
terminated, you must call the DetachHandle method. Failure to release the detached handle may
result in a resource leak in your application.

Note that the hClient parameter is presumed to be a valid client handle and no checks are
performed to ensure that the handle is valid. Specifying an invalid client handle will cause
subsequent method calls to fail.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswhov11.lib

See Also
AttachThread, DetachHandle, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWhoisClient::AttachThread Method

DWORD AttachThread(
 DWORD dwThreadId
);

The AttachThread method attaches the specified client handle to another thread.

Parameters
dwThreadId

The ID of the thread that will become the new owner of the handle. A value of zero specifies
that the current thread should become the owner of the client handle.

Return Value
If the method succeeds, the return value is the thread ID of the previous owner. If the method fails,
the return value is WHOIS_ERROR. To get extended error information, call GetLastError.

Remarks
When a client handle is created, it is associated with the current thread that created it. Normally, if
another thread attempts to perform an operation using that handle, an error is returned since it
does not own the handle. This is used to ensure that other threads cannot interfere with an
operation being performed by the owner thread. In some cases, it may be desirable for one
thread in a client application to create the client handle, and then pass that handle to another
worker thread. The AttachThread method can be used to change the ownership of the handle to
the new worker thread. By preserving the return value from the method, the original owner of the
handle can be restored before the worker thread terminates.

This method should be called by the new thread immediately after it has been created, and if the
new thread does not release the handle itself, the ownership of the handle should be restored to
the parent thread before it terminates. Under no circumstances should AttachThread be used to
forcibly release a handle allocated by another thread while a blocking operation is in progress. To
cancel an operation, use the Cancel method and then release the handle after the blocking
method exits and control is returned to the current thread.

Note that the dwThreadId parameter is presumed to be a valid thread ID and no checks are
performed to ensure that the thread actually exists. Specifying an invalid thread ID will orphan the
client handle used by the class until the destructor is called.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswhov11.lib

See Also
AttachHandle, Cancel, Connect, DetachHandle, Disconnect, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWhoisClient::Cancel Method

INT Cancel();

The Cancel method cancels any outstanding blocking operation in the client, causing the blocking
method to fail. The application may then retry the operation or terminate the client session.

Parameters
None.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
WHOIS_ERROR. To get extended error information, call GetLastError.

Remarks
When the Cancel method is called, the blocking method will not immediately fail. An internal flag
is set which causes the blocking operation to exit with an error. This means that the application
cannot cancel an operation and immediately perform some other operation. Instead it must allow
the calling stack to unwind, returning back to the blocking operation before making any further
function calls.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswhov11.lib

See Also
IsBlocking

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWhoisClient::Connect Method

BOOL Connect(
 LPCTSTR lpszRemoteHost,
 UINT nRemotePort,
 UINT nTimeout
);

The Connect method establishes a connection with the specified server.

Parameters
lpszRemoteHost

A pointer to the name of the server to connect to; this may be a fully-qualified domain name or
an IP address.

nRemotePort

The port number the server is listening on; a value of zero specifies that the default port
number should be used. For standard connections, the default port number is 43.

nTimeout

The number of seconds that the client will wait for a response from the server before failing the
current operation.

Return Value
If the method succeeds, the return value is a non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
This method will block the current thread until a connection has been established or the timeout
period has elapsed. To prevent it from blocking the main user interface thread, the application
should create a background worker thread and establish a connection by calling the Connect
method in that thread. If the application requires multiple simultaneous connections, it is
recommended you create a worker thread for each connection.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswhov11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Disconnect, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWhoisClient::DetachHandle Method

HCLIENT DetachHandle();

The DetachHandle method detaches the client handle associated with the current instance of the
class.

Parameters
None.

Return Value
This method returns the client handle associated with the current instance of the class object. If
there is no active client session, the value INVALID_CLIENT will be returned.

Remarks
This method is used to detach a client handle created by the class for use with the SocketTools
API. Once the client handle is detached from the class, no other class member functions may be
called. Note that the handle must be explicitly released at some later point by the process or a
resource leak will occur.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswhov11.lib

See Also
AttachHandle, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWhoisClient::DisableEvents Method

INT DisableEvents();

The DisableEvents method disables the event notification mechanism, preventing subsequent
event notification messages from being posted to the application's message queue.

This method has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Parameters
None.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
WHOIS_ERROR. To get extended error information, call GetLastError.

Remarks
The DisableEvents method is used to disable event message posting for the specified client
session. Although this will immediately prevent any new events from being generated, it is possible
that messages could be waiting in the message queue. Therefore, an application must be
prepared to handle client event messages after this method has been called.

This method is automatically called if the client has event notification enabled, and the Disconnect
method is called. The same issues regarding outstanding event messages also applies in this
situation, requiring that the application handle event messages that may reference a client handle
that is no longer valid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswhov11.lib

See Also
EnableEvents, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWhoisClient::DisableTrace Method

BOOL DisableTrace();

The DisableTrace method disables the logging of socket function calls to the trace log.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, a value of zero is
returned.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswhov11.lib

See Also
EnableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWhoisClient::Disconnect Method

VOID Disconnect();

The Disconnect method terminates the connection with the server, closing the socket and
releasing the memory allocated for the client session.

Parameters
None.

Return Value
None.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswhov11.lib

See Also
Connect, IsConnected

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWhoisClient::EnableEvents Method

INT EnableEvents(
 HWND hEventWnd,
 UINT uEventMsg
);

The EnableEvents method enables event notifications using Windows messages.

This method has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Applications should use the RegisterEvent method to register an event handler which is invoked
when an event occurs.

Parameters
hEventWnd

Handle to the window which will receive the client notification messages. This parameter must
specify a valid window handle. If a NULL handle is specified, event notification will be disabled.

uEventMsg

The message that is received when a client event occurs. This value must be greater than 1024.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
WHOIS_ERROR. To get extended error information, call GetLastError.

Remarks
The EnableEvents method is used to request that notification messages be posted to the
specified window whenever a client event occurs. This allows an application to monitor the status
of different client operations, such as a file transfer.

The wParam argument will contain the client handle, the low word of the lParam argument will
contain the event ID, and the high word will contain any error code. If no error has occurred, the
high word will always have a value of zero. The following events may be generated:

Constant Description

WHOIS_EVENT_CONNECT The connection to the server has completed. The high word of
the lParam parameter should be checked, since this notification
message will be posted if an error has occurred.

WHOIS_EVENT_DISCONNECT The server has closed the connection to the client. The client
should read any remaining data and disconnect.

WHOIS_EVENT_READ Data is available to read by the calling process. No additional
messages will be posted until the client has read at least some
of the data. This event is only generated if the client is in
asynchronous mode.

WHOIS_EVENT_WRITE The client can now write data. This notification is sent after a
connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking

operation. This event is only generated if the client is in
asynchronous mode.

WHOIS_EVENT_TIMEOUT The network operation has exceeded the specified timeout
period. The client application may attempt to retry the
operation, or may disconnect from the server and report an
error to the user.

WHOIS_EVENT_CANCEL The current operation has been canceled. Under most
circumstances the client should disconnect from the server and
re-connect if needed. After an operation has been canceled,
the server may abort the connection or refuse to accept further
commands from the client.

To disable event notification, call the DisableEvents method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswhov11.lib

See Also
DisableEvents, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWhoisClient::EnableTrace Method

BOOL EnableTrace(
 LPCTSTR lpszTraceFile,
 DWORD dwTraceFlags
);

The EnableTrace method enables the logging of socket function calls to a file.

Parameters
lpszTraceFile

A pointer to a string which specifies the name of the trace log file. If this parameter is NULL or
an empty string, the default file name cstrace.log is used. The file is stored in the directory
specified by the TEMP environment variable, if it is defined; otherwise, the current working
directory is used.

dwTraceFlags

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

TRACE_INFO All function calls are written to the trace file. This is the default
value.

TRACE_ERROR Only those function calls which fail are recorded in the trace file.

TRACE_WARNING Only those function calls which fail or return values which indicate
a warning are recorded in the trace file.

TRACE_HEXDUMP All functions calls are written to the trace file, plus all the data that
is sent or received is displayed, in both ASCII and hexadecimal
format.

TRACE_PROCESS All function calls in the current process are logged, rather than
only those functions in the current thread. This option is useful for
multithreaded applications that are using worker threads.

Return Value
If the method succeeds, the return value is non-zero. A return value of zero indicates an error.
Failure typically indicates that the tracing library cstrcv11.dll cannot be loaded on the local
system.

Remarks
When trace logging is enabled, the file is opened, appended to and closed for each socket
function call. This makes it possible for an application to append its own logging information,
however care should be taken to ensure that the file is closed before the next network operation is
performed. To limit the size of the log files, enable and disable logging only around those sections
of code that you wish to trace.

Note that the TRACE_HEXDUMP trace level generates very large log files since it includes all of the
data exchanged between your application and the server.

Trace method logging is managed on a per-thread basis, not for each client handle. This means
that all SocketTools libraries and components share the same settings in the current thread. If you

are using multiple SocketTools libraries or components in your application, you only need to
enable logging once.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswhov11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DisableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWhoisClient::FreezeEvents Method

INT FreezeEvents(
 BOOL bFreeze
);

The FreezeEvents method is used to suspend and resume event handling by the client.

Parameters
bFreeze

A non-zero value specifies that event handling should be suspended by the client. A zero value
specifies that event handling should be resumed.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
WHOIS_ERROR. To get extended error information, call GetLastError.

Remarks
This method should be used when the application does not want to process events, such as when
a modal dialog is being displayed. When events are suspended, all client events are queued. If
events are re-enabled at a later point, those queued events will be sent to the application for
processing. Note that only one of each event will be generated. For example, if the client has
suspended event handling, and four read events occur, once event handling is resumed only one
of those read events will be posted to the client. This prevents the application from being flooded
by a potentially large number of queued events.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswhov11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DisableEvents, EnableEvents, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWhoisClient::GetErrorString Method

INT GetErrorString(
 DWORD dwErrorCode,
 LPTSTR lpszDescription,
 INT cbDescription
);

INT GetErrorString(
 DWORD dwErrorCode,
 CString& strDescription
);

The GetErrorString method is used to return a description of a specific error code. Typically this is
used in conjunction with the GetLastError method for use with warning dialogs or as diagnostic
messages.

Parameters
dwErrorCode

The error code for which a description is returned.

lpszDescription

A pointer to the buffer that will contain a description of the specified error code. This buffer
should be at least 128 characters in length. An alternate form of the method accepts a CString
variable which will contain the error description.

cbDescription

The maximum number of characters that may be copied into the description buffer.

Return Value
If the method succeeds, the return value is the length of the description string. If the method fails,
the return value is zero, meaning that no description exists for the specified error code. Typically
this indicates that the error code passed to the method is invalid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswhov11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetLastError, SetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWhoisClient::GetHandle Method

HCLIENT GetHandle();

The GetHandle method returns the client handle associated with the current instance of the class.

Parameters
None.

Return Value
This method returns the client handle associated with the current instance of the class object. If
there is no active client session, the value INVALID_CLIENT will be returned.

Remarks
This method is used to obtain the client handle created by the class for use with the SocketTools
API.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswhov11.lib

See Also
AttachHandle, DetachHandle, IsInitialized

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWhoisClient::GetLastError Method

DWORD GetLastError();

DWORD GetLastError(
 CString& strDescription
);

Parameters
strDescription

A string which will contain a description of the last error code value when the method returns. If
no error has been set, or the last error code has been cleared, this string will be empty.

Return Value
The return value is the last error code value for the current thread. Functions set this value by
calling the SetLastError method. The Return Value section of each reference page notes the
conditions under which the method sets the last error code.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. You should call
the GetLastError method immediately when a method's return value indicates that an error has
occurred. That is because some methods call SetLastError(0) when they succeed, clearing the
error code set by the most recently failed method.

Most methods will set the last error code value when they fail; a few methods set it when they
succeed. Function failure is typically indicated by a return value such as FALSE, NULL,
INVALID_CLIENT or WHOIS_ERROR. Those methods which call SetLastError when they succeed
are noted on the method reference page.

The description of the error code is the same string that is returned by the GetErrorString
method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswhov11.lib

See Also
GetErrorString, SetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWhoisClient::GetStatus Method

INT GetStatus();

The GetStatus method the current status of the client session.

Parameters
None.

Return Value
If the method succeeds, the return value is the client status code. If the method fails, the return
value is WHOIS_ERROR. To get extended error information, call GetLastError.

Remarks
The GetStatus method returns a numeric code which identifies the current state of the client
session. The following values may be returned:

Value Constant Description

0 WHOIS_STATUS_UNUSED No connection has been established.

1 WHOIS_STATUS_IDLE The client is current idle and not sending or
receiving data.

2 WHOIS_STATUS_CONNECT The client is establishing a connection with the
server.

3 WHOIS_STATUS_READ The client is reading data from the server.

4 WHOIS_STATUS_WRITE The client is writing data to the server.

5 WHOIS_STATUS_DISCONNECT The client is disconnecting from the server.

In a multithreaded application, any thread in the current process may call this method to obtain
status information for the specified client session. To obtain status information about a file transfer,
use the GetTransferStatus method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswhov11.lib

See Also
IsBlocking, IsInitialized, IsReadable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWhoisClient::GetTimeout Method

INT GetTimeout();

The GetTimeout method returns the number of seconds the client will wait for a response from
the server. Once the specified number of seconds has elapsed, the method will fail and return to
the caller.

Parameters
None.

Return Value
If the method succeeds, the return value is the timeout period in seconds. If the method fails, the
return value is WHOIS_ERROR. To get extended error information, call GetLastError.

Remarks
The timeout value is only used with blocking client connections. A value of zero indicates that the
default timeout period of 20 seconds should be used.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswhov11.lib

See Also
Connect, IsReadable, Read, SetTimeout

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWhoisClient::IsBlocking Method

BOOL IsBlocking();

The IsBlocking method is used to determine if the client is currently performing a blocking
operation.

Parameters
None.

Return Value
If the client is performing a blocking operation, the method returns a non-zero value. If the client
is not performing a blocking operation, or the client handle is invalid, the method returns zero.

Remarks
Because a blocking operation can allow the application to be re-entered (for example, by pressing
a button while the operation is being performed), it is possible that another blocking method may
be called while it is in progress. Since only one thread of execution may perform a blocking
operation at any one time, an error would occur. The IsBlocking method can be used to
determine if the client is already blocked, and if so, take some other action (such as warning the
user that they must wait for the operation to complete).

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswhov11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Cancel, GetStatus, IsConnected, IsInitialized, IsReadable, Read

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWhoisClient::IsConnected Method

BOOL IsConnected();

The IsConnected method is used to determine if the client is currently connected to a server.

Parameters
None.

Return Value
If the client is connected to a server, the method returns a non-zero value. If the client is not
connected, or the client handle is invalid, the method returns zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswhov11.lib

See Also
GetStatus, IsBlocking, IsInitialized, IsReadable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWhoisClient::IsInitialized Method

BOOL IsInitialized();

The IsInitialized method returns whether or not the class object has been successfully initialized.

Parameters
None.

Return Value
This method returns a non-zero value if the class object has been successfully initialized. A return
value of zero indicates that the runtime license key could not be validated or the networking
library could not be loaded by the current process.

Remarks
When an instance of the class is created, the class constructor will attempt to initialize the
component with the runtime license key that was created when SocketTools was installed. If the
constructor is unable to validate the license key or load the networking libraries, this initialization
will fail.

If SocketTools was installed with an evaluation license, the application cannot be redistributed to
another system. The class object will fail to initialize if the application is executed on another
system, or if the evaluation period has expired. To redistribute your application, you must
purchase a development license which will include the runtime key that is needed to redistribute
your software to other systems. Refer to the Developer's Guide for more information.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswhov11.lib

See Also
CWhoisClient, IsBlocking, IsConnected

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWhoisClient::IsReadable Method

BOOL IsReadable(
 INT nTimeout,
 LPDWORD lpdwAvail
);

The IsReadable method is used to determine if data is available to be read from the server.

Parameters
nTimeout

Timeout for server response, in seconds. A value of zero specifies that the connection should be
polled without blocking the current thread.

lpdwAvail

A pointer to an unsigned integer which will contain the number of bytes available to read. This
parameter may be NULL if this information is not required.

Return Value
If the client can read data from the server within the specified timeout period, the method returns
a non-zero value. If the client cannot read any data, the method returns zero.

Remarks
On some platforms, this value will not exceed the size of the receive buffer (typically 64K bytes).
Because of differences between TCP/IP stack implementations, it is not recommended that your
application exclusively depend on this value to determine the exact number of bytes available.
Instead, it should be used as a general indicator that there is data available to be read.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswhov11.lib

See Also
GetStatus, IsBlocking, IsConnected, IsInitialized

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWhoisClient::Read Method

INT Read(
 LPBYTE lpBuffer,
 INT cbBuffer
);

INT Read(
 CString& strBuffer,
 INT cbBuffer
);

The Read method reads the specified number of bytes from the client socket and copies them
into the buffer. The data may be of any type, and is not terminated with a null character.

Parameters
lpBuffer

Pointer to the buffer in which the data will be copied. An alternate form of this method allows a
CString variable to be passed and data read from the socket will be returned in that string.

cbBuffer

The maximum number of bytes to read and copy into the specified buffer. This value must be
greater than zero.

Return Value
If the method succeeds, the return value is the number of bytes actually read. A return value of
zero indicates that the server has closed the connection and there is no more data available to be
read. If the method fails, the return value is WHOIS_ERROR. To get extended error information,
call GetLastError.

Remarks
When Read is called and the client is in non-blocking mode, it is possible that the method will fail
because there is no available data to read at that time. This should not be considered a fatal error.
Instead, the application should simply wait to receive the next asynchronous notification that data
is available.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswhov11.lib

See Also
EnableEvents, IsBlocking, IsReadable, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWhoisClient::RegisterEvent Method

INT RegisterEvent(
 UINT nEventId,
 WHOISEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

The RegisterEvent method registers an event handler for the specified event.

Parameters
nEventId

An unsigned integer which specifies which event should be registered with the specified callback
function. One of the following values may be used:

Constant Description

WHOIS_EVENT_CONNECT The connection to the server has completed.

WHOIS_EVENT_DISCONNECT The server has closed the connection to the client. The client
should read any remaining data and disconnect.

WHOIS_EVENT_READ Data is available to read by the calling process. No additional
messages will be posted until the client has read at least some
of the data. This event is only generated if the client is in
asynchronous mode.

WHOIS_EVENT_WRITE The client can now write data. This notification is sent after a
connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking
operation. This event is only generated if the client is in
asynchronous mode.

WHOIS_EVENT_TIMEOUT The network operation has exceeded the specified timeout
period. The client application may attempt to retry the
operation, or may disconnect from the server and report an
error to the user.

WHOIS_EVENT_CANCEL The current operation has been canceled. Under most
circumstances the client should disconnect from the server and
re-connect if needed. After an operation has been canceled,
the server may abort the connection or refuse to accept further
commands from the client.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the WhoisEventProc callback
function. If this parameter is NULL, the callback for the specified event is disabled.

dwParam

A user-defined integer value that is passed to the callback function. If the application targets the
x86 (32-bit) platform, this parameter must be a 32-bit unsigned integer. If the application
targets the x64 (64-bit) platform, this parameter must be a 64-bit unsigned integer.

Return Value

If the method succeeds, the return value is zero. If the method fails, the return value is
WHOIS_ERROR. To get extended error information, call GetLastError.

Remarks
The RegisterEvent method associates a callback function with a specific event. The event handler
is an WhoisEventProc function that is invoked when the event occurs. Arguments are passed to
the function to identify the client session, the event type and the user-defined value specified
when the event handler is registered. If the event occurs because of an error condition, the error
code will be provided to the handler.

The callback function specified by the lpEventProc parameter must be declared using the
__stdcall calling convention. This ensures the arguments passed to the event handler are pushed
on to the stack in the correct order. Failure to use the correct calling convention will corrupt the
stack and cause the application to terminate abnormally.

The dwParam parameter is commonly used to identify the class instance which is associated with
the event that has occurred. Applications will cast the this pointer to a DWORD_PTR value when
calling this function, and then the event handler will cast it back to a pointer to the class instance.
This gives the handler access to the class member variables and methods.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswhov11.lib

See Also
DisableEvents, EnableEvents, FreezeEvents, WhoisEventProc

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/whois/class/whoiseventproc.html

 CWhoisClient::Search Method

INT Search(
 LPCTSTR lpszKeyword,
 UINT nSearchType
);

The Search method submits the specified keyword to the server.

Parameters
lpszKeyword

Points to a string which specifies the query keyword. It may be a handle, name or mailbox.

nSearchType

The type of search being performed. One of the following values may be used:

Constant Description

WHOIS_SEARCH_ANY Search for any record that matches the specified keyword.

WHOIS_SEARCH_HANDLE Search only for handles that match the specified keyword.

WHOIS_SEARCH_MAILBOX Search only for mailboxes that match the specified
keyword.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
WHOIS_ERROR. To get extended error information, call GetLastError.

Example
CWhoisClient whoisClient;

// Connect to the WHOIS server at whois.internic.net
if (whoisClient.Connect(_T("whois.internic.net")) == FALSE)
{
 whoisClient.ShowError();
 return;
}

// Request information about the sockettools.com domain name
if (whoisClient.Search(_T("sockettools.com")) == WHOIS_ERROR)
{
 whoisClient.ShowError();
 whoisClient.Disconnect();
 return;
}

// Read the response from the server, which contains information
// about the domain and the registry that maintains the record
CString strResult;
CString strBuffer;
INT nResult;

do
{
 if ((nResult = whoisClient.Read(strBuffer)) > 0)
 strResult += strBuffer;

}
while (nResult > 0);

// If there was an error reading the data, alert the user
if (nResult == WHOIS_ERROR)
 whoisClient.ShowError();

whoisClient.Disconnect();

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswhov11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Connect, Disconnect, IsReadable, Read

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWhoisClient::SetLastError Method

VOID SetLastError(
 DWORD dwErrorCode
);

The SetLastError method sets the last error code for the current thread. This method is typically
used to clear the last error by specifying a value of zero as the parameter.

Parameters
dwErrorCode

Specifies the last error code for the current thread.

Return Value
None.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. Most methods will
set the last error code value when they fail; a few methods set it when they succeed. Function
failure is typically indicated by a return value such as FALSE, NULL, INVALID_CLIENT or
WHOIS_ERROR. Those methods which call SetLastError when they succeed are noted on the
method reference page.

Applications can retrieve the value saved by this method by using the GetLastError method. The
use of GetLastError is optional; an application can call the method to determine the specific
reason for a method failure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswhov11.lib

See Also
GetErrorString, GetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWhoisClient::SetTimeout Method

INT SetTimeout(
 UINT nTimeout
);

The SetTimeout method sets the number of seconds the client will wait for a response from the
server. Once the specified number of seconds has elapsed, the method will fail and return to the
caller.

Parameters
nTimeout

The number of seconds to wait for a blocking operation to complete.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
WHOIS_ERROR. To get extended error information, call GetLastError.

Remarks
The timeout value is only used with blocking client connections.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswhov11.lib

See Also
Connect, GetTimeout, IsReadable, Read

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CWhoisClient::ShowError Method

INT ShowError(
 LPCTSTR lpszAppTitle,
 UINT uType,
 DWORD dwErrorCode
);

The ShowError method displays a message box which describes the specified error.

Parameters
lpszAppTitle

A pointer to a string which specifies the title of the message box that is displayed. If this
argument is NULL or omitted, then the default title of "Error" will be displayed.

uType

An unsigned integer which specifies the type of message box that will be displayed. This is the
same value that is used by the MessageBox method in the Windows API. If a value of zero is
specified, then a message box with a single OK button will be displayed. Refer to that method
for a complete list of options.

dwErrorCode

Specifies the error code that will be used when displaying the message box. If this argument is
zero, then the last error that occurred in the current thread will be displayed.

Return Value
If the method is successful, the return value will be the return value from the MessageBox
function. If the method fails, it will return a value of zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswhov11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetErrorString, GetLastError, SetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SocketTools Library Reference

Domain Name Service Library
File Encoding Library
File Transfer Protocol Library
File Transfer Server Library
Hypertext Transfer Protocol Library
Hypertext Transfer Server Library
Internet Control Message Protocol Library
Internet Message Access Protocol Library
Mail Message Library
Network News Protocol Library
News Feed Library
Post Office Protocol Library
Remote Command Library
Simple Mail Transfer Protocol Library
Secure Shell Protocol Library
SocketWrench Library
Telnet Protocol Library
Terminal Emulation Library
Text Message Library
Time Protocol Library
Web Services Library
Whois Protocol Library

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Domain Name Service Library

Resolve domain names into Internet addresses and return information about a remote host, such
as the servers that are responsible for accepting mail for the domain.

Reference

Functions
Constants
Data Structures
Error Codes

Library Information

File Name CSDNSV11.DLL

Version 11.0.2180.1635

LibID D0B892B2-2930-4919-BED9-BD494D65BDBB

Import Library CSDNSV11.LIB

Dependencies None

Standards RFC 1034

Overview
The Domain Name Services (DNS) protocol is what applications use to resolve domain names into
Internet addresses as well as provide other information about a domain. All of the SocketTools
libraries provide basic domain name resolution functionality, but the Domain Name Services
library gives an application direct control over what servers are queried, the amount of time spent
waiting for a response and the type of information that is returned.

Requirements
The SocketTools Library Edition libraries are compatible with any programming language which
supports calling functions exported from a standard dynamic link library (DLL). If you are using
Visual C++ 6.0 it is required that you have Service Pack 6 (SP6) installed. You should install all
updates for your development tools and have the current Windows SDK installed. The minimum
recommended version of Visual Studio is Visual Studio 2010.

This library is supported on Windows 7, Windows Server 2008 R2 and later versions of the desktop
and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1) installed as
a minimum requirement. It is recommended that you install the current service pack and all critical
updates available for your version of the operating system.

This product includes both 32-bit and 64-bit libraries. Native 64-bit CPU support requires the 64-
bit version of Windows 7 or later versions of the Windows operating system.

Distribution
When you distribute your application that uses this library, it is recommended that you install the
file in the same folder as your application executable. If you install the library into a shared location
on the system, it is important that you distribute the correct version for the target platform and it
should be registered as a shared DLL. This is a standard Windows dynamic link library, not an
ActiveX component, and does not require COM registration.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Domain Name Service Functions

Function Description

DnsAttachThread Attach the specified client handle to another thread

DnsCancel Cancel an outstanding nameserver query

DnsCloseHandle Close the current client session

DnsCreateHandle Create a new handle for the current client session

DnsDisableTrace Disable logging of network function calls to the trace log

DnsEnableTrace Enable logging of network function calls to a file

DnsEnumHostAliases Enumerate the aliases for the specified host name or address

DnsEnumMailExchanges Return a list of mail exchanges for the specified host name or IP address

DnsFormatAddress Convert a numeric IPv4 address to a string

DnsGetAddress Convert an IPv4 address string in dotted notation to a numeric IP address

DnsGetAddressFamily Return the address family for the specified IP address

DnsGetDefaultHostFile Return the full path to the default host file on the local system

DnsGetDefaultServicesFile Return the full path the default services file on the local system

DnsGetErrorString Return a description for the specified error code

DnsGetHostAddress Return the IP address for the specified hostname

DnsGetHostByAddress Return a pointer to data for the specified host IP address

DnsGetHostByName Return a pointer to data for the specified host name

DnsGetHostFile Return the name of the current host file

DnsGetHostInfo Return additional information for the specified host

DnsGetHostName Return the host name for the specified IP address

DnsGetHostServices Return a list of services supported by the specified host

DnsGetLastError Return the last error code

DnsGetLocalAddress Return the IP address for the local host

DnsGetLocalDomain Return the local domain name for the current session

DnsGetLocalName Return the local host name

DnsGetMailExchange Return the host that processes mail for the specified domain

DnsGetRecord Return record data for the current host

DnsGetResolverAddress Return address of last nameserver that resolved query

DnsGetResolverOptions Return the current resolver options for the specified client session

DnsGetRetryCount Get the number of times the query is sent to each server

DnsGetServerAddress Return the address of the specified nameserver

DnsGetServerPort Return the port of the specified nameserver

DnsGetServiceName Return the name of a service assigned to the specified port number

DnsGetServicePort Return the port number assigned to the specified service name

DnsGetTimeout Get the number of seconds until a query times out

DnsHostNameToUnicode Converts the canonical form of a host name to its Unicode version

DnsInitialize Initialize the library and validate the specified license key at runtime

DnsMatchHostName Match a host name against of list of addresses including wildcards

DnsNormalizeHostName Return the canonical form of a host name

DnsRegisterServer Add a nameserver address to the current session

DnsReset Reset the current client state

DnsSetHostFile Specify the name of an alternate file to use when resolving hostnames and IP addresses

DnsSetLastError Set the last error code

DnsSetLocalDomain Set the local domain name for the current session

DnsSetResolverOptions Set the resolver options for the specified client session

DnsSetRetryCount Set the number of times the query is sent to each server

DnsSetTimeout Set the number of seconds until a query times out

DnsUninitialize Terminates the use of the library

DnsUnregisterServer Remove a nameserver address from the current session

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DnsAttachThread Function

DWORD WINAPI DnsAttachThread(
 HCLIENT hClient
 DWORD dwThreadId
);

The DnsAttachThread function attaches the specified client handle to another thread.

Parameters
hClient

Handle to the client session.

dwThreadId

The ID of the thread that will become the new owner of the handle. A value of zero specifies
that the current thread should become the owner of the client handle.

Return Value
If the function succeeds, the return value is the thread ID of the previous owner. If the function
fails, the return value is DNS_ERROR. To get extended error information, call DnsGetLastError.

Remarks
When a client handle is created, it is associated with the current thread that created it. Normally, if
another thread attempts to perform an operation using that handle, an error is returned since it
does not own the handle. This is used to ensure that other threads cannot interfere with an
operation being performed by the owner thread. In some cases, it may be desirable for one
thread in a client application to create the client handle, and then pass that handle to another
worker thread. The DnsAttachThread function can be used to change the ownership of the
handle to the new worker thread. By preserving the return value from the function, the original
owner of the handle can be restored before the worker thread terminates.

This function should be called by the new thread immediately after it has been created, and if the
new thread does not release the handle itself, the ownership of the handle should be restored to
the parent thread before it terminates. Under no circumstances should DnsAttachThread be used
to forcibly release a handle allocated by another thread while a blocking operation is in progress.
To cancel an operation, use the DnsCancel function and then release the handle after the
blocking function exits and control is returned to the current thread.

Note that the dwThreadId parameter is presumed to be a valid thread ID and no checks are
performed to ensure that the thread actually exists. Specifying an invalid thread ID will orphan the
handle until the DnsUninitialize function is called.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib

See Also
DnsCancel, DnsCloseHandle, DnsCreateHandle, DnsUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DnsCancel Function

INT WINAPI DnsCancel(
 HCLIENT hClient
);

The DnsCancel function cancels any outstanding queries initiated by the client.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
DNS_ERROR. To get extended error information, call DnsGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DnsGetHostByAddress, DnsGetHostByName, DnsGetHostInfo, DnsGetHostServices,
DnsGetMailExchange, DnsGetRecord

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DnsCloseHandle Function

INT WINAPI DnsCloseHandle(
 HCLIENT hClient
);

The DnsCloseHandle function closes the handle and releases any memory allocated for the client
session.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
DNS_ERROR. To get extended error information, call DnsGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DnsCreateHandle, DnsUninitialize, DnsUnregisterServer

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DnsCreateHandle Function

HCLIENT WINAPI DnsCreateHandle(
 INT nTimeout,
 INT nRetries,
 DWORD dwOptions
);

The DnsCreateHandle function creates a new handle which can be used to query the default
nameservers configured for the local host.

Parameters
nTimeout

The number of seconds that the client will wait for a response before failing the query. The
constant DNS_TIMEOUT can be used to specify the default timeout period of 15 seconds.

nRetries

The number of attempts the client will make to resolve a query after a timeout. The constant
DNS_RETRIES can be used to specify the default retry count of 4.

dwOptions

An unsigned integer that specifies one or more resolver options. This parameter is constructed
by using a bitwise operator with any of the following values:

Constant Description

DNS_OPTION_NONE No additional resolver options specified. This is the
default value, and it is recommended that most
applications do not specify additional options unless
the implications of doing so are understood.

DNS_OPTION_PROMOTE Promotes the server that successfully completed the
last query to the first server that will be used to
resolve subsequent queries. This option can improve
performance in some cases where one or more of
the registered servers are non-responsive. This
option takes precedence over the
DNS_OPTION_ROTATE option.

DNS_OPTION_ROTATE Enables a round-robin selection of nameservers
when performing queries. Normally each nameserver
is queried in the same order. This option rotates the
available nameservers so a different server is used
with each query.

DNS_OPTION_AUTHONLY Require the answer from the nameserver to be
authoritative, not from the server's cache. This option
is included for future expansion as most servers do
not support this feature and will ignore it.

DNS_OPTION_PRIMARY Queries are only accepted from the primary
nameserver. This option is included for future
expansion as most servers do not support this
feature and will ignore it.

DNS_OPTION_NORECURSE Disable the sending of recursive queries to the
nameserver. Specifying this option will disable the bit
in the DNS request header that specifies recursion is
desired.

DNS_OPTION_NOSEARCH Disable additional queries of higher domains in the
search list if the host name cannot be resolved. If this
option is specified, and the host name cannot be
resolved using the local domain name an error is
returned immediately. This option is ignored if no
local domain has been specified or if the
DNS_OPTION_NOSUFFIX option has been specified.

DNS_OPTION_NOSUFFIX Disable additional queries using the local domain
name if the host name is not a fully qualified domain
name and cannot be resolved. This option is ignored
if no local domain has been specified.

DNS_OPTION_NONAMECHECK Disable checking the host name for invalid
characters, such as the underscore and control
characters. By default, host names are checked to
ensure they're valid before submitting a query to the
nameserver.

DNS_OPTION_FREETHREAD This option specifies the handle returned by this
function may be used by any thread, and is not
limited to the thread which created it. The application
is responsible for ensuring that access to the handle
is synchronized across multiple threads.

Return Value
If the function succeeds, the return value is a handle to a client session. If the function fails, the
return value is INVALID_CLIENT. To get extended error information, call DnsGetLastError.

Remarks
The DnsCreateHandle function returns a handle to the application which can be used to perform
nameserver queries. By default, the library will use the nameservers which are configured for the
local host. To determine the IP addresses of those nameservers, use the DnsGetServerAddress
function.

To specify alternate nameservers, either as replacements for or additions to the default
nameservers, use the DnsRegisterServer function.

It is recommended that most applications do not specify any resolver options and use the default
behavior. Specifying these options without understanding how they can affect standard queries
can result in unexpected failures. In particular, caution should be used when specifying the
DNS_OPTION_NORECURSE and DNS_OPTION_NOSEARCH options as they change the normal
process of resolving a host name.

Specifying the DNS_OPTION_FREETHREAD option enables any thread to call any function using
the handle, regardless of which thread created it. It is important to note that this option disables
certain internal safety checks which are performed by the library and may result in unexpected
behavior unless access to the handle is synchronized. If one thread calls a function in the library, it
must ensure that no other thread will call another function at the same time using the same

handle.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib

See Also
DnsCloseHandle, DnsGetResolverOptions, DnsGetServerAddress, DnsInitialize, DnsRegisterServer,
DnsSetLocalDomain, DnsSetResolverOptions

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DnsDisableTrace Function

BOOL WINAPI DnsDisableTrace();

The DnsDisableTrace function disables the logging of socket function calls to the trace log.

Parameters
None.

Return Value
If the function succeeds, the return value is non-zero. A return value of zero indicates an error.
Failure typically indicates that the tracing library cstrcv11.dll cannot be loaded on the local
system.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DnsEnableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DnsEnableTrace Function

BOOL WINAPI DnsEnableTrace(
 LPCTSTR lpszTraceFile,
 DWORD dwTraceFlags
);

The DnsEnableTrace function enables the logging of socket function calls to a file.

Parameters
lpszTraceFile

A pointer to a string which specifies the name of the trace log file. If this parameter is NULL or
an empty string, the default file name cstrace.log is used. The file is stored in the directory
specified by the TEMP environment variable, if it is defined; otherwise, the current working
directory is used.

dwTraceFlags

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

TRACE_INFO All function calls are written to the trace file. This is the default
value.

TRACE_ERROR Only those function calls which fail are recorded in the trace file.

TRACE_WARNING Only those function calls which fail or return values which indicate
a warning are recorded in the trace file.

TRACE_HEXDUMP All functions calls are written to the trace file, plus all the data that
is sent or received is displayed, in both ASCII and hexadecimal
format.

TRACE_PROCESS All function calls in the current process are logged, rather than
only those functions in the current thread. This option is useful for
multithreaded applications that are using worker threads.

Return Value
If the function succeeds, the return value is non-zero. A return value of zero indicates an error.
Failure typically indicates that the tracing library cstrcv11.dll cannot be loaded on the local
system.

Remarks
When trace logging is enabled, the file is opened, appended to and closed for each socket
function call. This makes it possible for an application to append its own logging information,
however care should be taken to ensure that the file is closed before the next network operation is
performed. To limit the size of the log files, enable and disable logging only around those sections
of code that you wish to trace.

Note that the TRACE_HEXDUMP trace level generates very large log files since it includes all of the
data exchanged between your application and the remote host.

Trace function logging is managed on a per-thread basis, not for each client handle. This means
that all SocketTools libraries and components share the same settings in the current thread. If you

are using multiple SocketTools libraries or components in your application, you only need to
enable logging once.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DnsDisableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DnsEnumHostAliases Function

INT WINAPI DnsEnumHostAliases(
 HCLIENT hClient,
 LPCTSTR lpszHostName,
 LPTSTR *lpszHostAlias,
 INT nMaxAliases
);

The DnsEnumHostAliases function returns a list of aliases for the specified host name or IP
address.

Parameters
hClient

Handle to the client session.

lpszHostName

Pointer to the string that contains the hostname to be resolved. If a fully qualified domain name
is not provided, the default local domain will be used. This value may also be an IP address.

lpszHostAlias

Pointer to an array of string pointers which specify one or more host aliases. If the application
needs to store these values, a local copy should be made because they are invalidated when
another host name is resolved.

nMaxAliases

The maximum number of aliases in the array. This parameter must have a value of at least one,
or an error will be returned.

Return Value
If the function succeeds, the return value is the number of host aliases. If the function fails, the
return value is DNS_ERROR. To get extended error information, call DnsGetLastError.

Remarks
The application must never attempt to modify the host aliases or free any of the values. This
function uses an internal data structure to store the host information and only one copy of this
structure is allocated per thread. The application must copy any information it needs before
issuing any other function calls.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DnsGetHostAddress, DnsGetHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DnsEnumMailExchanges Function

INT WINAPI DnsEnumMailExchanges(
 HCLIENT hClient,
 LPCTSTR lpszHostName,
 LPTSTR *lpszMailExchanges,
 INT nMaxMailExchanges
);

The DnsEnumMailExchanges function returns a list of mail exchanges for the specified host
name or IP address.

Parameters
hClient

Handle to the client session.

lpszHostName

Pointer to the string that contains the hostname or domain name to be queried.

lpszMailExchanges

Pointer to an array of string pointers which specify one or more mail exchanges. If the
application needs to store these values, a local copy should be made because they are
invalidated when another host name is resolved. The list of mail exchange records is sorted in
priority order, from highest (i.e., those whose preference value is smallest) to lowest.

nMaxMailExchanges

The maximum number of mail exchanges in the array. If this parameter is 0, then the function
will return the number of mail exchanges, but the list of mail exchanges will not be output in
lpszMailExchanges.

Return Value
If the function succeeds, the return value is the number of mail exchanges. If the function fails, the
return value is DNS_ERROR. To get extended error information, call DnsGetLastError.

Remarks
The application must never attempt to modify the mail exchange host names or free any of the
values. This function uses an internal data structure to store the host information and only one
copy of this structure is allocated per thread. The application must copy any information it needs
before issuing any other function calls.

Example
// Count the number of mail exchanges
if ((nMX = DnsEnumMailExchanges(hClient,szHostName, NULL, 0)) == DNS_ERROR)
{
 dwError = DnsGetLastError();
 DnsGetErrorString(dwError, szError, BUFSIZE);
 printf("DnsEnumMailExchanges failed for %s: %s\n", szHostName, szError);
}
else
{
 int nIndex;
 printf("%d MX for %s\n",nMX, szHostName);

 // Allocate memory for the list of mail exchanges

 lpszMailExchanges = (LPTSTR *)malloc(nMX * sizeof(LPTSTR));

 // Retrieve the list of mail exchanges
 nMX = DnsEnumMailExchanges(hClient, szHostName, lpszMailExchanges, nMX);

 for (nIndex = 0; nIndex < nMX; nIndex++)
 printf("#%d: %s\n", nIndex+1, *lpszMailExchanges++);

 free(lpszMailExchanges);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DnsGetMailExchange

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DnsFormatAddress Function

INT WINAPI DnsFormatAddress(
 LPINTERNET_ADDRESS lpAddress,
 LPTSTR lpszAddress,
 INT nMaxLength
);

The DnsFormatAddress function converts a numeric IPv4 or IPv6 address to a string.

Parameters
lpAddress

A pointer to an INTERNET_ADDRESS structure which specifies the numeric IPv4 or IPv6 address
to be converted into a string.

lpszAddress

A pointer to a null-terminated array of characters which will contain the converted IPv4 address
in dot-notation. This string should be at least 16 characters in length.

nMaxLength

The maximum number of characters which may be copied in to the string buffer.

Return Value
If the function succeeds, the return value is the length of the string buffer. If the function fails, the
return value is zero. To get extended error information, call DnsGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DnsGetAddress, DnsGetHostAddress, DnsGetHostInfo, DnsGetHostServices, DnsGetMailExchange,
DnsGetRecord, INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DnsGetAddress Function

INT WINAPI DnsGetAddress(
 LPCTSTR lpszAddress,
 INT nAddressFamily,
 LPINTERNET_ADDRESS lpAddress
);

The DnsGetAddress function converts an address string to a numeric IPv4 or IPv6 address.

Parameters
lpszAddress

A pointer to a string which specifies an IPv4 address in dotted notation.

nAddressFamily

An integer value which specifies the type of IP address. If this parameter is zero, the address
family will be determined automatically based on the format of the address string. If this
parameter is DNS_ADDRESS_IPV4, the address must be in IPv4 format, and if it is
DNS_ADDRESS_IPV6, the address must be in IPv6 format.

lpAddress

A pointer to an INTERNET_ADDRESS structure that will contain the numeric form of the IPv4 or
IPv6 address in network byte order when the function returns.

Return Value
If the function succeeds, the return value is the address family for the IP address. If the function
fails, the return value is DNS_ERROR. To get extended error information, call DnsGetLastError.

Remarks
This function will only accept a string that is in the proper format for an IP address, and cannot be
used to resolve a host name. To perform host name resolution, use the DnsGetHostAddress
function. To convert a numeric address to an address string, use the DnsFormatAddress function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DnsFormatAddress, DnsGetHostAddress, DnsGetHostInfo, DnsGetHostServices,
DnsGetMailExchange, DnsGetRecord, INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DnsGetAddressFamily Function

INT WINAPI DnsGetAddressFamily(
 LPCTSTR lpszAddress
);

The DnsGetAddressFamily function returns the address family for the specified IP address.

Parameters
lpszAddress

A pointer to a string which specifies an IPv4 or IPv6 address.

Return Value
If the function succeeds, the return value is DNS_ADDRESS_IPV4 if the address is in IPv4 format, or
DNS_ADDRESS_IPV6 if the address is in IPv6 format. If the address string is not in a recognized
format, it returns DNS_ADDRESS_ANY.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DnsFormatAddress, DnsGetHostAddress, DnsGetHostInfo, DnsGetHostServices,
DnsGetMailExchange, DnsGetRecord

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DnsGetDefaultHostFile Function

INT WINAPI DnsGetDefaultHostFile(
 LPTSTR lpszFileName,
 INT nMaxLength
);

The DnsGetDefaultHostFile function returns the fully qualified path name of the host file on the
local system. The host file is used as a database that maps an IP address to one or more
hostnames, and is used by the DnsGetHostAddress and DnsGetHostName functions. The file is
a plain text file, with each line in the file specifying a record, and each field separated by spaces or
tabs. The format of the file must be as follows:

ipaddress hostname [hostalias ...]

For example, one typical entry maps the name "localhost" to the local loopback IP address. This
would be entered as:

127.0.0.1 localhost

The hash character (#) may be used to specify a comment in the file, and all characters after it are
ignored up to the end of the line. Blank lines are ignored, as are any lines which do not follow the
required format.

Parameters
lpszFileName

Pointer to a string buffer that will contain the fully qualified path to the default host file. It is
recommended that this buffer be at least MAX_PATH characters in size. This parameter may be
NULL, in which case the function will return the length of the string, not including the
terminating null byte.

nMaxLength

The maximum number of characters that may be copied to the string buffer.

Return Value
If the function succeeds, the return value is the number of characters copied into the string buffer,
not including the terminating null character. A return value of zero indicates that the default host
file could not be determined for the current platform. To get extended error information, call
DnsGetLastError.

Remarks
This function returns the location of the host file and does not determine if the file actually exists.
The default location for this file is in a protected area of the Windows operating system and can
only be modified by a process with administrative privileges.

The default host file is processed before performing a nameserver lookup when resolving a
hostname into an IP address, or an IP address into a hostname. To specify an alternate local host
file, use the DnsSetHostFile function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DnsGetDefaultServicesFile, DnsGetHostAddress, DnsGetHostFile, DnsGetHostName,
DnsSetHostFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DnsGetDefaultServicesFile Function

INT WINAPI DnsGetDefaultServicesFile(
 LPTSTR lpszFileName,
 INT nMaxLength
);

The DnsGetDefaultServicesFile function returns the fully qualified path name of the services file
on the local system. The services file is used as a database that maps a port number to a service
name, and is used by the DnsGetServiceName and DnsGetServicePort functions. The file is a
plain text file, with each line in the file specifying a record, and each field separated by spaces or
tabs. The format of the file must be as follows:

name port/protocol [alias ...]

For example, one typical entry maps the service name "http" to port 80, the standard port for the
Hypertext Transfer Protocol. This would be entered as:

http 80/tcp www www-http

The hash character (#) may be used to specify a comment in the file, and all characters after it are
ignored up to the end of the line. Blank lines are ignored, as are any lines which do not follow the
required format.

Parameters
lpszFileName

Pointer to a string buffer that will contain the fully qualified path to the default services file. It is
recommended that this buffer be at least MAX_PATH characters in size. This parameter may be
NULL, in which case the function will return the length of the string, not including the
terminating null byte.

nMaxLength

The maximum number of characters that may be copied to the string buffer.

Return Value
If the function succeeds, the return value is the number of characters copied into the string buffer,
not including the terminating null character. A return value of zero indicates that the default
services file could not be determined for the current platform. To get extended error information,
call DnsGetLastError.

Remarks
This function returns the location of the services file and does not determine if the file actually
exists. The default location for this file is in a protected area of the Windows operating system and
can only be modified by a process with administrative privileges.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DnsGetDefaultHostFile, DnsGetServiceName, DnsGetServicePort

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DnsGetErrorString Function

INT WINAPI DnsGetErrorString(
 DWORD dwErrorCode,
 LPTSTR lpszDescription,
 INT nMaxLength
);

The DnsGetErrorString function is used to return a description of a specific error code. Typically
this is used in conjunction with the DnsGetLastError function for use with warning dialogs or as
diagnostic messages.

Parameters
dwErrorCode

The last-error code for which a description is returned.

lpszDescription

A pointer to the buffer that will contain a description of the specified error code. This buffer
should be at least 128 characters in length.

nMaxLength

The maximum number of characters that may be copied into the description buffer.

Return Value
If the function succeeds, the return value is the length of the description string. If the function fails,
the return value is 0, meaning that no description exists for the specified error code. Typically this
indicates that the error code passed to the function is invalid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DnsGetLastError, DnsSetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DnsGetHostAddress Function

INT WINAPI DnsGetHostAddress(
 HCLIENT hClient,
 INT nAddressFamily,
 LPCTSTR lpszHostName,
 LPTSTR lpszHostAddress,
 INT nMaxLength
);

The DnsGetHostAddress function resolves the specified host name, storing the IP address in the
provided buffer.

Parameters
hClient

Handle to the client session.

nAddressFamily

An integer value which specifies the type of address that should be returned. A value of
DNS_ADDRESS_IPV4 specifies that the IPv4 address for the host should be returned. A value of
DNS_ADDRESS_IPV6 specifies that the IPv6 address for the host should be returned. A value of
DNS_ADDRESS_ANY specifies that if the host only has an IPv6 address, that value should be
returned, otherwise return the IPv4 address for the host.

lpszHostName

Pointer to the string that contains the hostname to be resolved. If a fully qualified domain name
is not provided, the default local domain will be used.

lpszHostAddress

Pointer to the buffer that will contain the IP address, stored as a string in dot notation. This
buffer should be at least 48 characters in length to accommodate both IPv4 and IPv6 addresses.
The format of the address is determined by the address family specified.

nMaxLength

The maximum length of the string buffer. The maximum length of the buffer must include the
terminating null character.

Return Value
If the function succeeds, the return value is the number of characters copied into the host address
buffer. If the function fails, the return value is DNS_ERROR. To get extended error information, call
DnsGetLastError.

Remarks
The DnsGetHostAddress function may return an address in either IPv4 or IPv6 format,
depending on the address family that is specified and what records exist for the host. If your
application does not support the IPv6 address format, you must specify the nAddressFamily
parameter as DNS_ADDRESS_IPV4 to prevent the possibility of an IPv6 address being returned.

If the nAddressFamily parameter is specified as DNS_ADDRESS_ANY, this function will first check
for an IPv4 address record for the host. If it exists, it will return that address. If the host does not
have an IPv4 address, it will then check for an IPv6 address record and return that address. This
gives preference to IPv4 addresses, but your application should never depend on this behavior. In
the future, this function may change to give preference to IPv6 addresses.

To determine what format an address is in, use the DnsGetAddressFamily function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DnsEnumHostAliases, DnsGetAddressFamily, DnsGetHostName, DnsGetMailExchange,
DnsGetRecord

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DnsGetHostByAddress Function

LPHOSTENT WINAPI DnsGetHostByAddress(
 HCLIENT hClient,
 LPVOID lpvAddress,
 INT cbAddress,
 INT nAddressFamily
);

The DnsGetHostByAddress function returns a pointer to a HOSTENT structure which contains
the results of a successful search for the host specified by address parameter.

Parameters
hClient

Handle to the client session.

lpvAddress

Pointer to an integer IPv4 address in network byte order.

cbAddress

The length of the address in bytes; this value should always be 4.

nAddressFamily

The type of address being resolved; this value should always be DNS_ADDRESS_IPV4 as defined
in the Windows Sockets header file.

Return Value
If the function succeeds, the return value is a pointer to a HOSTENT structure. If the function fails,
the return value is NULL. To get extended error information, call DnsGetLastError.

Remarks
The application must never attempt to modify this structure or to free any of its components. Only
one copy of this structure is allocated per thread, so the application should copy any information it
needs before issuing any other function calls. To convert an IPv4 address string in dotted notation
to a 32-bit IP address, use the DnsGetAddress function.

This function is included for compatibility with existing applications which already use the
HOSTENT structure. Because this function returns a pointer to a complex structure, it may not be
suitable for some programming languages. There is no Unicode version of the HOSTENT structure
and members will return pointers to ANSI strings even if the application is compiled to use
Unicode.

This function is not compatible with IPv6 addresses. For applications that must support both IPv4
and IPv6 address formats, use the DnsGetHostAddress and DnsGetHostName functions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DnsGetHostAddress, DnsGetHostByName, DnsGetHostInfo, DnsGetHostName,

DnsGetHostServices, DnsGetRecord, DnsGetResolverAddress, DnsRegisterServer

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DnsGetHostByName Function

LPHOSTENT WINAPI DnsGetHostByName(
 HCLIENT hClient,
 LPCTSTR lpszHostName
);

The DnsGetHostByName function returns a pointer to a HOSTENT structure which contains the
results of a successful search for the host specified in the name parameter.

Parameters
hClient

Handle to the client session.

lpszHostName

Pointer to the string that contains the hostname to be resolved. If a fully qualified domain name
is not provided, the default local domain will be used.

Return Value
If the function succeeds, the return value is a pointer to a HOSTENT structure. If the function fails,
the return value is NULL. To get extended error information, call DnsGetLastError.

Remarks
The application must never attempt to modify this structure or to free any of its components. Only
one copy of this structure is allocated per thread, so the application should copy any information it
needs before issuing any other function calls. This function will automatically resolve an IP address
passed as a string, converting it to numeric form and calling the DnsGetHostByAddress function.

This function is included for compatibility with existing applications which already use the
HOSTENT structure. Because this function returns a pointer to a complex structure, it may not be
suitable for some programming languages. There is no Unicode version of the HOSTENT structure
and members will return pointers to ANSI strings even if the application is compiled to use
Unicode.

This function is not compatible with IPv6 addresses. For applications that must support both IPv4
and IPv6 address formats, use the DnsGetHostAddress and DnsGetHostName functions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DnsGetHostAddress, DnsGetHostByAddress, DnsGetHostInfo, DnsGetHostName,
DnsGetHostServices, DnsGetMailExchange, DnsGetRecord, DnsGetResolverAddress,
DnsRegisterServer

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DnsGetHostFile Function

INT WINAPI DnsGetHostFile(
 HCLIENT hClient,
 LPTSTR lpszFileName,
 INT nMaxLength
);

The DnsGetHostFile function returns the name of the host file previously set using the
DnsSetHostFile function. The host file is used as a database that maps an IP address to one or
more hostnames, and is used by the DnsGetHostAddress and DnsGetHostName function.

Parameters
hClient

Handle to the client session.

lpszFileName

Pointer to a string buffer that will contain the host file name. It is recommended that this buffer
be at least MAX_PATH characters in size. This parameter may be NULL, in which case the
function will return the length of the string, not including the terminating null character.

nMaxLength

The maximum number of characters that may be copied to the string buffer.

Return Value
If the function succeeds, the return value is the number of characters copied into the string buffer,
not including the terminating null character. A return value of zero indicates no host file has been
specified or the function was unable to determine the file name. To get extended error
information, call DnsGetLastError.

Remarks
This function returns the name of the host file that is cached in memory for the current thread. If
an alternate host file has not been specified, this function will return the path to the default host
file. The contents of the file on the disk may have changed after the file was loaded into memory.
To reload the host file or clear the cache, call the DnsSetHostFile function.

If a host file has been specified, it is processed before the default host file when resolving a
hostname into an IP address, or an IP address into a hostname. If the host name or address is not
found, or no host file has been specified, a nameserver lookup is performed.

The host file returned by this function may be different than the default host file for the local
system. To determine the file name for the default host file, use the DnsGetDefaultHostFile
function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DnsGetDefaultHostFile, DnsGetHostAddress, DnsGetHostName, DnsSetHostFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DnsGetHostInfo Function

INT WINAPI DnsGetHostInfo(
 HCLIENT hClient,
 LPCTSTR lpszHostName,
 LPTSTR lpszBuffer,
 INT nMaxLength
);

The DnsGetHostInfo function returns the HINFO record for the specified hostname. This
information, if it is provided, typically specifies the operating system type and hardware platform.

Parameters
hClient

Handle to the client session.

lpszHostName

Pointer to the string which specifies the host name that information will be returned for.

lpszBuffer

Pointer to the buffer which will contain the host information returned by the nameserver.

nMaxLength

Maximum number of characters that may be copied into the specified buffer, including the null
character terminator.

Return Value
If the function succeeds, the length of the host information buffer is returned. A return value of
zero indicates that no information is available for the specified host. If the function fails, the return
value is DNS_ERROR. To get extended error information, call DnsGetLastError.

Remarks
Many systems to do not maintain HINFO records for a site since that information can potentially
be used to compromise system security. The information is typically used for administrative
purposes with internal networks.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DnsGetHostByAddress, DnsGetHostByName, DnsGetHostServices, DnsGetMailExchange,
DnsGetRecord, DnsGetResolverAddress, DnsRegisterServer

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DnsGetHostName Function

INT WINAPI DnsGetHostName(
 HCLIENT hClient,
 LPCTSTR lpszHostAddress,
 LPTSTR lpszHostName,
 INT nMaxLength
);

The DnsGetHostName function resolves the specified IP address, storing the fully qualified host
name in the provided buffer.

Parameters
hClient

Handle to the client session.

lpszHostAddress

Pointer to a string that specifies an IPv4 or IPv6 formatted address.

lpszHostName

Pointer to the buffer that will contain the fully qualified domain name for the specified host. This
buffer should be at least 64 characters in length.

nMaxLength

The maximum length of the string buffer.

Return Value
If the function succeeds, the return value is the number of characters copied into the host name
buffer. If the function fails, the return value is DNS_ERROR. To get extended error information, call
DnsGetLastError.

Remarks
The DnsGetHostName function first looks to see if there is an entry in the local host file for the
specified IP address, and if one exists, it will return the host name for that address. If you do not
want to use the local host file at all, and only return an host name if a DNS query resolves the
address, use the DnsGetRecord function and specify a record type of DNS_RECORD_PTR.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DnsEnumHostAliases, DnsGetHostByAddress, DnsGetHostByName, DnsGetHostAddress

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DnsGetHostServices Function

INT WINAPI DnsGetHostServices(
 HCLIENT hClient,
 LPCTSTR lpszHostName,
 INT nProtocol,
 LPTSTR lpszBuffer,
 INT nMaxLength
);

The DnsGetHostServices function returns the WKS (Well Known Services) record for the specified
hostname and protocol. This information, if it is provided, typically specifies the names of those
services supported on the host.

Parameters
hClient

Handle to the client session.

lpszHostName

Pointer to the string which specifies the host name that information will be returned for.

nProtocol

The protocol for those services that information should be returned about. The following
protocols are recognized:

Value Constant Description

6 DNS_PROTOCOL_TCP Services that use the Transmission Control Protocol
(TCP)

17 DNS_PROTOCOL_UDP Services that use the User Datagram Protocol (UDP)

lpszBuffer

Pointer to the buffer which will contain the host information returned by the nameserver.

nMaxLength

Maximum number of characters that may be copied into the specified buffer, including the null
character terminator.

Return Value
If the function succeeds, the length of the host services buffer is returned. A return value of zero
indicates that no information is available for the specified host. If the function fails, the return value
is DNS_ERROR. To get extended error information, call DnsGetLastError.

Remarks
Many systems to do not maintain complete services records for a site since that information can
potentially be used to compromise system security. An application should not depend on this
information being available for any given record.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib

Unicode: Implemented as Unicode and ANSI versions.

See Also
DnsGetHostByAddress, DnsGetHostByName, DnsGetHostInfo, DnsGetMailExchange,
DnsGetRecord, DnsGetResolverAddress, DnsRegisterServer

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DnsGetLastError Function

DWORD WINAPI DnsGetLastError();

Parameters
None.

Return Value
The return value is the calling thread's last-error code value. Functions set this value by calling the
DnsSetLastError function. The Return Value section of each reference page notes the conditions
under which the function sets the last-error code.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. You should call
the DnsGetLastError function immediately when a function's return value indicates that an error
has occurred. That is because some functions call DnsSetLastError(0) when they succeed, clearing
the error code set by the most recently failed function.

Most functions will set the last error code value when they fail; a few functions set it when they
succeed. Function failure is typically indicated by a return value such as FALSE, NULL,
INVALID_CLIENT or DNS_ERROR. Those functions which call DnsSetLastError when they succeed
are noted on the function reference page.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib

See Also
DnsGetErrorString, DnsSetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DnsGetLocalAddress Function

INT WINAPI DnsGetLocalAddress(
 HCLIENT hClient,
 INT nAddressFamily,
 LPTSTR lpszAddress,
 INT nMaxLength
);

The DnsGetLocalAddress function returns the IP address for the local host.

hClient

Handle to the client session.

nAddressFamily

An integer value which specifies the type of address that should be returned. A value of
DNS_ADDRESS_IPV4 specifies that the IPv4 address for the host should be returned. A value of
DNS_ADDRESS_IPV6 specifies that the IPv6 address for the host should be returned. A value of
DNS_ADDRESS_ANY specifies that if the host only has an IPv6 address, that value should be
returned, otherwise return the IPv4 address for the host.

lpszAddress

Pointer to the buffer that will contain the IP address, stored as a string in dot notation. This
buffer should be at least 40 characters in length to accommodate both IPv4 and IPv6 addresses.

nMaxLength

The maximum length of the string buffer.

Return Value
If the function succeeds, the return value is the number of characters copied into the host address
buffer. If the function fails, the return value is DNS_ERROR. To get extended error information, call
DnsGetLastError.

Remarks
The DnsGetLocalAddress function may return an address in either IPv4 or IPv6 format,
depending on the address family that is specified and what records exist for the host. If your
application does not support the IPv6 address format, you must specify the nAddressFamily
parameter as DNS_ADDRESS_IPV4 to prevent the possibility of an IPv6 address being returned.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DnsGetHostName, DnsGetHostInfo, DnsGetHostServices, DnsGetMailExchange, DnsGetRecord

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DnsGetLocalDomain Function

INT WINAPI DnsGetLocalDomain(
 HCLIENT hClient,
 LPTSTR lpszDomain,
 INT nMaxLength
);

The DnsGetLocalDomain function copies the local domain name into the specified buffer. The
value returned is the same value that was set with the DnsSetLocalDomain function. If no local
domain name has been set, an empty string is returned.

Parameters
hClient

Handle to the client session.

lpszDomain

Pointer to the buffer that is used to store the local domain name. If no local domain name has
been set, this buffer will be set to zero length.

nMaxLength

The maximum number of bytes to copy into the buffer, including the null character terminator.

Return Value
If the function succeeds, the return value is the length of the domain name string. A return value
of zero indicates that no local domain name has been set. If the function fails, the return value is
DNS_ERROR. To get extended error information, call DnsGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DnsRegisterServer, DnsSetLocalDomain

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DnsGetLocalName Function

INT WINAPI DnsGetLocalName(
 HCLIENT hClient,
 LPTSTR lpszLocalName,
 INT nMaxLength
);

The DnsGetLocalName function returns the local host name.

Parameters
hClient

Handle to the client session.

lpszLocalName

Pointer to a string buffer that will contain the local host name. It is recommended that this
buffer be at least 64 characters in size.

nMaxLength

The maximum number of characters that may be copied to the string buffer.

Return Value
If the function succeeds, the return value is the length of the local host name. If the function fails,
the return value is DNS_ERROR. To get extended error information, call DnsGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DnsGetHostByAddress, DnsGetHostByName, DnsGetHostInfo, DnsGetHostServices,
DnsGetMailExchange, DnsGetRecord

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DnsGetMailExchange Function

INT WINAPI DnsGetMailExchange(
 HCLIENT hClient,
 LPCTSTR lpszHostName,
 LPINT lpnPreference,
 LPTSTR lpszBuffer,
 INT nMaxLength
);

The DnsGetMailExchange function returns the mail exchange (MX) record information for the
specified domain. This information, if it is provided, identifies a server responsible for processing
mail for the given domain.

Parameters
hClient

Handle to the client session.

lpszHostName

Pointer to the string which specifies the host name that information will be returned for.

lpnPreference

Pointer to the integer which will contain the preference for the specified mail exchange host.

lpszBuffer

Pointer to the buffer which will contain the host information returned by the nameserver.

nMaxLength

Maximum number of characters that may be copied into the specified buffer, including the null
character terminator.

Return Value
If the function succeeds, the length of the buffer is returned. A return value of zero indicates that
no information is available for the specified host. If the function fails, the return value is
DNS_ERROR. To get extended error information, call DnsGetLastError.

Remarks
The mail exchange record is typically used by mail delivery agents to determine what system is
responsible for accepting mail addressed to a given domain. This function will return the first MX
record provided by the server. Note that some domains may have multiple mail servers. To
enumerate all of the mail exchange records for a domain, use the DnsEnumMailExchanges
function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DnsGetHostByAddress, DnsGetHostByName, DnsGetHostInfo, DnsGetHostServices, DnsGetRecord,
DnsGetResolverAddress, DnsRegisterServer, DnsEnumMailExchanges

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DnsGetRecord Function

INT WINAPI DnsGetRecord(
 HCLIENT hClient,
 LPCTSTR lpszHostName,
 INT nRecordType,
 LPTSTR lpszBuffer,
 INT nMaxLength
);

The DnsGetRecord function returns the specified record information for the given hostname.

Parameters
hClient

Handle to the client session.

lpszHostName

Pointer to the string which specifies the host name that information will be returned for.

nRecordType

The record type for the information that should be returned. The following record types are
recognized:

Value Constant Description

0 DNS_RECORD_NONE No record type

1 DNS_RECORD_ADDRESS IPv4 host address

2 DNS_RECORD_NS Authoritative nameserver

5 DNS_RECORD_CNAME Canonical host name (alias)

6 DNS_RECORD_SOA Start of Authority

11 DNS_RECORD_WKS Well known services

12 DNS_RECORD_PTR Domain name

13 DNS_RECORD_HINFO Host information

14 DNS_RECORD_MINFO Mailbox information

15 DNS_RECORD_MX Mail exchange host

16 DNS_RECORD_TXT Text strings

28 DNS_RECORD_AAAA IPv6 host address

29 DNS_RECORD_LOC Location information

100 DNS_RECORD_UINFO User information

101 DNS_RECORD_UID User ID

102 DNS_RECORD_GID Group ID

lpszBuffer

Pointer to the buffer which will contain the host information returned by the nameserver.

nMaxLength

Maximum number of characters that may be copied into the specified buffer, including the null
character terminator.

Return Value
If the function succeeds, the length of the information buffer is returned. A return value of zero
indicates that no information for that record is available for the specified host. If the function fails,
the return value is DNS_ERROR. To get extended error information, call DnsGetLastError.

Remarks
The DnsGetRecord function can be used to resolve a host name into an IPv4 address using the
record type DNS_RECORD_ADDRESS, or an IPv6 address using the record type
DNS_RECORD_AAAA. It can also be used to perform a reverse lookup and resolve an IP address
into a host name by using the record type DNS_RECORD_PTR.

To determine the host that serves as the primary or master DNS for a zone, the record name
should be specified as the domain name (e.g.: microsoft.com) and the record type should be
DNS_RECORD_SOA. The value returned will the fully qualified domain name for host.

Note that this function does not reference a local host file when resolving host names or
addresses. If the record lookup fails, this function will return an error even if there's an entry for the
host in the file that has been specified by a call to DnsSetHostFile.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DnsGetHostAddress, DnsGetHostName, DnsGetHostInfo, DnsGetHostServices,
DnsGetMailExchange, DnsGetResolverAddress, DnsRegisterServer

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DnsGetResolverAddress Function

INT WINAPI DnsGetResolverAddress(
 HCLIENT hClient,
 LPTSTR lpszAddress,
 INT nMaxLength
);

The DnsGetResolverAddress returns the address of the nameserver that resolved the last query.

Parameters
hClient

Handle to the client session.

lpszAddress

A pointer to a string buffer that will contain the address of the nameserver when the function
returns. This buffer should be large enough to store both IPv4 and IPv6 addresses, with a
minimum length of 40 characters. If this parameter is NULL, it will be ignored.

nMaxLength

The maximum number of characters that can be copied into the string buffer. If this value is
zero, the lpszAddress parameter will be ignored and the function will return the length of the
address.

Return Value
If the function succeeds, the return value is the length of the address, not including the
terminating null character. If the function fails, the return value is DNS_ERROR. To get extended
error information, call DnsGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DnsGetHostByAddress, DnsGetHostByName, DnsGetHostInfo, DnsGetHostServices,
DnsGetMailExchange, DnsGetRecord, DnsRegisterServer

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DnsGetResolverOptions Function

DWORD WINAPI DnsGetResolverOptions(
 HCLIENT hClient
);

The DnsGetResolverOptions function returns the options that have been set for the client
session.

Parameters
hClient

Handle to the client session

Return Value
If the function succeeds, the return value is the resolver options set for the client session. If the
client handle is invalid or no resolver options have been specified, the function will return zero.

Remarks
The DnsGetResolverOptions function can be used to determine which resolver options have
been specified for the client session. For a list of the available options, refer to the documentation
for the DnsSetResolverOptions function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib

See Also
DnsCreateHandle, DnsSetResolverOptions

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DnsGetRetryCount Function

INT WINAPI DnsGetRetryCount(
 HCLIENT hClient
);

The DnsGetRetryCount returns the retry count for the current client session.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is the retry count. If the function fails, the return value is
DNS_ERROR. To get extended error information, call DnsGetLastError.

Remarks
The retry count determines the amount of time the client will wait for a response from each query,
the effective amount of time the client will wait increases with each nameserver and the total
number of retries specified. For example, two nameservers registered with the client, with a default
of 4 retries per nameserver and a timeout value of 10 seconds, would cause the client to wait a
total of 80 seconds until it returns an error indicating that it was unable to resolve the query.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DnsGetTimeout, DnsSetRetryCount, DnsSetTimeout

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DnsGetServerAddress Function

INT WINAPI DnsGetServerAddress(
 HCLIENT hClient,
 INT nServer,
 LPTSTR lpszAddress,
 INT nMaxLength
);

The DnsGetServerAddress function returns the address of the registered nameserver.

Parameters
hClient

Handle the client session.

nServer

The index into the client's nameserver table. This index is the same value that is passed to the
DnsRegisterServer function when the nameserver is registered.

lpszAddress

A pointer to a string buffer that will contain the address of the nameserver when the function
returns. This buffer should be large enough to store both IPv4 and IPv6 addresses, with a
minimum length of 40 characters. If this parameter is NULL, it will be ignored.

nMaxLength

The maximum number of characters that can be copied into the string buffer. If this value is
zero, the lpszAddress parameter will be ignored and the function will return the length of the
address.

Return Value
If the function succeeds, the return value is the length of the address, not including the
terminating null character. If the function fails, the return value is DNS_ERROR. To get extended
error information, call DnsGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DnsCreateHandle, DnsGetResolverAddress, DnsGetServerPort, DnsRegisterServer,
DnsUnregisterServer

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DnsGetServerPort Function

INT WINAPI DnsGetServerPort(
 HCLIENT hClient,
 INT nServer
);

The DnsGetServerPort function returns the port number registered to the specified nameserver.

Parameters
hClient

Handle the client session.

nServer

The index into the client's nameserver table. This index is the same value that is passed to the
DnsRegisterServer function when the nameserver is registered.

Return Value
If the function succeeds, the return value is the specified port number. If the function fails, the
return value is DNS_ERROR. To get extended error information, call DnsGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DnsGetResolverAddress, DnsGetServerAddress, DnsRegisterServer, DnsUnregisterServer

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DnsGetServiceName Function

INT WINAPI DnsGetServiceName(
 HCLIENT hClient,
 INT nServicePort,
 INT nProtocol,
 LPTSTR lpszServiceName,
 INT nMaxLength
);

The DnsGetServiceName function returns the service name assigned to the specified port
number.

Parameters
hClient

Handle to the client session.

nServicePort

An integer which specifies the port number. This value must be a valid port number in the range
of 1 through 65535.

nProtocol

An integer which specifies the protocol associated with the service. This may be one of the
following values:

Constant Description

DNS_PROTOCOL_ANY Match the first service entry for the specified port number
regardless of the protocol used.

DNS_PROTOCOL_TCP Match a service entry for the specified port number which
uses the TCP protocol.

DNS_PROTOCOL_UDP Match a service entry for the specified port number which
uses the UDP protocol.

lpszServiceName

A pointer to a string buffer which will contain the name of the service assigned to the port
number when the function returns. This parameter cannot be NULL and the buffer must be
large enough to store the complete service name, including the terminating null character.

nMaxLength

An integer which specifies the maximum number of characters which can be copied into the
string buffer.

Return Value
If the function succeeds, the return value is the number of characters copied into the string buffer,
not including the terminating null character. If the function fails, the return value is zero. To get
extended error information, call DnsGetLastError.

Remarks
Port numbers can be assigned human readable service names to make them easier to reference.
This function will return the name assigned to the specified port number. If the port number does
not have an assigned name, this function will return zero and the last error code will be set to

ST_ERROR_INVALID_SERVICE_NAME.

Most applications should use DNS_PROTOCOL_ANY to return the service name assigned to a port
number. Services typically use the same name and port number regardless of the protocol used to
establish a connection with them. However, specifying a protocol can enable your application to
determine if the service supports the protocol. For example, calling this function with port number
21 and DNS_PROTOCOL_UDP would result in an error because FTP only supports TCP
connections.

Service names are assigned by the Internet Assigned Numbers Authority (IANA) and the database
of recognized service names can be returned by calling the DnsGetDefaultServicesFile function.
The default location for this file is in a protected area of the Windows operating system and can
only be modified by a process with administrative privileges.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DnsGetDefaultHostFile, DnsGetDefaultServicesFile, DnsGetHostFile, DnsGetServicePort

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DnsGetServicePort Function

INT WINAPI DnsGetServicePort(
 HCLIENT hClient,
 LPCTSTR lpszServiceName,
 INT nProtocol
);

The DnsGetServicePort function returns the port number assigned to the specified service.

Parameters
hClient

Handle to the client session.

lpszServiceName

A pointer to a null terminated string which specifies the service name. Service names are not
case sensitive.

nProtocol

An integer which specifies the protocol associated with the service. This may be one of the
following values:

Constant Description

DNS_PROTOCOL_ANY Match the first service entry for the specified port number
regardless of the protocol used.

DNS_PROTOCOL_TCP Match a service entry for the specified port number which
uses the TCP protocol.

DNS_PROTOCOL_UDP Match a service entry for the specified port number which
uses the UDP protocol.

Return Value
If the function succeeds, the return value is the port number assigned to the service name. If the
function fails, the return value is DNS_ERROR. To get extended error information, call
DnsGetLastError.

Remarks
Port numbers can be assigned human readable service names to make them easier to reference.
This function will return the port number assigned to the specified service name. If the service
name does not exist, this function will return DNS_ERROR and the last error code will be set to
ST_ERROR_INVALID_SERVICE_NAME.

Most applications should use DNS_PROTOCOL_ANY to return the port number assigned to a
service. Services typically use the same name and port number regardless of the protocol used to
establish a connection with them. However, specifying a protocol can enable your application to
determine if the service supports the protocol. For example, calling this function with the service
name "ftp" and DNS_PROTOCOL_UDP would result in an error because FTP only supports TCP
connections.

Service names are assigned by the Internet Assigned Numbers Authority (IANA) and the database
of recognized service names can be returned by calling the DnsGetDefaultServicesFile function.
The default location for this file is in a protected area of the Windows operating system and can
only be modified by a process with administrative privileges.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DnsGetDefaultHostFile, DnsGetDefaultServicesFile, DnsGetHostFile, DnsGetServicePort

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DnsGetTimeout Function

INT WINAPI DnsGetTimeout(
 HCLIENT hClient
);

The DnsGetTimeout function returns the timeout value for the current client session.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is the timeout period. If the function fails, the return value
is DNS_ERROR. To get extended error information, call DnsGetLastError.

Remarks
The timeout value determines the amount of time the client will wait for a response from each
query, the effective amount of time the client will wait increases with each nameserver and the
total number of retries specified. For example, two nameservers registered with the client, with a
default of 4 retries per nameserver and a timeout value of 10 seconds, would cause the client to
wait a total of 80 seconds until it returns an error indicating that it was unable to resolve the query.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib

See Also
DnsGetRetryCount, DnsSetRetryCount, DnsSetTimeout

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DnsHostNameToUnicode Function

INT WINAPI DnsHostNameToUnicode(
 LPCTSTR lpszHostName,
 LPTSTR lpszUnicodeName,
 INT nMaxLength
);

The DnsHostNameToUnicode function converts the canonical form of a host name to its
Unicode version.

Parameters
lpszHostName

Pointer to the host name as a null-terminated string. This parameter cannot be a NULL pointer
or a zero length string.

lpszUnicodeName

Pointer to the string buffer that will contain the original Unicode version of the host name,
including the terminating null character. It is recommended that this buffer be at least 256
characters in size. This parameter cannot be a NULL pointer.

nMaxLength

The maximum number of characters that can be copied to the lpszUnicodeName string buffer.
This parameter cannot be zero, and must include the terminating null character.

Return Value
If the function succeeds, the return value is the number of characters copied into the string buffer.
If the function fails, the return value is DNS_ERROR. To get extended error information, call
DnsGetLastError.

Remarks
The DnsHostNameToUnicode function will convert the encoded ASCII version of a host name to
its Unicode version. Although any valid host name is accepted by this function, it is intended to
convert a Punycode encoded host name to its original Unicode character encoding.

If the Unicode version of this function is used, the value returned in lpszUnicodeName will be a
Unicode string using UTF-16 encoding. If the ANSI version of this function, the value returned will
be a Unicode string using UTF-8 encoding. To display a UTF-8 encoded host name, your
application will need to convert it to UTF-16 using the MultiByteToWideChar function.

Although this function performs checks to ensure that the lpszHostName parameter is in the
correct format and does not contain any illegal characters or malformed encoding, it does not
validate the existence of the domain name. To check if the host name exists and has a valid IP
address, use the DnsGetHostAddress function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also

DnsGetHostAddress, DnsNormalizeHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DnsInitialize Function

BOOL WINAPI DnsInitialize(
 LPCTSTR lpszLicenseKey,
 LPINITDATA lpData
);

The DnsInitialize function initializes the library and validates the specified license key at runtime.

Parameters
lpszLicenseKey

Pointer to a string that specifies the runtime license key to be validated. If this parameter is
NULL, the library will validate the development license installed on the local system.

lpData

Pointer to an INITDATA data structure. This parameter may be NULL if the initialization data for
the library is not required.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call DnsGetLastError. All other client functions will fail until a
license key has been successfully validated.

Remarks
This must be the first function that an application calls before using any of the other functions in
the library. When a NULL license key is specified, the library will only function on the development
system. Before redistributing the application to an end-user, you must insure that this function is
called with a valid license key.

If the lpData argument is specified, it must point to an INITDATA structure which has been
initialized by setting the dwSize member to the size of the structure. All other structure members
should be set to zero. If the function is successful, then the INITDATA structure will be filled with
identifying information about the library.

Although it is only required that DnsInitialize be called once for the current process, it may be
called multiple times; however, each call must be matched by a corresponding call to
DnsUninitialize.

This function dynamically loads other system libraries and allocates thread local storage. If you are
calling the functions in this library from within another DLL, it is important that you do not call the
DnsInitialize or DnsUninitialize functions from the DllMain function because it can result in
deadlocks or access violation errors. If the DLL is linked with the C runtime library (CRT), it will
automatically call the constructors and destructors for static and global C++ objects and has the
same restrictions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also

DnsCloseHandle, DnsCreateHandle, DnsUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DnsMatchHostName Function

BOOL WINAPI DnsMatchHostName(
 HCLIENT hClient,
 LPCTSTR lpszHostName,
 LPCTSTR lpszHostMask
 BOOL bResolve
);

The DnsMatchHostName function matches a host name against one more strings that may
contain wildcards.

Parameters
hClient

Handle to the client session.

lpszHostName

A pointer to a string which specifies the host name or IP address to match.

lpszHostMask

A pointer to a string which specifies one or more values to match against the host name. The
asterisk character can be used to match any number of characters in the host name, and the
question mark can be used to match any single character. Multiple values may be specified by
separating them with a semicolon.

bResolve

A boolean value which specifies if the host name or IP address should be resolved when
matching the host against the mask string. If this parameter is non-zero, two checks against the
host mask string will be performed; once for the host name specified and once for its IP
address. If this parameter is zero, then the match is made only against the host name string
provided.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call DnsGetLastError.

Remarks
The DnsMatchHostName function provides a convenient way for an application to determine if a
given host name matches one or more mask strings which may contain wildcard characters. For
example, the host name could be "www.microsoft.com" and the host mask string could be
"*.microsoft.com". In this example, the function would return a non-zero value indicating the host
name matched the mask. However, if the mask string was "*.net" then the function would return
zero, indicating that there was no match. Multiple mask values can be combined by separating
them with a semicolon; for example, the mask "*.com;*.org" would match any host name in either
the .com or .org top-level domains.

If an internationalized domain name (IDN) is specified, it will be converted internally to an ASCII
string using Punycode encoding. The host mask will be matched against this encoded version of
the host name, not its Unicode version.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)

Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DnsGetAddress, DnsGetHostAddress, DnsGetHostName, DnsGetLocalAddress

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DnsNormalizeHostName Function

INT WINAPI DnsNormalizeHostName(
 LPCTSTR lpszHostName,
 LPTSTR lpszNormalized,
 INT nMaxLength
);

The DnsNormalizeHostName function returns the canonical form of a host name in the specified
buffer.

Parameters
lpszHostName

Pointer to the host name as a null-terminated string. This parameter cannot be a NULL pointer
or a zero length string.

lpszNormalized

Pointer to the string buffer that will contain the canonical form of the host name, including the
terminating null character. It is recommended that this buffer be at least 256 characters in size.
This parameter cannot be a NULL pointer.

nMaxLength

The maximum number of characters that can be copied to the lpszNormalized string buffer.
This parameter cannot be zero, and must include the terminating null character.

Return Value
If the function succeeds, the return value is the number of characters copied into the string buffer.
If the function fails, the return value is DNS_ERROR. To get extended error information, call
DnsGetLastError.

Remarks
The DnsNormalizeHostName function will remove all leading and trailing whitespace characters
from the host name and fold all upper-case characters to lower-case. If an internationalized
domain name (IDN) containing Unicode characters is passed to this function, it will be converted
to an ASCII compatible format for domain names.

If the Unicode version of this function is used, the host name will be converted from UTF-16 to
UTF-8 and then processed. If you are unsure if an internationalized domain name will be specified
as the host name, it is recommended that you use the Unicode version.

Although this function performs checks to ensure that the lpszHostName parameter is in the
correct format and does not contain any illegal characters or malformed encoding, it does not
validate the existence of the domain name. To check if the host name exists and has a valid IP
address, use the DnsGetHostAddress function.

It is recommended that you use this function if your application needs to store the host name, and
if accepts a host name as user input. It is not necessary to call this function prior to calling the
other DNS API functions that accept a host name as a parameter. Those functions already
normalize the host name and perform checks to ensure it is in the correct format.

If the lpszHostName parameter specifies a valid IPv4 or IPv6 address string instead of a host
name, this function will return a copy of that IP address in the buffer provided by the caller. This
allows the function to be used in cases where a user may input either a host name or IP address.
To determine if the IP address has a corresponding host name, use the DnsGetHostName method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DnsGetHostAddress, DnsGetHostName, DnsHostNameToUnicode

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DnsRegisterServer Function

INT WINAPI DnsRegisterServer(
 HCLIENT hClient,
 INT nServer,
 LPCTSTR lpszHostAddress,
 INT nPort
);

The DnsRegisterServer function registers a nameserver with the current client session. The
nameserver is used to resolve queries issued by the client, such as returning the IP address for a
given host name. At least one nameserver must be registered by the client before queries are
issued.

Parameters
hClient

Handle to the client session.

nServer

The index into the client nameserver table. This index, starting at 0, is used to specify which slot
in the client's nameserver table will be used to store the nameserver information.

lpszHostAddress

A pointer to a string that specifies the IP address of the nameserver to be registered. Note that
hostnames cannot be specified.

nPort

The port number that the specified nameserver is accepting queries on. This value may be set
to zero, in which case it will use the default port value.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
DNS_ERROR. To get extended error information, call DnsGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DnsCreateHandle, DnsGetServerAddress, DnsGetServerPort, DnsUnregisterServer

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DnsReset Function

INT WINAPI DnsReset(
 HCLIENT hClient
);

The DnsReset function resets the current state of the client session. The timeout and retry counts
are set to their default values, the local domain name is cleared and all registered servers are
removed from the client nameserver table.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
DNS_ERROR. To get extended error information, call DnsGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DnsRegisterServer, DnsSetLocalDomain, DnsSetRetryCount, DnsSetTimeout, DnsUnregisterServer

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DnsSetHostFile Function

INT WINAPI DnsSetHostFile(
 HCLIENT hClient,
 LPCTSTR lpszFileName
);

The DnsSetHostFile function specifies the name of an alternate file to use when resolving
hostnames and IP addresses. The host file is used as a database that maps an IP address to one or
more hostnames, and is used by the DnsGetHostAddress and DnsGetHostName functions. The
file is a plain text file, with each line in the file specifying a record, and each field separated by
spaces or tabs. The format of the file must be as follows:

ipaddress hostname [hostalias ...]

For example, one typical entry maps the name "localhost" to the local loopback IP address. This
would be entered as:

127.0.0.1 localhost

The hash character (#) may be used to specify a comment in the file, and all characters after it are
ignored up to the end of the line. Blank lines are ignored, as are any lines which do not follow the
required format.

Parameters
hClient

Handle to the client session.

lpszFileName

Pointer to a string that specifies the name of the file. If the parameter is NULL, then the current
host file is cleared from the cache and only the default host file will be used to resolve
hostnames and addresses.

Return Value
If the function succeeds, the return value is the number of entries in the host file. A return value of
DNS_ERROR indicates failure. To get extended error information, call DnsGetLastError.

Remarks
This function loads the file into memory allocated for the current thread. If the contents of the file
have changed after the function has been called, those changes will not be reflected when
resolving hostnames or addresses. To reload the host file from disk, call this function again with
the same file name. To remove the alternate host file from memory, specify a NULL pointer as the
parameter.

If a host file has been specified, it is processed before the default host file when resolving a
hostname into an IP address, or an IP address into a hostname. If the host name or address is not
found, or no host file has been specified, a nameserver lookup is performed.

To determine if an alternate host file has been specified, use the DnsGetHostFile function. A
return value of zero indicates that no alternate host file has been cached for the current thread.

A system may have a default host file, which is used to resolve hostnames before performing a
nameserver lookup. To determine the name of this file, use the DnsGetDefaultHostFile function.
It is not necessary to specify this default host file, since it is always used to resolve host names and
addresses.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DnsGetDefaultHostFile, DnsGetHostAddress, DnsGetHostFile, DnsGetHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DnsSetLastError Function

VOID WINAPI DnsSetLastError(
 DWORD dwErrorCode
);

The DnsSetLastError function sets the error code for the current thread. This function is typically
used to clear the last error by passing a value of zero as the parameter.

Parameters
dwErrorCode

Specifies the error code for the current thread. A value of zero clears the last error code.

Return Value
None.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. Most functions will
set the last error code value when they fail; a few functions set it when they succeed. Function
failure is typically indicated by a return value such as FALSE, NULL, INVALID_CLIENT or
DNS_ERROR. Those functions which call DnsSetLastError when they succeed are noted on the
function reference page.

Applications can retrieve the value saved by this function by using the DnsGetLastError function.
The use of DnsGetLastError is optional; an application can call the function to determine the
specific reason for a function failure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib

See Also
DnsGetErrorString, DnsGetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DnsSetLocalDomain Function

INT WINAPI DnsSetLocalDomain(
 HCLIENT hClient,
 LPCTSTR lpszDomain
);

Parameters
hClient

Handle to the client session.

lpszDomain

Pointer to the string which contains the local domain name. This is used as a default value when
a query does not explicitly specify a domain name.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
DNS_ERROR. To get extended error information, call DnsGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DnsGetLocalDomain, DnsGetRetryCount, DnsGetTimeout, DnsReset, DnsSetRetryCount,
DnsSetTimeout

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DnsSetResolverOptions Function

DWORD WINAPI DnsSetResolverOptions(
 HCLIENT hClient,
 DWORD dwOptions
);

The DnsSetResolverOptions function changes the resolver options for the specified client
session.

Parameters
hClient

Handle to the client session.

dwOptions

An unsigned integer that specifies one or more resolver options. This parameter is constructed
by using a bitwise operator with any of the following values:

Constant Description

DNS_OPTION_NONE No additional resolver options specified. This is the
default value, and it is recommended that most
applications do not specify additional options unless
the implications of doing so are understood.

DNS_OPTION_PROMOTE Promotes the server that successfully completed the
last query to the first server that will be used to
resolve subsequent queries. This option can improve
performance in some cases where one or more of
the registered servers are non-responsive. This
option takes precedence over the
DNS_OPTION_ROTATE option.

DNS_OPTION_ROTATE Enables a round-robin selection of nameservers
when performing queries. Normally each nameserver
is queried in the same order. This option rotates the
available nameservers so a different server is used
with each query.

DNS_OPTION_AUTHONLY Require the answer from the nameserver to be
authoritative, not from the server's cache. This option
is included for future expansion as most servers do
not support this feature and will ignore it.

DNS_OPTION_PRIMARY Queries are only accepted from the primary
nameserver. This option is included for future
expansion as most servers do not support this
feature and will ignore it.

DNS_OPTION_NORECURSE Disable the sending of recursive queries to the
nameserver. Specifying this option will disable the bit
in the DNS request header that specifies recursion is
desired.

DNS_OPTION_NOSEARCH Disable additional queries of higher domains in the

search list if the host name cannot be resolved. If this
option is specified, and the host name cannot be
resolved using the local domain name an error is
returned immediately. This option is ignored if no
local domain has been specified or if the
DNS_OPTION_NOSUFFIX option has been specified.

DNS_OPTION_NOSUFFIX Disable additional queries using the local domain
name if the host name is not a fully qualified domain
name and cannot be resolved. This option is ignored
if no local domain has been specified.

DNS_OPTION_NONAMECHECK Disable checking the host name for invalid
characters, such as the underscore and control
characters. By default, host names are checked to
ensure they're valid before submitting a query to the
nameserver.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call DnsGetLastError.

Remarks
The DnsSetResolverOptions function changes the resolver options for the specified client
session, modifying how nameserver queries are processed. It is recommended that most
applications do not specify any resolver options and use the default behavior. Specifying these
options without understanding how they can affect standard queries can result in unexpected
failures. In particular, caution should be used when specifying the DNS_OPTION_NORECURSE and
DNS_OPTION_NOSEARCH options as they change the normal process of resolving a host name.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib

See Also
DnsCreateHandle, DnsGetResolverOptions

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DnsSetRetryCount Function

INT WINAPI DnsSetRetryCount(
 HCLIENT hClient,
 INT nRetries
);

The DnsSetRetryCount function sets the number of attempts that the client will make attempting
to resolve a query. When used in conjunction with the DnsSetTimeout function, it determines the
total amount of time the client will spend attempting to resolve a query.

Parameters
hClient

Handle to the client session.

nRetries

The number of attempts the client will make, per nameserver, to resolve a query.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
DNS_ERROR. To get extended error information, call DnsGetLastError.

Remarks
The retry count determines the amount of time the client will wait for a response from each query,
the effective amount of time the client will wait increases with each nameserver and the total
number of retries specified. For example, two nameservers registered with the client, with a default
of 4 retries per nameserver and a timeout value of 10 seconds, would cause the client to wait a
total of 80 seconds until it returns an error indicating that it was unable to resolve the query.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DnsGetRetryCount, DnsGetTimeout, DnsSetTimeout

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DnsSetTimeout Function

INT WINAPI DnsSetTimeout(
 HCLIENT hClient,
 INT nTimeout
);

The DnsSetTimeout function sets the number of seconds that the client will wait for a response
from a nameserver. The timeout value is used each time a server in the client's nameserver table is
queried. When used in conjunction with the DnsSetRetryCount function, it determines the total
amount of time the client will spend attempting to resolve a query.

Parameters
hClient

Handle to the client session.

nTimeout

The number of seconds until the client times out waiting for a response from a nameserver.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
DNS_ERROR. To get extended error information, call DnsGetLastError.

Remarks
The timeout value determines the amount of time the client will wait for a response from each
query, the effective amount of time the client will wait increases with each nameserver and the
total number of retries specified. For example, with two nameservers registered with the client,
with a default of 4 retries per nameserver and a timeout value of 10 seconds, would cause the
client to wait a total of 80 seconds until it returns an error indicating that it was unable to resolve
the query.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib

See Also
DnsGetRetryCount, DnsGetTimeout, DnsSetRetryCount

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DnsUninitialize Function

VOID WINAPI DnsUninitialize();

The DnsUninitialize function terminates the use of the library.

Parameters
There are no parameters.

Return Value
None.

Remarks
An application is required to perform a successful DnsInitialize call before it can call any of the
other the library functions. When it has completed the use of library, the application must call
DnsUninitialize to allow the library to free any resources allocated on behalf of the process. Any
pending blocking or asynchronous calls in this process are canceled without posting any
notification messages, and all sockets that were opened by the process are closed.

There must be a call to DnsUninitialize for every successful call to DnsInitialize made by a
process. In a multithreaded environment, operations for all threads in the client are terminated.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DnsInitialize, DnsCloseHandle, DnsCreateHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DnsUnregisterServer Function

INT WINAPI DnsUnregisterServer(
 HCLIENT hClient,
 INT nServer
);

The DnsUnregisterServer function removes the specified nameserver information from the client.
Unregistering a server prevents the client from using that server to satisfy subsequent DNS
queries.

Parameters
hClient

Handle to the client session.

nServer

The index into the client's nameserver table. This index is the same value that is passed to the
DnsRegisterServer function when the nameserver is registered.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
DNS_ERROR. To get extended error information, call DnsGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csdnsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DnsGetServerAddress, DnsGetServerPort, DnsRegisterServer, DnsReset

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Domain Name Service Data Structures

HOSTENT
INITDATA
INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HOSTENT Structure

This structure is used by the DnsGetHostByAddress and DnsGetHostByName functions to
return information about a specified host. The application must never attempt to modify this
structure or to free any of its members. There is no Unicode version of this structure, string
pointers will always specify ANSI strings, even if the application is compiled to use Unicode.

Only one copy of this structure is allocated per thread, so the application should copy any
information it needs before issuing any other function calls. This is the same data structure used by
the Windows Sockets API.

typedef struct _HOSTENT
{
 char * h_name;
 char ** h_aliases;
 short h_addrtype;
 short h_length;
 char ** h_addr_list;
} HOSTENT, *LPHOSTENT;

Members
h_name

The fully qualified domain name (FQDN) that caused the nameserver server to return a reply.

h_aliases

A NULL-terminated array of alternate names.

h_addrtype

The type of address being returned.

h_length

The length, in bytes, of each address.

h_addr_list

A NULL-terminated list of addresses for the host. Addresses are returned in network byte order.
The macro h_addr is defined to be h_addr_list[0] for compatibility with older software.

Remarks
This structure is intended to be used with legacy application code which uses a HOSTENT
structure and should not be used with new applications. You cannot use this structure to obtain
information for a host which is assigned an IPv6 address. Applications should use the
DnsGetHostAddress and DnsGetHostName functions which support both IPv4 and IPv6
addresses.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include winsock2.h.

See Also
DnsGetHostAddress, DnsGetHostByAddress, DnsGetHostByName, DnsGetHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 INITDATA Structure

This structure contains information about the SocketTools library when the initialization function
returns.

typedef struct _INITDATA
{
 DWORD dwSize;
 DWORD dwVersionMajor;
 DWORD dwVersionMinor;
 DWORD dwVersionBuild;
 DWORD dwOptions;
 DWORD_PTR dwReserved1;
 DWORD_PTR dwReserved2;
 TCHAR szDescription[128];
} INITDATA, *LPINITDATA;

Members
dwSize

Size of this structure. This structure member must be set to the size of the structure prior to
calling the initialization function. Failure to do so will cause the function to fail.

dwVersionMajor

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the major version number for the library.

dwVersionMinor

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the minor version number for the library.

dwVersionBuild

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the build number for the library.

dwOptions

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

dwReserved1

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

dwReserved2

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

szDescription

A null terminated string which describes the library.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 INTERNET_ADDRESS Structure

This structure represents a numeric IPv4 or IPv6 address in network byte order.

typedef struct _INTERNET_ADDRESS
{
 INT ipFamily;
 BYTE ipNumber[16];
} INTERNET_ADDRESS, *LPINTERNET_ADDRESS;

Members
ipFamily

An integer which identifies the type of IP address. It will be one of the following values:

Constant Description

INET_ADDRESS_UNKNOWN The address has not been specified or the bytes in the
ipNumber array does not represent a valid address.
Functions which populate this structure will use this value
to indicate that the address cannot be determined.

INET_ADDRESS_IPV4 Specifies that the address is in IPv4 format. The first four
bytes of the ipNumber array are significant and contains
the IP address. The remaining bytes are not significant
and an application should not depend on them having
any particular value, including zero.

INET_ADDRESS_IPV6 Specifies that the address is in IPv6 format. All bytes in
the ipNumber array are significant. Note that it is
possible for an IPv6 address to actually represent an IPv4
address. This is indicated by the first 10 bytes of the
address being zero.

ipNumber

A byte array which contains the numeric form of the IP address. This array is large enough to
store both IPv4 (32 bit) and IPv6 (128 bit) addresses. The values are stored in network byte
order.

Remarks
The INTERNET_ADDRESS structure is used by some functions to represent an Internet address in
a binary format that is compatible with both IPv4 and IPv6 addresses. Applications that use this
structure should consider it to be opaque, and should not modify the contents of the structure
directly.

For compatibility with legacy applications that expect an IP address to be 32 bits and stored in an
unsigned integer, you can copy the first four bytes of the ipNumber array using the
CopyMemory function or equivalent. Note that if this is done, your application should always
check the ipFamily member first to make sure that it is actually an IPv4 address.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Domain Name Service Constants

Value Constant Description

0 DNS_RECORD_NONE No record type

1 DNS_RECORD_ADDRESS Host address

2 DNS_RECORD_NS Authoritative nameserver

5 DNS_RECORD_CNAME Canonical name (alias)

6 DNS_RECORD_SOA Start of Authority

11 DNS_RECORD_WKS Well known services

12 DNS_RECORD_PTR Domain name

13 DNS_RECORD_HINFO Host information

14 DNS_RECORD_MINFO Mailbox information

15 DNS_RECORD_MX Mail exchange host

16 DNS_RECORD_TXT Text strings

29 DNS_RECORD_LOC Location information

100 DNS_RECORD_UINFO User information

101 DNS_RECORD_UID User ID

102 DNS_RECORD_GID Group ID

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Encoding and Compression Library

Encode and decode files using standard algorithms such as base64, uuencode and quoted-
printable. The library can also be used to compress and expand files, as well as encrypt or decrypt
file data using AES encryption.

Reference

Functions

Library Information

File Name CSNCDV11.DLL

Version 11.0.2180.1635

LibID FADF1E51-9CCE-489E-AF00-B81A5EC77CD7

Import Library CSNCDV11.LIB

Dependencies None

Standards RFC 1738, RFC 1951, RFC 2045

Overview
The Encoding and Compression library provides functions for encoding and decoding binary files,
typically attachments to email messages. The process of encoding converts the contents of a
binary file to printable 7-bit ASCII text. Decoding reverses the process, converting a previously
encoded text file back into a binary file.

There are two primary types of encoding methods used with various Internet applications: base64
and uucode. The base64 algorithm is most commonly used with email attachments, and is often
referred to as MIME encoding since this is the encoding method specified in the MIME standards
document. The uucode algorithm (so called because the programs to perform the encoding were
called uuencode and uudecode) is often used when attaching binary files to Usenet newsgroup
posts. The library also supports an alternate encoding format called yEnc which is also widely used
to attach files to Usenet posts.

In addition to encoding and decoding data files, this library includes functions to compress and
expand data, as well as encrypt and decrypt files using 256-bit AES encryption.

Requirements
The SocketTools Library Edition libraries are compatible with any programming language which
supports calling functions exported from a standard dynamic link library (DLL). If you are using
Visual C++ 6.0 it is required that you have Service Pack 6 (SP6) installed. You should install all
updates for your development tools and have the current Windows SDK installed. The minimum
recommended version of Visual Studio is Visual Studio 2010.

This library is supported on Windows 7, Windows Server 2008 R2 and later versions of the desktop
and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1) installed as
a minimum requirement. It is recommended that you install the current service pack and all critical
updates available for your version of the operating system.

This product includes both 32-bit and 64-bit libraries. Native 64-bit CPU support requires the 64-
bit version of Windows 7 or later versions of the Windows operating system.

Distribution
When you distribute your application that uses this library, it is recommended that you install the
file in the same folder as your application executable. If you install the library into a shared location
on the system, it is important that you distribute the correct version for the target platform and it
should be registered as a shared DLL. This is a standard Windows dynamic link library, not an
ActiveX component, and does not require COM registration.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Encoding and Compression Functions

Function Description

AesDecryptBuffer Decrypt a buffer previously encrypted using the AesEncryptBuffer function

AesDecryptFile Decrypt a file previously encrypted using the strong>AesEncryptFile function

AesDecryptString Decrypt a string previously encrypted using the AesEncryptString function

AesEncryptBuffer Encrypt a memory buffer using 256-bit AES encryption

AesEncryptFile Encrypt the contents of a file using 256-bit AES encryption

AesEncryptString Encrypt a null-terminated string using 256-bit AES encryption

CompressBuffer Compress the contents of the specified buffer

CompressFile Compress the contents of the specified file

CompressFileEx Compress the contents of the specified file with additional options

DecodeBuffer Decode an encoded string, storing the result in the specified buffer

DecodeFile Decode the contents of a file using the specified decoding method

EncodeBuffer Encode the contents of a buffer using the specified encoding method

EncodeFile Encode the contents of a file using the specified encoding method

ExpandBuffer Expand the contents of a previously compressed buffer

ExpandFile Expand the contents of a previously compressed file

ExpandFileEx Expand the contents of a previously compressed file with additional options

GetMessageDigest Compute a message digest for a buffer, string or data file

IsUnicodeText Determine if a text buffer contains valid Unicode characters

UnicodeDecodeText Decode UTF-8 encoded text and return a localized string

UnicodeEncodeText Encode a text buffer and return a UTF-8 encoded string

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 AesDecryptBuffer Function

BOOL WINAPI AesDecryptBuffer(
 LPCTSTR lpszPassword,
 LPVOID lpvInputBuffer,
 DWORD dwInputSize
 LPVOID lpvOutputBuffer,
 LPDWORD lpdwOutputSize
);

The AesDecryptBuffer function decrypts the contents of a memory buffer.

Parameters
lpszPassword

A pointer to a null terminated string of characters that will be used to generate the decryption
key. This parameter may be NULL or a zero-length string, in which case a default internal hash
value is used to decrypt the data. Password strings that exceed 215 characters will be truncated.

lpvInputBuffer

A pointer to the buffer which contains the data to be decrypted.

dwInputSize

The number of bytes in the input buffer. This value must be greater than zero.

lpvOutputBuffer

A pointer to the buffer which will contain the decrypted data when the function returns. This
memory must be allocated by the application and be large enough to contain all of the
decrypted data. If the output buffer is not large enough, the function will fail. This parameter
cannot be NULL.

lpdwOutputSize

A pointer to the number of bytes that may be copied into the output buffer. This parameter
must be initialized to a non-zero value. When the function returns, the actual number of bytes
of decrypted data is returned in this parameter. This parameter cannot be NULL.

Return Value
A non-zero value is returned if the data was successfully decrypted. A zero value indicates that the
data could not be decrypted. To get extended error information, call GetLastError.

Remarks
The AesDecryptBuffer function will decrypt a block of memory using a 256-bit AES (Advanced
Encryption Standard) algorithm and returns a copy of the decrypted data to the caller. The
password (or passphrase) provided by the caller is used to generate a SHA-256 hash value which
is used as part of the decryption process. The lpszPassword value must be identical to the value
used to encrypt the data using the AesEncryptBuffer function.

Due to how the SHA-256 hash is generated, this function cannot be used to decrypt data that was
encrypted using another third-party library. It can only be used to decrypt data that was previously
encrypted using AesEncryptBuffer.

If you wish to decrypt the contents of a file, use the AesDecryptFile function.

This function uses the Microsoft CryptoAPI and the RSA AES cryptographic provider. This provider
may not be available in some languages, countries or regions. The availability of this provider may
also be constrained by cryptography export restrictions imposed by the United States or other

countries. If the required cryptographic provider is not available, the function will fail.

Example
BOOL bIsDecrypted = FALSE;
DWORD dwOutputSize = MAX_BUFFER_SIZE;
BYTE *lpOutputBuffer = (BYTE *)LocalAlloc(LPTR, dwOutputSize);

if (lpOutputBuffer != NULL)
{
 bIsDecrypted = AesDecryptBuffer(lpszPassword,
 lpInputBuffer,
 dwInputSize,
 lpOutputBuffer,
 &dwOutputSize);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csncdv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AesDecryptFile, AesDecryptString, AesEncryptBuffer, CompressBuffer

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 AesDecryptFile Function

BOOL WINAPI AesDecryptFile(
 LPCTSTR lpszPassword,
 LPCTSTR lpszInputFile,
 LPCTSTR lpszOutputFile
);

The AesDecryptFile function decrypts the contents of a file.

Parameters
lpszPassword

A pointer to a null terminated string of characters that will be used to generate the decryption
key. This parameter may be NULL or a zero-length string, in which case a default internal hash
value is used to decrypt the data. Password strings that exceed 215 characters will be truncated.

lpszInputFile

A pointer to a null terminated string which specifies the name of the file to be decrypted. The
file must exist, and it must be a regular file that can be opened for reading by the current
process. An error will be returned if a character device, such as CON: is specified as the file
name.

lpszOutputFile

A pointer to a null terminated string which specifies the name of the file that will contain the
decrypted data. If the file exists, it will be overwritten. It must be a regular file that can be
opened for writing by the current process. An error will be returned if a character device, such
as CON: is specified as the file name.

Return Value
A non-zero value is returned if the string was successfully encrypted. A zero value indicates that
the string could not be encrypted. To get extended error information, call GetLastError.

Remarks
The AesDecryptFile function will decrypt the contents of a file using a 256-bit AES (Advanced
Encryption Standard) algorithm and stores the decrypted data in the specified output file. The
password (or passphrase) provided by the caller is used to generate a SHA-256 hash value which
is used as part of the decryption process. The lpszPassword value must be identical to the value
used to encrypt the data using the AesEncryptFile function.

Due to how the SHA-256 hash is generated, this function cannot be used to decrypt files that were
encrypted using another third-party library. It can only be used to decrypt data that was previously
encrypted using AesEncryptFile.

A temporary file is created during the decryption process and the output file is created or
overwritten only if the input file could be successfully decrypted. If the decryption fails, no output
file will be created.

If you wish to decrypt the contents of a memory buffer or string, use the AesDecryptBuffer or
AesDecryptString functions.

This function uses the Microsoft CryptoAPI and the RSA AES cryptographic provider. This provider
may not be available in some languages, countries or regions. The availability of this provider may
also be constrained by cryptography export restrictions imposed by the United States or other
countries. If the required cryptographic provider is not available, the function will fail.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csncdv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AesDecryptBuffer, AesDecryptString, AesEncryptFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 AesDecryptString Function

BOOL WINAPI AesDecryptString(
 LPCTSTR lpszPassword,
 LPCTSTR lpszInputString,
 LPCTSTR lpszOutputString,
 LONG nMaxLength
);

The AesDecryptString function decrypts the contents of a string.

Parameters
lpszPassword

A pointer to a null terminated string of characters that will be used to generate the decryption
key. This parameter may be NULL or a zero-length string, in which case a default internal hash
value is used to decrypt the data. Password strings that exceed 215 characters will be truncated.

lpszInputString

A pointer to a null terminated string which contains the data to be decrypted. The encrypted
input data must be base64 encoded and identical to the encrypted string returned by the
AesEncryptString function. If this parameter is NULL or points to an empty string the function
will fail.

lpszOutputString

A pointer to the buffer which will contain the decrypted string data. This parameter cannot be
NULL.

nMaxLength

The maximum number of characters that can be copied to the output string buffer. The output
buffer must be large enough to store the complete decrypted string and is terminated with a
null character. This value must be greater than zero. If the output string buffer is not large
enough, the function will fail.

Return Value
A non-zero value is returned if the string was successfully encrypted. A zero value indicates that
the string could not be decrypted. To get extended error information, call GetLastError.

Remarks
The AesDecryptString function will decrypt a string using a 256-bit AES (Advanced Encryption
Standard) algorithm and returns a copy of the decrypted string o the caller. The password (or
passphrase) provided by the caller is used to generate a SHA-256 hash value which is used as part
of the decryption process. The lpszPassword value must be identical to the value used to encrypt
the data using the AesEncryptString function.

Due to how the SHA-256 hash is generated, this function cannot be used to decrypt strings that
were encrypted using another third-party library. It can only be used to decrypt strings that were
previously encrypted using AesEncryptString.

If you wish to decrypt the contents of a file, use the AesDecryptFile function.

This function uses the Microsoft CryptoAPI and the RSA AES cryptographic provider. This provider
may not be available in some languages, countries or regions. The availability of this provider may
also be constrained by cryptography export restrictions imposed by the United States or other
countries. If the required cryptographic provider is not available, the function will fail.

Example
BOOL bIsDecrypted = FALSE;
LPCTSTR lpszPassword = _T("NFr-E{Ki3_1w0iV+LI@z");
TCHAR szDecryptedText[MAX_STRING_LENGTH];

bIsDecrypted = AesDecryptString(lpszPassword,
 szEncryptedText,
 szDecryptedText,
 MAX_STRING_LENGTH);

if (bIsDecrypted)
{
 _tprintf(_T("The decrypted string is \"%s\"\n"), szDecryptedText);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csncdv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AesDecryptBuffer, AesDecryptFile, AesEncryptString

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 AesEncryptBuffer Function

BOOL WINAPI AesEncryptBuffer(
 LPCTSTR lpszPassword,
 LPVOID lpvInputBuffer,
 DWORD dwInputSize
 LPVOID lpvOutputBuffer,
 LPDWORD lpdwOutputSize
);

The AesEncryptBuffer function encrypts the contents of a memory buffer.

Parameters
lpszPassword

A pointer to a null terminated string of characters that will be used to generate the encryption
key. Passwords are case sensitive and must match exactly when decrypting data that was
previously encrypted using this function. This parameter may be NULL or a zero-length string, in
which case a default internal hash value is used. Password strings that exceed 215 characters will
be truncated.

lpvInputBuffer

A pointer to the buffer which contains the data to be encrypted.

dwInputSize

The number of bytes in the input buffer. This value must be greater than zero.

lpvOutputBuffer

A pointer to the buffer which will contain the encrypted data when the function returns. This
memory must be allocated by the application and be large enough to contain all of the
encrypted data. The amount encrypted data returned will always be larger than the amount of
data specified by dwInputSize. If the output buffer is not large enough, the function will fail. This
parameter cannot be NULL.

lpdwOutputSize

A pointer to the number of bytes that may be copied into the output buffer. This parameter
must be initialized to a non-zero value. When the function returns, the actual number of bytes
of encrypted data is returned in this parameter. This parameter cannot be NULL.

Return Value
A non-zero value is returned if the data was successfully encrypted. A zero value indicates that the
data could not be encrypted. To get extended error information, call GetLastError.

Remarks
The AesEncryptBuffer function will encrypt a block of memory using a 256-bit AES (Advanced
Encryption Standard) algorithm and returns a copy of the encrypted data to the caller. The
password (or passphrase) provided by the caller is used to generate a SHA-256 hash value which
is used as part of the encryption process. The identical password is required to decrypt the data
using the AesDecryptBuffer function.

It is recommended that most applications specify a password value. If the lpszPassword parameter
is NULL or specifies a zero-length string, a default internal hash value is used. This means that any
other application which uses a NULL password value will be able to decrypt the data. If the
Unicode version of this function is called, the lpszPassword value will be encoded using UTF-8

prior to the hash value being generated.

Due to how the SHA-256 hash is generated, the encrypted data cannot be decrypted using
another third-party library with the same password value. It can only be decrypted using the
AesDecryptBuffer function.

The amount of encrypted data returned by this function will always be somewhat larger than
original unencrypted data. If your application dynamically allocates a block of memory to store the
encrypted data, provide a maximum buffer size that is at least several hundred bytes larger than
the unencrypted data. If the output buffer provided is not large enough, the function will fail and
the GetLastError function will return ERROR_INSUFFICIENT_BUFFER.

The encrypted data returned by this function can contain embedded nulls and should be typically
handled as unsigned char (byte) values. If you wish to encrypt strings and store the encrypted
values, use the AesEncryptString function. It will perform the same 256-bit AES encryption, but
return the encrypted data as a base64 encoded string rather than binary data.

If your application is also using the CompressBuffer function to compress the data, it is
recommended that you call CompressBuffer before calling AesEncryptBuffer. You will typically
achieve a better compression rate on unencrypted data than than attempting to compress data
which has been encrypted with this function.

If you wish to encrypt the contents of a file, use the AesEncryptFile function.

This function uses the Microsoft CryptoAPI and the RSA AES cryptographic provider. This provider
may not be available in some languages, countries or regions. The availability of this provider may
also be constrained by cryptography export restrictions imposed by the United States or other
countries. If the required cryptographic provider is not available, the function will fail.

Example
BOOL bIsEncrypted = FALSE;
DWORD dwOutputSize = MAX_BUFFER_SIZE;
BYTE *lpOutputBuffer = (BYTE *)LocalAlloc(LPTR, dwOutputSize);

if (lpOutputBuffer != NULL)
{
 bIsEncrypted = AesEncryptBuffer(lpszPassword,
 lpInputBuffer,
 dwInputSize,
 lpOutputBuffer,
 &dwOutputSize);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csncdv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AesDecryptBuffer, AesEncryptFile, AesEncryptString, CompressBuffer

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 AesEncryptFile Function

BOOL WINAPI AesEncryptFile(
 LPCTSTR lpszPassword,
 LPCTSTR lpszInputFile,
 LPCTSTR lpszOutputFile
);

The AesEncryptFile function encrypts the contents of a file.

Parameters
lpszPassword

A pointer to a null terminated string of characters that will be used to generate the encryption
key. Passwords are case sensitive and must match exactly when decrypting data that was
previously encrypted using this function. This parameter may be NULL or a zero-length string, in
which case a default internal hash value is used. Password strings that exceed 215 characters will
be truncated.

lpszInputFile

A pointer to a null terminated string which specifies the name of the file to be encrypted. The
file must exist, and it must be a regular file that can be opened for reading by the current
process. An error will be returned if a character device, such as CON: is specified as the file
name.

lpszOutputFile

A pointer to a null terminated string which specifies the name of the file that will contain the
encrypted data. If the file exists, it will be overwritten. It must be a regular file that can be
opened for writing by the current process. An error will be returned if a character device, such
as CON: is specified as the file name.

Return Value
A non-zero value is returned if the string was successfully encrypted. A zero value indicates that
the string could not be encrypted. To get extended error information, call GetLastError.

Remarks
The AesEncryptFile function will encrypt the contents of a file using a 256-bit AES (Advanced
Encryption Standard) algorithm and stores the encrypted data in the specified output file. The
password (or passphrase) provided by the caller is used to generate a SHA-256 hash value which
is used as part of the encryption process. The identical password is required to decrypt the data
using the AesDecryptFile function.

It is recommended that most applications specify a password value. If the lpszPassword parameter
is NULL or specifies a zero-length string, a default internal hash value is used. This means that any
other application which uses a NULL password value will be able to decrypt the data. If the
Unicode version of this function is called, the lpszPassword value will be encoded using UTF-8
prior to the hash value being generated.

Due to how the SHA-256 hash is generated, the encrypted data cannot be decrypted using
another third-party library with the same password value. It can only be decrypted using the
AesDecryptFile function.

A temporary file is created during the encryption process and the output file is created or
overwritten only if the input file could be successfully encrypted. If the encryption fails, no output

file will be created.

The input file contents will always be processed as a binary data stream. If you use this function to
encrypt a text file, the output file will contain binary characters, not printable text. If you wish to
transfer or store the encrypted data as text, it should be encoded using the EncodeFile function
after calling AesEncryptFile.

If your application is also using the CompressFile function to compress the data, it is
recommended that you call CompressFile before calling AesEncryptFile. You will typically
achieve a better compression rate on unencrypted data than than attempting to compress data
which has been encrypted with this function.

If you wish to encrypt the contents of a memory buffer or string, use the AesEncryptBuffer or
AesEncryptString functions.

This function uses the Microsoft CryptoAPI and the RSA AES cryptographic provider. This provider
may not be available in some languages, countries or regions. The availability of this provider may
also be constrained by cryptography export restrictions imposed by the United States or other
countries. If the required cryptographic provider is not available, the function will fail.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csncdv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AesDecryptFile, AesEncryptBuffer, AesEncryptString, CompressFile, EncodeFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 AesEncryptString Function

BOOL WINAPI AesEncryptString(
 LPCTSTR lpszPassword,
 LPCTSTR lpszInputString,
 LONG nInputLength
 LPCTSTR lpszOutputString,
 LONG nMaxLength
);

The AesEncryptString function encrypts the contents of a string.

Parameters
lpszPassword

A pointer to a null terminated string of characters that will be used to generate the encryption
key. Passwords are case sensitive and must match exactly when decrypting data that was
previously encrypted using this function. This parameter may be NULL or a zero-length string, in
which case a default internal hash value is used. Password strings that exceed 215 characters will
be truncated.

lpszInputString

A pointer to a null terminated string which contains the text to be encrypted. If the Unicode
version of this function is called, the string is automatically UTF-8 encoded prior to being
encrypted.

nInputLength

The number of characters in the input string which will be encrypted. If this value is -1, the
length of the input string is determined automatically by counting the number of of characters
up to the terminating null byte. Note that with Unicode strings, this value must represent the
number of characters in the string, not the number of bytes allocated for the string.

lpszOutputString

A pointer to the buffer which will contain a base64 encoded encrypted string when the function
returns. This memory must be allocated by the application and be large enough to contain all of
the encrypted data. The amount encrypted data returned will always be larger than the amount
of data specified by nInputLength. If the output string buffer is not large enough, the function
will fail. This parameter cannot be NULL.

nMaxLength

The maximum number of characters that can be copied to the output string buffer. The output
buffer must be large enough to store the complete encrypted string which is encoded using
base64 and terminated with a null character. This value must be greater than zero. If the output
string buffer is not large enough, the function will fail.

Return Value
A non-zero value is returned if the string was successfully encrypted. A zero value indicates that
the string could not be encrypted. To get extended error information, call GetLastError.

Remarks
The AesEncryptString function will encrypt a string using a 256-bit AES (Advanced Encryption
Standard) algorithm and returns a copy of the encrypted data as a base64 encoded string to the
caller. The password (or passphrase) provided by the caller is used to generate a SHA-256 hash
value which is used as part of the encryption process. The identical password is required to

decrypt the data using the AesDecryptString function.

It is recommended that most applications specify a password value. If the lpszPassword parameter
is NULL or specifies a zero-length string, a default internal hash value is used. This means that any
other application which uses a NULL password value will be able to decrypt the data. If the
Unicode version of this function is called, the lpszPassword value will be encoded using UTF-8
prior to the hash value being generated.

Due to how the SHA-256 hash is generated, the encrypted data cannot be decrypted using
another third-party library with the same password value. It can only be decrypted using the
AesDecryptString function.

The amount of encrypted data returned by this function will always be larger than original
unencrypted data. If your application dynamically allocates a block of memory to store the
encrypted string, provide a maximum output string size that is at least several hundred bytes
larger than the unencrypted data. If the output string is not large enough, the function will fail and
the GetLastError function will return ERROR_INSUFFICIENT_BUFFER.

The string provided to this function cannot contain embedded nulls and and should not be used
to encrypt binary data. If you wish to encrypt binary data, use the AesEncryptBuffer function. It
will perform the same 256-bit AES encryption and return the encrypted data into an buffer
provided by the caller.

If you wish to encrypt the contents of a file, use the AesEncryptFile function.

This function uses the Microsoft CryptoAPI and the RSA AES cryptographic provider. This provider
may not be available in some languages, countries or regions. The availability of this provider may
also be constrained by cryptography export restrictions imposed by the United States or other
countries. If the required cryptographic provider is not available, the function will fail.

Example
BOOL bIsEncrypted = FALSE;
LPCTSTR lpszPassword = _T("NFr-E{Ki3_1w0iV+LI@z");
LPCTSTR lpszPlainText = _T("The quick brown fox jumped over the lazy dog.");
TCHAR szEncryptedText[MAX_STRING_LENGTH];

bIsEncrypted = AesEncryptString(lpszPassword,
 lpszPlainText,
 -1,
 szEncryptedText,
 MAX_STRING_LENGTH);

if (bIsEncrypted)
{
 _tprintf(_T("The encrypted string is \"%s\"\n"), szEncryptedText);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csncdv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
AesDecryptString, AesEncryptBuffer, AesEncryptFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CompressBuffer Function

BOOL WINAPI CompressBuffer(
 LPVOID lpvInputBuffer,
 DWORD cbInputBuffer
 LPVOID lpvOutputBuffer,
 LPDWORD lpcbOutputBuffer
);

The CompressBuffer function compresses the contents of the specified buffer.

Parameters
lpvInputBuffer

A pointer to the buffer which contains the data to be compressed.

cbInputBuffer

The number of bytes in the input buffer. This value must be greater than zero.

lpvOutputBuffer

A pointer to the buffer which will contain the compressed data. This parameter may be NULL,
which can be used to determine the size of the of the resulting compressed data prior to
allocating memory for it.

lpcbOutputBuffer

A pointer to the number of bytes that may be copied into the output buffer. If the
lpvOutputBuffer parameter is not NULL, this must be initialized to a non-zero value. When the
function returns, the actual number of bytes of compressed data is returned in this parameter.

Return Value
A non-zero value is returned if the data was successfully compressed. A zero value indicates that
the data could not be compressed.

Remarks
The compression ratio achieved by the CompressBuffer function depends on the type of data
that is being compressed. The compressed data can be expanded to its original contents by
calling the ExpandBuffer function.

Example
cbOutputBuffer = 0;
bResult = CompressBuffer(lpInputBuffer,
 cbInputBuffer,
 NULL,
 &cbOutputBuffer);

if (bResult)
{
 lpOutputBuffer = (LPBYTE)LocalAlloc(LPTR, cbOutputBuffer);
 bResult = CompressBuffer(lpInputBuffer,
 cbInputBuffer,
 lpOutputBuffer,
 &cbOutputBuffer);
}

Requirements

Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csncdv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CompressFile, DecodeFile, EncodeFile, ExpandBuffer, ExpandFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CompressFile Function

BOOL WINAPI CompressFile(
 LPCTSTR lpszInputFile,
 LPCTSTR lpszOutputFile
);

The CompressFile function compresses the contents of the specified file.

Parameters
lpszInputFile

A pointer to a string which specifies the name of the file to be compressed. The file must exist,
and it must be a regular file that can be opened for reading by the current process. An error will
be returned if a character device, such as CON: is specified as the file name.

lpszOutputFile

The name of the file that is to contain the compressed file data. If the file exists, it must be a
regular file that can be opened for writing by the current process and will be overwritten. If the
file does not exist, it will be created. An error will be returned if a character device, such as CON:
is specified as the file name.

Return Value
A non-zero value is returned if the file was successfully compressed. A zero value indicates that
the input file could not be read or that the output file could not be created.

Remarks
The compression ratio achieved by the CompressFile function depends on the type of file that is
being compressed. The compressed file is not stored in an archive format that is recognized by
third-party applications such as PKZip or WinZip.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csncdv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CompressFileEx, DecodeFile, EncodeFile, ExpandFile, ExpandFileEx

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CompressFileEx Function

BOOL WINAPI CompressFileEx(
 LPCTSTR lpszInputFile,
 LPCTSTR lpszOutputFile,
 DWORD dwCompressionType,
 DWORD dwCompressionLevel,
 LPVOID lpvHeaderBlock,
 DWORD dwHeaderLength
);

The CompressFileEx function compresses the contents of the specified file.

Parameters
lpszInputFile

A pointer to a string which specifies the name of the file to be compressed. The file must exist,
and it must be a regular file that can be opened for reading by the current process. An error will
be returned if a character device, such as CON: is specified as the file name.

lpszOutputFile

The name of the file that is to contain the compressed file data. If the file exists, it must be a
regular file that can be opened for writing by the current process and will be overwritten. If the
file does not exist, it will be created. An error will be returned if a character device, such as CON:
is specified as the file name.

dwCompressionType

A numeric value which determines the algorithm that will be used to compress the data. One of
the following values may be specified. By default, the Deflate algorithm is used.

Value Constant Description

1 COMPRESSION_TYPE_DEFLATE A compression algorithm
that combines LZ77
algorithm for creating
common substrings and
Huffman coding to
process the different
frequencies of byte
sequences in the data
stream. Deflate is widely
used by compression
software.

2 COMPRESSION_TYPE_BURROWSWHEELER A compression algorithm
that rearranges blocks of
data in sorted order and
then uses Huffman
coding to process
different frequencies of
data within the block.
Burrows-Wheeler
compression provides a
better compression ratio

than the Deflate
algorithm, however it
requires more resources
to perform the
compression.

dwCompressionLevel

A numeric value which specifies the compression level to use. A value of zero specifies that the
default compression level appropriate for the selected algorithm should be used, balancing
resource usage and the compression ratio of the data. A value of 1 specifies that the
compression should be performed using minimal memory resources, at the expense of the
compression ratio. The maximum value of 9 specifies that the algorithm should use more
memory to achieve the maximum compression ratio. It is recommended that most applications
use the default value of zero.

lpvHeaderBlock

A pointer to a block of uncompressed data that is written to the beginning of the output file. If
this parameter is NULL and the dwHeaderLength parameter is not zero, a null buffer of the
specified size is written to the file.

dwHeaderLength

The length of the data buffer to be written to beginning of the output file. If this value is zero,
the lpvHeaderBlock parameter is ignored and no header block is written.

Return Value
A non-zero value is returned if the file was successfully compressed. A zero value indicates that
the input file could not be read or that the output file could not be created.

Remarks
The compression ratio achieved by the CompressFile function depends on the type of file that is
being compressed. The compressed file is not stored in an archive format that is recognized by
third-party applications such as PKZip or WinZip.

The lpvHeaderBlock and dwHeaderLength parameters can be used to be write application-
defined data to the beginning of the file, commonly called a header block. Typically this is a fixed-
length structure which provides information to the application about the compressed file.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csncdv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CompressBuffer, CompressFile, DecodeFile, EncodeFile, ExpandBuffer, ExpandFile, ExpandFileEx

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DecodeBuffer Function

LONG WINAPI DecodeBuffer(
 LPCTSTR lpszInput,
 LPBYTE lpOutput,
 LONG cbOutput,
 DWORD dwOptions
);

The DecodeBuffer function decodes an encoded string, and stores the result in the specified
buffer.

Parameters
lpszInput

A pointer to a string which contains the base64 encoded text.

lpOutout

A pointer to a byte array buffer which is used to store the decoded data. It is recommended
that the buffer be as large as the length of the encoded string.

cbOutput

A long integer which specifies the maximum number of bytes which may be stored in the buffer.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

DATA_DECODE_BASE64 Decode a string that was created using the base64
encoding algorithm. This is the encoding method that
is used by most modern email client software. Note
that this option cannot be combined with other
decoding methods.

DATA_DECODE_QUOTED Decode a string that was created using the quoted-
printable encoding algorithm. Note that this option
cannot be combined with the other decoding
methods.

DATA_DECODE_URL Decode a string that was created using the URL
encoding algorithm. Note that this option cannot be
combined with the other decoding methods.

DATA_DECODE_UTF7 Decode a string that was created using the UTF-7
encoding algorithm. Note that this option cannot be
combined with the other decoding methods.

DATA_DECODE_UTF8 Decode a string that was created using the UTF-8
encoding algorithm. Note that this option cannot be
combined with the other decoding methods.

DATA_DECODE_COMPRESSED The data was compressed prior to being encoded,
and should be expanded after the decoding has
completed successfully. This option is ignored if the

encoding type is not base64. This should only be used
if it was specified when the data was encoded.

Return Value
If the function succeeds, it will return the number of bytes decoded and stored in the buffer. If the
function fails, it will return -1. Failure typically indicates that the encoded string was corrupted or
the buffer is not large enough to store the decoded data.

Remarks
The DecodeBuffer function is used to decode a block of data that was previously encoded with
the EncodeBuffer function. To decode the contents of a file, it is recommended that you use the
DecodeFile function instead.

If you specify either UTF-7 or UTF-8 encoding, the lpOutput parameter must point to a Unicode
string and the cbOutput parameter must specify the maximum number of characters, not bytes,
that can be copied into the string. The return value will be the number of Unicode characters, not
bytes, that were copied into the output buffer. The conversion is always performed using the
default system code page.

It is recommended that you use the UnicodeEncodeText function to convert a string to UTF-8
encoded text, and the UnicodeDecodeText function to convert UTF-8 encoded text to a UTF-16
or localized multi-byte string.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csncdv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DecodeFile, EncodeBuffer, EncodeFile, GetMessageDigest, IsUnicodeText, UnicodeDecodeText,
UnicodeEncodeText

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DecodeFile Function

BOOL WINAPI DecodeFile(
 LPCTSTR lpszInputFile,
 LPCTSTR lpszOutputFile,
 DWORD dwOptions,
 DWORD dwReserved
);

The DecodeFile function opens and decodes an encoded file, storing the contents in the specified
file.

Parameters
lpszInputFile

A pointer to a string which specifies the name of the file to be decoded. The file must exist, and
it must be a regular file that can be opened for reading by the current process. An error will be
returned if a character device, such as CON: is specified as the file name.

lpszOutputFile

The name of the file that is to contain the decoded file data. If the file exists, it must be a regular
file that can be opened for writing by the current process and will be overwritten. If the file does
not exist, it will be created. An error will be returned if a character device, such as CON: is
specified as the file name.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

FILE_DECODE_BASE64 Use the base64 algorithm for decoding the file. This is
the encoding method that is used by most modern
email client software. Note that this option cannot be
combined with other decoding methods.

FILE_DECODE_QUOTED Use the quoted-printable algorithm for decoding the
file. Note that this option cannot be combined with the
other decoding methods.

FILE_DECODE_UUCODE Use the uudecode algorithm for decoding the file. This
is a common encoding method used in UNIX systems
and older email client software. Note that this option
cannot be combined with other decoding methods.

FILE_DECODE_YENCODE Use the yEnc algorithm for decoding the file. Note that
this option cannot be combined with other decoding
methods.

FILE_DECODE_COMPRESSED The file was compressed prior to being encoded, and
should be expanded after the decoding has completed
successfully. This option should only be used if it was
specified when the file was encoded.

dwReserved

This parameter is reserved and should always be set to zero.

Return Value
A non-zero value is returned if the file was successfully decoded. A zero value indicates that the
file does not exist, the encoded file was damaged or the output file could not be created.

Remarks
The DecodeFile function decodes files that were previously encoded through a call to the
EncodeFile function or by a third-party application such as an email client. The option to expand
a previously compressed file requires that the function be able to create a temporary file on the
local system in the directory specified by the TEMP environment variable. This function can only
expand a file that was previously compressed with the EncodeFile or CompressFile functions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csncdv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CompressFile, EncodeFile, ExpandFile, GetMessageDigest

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 EncodeBuffer Function

LONG WINAPI EncodeBuffer(
 LPBYTE lpInput,
 LONG cbInput,
 LPTSTR lpszOutput,
 LONG cchOutput,
 DWORD dwOptions
);

The EncodeBuffer function encodes the contents of the specified byte array, converting the data
into printable text.

Parameters
lpInput

A pointer to a buffer that contains the data to be encoded.

cbInput

A long integer which specifies the number of characters in the buffer which should be encoded.

lpszOutput

A pointer to a string that will be used to store the encoded text. The length of the string must
be at least 33% larger than the number of bytes being encoded, and will be terminated with a
null byte.

cchOutput

The maximum number of characters that may be stored in the string buffer. If this value is too
small to store the encoded text, the function will fail.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

DATA_ENCODE_BASE64 Use the base64 algorithm for encoding the data. This
is the encoding method that is used by most modern
email client software. Note that this option cannot be
combined with other encoding methods.

DATA_ENCODE_QUOTED Use the quoted-printable algorithm for encoding the
data. Most printable characters are left as-is, with
control characters and 8-bit characters encoded as
their hexadecimal value. Note that this option cannot
be combined with the other encoding methods.

DATA_ENCODE_URL Use the URL encoding algorithm for encoding the
data. Letters and numbers are left as-is, with control
characters, most punctuation and 8-bit characters
encoded as their hexadecimal value. Note that this
option cannot be combined with the other encoding
methods.

DATA_ENCODE_UTF7 Encode the data using the Unicode Transformation
Format. This converts Unicode text into 7-bit

 characters. Note that this option cannot be combined
with the other encoding methods.

DATA_ENCODE_UTF8 Encode the data using the Unicode Transformation
Format. This converts Unicode text into 8-bit
characters. Note that this option cannot be combined
with the other encoding methods.

DATA_ENCODE_COMPRESSED The data should be compressed before it is encoded.
To restore the original data, it must be expanded
after it has been decoded. This option is ignored if
the encoding type is not base64.

DATA_ENCODE_LINEBREAK The encoded data should broken into multiple lines of
text if the resulting string is longer than 72 characters.
This option is ignored if the encoding type is not
base64 or quoted-printable. This option should be
specified if the encoded data is going to be included
in an email message.

Return Value
If the function succeeds, it will return the number of bytes encoded and stored in the string. If the
function fails, it will return -1. Failure typically indicates that the buffer is not large enough to store
the encoded data.

Remarks
The EncodeBuffer function is used to encode a block of data and store it in the specified string
buffer as printable text. To encode the contents of a file it is recommended that you use the
EncodeFile function instead.

A common use of this function is to use the Base64 algorithm to obscure a plain text string. This
technique is used by some Internet application protocols when passing authentication information
over a standard connection. Although it is not a secure method of encrypting data, it does prevent
a casual observer from reading the encoded text.

If you specify either UTF-7 or UTF-8 encoding, the lpInput parameter must point to a Unicode
string and the cbInput parameter must specify the number of characters, not bytes, that are to be
encoded. The conversion is always performed using the default system code page.

It is recommended that you use the UnicodeEncodeText function to convert a string to UTF-8
encoded text, and the UnicodeDecodeText function to convert UTF-8 encoded text to a UTF-16
or localized multi-byte string.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csncdv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DecodeBuffer, DecodeFile, EncodeFile, GetMessageDigest, IsUnicodeText, UnicodeDecodeText,
UnicodeEncodeText

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 EncodeFile Function

BOOL WINAPI EncodeFile(
 LPCTSTR lpszInputFile,
 LPCTSTR lpszOutputFile,
 DWORD dwOptions,
 DWORD dwReserved
);

The EncodeFile function opens and encodes a file, storing the contents as printable text in the
specified file.

Parameters
lpszInputFile

A pointer to a string which specifies the name of the file to be encoded. The file must exist, and
it must be a regular file that can be opened for reading by the current process. An error will be
returned if a character device, such as CON: is specified as the file name.

lpszOutputFile

The name of the file that is to contain the encoded file data. If the file exists, it must be a regular
file that can be opened for writing by the current process and will be overwritten. If the file does
not exist, it will be created. An error will be returned if a character device, such as CON: is
specified as the file name.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

FILE_ENCODE_BASE64 Use the base64 algorithm for encoding the file. This is
the encoding method that is used by most modern
email client software. Note that this option cannot be
combined with the other encoding methods.

FILE_ENCODE_UUCODE Use the uuencode algorithm for encoding the file. This
is a common encoding method used UNIX systems and
older email client software. Note that this option cannot
be combined with the other encoding methods.

FILE_ENCODE_QUOTED Use the quoted-printable algorithm for encoding the
file. Note that this option cannot be combined with the
other encoding methods.

FILE_ENCODE_YENCODE Use the yEnc algorithm for encoding the file. This is an
encoding method that is commonly used when posting
files to Usenet newsgroups. Note that this option
cannot be combined with other encoding methods.

FILE_ENCODE_COMPRESSED The file should be compressed before it is encoded. To
restore the original contents of the file, it must be
expanded after it has been decoded.

dwReserved

This parameter is reserved and should always be set to zero.

Return Value
A non-zero value is returned if the file was successfully encoded. A zero value indicates that the
input file does not exist or the output file could not be created.

Remarks
The EncodeFile function converts binary data files to a format that contains only printable ASCII
characters. The option to compress the file requires that the function be able to create a
temporary file on the local system in the directory specified by the TEMP environment variables. A
compressed file must be expanded with the DecodeFile or ExpandFile functions. The
compressed file is not stored in an archive format that is recognized by third-party applications
such as PKZip or WinZip.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csncdv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CompressFile, DecodeFile, ExpandFile, GetMessageDigest

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ExpandBuffer Function

BOOL WINAPI ExpandBuffer(
 LPVOIDlpvInputBuffer,
 DWORD cbInputBuffer
 LPVOIDlpvOutputBuffer,
 LPDWORD lpcbOutputBuffer
);

The ExpandBuffer function expands the contents of the previously compressed buffer.

Parameters
lpvInputBuffer

A pointer to the buffer which contains the compressed data.

cbInputBuffer

The number of bytes in the input buffer. This value must be greater than zero.

lpvOutputBuffer

A pointer to the buffer which will contain the expanded data. This parameter may be NULL,
which can be used to determine the size of the of the resulting expanded data prior to
allocating memory for it.

lpcbOutputBuffer

A pointer to the number of bytes that may be copied into the output buffer. If the
lpvOutputBuffer parameter is not NULL, this must be initialized to a non-zero value. When the
function returns, the actual number of bytes of expanded data is returned in this parameter.

Return Value
A non-zero value is returned if the data was successfully expanded. A zero value indicates that the
data could not be expanded. Failure typically indicates that the compressed data was not in a
recognized format.

Remarks
The compressed data buffer passed to the ExpandBuffer function must have been compressed
by either the CompressBuffer or CompressFile functions. Data read from files that were
compressed using third-party utilities such as WinZip will not be recognized by this function.

Example
cbOutputBuffer = 0;
bResult = ExpandBuffer(lpInputBuffer,
 cbInputBuffer,
 NULL,
 &cbOutputBuffer);

if (bResult)
{
 lpOutputBuffer = (LPBYTE)LocalAlloc(LPTR, cbOutputBuffer);
 bResult = ExpandBuffer(lpInputBuffer,
 cbInputBuffer,
 lpOutputBuffer,
 &cbOutputBuffer);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csncdv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CompressBuffer, CompressFile, DecodeFile, EncodeFile, ExpandFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ExpandFile Function

BOOL WINAPI ExpandFile(
 LPCTSTR lpszInputFile,
 LPCTSTR lpszOutputFile
);

The ExpandFile function expands the contents of a previously compressed file.

Parameters
lpszInputFile

A pointer to a string which specifies the name of the file to be compressed. The file must exist,
and it must be a regular file that can be opened for reading by the current process. An error will
be returned if a character device, such as CON: is specified as the file name.

lpszOutputFile

The name of the file that is to contain the expanded file data. If the file exists, it must be a
regular file that can be opened for writing by the current process and will be overwritten. If the
file does not exist, it will be created. An error will be returned if a character device, such as CON:
is specified as the file name.

Return Value
A non-zero value is returned if the file was successfully expanded. A zero value indicates that the
input file could not be read or that the output file could not be created.

Remarks
The ExpandFile function can only expand files that were previously compressed using the
CompressFile function. It cannot expand the contents of a file stored in an archive format used by
third-party applications such as PKZip or WinZip.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csncdv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CompressFile, DecodeFile, EncodeFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ExpandFileEx Function

BOOL WINAPI ExpandFileEx(
 LPCTSTR lpszInputFile,
 LPCTSTR lpszOutputFile,
 DWORD dwCompressionType,
 LPVOID lpvHeaderBlock,
 DWORD dwHeaderLength
);

The ExpandFileEx function expands the contents of the previously compressed file.

Parameters
lpszInputFile

A pointer to a string which specifies the name of the file which contains the compressed data.
The file must exist, and it must be a regular file that can be opened for reading by the current
process. An error will be returned if a character device, such as CON: is specified as the file
name.

lpszOutputFile

The name of the file that is to contain the expanded data. If the file exists, it must be a regular
file that can be opened for writing by the current process and will be overwritten. If the file does
not exist, it will be created. An error will be returned if a character device, such as CON: is
specified as the file name.

dwCompressionType

A numeric value which determines the algorithm that was used to compress the data. One of
the following values may be specified. By default, the Deflate algorithm is used.

Value Constant Description

1 COMPRESSION_TYPE_DEFLATE A compression algorithm
that combines LZ77
algorithm for creating
common substrings and
Huffman coding to
process the different
frequencies of byte
sequences in the data
stream. Deflate is widely
used by compression
software.

2 COMPRESSION_TYPE_BURROWSWHEELER A compression algorithm
that rearranges blocks of
data in sorted order and
then uses Huffman
coding to process
different frequencies of
data within the block.
Burrows-Wheeler
compression provides a
better compression ratio

than the Deflate
algorithm, however it
requires more resources
to perform the
compression.

lpvHeaderBlock

A pointer to a buffer which will contain uncompressed data that is read from the beginning of
the input file. If this parameter is NULL then no header block is read from the file.

dwHeaderLength

The length of the data buffer to be read from the beginning of the input file. If this value is zero,
the lpvHeaderBlock parameter is ignored and no header block is read from the file.

Return Value
A non-zero value is returned if the file was successfully expanded. A zero value indicates that the
input file could not be read or that the output file could not be created.

Remarks
The ExpandFileEx function can only expand files that were previously compressed using the
CompressFile or CompressFileEx functions. It cannot expand the contents of a file stored in an
archive format used by third-party applications such as PKZip or WinZip.

The lpvHeaderBlock and dwHeaderLength parameters can be used to be read application-
defined data from the beginning of the file, commonly called a header block. Typically this is a
fixed-length structure which provides information to the application about the compressed file.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csncdv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CompressBuffer, CompressFile, DecodeFile, EncodeFile, ExpandBuffer, ExpandFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 GetMessageDigest Function

BOOL WINAPI GetMessageDigest(
 LPVOID lpvBuffer,
 DWORD cbBuffer,
 DWORD dwDigestOptions,
 LPTSTR lpszDigest,
 INT nMaxLength
);

The GetMessageDigest function computes a message digest for a buffer, string or data file.

Parameters
lpvBuffer

A pointer to the data that will be processed by the message digest algorithm. This parameter
may be NULL, in which case the standard null hash value will be returned. Depending on the
options specified, this may point to a block of memory, a null-terminated string or the name of
a data file.

cbBuffer

The number of bytes of data that will be processed by the message digest algorithm. If this
value is zero, then the standard null hash value will be returned. If the lpvBuffer parameter is
NULL, this value must be zero. If this value is -1 then lpvBuffer is considered to be a pointer to a
null-terminated string.

dwDigestOptions

A numeric value which specifies the algorithm that will be used to generate the message digest,
and may be combined with other option flags. The algorithm may be one of the following
values:

Value Constant Description

0 MESSAGE_DIGEST_DEFAULT Use the default message digest algorithm, which
is the same as specifying
MESSAGE_DIGEST_SHA256

1 MESSAGE_DIGEST_MD5 Use the MD5 algorithm which generates a 128-
bit hash value that is returned as as 32 digit
hexadecimal string. This algorithm is typically
used as a checksum to verify data integrity,
however it is not considered cryptographically
secure and hash collision is possible.

2 MESSAGE_DIGEST_SHA1 Use the SHA1 algorithm which generates a 160-
bit hash value that is returned as a 40 digit
hexadecimal string. This algorithm is typically
used as a checksum to verify data integrity,
however it is not considered cryptographically
secure.

3 MESSAGE_DIGEST_SHA256 Use the SHA-256 algorithm which generates a
256-bit hash value that is returned as a 64 digit
hexadecimal string. This algorithm is used for
data integrity validation and various

cryptographic uses, such as password storage
and document signing.

4 MESSAGE_DIGEST_SHA384 Use the SHA-384 algorithm which generates a
384-bit hash value that is returned as a 96 digit
hexadecimal string. This is a truncated version of
the SHA-512 algorithm that uses different initial
values.

5 MESSAGE_DIGEST_SHA512 Use the SHA-512 algorithm which generates a
512-bit hash value that is returned as a 128 digit
hexadecimal string. This algorithm is used for
data integrity validation and various
cryptographic uses, such as password storage
and document signing.

The following values may be combined with the algorithm ID to specify options that
determine how the message digest is computed and returned to the caller:

Value Constant Description

0x10000 MESSAGE_DIGEST_MEMORY The lpvBuffer parameter is a pointer to a
block of memory and the cbBuffer parameter
specifies how many bytes in the buffer should
be used to compute the message digest. This
is the default behavior if no other options are
specified and the cbBuffer parameter is not
-1.

0x20000 MESSAGE_DIGEST_STRING The lpvBuffer parameter is a pointer to a
null-terminated string and the cbBuffer
parameter specifies how many characters in
the string should be used to compute the
message digest. If the cbBuffer parameter is
-1 then all characters up to the terminating
null byte will be used.

0x40000 MESSAGE_DIGEST_DATAFILE The lpvBuffer parameter is a pointer to a
null-terminated string that specifies the name
of a data file, and the entire contents of the
file will be used to compute the message
digest. The cbBuffer parameter is ignored.

0x80000 MESSAGE_DIGEST_BASE64 The message digest will be returned in
lpszDigest as a base64 encoded value rather
than a string of hexadecimal digits. This can
be useful for services that use HMAC
message digests and require the hash to be
in base64 format.

lpszDigest

A pointer to a string that will contain the message digest computed using the contents of the
specified buffer. The digest value will consist of upper-case hexadecimal numbers, with the
length varying based on the algorithm selected. The string buffer must be large enough to

accommodate the entire message digest, including the terminating null character. This
parameter cannot be NULL.

nMaxLength

The maximum number of characters that may be copied into the lpszDigest string buffer,
including the terminating null character. This value cannot be zero, and must be large enough
to accommodate the complete message digest string value. It is recommended that the string
buffer be at least MAX_DIGEST_STRING characters in size.

Return Value
A non-zero value is returned if the message digest was computed and returned in the string
buffer provided by the caller. A zero value indicates that the digest could not be computed, or the
string buffer provided by the caller was not large enough to contain the message digest value.

Remarks
The GetMessageDigest function accepts an arbitrary block of data, a null-terminated string or a
data file and computes a fixed-length value (hash) that can be used to uniquely identify that
content. These algorithms are designed to be one-way functions that are deterministic, have a low
probability of collision and are difficult or infeasible to reverse. It should be noted that the MD5
and SHA1 algorithms are no longer considered cryptographically secure, however they are still
widely used for data integrity validation to protect against accidental or unintended changes.

If the MESSAGE_DIGEST_STRING option is specified and the Unicode version of this function is
called, the string will be automatically converted from UTF-16 to UTF-8 encoding, and the UTF-8
encoded text will be used to generate the message digest. If you need to generate a message
digest using the UTF-16 encoded version of the string, use the MESSAGE_DIGEST_MEMORY
option instead. Keep in mind that UTF-16 encoding represents each character with two bytes, so
the buffer length should be twice the number of characters in the Unicode string.

If the MESSAGE_DIGEST_DATAFILE option is specified, the file contents will be processed as binary
data with no special consideration given for the various end-of-line conventions used in text files,
or any Unicode byte order marks (BOMs) in the file. It is permissible for the file to be empty (zero
length), in which case the default null-hash value will be returned based on the algorithm selected
by the caller.

The current thread will block while the message digest is being computed. If a large amount of
data is being processed, this may cause the application to become non-responsive. In that case, it
is recommended that you create a background worker thread and call this function from that
worker thread, rather than from the main UI thread.

The length of the message digest string returned by this function will always be the same for a
given algorithm, regardless of the size of the data buffer. For example, the length of the message
digest for the SHA-256 algorithm will always be 64 characters long. Each byte of the message
digest is represented by two upper-case hexadecimal numbers.

It is permitted to provide a NULL or zero-length data buffer to this function, in which case the
standard null-hash value will be returned. The same null-hash value will also be returned for a
zero-length string or an empty file.

Example
// Get a SHA-256 message digest for a string value
LPCTSTR lpszValue = _T("The quick brown fox jumps over the lazy dog");
TCHAR szDigest[MAX_DIGEST_STRING];
BOOL bSuccess;

bSuccess = GetMessageDigest(
 lpszValue,
 (DWORD)-1L,
 MESSAGE_DIGEST_SHA256 | MESSAGE_DIGEST_STRING,
 szDigest,
 MAX_DIGEST_STRING);

// Get an MD5 message digest for the contents of a data file
LPCTSTR lpszFileName = _T("testfile.zip");

bSuccess = GetMessageDigest(
 lpszFileName,
 0,
 MESSAGE_DIGEST_MD5 | MESSAGE_DIGEST_DATAFILE,
 szDigest,
 MAX_DIGEST_STRING);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csncdv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DecodeBuffer, DecodeFile, EncodeBuffer, EncodeFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IsUnicodeText Function

BOOL WINAPI IsUnicodeText(
 LPCTSTR lpString,
 INT nLength
);

The IsUnicodeText function checks if a string contains valid Unicode characters.

Parameters
lpString

A pointer to a null terminated string. This parameter cannot be NULL.

nLength

An integer value which specifies the number of characters to check. If this value is -1, the length
of the string is determined by counting the number of characters up to the terminating null
character. This parameter cannot be zero.

Return Value
A non-zero value is returned if the string contains valid Unicode characters. A zero value indicates
the string contains characters that are not valid Unicode, or the string does not contain any
Unicode characters.

Remarks
There are two versions of this function, IsUnicodeTextA which checks a multi-byte string to
ensure that it contains valid UTF-8 encoded text, and IsUnicodeTextW which checks a wide string
to ensure it contains valid UTF-16 text.

If the value of the nLength parameter is larger than the number of characters in the string, the
function will not check beyond the terminating null character. If the length of the string is
unknown, specify a length of -1 and the function will check the entire contents of the string up to
the terminating null character.

If there is a byte order mark (BOM) sequence at the beginning of the string, this will be recognized
by the function. A string that contains a valid BOM sequence with no corresponding text will be
successfully validated by this function.

This function does not perform checks to ensure the string contains printable characters. It only
validates that the Unicode string is structurally valid. The IsUnicodeTextA function will check to
make sure there are no invalid UTF-8 encodings. The IsUnicodeTextW function will check to
make sure the UTF-16 string does not contain any unpaired surrogates.

This function does not preserve state information and cannot be used to check the validity of a
stream of text or binary data. It should only be used to validate complete Unicode strings that are
terminated with a null character.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csncdv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also

UnicodeDecodeText, UnicodeEncodeText

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 UnicodeDecodeText Function

INT WINAPI UnicodeDecodeText(
 UINT nCodePage,
 LPCSTR lpUtf8Text,
 INT nLength,
 LPTSTR lpString,
 INT nMaxLength
);

The UnicodeDecodeText function decodes UTF-8 encoded text and returns the contents in a
string buffer.

Parameters
nCodePage

A value that specifies the code page used when decoding the text. This parameter can be set to
the value of any code page that is available in the operating system. It is recommended that
you use CP_ACP which specifies the system default ANSI code page. This parameter is only
used when decoding UTF-8 encoded text to a multi-byte string.

lpUtf8Text

A pointer to a null terminated string that contains the UTF-8 encoded text to be decoded. This
parameter must always specify a pointer to an 8-bit character string, regardless if the project is
configured to use the Unicode or Multi-Byte character set. This parameter cannot be NULL.

nLength

The number of bytes in the UTF-8 encoded string to be decoded. If this parameter is -1, the
length of the UTF-8 encoded text is determined by counting the number of characters up to the
terminating null character.

lpString

A pointer to a string buffer that will contain the decoded UTF-8 text when the function returns.
The string buffer must be large enough to contain all of the encoded text, and cannot be a
NULL a pointer.

nMaxLength

The maximum number of characters that can be copied into the string buffer. The contents of
the lpString buffer will always be null terminated, and the maximum size must be large enough
to include the null character. This value must be greater than zero.

Return Value
If the UTF-8 encoded text is successfully decoded, the return value is the number of characters
copied to the string buffer. If the text cannot be decoded, or the string buffer is not large enough
to store all of the decoded text, the function will return zero. To get extended error information,
call GetLastError.

Remarks
There are two versions of this function, UnicodeDecodeTextA which returns a localized multi-
byte string and UnicodeDecodeTextW which converts the UTF-8 encoded text to UTF-16 text.
Your project configuration typically determines which version of this function is used by default.

If the value of the nLength parameter is larger than the number of UTF-8 characters, the function
will not check beyond the terminating null character. If the length of the lpUtf8Text string is

unknown, specify a length of -1 and the function will decode the entire contents of the string up
to the terminating null character.

When calling UnicodeDecodeTextA to convert UTF-8 encoded text to a localized multi-byte
string, it is recommended that you specify CP_ACP (zero) as the code page value unless you know
it contains Unicode characters that cannot be represented using the default ANSI code page.
Using CP_ACP will ensure the UTF-8 text is decoded using the current locale and language
settings.

When calling UnicodeDecodeTextW to convert UTF-8 encoded text to UTF-16 text, the code
page parameter is ignored and should always be a value of zero.

This function performs a strict check on the UTF-8 encoded text and will fail if the encoding is
malformed, or in the case of being converted to a multi-byte string, if it cannot be decoded using
the specified code page. It will not simply replace invalid character sequences with a default
character.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csncdv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
IsUnicodeText, UnicodeEncodeText

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 UnicodeEncodeText Function

INT WINAPI UnicodeEncodeText(
 UINT nCodePage,
 LPCTSTR lpString,
 INT nLength,
 LPSTR lpUtf8Text,
 INT nMaxLength
);

The UnicodeEncodeText function encodes a string and returns UTF-8 encoded text.

Parameters
nCodePage

A value that specifies the code page used when encoding the text. This parameter can be set to
the value of any code page that is available in the operating system. It is recommended that
you use CP_ACP which specifies the system default ANSI code page. This parameter is only
used when encoding a multi-byte string.

lpString

A pointer to a null terminated string that contains the text to be encoded. This parameter
cannot be NULL.

nLength

The number of characters in the string to be encoded. If this parameter is -1, the length of the
string is determined by counting the number of characters up to the terminating null character.

lpUtf8Text

A pointer to a character buffer which will contain the UTF-8 encoded text when the function
returns. This parameter must always specify a pointer to an 8-bit character string, regardless if
the project is configured to use the Unicode or Multi-Byte character set. This parameter cannot
be NULL.

nMaxLength

The maximum number of bytes that can be copied into the UTF-8 text buffer. The contents of
the lpUtf8Text buffer will always be null terminated, and the maximum size must be large
enough to include the null byte. This value must be greater than zero.

Return Value
If the string is successfully encoded, the return value is the number of characters copied to the
output buffer. If the text cannot be encoded, or the output buffer is not large enough to store all
of the encoded text, the function will return zero. To get extended error information, call
GetLastError.

Remarks
There are two versions of this function, UnicodeEncodeTextA which converts a multi-byte string
to UTF-8 encoded text, and UnicodeEncodeTextW which converts a UTF-16 string to a UTF-8
string. Your project configuration typically determines which version of this function is used by
default.

If the value of the nLength parameter is larger than the number of characters in lpString, the
function will not check beyond the terminating null character. If the length of lpString is unknown,
specify a length of -1 and the function will encode the entire contents of the string up to the

terminating null character.

When calling UnicodeEncodeTextA to convert a multi-byte string to UTF-8 encoding, it is
recommended that you specify CP_ACP (zero) as the code page value unless you know it contains
ANSI characters from a different code page. Using CP_ACP will ensure the string is encoded using
the current locale and language settings.

This function performs a strict check on the multi-byte input string and will fail if it contains a
malformed multi-byte sequence or characters that cannot be converted to UTF-8 using the
specified code page. It will not simply replace invalid character sequences with a default character.

When calling UnicodeEncodeTextW to convert UTF-16 text to UTF-8 encoded text, the code
page parameter is ignored and should always be a value of zero. The text will be normalized prior
to being converted to UTF-8 using canonical composition, where decomposed characters are
combined to create their canonical precomposed equivalent.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csncdv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
IsUnicodeText, UnicodeDecodeText

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

File Transfer Protocol Client Library

Transfer files between a local and server and perform common file management functions on the
server.

Reference

Functions
Data Structures
Error Codes

Library Information

File Name CSFTPV11.DLL

Version 11.0.2180.1635

LibID 22D6A6CD-4877-4CB9-B223-7149A9040534

Import Library CSFTPV11.LIB

Dependencies None

Standards RFC 959, RFC 1579, RFC 2228

Overview
The File Transfer Protocol (FTP) library provides a comprehensive API which supports both high
level operations, such as uploading or downloading files, as well as a collection of lower-level file
I/O functions. In addition to file transfers, an application can create, rename and delete files and
directories, search for files using wildcards and perform other common file management functions.

Files can be stored on the local file system or in memory, depending on the needs of your
application and multiple file transfers be performed using a single function call. The library can
also be used to manage files on the server and supports many of the common protocol
extensions that can be used to access the remote file system. It understands a number of different
directory listing formats, including those typically used with UNIX and Linux based systems,
Windows server platforms, NetWare servers and VMS systems.

This library supports active and passive mode file transfers, firewall compatibility options, proxy
servers and secure file transfers using the standard TLS 1.2 and SFTP protocols. Secure file
transfers support implicit and explicit TLS sessions, client certificates and up to 256-bit AES
encryption.

Requirements
The SocketTools Library Edition libraries are compatible with any programming language which
supports calling functions exported from a standard dynamic link library (DLL). If you are using
Visual C++ 6.0 it is required that you have Service Pack 6 (SP6) installed. You should install all
updates for your development tools and have the current Windows SDK installed. The minimum
recommended version of Visual Studio is Visual Studio 2010.

This library is supported on Windows 7, Windows Server 2008 R2 and later versions of the desktop
and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1) installed as
a minimum requirement. It is recommended that you install the current service pack and all critical
updates available for your version of the operating system.

This product includes both 32-bit and 64-bit libraries. Native 64-bit CPU support requires the 64-
bit version of Windows 7 or later versions of the Windows operating system.

Distribution
When you distribute your application that uses this library, it is recommended that you install the
file in the same folder as your application executable. If you install the library into a shared location
on the system, it is important that you distribute the correct version for the target platform and it
should be registered as a shared DLL. This is a standard Windows dynamic link library, not an
ActiveX component, and does not require COM registration.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 File Transfer Protocol Functions

Function Description

FtpAddQueuedFile Add a new file to the queue to be uploaded or downloaded

FtpAddQueuedFileEx Add a new file to the queue with additional transfer options

FtpAllocate Allocate the specified number of bytes on the server

FtpAsyncConnect Connect asynchronously to the specified server

FtpAsyncFileList Return an unparsed list of files in the specified directory

FtpAsyncGetData Copy the contents of a remote file to a local buffer

FtpAsyncGetFile Copy a file from the server to the local system

FtpAsyncGetFileEx Copy a file from the server to the local system, supporting files larger than
4GB

FtpAsyncProxyConnect Connect asynchronously to the specified proxy server

FtpAsyncPutData Create a file on the server using the contents of a local buffer

FtpAsyncPutFile Copy a file from the local system to the server

FtpAsyncPutFileEx Copy a file from the local system to the server, supporting files larger than
4GB

FtpAttachThread Attach the specified client handle to another thread

FtpCancel Cancel the current blocking operation

FtpCancelQueuedFile Cancel the queued file transfer

FtpChangeDirectory Change the current working directory on the server

FtpChangeDirectoryUp Change the current working directory on the server

FtpClearQueue Remove all files from the current transfer queue

FtpCloseDirectory Close the open directory on the server

FtpCloseFile Close the current file on the server

FtpCommand Send a command to the server

FtpConnect Establish a client connection with a server

FtpConnectUrl Establish a client connection using the specified URL

FtpCreateDirectory Create the specified directory on the server

FtpCreateQueue Create a new file transfer queue

FtpCreateSecurityCredentials Create a new security credentials structure

FtpDeleteFile Delete a file from the server

FtpDeleteQueue Delete a previously created file transfer queue

FtpDeleteSecurityCredentials Delete a previously created security credentials structure

FtpDisableEvents Disable event notification

FtpDisableTrace Disable logging of network function calls to the trace log

FtpDisconnect Disconnect the client session from the server

FtpDownloadFile Download a file from the server to the local system

FtpEnableEvents Enable event notification

FtpEnableFeature Enable the specified feature in the client

FtpEnableTrace Enable logging of network function calls to a file

FtpEndOfFile Determine if the end-of-file has been reached

FtpEnumFiles Return a list of files in a directory on the server

FtpEnumFilesEx Return a list of files in a directory on the server, supporting files larger
than 4GB

FtpEnumQueuedFiles Return a list of files in the transfer queue

FtpEnumTasks Return a list of asynchronous tasks

FtpEventProc Callback function that processes events generated by the client

FtpFindQueuedFile Find a file in the transfer queue which matches the search criteria

FtpFreezeEvents Suspend and resume event handling by the client

FtpGetActivePorts Return the range of local port numbers used for active transfers

FtpGetAutoFileType Return the file transfer type based on the file extension or content

FtpGetBufferSize Return the size of an internal buffer used during data transfers

FtpGetChannelMode Return the mode for the specified communication channel

FtpGetClientQuota Return quota information for the current client session

FtpGetData Copy the contents of a remote file to a local buffer

FtpGetDirectory Get the current working directory on the server

FtpGetDirectoryFormat Get the format which is used by the server to list files

FtpGetErrorString Return a description for the specified error code

FtpGetFeatures Return the features available to the client

FtpGetFile Copy a file from the server to the local system

FtpGetFileEx Copy a file from the server to the local system, supporting files larger than
4GiB

FtpGetFileList Return an unparsed list of files in the specified directory

FtpGetFileNameEncoding Return the character encoding used when sending a file name to the
server

FtpGetFilePermissions Return the access permissions for the specified file

FtpGetFileSize Return the size of a file on the server

FtpGetFileStatus Return file status information from the server

FtpGetFileStatusEx Return file status information from the server, supporting files larger than
4GiB

FtpGetFileTime Return the modification time for the specified file on the server

FtpGetFileType Return the default file type for the current session

FtpGetFirstFile Return the first file from the file list returned by the server

FtpGetFirstFileEx Return the first file from the file list returned by the server, supporting files
larger than 4GiB

FtpGetFirstQueuedFile Return information about the first file in the transfer queue

FtpGetLastError Return the last error code

FtpGetMultipleFiles Copy multiple files from the server to the local system

FtpGetNextFile Return the next file from the file list returned by the server

FtpGetNextFileEx Return the next file from the file list returned by the server, supporting
files larger than 4GiB

FtpGetNextQueuedFile Return information about the next file in the transfer queue

FtpGetPriority Return the current priority for file transfers

FtpGetProxyType Return the proxy type selected by the client

FtpGetQueueClient Return the handle to the current client session

FtpGetQueuedFile Return information about a file queued for transfer

FtpGetQueueStatus Return the status of the current file transfer queue

FtpGetQueueThread Return a value which uniquely identifies the queue manager thread

FtpGetResultCode Return the result code from the previous command

FtpGetResultString Return the result string from the previous command

FtpGetSecurityInformation Return security information about the current client connection

FtpGetServerInformation Get system information about the server

FtpGetServerStatus Return system status of server

FtpGetServerTimeZone Return the timezone offset in seconds for the current server

FtpGetServerType Return the type of operating system the server is running on

FtpGetStatus Return the current client status

FtpGetTaskError Return the last error code for the specified asynchronous task

FtpGetTaskId Return the unique task identifier associated with the specified client
session

FtpGetText Download the contents of a text file to a string buffer

FtpGetThreadQueue Return the handle to a queue associated with the specified thread

FtpGetTimeout Return the number of seconds until an operation times out

FtpGetTransferStatus Return current file transfer statistics

FtpGetTransferStatusEx Return current file transfer statistics, supporting files larger than 4GB

FtpInitialize Initialize the library and validate the specified runtime license key

FtpIsBlocking Determine if the current operation is blocked

FtpIsConnected Determine if the client is connected to the server

FtpIsReadable Determine if the client can read data from the data channel

FtpIsWritable Determine if the client can write data to the data channel

FtpLogin Login to the server

FtpLogout Logout from the server

FtpMountStructure Mount a structure (filesystem) on the server

FtpOpenDirectory Open the specified directory for reading

FtpOpenFile Open the specified file for reading or writing

FtpProxyConnect Establish a connection with a proxy server

FtpPutData Create a file on the server using the contents of a local buffer

FtpPutFile Copy a file from the local system to the server

FtpPutFileEx Copy a file from the local system to the server, supporting files larger than
4GiB

FtpPutMultipleFiles Copy multiple files from the local system to the server

FtpPutText Create a text file on the server from the contents of a string buffer

FtpRead Read data from the server

FtpRegisterEvent Register an event handler for the specified event

FtpRegisterFileType Associate a file name extension with a specific file type

FtpRemoveDirectory Remove a directory from the server

FtpRemoveQueuedFile Remove a file from the transfer queue

FtpRenameFile Rename a file on the server

FtpReset Reset the client connection

FtpResetQueue Reset the internal state of file transfers in the specified queue

FtpResumeQueue Resume the transfer of files after queue processing has been paused

FtpSetActivePorts Set the range of local port numbers used for active transfers

FtpSetBufferSize Set the size of an internal buffer used during data transfers

FtpSetChannelMode Change the security mode for the specified channel

FtpSetDirectoryFormat Set the format which is used by the server to list files

FtpSetFeatures Set the features which can be used by the client

FtpSetFileMode Set the current file mode

FtpSetFileNameEncoding Set the character encoding type used when sending a file name to the
server

FtpSetFilePermissions Set the access permissions for the specified file

FtpSetFileStructure Set the current file data structure

FtpSetFileTime Set the modification time for the specified file on the server

FtpSetFileType Set the default file type for the current session

FtpSetLastError Set the last error code

FtpSetPassiveMode Set the server in passive mode

FtpSetPriority Set the priority for file transfers

FtpSetTimeout Set the number of seconds until an operation times out

FtpStartQueue Begin transferring the files in the specified queue

FtpStopQueue Stop transferring the files in the specified queue

FtpSuspendQueue Pause the transfer of files in the specified queue

FtpTaskAbort Abort the specified asynchronous task

FtpTaskDone Determine if an asynchronous task has completed

FtpTaskResume Resume execution of an asynchronous task

FtpTaskSuspend Suspend execution of an asynchronous task

FtpTaskWait Wait for an asynchronous task to complete

FtpUninitialize Terminate use of the library by the calling process

FtpUploadFile Upload a file from the local system to the server

FtpValidateHostName Validate the specified host name and return the resolved IP address

FtpValidateUrl Check the contents of a string to ensure it represents a valid URL

FtpVerifyFile Compare the contents of a local file against a file stored on the server

FtpWaitForQueue Wait for the transfer of all queued files to complete

FtpWrite Write data to the server

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpAddQueuedFile Function

DWORD WINAPI FtpAddQueuedFileEx(
 HQUEUE hQueue,
 DWORD dwQueueMode,
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszRemoteFile,
 DWORD dwOptions,
 UINT nFileType,
 UINT nTimeout
);

The FtpAddQueuedFile function adds a new file to the queue with additional transfer options.

Parameters
hQueue

A handle to a file transfer queue.

dwQueueMode

An integer value which specifies if the file should be downloaded from the server or uploaded
to the server. This parameter must be one of the following options and cannot have a value of
zero.

Constant Description

FTP_QUEUE_DOWNLOAD The file should be queued for downloading from
the server to the local system.

FTP_QUEUE_UPLOAD The file should be queued for uploading from the
local system to the server.

lpszLocalFile

A pointer to a null terminated string which specifies the name of the local file to be queued for
transfer. This parameter cannot be NULL or point to an empty string. If the file is being queued
for an upload, the file must exist on the local system or the function will fail. If the file is being
downloaded, it will be created or replaced on the local system.

lpszRemoteFile

A pointer to a null terminated string which specifies the URL to the location of the file on the
server. The URL must follow the conventions for the File Transfer Protocol and may specify
either a standard or secure connection, alternate port number, username, password and
optional working directory.

dwOptions

An unsigned integer value which specifies one or more options. This parameter is constructed
by using a bitwise operator and can be any of the options used with the FtpConnect function. If
this value is zero, the default options for the queue will be used. The most common options are:

Constant Description

FTP_OPTION_PASSIVE This option specifies the file transfer should attempt
to establish the data connection with the server. If the
local system is behind a firewall or a NAT router, the
server may not be able to establish a data connection
back to the client and the transfer will fail. This option

forces the client to establish an outbound data
connection with the server. It is recommended that
applications use passive mode whenever possible.

FTP_OPTION_FIREWALL This option specifies the file transfer should always
use the host IP address to establish the data
connection with the server, not the address returned
by the server in response to the PASV command.
This option may be necessary if the server is behind a
router that performs Network Address Translation
(NAT) and it returns an unreachable IP address for
the data connection. If this option is specified, it will
also enable passive mode data transfers.

FTP_OPTION_SECURE This option specifies the file transfer should attempt
to establish a secure connection with the server by
default. This option is the same as specifying
FTP_OPTION_SECURE_IMPLICIT which immediately
performs the SSL/TLS protocol negotiation when the
connection is established.

FTP_OPTION_SECURE_IMPLICIT This option specifies the file transfer should attempt
to immediately establish secure SSL/TLS connection
with the server by default. This option is typically used
when connecting to a server on port 990, which is
the default port number used for FTPS.

FTP_OPTION_SECURE_EXPLICIT This option specifies the file transfer should establish
a standard connection to the server and then use the
AUTH command to negotiate an explicit secure
connection. This option is typically used when
connecting to the server on ports other than 990.

FTP_OPTION_SECURE_SHELL This option specifies the file transfer should use the
Secure Shell (SSH) protocol to establish the
connection by default. This option will automatically
be selected if the connection is established using port
22, the default port for SSH.

nFileType

An integer value which specifies the type of file being transferred. It can be one of the following
values:

Value Description

FILE_TYPE_AUTO The file type should be automatically determined based on the file
name extension. If the file extension is unknown, the file type
should be determined based on the contents of the file. The
library has an internal list of common text file extensions, and
additional file extensions can be registered using the
FtpRegisterFileType function.

FILE_TYPE_ASCII The file is a text file using the ASCII character set. For those servers
which mark the end of a line with characters other than a carriage

return and linefeed, it will be converted to the native client format.
This is the file type used for directory listings.

FILE_TYPE_EBCDIC The file is a text file using the EBCDIC character set. Local files will
be converted to EBCDIC when sent to the server. Remote files will
be converted to the native ASCII character set when retrieved
from the server. Not all servers support this file type. It is
recommended that you only specify this type if you know that it is
required by the server to transfer data correctly.

FILE_TYPE_IMAGE The file is a binary file and no data conversion of any type is
performed on the file. This is the default file type for most data
files and executable programs. If the type of file cannot be
automatically determined, it will always be considered a binary file.
If this file type is specified when uploading or downloading text
files, the native end-of-line character sequences will be preserved.

FILE_TYPE_LOCAL The file is a binary file that uses the local byte size for the server
platform. On most servers, this file type is considered to be the
same as FILE_TYPE_IMAGE. Not all servers support this file type. It
is recommended that you only specify this type if you know that it
is required by the server to transfer data correctly.

nTimeout

The number of seconds to wait for a response from the server before failing the file transfer. If
this value is zero, the default timeout period for the queue will be used.

Return Value
If the function succeeds, the return value is a unique identifier which corresponds to the queued
file. If the function fails, the return value is zero. To get extended error information, call
FtpGetLastError.

Remarks
This function will add a file to the current transfer queue. If successful, the value returned is a
unique integer which identifies that file in the queue. To obtain information about the queued file,
you can call the FtpGetQueuedFile function and provide this return value as the dwFileId
parameter. To remove a file from the queue, use the FtpRemoveQueuedFile function.

Files can only be added to the queue when in an idle or paused state. If you attempt to add a file
to the queue while the queue manager is transferring files, the function will fail. To determine the
current state of the queue, call the FtpGetQueueStatus function

There are no fixed limits to the number of files which can be queued for transfer. To release the
memory allocated for the queue, call the FtpClearQueue function. To determine the current
status of the queue, including how many file transfers have been queued and how many are
pending completion, call the FtpGetQueueStatus function.

If the local file name includes environment variables enclosed in percentage (%) symbols, those
values will automatically be expanded based on the environment variables defined for the current
user using the ExpandEnvironmentStrings function in the Windows API. Note that environment
variable names are not case-sensitive.

This function will not immediately begin the process of uploading or downloading the file. It will
only add the transfer request to the current queue. The file transfers are managed by a
background worker thread which is created when the FtpStartQueue function is called.

The FtpAddQueuedFileEx function is an extended version of this function with additional
parameters to specify a hostname, port number, user name and password. Because most file
uploads require authentication, using the extended function may be preferred to composing a
URL which includes the account credentials.

Example
// Create a new queue
HQUEUE hQueue = FtpCreateQueue(INFINITE, FTP_TIMEOUT, FTP_OPTION_DEFAULT);

if (hQueue == INVALID_QUEUE)
 return;

// Add a file to the queue
DWORD dwFileId = FtpAddQueuedFile(
 hQueue,
 lpszLocalFile,
 lpszRemoteFile,
 FTP_OPTION_DEFAULT,
 FILE_TYPE_AUTO,
 FTP_TIMEOUT);

// Display information about the queued file
if (dwFileId != 0)
{
 FTPQUEUEDFILE queuedFile;

 if (FtpGetQueuedFile(hQueue, dwFileId, &queuedFile))
 {
 switch (queuedFile.dwMode)
 {
 case FTP_QUEUE_DOWNLOAD:
 _tprintf(_T("%u: Download \"%s\" to \"%s\"\n"),
 dwFileId,
 queuedFile.szRemoteFile,
 queuedFile.szLocalFile);
 break;

 case FTP_QUEUE_UPLOAD:
 _tprintf(_T("%u: Upload \"%s\" to \"%s\"\n"),
 dwFileId,
 queuedFile.szLocalFile,
 queuedFile.szRemoteFile);
 break;
 }
 }
}

// Start the queued file transfers and wait for it to complete
if (FtpStartQueue(hQueue, FTP_QUEUE_ALL, 0, NULL, 0))
{
 FtpWaitForQueue(hQueue, INFINITE, &dwElapsed, &dwError);
 FtpStopQueue(hQueue);
}

// Remove all files from the queue
FtpDeleteQueue(hQueue);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpAddQueuedFileEx, FtpCreateQueue, FtpDeleteQueue, FtpFindQueuedFile,
FtpGetFirstQueuedFile, FtpGetNextQueuedFile, FtpGetQueuedFile, FtpRemoveQueuedFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpAddQueuedFileEx Function

DWORD WINAPI FtpAddQueuedFileEx(
 HQUEUE hQueue,
 DWORD dwQueueMode,
 LPCTSTR lpszHostName,
 UINT nHostPort,
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword,
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszRemoteFile,
 DWORD dwOptions,
 UINT nFileType,
 UINT nTimeout,
 LPVOID lpvReserved
);

The FtpAddQueuedFileEx function adds a new file to the queue with additional transfer options.

Parameters
hQueue

A handle to a file transfer queue.

dwQueueMode

An integer value which specifies if the file should be downloaded from the server or uploaded
to the server. This parameter must be one of the following options and cannot have a value of
zero.

Constant Description

FTP_QUEUE_DOWNLOAD The file should be queued for downloading from
the server to the local system.

FTP_QUEUE_UPLOAD The file should be queued for uploading from the
local system to the server.

lpszHostName

A pointer to the name of the server to establish a connection with. This may be a fully-qualified
domain name or an IP address. If this parameter is NULL or points to an empty string, the
lpszRemoteFile parameter must specify a complete URL which identifies the server as well as the
path to the remote file.

nHostPort

The port number which should be used when establishing the connection. A value of zero
specifies that the default port number should be used. For standard connections, the default
port number is 21. For secure connections, the default port number is 990. If this parameter is
zero and a URL is specified with the lpszRemoteFile parameter, the port number included in the
URL will be used as the default value.

lpszUserName

Points to a null terminated string which specifies the user name to be used to authenticate the
connection. If this parameter is NULL or an empty string, then the login is considered to be
anonymous. Note that anonymous logins are not supported for secure connections using the
SSH protocol.

lpszPassword

Points to a null terminated string which specifies the password to be used to authenticate the
current client session. This parameter may be NULL or an empty string if no password is
required for the specified user, or if no username has been specified.

lpszLocalFile

A pointer to a null terminated string which specifies the name of the local file to be queued for
transfer. This parameter cannot be NULL or point to an empty string. If the file is being queued
for an upload, the file must exist on the local system or the function will fail. If the file is being
downloaded, it will be created or replaced on the local system.

lpszRemoteFile

A pointer to a null terminated string which specifies the name of the file on the server. If the file
is being downloaded, the file must exist on the server or the transfer will fail. If the file is being
uploaded, the file will be created or replaced on the server. This parameter may specify a
complete URL. Note that any values you specify as arguments to this function will override the
values specified in the URL. If you want to use a URL as the remote file name, the
lpszHostName parameter should be NULL and the nHostPort parameter should be zero.

dwOptions

An unsigned integer value which specifies one or more options. This parameter is constructed
by using a bitwise operator and can be any of the options used with the FtpConnect function. If
this value is zero, the default options for the queue will be used. The most common options are:

Constant Description

FTP_OPTION_PASSIVE This option specifies the file transfer should attempt
to establish the data connection with the server. If the
local system is behind a firewall or a NAT router, the
server may not be able to establish a data connection
back to the client and the transfer will fail. This option
forces the client to establish an outbound data
connection with the server. It is recommended that
applications use passive mode whenever possible.

FTP_OPTION_FIREWALL This option specifies the file transfer should always
use the host IP address to establish the data
connection with the server, not the address returned
by the server in response to the PASV command.
This option may be necessary if the server is behind a
router that performs Network Address Translation
(NAT) and it returns an unreachable IP address for
the data connection. If this option is specified, it will
also enable passive mode data transfers.

FTP_OPTION_SECURE This option specifies the file transfer should attempt
to establish a secure connection with the server by
default. This option is the same as specifying
FTP_OPTION_SECURE_IMPLICIT which immediately
performs the SSL/TLS protocol negotiation when the
connection is established.

FTP_OPTION_SECURE_IMPLICIT This option specifies the file transfer should attempt
to immediately establish secure SSL/TLS connection

with the server by default. This option is typically used
when connecting to a server on port 990, which is
the default port number used for FTPS.

FTP_OPTION_SECURE_EXPLICIT This option specifies the file transfer should establish
a standard connection to the server and then use the
AUTH command to negotiate an explicit secure
connection. This option is typically used when
connecting to the server on ports other than 990.

FTP_OPTION_SECURE_SHELL This option specifies the file transfer should use the
Secure Shell (SSH) protocol to establish the
connection by default. This option will automatically
be selected if the connection is established using port
22, the default port for SSH.

nFileType

An integer value which specifies the type of file being transferred. It can be one of the following
values:

Value Description

FILE_TYPE_AUTO The file type should be automatically determined based on the file
name extension. If the file extension is unknown, the file type
should be determined based on the contents of the file. The
library has an internal list of common text file extensions, and
additional file extensions can be registered using the
FtpRegisterFileType function.

FILE_TYPE_ASCII The file is a text file using the ASCII character set. For those servers
which mark the end of a line with characters other than a carriage
return and linefeed, it will be converted to the native client format.
This is the file type used for directory listings.

FILE_TYPE_EBCDIC The file is a text file using the EBCDIC character set. Local files will
be converted to EBCDIC when sent to the server. Remote files will
be converted to the native ASCII character set when retrieved
from the server. Not all servers support this file type. It is
recommended that you only specify this type if you know that it is
required by the server to transfer data correctly.

FILE_TYPE_IMAGE The file is a binary file and no data conversion of any type is
performed on the file. This is the default file type for most data
files and executable programs. If the type of file cannot be
automatically determined, it will always be considered a binary file.
If this file type is specified when uploading or downloading text
files, the native end-of-line character sequences will be preserved.

FILE_TYPE_LOCAL The file is a binary file that uses the local byte size for the server
platform. On most servers, this file type is considered to be the
same as FILE_TYPE_IMAGE. Not all servers support this file type. It
is recommended that you only specify this type if you know that it
is required by the server to transfer data correctly.

nTimeout

The number of seconds to wait for a response from the server before failing the file transfer. If
this value is zero, the default timeout period for the queue will be used.

lpvReserved

A reserved parameter which should always be NULL.

Return Value
If the function succeeds, the return value is a unique identifier which corresponds to the queued
file. If the function fails, the return value is zero. To get extended error information, call
FtpGetLastError.

Remarks
This function will add a file to the current transfer queue. If successful, the value returned is a
unique integer which identifies that file in the queue. To obtain information about the queued file,
you can call the FtpGetQueuedFile function and provide this return value as the dwFileId
parameter. To remove a file from the queue, use the FtpRemoveQueuedFile function.

Files can only be added to the queue when in an idle or paused state. If you attempt to add a file
to the queue while the queue manager is transferring files, the function will fail. To determine the
current state of the queue, call the FtpGetQueueStatus function

There are no fixed limits to the number of files which can be queued for transfer. To release the
memory allocated for the queue, call the FtpClearQueue function. To determine the current
status of the queue, including how many file transfers have been queued and how many are
pending completion, call the FtpGetQueueStatus function.

If the local file name includes environment variables enclosed in percentage (%) symbols, those
values will automatically be expanded based on the environment variables defined for the current
user using the ExpandEnvironmentStrings function in the Windows API. Note that environment
variable names are not case-sensitive.

This function will not immediately begin the process of uploading or downloading the file. It will
only add the transfer request to the current queue. The file transfers are managed by a
background worker thread which is created when the FtpStartQueue function is called.

Example
// Create a new queue
HQUEUE hQueue = FtpCreateQueue(INFINITE, FTP_TIMEOUT, FTP_OPTION_DEFAULT);

if (hQueue == INVALID_QUEUE)
 return;

// Add a file to the queue
DWORD dwFileId = FtpAddQueuedFileEx(
 hQueue,
 FTP_QUEUE_DOWNLOAD,
 lpszHostName,
 FTP_PORT_DEFAULT,
 lpszUserName,
 lpszPassword,
 lpszLocalFile,
 lpszRemoteFile,
 FTP_OPTION_DEFAULT,
 FILE_TYPE_AUTO,
 FTP_TIMEOUT,
 NULL);

// Display information about the queued file
if (dwFileId != 0)
{
 FTPQUEUEDFILE queuedFile;

 if (FtpGetQueuedFile(hQueue, dwFileId, &queuedFile))
 {
 switch (queuedFile.dwMode)
 {
 case FTP_QUEUE_DOWNLOAD:
 _tprintf(_T("%u: Download \"%s\" to \"%s\"\n"),
 dwFileId,
 queuedFile.szRemoteFile,
 queuedFile.szLocalFile);
 break;

 case FTP_QUEUE_UPLOAD:
 _tprintf(_T("%u: Upload \"%s\" to \"%s\"\n"),
 dwFileId,
 queuedFile.szLocalFile,
 queuedFile.szRemoteFile);
 break;
 }
 }
}

// Start the queued file transfers and wait for it to complete
if (FtpStartQueue(hQueue, FTP_QUEUE_ALL, 0, NULL, 0))
{
 FtpWaitForQueue(hQueue, INFINITE, &dwElapsed, &dwError);
 FtpStopQueue(hQueue);
}

// Remove all files from the queue
FtpDeleteQueue(hQueue);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpAddQueuedFile, FtpCreateQueue, FtpDeleteQueue, FtpFindQueuedFile, FtpGetFirstQueuedFile,
FtpGetNextQueuedFile, FtpGetQueuedFile, FtpRemoveQueuedFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpAllocate Function

INT WINAPI FtpAllocate(
 HCLIENT hClient,
 DWORD dwFileLength,
 DWORD dwRecSize
);

The FtpAllocate function instructs the server to reserve sufficient storage to accommodate the
new file being transferred.

Parameters
hClient

Handle to the client session.

dwFileLength

The number of bytes to allocate storage for on the server.

dwRecSize

The maximum record or page size for the file. A value of zero indicates that the file does not
have a record or page structure, and the parameter is ignored.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
This function should be called immediately before the FtpOpenFile function.

This function is ignored by those servers which do not require that the maximum size of the file be
declared beforehand. The most common FTP servers running under UNIX and Windows do not
require that file space be pre-allocated.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpOpenFile, FtpSetFileMode, FtpSetFileStructure, FtpSetFileType

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpAsyncConnect Function

HCLIENT WINAPI FtpAsyncConnect(
 LPCTSTR lpszRemoteHost,
 UINT nRemotePort,
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword,
 UINT nTimeout,
 DWORD dwOptions,
 LPSECURITYCREDENTIALS lpCredentials,
 HWND hEventWnd,
 UINT uEventMsg
);

The FtpAsyncConnect function establishes a connection with the specified server.

This function has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

The application should create a background worker thread and establish a connection by calling
FtpConnect within that thread. If the application requires multiple simultaneous connections, it is
recommended you create a worker thread for each client session.

Parameters
lpszRemoteHost

A pointer to the name of the server to connect to; this may be a fully-qualified domain name or
an IP address.

nRemotePort

The port number the server is listening on. A value of zero specifies that the default port
number should be used. For standard connections, the default port number is 21. For secure
connections, the default port number is 990. If the secure port number is specified, an implicit
SSL/TLS connection will be established by default.

lpszUserName

Points to a string that specifies the user name to be used to authenticate the current client
session. If this parameter is NULL or an empty string, then the login is considered to be
anonymous. Note that anonymous logins are not supported for secure connections using the
SSH protocol.

lpszPassword

Points to a string that specifies the password to be used to authenticate the current client
session. This parameter may be NULL or an empty string if no password is required for the
specified user, or if no username has been specified.

nTimeout

The number of seconds that the client will wait for a response from the server before failing the
current operation.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

FTP_OPTION_DEFAULT Default options should be used for file transfers.
This is the same as specifying that all file transfers
should use passive mode when establishing a data
connection with the server. It is recommended most
applications use passive mode to prevent potential
compatibility issues with certain types of firewalls
and routers which use Network Address Translation
(NAT).

FTP_OPTION_PASSIVE This option specifies file transfers should attempt to
establish the data connection with the server. If the
local system is behind a firewall or a NAT router,
the server may not be able to establish a data
connection back to the client and the transfer will
fail. This option forces the client to establish an
outbound data connection with the server. It is
recommended that applications use passive mode
whenever possible.

FTP_OPTION_FIREWALL This option specifies the client should always use
the host IP address to establish the data connection
with the server, not the address returned by the
server in response to the PASV command. This
option may be necessary if the server is behind a
router that performs Network Address Translation
(NAT) and it returns an unreachable IP address for
the data connection. If this option is specified, it will
also enable passive mode data transfers.

FTP_OPTION_NOAUTH This option specifies the server does not require
authentication, or that it requires an alternate
authentication method. When this option is used,
the client connection is flagged as authenticated as
soon as the connection to the server has been
established. Note that using this option to bypass
authentication may result in subsequent errors
when attempting to retrieve a directory listing or
transfer a file. It is recommended that you consult
the technical reference documentation for the
server to determine its specific authentication
requirements.

FTP_OPTION_KEEPALIVE This option specifies the client should attempt to
keep the connection with the server active for an
extended period of time. It is important to note that
regardless of this option, the server may still choose
to disconnect client sessions that are holding the
command channel open but are not performing file
transfers.

FTP_OPTION_NOAUTHRSA This option specifies that RSA authentication should

not be used with SSH-1 connections. This option is
ignored with SSH-2 connections and should only be
specified if required by the server. This option has
no effect on standard or secure connections using
SSL.

FTP_OPTION_NOPWDNUL This option specifies the user password cannot be
terminated with a null character. This option is
ignored with SSH-2 connections and should only be
specified if required by the server. This option has
no effect on standard or secure connections using
SSL.

FTP_OPTION_NOREKEY This option specifies the client should never attempt
a repeat key exchange with the server. Some SSH
servers do not support rekeying the session, and
this can cause the client to become non-responsive
or abort the connection after being connected for
an hour. This option has no effect on standard or
secure connections using SSL.

FTP_OPTION_COMPATSID This compatibility option changes how the session
ID is handled during public key authentication with
older SSH servers. This option should only be
specified when connecting to servers that use
OpenSSH 2.2.0 or earlier versions. This option has
no effect on standard or secure connections using
SSL.

FTP_OPTION_COMPATHMAC This compatibility option changes how the HMAC
authentication codes are generated. This option
should only be specified when connecting to
servers that use OpenSSH 2.2.0 or earlier versions.
This option has no effect on standard or secure
connections using SSL.

FTP_OPTION_VIRTUALHOST This option specifies the server supports virtual
hosting, where multiple domains are hosted by a
server using the same external IP address. If this
option is enabled, the client will send the HOST
command to the server upon establishing a
connection.

FTP_OPTION_VERIFY This option specifies that file transfers should be
automatically verified after the transfer has
completed. If the server supports the XMD5
command, the transfer will be verified by calculating
an MD5 hash of the file contents. If the server does
not support the XMD5 command, but does support
the XCRC command, the transfer will be verified by
calculating a CRC32 checksum of the file contents. If
neither the XMD5 or XCRC commands are
supported, the transfer is verified by comparing the

size of the file. Automatic file verification is only
performed for binary mode transfers because of the
end-of-line conversion that may occur when text
files are uploaded or downloaded.

FTP_OPTION_TRUSTEDSITE This option specifies the server is trusted. The server
certificate will not be validated and the connection
will always be permitted. This option only affects
connections using either the SSL or TLS protocols.

FTP_OPTION_SECURE This option specifies the client should attempt to
establish a secure connection with the server. This
option is the same as specifying
FTP_OPTION_SECURE_IMPLICIT which immediately
performs the SSL/TLS protocol negotiation when
the connection is established.

FTP_OPTION_SECURE_IMPLICIT This option specifies the client should attempt to
immediately establish secure SSL/TLS connection
with the server. This option is typically used when
connecting to a server on port 990, which is the
default port number used for FTPS.

FTP_OPTION_SECURE_EXPLICIT This option specifies the client should establish a
standard connection to the server and then use the
AUTH command to negotiate an explicit secure
connection. This option is typically used when
connecting to the server on ports other than 990.

FTP_OPTION_SECURE_SHELL This option specifies the client should use the
Secure Shell (SSH) protocol to establish the
connection. This option will automatically be
selected if the connection is established using port
22, the default port for SSH.

FTP_OPTION_SECURE_FALLBACK This option specifies the client should permit the
use of less secure cipher suites for compatibility
with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

FTP_OPTION_TUNNEL This option specifies that a tunneled TCP
connection and/or port-forwarding is being used to
establish the connection to the server. This changes
the behavior of the client with regards to internal
checks of the destination IP address and remote
port number, default capability selection and how
the connection is established. This option also
forces all connections to be outbound and enables
the firewall compatibility features in the client.

FTP_OPTION_KEEPALIVE_DATA This option specifies the client should attempt to
keep the control connection active during a file
transfer. Normally, when a data transfer is in

progress, no additional commands are issued on
the control channel until the transfer completes.
Specifying this option automatically enables the
FTP_OPTION_KEEPALIVE option and forces the
client to continue to issue NOOP commands during
the file transfer. This option only applies to FTP and
FTPS connections and has no effect on connections
using SFTP (SSH).

FTP_OPTION_PREFER_IPV6 This option specifies the client should prefer the use
of IPv6 if the server hostname can be resolved to
both an IPv6 and IPv4 address. This option is
ignored if the local system does not have IPv6
enabled, or when the hostname can only be
resolved to an IPv4 address. If the server hostname
can only be resolved to an IPv6 address, the client
will attempt to establish a connection using IPv6
regardless if this option has been specified.

FTP_OPTION_FREETHREAD This option specifies the handle returned by this
function may be used by any thread, and is not
limited to the thread which created it. The
application is responsible for ensuring that access to
the handle is synchronized across multiple threads.

FTP_OPTION_HIRES_TIMER This option specifies the elapsed time for data
transfers should be returned in milliseconds instead
of seconds. This will return more accurate transfer
times for smaller files being uploaded or
downloaded using fast network connections.

FTP_OPTION_TLS_REUSE This option specifies that TLS session reuse should
be enabled for secure connections. This option is
only supported on Windows 8.1 or Windows Server
2012 R2 and later platforms, and it should only be
used when explicitly required by the server. This
option is not compatible with servers built using
OpenSSL 1.0.2 and earlier versions which do not
provide Extended Master Secret (EMS) support as
outlined in RFC7627.

lpCredentials

A pointer to a SECURITYCREDENTIALS structure. This parameter should be NULL if the
connection is not secure or when client credentials are not required. Most servers do not
require a client certificate to establish a secure connection. However, if the server does require a
client certificate, the structure members dwSize, lpszCertStore and lpszCertName must be
defined. Undefined structure members must be initialized to a value of zero or NULL and the
dwSize member must be initialized to the size of the SECURITYCREDENTIALS structure.

hEventWnd

The handle to the event notification window. This window receives messages which notify the
client of various asynchronous network events that occur.

uEventMsg

The message identifier that is used when an asynchronous network event occurs. This value
should be greater than WM_USER as defined in the Windows header files.

Return Value
If the function succeeds, the return value is a handle to a client session. If the function fails, the
return value is INVALID_CLIENT. To get extended error information, call FtpGetLastError.

Remarks
When a message is posted to the notification window, the low word of the lParam parameter
contains the event identifier. The high word of lParam contains the low word of the error code, if
an error has occurred. The wParam parameter contains the client handle. One or more of the
following event identifiers may be sent:

Constant Description

FTP_EVENT_CONNECT The control connection to the server has completed. The high word
of the lParam parameter should be checked, since this notification
message will be posted if an error has occurred.

FTP_EVENT_DISCONNECT The server has closed the control connection to the client. The
client should read any remaining data and disconnect.

FTP_EVENT_OPENFILE The data connection to the server has completed. The high word of
the lParam parameter should be checked, since this notification
message will be posted if an error has occurred.

FTP_EVENT_CLOSEFILE The server has closed the data connection to the client. The client
should read any remaining data and close the data channel.

FTP_EVENT_READFILE Data is available to read by the calling process. No additional
messages will be posted until the client has read at least some of
the data. This event is only generated if the client is in
asynchronous mode.

FTP_EVENT_WRITEFILE The client can now write data. This notification is sent after a
connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking
operation. This event is only generated if the client is in
asynchronous mode.

FTP_EVENT_TIMEOUT The network operation has exceeded the specified timeout period.
The client application may attempt to retry the operation, or may
disconnect from the server and report an error to the user.

FTP_EVENT_CANCEL The current operation has been canceled. Under most
circumstances the client should disconnect from the server and re-
connect if needed. After an operation has been canceled, the
server may abort the connection or refuse to accept further
commands from the client.

FTP_EVENT_COMMAND A command has been issued by the client and the server response
has been received and processed. This event can be used to log
the result codes and messages returned by the server in response
to actions taken by the client.

FTP_EVENT_PROGRESS The client is in the process of sending or receiving a file on the data

channel. This event is called periodically during a transfer so that
the client can update any user interface components such as a
status control or progress bar.

FTP_EVENT_GETFILE This event is generated when a file download has completed. If
multiple files are being downloaded, this event will be generated
for each file.

FTP_EVENT_PUTFILE This event is generated when a file upload has completed. If
multiple files are being uploaded, this event will be generated for
each file.

To cancel asynchronous notification and return the client to a blocking mode, use the
FtpDisableEvents function.

If the FTP_OPTION_KEEPALIVE option is specified, a background worker thread will be created to
monitor the command channel and periodically send NOOP commands to the server if no
commands have been sent recently. This can prevent the server from terminating the client
connection during idle periods where no commands are being issued. However, it is important to
keep in mind that many servers can be configured to also limit the total amount of time a client
can be connected to the server, as well as the amount of time permitted between file transfers. If
the server does not respond to the NOOP command, this option will be automatically disabled for
the remainder of the client session.

If the FTP_OPTION_SECURE_EXPLICIT option is specified, the client will establish a standard
connection to the server and send the AUTH TLS command to the server. If the server does not
accept this command, it will then send the AUTH SSL command. If both commands are rejected
by the server, an explicit SSL session cannot be established. By default, both the command and
data channels will be encrypted when a secure connection is established. To change this, use the
FtpSetChannelMode function.

The dwOptions argument can be used to specify the threading model that is used by the library
when a connection is established. By default, the handle is initially attached to the thread that
created it. From that point on, until the it is released, only the owner may call functions using that
handle. The ownership of the handle may be transferred from one thread to another using the
FtpAttachThread function.

Specifying the FTP_OPTION_FREETHREAD option enables any thread to call any function using the
handle, regardless of which thread created it. It is important to note that this option disables
certain internal safety checks which are performed by the library and may result in unexpected
behavior unless access to the handle is synchronized. If one thread calls a function in the library, it
must ensure that no other thread will call another function at the same time using the same
handle.

Example
// The Ipswitch WS_FTP server accepts the AUTH command to establish
// an explicit SSL session on the default FTP port

hClient = FtpAsyncConnect(lpszRemoteHost,
 FTP_PORT_DEFAULT,
 FTP_TIMEOUT,
 FTP_OPTION_SECURE_EXPLICIT,
 NULL,
 hEventWnd,
 uEventMsg);

// When the GlobalSCAPE Secure FTP server is configured in implicit
// authorization mode, it negotiates a secure session as soon as the
// connection is established and does not require a command

hClient = FtpAsyncConnect(lpszRemoteHost,
 FTP_PORT_SECURE,
 FTP_TIMEOUT,
 FTP_OPTION_SECURE_IMPLICIT,
 NULL,
 hEventWnd,
 uEventMsg);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpAsyncProxyConnect, FtpConnect, FtpCreateSecurityCredentials, FtpDeleteSecurityCredentials,
FtpDisconnect, FtpGetSecurityInformation, FtpInitialize, FtpProxyConnect, FtpSetChannelMode

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpAsyncFileList Function

UINT WINAPI FtpAsyncFileList(
 HCLIENT hClient,
 LPCTSTR lpszDirectory,
 DWORD dwOptions,
 LPTSTR lpszBuffer,
 INT nMaxLength,
 FTPEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

Return an unparsed list of files in the specified directory.

Parameters
hClient

Handle to the client session.

lpszDirectory

A pointer to a string that specifies the name of a directory and/or a wildcard file mask. The
format of the directory name must match the file naming conventions of the server. If this
parameter is NULL or points to an empty string, the current working directory will be used.

dwOptions

An unsigned integer that specifies one or more options. This parameter may be any one of the
following values:

Constant Description

FTP_LIST_DEFAULT This option specifies the server should return a complete listing
of files in the specified directory with as much detail as
possible. This typically means that the file size, date, ownership
and access rights will be returned to the client. Information
about the files are returned in lines of text, with each line
terminated by carriage return and linefeed (CRLF) characters.
The exact format of the data returned is specific to the server
operating system.

FTP_LIST_NAMEONLY This option specifies the server should only return a list of file
names, with no additional information about the file. Each file
name is terminated by carriage return and linefeed (CRLF)
characters.

lpszBuffer

A pointer to a string buffer that will contain the list of files when the function returns. This buffer
should be large enough to store the complete file listing and a terminating null character. If the
buffer is smaller than the total amount of data returned by the server, the data will be truncated.
This parameter cannot be NULL.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer, including the terminating null character.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the FtpEventProc callback
function. This parameter may be NULL if you do not wish to implement an event handler.

dwParam

A user-defined integer value that is passed to the callback function. This parameter is ignored if
the lpEventProc parameter is NULL.

Return Value
If the function succeeds, the return value is non-zero integer value that specifies a unique
asynchronous task identifier. If the function fails, the return value is zero. To get extended error
information, call the FtpGetLastError function.

Remarks
The FtpAsyncFileList function returns a list of files in the specified directory, copying the data to a
string buffer. This function is similar to the FtpGetFileList function, however it retrieves the list of
files asynchronously using a background worker thread and does not block the current working
thread. This enables the application to continue to perform other operations while the file listing is
being returned by the server.

Because this function works asynchronously, it is important that the memory allocated for the
buffer is not released before the asynchronous task completes. If you provide a buffer that is
allocated on the stack, such as with the example listed below, then you must ensure that your
code does not return from the function while the directory listing is being retrieved. In the
example, this is achieved by calling the FtpTaskWait function. You can also perform other
operation and poll the status of the task by calling the FtpTaskDone function. If you wish to
return from the calling function immediately, then you must dynamically allocate memory for the
lpszBuffer parameter on the heap and free that memory after the task has completed and the
data is no longer needed.

If the address of an event handler is provided to this function, it is guaranteed that the handler will
be invoked with the FTP_EVENT_CONNECT event after the connection has been established, and
the FTP_EVENT_DISCONNECT event after the directory listing has completed. This enables your
application to know when the directory listing is about to begin, and immediately before the
worker thread is terminated. The worker thread creates a secondary connection to the server with
its own session handle. This ensures that the asynchronous operation will not interfere with the
current client session. Your application can interact with this background worker thread using the
client handle that is passed to the event handler.

This function can be particularly useful when the client is connected to a server that returns file
listings in a format that is not recognized by the library. The application can retrieve the unparsed
file listing from the server and parse the contents. Note that if you specify the
FTP_LIST_NAMEONLY option, the data will only contain a list of file names and there will be no
way for the application to know if they represent a regular file or a subdirectory.

This function is supported for both FTP and SFTP (SSH) connections, however the format of the
data may differ depending on which protocol is used. Most UNIX based FTP servers will not list
files and subdirectories that begin with a period, however most SFTP servers will return a list of all
files, even those that begin with a period.

Example
TCHAR szFileList[MAXFILELISTSIZE];
UINT nTaskId;

nTaskId = FtpAsyncFileList(hClient,
 NULL,
 FTP_LIST_DEFAULT,
 szFileList,
 MAXFILELISTSIZE,
 NULL, 0);

if (nTaskId == 0)
{
 _tprintf(_T("Unable to list files (error 0x%08lx)\n"), FtpGetLastError());
 return;
}
else
{
 DWORD dwError = NO_ERROR;
 DWORD dwElapsed = 0;

 FtpTaskWait(nTaskId, INFINTE, &dwElapsed, &dwError);
 _tprintf(_T("Asynchronous file listing returned in %lu milliseconds\n"),
dwElapsed);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpEventProc, FtpGetFileList, FtpTaskWait

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpAsyncGetData Function

UINT WINAPI FtpAsyncGetData(
 HCLIENT hClient,
 LPCTSTR lpszRemoteFile,
 LPVOID lpvBuffer,
 LPDWORD lpdwLength,
 DWORD dwReserved,
 FTPEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

Copies the contents of a file on the server to the specified buffer.

Parameters
hClient

Handle to the client session.

lpszRemoteFile

A pointer to a string that specifies the file on the server that will be transferred to the local
system. The file naming conventions must be that of the host operating system.

lpvBuffer

A pointer to a byte buffer which will contain the data transferred from the server, or a pointer to
a global memory handle which will reference the data when the function returns.

lpdwLength

A pointer to an unsigned integer which should be initialized to the maximum number of bytes
that can be copied to the buffer specified by the lpvBuffer parameter. If the lpvBuffer
parameter points to a global memory handle, the length value should be initialized to zero.
When the function returns, this value will be updated with the actual length of the file that was
downloaded.

dwReserved

A reserved parameter. This value should always be zero.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the FtpEventProc callback
function. This parameter may be NULL if you do not wish to implement an event handler.

dwParam

A user-defined integer value that is passed to the callback function. This parameter is ignored if
the lpEventProc parameter is NULL.

Return Value
If the function succeeds, the return value is non-zero integer value that specifies a unique
asynchronous task identifier. If the function fails, the return value is zero. To get extended error
information, call the FtpGetLastError function. The application should treat the task ID as an
opaque value and never make an assumption about the sequence in which IDs are assigned to a
background task.

Remarks
The FtpAsyncGetData function is used to download the contents of a remote file into a local

buffer. This function is similar to the FtpGetData function, however it retrieves the contents of the
file using a background worker thread and does not block the current working thread. This
enables the application to continue to perform other operations while the file is being copied to
the local system.

Because this function works asynchronously, it is important that the memory allocated for the
buffer is not released before the asynchronous task completes. If you provide a buffer that is
allocated on the stack, such as with the example listed below, then you must ensure that your
code does not return from the function while the data is being downloaded. In the example, this is
achieved by calling the FtpTaskWait function. You can also perform other operation and poll the
status of the task by calling the FtpTaskDone function. If you wish to return from the calling
function immediately, then you must dynamically allocate memory for the lpvBuffer and
lpdwLength parameters on the heap and free that memory after the task has completed and the
data is no longer needed.

If the address of an event handler is provided to this function, it is guaranteed that the handler will
be invoked with the FTP_EVENT_CONNECT event after the connection has been established, and
the FTP_EVENT_DISCONNECT event after the transfer has completed. This enables your
application to know when the data transfer is about to begin, and immediately before the worker
thread is terminated. The worker thread creates a secondary connection to the server with its own
session handle. This ensures that the asynchronous operation will not interfere with the current
client session. Your application can interact with this background worker thread using the client
handle that is passed to the event handler.

The lpBuffer parameter may be specified in one of two ways, depending on the needs of the
application. It can either be a pre-allocated buffer large enough to store the contents of the file or
it can specify the address of a global memory handle that will contain the data. If it points to a
pre-allocated buffer, the lpdwLength parameter must be initialized to the maximum number of
bytes that can be copied into the buffer. If specifies the address of a global memory handle, then
lpdwLength must be initialized to a value of zero. See the example code below.

Example
HGLOBAL hgblBuffer = NULL;
DWORD dwLength = 0;
UINT nTaskId;

// Return the file data into block of global memory allocated by
// the GlobalAlloc function; the handle to this memory will be
// returned in the hgblBuffer parameter

nTaskId = FtpAsyncGetData(hClient,
 lpszFileName,
 &hgblBuffer,
 &dwLength,
 0, NULL, 0);

if (nTaskId != 0)
{
 DWORD dwError = NO_ERROR;
 DWORD dwElapsed = 0;

 // Wait for the transfer to complete
 FtpTaskWait(nTaskId, INFINTE, &dwElapsed, &dwError);

 // Lock the global memory handle, returning a pointer to the

 // contents of the file data
 lpBuffer = (LPBYTE)GlobalLock(hgblBuffer);

 // After the data has been used, the handle must be unlocked
 // and freed, otherwise a memory leak will occur
 GlobalUnlock(hgblBuffer);
 GlobalFree(hgblBuffer);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpAsyncGetFile, FtpAsyncPutData, FtpAsyncPutFile, FtpEventProc, FtpGetFile, FtpTaskWait

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpAsyncGetFile Function

UINT WINAPI FtpAsyncGetFile(
 HCLIENT hClient,
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszRemoteFile,
 DWORD dwOptions,
 DWORD dwOffset,
 FTPEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

Downloads the specified file from the server to the local system.

Parameters
hClient

Handle to the client session.

lpszLocalFile

A pointer to a string that specifies the file on the local system that will be created, overwritten or
appended to. The file pathing and name conventions must be that of the local host.

lpszRemoteFile

A pointer to a string that specifies the file on the server that will be transferred to the local
system. The file naming conventions must be that of the host operating system.

dwOptions

An unsigned integer that specifies one or more options. This parameter may be any one of the
following values:

Constant Description

FTP_TRANSFER_DEFAULT This option specifies the default transfer mode should be
used. If the local file exists, it will be overwritten with the
contents of the downloaded file.

FTP_TRANSFER_APPEND This option specifies that if the local file exists, the contents
of file on the server is appended to the local file. If the local
file does not exist, it is created.

dwOffset

A byte offset which specifies where the file transfer should begin. The default value of zero
specifies that the file transfer should start at the beginning of the file. A value greater than zero
is typically used to restart a transfer that has not completed successfully. Note that specifying a
non-zero offset requires that the server support the REST command to restart transfers.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the FtpEventProc callback
function. This parameter may be NULL if you do not wish to implement an event handler.

dwParam

A user-defined integer value that is passed to the callback function. This parameter is ignored if
the lpEventProc parameter is NULL.

Return Value
If the function succeeds, the return value is non-zero integer value that specifies a unique
asynchronous task identifier. If the function fails, the return value is zero. To get extended error
information, call the FtpGetLastError function. The application should treat the task ID as an
opaque value and never make an assumption about the sequence in which IDs are assigned to a
background task.

Remarks
The FtpAsyncGetFile function is used to download the contents of a remote file to a file on the
local system. This function is similar to the FtpGetFile function, however it retrieves the file using a
background worker thread and does not block the current working thread. This enables the
application to continue to perform other operations while the file is being transferred to the local
system.

If the address of an event handler is provided to this function, it is guaranteed that the handler will
be invoked with the FTP_EVENT_CONNECT event after the connection has been established, and
the FTP_EVENT_DISCONNECT event after the transfer has completed. This enables your
application to know when the file transfer is about to begin, and immediately before the worker
thread is terminated. During the file transfer, the callback function will be invoked periodically with
the FTP_EVENT_PROGRESS event. The client session handle is passed to the event handler,
allowing you to call functions such as FtpGetTransferStatus to determine the amount of data
that has been copied.

To determine when the transfer has completed without implementing an event handler,
periodically call the FtpTaskDone function. If you wish to block the current thread and wait for the
transfer to complete, call the FtpTaskWait function. To stop a background file transfer that is in
progress, call the FtpTaskAbort function. This will signal the background worker thread to cancel
the transfer and terminate the session.

This function can be called multiple times to download multiple files in the background; however,
most servers limit the number of simultaneous connections that can originate from a single IP
address. It is recommended that you only perform two simultaneous background transfers from
the same server at any one time. The application should not make any assumptions about the
order in which multiple background transfers may complete or how they are sequenced. For
example, it should never be assumed that a background task with a lower task ID will complete
before a task with a higher ID value.

Example
UINT nTaskId;

// Begin a file transfer in the background

nTaskId = FtpAsyncGetFile(hClient,
 lpszLocalFile,
 lpszRemoteFile,
 FTP_TRANSFER_DEFAULT,
 0,
 NULL,
 0);

if (nTaskId != 0)
{
 DWORD dwError = NO_ERROR;
 DWORD dwElapsed = 0;

 // Wait for the transfer to complete
 FtpTaskWait(nTaskId, INFINTE, &dwElapsed, &dwError);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpAsyncGetData, FtpAsyncPutData, FtpAsyncPutFile, FtpEventProc, FtpGetFile, FtpTaskDone,
FtpTaskWait

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpAsyncGetFileEx Function

UINT WINAPI FtpAsyncGetFileEx(
 HCLIENT hClient,
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszRemoteFile,
 DWORD dwOptions,
 ULARGE_INTEGER uiOffset,
 FTPEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

Downloads the specified file from the server to the local system. This version of the function is
designed to support files that are larger than 4GB.

Parameters
hClient

Handle to the client session.

lpszLocalFile

A pointer to a string that specifies the file on the local system that will be created, overwritten or
appended to. The file pathing and name conventions must be that of the local host.

lpszRemoteFile

A pointer to a string that specifies the file on the server that will be transferred to the local
system. The file naming conventions must be that of the host operating system.

dwOptions

An unsigned integer that specifies one or more options. This parameter may be any one of the
following values:

Constant Description

FTP_TRANSFER_DEFAULT This option specifies the default transfer mode should be
used. If the local file exists, it will be overwritten with the
contents of the downloaded file.

FTP_TRANSFER_APPEND This option specifies that if the local file exists, the contents
of file on the server is appended to the local file. If the local
file does not exist, it is created.

uiOffset

A byte offset which specifies where the file transfer should begin. The default value of zero
specifies that the file transfer should start at the beginning of the file. A value greater than zero
is typically used to restart a transfer that has not completed successfully. Note that specifying a
non-zero offset requires that the server support the REST command to restart transfers.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the FtpEventProc callback
function. This parameter may be NULL if you do not wish to implement an event handler.

dwParam

A user-defined integer value that is passed to the callback function. This parameter is ignored if
the lpEventProc parameter is NULL.

Return Value
If the function succeeds, the return value is non-zero integer value that specifies a unique
asynchronous task identifier. If the function fails, the return value is zero. To get extended error
information, call the FtpGetLastError function. The application should treat the task ID as an
opaque value and never make an assumption about the sequence in which IDs are assigned to a
background task.

Remarks
The FtpAsyncGetFileEx function is used to download the contents of a remote file to a file on the
local system. This function is similar to the FtpGetFileEx function, however it retrieves the file
using a background worker thread and does not block the current working thread. This enables
the application to continue to perform other operations while the file is being transferred to the
local system.

If the address of an event handler is provided to this function, it is guaranteed that the handler will
be invoked with the FTP_EVENT_CONNECT event after the connection has been established, and
the FTP_EVENT_DISCONNECT event after the transfer has completed. This enables your
application to know when the file transfer is about to begin, and immediately before the worker
thread is terminated. During the file transfer, the callback function will be invoked periodically with
the FTP_EVENT_PROGRESS event. The client session handle is passed to the event handler,
allowing you to call functions such as FtpGetTransferStatusEx to determine the amount of data
that has been copied.

To determine when the transfer has completed without implementing an event handler,
periodically call the FtpTaskDone function. If you wish to block the current thread and wait for the
transfer to complete, call the FtpTaskWait function. To stop a background file transfer that is in
progress, call the FtpTaskAbort function. This will signal the background worker thread to cancel
the transfer and terminate the session.

This function can be called multiple times to download multiple files in the background; however,
most servers limit the number of simultaneous connections that can originate from a single IP
address. It is recommended that you only perform two simultaneous background transfers from
the same server at any one time. The application should not make any assumptions about the
order in which multiple background transfers may complete or how they are sequenced. For
example, it should never be assumed that a background task with a lower task ID will complete
before a task with a higher ID value.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpAsyncPutFileEx, FtpEventProc, FtpGetFileEx, FtpPutFileEx, FtpTaskDone, FtpTaskWait

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpAsyncProxyConnect Function

HCLIENT WINAPI FtpAsyncProxyConnect(
 UINT nProxyType,
 LPCTSTR lpszProxyHost,
 UINT nProxyPort,
 LPCTSTR lpszProxyUser,
 LPCTSTR lpszProxyPassword,
 LPCTSTR lpszRemoteHost,
 UINT nRemotePort,
 UINT nTimeout,
 DWORD dwOptions,
 LPSECURITYCREDENTIALS lpCredentials,
 HWND hEventWnd,
 UINT uEventMsg
);

The FtpAsyncProxyConnect function establishes a connection through a proxy server.

This function has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

The application should create a background worker thread and establish a connection by calling
FtpProxyConnect within that thread. If the application requires multiple simultaneous
connections, it is recommended you create a worker thread for each client session.

Parameters
nProxyType

An identifier which specifies the type of proxy server that is being connected to. This value must
be defined as one of the following values:

Constant Description

FTP_PROXY_NONE This value specifies that no proxy server is being used. In this
case, the FtpConnect function is called directly, ignoring the
proxy parameters.

FTP_PROXY_USER This value specifies that the client is not logged into the proxy
server. The USER command is sent in the format
username@ftpsite followed by the password. This is the format
used with the Gauntlet proxy server.

FTP_PROXY_LOGIN This value specifies that the client is logged into the proxy server.
The USER command is then sent in the format username@ftpsite
followed by the password. This is the format used by the
InterLock proxy server.

FTP_PROXY_OPEN This value specifies that the client is not logged into the proxy
server. The OPEN command is sent specifying the host name,
followed by the username and password.

FTP_PROXY_SITE This value specifies that the client is logged into the server. The
SITE command is sent, specifying the host name, followed by the

username and the password.

FTP_PROXY_OTHER This special proxy type specifies that another, undefined proxy
server is being used. The client connects to the proxy host, but
does not attempt to authenticate the client. The application is
responsible for negotiating with the proxy server, typically using
the FtpCommand function to send specific command sequences.

lpszProxyHost

A pointer to the name of the proxy server to connect through; this may be a fully-qualified
domain name or an IP address.

lpszProxyPort

The port number the proxy server is listening on; a value of zero specifies that the default port
number should be used.

lpszProxyUser

A pointer to the user name used to authenticate the client on the proxy server. Not all proxy
servers require this information; it is recommended that you consult the proxy server
documentation to determine if a username is required.

lpszProxyPassword

A pointer to the password used to authenticate the client on the proxy server. Not all proxy
servers require this information; it is recommended that you consult the proxy server
documentation to determine if a password is required.

lpszRemoteHost

A pointer to the name of the server to connect to; this may be a fully-qualified domain name or
an IP address.

nRemotePort

The port number the server is listening on; a value of zero specifies that the default port
number should be used. For standard connections, the default port number is 21. For secure
connections, the default port number is 990. If the secure port number is specified, an implicit
SSL/TLS connection will be established by default.

nTimeout

The number of seconds that the client will wait for a response from the server before failing the
current operation.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

FTP_OPTION_DEFAULT Default options should be used for file transfers.
This is the same as specifying that all file transfers
should use passive mode when establishing a data
connection with the server. It is recommended most
applications use passive mode to prevent potential
compatibility issues with certain types of firewalls
and routers which use Network Address Translation
(NAT).

FTP_OPTION_PASSIVE This option specifies file transfers should attempt to

establish the data connection with the server. If the
local system is behind a firewall or a NAT router,
the server may not be able to establish a data
connection back to the client and the transfer will
fail. This option forces the client to establish an
outbound data connection with the server. It is
recommended that applications use passive mode
whenever possible.

FTP_OPTION_FIREWALL This option specifies the client should always use
the host IP address to establish the data connection
with the server, not the address returned by the
server in response to the PASV command. This
option may be necessary if the server is behind a
router that performs Network Address Translation
(NAT) and it returns an unreachable IP address for
the data connection. If this option is specified, it will
also enable passive mode data transfers.

FTP_OPTION_NOAUTH This option specifies the server does not require
authentication, or that it requires an alternate
authentication method. When this option is used,
the client connection is flagged as authenticated as
soon as the connection to the server has been
established. Note that using this option to bypass
authentication may result in subsequent errors
when attempting to retrieve a directory listing or
transfer a file. It is recommended that you consult
the technical reference documentation for the
server to determine its specific authentication
requirements.

FTP_OPTION_KEEPALIVE This option specifies the client should attempt to
keep the connection with the server active for an
extended period of time. It is important to note that
regardless of this option, the server may still choose
to disconnect client sessions that are holding the
command channel open but are not performing file
transfers.

FTP_OPTION_VIRTUALHOST This option specifies the server supports virtual
hosting, where multiple domains are hosted by a
server using the same external IP address. If this
option is enabled, the client will send the HOST
command to the server upon establishing a
connection.

FTP_OPTION_VERIFY This option specifies that file transfers should be
automatically verified after the transfer has
completed. If the server supports the XMD5
command, the transfer will be verified by calculating
an MD5 hash of the file contents. If the server does
not support the XMD5 command, but does support

the XCRC command, the transfer will be verified by
calculating a CRC32 checksum of the file contents. If
neither the XMD5 or XCRC commands are
supported, the transfer is verified by comparing the
size of the file. Automatic file verification is only
performed for binary mode transfers because of the
end-of-line conversion that may occur when text
files are uploaded or downloaded.

FTP_OPTION_TRUSTEDSITE This option specifies the server is trusted. The server
certificate will not be validated and the connection
will always be permitted. This option only affects
connections using either the SSL or TLS protocols.

FTP_OPTION_SECURE This option specifies the client should attempt to
establish a secure connection with the server. This
option is the same as specifying
FTP_OPTION_SECURE_IMPLICIT which immediately
performs the SSL/TLS protocol negotiation when
the connection is established.

FTP_OPTION_SECURE_IMPLICIT This option specifies the client should attempt to
immediately establish secure SSL/TLS connection
with the server. This option is typically used when
connecting to a server on port 990, which is the
default port number used for FTPS.

FTP_OPTION_SECURE_EXPLICIT This option specifies the client should establish a
standard connection to the server and then use the
AUTH command to negotiate an explicit secure
connection. This option is typically used when
connecting to the server on ports other than 990.

FTP_OPTION_SECURE_FALLBACK This option specifies the client should permit the
use of less secure cipher suites for compatibility
with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

FTP_OPTION_TUNNEL This option specifies that a tunneled TCP
connection and/or port-forwarding is being used to
establish the connection to the server. This changes
the behavior of the client with regards to internal
checks of the destination IP address and remote
port number, default capability selection and how
the connection is established. This option also
forces all connections to be outbound and enables
the firewall compatibility features in the client.

FTP_OPTION_KEEPALIVE_DATA This option specifies the client should attempt to
keep the control connection active during a file
transfer. Normally, when a data transfer is in
progress, no additional commands are issued on
the control channel until the transfer completes.

Specifying this option automatically enables the
FTP_OPTION_KEEPALIVE option and forces the
client to continue to issue NOOP commands during
the file transfer. This option only applies to FTP and
FTPS connections and has no effect on connections
using SFTP (SSH).

FTP_OPTION_PREFER_IPV6 This option specifies the client should prefer the use
of IPv6 if the server hostname can be resolved to
both an IPv6 and IPv4 address. This option is
ignored if the local system does not have IPv6
enabled, or when the hostname can only be
resolved to an IPv4 address. If the server hostname
can only be resolved to an IPv6 address, the client
will attempt to establish a connection using IPv6
regardless if this option has been specified.

FTP_OPTION_FREETHREAD This option specifies the handle returned by this
function may be used by any thread, and is not
limited to the thread which created it. The
application is responsible for ensuring that access to
the handle is synchronized across multiple threads.

FTP_OPTION_HIRES_TIMER This option specifies the elapsed time for data
transfers should be returned in milliseconds instead
of seconds. This will return more accurate transfer
times for smaller files being uploaded or
downloaded using fast network connections.

FTP_OPTION_TLS_REUSE This option specifies that TLS session reuse should
be enabled for secure connections. This option is
only supported on Windows 8.1 or Windows Server
2012 R2 and later platforms, and it should only be
used when explicitly required by the server. This
option is not compatible with servers built using
OpenSSL 1.0.2 and earlier versions which do not
provide Extended Master Secret (EMS) support as
outlined in RFC7627.

lpCredentials

A pointer to a SECURITYCREDENTIALS structure. This parameter should be NULL if the
connection is not secure or when client credentials are not required. Most servers do not
require a client certificate to establish a secure connection. However, if the server does require a
client certificate, the structure members dwSize, lpszCertStore and lpszCertName must be
defined. Undefined structure members must be initialized to a value of zero or NULL and the
dwSize member must be initialized to the size of the SECURITYCREDENTIALS structure.

hEventWnd

The handle to the event notification window. This window receives messages which notify the
client of various asynchronous network events that occur.

uEventMsg

The message identifier that is used when an asynchronous network event occurs. This value

should be greater than WM_USER as defined in the Windows header files.

Return Value
If the function succeeds, the return value is a handle to a client session. If the function fails, the
return value is INVALID_CLIENT. To get extended error information, call FtpGetLastError.

Remarks
The username and password that is used to authenticate the client with the proxy server are not
the same as those used to login to the target server. Once a connection has been established with
the proxy server, the client must call the FtpLogin function to actually login to the server and
begin a file transfer.

When a message is posted to the notification window, the low word of the lParam parameter
contains the event identifier. The high word of lParam contains the low word of the error code, if
an error has occurred. The wParam parameter contains the client handle. One or more of the
following event identifiers may be sent:

Constant Description

FTP_EVENT_CONNECT The control connection to the server has completed. The high word
of the lParam parameter should be checked, since this notification
message will be posted if an error has occurred.

FTP_EVENT_DISCONNECT The server has closed the control connection to the client. The
client should read any remaining data and disconnect.

FTP_EVENT_OPENFILE The data connection to the server has completed. The high word of
the lParam parameter should be checked, since this notification
message will be posted if an error has occurred.

FTP_EVENT_CLOSEFILE The server has closed the data connection to the client. The client
should read any remaining data and close the data channel.

FTP_EVENT_READFILE Data is available to read by the calling process. No additional
messages will be posted until the client has read at least some of
the data. This event is only generated if the client is in
asynchronous mode.

FTP_EVENT_WRITEFILE The client can now write data. This notification is sent after a
connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking
operation. This event is only generated if the client is in
asynchronous mode.

FTP_EVENT_TIMEOUT The network operation has exceeded the specified timeout period.
The client application may attempt to retry the operation, or may
disconnect from the server and report an error to the user.

FTP_EVENT_CANCEL The current operation has been canceled. Under most
circumstances the client should disconnect from the server and re-
connect if needed. After an operation has been canceled, the
server may abort the connection or refuse to accept further
commands from the client.

FTP_EVENT_COMMAND A command has been issued by the client and the server response
has been received and processed. This event can be used to log

the result codes and messages returned by the server in response
to actions taken by the client.

FTP_EVENT_PROGRESS The client is in the process of sending or receiving a file on the data
channel. This event is called periodically during a transfer so that
the client can update any user interface components such as a
status control or progress bar.

FTP_EVENT_GETFILE This event is generated when a file download has completed. If
multiple files are being downloaded, this event will be generated
for each file.

FTP_EVENT_PUTFILE This event is generated when a file upload has completed. If
multiple files are being uploaded, this event will be generated for
each file.

To cancel asynchronous notification and return the client to a blocking mode, use the
FtpDisableEvents function.

If the FTP_OPTION_KEEPALIVE option is specified, a background worker thread will be created to
monitor the command channel and periodically send NOOP commands to the server if no
commands have been sent recently. This can prevent the server from terminating the client
connection during idle periods where no commands are being issued. However, it is important to
keep in mind that many servers can be configured to also limit the total amount of time a client
can be connected to the server, as well as the amount of time permitted between file transfers. If
the server does not respond to the NOOP command, this option will be automatically disabled for
the remainder of the client session.

If the FTP_OPTION_SECURE_EXPLICIT option is specified, the client will establish a standard
connection to the server and send the AUTH TLS command to the server. If the server does not
accept this command, it will then send the AUTH SSL command. If both commands are rejected
by the server, an explicit SSL session cannot be established. By default, both the command and
data channels will be encrypted when a secure connection is established. To change this, use the
FtpSetChannelMode function.

The dwOptions argument can be used to specify the threading model that is used by the library
when a connection is established. By default, the handle is initially attached to the thread that
created it. From that point on, until the it is released, only the owner may call functions using that
handle. The ownership of the handle may be transferred from one thread to another using the
FtpAttachThread function.

Specifying the FTP_OPTION_FREETHREAD option enables any thread to call any function using the
handle, regardless of which thread created it. It is important to note that this option disables
certain internal safety checks which are performed by the library and may result in unexpected
behavior unless access to the handle is synchronized. If one thread calls a function in the library, it
must ensure that no other thread will call another function at the same time using the same
handle.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpAsyncConnect, FtpConnect, FtpCreateSecurityCredentials, FtpDeleteSecurityCredentials,
FtpDisconnect, FtpGetSecurityInformation, FtpInitialize, FtpLogin, FtpProxyConnect,
FtpSetChannelMode

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpAsyncPutData Function

UINT WINAPI FtpAsyncPutData(
 HCLIENT hClient,
 LPCTSTR lpszFileName,
 LPVOID lpvBuffer,
 DWORD dwLength,
 DWORD dwReserved,
 FTPEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

Copies the contents of the specified buffer to a file on the server.

Parameters
hClient

Handle to the client session.

lpszFileName

A pointer to a string that specifies the file on the server that will be created, overwritten or
appended to. The file naming conventions must be that of the host operating system.

lpvBuffer

A pointer to the data that will be copied to the server and stored in the specified file.

dwLength

The number of bytes to copy from the buffer.

dwReserved

A reserved parameter. This value should always be zero.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the FtpEventProc callback
function. This parameter may be NULL if you do not wish to implement an event handler.

dwParam

A user-defined integer value that is passed to the callback function. This parameter is ignored if
the lpEventProc parameter is NULL.

Return Value
If the function succeeds, the return value is non-zero integer value that specifies a unique
asynchronous task identifier. If the function fails, the return value is zero. To get extended error
information, call the FtpGetLastError function. The application should treat the task ID as an
opaque value and never make an assumption about the sequence in which IDs are assigned to a
background task.

Remarks
The FtpAsyncPutData function is used to upload the contents of a local buffer to the server. This
function is similar to the FtpPutData function, however it uses a background worker thread and
does not block the current working thread. This enables the application to continue to perform
other operations while the data is being sent to the server.

Because this function works asynchronously, it is important that the memory allocated for the
buffer is not released before the asynchronous task completes. If you provide a buffer that is

allocated on the stack, ensure that your code does not return from the function while the data is
being uploaded. This can be achieved by calling the FtpTaskWait function or periodically calling
the FtpTaskDone function to determine if the transfer has completed. If you wish to return from
the calling function immediately, then you must dynamically allocate memory for the lpvBuffer
parameter on the heap and free that memory after the task has completed and the data is no
longer needed.

If the address of an event handler is provided to this function, it is guaranteed that the handler will
be invoked with the FTP_EVENT_CONNECT event after the connection has been established, and
the FTP_EVENT_DISCONNECT event after the transfer has completed. This enables your
application to know when the data transfer is about to begin, and immediately before the worker
thread is terminated. The worker thread creates a secondary connection to the server with its own
session handle. This ensures that the asynchronous operation will not interfere with the current
client session. Your application can interact with this background worker thread using the client
handle that is passed to the event handler.

If the lpvBuffer parameter is pointing to a Unicode string, it is important to note that the value of
the dwLength parameter should specify the number of bytes, not the number of characters. When
using UTF-16, each character is two bytes long and therefore the length of the buffer is effectively
double the length of the string. Because Unicode strings can contain null characters, you must also
set the current file type to FILE_TYPE_IMAGE prior to calling this function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpAsyncGetData, FtpAsyncGetFile, FtpAsyncPutFile, FtpEventProc, FtpPutData, FtpTaskWait

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpAsyncPutFile Function

UINT WINAPI FtpAsyncPutFile(
 HCLIENT hClient,
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszRemoteFile,
 DWORD dwOptions,
 DWORD dwOffset,
 FTPEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

Uploads the specified file from the local system to the server.

Parameters
hClient

Handle to the client session.

lpszLocalFile

A pointer to a string that specifies the file that will be transferred from the local system. The file
pathing and name conventions must be that of the local host.

lpszRemoteFile

A pointer to a string that specifies the file on the server that will be created, overwritten or
appended to. The file naming conventions must be that of the host operating system.

dwOptions

An unsigned integer that specifies one or more options. This parameter may be any one of the
following values:

Constant Description

FTP_TRANSFER_DEFAULT This option specifies the default transfer mode should be
used. If the remote file exists, it will be overwritten with the
contents of the uploaded file.

FTP_TRANSFER_APPEND This option specifies that if the remote file exists, the
contents of the local file is appended to the remote file. If
the remote file does not exist, it is created.

dwOffset

A byte offset which specifies where the file transfer should begin. The default value of zero
specifies that the file transfer should start at the beginning of the file. A value greater than zero
is typically used to restart a transfer that has not completed successfully. Note that specifying a
non-zero offset requires that the server support the REST command to restart transfers.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the FtpEventProc callback
function. This parameter may be NULL if you do not wish to implement an event handler.

dwParam

A user-defined integer value that is passed to the callback function. This parameter is ignored if
the lpEventProc parameter is NULL.

Return Value
If the function succeeds, the return value is non-zero integer value that specifies a unique
asynchronous task identifier. If the function fails, the return value is zero. To get extended error
information, call the FtpGetLastError function. The application should treat the task ID as an
opaque value and never make an assumption about the sequence in which IDs are assigned to a
background task.

Remarks
The FtpAsyncPutFile function is used to upload the contents of a local file to the server. This
function is similar to the FtpPutFile function, however it uploads the file using a background
worker thread and does not block the current working thread. This enables the application to
continue to perform other operations while the file is being transferred to the server.

If the address of an event handler is provided to this function, it is guaranteed that the handler will
be invoked with the FTP_EVENT_CONNECT event after the connection has been established, and
the FTP_EVENT_DISCONNECT event after the transfer has completed. This enables your
application to know when the file transfer is about to begin, and immediately before the worker
thread is terminated. During the file transfer, the callback function will be invoked periodically with
the FTP_EVENT_PROGRESS event. The client session handle is passed to the event handler,
allowing you to call functions such as FtpGetTransferStatus to determine the amount of data
that has been copied.

To determine when the transfer has completed without implementing an event handler,
periodically call the FtpTaskDone function. If you wish to block the current thread and wait for the
transfer to complete, call the FtpTaskWait function. To stop a background file transfer that is in
progress, call the FtpTaskAbort function. This will signal the background worker thread to cancel
the transfer and terminate the session.

This function can be called multiple times to upload multiple files in the background; however,
most servers limit the number of simultaneous connections that can originate from a single IP
address. It is recommended that you only perform two simultaneous background transfers from
the same server at any one time. The application should not make any assumptions about the
order in which multiple background transfers may complete or how they are sequenced. For
example, it should never be assumed that a background task with a lower task ID will complete
before a task with a higher ID value.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpAsyncGetData, FtpAsyncGetFile, FtpAsyncPutData, FtpEventProc, FtpPutFile, FtpTaskDone,
FtpTaskWait

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpAsyncPutFileEx Function

UINT WINAPI FtpAsyncPutFileEx(
 HCLIENT hClient,
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszRemoteFile,
 DWORD dwOptions,
 ULARGE_INTEGER uiOffset,
 FTPEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

Uploads the specified file from the local system to the server. This version of the function is
designed to support files that are larger than 4GB.

Parameters
hClient

Handle to the client session.

lpszLocalFile

A pointer to a string that specifies the file that will be transferred from the local system. The file
pathing and name conventions must be that of the local host.

lpszRemoteFile

A pointer to a string that specifies the file on the server that will be created, overwritten or
appended to. The file naming conventions must be that of the host operating system.

dwOptions

An unsigned integer that specifies one or more options. This parameter may be any one of the
following values:

Constant Description

FTP_TRANSFER_DEFAULT This option specifies the default transfer mode should be
used. If the remote file exists, it will be overwritten with the
contents of the uploaded file.

FTP_TRANSFER_APPEND This option specifies that if the remote file exists, the
contents of the local file is appended to the remote file. If
the remote file does not exist, it is created.

uiOffset

A byte offset which specifies where the file transfer should begin. The default value of zero
specifies that the file transfer should start at the beginning of the file. A value greater than zero
is typically used to restart a transfer that has not completed successfully. Note that specifying a
non-zero offset requires that the server support the REST command to restart transfers.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the FtpEventProc callback
function. This parameter may be NULL if you do not wish to implement an event handler.

dwParam

A user-defined integer value that is passed to the callback function. This parameter is ignored if
the lpEventProc parameter is NULL.

Return Value
If the function succeeds, the return value is non-zero integer value that specifies a unique
asynchronous task identifier. If the function fails, the return value is zero. To get extended error
information, call the FtpGetLastError function. The application should treat the task ID as an
opaque value and never make an assumption about the sequence in which IDs are assigned to a
background task.

Remarks
The FtpAsyncPutFileEx function is used to upload the contents of a local file to the server. This
function is similar to the FtpPutFileEx function, however it uploads the file using a background
worker thread and does not block the current working thread. This enables the application to
continue to perform other operations while the file is being transferred to the server.

If the address of an event handler is provided to this function, it is guaranteed that the handler will
be invoked with the FTP_EVENT_CONNECT event after the connection has been established, and
the FTP_EVENT_DISCONNECT event after the transfer has completed. This enables your
application to know when the file transfer is about to begin, and immediately before the worker
thread is terminated. During the file transfer, the callback function will be invoked periodically with
the FTP_EVENT_PROGRESS event. The client session handle is passed to the event handler,
allowing you to call functions such as FtpGetTransferStatusEx to determine the amount of data
that has been copied.

To determine when the transfer has completed without implementing an event handler,
periodically call the FtpTaskDone function. If you wish to block the current thread and wait for the
transfer to complete, call the FtpTaskWait function. To stop a background file transfer that is in
progress, call the FtpTaskAbort function. This will signal the background worker thread to cancel
the transfer and terminate the session.

This function can be called multiple times to upload multiple files in the background; however,
most servers limit the number of simultaneous connections that can originate from a single IP
address. It is recommended that you only perform two simultaneous background transfers from
the same server at any one time. The application should not make any assumptions about the
order in which multiple background transfers may complete or how they are sequenced. For
example, it should never be assumed that a background task with a lower task ID will complete
before a task with a higher ID value.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpAsyncGetFileEx, FtpEventProc, FtpGetFileEx, FtpPutFileEx, FtpTaskDone, FtpTaskWait

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpAttachThread Function

DWORD WINAPI FtpAttachThread(
 HCLIENT hClient
 DWORD dwThreadId
);

The FtpAttachThread function attaches the specified client handle to another thread.

Parameters
hClient

Handle to the client session.

dwThreadId

The ID of the thread that will become the new owner of the handle. A value of zero specifies
that the current thread should become the owner of the client handle.

Return Value
If the function succeeds, the return value is the thread ID of the previous owner. If the function
fails, the return value is FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
When a client handle is created, it is associated with the current thread that created it. Normally, if
another thread attempts to perform an operation using that handle, an error is returned since it
does not own the handle. This is used to ensure that other threads cannot interfere with an
operation being performed by the owner thread. In some cases, it may be desirable for one
thread in a client application to create the client handle, and then pass that handle to another
worker thread. The FtpAttachThread function can be used to change the ownership of the
handle to the new worker thread. By preserving the return value from the function, the original
owner of the handle can be restored before the worker thread terminates.

This function should be called by the new thread immediately after it has been created, and if the
new thread does not release the handle itself, the ownership of the handle should be restored to
the parent thread before it terminates. Under no circumstances should FtpAttachThread be used
to forcibly release a handle allocated by another thread while a blocking operation is in progress.
To cancel an operation, use the FtpCancel function and then release the handle after the blocking
function exits and control is returned to the current thread.

Note that the dwThreadId parameter is presumed to be a valid thread ID and no checks are
performed to ensure that the thread actually exists. Specifying an invalid thread ID will orphan the
handle until the FtpUninitialize function is called.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpConnect, FtpDisconnect, FtpUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpCancel Function

INT WINAPI FtpCancel(
 HCLIENT hClient
);

The FtpCancel function cancels any outstanding blocking operation in the client, causing the
blocking function to fail. The application may then retry the operation or terminate the client
session.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
When the FtpCancel function is called, the blocking function will not immediately fail. An internal
flag is set which causes the blocking operation to exit with an error. This means that the
application cannot cancel an operation and immediately perform some other operation. Instead it
must allow the calling stack to unwind, returning back to the blocking operation before making
any further function calls.

This function may be called during a blocking file transfer.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpIsBlocking

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpCancelQueuedFile Function

BOOL WINAPI FtpCancelQueuedFile(
 HQUEUE hQueue,
 DWORD dwFileId
);

The FtpCancelQueuedFile function cancels the queued file transfer.

Parameters
hQueue

A handle to a file transfer queue.

dwFileId

An unsigned integer value which uniquely identifies the file in the queue. If this value is zero, the
function will cancel the current file transfer in progress. If queue transfers have been suspended,
this parameter cannot be zero.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, it will return zero. To get
extended error information, call FtpGetLastError.

Remarks
When this function is called, the queued file transfer may not immediately stop. An internal flag is
set which causes the file transfer to exit with an error and the queue manager will begin
processing the next file in the queue. If the queue is in an idle state, this function will fail.

It is permitted to call FtpCancelQueuedFile from within a queue event handler to cancel the
current file transfer. In this case, the dwFileId parameter should be zero. If you specify a file which
has not been transferred, it will be flagged as canceled and skipped by the queue manager when
processing the queue. If you specify a file which has already been processed, this function will fail.

A canceled file transfer is also considered a failed transfer. When you call FtpGetQueueStatus
after a queued file transfer is canceled, the dwFailedFiles member of the FTPQUEUESTATUS
structure will be incremented to reflect this change. You can determine the status of an individual
file transfer by calling the FtpGetQueuedFile function and checking the value of the
dwQueueFlags member of the FTPQUEUEDFILE structure.

The FtpResetQueue function can be used to reset the state of previously canceled transfers.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpCancel, FtpGetQueuedFile, FtpGetQueueStatus, FtpResetQueue, FtpResumeQueue,
FtpStartQueue, FtpSuspendQueue, FtpStopQueue

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpChangeDirectory Function

INT WINAPI FtpChangeDirectory(
 HCLIENT hClient,
 LPCTSTR lpszDirectory
);

The FtpChangeDirectory function changes the current working directory for the client session.

Parameters
hClient

Handle to the client session.

lpszDirectory

Points to a string that specifies the name of the directory. The file pathing and name
conventions must be that of the server.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
This function uses the CWD command to change the current working directory. The user must
have the appropriate permission to access the specified directory.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpChangeDirectoryUp, FtpCloseDirectory, FtpCommand, FtpGetDirectory, FtpGetFirstFile,
FtpGetNextFile, FtpGetResultCode, FtpGetResultString, FtpOpenDirectory

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpChangeDirectoryUp Function

INT WINAPI FtpChangeDirectoryUp(
 HCLIENT hClient
);

The FtpChangeDirectoryUp function changes directory to the parent of the current working
directory.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
This function sends the CDUP command to the server. This command is a special case of the CWD
command, and is included to simplify transferring between directory trees on those operating
systems which have different syntaxes for naming the parent directory. The current user must have
the appropriate permission to access the specified directory.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpChangeDirectory, FtpCommand, FtpGetDirectory, FtpGetResultCode, FtpGetResultString

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpClearQueue Function

BOOL WINAPI FtpClearQueue(
 HQUEUE hQueue
);

The FtpClearQueue function removes all files from the queue.

Parameters
hQueue

A handle to a file transfer queue.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, it will return zero. To get
extended error information, call FtpGetLastError.

Remarks
This function can only be called when the queue is in an idle state. An error will be returned if the
function is called while the queue manager is paused or actively transferring files in the queue. To
determine the current state of the queue, call the FtpGetQueueStatus function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpCancelQueuedFile, FtpGetQueueStatus, FtpResetQueue, FtpResumeQueue, FtpStartQueue,
FtpStopQueue, FtpSuspendQueue

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpCloseDirectory Function

INT WINAPI FtpCloseDirectory(
 HCLIENT hClient
);

The FtpCloseDirectory function closes the data socket connection to the server.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
This function must be called after all of the file information from the server has been returned.
Because directory information is returned on the data channel, no file transfers can take place
while a directory is being read.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpGetDirectoryFormat, FtpGetFileStatus, FtpGetFirstFile, FtpGetNextFile, FtpOpenDirectory,
FtpSetDirectoryFormat

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpCloseFile Function

INT WINAPI FtpCloseFile(
 HCLIENT hClient
);

The FtpCloseFile function flushes the internal client buffers and closes the data socket connection
to the server.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
If the file is opened for writing, all buffered data is written to the server before the socket is closed.
This may cause the client to block until all of the data can be written. The client application should
not perform any other action until the function returns.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpOpenFile, FtpRead, FtpWrite

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpCommand Function

INT WINAPI FtpCommand(
 HCLIENT hClient,
 LPCTSTR lpszCommand,
 LPCTSTR lpszParameter
);

The FtpCommand function sends a command to the server and returns the result code back to
the caller. This function is typically used for site-specific commands not directly supported by the
API.

Parameters
hClient

Handle to the client session.

lpszCommand

The command which will be executed by the server.

lpszParameter

An optional command parameter. If the command requires more than one parameter, then
they should be combined into a single string, with a space separating each parameter. If the
command does not accept any parameters, this value may be NULL.

Return Value
If the function succeeds, the return value is the result code returned by the server. If the function
fails, the return value is FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
This function should only be used when the application needs to send a custom, site-specific
command or send a command that is not directly supported by this API. This function should
never be used to issue a command that opens a data channel. If the application needs to
transform data as it is being sent or received, and cannot use the FtpGetFile or FtpPutFile
functions, then use the FtpOpenFile function to open a data channel with the server.

By default, file names which are sent to the server using the FtpCommand function are sent as
ANSI characters. If the Unicode version of the function is used, the file name will be converted
from Unicode to ANSI using the current codepage. If the server supports UTF-8 encoded file
names, the FtpSetFileNameEncoding function can be used to specify that file names with non-
ASCII characters should be sent as UTF-8 encoded values. It is important to note that this option is
only available if the server advertises support for UTF-8 and permits that encoding type.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpGetFile, FtpGetFileNameEncoding, FtpGetResultCode, FtpGetResultString, FtpOpenFile,
FtpPutFile, FtpSetFileNameEncoding

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpConnect Function

HCLIENT WINAPI FtpConnect(
 LPCTSTR lpszRemoteHost,
 UINT nRemotePort,
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword,
 UINT nTimeout,
 DWORD dwOptions,
 LPSECURITYCREDENTIALS lpCredentials
);

The FtpConnect function establishes a connection with the specified server.

Parameters
lpszRemoteHost

A pointer to the name of the server to connect to; this may be a fully-qualified domain name or
an IP address.

nRemotePort

The port number the server is listening on; a value of zero specifies that the default port
number should be used. For standard connections, the default port number is 21. For secure
connections, the default port number is 990.

lpszUserName

Points to a string that specifies the user name to be used to authenticate the current client
session. If this parameter is NULL or an empty string, then the login is considered to be
anonymous. Note that anonymous logins are not supported for secure connections using the
SSH protocol.

lpszPassword

Points to a string that specifies the password to be used to authenticate the current client
session. This parameter may be NULL or an empty string if no password is required for the
specified user, or if no username has been specified.

nTimeout

The number of seconds that the client will wait for a response from the server before failing the
current operation.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

FTP_OPTION_DEFAULT Default options should be used for file transfers.
This is the same as specifying that all file transfers
should use passive mode when establishing a data
connection with the server. It is recommended most
applications use passive mode to prevent potential
compatibility issues with certain types of firewalls
and routers which use Network Address Translation
(NAT).

FTP_OPTION_PASSIVE This option specifies file transfers should attempt to

establish the data connection with the server. If the
local system is behind a firewall or a NAT router,
the server may not be able to establish a data
connection back to the client and the transfer will
fail. This option forces the client to establish an
outbound data connection with the server. It is
recommended that applications use passive mode
whenever possible.

FTP_OPTION_FIREWALL This option specifies the client should always use
the host IP address to establish the data connection
with the server, not the address returned by the
server in response to the PASV command. This
option may be necessary if the server is behind a
router that performs Network Address Translation
(NAT) and it returns an unreachable IP address for
the data connection. If this option is specified, it will
also enable passive mode data transfers.

FTP_OPTION_NOAUTH This option specifies the server does not require
authentication, or that it requires an alternate
authentication method. When this option is used,
the client connection is flagged as authenticated as
soon as the connection to the server has been
established. Note that using this option to bypass
authentication may result in subsequent errors
when attempting to retrieve a directory listing or
transfer a file. It is recommended that you consult
the technical reference documentation for the
server to determine its specific authentication
requirements.

FTP_OPTION_KEEPALIVE This option specifies the client should attempt to
keep the connection with the server active for an
extended period of time. It is important to note that
regardless of this option, the server may still choose
to disconnect client sessions that are holding the
command channel open but are not performing file
transfers.

FTP_OPTION_NOAUTHRSA This option specifies that RSA authentication should
not be used with SSH-1 connections. This option is
ignored with SSH-2 connections and should only be
specified if required by the server. This option has
no effect on standard or secure connections using
SSL.

FTP_OPTION_NOPWDNUL This option specifies the user password cannot be
terminated with a null character. This option is
ignored with SSH-2 connections and should only be
specified if required by the server. This option has
no effect on standard or secure connections using
SSL.

FTP_OPTION_NOREKEY This option specifies the client should never attempt
a repeat key exchange with the server. Some SSH
servers do not support rekeying the session, and
this can cause the client to become non-responsive
or abort the connection after being connected for
an hour. This option has no effect on standard or
secure connections using SSL.

FTP_OPTION_COMPATSID This compatibility option changes how the session
ID is handled during public key authentication with
older SSH servers. This option should only be
specified when connecting to servers that use
OpenSSH 2.2.0 or earlier versions. This option has
no effect on standard or secure connections using
SSL.

FTP_OPTION_COMPATHMAC This compatibility option changes how the HMAC
authentication codes are generated. This option
should only be specified when connecting to
servers that use OpenSSH 2.2.0 or earlier versions.
This option has no effect on standard or secure
connections using SSL.

FTP_OPTION_VIRTUALHOST This option specifies the server supports virtual
hosting, where multiple domains are hosted by a
server using the same external IP address. If this
option is enabled, the client will send the HOST
command to the server upon establishing a
connection.

FTP_OPTION_VERIFY This option specifies that file transfers should be
automatically verified after the transfer has
completed. If the server supports the XMD5
command, the transfer will be verified by calculating
an MD5 hash of the file contents. If the server does
not support the XMD5 command, but does support
the XCRC command, the transfer will be verified by
calculating a CRC32 checksum of the file contents. If
neither the XMD5 or XCRC commands are
supported, the transfer is verified by comparing the
size of the file. Automatic file verification is only
performed for binary mode transfers because of the
end-of-line conversion that may occur when text
files are uploaded or downloaded.

FTP_OPTION_TRUSTEDSITE This option specifies the server is trusted. The server
certificate will not be validated and the connection
will always be permitted. This option only affects
connections using either the SSL or TLS protocols.

FTP_OPTION_SECURE This option specifies the client should attempt to
establish a secure connection with the server. This
option is the same as specifying

FTP_OPTION_SECURE_IMPLICIT which immediately
performs the SSL/TLS protocol negotiation when
the connection is established.

FTP_OPTION_SECURE_IMPLICIT This option specifies the client should attempt to
immediately establish secure SSL/TLS connection
with the server. This option is typically used when
connecting to a server on port 990, which is the
default port number used for FTPS.

FTP_OPTION_SECURE_EXPLICIT This option specifies the client should establish a
standard connection to the server and then use the
AUTH command to negotiate an explicit secure
connection. This option is typically used when
connecting to the server on ports other than 990.

FTP_OPTION_SECURE_SHELL This option specifies the client should use the
Secure Shell (SSH) protocol to establish the
connection. This option will automatically be
selected if the connection is established using port
22, the default port for SSH.

FTP_OPTION_SECURE_FALLBACK This option specifies the client should permit the
use of less secure cipher suites for compatibility
with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

FTP_OPTION_TUNNEL This option specifies that a tunneled TCP
connection and/or port-forwarding is being used to
establish the connection to the server. This changes
the behavior of the client with regards to internal
checks of the destination IP address and remote
port number, default capability selection and how
the connection is established. This option also
forces all connections to be outbound and enables
the firewall compatibility features in the client.

FTP_OPTION_KEEPALIVE_DATA This option specifies the client should attempt to
keep the control connection active during a file
transfer. Normally, when a data transfer is in
progress, no additional commands are issued on
the control channel until the transfer completes.
Specifying this option automatically enables the
FTP_OPTION_KEEPALIVE option and forces the
client to continue to issue NOOP commands during
the file transfer. This option only applies to FTP and
FTPS connections and has no effect on connections
using SFTP (SSH).

FTP_OPTION_PREFER_IPV6 This option specifies the client should prefer the use
of IPv6 if the server hostname can be resolved to
both an IPv6 and IPv4 address. This option is
ignored if the local system does not have IPv6

enabled, or when the hostname can only be
resolved to an IPv4 address. If the server hostname
can only be resolved to an IPv6 address, the client
will attempt to establish a connection using IPv6
regardless if this option has been specified.

FTP_OPTION_FREETHREAD This option specifies the handle returned by this
function may be used by any thread, and is not
limited to the thread which created it. The
application is responsible for ensuring that access to
the handle is synchronized across multiple threads.

FTP_OPTION_HIRES_TIMER This option specifies the elapsed time for data
transfers should be returned in milliseconds instead
of seconds. This will return more accurate transfer
times for smaller files being uploaded or
downloaded using fast network connections.

FTP_OPTION_TLS_REUSE This option specifies that TLS session reuse should
be enabled for secure connections. This option is
only supported on Windows 8.1 or Windows Server
2012 R2 and later platforms, and it should only be
used when explicitly required by the server. This
option is not compatible with servers built using
OpenSSL 1.0.2 and earlier versions which do not
provide Extended Master Secret (EMS) support as
outlined in RFC7627.

lpCredentials

A pointer to a SECURITYCREDENTIALS structure. This parameter should be NULL if the
connection is not secure or when client credentials are not required. Most servers do not
require a client certificate to establish a secure connection. However, if the server does require a
client certificate, the structure members dwSize, lpszCertStore and lpszCertName must be
defined. Undefined structure members must be initialized to a value of zero or NULL and the
dwSize member must be initialized to the size of the SECURITYCREDENTIALS structure.

Return Value
If the function succeeds, the return value is a handle to a client session. If the function fails, the
return value is INVALID_CLIENT. To get extended error information, call FtpGetLastError.

Remarks
This function will block the current thread until a connection has been established or the timeout
period has elapsed. To prevent it from blocking the main user interface thread, the application
should create a background worker thread and establish a connection by calling FtpConnect in
that thread. If the application requires multiple simultaneous connections, it is recommended you
create a worker thread for each connection.

If the FTP_OPTION_KEEPALIVE option is specified, a background worker thread will be created to
monitor the command channel and periodically send NOOP commands to the server if no
commands have been sent recently. This can prevent the server from terminating the client
connection during idle periods where no commands are being issued. However, it is important to
keep in mind that many servers can be configured to also limit the total amount of time a client
can be connected to the server, as well as the amount of time permitted between file transfers. If

the server does not respond to the NOOP command, this option will be automatically disabled for
the remainder of the client session.

If the FTP_OPTION_SECURE_EXPLICIT option is specified, the client will establish a standard
connection to the server and send the AUTH TLS command to the server. If the server does not
accept this command, it will then send the AUTH SSL command. If both commands are rejected
by the server, an explicit SSL session cannot be established. By default, both the command and
data channels will be encrypted when a secure connection is established. To change this, use the
FtpSetChannelMode function.

The dwOptions argument can be used to specify the threading model that is used by the library
when a connection is established. By default, the handle is initially attached to the thread that
created it. From that point on, until the it is released, only the owner may call functions using that
handle. The ownership of the handle may be transferred from one thread to another using the
FtpAttachThread function.

Specifying the FTP_OPTION_FREETHREAD option enables any thread to call any function using the
handle, regardless of which thread created it. It is important to note that this option disables
certain internal safety checks which are performed by the library and may result in unexpected
behavior unless access to the handle is synchronized. If one thread calls a function in the library, it
must ensure that no other thread will call another function at the same time using the same
handle.

Example
// Connect to a server using a standard (non-secure) connection on
// the default port. The username and password are not encrypted.

hClient = FtpConnect(lpszRemoteHost,
 FTP_PORT_DEFAULT,
 lpszUserName,
 lpszPassword,
 FTP_TIMEOUT,
 FTP_OPTION_DEFAULT,
 NULL);

// Connect to a server using the default port and then initiate a
// secure connection using the AUTH TLS command

hClient = FtpConnect(lpszRemoteHost,
 FTP_PORT_DEFAULT,
 lpszUserName,
 lpszPassword,
 FTP_TIMEOUT,
 FTP_OPTION_PASSIVE | FTP_OPTION_SECURE_EXPLICIT,
 NULL);

// Connect to a server on port 990 and immediately initiate a
// secure connection as soon as the connection is established

hClient = FtpConnect(lpszRemoteHost,
 FTP_PORT_SECURE,
 lpszUserName,
 lpszPassword,
 FTP_TIMEOUT,
 FTP_OPTION_PASSIVE | FTP_OPTION_SECURE_IMPLICIT,
 NULL);

// Connect to a server on port 22 using the Secure Shell (SFTP)
// protocol to transfer files

hClient = FtpConnect(lpszRemoteHost,
 FTP_PORT_SSH,
 lpszUserName,
 lpszPassword,
 FTP_TIMEOUT,
 FTP_OPTION_SECURE_SHELL,
 NULL);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpCreateSecurityCredentials, FtpDeleteSecurityCredentials, FtpDisconnect,
FtpGetSecurityInformation, FtpInitialize, FtpProxyConnect, FtpSetChannelMode

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpConnectUrl Function

HCLIENT WINAPI FtpConnectUrl(
 LPCTSTR lpszUrl,
 UINT nTimeout,
 DWORD dwOptions
);

The FtpConnectUrl function establishes a connection with the specified server using a URL.

Parameters
lpszUrl

A pointer to a string which specifies the URL for the server. The URL must follow the
conventions for the File Transfer Protocol and may specify either a standard or secure
connection, alternate port number, username, password and optional working directory.

nTimeout

The number of seconds that the client will wait for a response from the server before failing the
current operation.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

FTP_OPTION_DEFAULT Default options should be used for file transfers.
This is the same as specifying that all file transfers
should use passive mode when establishing a data
connection with the server. It is recommended most
applications use passive mode to prevent potential
compatibility issues with certain types of firewalls
and routers which use Network Address Translation
(NAT).

FTP_OPTION_PASSIVE This option specifies file transfers should attempt to
establish the data connection with the server. If the
local system is behind a firewall or a NAT router,
the server may not be able to establish a data
connection back to the client and the transfer will
fail. This option forces the client to establish an
outbound data connection with the server. It is
recommended that applications use passive mode
whenever possible.

FTP_OPTION_FIREWALL This option specifies the client should always use
the host IP address to establish the data connection
with the server, not the address returned by the
server in response to the PASV command. This
option may be necessary if the server is behind a
router that performs Network Address Translation
(NAT) and it returns an unreachable IP address for
the data connection. If this option is specified, it will

also enable passive mode data transfers.

FTP_OPTION_NOAUTH This option specifies the server does not require
authentication, or that it requires an alternate
authentication method. When this option is used,
the client connection is flagged as authenticated as
soon as the connection to the server has been
established. Note that using this option to bypass
authentication may result in subsequent errors
when attempting to retrieve a directory listing or
transfer a file. It is recommended that you consult
the technical reference documentation for the
server to determine its specific authentication
requirements.

FTP_OPTION_KEEPALIVE This option specifies the client should attempt to
keep the connection with the server active for an
extended period of time. It is important to note that
regardless of this option, the server may still choose
to disconnect client sessions that are holding the
command channel open but are not performing file
transfers.

FTP_OPTION_NOAUTHRSA This option specifies that RSA authentication should
not be used with SSH-1 connections. This option is
ignored with SSH-2 connections and should only be
specified if required by the server. This option has
no effect on standard or secure connections using
SSL.

FTP_OPTION_NOPWDNUL This option specifies the user password cannot be
terminated with a null character. This option is
ignored with SSH-2 connections and should only be
specified if required by the server. This option has
no effect on standard or secure connections using
SSL.

FTP_OPTION_NOREKEY This option specifies the client should never attempt
a repeat key exchange with the server. Some SSH
servers do not support rekeying the session, and
this can cause the client to become non-responsive
or abort the connection after being connected for
an hour. This option has no effect on standard or
secure connections using SSL.

FTP_OPTION_COMPATSID This compatibility option changes how the session
ID is handled during public key authentication with
older SSH servers. This option should only be
specified when connecting to servers that use
OpenSSH 2.2.0 or earlier versions. This option has
no effect on standard or secure connections using
SSL.

FTP_OPTION_COMPATHMAC This compatibility option changes how the HMAC

authentication codes are generated. This option
should only be specified when connecting to
servers that use OpenSSH 2.2.0 or earlier versions.
This option has no effect on standard or secure
connections using SSL.

FTP_OPTION_VIRTUALHOST This option specifies the server supports virtual
hosting, where multiple domains are hosted by a
server using the same external IP address. If this
option is enabled, the client will send the HOST
command to the server upon establishing a
connection.

FTP_OPTION_VERIFY This option specifies that file transfers should be
automatically verified after the transfer has
completed. If the server supports the XMD5
command, the transfer will be verified by calculating
an MD5 hash of the file contents. If the server does
not support the XMD5 command, but does support
the XCRC command, the transfer will be verified by
calculating a CRC32 checksum of the file contents. If
neither the XMD5 or XCRC commands are
supported, the transfer is verified by comparing the
size of the file. Automatic file verification is only
performed for binary mode transfers because of the
end-of-line conversion that may occur when text
files are uploaded or downloaded.

FTP_OPTION_TRUSTEDSITE This option specifies the server is trusted. The server
certificate will not be validated and the connection
will always be permitted. This option only affects
connections using either the SSL or TLS protocols.

FTP_OPTION_SECURE This option specifies the client should attempt to
establish a secure connection with the server. This
option is the same as specifying
FTP_OPTION_SECURE_IMPLICIT which immediately
performs the SSL/TLS protocol negotiation when
the connection is established.

FTP_OPTION_SECURE_IMPLICIT This option specifies the client should attempt to
immediately establish secure SSL/TLS connection
with the server. This option is typically used when
connecting to a server on port 990, which is the
default port number used for FTPS.

FTP_OPTION_SECURE_EXPLICIT This option specifies the client should establish a
standard connection to the server and then use the
AUTH command to negotiate an explicit secure
connection. This option is typically used when
connecting to the server on ports other than 990.

FTP_OPTION_SECURE_SHELL This option specifies the client should use the
Secure Shell (SSH) protocol to establish the

connection. This option will automatically be
selected if the connection is established using port
22, the default port for SSH.

FTP_OPTION_SECURE_FALLBACK This option specifies the client should permit the
use of less secure cipher suites for compatibility
with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

FTP_OPTION_TUNNEL This option specifies that a tunneled TCP
connection and/or port-forwarding is being used to
establish the connection to the server. This changes
the behavior of the client with regards to internal
checks of the destination IP address and remote
port number, default capability selection and how
the connection is established. This option also
forces all connections to be outbound and enables
the firewall compatibility features in the client.

FTP_OPTION_KEEPALIVE_DATA This option specifies the client should attempt to
keep the control connection active during a file
transfer. Normally, when a data transfer is in
progress, no additional commands are issued on
the control channel until the transfer completes.
Specifying this option automatically enables the
FTP_OPTION_KEEPALIVE option and forces the
client to continue to issue NOOP commands during
the file transfer. This option only applies to FTP and
FTPS connections and has no effect on connections
using SFTP (SSH).

FTP_OPTION_PREFER_IPV6 This option specifies the client should prefer the use
of IPv6 if the server hostname can be resolved to
both an IPv6 and IPv4 address. This option is
ignored if the local system does not have IPv6
enabled, or when the hostname can only be
resolved to an IPv4 address. If the server hostname
can only be resolved to an IPv6 address, the client
will attempt to establish a connection using IPv6
regardless if this option has been specified.

FTP_OPTION_FREETHREAD This option specifies the handle returned by this
function may be used by any thread, and is not
limited to the thread which created it. The
application is responsible for ensuring that access to
the handle is synchronized across multiple threads.

FTP_OPTION_HIRES_TIMER This option specifies the elapsed time for data
transfers should be returned in milliseconds instead
of seconds. This will return more accurate transfer
times for smaller files being uploaded or
downloaded using fast network connections.

FTP_OPTION_TLS_REUSE This option specifies that TLS session reuse should
be enabled for secure connections. This option is
only supported on Windows 8.1 or Windows Server
2012 R2 and later platforms, and it should only be
used when explicitly required by the server. This
option is not compatible with servers built using
OpenSSL 1.0.2 and earlier versions which do not
provide Extended Master Secret (EMS) support as
outlined in RFC7627.

Return Value
If the function succeeds, the return value is a handle to a client session. If the function fails, the
return value is INVALID_CLIENT. To get extended error information, call FtpGetLastError.

Remarks
The FtpConnectUrl function is a high-level function that uses an FTP URL to establish a
connection with a server. Unlike the other connection related functions such as FtpConnect, this
function does more than simply connect to the server. It will also authenticate the client session,
change the current working directory and set the default file transfer mode. By default, this
function will always place the client in passive mode, ensuring the broadest compatibility with most
servers.

The URL must be complete, and specify either a standard or secure FTP scheme:

[ftp|ftps|sftp]://[username : password] @] hostname [:port] / [path /
...] [filename]

If no user name and password is provided, then the client session will be authenticated as an
anonymous user. If a path is specified as part of the URL, the function will attempt to change the
current working directory. The paths in an FTP URL are relative to the home directory of the user
account and are not absolute paths starting at the root directory on the server. If a file name is
also specified in the URL, it will be ignored and only the file path will be used. The URL scheme will
always determine if the connection is secure, not the option. In other words, if the "ftp" scheme is
used and the FTP_OPTION_SECURE option is specified, that option will be ignored. To establish a
secure connection, either the "ftps" or "sftp" scheme must be specified.

The FtpConnectUrl function is designed to provide a simpler, more convenient interface to
establishing a connection with a server. However, complex connections such as those using a
proxy server or a secure connection which uses a client certificate will require the program to use
the lower-level connection functions. If you only need to upload or download a file using a URL,
then refer to the FtpUploadFile and FtpDownloadFile functions.

This function will block the current thread until a connection has been established or the timeout
period has elapsed. To prevent it from blocking the main user interface thread, the application
should create a background worker thread and establish a connection by calling FtpConnectUrl
in that thread. If the application requires multiple simultaneous connections, it is recommended
you create a worker thread for each connection.

The dwOptions argument can be used to specify the threading model that is used by the library
when a connection is established. By default, the handle is initially attached to the thread that
created it. From that point on, until the it is released, only the owner may call functions using that
handle. The ownership of the handle may be transferred from one thread to another using the
FtpAttachThread function.

Specifying the FTP_OPTION_FREETHREAD option enables any thread to call any function using the

handle, regardless of which thread created it. It is important to note that this option disables
certain internal safety checks which are performed by the library and may result in unexpected
behavior unless access to the handle is synchronized. If one thread calls a function in the library, it
must ensure that no other thread will call another function at the same time using the same
handle.

Example
HCLIENT hClient;
LPCTSTR lpszUrl = _T("ftp://ftp.sockettools.com/");

// Connect to the site specified by the URL
hClient = FtpConnectUrl(lpszUrl, FTP_TIMEOUT, FTP_OPTION_DEFAULT);

if (hClient == INVALID_CLIENT)
{
 TCHAR szError[128];

 // Display a message box that describes the error
 FtpGetErrorString(FtpGetLastError(), szError, 128);
 MessageBox(NULL, szError, NULL, MB_ICONEXCLAMATION|MB_TASKMODAL);
 return;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpConnect, FtpDisconnect, FtpDownloadFile, FtpUploadFile, FtpValidateUrl

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpCreateDirectory Function

INT WINAPI FtpCreateDirectory(
 HCLIENT hClient,
 LPCTSTR lpszDirectory
);

The FtpCreateDirectory function creates the specified directory on the server.

Parameters
hClient

Handle to the client session.

lpszDirectory

Points to a string that specifies the name of the directory. The file pathing and name
conventions must be that of the server.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
This function uses the MKD command to create the directory. The user must have the appropriate
permission to create the specified directory.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpChangeDirectory, FtpGetDirectory, FtpRemoveDirectory

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpCreateQueue Function

HQUEUE WINAPI FtpCreateQueue(
 UINT nMaxFiles,
 UINT nTimeout,
 DWORD dwOptions
);

The FtpCreateQueue function creates new file transfer queue.

Parameters
nMaxFiles

An unsigned integer which specifies the maximum number of files which can be added to the
queue. The constant INFINITE can be used to specify that there is no fixed limit to the number
of files in the queue.

nTimeout

An unsigned integer which specifies the default timeout for all queued file transfers. If this value
is zero, a reasonable default timeout period will be used. This timeout period is used when a file
is added to the queue without providing a timeout period for that specific file transfer. If a
timeout period is specified for a particular file, it will override this value.

dwOptions

An unsigned integer value which specifies one or more default options for all queued files. This
parameter is constructed by using a bitwise operator and can be any of the options used with
the FtpConnect function. If transfer options are specified for a particular file, it will override this
value. The most common options are:

Constant Description

FTP_OPTION_DEFAULT Default options should be used for queued file
transfers. This is the same as specifying that all file
transfers should use passive mode when establishing
a data connection with the server. It is recommended
most applications use passive mode to prevent
potential compatibility issues with certain types of
firewalls and routers which use Network Address
Translation (NAT).

FTP_OPTION_PASSIVE This option specifies queued transfers should attempt
to establish the data connection with the server. If the
local system is behind a firewall or a NAT router, the
server may not be able to establish a data connection
back to the client and the transfer will fail. This option
forces the client to establish an outbound data
connection with the server. It is recommended that
applications use passive mode whenever possible.

FTP_OPTION_FIREWALL This option specifies queued transfers should always
use the host IP address to establish the data
connection with the server, not the address returned
by the server in response to the PASV command.
This option may be necessary if the server is behind a

router that performs Network Address Translation
(NAT) and it returns an unreachable IP address for
the data connection. If this option is specified, it will
also enable passive mode data transfers.

FTP_OPTION_SECURE This option specifies queued file transfers should
attempt to establish a secure connection with the
server by default. This option is the same as
specifying FTP_OPTION_SECURE_IMPLICIT which
immediately performs the SSL/TLS protocol
negotiation when the connection is established.

FTP_OPTION_SECURE_IMPLICIT This option specifies queued file transfers should
attempt to immediately establish secure SSL/TLS
connection with the server by default. This option is
typically used when connecting to a server on port
990, which is the default port number used for FTPS.

FTP_OPTION_SECURE_EXPLICIT This option specifies queued file transfers should
establish a standard connection to the server and
then use the AUTH command to negotiate an explicit
secure connection. This option is typically used when
connecting to the server on ports other than 990.

FTP_OPTION_SECURE_SHELL This option specifies queued file transfers should use
the Secure Shell (SSH) protocol to establish the
connection by default. This option will automatically
be selected if the connection is established using port
22, the default port for SSH.

Return Value
If the function succeeds, the return value is a handle to the queue which can be used with
subsequent function calls. If the function fails, the return value is INVALID_QUEUE. To get
extended error information, call FtpGetLastError.

Remarks
If the nMaxFiles parameter is INFINITE, memory will be dynamically allocated on the process heap
with no limit to the number of files which can be queued. If there is a logic error which causes the
application to recursively add files to the queue, or repeatedly queue the same file, this can result
in virtual memory being exhausted for the process. You can avoid this by specifying a reasonable
maximum queue size, which will cause the FtpAddQueuedFile function to fail if that limit is
exceeded.

The memory allocated for the queue will be released when the FtpDeleteQueue function is
called.

Example
// Create a new queue
HQUEUE hQueue = FtpCreateQueue(INFINITE, FTP_TIMEOUT, FTP_OPTION_DEFAULT);

if (hQueue == INVALID_QUEUE)
 return;

// Add a file to the queue

DWORD dwFileId = FtpAddQueuedFile(
 hQueue,
 lpszLocalFile,
 lpszRemoteFile,
 FTP_OPTION_DEFAULT,
 FILE_TYPE_AUTO,
 FTP_TIMEOUT);

// Display information about the queued file
if (dwFileId != 0)
{
 FTPQUEUEDFILE queuedFile;

 if (FtpGetQueuedFile(hQueue, dwFileId, &queuedFile))
 {
 switch (queuedFile.dwMode)
 {
 case FTP_QUEUE_DOWNLOAD:
 _tprintf(_T("%u: Download \"%s\" to \"%s\"\n"),
 dwFileId,
 queuedFile.szRemoteFile,
 queuedFile.szLocalFile);
 break;

 case FTP_QUEUE_UPLOAD:
 _tprintf(_T("%u: Upload \"%s\" to \"%s\"\n"),
 dwFileId,
 queuedFile.szLocalFile,
 queuedFile.szRemoteFile);
 break;
 }
 }
}

// Start the queued file transfers and wait for it to complete
if (FtpStartQueue(hQueue, FTP_QUEUE_ALL, 0, NULL, 0))
{
 FtpWaitForQueue(hQueue, INFINITE, &dwElapsed, &dwError);
 FtpStopQueue(hQueue);
}

// Remove all files from the queue
FtpDeleteQueue(hQueue);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpAddQueuedFile, FtpDeleteQueue, FtpClearQueue, FtpStartQueue, FtpStopQueue,
FtpWaitForQueue

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpCreateSecurityCredentials Function

BOOL WINAPI FtpCreateSecurityCredentials(
 DWORD dwProtocol,
 DWORD dwOptions,
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword,
 LPCTSTR lpszCertStore,
 LPCTSTR lpszCertName,
 LPVOID lpvReserved,
 LPSECURITYCREDENTIALS* lppCredentials
);

The FtpCreateSecurityCredentials function creates a SECURITYCREDENTIALS structure.

Parameters
dwProtocol

A bitmask of supported security protocols. This parameter is constructed by using a bitwise
operator with any of the following values:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The
correct protocol is automatically selected, based on
what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.
This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is

supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

SECURITY_PROTOCOL_SSH Either version 1.0 or 2.0 of the Secure Shell protocol
should be used when establishing the connection.
The correct protocol is automatically selected based
on the version of the protocol that is supported by
the server.

SECURITY_PROTOCOL_SSH1 The Secure Shell 1.0 protocol should be used when
establishing the connection. This is an older version
of the protocol which should not be used unless
explicitly required by the server. Most modern SSH
server support version 2.0 of the protocol.

SECURITY_PROTOCOL_SSH2 The Secure Shell 2.0 protocol should be used when
establishing the connection. This is the default
version of the protocol that is supported by most
SSH servers.

dwOptions

A value which specifies one or options. This value should always be zero for connections using
SSH. This member is constructed by using a bitwise operator with any of the following values:

Constant Description

CREDENTIAL_STORE_CURRENT_USER The library will attempt to open a store for
the current user using the certificate store
name provided in this structure. If no options
are specified, then this is the default
behavior.

CREDENTIAL_STORE_LOCAL_MACHINE The library will attempt to open a local
machine store using the certificate store
name provided in this structure. If this option
is specified, the library will always search for a
local machine store before searching for the
store by that name for the current user.

CREDENTIAL_STORE_FILENAME The certificate store name is a file that
contains the certificate and private key that
will be used.

lpszUserName

A pointer to a string which specifies the certificate owner's username. A value of NULL specifies
that no username is required. Currently this parameter is not used and any value specified will
be ignored.

lpszPassword

A pointer to a string which specifies the certificate owner's password. A value of NULL specifies
that no password is required. This parameter is only used if a PKCS #12 (PFX) certificate file is
specified and that certificate has been secured with a password. This value will be ignored the
current user or local machine certificate store is specified.

lpszCertStore

A pointer to a string which specifies the name of the certificate store to open. A certificate store
is a collection of certificates and their private keys, typically organized by how they are used. If
this value is NULL or points to an empty string, the default certificate store "MY" will be used.

Store Name Description

CA Certification authority certificates. These are certificates that are issued by
entities which are entrusted to issue certificates to other individuals or
organizations. Companies such as VeriSign and Thawte act as
certification authorities.

MY Personal certificates and their associated private keys for the current user.
This store typically holds the client certificates used to establish a user's
credentials. This corresponds to the "Personal" store that is displayed by
the certificate manager utility and is the default store used by the library.

ROOT Certificates that have been self-signed by a certificate authority. Root
certificates for a number of different certification authorities such as
VeriSign and Thawte are installed as part of the operating system and
periodically updated by Microsoft.

lpszCertName

A pointer to a null terminated string which specifies the name of the certificate to use. The
function will first search the certificate store for a certificate with a matching "friendly name"; this
is a name for the certificate that is assigned by the user. Note that the name must match

completely, but the comparison is not case sensitive. If no matching certificate is found, the
function will then attempt to find a certificate that has a matching common name (also called
the certificate subject). This comparison is less stringent, and the first partial match will be
returned. If this second search fails, the function will return an error indicating that the certificate
could not be found.

lpvReserved

Pointer reserved for future use. Set it to NULL when using this function.

lppCredentials

Pointer to an LPSECURITYCREDENTIALS pointer. The memory for the credentials structure will
be allocated by this function and must be released by calling the
FtpDeleteSecurityCredentials function when it is no longer needed. The pointer value must
be set to NULL before the function is called. It is important to note that this is a pointer to a
pointer variable, not a pointer to the SECURITYCREDENTIALS structure itself.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call FtpGetLastError.

Remarks
The structure that is created by this function may be used as client credentials when establishing a
secure connection. This is particularly useful for programming languages other than C/C++ which
may not support C structures or pointers. The pointer to the SECURITYCREDENTIALS structure can
be declared as an unsigned integer variable which is passed by reference to this function, and
then passed by value to the FtpAsyncConnect or FtpConnect functions.

Example
LPSECURITYCREDENTIALS lpSecCred = NULL;
FtpCreateSecurityCredentials(SECURITY_PROTOCOL_DEFAULT,
 CREDENTIAL_STORE_CURRENT_USER,
 NULL,
 NULL,
 strCertStore,
 strCertName,
 NULL,
 &lpSecCred);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cstools11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpConnect, FtpDeleteSecurityCredentials

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpDeleteFile Function

INT WINAPI FtpDeleteFile(
 HCLIENT hClient,
 LPCTSTR lpszFileName
);

The FtpDeleteFile function deletes the specified file from the server.

Parameters
hClient

Handle to the client session.

lpszFileName

Points to a string that specifies the name of the remote file to delete. The file pathing and name
conventions must be that of the server.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
The current user must have the appropriate permission to delete the file, or an error will be
returned by the server.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpGetFile, FtpPutFile, FtpRenameFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpDeleteQueue Function

BOOL WINAPI FtpDeleteQueue(
 HQUEUE hQueue
);

The FtpDeleteQueue function deletes the specified file transfer queue, releasing all memory
allocated for the queued files.

Parameters
hQueue

A handle to a file transfer queue.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call FtpGetLastError.

Remarks
This function can only be called when the queue is in an idle state. If the queue manager is in the
process of uploading or downloading files, the function will fail and return a value of zero. You can
determine the current state of the queue by calling the FtpGetQueueStatus function. It is not
necessary to explicitly clear the queue prior to calling this function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpCreateQueue, FtpGetQueueStatus, FtpCancelQueuedFile, FtpClearQueue, FtpStartQueue,
FtpStopQueue, FtpWaitForQueue

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpDeleteSecurityCredentials Function

VOID WINAPI FtpDeleteSecurityCredentials(
 LPSECURITYCREDENTIALS *lppCredentials
);

The FtpDeleteSecurityCredentials function deletes an existing SECURITYCREDENTIALS
structure.

Parameters
lppCredentials

Pointer to an LPSECURITYCREDENTIALS pointer. On exit from the function, the pointer will be
NULL.

Return Value
None.

Example
if (lpSecCred)
 FtpDeleteSecurityCredentials(&lpSecCred);
FtpUninitialize();

Remarks
This function can be used to release the memory allocated to the client or server credentials after
a secure connection has been terminated.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpCreateSecurityCredentials, FtpUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpDisableEvents Function

INT WINAPI FtpDisableEvents(
 HCLIENT hClient
);

The FtpDisableEvents function disables the event notification mechanism, preventing subsequent
event notification messages from being posted to the application's message queue.

This function has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
The FtpDisableEvents function is used to disable event message posting for the specified client
session. Although this will immediately prevent any new events from being generated, it is possible
that messages could be waiting in the message queue. Therefore, an application must be
prepared to handle client event messages after this function has been called.

This function is automatically called if the client has event notification enabled, and the
FtpDisconnect function is called. The same issues regarding outstanding event messages also
applies in this situation, requiring that the application handle event messages that may reference a
client handle that is no longer valid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpAsyncConnect, FtpAsyncProxyConnect, FtpEnableEvents, FtpRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpDisableTrace Function

BOOL WINAPI FtpDisableTrace();

The FtpDisableTrace function disables the logging of socket function calls to the trace log.

Parameters
None.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, a value of zero is
returned.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpEnableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpDisconnect Function

INT WINAPI FtpDisconnect(
 HCLIENT hClient
);

The FtpDisconnect function terminates the connection with the server, closing the socket and
releasing the memory allocated for the client session.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
FTP_ERROR. To get extended error information, call FtpGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpConnect, FtpProxyConnect, FtpUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpDownloadFile Function

BOOL WINAPI FtpDownloadFile(
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszRemoteFile,
 UINT nTimeout
 DWORD dwOptions
 LPFTPTRANSFERSTATUS lpStatus
 FTPEVENTPROC lpEventProc
 DWORD_PTR dwParam
);

The FtpDownloadFile function downloads the specified file from the server to the local system.

Parameters
lpszLocalFile

A pointer to a string that specifies the file on the local system that will be created, overwritten or
appended to. The file pathing and name conventions must be that of the local host.

lpszRemoteFile

A pointer to a string that specifies the complete URL of the file to be downloaded. The URL
must follow the conventions for the File Transfer Protocol and may specify either a standard or
secure connection, alternate port number, username, password and optional working directory.

nTimeout

The number of seconds that the client will wait for a response before failing the operation. A
value of zero specifies that the default timeout period of sixty seconds will be used.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

FTP_OPTION_DEFAULT Default options should be used for file transfers. This
is the same as specifying that all file transfers should
use passive mode when establishing a data
connection with the server. It is recommended most
applications use passive mode to prevent potential
compatibility issues with certain types of firewalls and
routers which use Network Address Translation
(NAT).

FTP_OPTION_PASSIVE This option specifies file transfers should attempt to
establish the data connection with the server. If the
local system is behind a firewall or a NAT router, the
server may not be able to establish a data connection
back to the client and the transfer will fail. This option
forces the client to establish an outbound data
connection with the server. It is recommended that
applications use passive mode whenever possible.

FTP_OPTION_FIREWALL This option specifies the client should always use the
host IP address to establish the data connection with

the server, not the address returned by the server in
response to the PASV command. This option may be
necessary if the server is behind a router that
performs Network Address Translation (NAT) and it
returns an unreachable IP address for the data
connection. If this option is specified, it will also
enable passive mode data transfers.

FTP_OPTION_SECURE This option specifies the client should attempt to
establish a secure connection with the server. Note
that the server must support secure connections
using either the SSL or TLS protocol.

FTP_OPTION_SECURE_EXPLICIT This option specifies the client should use the AUTH
command to negotiate an explicit secure connection.
Some servers may only require this when connecting
to the server on ports other than 990.

lpStatus

A pointer to an FTPTRANSFERSTATUS structure which contains information about the status of
the current file transfer. If this information is not required, a NULL pointer may be specified as
the parameter.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the FtpEventProc callback
function. If this parameter is NULL, the callback for the specified event is disabled.

dwParam

A user-defined integer value that is passed to the callback function.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call FtpGetLastError.

Remarks
The FtpDownloadFile function provides a convenient way for an application to download a file in
a single function call. Based on the connection information specified in the URL, it will connect to
the server, authenticate the session, change the current working directory if necessary and then
download the file to the local system. The URL must be complete, and specify either a standard or
secure FTP scheme:

[ftp|ftps|sftp]://[username : password] @] hostname [:port] / [path /
...] [filename] [;type=a|i]

If no user name and password is provided, then the client session will be authenticated as an
anonymous user. If a path is specified as part of the URL, the function will attempt to change the
current working directory. Note that the path in an FTP URL is relative to the home directory of the
user account and is not an absolute path starting at the root directory on the server. The URL
scheme will always determine if the connection is secure, not the option. In other words, if the "ftp"
scheme is used and the FTP_OPTION_SECURE option is specified, that option will be ignored. To
establish a secure connection, either the "ftps" or "sftp" scheme must be specified.

The optional "type" value at the end of the file name determines if the file should be downloaded
as a text or binary file. A value of "a" specifies that the file should be downloaded as a text file. A

value of "i" specifies that the file should be downloaded as a binary file. If the type is not explicitly
specified, the file will be downloaded as a binary file.

The lpStatus parameter can be used by the application to determine the final status of the
transfer, including the total number of bytes copied, the amount of time elapsed and other
information related to the transfer process. If this information isn't needed, then this parameter
may be specified as NULL.

The lpEventProc parameter specifies a pointer to a function which will be periodically called during
the file transfer process. This can be used to check the status of the transfer by calling
FtpGetTransferStatus and then update the program's user interface. For example, the callback
function could calculate the percentage for how much of the file has been transferred and then
update a progress bar control. The dwParam parameter is used in conjunction with the event
handler and specifies a user-defined value that is passed to the callback function. One common
use in a C++ program is to pass the this pointer as the value, and then cast it back to an object
pointer inside the callback function. If no event handler is required, then a NULL pointer can be
specified as the value for lpEventProc and the dwParam parameter will be ignored.

The FtpDownloadFile function is designed to provide a simpler interface for downloading a file.
However, complex connections such as those using a proxy server or a secure connection which
uses a client certificate will require the program to establish the connection using FtpConnect and
then use FtpGetFile to download the file.

Example
FTPTRANSFERSTATUS ftpStatus;
LPCTSTR lpszLocalFile = _T("c:\\temp\\database.mdb");
LPCTSTR lpszRemoteFile = _T("ftp://ftp.example.com/updates/database.mdb");
BOOL bResult;

// Download the file using the specified URL
bResult = FtpDownloadFile(lpszLocalFile,
 lpszRemoteFile,
 FTP_OPTION_PASSIVE,
 &ftpStatus,
 NULL, 0);

if (!bResult)
{
 TCHAR szError[128];

 // Display a message box that describes the error
 FtpGetErrorString(FtpGetLastError(), szError, 128);
 MessageBox(NULL, szError, NULL, MB_ICONEXCLAMATION|MB_TASKMODAL);
 return;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpEventProc, FtpGetFile, FtpGetTransferStatus, FtpUploadFile, FTPTRANSFERSTATUS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpDownloadFileEx Function

BOOL WINAPI FtpDownloadFileEx(
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszRemoteFile,
 UINT nTimeout
 DWORD dwOptions
 LPFTPTRANSFERSTATUSEX lpStatus
 FTPEVENTPROC lpEventProc
 DWORD_PTR dwParam
);

The FtpDownloadFileEx function downloads the specified file from the server to the local system.
This version of the function is designed to support files that are larger than 4GB.

Parameters
lpszLocalFile

A pointer to a string that specifies the file on the local system that will be created, overwritten or
appended to. The file pathing and name conventions must be that of the local host.

lpszRemoteFile

A pointer to a string that specifies the complete URL of the file to be downloaded. The URL
must follow the conventions for the File Transfer Protocol and may specify either a standard or
secure connection, alternate port number, username, password and optional working directory.

nTimeout

The number of seconds that the client will wait for a response before failing the operation. A
value of zero specifies that the default timeout period of sixty seconds will be used.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

FTP_OPTION_PASSIVE This option specifies the client should attempt to
establish the data connection with the server. When
the client uploads or downloads a file, normally the
server establishes a second connection back to the
client which is used to transfer the file data. However,
if the local system is behind a firewall or a NAT
router, the server may not be able to create the data
connection and the transfer will fail. By specifying this
option, it forces the client to establish an outbound
data connection with the server. It is recommended
that applications use passive mode whenever
possible.

FTP_OPTION_FIREWALL This option specifies the client should always use the
host IP address to establish the data connection with
the server, not the address returned by the server in
response to the PASV command. This option may be
necessary if the server is behind a router that
performs Network Address Translation (NAT) and it

returns an unreachable IP address for the data
connection. If this option is specified, it will also
enable passive mode data transfers.

FTP_OPTION_SECURE This option specifies the client should attempt to
establish a secure connection with the server. Note
that the server must support secure connections
using either the SSL or TLS protocol.

FTP_OPTION_SECURE_EXPLICIT This option specifies the client should use the AUTH
command to negotiate an explicit secure connection.
Some servers may only require this when connecting
to the server on ports other than 990.

lpStatus

A pointer to an FTPTRANSFERSTATUSEX structure which contains information about the status
of the current file transfer. If this information is not required, a NULL pointer may be specified as
the parameter.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the FtpEventProc callback
function. If this parameter is NULL, the callback for the specified event is disabled.

dwParam

A user-defined integer value that is passed to the callback function.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call FtpGetLastError.

Remarks
The FtpDownloadFileEx function provides a convenient way for an application to download a file
in a single function call. Based on the connection information specified in the URL, it will connect
to the server, authenticate the session, change the current working directory if necessary and then
download the file to the local system. The URL must be complete, and specify either a standard or
secure FTP scheme:

[ftp|ftps|sftp]://[username : password] @] hostname [:port] / [path /
...] [filename] [;type=a|i]

If no user name and password is provided, then the client session will be authenticated as an
anonymous user. If a path is specified as part of the URL, the function will attempt to change the
current working directory. Note that the path in an FTP URL is relative to the home directory of the
user account and is not an absolute path starting at the root directory on the server. The URL
scheme will always determine if the connection is secure, not the option. In other words, if the "ftp"
scheme is used and the FTP_OPTION_SECURE option is specified, that option will be ignored. To
establish a secure connection, either the "ftps" or "sftp" scheme must be specified.

The optional "type" value at the end of the file name determines if the file should be downloaded
as a text or binary file. A value of "a" specifies that the file should be downloaded as a text file. A
value of "i" specifies that the file should be downloaded as a binary file. If the type is not explicitly
specified, the file will be downloaded as a binary file.

The lpStatus parameter can be used by the application to determine the final status of the

transfer, including the total number of bytes copied, the amount of time elapsed and other
information related to the transfer process. If this information isn't needed, then this parameter
may be specified as NULL.

The lpEventProc parameter specifies a pointer to a function which will be periodically called during
the file transfer process. This can be used to check the status of the transfer by calling
FtpGetTransferStatusEx and then update the program's user interface. For example, the callback
function could calculate the percentage for how much of the file has been transferred and then
update a progress bar control. The dwParam parameter is used in conjunction with the event
handler and specifies a user-defined value that is passed to the callback function. One common
use in a C++ program is to pass the this pointer as the value, and then cast it back to an object
pointer inside the callback function. If no event handler is required, then a NULL pointer can be
specified as the value for lpEventProc and the dwParam parameter will be ignored.

The FtpDownloadFileEx function is designed to provide a simpler interface for downloading a
file. However, complex connections such as those using a proxy server or a secure connection
which uses a client certificate will require the program to establish the connection using
FtpConnect and then use FtpGetFileEx to download the file.

Example
FTPTRANSFERSTATUSEX ftpStatus;
LPCTSTR lpszLocalFile = _T("c:\\temp\\database.mdb");
LPCTSTR lpszRemoteFile = _T("ftp://ftp.example.com/updates/database.mdb");
BOOL bResult;

// Download the file using the specified URL
bResult = FtpDownloadFileEx(lpszLocalFile,
 lpszRemoteFile,
 FTP_OPTION_PASSIVE,
 &ftpStatus,
 NULL, 0);

if (!bResult)
{
 TCHAR szError[128];

 // Display a message box that describes the error
 FtpGetErrorString(FtpGetLastError(), szError, 128);
 MessageBox(NULL, szError, NULL, MB_ICONEXCLAMATION|MB_TASKMODAL);
 return;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpEventProc, FtpGetFileEx, FtpGetTransferStatusEx, FtpUploadFileEx, FTPTRANSFERSTATUSEX

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpEnableEvents Function

INT WINAPI FtpEnableEvents(
 HCLIENT hClient,
 HWND hEventWnd,
 UINT uEventMsg
);

The FtpEnableEvents function enables event notifications using Windows messages.

This function has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Applications should use the FtpRegisterEvent function to register an event handler which is
invoked when an event occurs.

Parameters
hClient

Handle to the client session.

hEventWnd

Handle to the window which will receive the client notification messages. This parameter must
specify a valid window handle. If a NULL handle is specified, event notification will be disabled.

uEventMsg

The message that is received when a client event occurs. This value must be greater than 1024.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
The FtpEnableEvents function is used to request that notification messages be posted to the
specified window whenever a client event occurs. This allows an application to monitor the status
of different client operations, such as a file transfer.

The wParam argument will contain the client handle, the low word of the lParam argument will
contain the event ID, and the high word will contain any error code. If no error has occurred, the
high word will always have a value of zero. The following events may be generated:

Constant Description

FTP_EVENT_CONNECT The control connection to the server has completed. The high word
of the lParam parameter should be checked, since this notification
message will be posted if an error has occurred.

FTP_EVENT_DISCONNECT The server has closed the control connection to the client. The
client should read any remaining data and disconnect.

FTP_EVENT_OPENFILE The data connection to the server has completed. The high word of
the lParam parameter should be checked, since this notification
message will be posted if an error has occurred.

FTP_EVENT_CLOSEFILE The server has closed the data connection to the client. The client

should read any remaining data and close the data channel.

FTP_EVENT_READFILE Data is available to read by the calling process. No additional
messages will be posted until the client has read at least some of
the data. This event is only generated if the client is in
asynchronous mode.

FTP_EVENT_WRITEFILE The client can now write data. This notification is sent after a
connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking
operation. This event is only generated if the client is in
asynchronous mode.

FTP_EVENT_TIMEOUT The network operation has exceeded the specified timeout period.
The client application may attempt to retry the operation, or may
disconnect from the server and report an error to the user.

FTP_EVENT_CANCEL The current operation has been canceled. Under most
circumstances the client should disconnect from the server and re-
connect if needed. After an operation has been canceled, the
server may abort the connection or refuse to accept further
commands from the client.

FTP_EVENT_COMMAND A command has been issued by the client and the server response
has been received and processed. This event can be used to log
the result codes and messages returned by the server in response
to actions taken by the client.

FTP_EVENT_PROGRESS The client is in the process of sending or receiving a file on the data
channel. This event is called periodically during a transfer so that
the client can update any user interface components such as a
status control or progress bar.

FTP_EVENT_GETFILE This event is generated when a file download has completed. If
multiple files are being downloaded, this event will be generated
for each file.

FTP_EVENT_PUTFILE This event is generated when a file upload has completed. If
multiple files are being uploaded, this event will be generated for
each file.

It is not required that the client be placed in asynchronous mode in order to receive command
and progress event notifications. To disable event notification, call the FtpDisableEvents function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpDisableEvents, FtpRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpEnableFeature Function

BOOL WINAPI FtpEnableFeature(
 HCLIENT hClient,
 DWORD dwFeature,
 BOOL bEnable
);

The FtpEnableFeature function enables or disables a specific server feature available to the client.

Parameters
hClient

Handle to the client session.

dwFeature

An unsigned integer which specifies the feature to be enabled to disabled for the current client
session. Refer to the documentation for the FtpGetFeatures function for a list of available
features.

bEnable

A boolean flag which specifies if the feature should be enabled or disabled. If the value is non-
zero, the library will attempt to use that feature on the server. If the value is zero, the feature is
disabled. If an application calls a function which requires a specific feature and that feature is
disabled, the function will fail with an error indicating the feature is not supported.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, it will return a value of
zero. To get extended error information, call the FtpGetLastError function.

Remarks
The FtpEnableFeature function is used to enable or disable a specific feature for the current
session. When a client connection is first established, features are enabled based on the server
type and the server's response to the FEAT command. However, as the client issues commands to
the server, if the server reports that the command is unrecognized that feature will automatically
be disabled in the client. An application can use the FtpEnableFeature function to control what
commands will be sent to the server, or re-enable a command that was previously disabled.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpGetFeatures, FtpSetFeatures

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpEnableTrace Function

BOOL WINAPI FtpEnableTrace(
 LPCTSTR lpszTraceFile,
 DWORD dwTraceFlags
);

The FtpEnableTrace function enables the logging of socket function calls to a file.

Parameters
lpszTraceFile

A pointer to a string which specifies the name of the trace log file. If this parameter is NULL or
an empty string, the default file name cstrace.log is used. The file is stored in the directory
specified by the TEMP environment variable, if it is defined; otherwise, the current working
directory is used.

dwTraceFlags

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

TRACE_INFO All function calls are written to the trace file. This is the default
value.

TRACE_ERROR Only those function calls which fail are recorded in the trace file.

TRACE_WARNING Only those function calls which fail or return values which indicate
a warning are recorded in the trace file.

TRACE_HEXDUMP All functions calls are written to the trace file, plus all the data that
is sent or received is displayed, in both ASCII and hexadecimal
format.

TRACE_PROCESS All function calls in the current process are logged, rather than
only those functions in the current thread. This option is useful for
multithreaded applications that are using worker threads.

Return Value
If the function succeeds, the return value is non-zero. A return value of zero indicates an error.
Failure typically indicates that the tracing library cstrcv11.dll cannot be loaded on the local
system.

Remarks
When trace logging is enabled, the file is opened, appended to and closed for each socket
function call. This makes it possible for an application to append its own logging information,
however care should be taken to ensure that the file is closed before the next network operation is
performed. To limit the size of the log files, enable and disable logging only around those sections
of code that you wish to trace.

Note that the TRACE_HEXDUMP trace level generates very large log files since it includes all of the
data exchanged between your application and the server.

Trace function logging is managed on a per-thread basis, not for each client handle. This means
that all SocketTools libraries and components share the same settings in the current thread. If you

are using multiple SocketTools libraries or components in your application, you only need to
enable logging once.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpDisableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpEndOfFile Function

BOOL WINAPI FtpEndOfFile(
 HCLIENT hClient
);

The FtpEndOfFile function is used to determine if the end-of-file has been reached while reading
the contents of a remote file.

Parameters
hClient

Handle to the client session.

Return Value
If the end-of-file has been reached, the function returns a non-zero value. If the client handle is
invalid, or the end-of-file has not been reached, the function returns zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpCloseFile, FtpOpenFile, FtpRead

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpEnumFiles Function

INT WINAPI FtpEnumFiles(
 HCLIENT hClient,
 LPCTSTR lpszDirectory,
 LPCTSTR lpszFileMask,
 DWORD dwOptions,
 LPFTPFILESTATUS lpFileList,
 INT nMaxFiles
);

The FtpEnumFilesEx function populates an array of structures that contain information about the
files in a directory.

Parameters
hClient

Handle to the client session.

lpszDirectory

A pointer to a string that specifies the name of a directory on the server. If this parameter is
NULL or points to an empty string, the function will return the files in the current working
directory. This string cannot contain wildcard characters and must specify a valid directory name
that exists on the server.

lpszFileMask

A pointer to a string that specifies a wildcard file mask that is used to return a subset of files in
the directory. If this parameter is NULL or an empty string then all of the files in the directory will
be returned.

dwOptions

An unsigned integer value that specifies one or more options. This parameter can be a
combination of one or more of the following values:

Constant Description

FTP_ENUM_DEFAULT The function will return both regular files and subdirectories.

FTP_ENUM_FILE The function will return only regular files.

FTP_ENUM_DIRECTORY The function will return only subdirectories.

FTP_ENUM_FULLPATH The function will return the full path of the file or
subdirectory.

lpFileList

A pointer to an array of FTPFILESTATUS structures which contains information about each of the
files in the specified directory. This parameter cannot be NULL, and the array must be large
enough to store the number of files specified by the nMaxFiles parameter.

nMaxFiles

An integer value that specifies the maximum number of files that should be returned. This value
must be greater than zero and the lpFileList parameter must provide an array that is large
enough to store information about each file.

Return Value

If the function succeeds, the return value is the number of files returned by the function. If the
directory is empty or there are no files that match the specified wildcard file mask, the function will
return zero. If the function fails, the return value is FTP_ERROR. To get extended error information,
call FtpGetLastError.

Remarks
The FtpEnumFiles function provides a high-level interface for obtaining a list of available files in a
directory on the server in a single function call. This is an alternative to opening a directory and
returning information about each file by calling the FtpGetNextFile function in a loop.

This function temporarily changes the current working directory to the directory specified by the
lpszDirectory parameter. The current working directory will be restored to its original value when
the function returns. The user must have the appropriate permissions to access the directory or
this function will fail.

To obtain information on a subset of files in the directory, you can specify a wildcard file mask. For
FTP and FTPS (SSL) sessions, this value is passed as a parameter to the LIST command and the
server performs the wildcard matching. For SFTP (SSH) sessions the wildcard matching is
performed by the library, and the standard conventions for Windows file wildcards are used.

By default, the szFileName member for each FTPFILESTATUS structure will contain the base file
name. If the FTP_ENUM_FULLPATH option is specified, the function will return the full path name
to the file. The library must be able to automatically determine the path delimiter that is used by
the server. This is done by examining how the server identifies itself, the current directory format
and the path the server returns for the current working directory. For example, UNIX based servers
use the forward slash as a path delimiter. If the function cannot determine what the appropriate
path delimiter is, it will ignore this option and return only the base file name.

This function will cause the current thread to block until the file listing completes, a timeout occurs
or the operation is canceled. If the directory contains files that are larger than 4GB, the
FtpEnumFilesEx function should be used to obtain the correct file size.

Example
LPFTPFILESTATUS lpFileList = new FTPFILESTATUS[MAXFILECOUNT];

// Return all of the regular files in the current working directory
INT nResult = FtpEnumFiles(hClient, NULL, NULL, FTP_ENUM_FILE,
 lpFileList, MAXFILECOUNT);

if (nResult == FTP_ERROR)
{
 DWORD dwError = FtpGetLastError();
 _tprintf(_T("FtpEnumFiles failed, error 0x%08lx\n"), dwError);
 return;
}

_tprintf(_T("FtpEnumFiles returned %d files\n"), nResult);
for (INT nIndex = 0; nIndex < nResult; nIndex++)
{
 _tprintf(_T("file=\"%s\" size=%lu\n"), lpFileList[nIndex].szFileName,
 lpFileList[nIndex].dwFileSize);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)

Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpEnumFilesEx, FtpGetFileStatus, FtpGetFirstFile, FtpGetNextFile, FtpOpenDirectory

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpEnumFilesEx Function

INT WINAPI FtpEnumFilesEx(
 HCLIENT hClient,
 LPCTSTR lpszDirectory,
 LPCTSTR lpszFileMask,
 DWORD dwOptions,
 LPFTPFILESTATUSEX lpFileList,
 INT nMaxFiles
);

The FtpEnumFilesEx function populates an array of structures that contain information about the
files in a directory. This version of the function is designed to support files that are larger than 4GB.

Parameters
hClient

Handle to the client session.

lpszDirectory

A pointer to a string that specifies the name of a directory on the server. If this parameter is
NULL or points to an empty string, the function will return the files in the current working
directory. This string cannot contain wildcard characters and must specify a valid directory name
that exists on the server.

lpszFileMask

A pointer to a string that specifies a wildcard file mask that is used to return a subset of files in
the directory. If this parameter is NULL or an empty string then all of the files in the directory will
be returned.

dwOptions

An unsigned integer value that specifies one or more options. This parameter can be a
combination of one or more of the following values:

Constant Description

FTP_ENUM_DEFAULT The function will return both regular files and subdirectories.

FTP_ENUM_FILE The function will return only regular files.

FTP_ENUM_DIRECTORY The function will return only subdirectories.

FTP_ENUM_FULLPATH The function will return the full path of the file or
subdirectory.

lpFileList

A pointer to an array of FTPFILESTATUSEX structures which contains information about each of
the files in the specified directory. This parameter cannot be NULL, and the array must be large
enough to store the number of files specified by the nMaxFiles parameter.

nMaxFiles

An integer value that specifies the maximum number of files that should be returned. This value
must be greater than zero and the lpFileList parameter must provide an array that is large
enough to store information about each file.

Return Value

If the function succeeds, the return value is the number of files returned by the function. If the
directory is empty or there are no files that match the specified wildcard file mask, the function will
return zero. If the function fails, the return value is FTP_ERROR. To get extended error information,
call FtpGetLastError.

Remarks
The FtpEnumFilesEx function provides a high-level interface for obtaining a list of available files in
a directory on the server in a single function call. This is an alternative to opening a directory and
returning information about each file by calling the FtpGetNextFileEx function in a loop.

This function temporarily changes the current working directory to the directory specified by the
lpszDirectory parameter. The current working directory will be restored to its original value when
the function returns. The user must have the appropriate permissions to access the directory or
this function will fail.

To obtain information on a subset of files in the directory, you can specify a wildcard file mask. For
FTP and FTPS (SSL) sessions, this value is passed as a parameter to the LIST command and the
server performs the wildcard matching. For SFTP (SSH) sessions the wildcard matching is
performed by the library, and the standard conventions for Windows file wildcards are used.

By default, the szFileName member for each FTPFILESTATUSEX structure will contain the base
file name. If the FTP_ENUM_FULLPATH option is specified, the function will return the full path
name to the file. The library must be able to automatically determine the path delimiter that is
used by the server. This is done by examining how the server identifies itself, the current directory
format and the path the server returns for the current working directory. For example, UNIX based
servers use the forward slash as a path delimiter. If the function cannot determine what the
appropriate path delimiter is, it will ignore this option and return only the base file name.

This function will cause the current thread to block until the file listing completes, a timeout occurs
or the operation is canceled.

Example
LPFTPFILESTATUSEX lpFileList = new FTPFILESTATUSEX[MAXFILECOUNT];

// Return all of the regular files in the current working directory
INT nResult = FtpEnumFilesEx(hClient, NULL, NULL, FTP_ENUM_FILE,
 lpFileList, MAXFILECOUNT);

if (nResult == FTP_ERROR)
{
 DWORD dwError = FtpGetLastError();
 _tprintf(_T("FtpEnumFilesEx failed, error 0x%08lx\n"), dwError);
 return;
}

_tprintf(_T("FtpEnumFilesEx returned %d files\n"), nResult);
for (INT nIndex = 0; nIndex < nResult; nIndex++)
{
 _tprintf(_T("file=\"%s\" size=%I64d\n"), lpFileList[nIndex].szFileName,
 lpFileList[nIndex].uiFileSize);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpEnumFiles, FtpGetFileStatusEx, FtpGetFirstFileEx, FtpGetNextFileEx, FtpOpenDirectory

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpEnumQueuedFiles Function

LONG WINAPI FtpEnumQueuedFiles(
 HQUEUE hQueue,
 LPCTSTR lpszFileMask,
 DWORD dwQueueMode,
 DWORD dwExcludeFiles,
 LPDWORD lpFileList,
 LONG nMaxFiles
);

The FtpEnumQueuedFiles function returns a list of files in the current transfer queue.

Parameters
hQueue

A handle to a file transfer queue.

lpszFileMask

A pointer to a null terminated string which specifies a file name which can include wildcards.
Only those files which match this value will be enumerated. The character '?' will match against
any single character, and '*' will match any number of characters. If this parameter is NULL or
points to an empty string, all eligible files in the queue will be matched.

dwQueueMode

An unsigned integer value which specifies if the file name should be matched against
downloaded files, uploaded files or all files in the queue. Only those files which match the queue
mode will be enumerated. This is a bitmask which may be one or more of the following values:

Constant Description

FTP_QUEUE_ALL Match the file name to all files in the queue.

FTP_QUEUE_DOWNLOAD Match file names which are queued for download.

FTP_QUEUE_UPLOAD Match file names which are queued for upload.

FTP_QUEUE_LOCAL Match against the local file name instead of the
remote file name.

dwExcludeFiles

An unsigned integer value which specifies which files to exclude from the enumeration. If this
value is zero, no files will be excluded; otherwise, this value is constructed by using a bitwise
operator with any of the following values:

Constant Description

FTP_QUEUE_FLAG_NONE No files should be excluded.

FTP_QUEUE_FLAG_COMPLETED Exclude files which have been transferred. This flag is
set after a queued file has been uploaded or
downloaded successfully.

FTP_QUEUE_FLAG_FAILED Exclude files which where not successfully uploaded
or downloaded. This flag is set when an error occurs,
either when establishing a connection with the server
or during the file transfer.

FTP_QUEUE_FLAG_CANCELED Exclude files which were canceled during the file
transfer. This flag is only set when the
FtpCancelQueuedFile function has been called and
a queued file is in the process of being uploaded or
downloaded.

lpFileList

A pointer to an array of unsigned integer values which will contain the unique file identifiers for
each matching file in the queue. This parameter must specify an array large enough to store all
of the file identifiers, otherwise the function will fail with a ST_ERROR_BUFFER_TOO_SMALL
error. If this parameter is NULL, the function will return the number of matching files.

nMaxFiles

An integer value which specifies the maximum number of file identifiers which can be copied
into the lpFileList array. If the lpFileList parameter is not NULL, this value must be greater than
zero.

Return Value
If the function succeeds, the return value is the number of matching files. If the queue is empty or
there are no matching files, this function will return zero. If the function fails, the return value is
FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
This function populates an array of unique file identifiers which can be used to obtain information
about the files in the current queue. The values returned in the lpFileList array can be used in
conjunction with the FtpGetQueuedFile function. This provides an alternative to using the
FtpGetFirstQueuedFile and FtpGetNextQueuedFile functions.

The application should not make any assumptions about the value of the file identifiers returned
by this function. They should be considered opaque values which are only guaranteed to uniquely
identify a file in the transfer queue. In particular, there is no guarantee that the file identifiers will
be sequential and they should not be used as index values into an array.

Example
// Get the total number of files in the queue
LONG nFiles = FtpEnumQueuedFiles(hQueue, NULL, FTP_QUEUE_ALL,
FTP_QUEUE_FLAG_NONE, NULL, 0)

// Display information about the queued files
if (nFiles > 0)
{
 DWORD *pdwFileList = new DWORD[nFiles];

 nFiles = FtpEnumQueuedFiles(hQueue, NULL, FTP_QUEUE_ALL,
FTP_QUEUE_FLAG_NONE, pdwFileList, nFiles);

 for (LONG nIndex = 0; nIndex < nFiles; nIndex++)
 {
 FTPQUEUEDFILE queuedFile;

 if (FtpGetQueuedFile(hQueue, pdwFileList[nIndex], &queuedFile) == FALSE)
 break;

 switch (queuedFile.dwMode)
 {

 case FTP_QUEUE_DOWNLOAD:
 _tprintf(_T("%u: Download \"%s\" to \"%s\"\n"),
 queuedFile.dwFileId,
 queuedFile.szRemoteFile,
 queuedFile.szLocalFile);
 break;

 case FTP_QUEUE_UPLOAD:
 _tprintf(_T("%u: Upload \"%s\" to \"%s\"\n"),
 queuedFile.dwFileId,
 queuedFile.szLocalFile,
 queuedFile.szRemoteFile);
 break;
 }
 }

 delete pdwFileList;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpAddQueuedFile, FtpFindQueuedFile, FtpGetFirstQueuedFile, FtpGetNextQueuedFile,
FtpGetQueuedFile, FtpRemoveQueuedFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpEnumTasks Function

INT WINAPI FtpEnumTasks(
 UINT * lpTasks,
 INT nMaxTasks,
 DWORD dwOptions
);

Return a list of active, suspended or finished asynchronous tasks.

Parameters
lpTasks

A pointer to an array of unsigned integer values that will contain unique task identifiers when
the function returns. If this parameter is NULL, the function will return the number of tasks.

nMaxTasks

An integer value that specifies the maximum number of task identifiers that may be copied into
the lpTasks array. If the lpTasks parameter is NULL, this value must be zero.

dwOptions

An unsigned integer that specifies the type of asynchronous tasks that may be returned by this
function. It may be a combination of the following values:

Constant Description

FTP_TASK_DEFAULT The list of asynchronous task IDs should include both active
and suspended tasks. This option is the same as specifying
both the FTP_TASK_ACTIVE and FTP_TASK_SUSPENDED
options.

FTP_TASK_ACTIVE The list of asynchronous task IDs should include those tasks
which are currently active. An active task represents a
background connection to a server that is in the process of
performing the requested action, such as uploading or
downloading a file.

FTP_TASK_SUSPENDED The list of asynchronous task IDs should include those tasks
which have been suspended. A suspended task represents a
background connection that has been established, but the
worker thread is not scheduled for execution.

FTP_TASK_FINISHED The list of asynchronous task IDs should include those tasks
which have completed recently.

Return Value
If the function is successful, the return value is the number of task identifiers copied into the
provided array. If there are no tasks which match the requested criteria, the return value is zero. A
return value of FTP_ERROR indicates an error has occurred. To get extended error information, call
the FtpGetLastError function.

Remarks
The FtpEnumTasks function can be used to obtain a list of numeric identifiers that represent the
asynchronous tasks that have been started or those that have completed. These task IDs are used
by other functions to reference the background worker thread that has been created and obtain

status information for the task. For example, the FtpTaskDone function can be used to determine
if a particular task has completed, and the FtpTaskWait function can be used to wait for a task to
complete and return an error status code if the background operation failed.

There is an internal limit of 128 asynchronous tasks per process that may be active at any one
time. When a task completes, the status information about that task is maintained for period of
time after the task has completed.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpTaskDone, FtpTaskResume, FtpTaskSuspend, FtpTaskWait

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpEventProc Function

VOID CALLBACK FtpEventProc(
 HCLIENT hClient,
 UINT nEventId,
 DWORD dwError,
 DWORD_PTR dwParam
);

The FtpEventProc function is an application-defined callback function that processes events
generated by the client.

Parameters
hClient

Handle to the client session.

nEventId

An unsigned integer which specifies which event occurred. For a complete list of events, refer to
the FtpRegisterEvent function.

dwError

An unsigned integer which specifies any error that occurred. If no error occurred, then this
parameter will be zero.

dwParam

A user-defined integer value which was specified when the event callback was registered.

Return Value
None.

Remarks
An application must register this callback function by passing its address to the FtpRegisterEvent
function. This callback function is also used by asynchronous tasks to notify the application when
the task has started and completed. The FtpEventProc function is a placeholder for the
application-defined function name. Other functions, such as FtpStartQueue can also use event
callbacks.

If the callback function is invoked by an asynchronous task, it will execute in the context of the
worker thread that is managing the client session. You must ensure that any access to global or
static variables are synchronized, otherwise the results may be unpredictable. It is recommended
that you do not declare any static variables within the callback function itself, and you should avoid
calling any functions which could cause the thread to block. For example, you should not attempt
to establish other network connections from within the event handler.

If your application has a graphical user interface, you should never attempt to directly modify a UI
control from within the callback function for an asynchronous task. Controls should only be
modified by the same UI thread that created their window. One common approach to resolve this
issue is to post a user-defined message to the main window to signal that the user interface needs
to be updated. The message handler would then process the user-defined message and update
the user interface as needed.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)

Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpDisableEvents, FtpEnableEvents, FtpFreezeEvents, FtpRegisterEvent, FtpStartQueue

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpFindQueuedFile Function

DWORD WINAPI FtpFindQueuedFile(
 HQUEUE hQueue,
 LPCTSTR lpszFileName,
 DWORD dwQueueMode,
 DWORD dwExcludeFiles
);

The FtpFindQueuedFile function finds a file in the transfer queue which matches the search
criteria.

Parameters
hQueue

A handle to a file transfer queue.

lpszFileName

A pointer to a null terminated string which specifies the name of the file to search for. The string
may contain the wildcard character '?' to match against any single character, and '*' will match
any number of characters. This parameter cannot be NULL or point to an empty string.

dwQueueMode

An unsigned integer value which specifies if the file name should be matched against
downloaded files, uploaded files or all files in the queue. This is a bitmask which may be one or
more of the following values:

Constant Description

FTP_QUEUE_ALL Match the file name to all files in the queue.

FTP_QUEUE_DOWNLOAD Match file names which are queued for download.

FTP_QUEUE_UPLOAD Match file names which are queued for upload.

FTP_QUEUE_LOCAL Match against the local file name instead of the
remote file name.

dwExcludeFiles

An unsigned integer value which specifies which files to exclude from the search. If this value is
zero, no files will be excluded from the search; otherwise, this value is constructed by using a
bitwise operator with any of the following values:

Constant Description

FTP_QUEUE_FLAG_NONE No files should be excluded from the search.

FTP_QUEUE_FLAG_COMPLETED Exclude files which have been transferred. This flag is
set after a queued file has been uploaded or
downloaded successfully.

FTP_QUEUE_FLAG_FAILED Exclude files which where not successfully uploaded
or downloaded. This flag is set when an error occurs,
either when establishing a connection with the server
or during the file transfer.

FTP_QUEUE_FLAG_CANCELED Exclude files which were canceled during the file
transfer. This flag is only set when the

FtpCancelQueuedFile function has been called and
a queued file is in the process of being uploaded or
downloaded.

Return Value
If the function succeeds, the return value is a unique identifier for the file. To obtain information
about the file, call the FtpGetQueuedFile function. If the function fails, the return value is zero. To
get extended error information, call FtpGetLastError.

Remarks
This function returns a unique file identifier for the first file which matches the specified file name in
the queue. If the lpszFileName parameter includes wildcard characters, this function will return the
first file in the queue which matches the name. File name matches are not case-sensitive, even
when matching against remote file names on servers which use case-sensitive naming, such as
UNIX based servers.

To perform more complex searches based on the file name, or to find multiple files, you can use
the FtpGetFirstQueuedFile and FtpGetNextQueuedFile functions to iterate through all queued
files.

Example
// Find a local file in the download queue
DWORD dwFileId = FtpFindQueuedFile(
 hQueue,
 lpszFileName,
 FTP_QUEUE_DOWNLOAD | FTP_QUEUE_LOCAL,
 FTP_QUEUE_FLAG_NONE);

// Display information about the queued file
if (dwFileId != 0)
{
 FTPQUEUEDFILE queuedFile;

 if (FtpGetQueuedFile(hQueue, dwFileId, &queuedFile))
 {
 switch (queuedFile.dwMode)
 {
 case FTP_QUEUE_DOWNLOAD:
 _tprintf(_T("%u: Download \"%s\" to \"%s\"\n"),
 dwFileId,
 queuedFile.szRemoteFile,
 queuedFile.szLocalFile);
 break;

 case FTP_QUEUE_UPLOAD:
 _tprintf(_T("%u: Upload \"%s\" to \"%s\"\n"),
 dwFileId,
 queuedFile.szLocalFile,
 queuedFile.szRemoteFile);
 break;
 }
 }
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)

Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpAddQueuedFile, FtpEnumQueuedFiles, FtpGetFirstQueuedFile, FtpGetNextQueuedFile,
FtpGetQueuedFile, FtpRemoveQueuedFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpFreezeEvents Function

INT WINAPI FtpFreezeEvents(
 HCLIENT hClient,
 BOOL bFreeze
);

The FtpFreezeEvents function is used to suspend and resume event handling by the client.

Parameters
hClient

Handle to the client session.

bFreeze

A non-zero value specifies that event handling should be suspended by the client. A zero value
specifies that event handling should be resumed.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
This function should be used when the application does not want to process events, such as when
a modal dialog is being displayed. When events are suspended, all client events are queued. If
events are re-enabled at a later point, those queued events will be sent to the application for
processing. Note that only one of each event will be generated. For example, if the client has
suspended event handling, and four read events occur, once event handling is resumed only one
of those read events will be posted to the client. This prevents the application from being flooded
by a potentially large number of queued events.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpDisableEvents, FtpEnableEvents, FtpRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetActivePorts Function

INT WINAPI FtpGetActivePorts(
 HCLIENT hClient,
 UINT * lpnLowPort,
 UINT * lpnHighPort
);

The FtpGetActivePorts function returns the local port numbers used for active mode file
transfers.

Parameters
hClient

Handle to the client session.

lpnLowPort

Points to an unsigned integer that will contain the low port number when the function returns.

lpnHighPort

Points to an unsigned integer that will contain the high port number when the function returns.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
This function is used to determine the default port numbers being used for active mode file
transfers. When using active mode, the client listens for an inbound connection from the server
rather than establishing an outbound connection for the data transfer. In most cases, passive
mode transfers are preferred because they mitigate potential compatibility issues with firewalls and
NAT routers.

If active mode transfers are required, the default port range used when listening for the server
connection is between 1024 and 5000. This is the standard range of ephemeral ports used by the
Windows operating system. However, under some circumstances that range of ports may be too
small, or a firewall may be configured to deny inbound connections on ephemeral ports. In that
case, the FtpSetActivePorts function can be used to specify a different range of port numbers.

While it is technically permissible to assign the low and high port numbers to the same value,
effectively specifying a single active port number, this is not recommended as it can cause the
transfer to fail unexpectedly if multiple file transfers are performed. A minimum range of at least
1000 ports is recommended. For example, if you specify a low port value of 40000 then it is
recommended that the high port value be at least 41000. The maximum port value is 65535.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpSetActivePorts, FtpSetPassiveMode

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetAutoFileType Function

UINT WINAPI FtpGetAutoFileType(
 HCLIENT hClient,
 LPCTSTR lpszFileName,
 BOOL bScanFile
);

The FtpGetAutoFileType function returns the file transfer type based on the file extension or
content.

Parameters
hClient

Handle to the client session. If this parameter is INVALID_CLIENT the function will only check
against the global list of default text file extensions. If the handle is valid, it will also check for any
application defined file extensions.

lpszFileName

A pointer to a null-terminated string which specifies the local path to the file. This parameter
cannot be NULL and cannot specify a local device name or directory.

bScanFile

Specifies if the contents of the file should be scanned. A value of zero indicates that only the file
extension should be used to determine the file type, while a non-zero value specifies the
contents of the file should be examined if the file type cannot be determined based on its
extension.

Return Value
If the function succeeds, the return value is the file transfer type. If the function fails, the return
value is INVALID_FILE_TYPE. To get extended error information, call FtpGetLastError.

Remarks
This function is used to determine the file transfer type to be used when uploading or
downloading files. This function is called internally when FILE_TYPE_AUTO is specified as the
default file type. The return value may be one of the following:

Value Description

FILE_TYPE_ASCII
(1)

The file is a text file using the ASCII character set. For those servers
which mark the end of a line with characters other than a carriage
return and linefeed, it will be converted to the native client format.
This is the file type used for directory listings.

FILE_TYPE_EBCDIC
(2)

The file is a text file using the EBCDIC character set. Local files will
be converted to EBCDIC when sent to the server. Remote files will
be converted to the native ASCII character set when retrieved
from the server. Not all servers support this file type. It is
recommended that you only specify this type if you know that it is
required by the server to transfer data correctly.

FILE_TYPE_IMAGE
(3)

The file is a binary file and no data conversion of any type is
performed on the file. This is the default file type for most data
files and executable programs. If the type of file cannot be
automatically determined, it will always be considered a binary file.

If this file type is specified when uploading or downloading text
files, the native end-of-line character sequences will be preserved.

If the file extension or contents are not recognized, the default file transfer type for the client
session will be returned. This will usually be FILE_TYPE_IMAGE, however this can be changed by
calling the FtpRegisterFileType function. The file type for the current client session can be
explicitly set using the FtpSetFileType function.

If the bScanFile parameter is non-zero, the local file will be opened in a shared reading mode and
up to 4,096 bytes will be examined to determine if it contains binary data. If the file is currently
locked or has been opened exclusively by another process, the file type associated with the file
extension will be returned instead. Text files which contain UTF-16 text will always return a file type
of FILE_TYPE_IMAGE because they can contain non-ASCII characters and/or embedded null
characters.

If the bScanFile parameter is non-zero and the file type cannot be determined based on the file
name extension, the file specified by lpszFileName must exist and be a regular file. If the file does
not exist, an error will be returned and the last error code will be set to
ST_ERROR_FILE_NOT_FOUND. If the bScanFile parameter is zero, no errors will be returned if the
file does not exist, the function will only check the file name extension to determine the file type.
When downloading a file, the bScanFile parameter should normally be zero because the local file
may not exist yet.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpGetFileType, FtpRegisterFileType, FtpSetFileMode, FtpSetFileStructure, FtpSetFileType

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetBufferSize Function

INT WINAPI FtpGetBufferSize(
 HCLIENT hClient
);

The FtpGetBufferSize function returns the size in bytes of an internal buffer that will be used
during data transfers.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is the size of the internal buffer that will be used in data
transfers. If the function fails, the return value is FTP_ERROR. To get extended error information,
call FtpGetLastError.

Remarks
The speed of data transfers, particularly on uploads, may be sensitive to network type and
configuration, and the size of the internal buffer used for data transfers. The default size of this
buffer will result in good performance for a wide range of network characteristics. A larger buffer
will not necessarily result in better performance. For example, a value of 1460, which is the typical
Maximum Transmission Unit (MTU), may be optimal in many situations.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpSetBufferSize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetChannelMode Function

INT WINAPI FtpGetChannelMode(
 HCLIENT hClient,
 INT nChannel
);

The FtpGetChannelMode function returns the mode of the specified communications channel.

Parameters
hClient

Handle to the client session.

nChannel

An integer value which specifies which channel to return information for. It may be one of the
following values:

Constant Description

FTP_CHANNEL_COMMAND Return information about the command channel. This is
the communication channel used to send commands to
the server and receive command result and status
information from the server.

FTP_CHANNEL_DATA Return information about the data channel. This is the
communication channel used to send or receive data
during a file transfer.

Return Value
If the function succeeds, the return value is the mode for the specified channel. If the function fails,
it will return FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
The FtpGetChannelMode function returns a integer which may be one of the following values:

Constant Description

FTP_CHANNEL_CLEAR The channel is not encrypted. This is the default mode for
both channels when a standard, non-secure connection is
established with the server.

FTP_CHANNEL_SECURE The channel is encrypted. This is the default mode for both
channels when a secure connection is established with the
server.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpSetChannelMode

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetClientQuota Function

INT WINAPI FtpGetClientQuota(
 HCLIENT hClient,
 LPFTPCLIENTQUOTA lpClientQuota
);

The GetClientQuota function returns information about file quotas for the current client session.

Parameters
hClient

Handle to the client session.

lpClientQuota

A pointer to an FTPCLIENTQUOTA structure which contains the quota information returned by
the server.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is FTP_ERROR. To get extended error information, call GetLastError.

Remarks
This method uses the XQUOTA command to obtain information for the current client session. If
the server does not support this command, the function will fail.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpGetServerInformation, FtpGetServerType

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetData Function

INT WINAPI FtpGetData(
 HCLIENT hClient,
 LPCTSTR lpszRemoteFile,
 LPVOID lpvBuffer,
 LPDWORD lpdwLength,
 DWORD dwReserved
);

The FtpGetData function transfers the contents of a file on the server to the specified buffer.

Parameters
hClient

Handle to the client session.

lpszRemoteFile

A pointer to a string that specifies the file on the server that will be transferred to the local
system. The file naming conventions must be that of the host operating system.

lpvBuffer

A pointer to a byte buffer which will contain the data transferred from the server, or a pointer to
a global memory handle which will reference the data when the function returns.

lpdwLength

A pointer to an unsigned integer which should be initialized to the maximum number of bytes
that can be copied to the buffer specified by the lpvBuffer parameter. If the lpvBuffer
parameter points to a global memory handle, the length value should be initialized to zero.
When the function returns, this value will be updated with the actual length of the file that was
downloaded.

dwReserved

A reserved parameter. This value should always be zero.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
The FtpGetData function is used to download the contents of a remote file into a local buffer. The
function may be used in one of two ways, depending on the needs of the application. The first
method is to pre-allocate a buffer large enough to store the contents of the file. In this case, the
lpvBuffer parameter will point to the buffer that was allocated, the value that the lpdwLength
parameter points to should be initialized to the size of that buffer.

The second method that can be used is have the lpvBuffer parameter point to a global memory
handle which will contain the file data when the function returns. In this case, the value that the
lpdwLength parameter points to must be initialized to zero. It is important to note that the
memory handle returned by the function must be freed by the application, otherwise a memory
leak will occur. See the example code below.

The FtpGetText function can be used to download a text file and store the contents in a string.

This function will cause the current thread to block until the file transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the FTP_EVENT_PROGRESS event will be

periodically fired, enabling the application to update any user interface controls. Event notification
must be enabled, either by calling FtpEnableEvents, or by registering a callback function using
the FtpRegisterEvent function.

To determine the current status of a file transfer while it is in progress, use the
FtpGetTransferStatus function.

Example
HGLOBAL hgblBuffer = (HGLOBAL)NULL;
LPBYTE lpBuffer = (LPBYTE)NULL;
DWORD cbBuffer = 0;

// Return the file data into block of global memory allocated by
// the GlobalAlloc function; the handle to this memory will be
// returned in the hgblBuffer parameter
nResult = FtpGetData(hClient,
 lpszRemoteFile,
 &hgblBuffer,
 &cbBuffer,
 0);

if (nResult != FTP_ERROR)
{
 // Lock the global memory handle, returning a pointer to the
 // contents of the file data
 lpBuffer = (LPBYTE)GlobalLock(hgblBuffer);

 // After the data has been used, the handle must be unlocked
 // and freed, otherwise a memory leak will occur
 GlobalUnlock(hgblBuffer);
 GlobalFree(hgblBuffer);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpChangeDirectory, FtpEnableEvents, FtpGetFile, FtpGetText, FtpGetTransferStatus, FtpPutData,
FtpPutFile, FtpRegisterEvent, FtpSetBufferSize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetDirectory Function

INT WINAPI FtpGetDirectory(
 HCLIENT hClient,
 LPTSTR lpszDirectory,
 INT cbDirectory
);

The FtpGetDirectory function copies the current working directory on the server to the specified
buffer.

Parameters
hClient

Handle to the client session.

lpszDirectory

Points to a buffer that will contain the name of the current working directory on the server. The
file pathing and name conventions must be that of the server.

cbDirectory

The maximum number of characters that may be copied into the buffer, including the
terminating null-character.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
This function sends the PWD command to the server.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpChangeDirectory, FtpCreateDirectory, FtpRemoveDirectory

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetDirectoryFormat Function

INT WINAPI FtpGetDirectoryFormat(
 HCLIENT hClient
);

The FtpGetDirectoryFormat function returns an identifier which specifies what format is being
used by the server to list files. By default, the library will automatically determine the appropriate
format, but this value may be overridden by the FtpSetDirectoryFormat function.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is the currently selected directory format. If the function
fails, the return value is FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
Refer to the FtpSetDirectoryFormat function for a list of directory format types that are
supported by the library. This function can be used to determine which format was selected by the
library after a file listing has been retrieved.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpCloseDirectory, FtpGetFileStatus, FtpGetFirstFile, FtpGetNextFile, FtpOpenDirectory,
FtpSetDirectoryFormat

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetErrorString Function

INT WINAPI FtpGetErrorString(
 DWORD dwErrorCode,
 LPTSTR lpszDescription,
 INT cbDescription
);

The FtpGetErrorString function is used to return a description of a specific error code. Typically
this is used in conjunction with the FtpGetLastError function for use with warning dialogs or as
diagnostic messages.

Parameters
dwErrorCode

The error code for which a description is returned.

lpszDescription

A pointer to the buffer that will contain a description of the specified error code. This buffer
should be at least 128 characters in length.

cbDescription

The maximum number of characters that may be copied into the description buffer.

Return Value
If the function succeeds, the return value is the length of the description string. If the function fails,
the return value is zero, meaning that no description exists for the specified error code. Typically
this indicates that the error code passed to the function is invalid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpGetLastError, FtpSetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetFeatures Function

DWORD WINAPI FtpGetFeatures(
 HCLIENT hClient
);

The FtpGetFeatures function returns the server features available to the client.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is one or more bit flags which specify the features that
are available to the client. If the function fails, it will return zero. Because it is possible that no
features would be enabled, a return value of zero does not always indicate an error. An
application should call FtpGetLastError to determine if an error code has been set.

Remarks
The FtpGetFeatures function returns a value which may be a combination of one or more of the
following bit flags:

Constant Description

FTP_FEATURE_SIZE The server supports the SIZE command to determine the size
of a file. If this feature is not enabled, the library will attempt
to use the MLST or STAT command to determine the file
size.

FTP_FEATURE_STAT The server supports using the STAT command to return
information about a specific file. If this feature is not enabled,
the client may not be able to obtain information about a
specific file such as its size, permissions or modification time.

FTP_FEATURE_MDTM The server supports the MDTM command to obtain
information about the modification time for a specific file.
This command may also be used to set the file time on the
server.

FTP_FEATURE_REST The server supports restarting file transfers using the REST
command. If this feature is not enabled, the client will not be
able to restart file transfers and must upload or download
the complete file.

FTP_FEATURE_SITE The server supports site specific commands using the SITE
command. If this feature is not enabled, no site specific
commands will be sent to the server.

FTP_FEATURE_IDLE The server supports setting the idle timeout period using the
SITE IDLE command to specify the number of seconds that
the client may idle before the server terminates the
connection.

FTP_FEATURE_CHMOD The server supports modifying the permissions of a specific
file using the SITE CHMOD command. If this feature is not

enabled, the client will not be able to set the permissions for
a file.

FTP_FEATURE_AUTH The server supports explicit SSL sessions using the AUTH
command. If this feature is not enabled, the client will only be
able to connect to a secure server that uses implicit SSL
connections. Changing this feature has no effect on
standard, non-secure connections.

FTP_FEATURE_PBSZ The server supports the PBSZ command which specifies the
buffer size used with secure data connections. If this feature
is disabled, it may prevent the client from changing the
protection level on the data channel. Changing this feature
has no effect on standard, non-secure connections.

FTP_FEATURE_PROT The server supports the PROT command which specifies the
protection level for the data channel. If this feature is
disabled, the client will be unable to change the protection
level on the data channel. Changing this feature has no effect
on standard, non-secure connections.

FTP_FEATURE_CCC The server supports the CCC command which returns the
command channel to a non-secure mode. Changing this
feature has no effect on standard, non-secure connections.

FTP_FEATURE_HOST The server supports the HOST command which enables a
client to specify the hostname after establishing a connection
with a server that supports virtual hosting.

FTP_FEATURE_MLST The server supports the MLST command which returns status
information for files. If this feature is enabled, the MLST
command will be used instead of the STAT command.

FTP_FEATURE_MFMT The server supports the MFMT command which is used to
change the last modification time for a file. If this command
is supported, it is used instead of the MDTM command to
change the modification time for a file.

FTP_FEATURE_XCRC The server supports the XCRC command which returns the
CRC-32 checksum for the contents of a specified file. This
command is used for file verification.

FTP_FEATURE_XMD5 The server supports the XMD5 command which returns an
MD5 hash for the contents of a specified file. This command
is used for file verification.

FTP_FEATURE_LANG The server supports the LANG command which sets the
language used for the current client session. Command
responses and file naming conventions will use the specified
language.

FTP_FEATURE_UTF8 The server supports the OPTS UTF-8 command which
specifies UTF-8 encoding when specifying filenames. This
feature is typically used in conjunction with setting the
default language for the client session.

FTP_FEATURE_XQUOTA The server supports the XQUOTA command which returns

quota information for the current client session.

FTP_FEATURE_UTIME The server supports the UTIME command which is used to
change the last modification time for a specified file.

When a client connection is first established, features are enabled based on the server type and
the server's response to the FEAT command. However, as the client issues commands to the
server, if the server reports that the command is unrecognized that feature will automatically be
disabled in the client.

For example, the first time an application calls the FtpGetFileSize function to determine the size
of a file, the library will try to use the SIZE command. If the server reports that the SIZE command
is not available, that feature will be disabled and the library will not use the command again during
the session unless it is explicitly re-enabled. This is designed to prevent the library from repeatedly
sending invalid commands to a server, which may result in the server aborting the connection.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpEnableFeature, FtpSetFeatures

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetFile Function

INT WINAPI FtpGetFile(
 HCLIENT hClient,
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszRemoteFile,
 DWORD dwOptions,
 DWORD dwOffset
);

The FtpGetFile function transfers the specified file on the server to the local system.

Parameters
hClient

Handle to the client session.

lpszLocalFile

A pointer to a string that specifies the file on the local system that will be created, overwritten or
appended to. The file pathing and name conventions must be that of the local host.

lpszRemoteFile

A pointer to a string that specifies the file on the server that will be transferred to the local
system. The file naming conventions must be that of the host operating system.

dwOptions

An unsigned integer that specifies one or more options. This parameter may be any one of the
following values:

Constant Description

FTP_TRANSFER_DEFAULT This option specifies the default transfer mode should be
used. If the local file exists, it will be overwritten with the
contents of the downloaded file.

FTP_TRANSFER_APPEND This option specifies that if the local file exists, the contents
of file on the server is appended to the local file. If the local
file does not exist, it is created.

dwOffset

A byte offset which specifies where the file transfer should begin. The default value of zero
specifies that the file transfer should start at the beginning of the file. A value greater than zero
is typically used to restart a transfer that has not completed successfully. Note that specifying a
non-zero offset requires that the server support the REST command to restart transfers.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
This function will cause the current thread to block until the file transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the FTP_EVENT_PROGRESS event will be
periodically fired, enabling the application to update any user interface controls. Event notification
must be enabled, either by calling FtpEnableEvents, or by registering a callback function using
the FtpRegisterEvent function.

To determine the current status of a file transfer while it is in progress, use the
FtpGetTransferStatus function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpChangeDirectory, FtpEnableEvents, FtpGetMultipleFiles, FtpGetTransferStatus, FtpPutFile,
FtpPutMultipleFiles, FtpRegisterEvent, FtpSetBufferSize, FtpVerifyFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetFileEx Function

INT WINAPI FtpGetFileEx(
 HCLIENT hClient,
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszRemoteFile,
 DWORD dwOptions,
 ULARGE_INTEGER uiOffset
);

The FtpGetFileEx function transfers the specified file on the server to the local system. This
version of the function is designed to support files that are larger than 4GB.

Parameters
hClient

Handle to the client session.

lpszLocalFile

A pointer to a string that specifies the file on the local system that will be created, overwritten or
appended to. The file pathing and name conventions must be that of the local host.

lpszRemoteFile

A pointer to a string that specifies the file on the server that will be transferred to the local
system. The file naming conventions must be that of the host operating system.

dwOptions

An unsigned integer that specifies one or more options. This parameter may be any one of the
following values:

Constant Description

FTP_TRANSFER_DEFAULT This option specifies the default transfer mode should be
used. If the local file exists, it will be overwritten with the
contents of the downloaded file.

FTP_TRANSFER_APPEND This option specifies that if the local file exists, the contents
of file on the server is appended to the local file. If the local
file does not exist, it is created.

uiOffset

A byte offset which specifies where the file transfer should begin. The default value of zero
specifies that the file transfer should start at the beginning of the file. A value greater than zero
is typically used to restart a transfer that has not completed successfully. Note that specifying a
non-zero offset requires that the server support the REST command to restart transfers.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
This function will cause the current thread to block until the file transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the FTP_EVENT_PROGRESS event will be
periodically fired, enabling the application to update any user interface controls. Event notification
must be enabled, either by calling FtpEnableEvents, or by registering a callback function using

the FtpRegisterEvent function.

To determine the current status of a file transfer while it is in progress, use the
FtpGetTransferStatusEx function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpChangeDirectory, FtpEnableEvents, FtpGetMultipleFiles, FtpGetTransferStatusEx, FtpPutFile,
FtpPutMultipleFiles, FtpRegisterEvent, FtpSetBufferSize, FtpVerifyFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetFileList Function

INT WINAPI FtpGetFileList(
 HCLIENT hClient,
 LPCTSTR lpszDirectory,
 DWORD dwOptions,
 LPTSTR lpszBuffer,
 INT nMaxLength
);

The FtpGetFileList function returns an unparsed list of files in the specified directory.

Parameters
hClient

Handle to the client session.

lpszDirectory

A pointer to a string that specifies the name of a directory and/or a wildcard file mask. The
format of the directory name must match the file naming conventions of the server. If this
parameter is NULL or points to an empty string, the current working directory will be used.

dwOptions

An unsigned integer that specifies one or more options. This parameter may be any one of the
following values:

Constant Description

FTP_LIST_DEFAULT This option specifies the server should return a complete listing
of files in the specified directory with as much detail as
possible. This typically means that the file size, date, ownership
and access rights will be returned to the client. Information
about the files are returned in lines of text, with each line
terminated by carriage return and linefeed (CRLF) characters.
The exact format of the data returned is specific to the server
operating system.

FTP_LIST_NAMEONLY This option specifies the server should only return a list of file
names, with no additional information about the file. Each file
name is terminated by carriage return and linefeed (CRLF)
characters.

lpszBuffer

A pointer to a string buffer that will contain the list of files when the function returns. This buffer
should be large enough to store the complete file listing and a terminating null character. If the
buffer is smaller than the total amount of data returned by the server, the data will be truncated.
This parameter cannot be NULL.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer, including the terminating null character.

Return Value
If the function succeeds, the return value is the number of bytes copied into the string buffer, not
including the terminating null character. If the function fails, the return value is FTP_ERROR. To get

 extended error information, call FtpGetLastError.

Remarks
The FtpGetFileList function returns a list of files in the specified directory, copying the data to a
string buffer. Unlike the other functions like FtpEnumFiles that parse a directory listing and return
information in an FTPFILESTATUS structure, this function returns the unparsed file list data. The
actual format of the data that is returned depends on the operating system and how the server
implements file listings. For example, UNIX servers typically return the output from the /bin/ls
command.

Some servers may not support file listings for any directory other than the current working
directory. If an error is returned when specifying a directory name, try changing the current
working directory using the FtpChangeDirectory function and then call this function again,
passing NULL or an empty string as the lpszDirectory parameter.

This function can be particularly useful when the client is connected to a server that returns file
listings in a format that is not recognized by the library. The application can retrieve the unparsed
file listing from the server and parse the contents. Note that if you specify the
FTP_LIST_NAMEONLY option, the data will only contain a list of file names and there will be no
way for the application to know if they represent a regular file or a subdirectory.

This function is supported for both FTP and SFTP (SSH) connections, however the format of the
data may differ depending on which protocol is used. Most UNIX based FTP servers will not list
files and subdirectories that begin with a period, however most SFTP servers will return a list of all
files, even those that begin with a period.

This function will cause the current thread to block until the file listing completes, a timeout occurs
or the operation is canceled.

Example
TCHAR szFileList[MAXFILELISTSIZE];

nResult = FtpGetFileList(hClient, NULL, FTP_LIST_NAMEONLY,
 szFileList, MAXFILELISTSIZE);

if (nResult != FTP_ERROR)
 _tprintf(_T("%s\n"), szFileList);
else
{
 DWORD dwError = FtpGetLastError();
 _tprintf(_T("Unable to list files (error 0x%08lx)\n"), dwError);
 return;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpCloseDirectory, FtpEnumFiles, FtpGetDirectoryFormat, FtpGetFirstFile, FtpOpenDirectory,
FtpGetNextFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetFileNameEncoding Function

INT WINAPI FtpGetFileNameEncoding(
 HCLIENT hClient
);

The FtpGetFileNameEncoding function returns an identifier which specifies what type of
encoding is being used when file names are sent to the server.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is the type of encoding that is used. If the function fails,
the return value is FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
Refer to the FtpSetFileNameEncoding function for a list of encoding types that are supported by
the library.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpCommand, FtpEnableFeature FtpGetFeatures, FtpSetFileNameEncoding, FtpSetFeatures

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetFilePermissions Function

INT WINAPI FtpGetFilePermissions(
 HCLIENT hClient,
 LPCTSTR lpszFileName,
 LPDWORD lpdwPermissions
);

The FtpGetFilePermissions function returns information about the access permissions for a
specific file on the server.

Parameters
hClient

Handle to the client session.

lpszFileName

A pointer to a string which contains the name of the file that the access permissions are to be
returned for. The filename cannot contain any wildcard characters.

lpdwPermissions

A pointer to an unsigned integer which will contain the access permissions for the file when the
function returns. The file permissions are represented as bit flags, and may be one or more of
the following values:

Constant Description

FILE_OWNER_READ The owner has permission to open the file for reading. If the
current user is the owner of the file, this grants the user the
right to download the file to the local system.

FILE_OWNER_WRITE The owner has permission to open the file for writing. If the
current user is the owner of the file, this grants the user the
right to replace the file. If this permission is set for a directory,
this grants the user the right to create and delete files.

FILE_OWNER_EXECUTE The owner has permission to execute the contents of the file.
The file is typically either a binary executable, script or batch
file. If this permission is set for a directory, this may also grant
the user the right to open that directory and search for files in
that directory.

FILE_GROUP_READ Users in the specified group have permission to open the file
for reading. If the current user is in the same group as the file
owner, this grants the user the right to download the file.

FILE_GROUP_WRITE Users in the specified group have permission to open the file
for writing. On some platforms, this may also imply
permission to delete the file. If the current user is in the same
group as the file owner, this grants the user the right to
replace the file. If this permission is set for a directory, this
grants the user the right to create and delete files.

FILE_GROUP_EXECUTE Users in the specified group have permission to execute the
contents of the file. If this permission is set for a directory, this
may also grant the user the right to open that directory and

search for files in that directory.

FILE_WORLD_READ All users have permission to open the file for reading. This
permission grants any user the right to download the file to
the local system.

FILE_WORLD_WRITE All users have permission to open the file for writing. This
permission grants any user the right to replace the file. If this
permission is set for a directory, this grants any user the right
to create and delete files.

FILE_WORLD_EXECUTE All users have permission to execute the contents of the file. If
this permission is set for a directory, this may also grant all
users the right to open that directory and search for files in
that directory.

Return Value
If the function succeeds, the return value is a result code. If the function fails, the return value is
FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
This function uses the STAT command to retrieve information about the specified file. On some
systems, the STAT command will not return information on files that contain spaces or tabs in the
filename. In this case, the function will fail and value pointed to by the lpdwPermissions parameter
will be zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpGetFileStatus, FtpSetFilePermissions

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetFileSize Function

INT WINAPI FtpGetFileSize(
 HCLIENT hClient,
 LPCTSTR lpszFileName,
 LPDWORD lpdwFileSize
);

The FtpGetFileSize function returns the size of the specified file on the server.

Parameters
hClient

Handle to the client session.

lpszFileName

Points to a string that specifies the name of the remote file.

lpdwFileSize

Points to an unsigned integer that will contain the size of the specified file in bytes.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
This function uses the SIZE command to determine the length of the specified file. Not all servers
implement this command, in which case the function call will fail, and the lpdwFileSize parameter
will be set to zero.

Note that if the file on the server is a text file, it is possible that the value returned by this method
will not match the size of the file when it is downloaded to the local system. This is because
different operating systems use different sequences of characters to mark the end of a line of text,
and when a file is transferred in text mode, the end of line character sequence is automatically
converted to a carriage return-linefeed, which is the convention used by the Windows platform.

Some FTP servers will refuse to return the size of a file if the current file type is set to
FILE_TYPE_ASCII because the size of a text file on the server may not accurately reflect what the
size of the file will be on the local system.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpGetFileStatus, FtpOpenDirectory

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetFileSize Function

INT WINAPI FtpGetFileSizeEx(
 HCLIENT hClient,
 LPCTSTR lpszFileName,
 ULARGE_INTEGER* lpuiFileSize
);

The FtpGetFileSizeEx function returns the size of the specified file on the server. This version of
the function is designed to support files that are larger than 4GB.

Parameters
hClient

Handle to the client session.

lpszFileName

Points to a string that specifies the name of the remote file.

lpuiFileSize

Points to a ULARGE_INTEGER structure that will contain the size of the specified file in bytes.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
This function uses the SIZE command to determine the length of the specified file. Not all servers
implement this command, in which case the function call will fail, and the lpdwFileSize parameter
will be set to zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpGetFileStatusEx, FtpOpenDirectory

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetFileStatus Function

BOOL WINAPI FtpGetFileStatus(
 HCLIENT hClient,
 LPCTSTR lpszFileName,
 LPFTPFILESTATUS lpFileStatus
);

The FtpGetFileStatus function returns information about a specific file on the server.

Parameters
hClient

Handle to the client session.

lpszFileName

A pointer to a string which contains the name of the file that status information will be returned
on. The file name cannot contain any wildcard characters.

lpFileStatus

A pointer to an FTPFILESTATUS structure which contains information about the file returned by
the server.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call FtpGetLastError.

Remarks
This function uses the STAT command to retrieve information about the specified file. Unlike the
FtpGetFirstFile and FtpGetNextFile functions, which read through a file list returned on the data
channel, this function reads the result of a command string. For applications that need information
about a specific file, using this function can be considerably faster than iterating through all of the
files in a given directory. Note that not all servers support using the command in this way.

On some systems, the STAT command will not return information on files that contain spaces or
tabs in the filename. In this case, the FTPFILESTATUS structure members will be empty strings and
zero values.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpCloseDirectory, FtpGetDirectoryFormat, FtpGetFirstFile, FtpGetNextFile, FtpGetTransferStatus,
FtpOpenDirectory, FtpSetDirectoryFormat

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetFileStatusEx Function

BOOL WINAPI FtpGetFileStatusEx(
 HCLIENT hClient,
 LPCTSTR lpszFileName,
 LPFTPFILESTATUSEX lpFileStatus
);

The FtpGetFileStatusEx function returns information about a specific file on the server. This
version of the function is designed to support files that are larger than 4GB.

Parameters
hClient

Handle to the client session.

lpszFileName

A pointer to a string which contains the name of the file that status information will be returned
on. The file name cannot contain any wildcard characters.

lpFileStatus

A pointer to an FTPFILESTATUSEX structure which contains information about the file returned
by the server.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call FtpGetLastError.

Remarks
This function uses the STAT command to retrieve information about the specified file. Unlike the
FtpGetFirstFileEx and FtpGetNextFileEx functions, which read through a file list returned on the
data channel, this function reads the result of a command string. For applications that need
information about a specific file, using this function can be considerably faster than iterating
through all of the files in a given directory. Note that not all servers support using the command in
this way.

On some systems, the STAT command will not return information on files that contain spaces or
tabs in the filename. In this case, the FTPFILESTATUSEX structure members will be empty strings
and zero values.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpCloseDirectory, FtpGetDirectoryFormat, FtpGetFirstFileEx, FtpGetNextFileEx,
FtpGetTransferStatusEx, FtpOpenDirectory, FtpSetDirectoryFormat

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetFileTime Function

INT WINAPI FtpGetFileTime(
 HCLIENT hClient,
 LPCTSTR lpszFileName,
 LPSYSTEMTIME lpFileTime,
 BOOL bLocalize
);

The FtpGetFileTime function returns the modification time for the specified file on the server.

Parameters
hClient

Handle to the client session.

lpszFileName

Points to a string that specifies the name of the remote file.

lpFileTime

Points to a SYSTEMTIME structure that will be set to the current modification time for the
remote file.

bLocalize

A boolean flag which specifies if the file time is localized to the current timezone. If this value is
non-zero, then the file time is adjusted to that the time is local to the current system. If this
value is zero, the file time is returned in UTC time.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
The FtpGetFileTime function can be used to determine the date and time that a file was last
modified on the server. The time may either be localized to the current system, or it may be
returned as UTC time. If you plan on changing the values returned in the SYSTEMTIME structure
and then calling FtpSetFileTime function to modify the file time on the server, you should do not
localize the time.

This function uses the MDTM command to determine the modification time of the specified file. If
the server does not support this command, the function will attempt to use the STAT command to
determine the file modification time.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpGetFileStatus, FtpOpenDirectory, FtpSetFileTime

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetFileType Function

INT WINAPI FtpGetFileType(
 HCLIENT hClient,
 UINT * lpnFileType
);

The FtpGetFileType function returns the default file type for the current client session.

Parameters
hClient

Handle to the client session.

lpnFileType

A pointer to an unsigned integer that will identify the current file type. This parameter cannot be
NULL. When the function returns it will contain one of the following values:

Value Description

FILE_TYPE_AUTO The file type should be automatically determined based on the file
name extension. If the file extension is unknown, the file type
should be determined based on the contents of the file. The
library has an internal list of common text file extensions, and
additional file extensions can be registered using the
FtpRegisterFileType function.

FILE_TYPE_ASCII The file is a text file using the ASCII character set. For those servers
which mark the end of a line with characters other than a carriage
return and linefeed, it will be converted to the native client format.
This is the file type used for directory listings.

FILE_TYPE_EBCDIC The file is a text file using the EBCDIC character set. Local files will
be converted to EBCDIC when sent to the server. Remote files will
be converted to the native ASCII character set when retrieved
from the server.

FILE_TYPE_IMAGE The file is a binary file and no data conversion of any type is
performed on the file. This is the default file type for most data
files and executables. If the type of file cannot be automatically
determined, it will always be considered a binary file.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
If this function is called when connected to an SFTP (SSH) server, the default file type will always be
FILE_TYPE_IMAGE because SFTP does not differentiate between text files and binary files.

The FtpSetFileType function can be used to change the default file type. To determine the
automatic file type for a specific file based on its extension or contents, use the
FtpGetAutoFileType function.

Requirements

Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpGetAutoFileType, FtpOpenFile, FtpRegisterFileType, FtpSetFileMode, FtpSetFileStructure,
FtpSetFileType, FtpSetPassiveMode

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetFirstFile Function

BOOL WINAPI FtpGetFirstFile(
 HCLIENT hClient,
 LPFTPFILESTATUS lpFileStatus
);

The FtpGetFirstFile function returns the first file in the directory listing returned by the server after
a call to the FtpOpenDirectory function.

Parameters
hClient

Handle to the client session.

lpFileStatus

A pointer to an FTPFILESTATUS structure which contains information about the file returned by
the server.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call FtpGetLastError.

Remarks
This file list information returned by the server is cached by the library, allowing you to use this
function to reposition back to the beginning of the file list.

Example
if (FtpOpenDirectory(hClient, _T("")) != FTP_ERROR)
{
 FTPFILESTATUS ftpFile;
 BOOL bResult;

 bResult = FtpGetFirstFile(hClient, &ftpFile);
 while (bResult)
 {
 // The ftpFile structure contains information about the file
 bResult = FtpGetNextFile(hClient, &ftpFile);
 }

 FtpCloseDirectory(hClient);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpCloseDirectory, FtpGetDirectoryFormat, FtpGetFileStatus, FtpGetNextFile, FtpOpenDirectory,
FtpSetDirectoryFormat

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetFirstFileEx Function

BOOL WINAPI FtpGetFirstFileEx(
 HCLIENT hClient,
 LPFTPFILESTATUSEX lpFileStatus
);

The FtpGetFirstFileEx function returns the first file in the directory listing returned by the server
after a call to the FtpOpenDirectory function. This version of the function is designed to support
files that are larger than 4GB.

Parameters
hClient

Handle to the client session.

lpFileStatus

A pointer to an FTPFILESTATUSEX structure which contains information about the file returned
by the server.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call FtpGetLastError.

Remarks
This file list information returned by the server is cached by the library, allowing you to use this
function to reposition back to the beginning of the file list.

Example
if (FtpOpenDirectory(hClient, _T("")) != FTP_ERROR)
{
 FTPFILESTATUSEX ftpFile;
 BOOL bResult;

 bResult = FtpGetFirstFileEx(hClient, &ftpFile);
 while (bResult)
 {
 // The ftpFile structure contains information about the file
 bResult = FtpGetNextFileEx(hClient, &ftpFile);
 }

 FtpCloseDirectory(hClient);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpCloseDirectory, FtpGetDirectoryFormat, FtpGetFileStatusEx, FtpGetNextFileEx,
FtpOpenDirectory, FtpSetDirectoryFormat

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetFirstQueuedFile Function

DWORD WINAPI FtpGetFirstQueuedFile(
 HQUEUE hQueue,
 DWORD dwQueueMode,
 DWORD dwExcludeFiles,
 LPFTPQUEUEDFILE lpFileInfo
);

The FtpGetFirstQueuedFile function returns information about the first file in the transfer queue.

Parameters
hQueue

A handle to a file transfer queue.

dwQueueMode

An unsigned integer value which specifies if the file name should be matched against
downloaded files, uploaded files or all files in the queue. It may be one of the following values:

Constant Description

FTP_QUEUE_ALL Return information about all files in the queue.

FTP_QUEUE_DOWNLOAD Return information for files which are queued for
download.

FTP_QUEUE_UPLOAD Return information for files which are queued for
upload.

dwExcludeFiles

An unsigned integer value which specifies which files to exclude from the search. If this value is
zero, no files will be excluded from the search; otherwise, this value is constructed by using a
bitwise operator with any of the following values:

Constant Description

FTP_QUEUE_FLAG_NONE No files should be excluded.

FTP_QUEUE_FLAG_COMPLETED Exclude files which have been transferred. This flag is
set after a queued file has been uploaded or
downloaded successfully.

FTP_QUEUE_FLAG_FAILED Exclude files which where not successfully uploaded
or downloaded. This flag is set when an error occurs,
either when establishing a connection with the server
or during the file transfer.

FTP_QUEUE_FLAG_CANCELED Exclude files which were canceled during the file
transfer. This flag is only set when the
FtpCancelQueuedFile function has been called and
a queued file is in the process of being uploaded or
downloaded.

lpFileInfo

A pointer to a FTPQUEUEDFILE structure which will contain information about the file. This
parameter cannot be NULL.

Return Value
If the function succeeds, the return value is an unsigned integer with a non-zero value which
uniquely identifies the file in the queue. If there are no queued files which match the specified
parameters, or the function fails, the return value is zero. To get extended error information, call
FtpGetLastError.

Remarks
This function returns information about the first file in the current transfer queue. It is used in
conjunction with the FtpGetNextQueuedFile function to obtain information about all queued
files.

Example
// List all files in a file transfer queue
FTPQUEUEDFILE queuedFile;
DWORD dwFileId;

dwFileId = FtpGetFirstQueuedFile(hQueue, FTP_QUEUE_ALL, FTP_QUEUE_FLAG_NONE,
&queuedFile);

while (dwFileId != 0)
{
 switch (queuedFile.dwQueueMode)
 {
 case FTP_QUEUE_DOWNLOAD:
 _tprintf(_T("%u: download \"%s\" to \"%s\"\n"),
 queuedFile.dwFileId,
 queuedFile.szRemoteFile,
 queuedFile.szLocalFile);
 break;

 case FTP_QUEUE_UPLOAD:
 _tprintf(_T("%u: upload \"%s\" to \"%s\"\n"),
 queuedFile.dwFileId,
 queuedFile.szRemoteFile,
 queuedFile.szLocalFile);
 break;
 }

 dwFileId = FtpGetNextQueuedFile(hQueue, &queuedFile);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpAddQueuedFile, FtpEnumQueuedFiles, FtpFindQueuedFile, FtpGetNextQueuedFile,
FtpGetQueuedFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetLastError Function

DWORD WINAPI FtpGetLastError();

Parameters
None.

Return Value
The return value is the last error code value for the current thread. Functions set this value by
calling the FtpSetLastError function. The Return Value section of each reference page notes the
conditions under which the function sets the last error code.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. You should call
the FtpGetLastError function immediately when a function's return value indicates that an error
has occurred. That is because some functions call FtpSetLastError(0) when they succeed, clearing
the error code set by the most recently failed function.

Most functions will set the last error code value when they fail; a few functions set it when they
succeed. Function failure is typically indicated by a return value such as FALSE, NULL,
INVALID_CLIENT or FTP_ERROR. Those functions which call FtpSetLastError when they succeed
are noted on the function reference page.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpGetErrorString, FtpSetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetMultipleFiles Function

INT WINAPI FtpGetMultipleFiles(
 HCLIENT hClient,
 LPCTSTR lpszLocalDirectory,
 LPCTSTR lpszRemoteDirectory,
 LPCTSTR lpszFileMask,
 DWORD dwReserved
);

The FtpGetMultipleFiles function copies one or more files from the server to the local host, using
the specified wildcard.

Parameters
hClient

Handle to the client session.

lpszLocalDirectory

Pointer to a string which specifies the local directory where the files will be copied to. A NULL
pointer or empty string specifies that files should be copied to the current working directory.

lpszRemoteDirectory

Pointer to a string which specifies the remote directory where the files will be copied from. A
NULL pointer or empty string specifies that the files should be copied from the current working
directory on the server.

lpszFileMask

Pointer to a string which specifies the files that are to be copied from the server to the local
system. The file mask should follow the native conventions used for wildcard file matches on the
server.

dwReserved

A reserved parameter. This value should always be zero.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
The FtpGetMultipleFiles function is used to transfer files from the server to the local host which
match a specified wildcard file mask. This function requires that the client be able to automatically
list and parse directory listings from the server, otherwise an error will be returned. All files will be
transferred using the current file type as specified by the FtpSetFileType function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpChangeDirectory, FtpGetFile, FtpPutFile, FtpPutMultipleFiles, FtpSetFileType

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetNextFile Function

BOOL WINAPI FtpGetNextFile(
 HCLIENT hClient,
 LPFTPFILESTATUS lpFileStatus
);

The FtpGetNextFile function returns the next file in the directory listing returned by the server.

Parameters
hClient

Handle to the client session.

lpFileStatus

A pointer to an FTPFILESTATUS structure which contains information about the file returned by
the server.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call FtpGetLastError.

Remarks
The FtpGetNextFile function returns the next file in the directory listing. If the last file has been
returned, the function will return zero and the client should call the FtpCloseDirectory function to
close the directory.

Example
if (FtpOpenDirectory(hClient, _T("")) != FTP_ERROR)
{
 FTPFILESTATUS ftpFile;
 BOOL bResult;

 bResult = FtpGetFirstFile(hClient, &ftpFile);
 while (bResult)
 {
 // The ftpFile structure contains information about the file
 bResult = FtpGetNextFile(hClient, &ftpFile);
 }

 FtpCloseDirectory(hClient);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpCloseDirectory, FtpGetDirectoryFormat, FtpGetFileStatus, FtpGetFirstFile, FtpOpenDirectory,
FtpSetDirectoryFormat

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetNextFileEx Function

BOOL WINAPI FtpGetNextFile(
 HCLIENT hClient,
 LPFTPFILESTATUSEX lpFileStatus
);

The FtpGetNextFileEx function returns the next file in the directory listing returned by the server.
This version of the function is designed to support files that are larger than 4GB.

Parameters
hClient

Handle to the client session.

lpFileStatus

A pointer to an FTPFILESTATUSEX structure which contains information about the file returned
by the server.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call FtpGetLastError.

Remarks
The FtpGetNextFileEx function returns the next file in the directory listing. If the last file has been
returned, the function will return zero and the client should call the FtpCloseDirectory function to
close the directory.

Example
if (FtpOpenDirectory(hClient, _T("")) != FTP_ERROR)
{
 FTPFILESTATUSEX ftpFile;
 BOOL bResult;

 bResult = FtpGetFirstFileEx(hClient, &ftpFile);
 while (bResult)
 {
 // The ftpFile structure contains information about the file
 bResult = FtpGetNextFileEx(hClient, &ftpFile);
 }

 FtpCloseDirectory(hClient);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpCloseDirectory, FtpGetDirectoryFormat, FtpGetFileStatusEx, FtpGetFirstFileEx, FtpOpenDirectory,
FtpSetDirectoryFormat

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetNextQueuedFile Function

DWORD WINAPI FtpGetFirstQueuedFile(
 HQUEUE hQueue,
 LPFTPQUEUEDFILE lpFileInfo
);

The FtpGetFirstQueuedFile function returns information about the next file in the transfer queue.

Parameters
hQueue

A handle to a file transfer queue.

lpFileInfo

A pointer to a FTPQUEUEDFILE structure which will contain information about the file. This
parameter cannot be NULL.

Return Value
If the function succeeds, the return value is an unsigned integer with a non-zero value which
uniquely identifies the file in the queue. If there are no additional queued files which match the
exclusion criteria specified with the call to FtpGetFirstQueuedFile, the return value is zero. To get
extended error information, call FtpGetLastError.

Remarks
This function returns information about the next file in the current transfer queue after an initial
call to FtpGetFirstQueuedFile. To obtain a list of all matching files in the queue, call this function
repeatedly until it returns a value of zero. When information about the last file in the queue has
been returned, the last error code will be set to ST_ERROR_END_OF_QUEUE.

Example
// List all files in a file transfer queue
FTPQUEUEDFILE queuedFile;
DWORD dwFileId;

dwFileId = FtpGetFirstQueuedFile(hQueue, FTP_QUEUE_ALL, FTP_QUEUE_FLAG_NONE,
&queuedFile);

while (dwFileId != 0)
{
 switch (queuedFile.dwQueueMode)
 {
 case FTP_QUEUE_DOWNLOAD:
 _tprintf(_T("%u: download \"%s\" to \"%s\"\n"),
 queuedFile.dwFileId,
 queuedFile.szRemoteFile,
 queuedFile.szLocalFile);
 break;

 case FTP_QUEUE_UPLOAD:
 _tprintf(_T("%u: upload \"%s\" to \"%s\"\n"),
 queuedFile.dwFileId,
 queuedFile.szRemoteFile,
 queuedFile.szLocalFile);
 break;
 }

 dwFileId = FtpGetNextQueuedFile(hQueue, &queuedFile);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpAddQueuedFile, FtpEnumQueuedFiles, FtpFindQueuedFile, FtpGetFirstQueuedFile,
FtpGetQueuedFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetPriority Function

INT WINAPI FtpGetPriority(
 HCLIENT hClient
);

The FtpGetPriority function returns a value which specifies the priority of file transfers.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is the current file transfer priority. If the function fails, the
return value is FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
The FtpGetPriority function can be used to determine the current priority assigned to file
transfers performed by the client. It may be one of the following values:

Constant Description

FTP_PRIORITY_NORMAL The default priority which balances resource utilization and
transfer speed. It is recommended that most applications use
this priority.

FTP_PRIORITY_BACKGROUND This priority significantly reduces the memory, processor and
network resource utilization for the transfer. It is typically used
with worker threads running in the background when the
amount of time required perform the transfer is not critical.

FTP_PRIORITY_LOW This priority lowers the overall resource utilization for the
transfer and meters the bandwidth allocated for the transfer.
This priority will increase the average amount of time required
to complete a file transfer.

FTP_PRIORITY_HIGH This priority increases the overall resource utilization for the
transfer, allocating more memory for internal buffering. It can
be used when it is important to transfer the file quickly, and
there are no other threads currently performing file transfers at
the time.

FTP_PRIORITY_CRITICAL This priority can significantly increase processor, memory and
network utilization while attempting to transfer the file as
quickly as possible. If the file transfer is being performed in the
main UI thread, this priority can cause the application to appear
to become non-responsive. No events will be generated during
the transfer.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpSetPriority

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetProxyType Function

INT WINAPI FtpGetProxyType(
 HCLIENT hClient
);

The FtpGetProxyType function returns the type of proxy that the client is connected to. By
default, no proxy server is specified and this function returns a value of FTP_PROXY_NONE. For a
list of possible proxy server types, refer to the FtpProxyConnect function.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value identifies the type of proxy that the client is connected
to. If the function fails, the return value is FTP_ERROR. To get extended error information, call
FtpGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpConnect, FtpProxyConnect

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetQueueClient Function

HCLIENT WINAPI FtpGetQueueClient(
 HQUEUE hQueue
);

The FtpGetQueueClient function returns a handle to the current client session.

Parameters
hQueue

A handle to a file transfer queue.

Return Value
If the function succeeds, the return value a handle to a client session. If the function fails, it will
return INVALID_CLIENT. To get extended error information, call FtpGetLastError.

Remarks
The FtpGetQueueClient function returns the handle to a client session which may be used with
other functions, such as FtpGetTransferStatus. A valid handle will only be returned if the queue
manager is currently uploading or downloading a file. If the queue is active but there are no file
transfers in progress at the time this function is called, it will fail and set the last error code to
ST_ERROR_NO_QUEUED_TRANSFER.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpGetTransferStatus, FtpGetTransferStatusEx, FtpGetQueueStatus, FtpGetThreadQueue,
FtpStartQueue, FtpStopQueue

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetQueuedFile Function

BOOL WINAPI FtpGetQueuedFile(
 HQUEUE hQueue,
 DWORD dwFileId,
 LPFTPQUEUEDFILE lpFileInfo
);

The FtpGetQueuedFile function returns information about the specified file in the transfer queue.

Parameters
hQueue

A handle to a file transfer queue.

dwFileId

An unsigned integer value which uniquely identifies the file in the queue. This value cannot be
zero.

lpFileInfo

A pointer to a FTPQUEUEDFILE structure which will contain information about the file. This
parameter cannot be NULL.

Return Value
If the function succeeds, the return value is non-zero. If the file identifier is not valid or the file has
been removed from the queue, the return value is zero. To get extended error information, call
FtpGetLastError.

Remarks
The file identifier can be obtained by several different functions, including FtpEnumQueuedFiles
and FtpGetQueueStatus, which provides information about the current file being processed in
the queue. Do not make any assumptions about the value of the identifier. Although the value is
guaranteed to be unique for the specified queue, it is not guaranteed that file identifiers will be
assigned in sequential order.

Example
// Get the number of files in the queue
LONG nFiles = FtpEnumQueuedFiles(hQueue, NULL, 0)

// Display information about the queued files
if (nFiles > 0)
{
 DWORD *pdwFileList = new DWORD[nFiles];

 nFiles = FtpEnumQueuedFiles(hQueue, pdwFileList, nFiles);

 for (LONG nIndex = 0; nIndex < nFiles; nIndex++)
 {
 FTPQUEUEDFILE queuedFile;

 if (FtpGetQueuedFile(hQueue, pdwFileList[nIndex], &queuedFile) == FALSE)
 break;

 switch (queuedFile.dwMode)
 {
 case FTP_QUEUE_DOWNLOAD:

 _tprintf(_T("%u: Download \"%s\" to \"%s\"\n"),
 queuedFile.dwFileId,
 queuedFile.szRemoteFile,
 queuedFile.szLocalFile);
 break;

 case FTP_QUEUE_UPLOAD:
 _tprintf(_T("%u: Upload \"%s\" to \"%s\"\n"),
 queuedFile.dwFileId,
 queuedFile.szLocalFile,
 queuedFile.szRemoteFile);
 break;
 }
 }

 delete pdwFileList;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpAddQueuedFile, FtpEnumQueuedFiles, FtpFindQueuedFile, FtpGetFirstQueuedFile,
FtpGetNextQueuedFile, FtpGetQueueStatus

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetQueueStatus Function

INT WINAPI FtpGetQueueStatus(
 HQUEUE hQueue,
 LPFTPQUEUESTATUS lpQueueStatus
);

The FtpGetQueuedFile function returns information about the specified file in the transfer queue.

Parameters
hQueue

A handle to a file transfer queue.

lpQueueStatus

A pointer to a FTPQUEUESTATUS structure which will contain information about the current
state of the file transfer queue. If this parameter is NULL, the function will ignore the parameter
and only return the current status of the queue.

Return Value
If the function succeeds, the return value is the current queue status. If the function fails, the return
value is FTP_ERROR. To get extended error information, call FtpGetLastError. The following status
values may be returned:

Constant Description

FTP_QUEUE_STATUS_IDLE The file transfer queue is idle and no files are being
uploaded or downloaded. This state is returned before
FtpStartQueue has been called or after
FtpStopQueue has been called. The queue will also
automatically enter an idle state after the last file
transfer has completed and the queue manager thread
exits.

FTP_QUEUE_STATUS_ACTIVE The queue manager is active and files are currently
being uploaded or downloaded.

FTP_QUEUE_STATUS_PAUSED The queue manager is active although file transfers are
currently paused. The queue enters this state after the
FtpSuspendQueue function is called and resumes file
transfers after the FtpResumeQueue function is
called.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpCancelQueuedFile, FtpResetQueue, FtpResumeQueue, FtpStartQueue, FtpSuspendQueue,
FtpStopQueue

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetQueueThread Function

DWORD WINAPI FtpGetQueueThread(
 HQUEUE hQueue
);

The FtpGetQueueThread function returns a value which uniquely identifies the queue manager
thread.

Parameters
hQueue

A handle to a file transfer queue.

Return Value
If the function succeeds, the return value is non-zero and specifies a unique identifier for the
queue manager thread. If the function fails, it will return zero. To get extended error information,
call FtpGetLastError.

Remarks
The FtpGetQueueThread function can be used to obtain a unique identifier for the queue
manager thread which is responsible for performing the file transfers. If the function returns zero,
this indicates that either the queue handle is no longer valid, or the queue is idle and no files are
currently being processed. To obtain the handle to a queue associated with a particular thread,
call the FtpGetThreadQueue function.

You should not store the thread ID or consider it a persistent value, even during the lifetime of the
process. It is only valid while the queue manager is actively processing files in the queue. The
thread ID value will change every time the FtpStartQueue function is called.

Never use the thread ID to obtain a handle to the thread and call Windows API functions such as
SuspendThread or TerminateThread. This can result inconsistency within the internal state of the
queue manager and may result in incomplete or corrupted file transfers.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpGetQueueStatus, FtpGetThreadQueue, FtpStartQueue, FtpStopQueue

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetResultCode Function

INT WINAPI FtpGetResultCode(
 HCLIENT hClient
);

The FtpGetResultCode function reads the result code returned by the server in response to a
command. The result code is a three-digit numeric code, and indicates if the operation succeeded,
failed or requires additional action by the client.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is the result code. If the function fails, the return value is
FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
Result codes are three-digit numeric values returned by the server. They may be broken down into
the following ranges:

Value Description

100-
199

Positive preliminary result. This indicates that the requested action is being initiated, and
the client should expect another reply from the server before proceeding.

200-
299

Positive completion result. This indicates that the server has successfully completed the
requested action.

300-
399

Positive intermediate result. This indicates that the requested action cannot complete
until additional information is provided to the server.

400-
499

Transient negative completion result. This indicates that the requested action did not
take place, but the error condition is temporary and may be attempted again.

500-
599

Permanent negative completion result. This indicates that the requested action did not
take place.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpCommand, FtpGetResultString

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetResultString Function

INT WINAPI FtpGetResultString(
 HCLIENT hClient,
 LPTSTR lpszResult,
 INT cbResult
);

The FtpGetResultString function returns the last message sent by the server along with the result
code.

Parameters
hClient

Handle to the client session.

lpszResult

A pointer to the buffer that will contain the result string returned by the server.

cbResult

The maximum number of characters that may be copied into the result string buffer, including
the terminating null character.

Return Value
If the function succeeds, the return value is the length of the result string. If a value of zero is
returned, this means that no result string was sent by the server.

If the function fails, the return value is FTP_ERROR. To get extended error information, call
FtpGetLastError.

Remarks
The FtpGetResultString function is most useful when an error occurs because the server will
typically include a brief description of the cause of the error. This can then be parsed by the
application or displayed to the user. The result string is updated each time the client sends a
command to the server and then calls FtpGetResultCode to obtain the result code for the
operation.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpCommand, FtpGetResultCode

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetSecurityInformation Function

BOOL WINAPI FtpGetSecurityInformation(
 HCLIENT hClient,
 LPSECURITYINFO lpSecurityInfo
);

The FtpGetSecurityInformation function returns security protocol, encryption and certificate
information about the current client connection.

Parameters
hClient

Handle to the client session.

lpSecurityInfo

A pointer to a SECURITYINFO structure which contains information about the current client
connection. The dwSize member of this structure must be initialized to the size of the structure
before passing the address of the structure to this function.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call FtpGetLastError.

Remarks
This function is used to obtain security related information about the current client connection to
the server. It can be used to determine if a secure connection has been established, what security
protocol was selected, and information about the server certificate. Note that a secure connection
has not been established, the dwProtocol structure member will contain the value
SECURITY_PROTOCOL_NONE.

Example
The following example notifies the user if the connection is secure or not:

SECURITYINFO securityInfo;

securityInfo.dwSize = sizeof(SECURITYINFO);
if (FtpGetSecurityInformation(hClient, &securityInfo))
{
 if (securityInfo.dwProtocol == SECURITY_PROTOCOL_NONE)
 {
 MessageBox(NULL, _T("The connection is not secure"),
 _T("Connection"), MB_OK);
 }
 else
 {
 if (securityInfo.dwCertStatus == SECURITY_CERTIFICATE_VALID)
 {
 MessageBox(NULL, _T("The connection is secure"),
 _T("Connection"), MB_OK);
 }
 else
 {
 MessageBox(NULL, _T("The server certificate not valid"),
 _T("Connection"), MB_OK);
 }

 }
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpConnect, FtpCreateSecurityCredentials, FtpDeleteSecurityCredentials, FtpDisconnect,
FtpProxyConnect, SECURITYINFO

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetServerInformation Function

INT WINAPI FtpGetServerInformation(
 HCLIENT hClient,
 LPTSTR lpszSystemInfo,
 INT nMaxLength
);

The FtpGetServerInformation function returns information about the server, typically including
the operating system type, version and platform.

Parameters
hClient

Handle to the client session.

lpszSystemInfo

A pointer to the buffer that will contain the system information returned by the server.

nMaxLength

The maximum number of characters that can be copied into the buffer, including the
terminating null character.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
This function sends the SYST command to the server. The first word will identify the type of
operating system. The format for the remaining information depends on the server type. Typically
it is a description of the operating system version and hardware platform. For example, here are
some strings commonly returned by various FTP servers:

Example Description

UNIX Type: L8 A standard UNIX based server. This is the most common value
returned by servers, and this indicates that the server supports UNIX
file naming and directory listing conventions. This string may also
include additional information such as the specific variant of UNIX
and its version. The L8 portion of the string is a convention that lets
the client know that a byte consists of 8 bits.

Windows_NT
Version 5.0

A standard Windows based server, typically part of Internet
Information Services (ISS). The server will use Windows file naming
and directory listing conventions. The version identifies the specific
release of Windows. For example, version 4.0 specifies Windows NT
4.0 and 5.0 specifies Windows 2000.

VMS V7.1
AlphaServer

A server running the VMS operating system. The server will use the
standard file naming and directory listing conventions for that
platform. Note that it is possible that a VMS system may also be
configured to operate in a UNIX emulation mode, in which case it will
return UNIX instead of VMS.

NetWare A server running the NetWare operating system. The server will use

system type the standard file naming and directory listing conventions for that
platform. Note that it is possible that a NetWare system may be
configured to operate in a UNIX emulation mode, in which case it
return UNIX instead of NetWare.

WORLDGROUP
Type: L8

A server running the WorldGroup software on the Windows platform.
This server supports UNIX file naming and directory listing
conventions. WorldGroup is a collaborative workgroup, email and file
sharing service which includes an FTP server.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpConnect, FtpGetDirectoryFormat, FtpGetClientQuota, FtpGetServerStatus,
FtpGetServerTimeZone, FtpGetServerType

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetServerStatus Function

INT WINAPI FtpGetServerStatus(
 HCLIENT hClient,
 LPTSTR lpszStatus,
 INT nMaxLength
);

The FtpGetServerStatus function requests that the server return status information about itself.

Parameters
hClient

Handle to the client session.

lpszStatus

A pointer to the buffer that will contain the system status returned by the server.

nMaxLength

The maximum number of characters that can be copied into the buffer, including the
terminating null character.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
This function sends the STAT command to the server. The format for the information returned
depends on the server type. Typically it is a description of the server platform, version, current user
and file transfer options.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpGetServerInformation, FtpGetServerType

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetServerTimeZone Function

INT WINAPI FtpGetServerTimeZone(
 HCLIENT hClient,
 LPLONG lpnTimeZone
);

The FtpGetServerTimeZone function returns the timezone for the current server.

Parameters
hClient

Handle to the client session.

lpnTimeZone

A pointer to a signed long integer which will contain the timezone offset in seconds.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
This function sends the SITE ZONE command to the server to determine its timezone. The value
returned is expressed as the number of seconds offset from Coordinated Universal Time (UTC). A
positive value specifies a time west of UTC, while a negative value specifies a time east of UTC. For
example, a value of 28800 would specify an offset of 8 hours west of UTC, which is the Pacific
timezone.

The SIZE ZONE command is an extension that is not supported by all servers. If the server
timezone cannot be determined, the function will fail and the value pointed to by the
lpnTimeZone parameter will be zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpGetClientQuota, FtpGetServerInformation, FtpGetServerStatus

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetServerType Function

INT WINAPI FtpGetServerType(
 HCLIENT hClient
);

The FtpGetServerType function returns the type of server the client has connected to.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is a numeric value which indicates the server type. If the
function fails, the return value is FTP_ERROR. To get extended error information, call
FtpGetLastError.

Remarks
This function sends the SYST command to the server to determine the server type. The following
server types are recognized by the library:

Constant Description

FTP_SERVER_UNKNOWN The server type could not be determined by issuing the
SYST command. The server may not support the command,
or the command may only be allowed when issued by an
authenticated user.

FTP_SERVER_UNIX The server is running on a UNIX based operating system.
This can include Linux and other variants, as well as
operating systems which emulate UNIX style file pathing
and directory listings.

FTP_SERVER_MSDOS The server is running on an MS-DOS based operating
system. The server expects file pathing and naming
conventions according to the standard MS-DOS format and
returns directory listings similar to the output of the DIR
command.

FTP_SERVER_WINDOWS The server is running on a Windows based operating
system. The server expects file pathing and naming
conventions according to the standard Windows long
filename format, and returns directory listings similar to the
output of the DIR command. Note that Windows servers
may be configured to return file and directory information
in a format similar to UNIX systems, in which case the
system may be identified as UNIX even though it is actually
running on a Windows platform.

FTP_SERVER_VMS The server is running on a DEC VMS based operating
system. The server expects file pathing and naming
conventions specific to that operating system. Note that
VMS servers may be configured to return file and directory
information in a format similar to UNIX systems, in which

case the system may be identified as UNIX even though it is
actually running on a VMS platform.

FTP_SERVER_NETWARE The server is running on a NetWare based operating
system. The server expects file pathing and naming
conventions similar to the standard Windows long filename
format, and returns directory listings that are similar to UNIX
systems with the exception of the access and permissions
flags for the file. Note that a NetWare system may return
listings in different formats based on the filesystem and site
specific options specified.

FTP_SERVER_OTHER The server type was not recognized. An attempt will be
made to automatically determine the correct file pathing
and naming conventions used by the server. To obtain a list
of files on the server, it may be necessary to use the
FtpSetDirectoryFormat function to specify the directory
listing format.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpGetClientQuota, FtpGetServerInformation, FtpGetServerStatus, FtpSetDirectoryFormat

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetStatus Function

INT WINAPI FtpGetStatus(
 HCLIENT hClient
);

The FtpGetStatus function returns the current status of the client session.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is the client status code. If the function fails, the return
value is FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
The FtpGetStatus function returns a numeric code which identifies the current state of the client
session. The following values may be returned:

Value Constant Description

1 FTP_STATUS_IDLE The client is current idle and not sending or
receiving data.

2 FTP_STATUS_CONNECT The client is establishing a connection with the
server.

3 FTP_STATUS_READ The client is reading data from the server.

4 FTP_STATUS_WRITE The client is writing data to the server.

5 FTP_STATUS_DISCONNECT The client is disconnecting from the server.

6 FTP_STATUS_OPENFILE The client is opening a data connection to the
server.

7 FTP_STATUS_CLOSEFILE The client is closing the data connection to the
server.

8 FTP_STATUS_GETFILE The client is downloading a file from the server.

9 FTP_STATUS_PUTFILE The client is uploading a file to the server.

10 FTP_STATUS_FILELIST The client is retrieving a file listing from the server.

In a multithreaded application, any thread in the current process may call this function to obtain
status information for the specified client session. To obtain status information about a file transfer,
use the FtpGetTransferStatus function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also

FtpIsBlocking, FtpIsReadable, FtpIsWritable, FtpGetTransferStatus

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetTaskError Function

DWORD WINAPI FtpGetTaskError(
 UINT nTaskId
);

Return the last error code for the specified asynchronous task.

Parameters
nTaskId

The task identifier.

Return Value
If the asynchronous task has completed successfully, this function returns a value of zero. A non-
zero return value indicates an error has occurred.

Remarks
The FtpGetTaskError function returns the last error code associated with the specified
asynchronous task. If the task completed successfully, the return value will be zero. If the task is still
active, the function will return the error ST_ERROR_TASK_ACTIVE. If the task has been suspended,
the function will return ST_ERROR_TASK_SUSPENDED. Any other value indicates that the task
completed, but the operation has failed and the error code will specify the cause of the failure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpTaskAbort, FtpTaskResume, FtpTaskSuspend, FtpTaskWait

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetTaskId Function

UINT WINAPI FtpGetTaskId(
 HCLIENT hClient
);

Return the asynchronous task identifier associated with the client session.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is non-zero integer value that specifies a unique
asynchronous task identifier. If the client handle is not associated with an asynchronous task, the
function will return a value of zero.

Remarks
The FtpGetTaskId function will return the task ID that is associated with a client session. This is a
unique unsigned integer value that references the worker thread that was created to manage the
asynchronous client session. This function should only be called within an event handler that is
invoked by a background task that has been started using a function such as FtpAsyncGetFile.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpTaskAbort, FtpTaskDone, FtpTaskResume, FtpTaskSuspend, FtpTaskWait

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetText Function

INT WINAPI FtpGetText(
 HCLIENT hClient,
 LPCTSTR lpszRemoteFile,
 LPTSTR lpszBuffer,
 INT nMaxLength
);

The FtpGetText function copies the contents of a text file on the server to the specified string
buffer.

Parameters
hClient

Handle to the client session.

lpszRemoteFile

A pointer to a string that specifies a text file on the server. The file pathing and naming
conventions must be that of the host operating system.

lpszBuffer

A pointer to a string buffer which will contain the contents of the text file when the function
returns. This buffer should be large enough to store the contents of the file, including a
terminating null character. This parameter cannot be NULL.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer. This value must be larger than zero. If this value is smaller than the actual size of
the text file, the data returned will be truncated.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
The FtpGetText function is used to download a text file and store the contents in a string buffer.
This function will always set the file type to FILE_TYPE_ASCII before downloading the file, and will
restore the default file type before the method returns. Because binary files can include embedded
null characters, this function should only be used with known text files.

This function has been included as a convenience for applications that need to retrieve relatively
small text files and manipulate the contents as a string. If the Unicode version of this function is
called, the contents of the text file is automatically converted to a Unicode string. If the size of the
file is unknown or the text file is very large, it is recommended that you use the FtpGetData or
FtpGetFile functions.

If you use the FtpGetFileSize function to determine how large the string buffer should be prior to
calling this function, it is important to be aware that the actual number of characters may differ
based on the end-of-line conventions used by the host operating system. For example, if you call
FtpGetFileSize to obtain the size of a text file on a UNIX system, the value will not be large
enough to store the complete file because UNIX uses a single linefeed (LF) character to indicate
the end-of-line, while a Windows system will use a carriage-return and linefeed (CRLF) pair. To
accommodate this difference, you should always allocate extra memory for the string buffer to

store the additional end-of-line characters.

FTP_EVENT_PROGRESS event will be periodically fired, enabling the application to update any user
interface controls. Event notification must be enabled, either by calling FtpEnableEvents, or by
registering a callback function using the FtpRegisterEvent function.

To determine the current status of a file transfer while it is in progress, use the
FtpGetTransferStatus function.

Example
LPTSTR lpszBuffer = (LPTSTR)calloc(MAXFILESIZE, sizeof(TCHAR));

if (lpszBuffer == NULL)
 return;

nResult = FtpGetText(hClient, lpszRemoteFile, lpszBuffer, MAXFILESIZE);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpChangeDirectory, FtpEnableEvents, FtpGetData, FtpGetFile, FtpGetTransferStatus, FtpPutData,
FtpPutFile, FtpRegisterEvent, FtpSetBufferSize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetThreadQueue Function

HQUEUE WINAPI FtpGetThreadQueue(
 DWORD dwThreadId
);

The FtpGetThreadQueue function returns a handle to the queue associated with the specified
thread.

Parameters
dwThreadId

An unsigned integer value which specifies a unique identifier for the queue manager thread. If
this value is zero, it will return the handle associated with the current thread.

Return Value
If the function succeeds, the return value is the handle to the queue. If the function fails, it will
return INVAID_QUEUE. To get extended error information, call FtpGetLastError.

Remarks
All queued file transfers are handled by a queue manager which executes asynchronously in a
background worker thread. This worker thread is created when the FtpStartQueue function is
called and terminates when all files in the queue have been processed, or when the
FtpStopQueue function is called. This function will return the queue handle associated with that
worker thread.

The most common use of this function would be to obtain the handle for the queue from within a
queue event handler. The application would pass in a value of zero as the thread ID and the
function will return the handle to the queue which invoked the event notification.

If you call this function outside of an event handler and the dwThreadId parameter is zero, or if
the queue is idle and not transferring files, this function will return INVALID_QUEUE. The thread ID
is only valid while the queue manager is actively processing files in the queue.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpGetQueueStatus, FtpGetQueueThread, FtpStartQueue, FtpStopQueue

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetTimeout Function

INT WINAPI FtpGetTimeout(
 HCLIENT hClient
);

The FtpGetTimeout function returns the number of seconds the client will wait for a response
from the server. Once the specified number of seconds has elapsed, the function will fail and
return to the caller.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is the timeout period in seconds. If the function fails, the
return value is FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
The timeout value is only used with blocking client connections. A value of zero indicates that the
default timeout period of 20 seconds should be used.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpConnect, FtpIsReadable, FtpIsWritable, FtpProxyConnect, FtpRead, FtpSetTimeout, FtpWrite

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetTransferStatus Function

INT WINAPI FtpGetTransferStatus(
 HCLIENT hClient,
 LPFTPTRANSFERSTATUS lpStatus
);

The FtpGetTransferStatus function returns information about the current file transfer in progress.

Parameters
hClient

Handle to the client session.

lpStatus

A pointer to an FTPTRANSFERSTATUS structure which contains information about the status
of the current file transfer.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
The FtpGetTransferStatus function returns information about the current file transfer, including
the average number of bytes transferred per second and the estimated amount of time until the
transfer completes. If there is no file currently being transferred, this function will return the status
of the last successful transfer made by the client.

In a multithreaded application, any thread in the current process may call this function to obtain
status information for the specified client session.

If the option FTP_OPTION_HIRES_TIMER has been specified when connecting to the server, the
values of the dwTimeElapsed and dwTimeEstimated members of the FTPTRANSFERSTATUS
structure will be in milliseconds instead of seconds. You can use this option to obtain more
accurate elapsed times when uploading or downloading small files over a fast network connection.

If you are uploading or downloading large files which exceed 4GB, you should use the
FtpGetTransferStatusEx function which returns the size as a 64-bit value.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpEnableEvents, FtpGetFileStatus, FtpGetTransferStatusEx, FtpRegisterEvent,
FTPTRANSFERSTATUS, FTPTRANSFERSTATUSEX

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetTransferStatusEx Function

INT WINAPI FtpGetTransferStatusEx(
 HCLIENT hClient,
 LPFTPTRANSFERSTATUS lpStatus
);

The FtpGetTransferStatusEx function returns information about the current file transfer in
progress. This version of the function is designed to support files that are larger than 4GB.

Parameters
hClient

Handle to the client session.

lpStatus

A pointer to an FTPTRANSFERSTATUSEX structure which contains information about the status
of the current file transfer.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
The FtpGetTransferStatusEx function returns information about the current file transfer, including
the average number of bytes transferred per second and the estimated amount of time until the
transfer completes. If there is no file currently being transferred, this function will return the status
of the last successful transfer made by the client.

In a multithreaded application, any thread in the current process may call this function to obtain
status information for the specified client session.

If the option FTP_OPTION_HIRES_TIMER has been specified when connecting to the server, the
values of the dwTimeElapsed and dwTimeEstimated members of the FTPTRANSFERSTATUSEX
structure will be in milliseconds instead of seconds. You can use this option to obtain more
accurate elapsed times when uploading or downloading small files over a fast network connection.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpEnableEvents, FtpGetFileStatus, FtpGetTransferStatus, FtpRegisterEvent, FTPTRANSFERSTATUS,
FTPTRANSFERSTATUSEX

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpInitialize Function

BOOL WINAPI FtpInitialize(
 LPCTSTR lpszLicenseKey,
 LPINITDATA lpData
);

The FtpInitialize function initializes the library and validates the specified license key at runtime.

Parameters
lpszLicenseKey

Pointer to a string that specifies the runtime license key to be validated. If this parameter is
NULL, the library will validate the development license installed on the local system.

lpData

Pointer to an INITDATA data structure. This parameter may be NULL if the initialization data for
the library is not required.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call FtpGetLastError. All other client functions will fail until a
license key has been successfully validated.

Remarks
This must be the first function that an application calls before using any of the other functions in
the library. When a NULL license key is specified, the library will only function on the development
system. Before redistributing the application to an end-user, you must insure that this function is
called with a valid license key.

If the lpData argument is specified, it must point to an INITDATA structure which has been
initialized by setting the dwSize member to the size of the structure. All other structure members
should be set to zero. If the function is successful, then the INITDATA structure will be filled with
identifying information about the library.

Although it is only required that FtpInitialize be called once for the current process, it may be
called multiple times; however, each call must be matched by a corresponding call to
FtpUninitialize.

This function dynamically loads other system libraries and allocates thread local storage. If you are
calling the functions in this library from within another DLL, it is important that you do not call the
FtpInitialize or FtpUninitialize functions from the DllMain function because it can result in
deadlocks or access violation errors. If the DLL is linked with the C runtime library (CRT), it will
automatically call the constructors and destructors for static and global C++ objects and has the
same restrictions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also

FtpConnect, FtpDisconnect, FtpUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpIsBlocking Function

BOOL WINAPI FtpIsBlocking(
 HCLIENT hClient
);

The FtpIsBlocking function is used to determine if the client is currently performing a blocking
operation.

Parameters
hClient

Handle to the client session.

Return Value
If the client is performing a blocking operation, the function returns a non-zero value. If the client
is not performing a blocking operation, or the client handle is invalid, the function returns zero.

Remarks
Because a blocking operation can allow the application to be re-entered (for example, by pressing
a button while the operation is being performed), it is possible that another blocking function may
be called while it is in progress. Since only one thread of execution may perform a blocking
operation at any one time, an error would occur. The FtpIsBlocking function can be used to
determine if the client is already blocked, and if so, take some other action (such as warning the
user that they must wait for the operation to complete).

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpCancel, FtpGetStatus, FtpIsConnected, FtpIsReadable, FtpIsWritable, FtpRead, FtpWrite

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpIsConnected Function

BOOL WINAPI FtpIsConnected(
 HCLIENT hClient
);

The FtpIsConnected function is used to determine if the client is currently connected to a server.

Parameters
hClient

Handle to the client session.

Return Value
If the client is connected to a server, the function returns a non-zero value. If the client is not
connected, or the client handle is invalid, the function returns zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpGetStatus, FtpIsBlocking, FtpIsReadable, FtpIsWritable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpIsReadable Function

BOOL WINAPI FtpIsReadable(
 HCLIENT hClient,
 INT nTimeout,
 LPDWORD lpdwAvail
);

The FtpIsReadable function is used to determine if data is available to be read from the server.

Parameters
hClient

Handle to the client session.

nTimeout

Timeout for server response, in seconds. A value of zero specifies that the connection should be
polled without blocking the current thread.

lpdwAvail

A pointer to an unsigned integer which will contain the number of bytes available to read. This
parameter may be NULL if this information is not required.

Return Value
If the client can read data from the server within the specified timeout period, the function returns
a non-zero value. If the client cannot read any data, the function returns zero.

Remarks
On some platforms, this value will not exceed the size of the receive buffer (typically 64K bytes).
Because of differences between TCP/IP stack implementations, it is not recommended that your
application exclusively depend on this value to determine the exact number of bytes available.
Instead, it should be used as a general indicator that there is data available to be read.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpGetStatus, FtpIsBlocking, FtpIsConnected, FtpIsWritable, FtpRead

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpIsWritable Function

BOOL WINAPI FtpIsWritable(
 HCLIENT hClient,
 INT nTimeout
);

The FtpIsWritable function is used to determine if data can be written to the server.

Parameters
hClient

Handle to the client session.

nTimeout

Timeout for server response, in seconds. A value of zero specifies that the connection should be
polled without blocking the current thread.

Return Value
If the client can write data to the server within the specified timeout period, the function returns a
non-zero value. If the client cannot write any data, the function returns zero.

Remarks
Although this function can be used to determine if some amount of data can be sent to the
remote process it does not indicate the amount of data that can be written without blocking the
client. In most cases, it is recommended that large amounts of data be broken into smaller logical
blocks, typically some multiple of 512 bytes in length.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpGetStatus, FtpIsBlocking, FtpIsConnected, FtpIsReadable, FtpWrite

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpLogin Function

INT WINAPI FtpLogin(
 HCLIENT hClient,
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword,
 LPCTSTR lpszAccount
);

The FtpLogin function authenticates the specified user in on the server. This function must be
called after the connection has been established, and before attempting to transfer files or
perform any other function on the server.

Parameters
hClient

Handle to the client session.

lpszUserName

Points to a string that specifies the user name to be used to authenticate the current client
session. If this parameter is NULL or an empty string, then the login is considered to be
anonymous.

lpszPassword

Points to a string that specifies the password to be used to authenticate the current client
session. This parameter may be NULL or an empty string if no password is required for the
specified user, or if no username has been specified.

lpszAccount

Points to a string that specifies the account name to be used to authenticate the current client
session. This parameter may be NULL or an empty string if no account name is required for the
specified user.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
Some public FTP servers support anonymous logins, where a username and password are not
required to access the server. In this case, both the lpszUserName and lpszPassword parameters
can be NULL or specify empty strings. In most cases, access to the server using an anonymous
login is restricted, with clients only having permission to download files. Servers may also restrict
the maximum number of anonymous sessions that may be logged in at one time.

This function should only be used after calling the FtpLogout function, enabling you to log in as
another user during the same session. Not all servers will permit a client to change user credentials
during the same session. In most cases, it is preferable to disconnect from the server and re-
connect using the new credentials rather than using this function.

This function is not supported with secure connections using the SSH protocol.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpConnect, FtpLogout, FtpProxyConnect

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpLogout Function

INT WINAPI FtpLogout(
 HCLIENT hClient
);

The FtpLogout function logs out the user associated with the current client session.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
The FtpLogout function is used when the client wants to re-authenticate using a new username
and password. Before any further action may be taken, other than disconnecting from the server,
the FtpLogin function must be called to re-authenticate the client.

It is not necessary to call this function prior to disconnecting from the server because the user
current user is automatically logged out when the FtpDisconnect function is called.

This function is not supported with secure connections using the SSH protocol.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpConnect, FtpDisconnect, FtpLogin

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpMountStructure Function

INT WINAPI FtpMountStructure(
 HCLIENT hClient,
 LPCTSTR lpszFileSystem
);

The FtpMountStructure function mounts a different file system or other directory data structure
on the server.

Parameters
hClient

Handle to the client session.

lpszFileSystem

A pointer to a string which specifies the file system to mount on the server.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
This function sends the SMNT command to the server, which may not be supported on some
platforms. Use of this command typically requires that the user have administrator privileges on
the server.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpCreateDirectory, FtpRemoveDirectory

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpOpenDirectory Function

INT WINAPI FtpOpenDirectory(
 HCLIENT hClient,
 LPCTSTR lpszDirectory
);

The FtpOpenDirectory function opens the specified directory on the server.

Parameters
hClient

Handle to the client session.

lpszDirectory

Pointer to the name of the directory that will be opened. The format of the directory name must
match the filename conventions used by the server. If a NULL pointer or an empty string is
specified, then the current working directory is opened.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
The FtpOpenDirectory function opens the specified directory on the server using the LIST
command. The contents of the directory can be read using the FtpGetFirstFile and
FtpGetNextFile functions. The directory listing is returned on the data channel in one of several
different formats. The library can recognize listing formats generated by UNIX, VMS and Windows
servers, as well as those of other servers which emulate one of those common formats. Once the
complete directory listing has been read, the directory must be closed by calling the
FtpCloseDirectory function.

Because the directory listing is returned on the data channel, a file transfer cannot be performed
while the directory is in the process of being read by the client. Applications which need to collect
a list of files to download should first open the directory, read the contents and store the file
names in an array. After the directory has been closed, the application can then start transferring
the files to the local system.

Some servers may not support file listings for any directory other than the current working
directory. If an error is returned when specifying a directory name, try changing the current
working directory using the FtpChangeDirectory function and then call this function again,
passing NULL or an empty string as the lpszDirectory parameter.

To obtain a list of all files in a directory using a single function call, use the FtpEnumFiles function.
If the server lists files in a format that is not recognized by the library, the FtpGetFileList function
can be used to obtain an unparsed file listing from the server.

Example
if (FtpOpenDirectory(hClient, NULL) != FTP_ERROR)
{
 FTPFILESTATUS ftpFile;
 BOOL bResult;

 bResult = FtpGetFirstFile(hClient, &ftpFile);
 while (bResult)

 {
 // The ftpFile structure contains information about the file
 bResult = FtpGetNextFile(hClient, &ftpFile);
 }

 FtpCloseDirectory(hClient);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpChangeDirectory, FtpCloseDirectory, FtpEnumFiles, FtpGetDirectoryFormat, FtpGetFileList,
FtpGetFileStatus, FtpGetFirstFile, FtpGetNextFile, FtpSetDirectoryFormat

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpOpenFile Function

INT WINAPI FtpOpenFile(
 HCLIENT hClient,
 LPCTSTR lpszFileName,
 DWORD dwOpenMode,
 DWORD dwOffset
);

The FtpOpenFile function creates or opens the specified file on the server.

Parameters
hClient

Handle to the client session.

lpszFileName

Points to a string that specifies the name of the remote file to create or open. The file pathing
and name conventions must be that of the server.

dwOpenMode

Specifies the type of access to the file. An application can open a file for reading, create a new
file or append data to an existing file. This parameter should be one of the following values.

Constant Description

FTP_FILE_READ The file is opened for reading on the server. A data channel is
created and the contents of the file are returned to the client.

FTP_FILE_WRITE The file is opened for writing on the server. If the file does not exist,
it will be created. If it does exist, it will be overwritten.

FTP_FILE_APPEND The file is opened for writing on the server. All data will be
appended to the end of the file.

dwOffset

A byte offset which specifies where the file transfer should begin. The default value of zero
specifies that the file transfer should start at the beginning of the file. A value greater than zero
is typically used to restart a transfer that has not completed successfully. Note that specifying a
non-zero offset using FTP requires that the server support the REST command to restart
transfers.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
Only one file may be opened at a time for each client session. Attempting to perform an action
such as uploading or downloading another file while a file is currently open will result in an error.
Typically this indicates that the application failed to call the FtpCloseFile function.

It is strongly recommended that most applications use the FtpGetFile or FtpPutFile functions to
perform file transfers. These functions are easier to use, and have internal optimizations that
improves the overall data transfer rate when compared to implementing the file transfer code in
your own application.

When a file is created on the server, the file ownership and access rights are determined by the
server. Some servers may provide a method to change these attributes through site-specific
commands. Refer to the server's operating system documentation for more information about
what commands may be available.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpCloseFile, FtpGetFile, FtpGetFileSize, FtpGetFileTime, FtpPutFile, FtpSetFileTime

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpOpenFileEx Function

INT WINAPI FtpOpenFileEx(
 HCLIENT hClient,
 LPCTSTR lpszFileName,
 DWORD dwOpenMode,
 DWORD dwReserved,
 ULARGE_INTEGER uiOffset
);

The FtpOpenFileEx function creates or opens the specified file on the server. This version of the
function is designed to support files that are larger than 4GB.

Parameters
hClient

Handle to the client session.

lpszFileName

Points to a string that specifies the name of the remote file to create or open. The file pathing
and name conventions must be that of the server.

dwOpenMode

Specifies the type of access to the file. An application can open a file for reading, create a new
file or append data to an existing file. This parameter should be one of the following values.

Constant Description

FTP_FILE_READ The file is opened for reading on the server. A data channel is
created and the contents of the file are returned to the client.

FTP_FILE_WRITE The file is opened for writing on the server. If the file does not exist,
it will be created. If it does exist, it will be overwritten.

FTP_FILE_APPEND The file is opened for writing on the server. All data will be
appended to the end of the file.

dwReserved

An unsigned integer value that is reserved for future use. This parameter should always have a
value of zero.

uiOffset

A byte offset which specifies where the file transfer should begin. The default value of zero
specifies that the file transfer should start at the beginning of the file. A value greater than zero
is typically used to restart a transfer that has not completed successfully. Note that specifying a
non-zero offset using FTP requires that the server support the REST command to restart
transfers.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
Only one file may be opened at a time for each client session. Attempting to perform an action
such as uploading or downloading another file while a file is currently open will result in an error.

Typically this indicates that the application failed to call the FtpCloseFile function.

It is strongly recommended that most applications use the FtpGetFileEx or FtpPutFileEx
functions to perform file transfers. These functions are easier to use, and have internal
optimizations that improves the overall data transfer rate when compared to implementing the file
transfer code in your own application.

When a file is created on the server, the file ownership and access rights are determined by the
server. Some servers may provide a method to change these attributes through site-specific
commands. Refer to the server's operating system documentation for more information about
what commands may be available.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpCloseFile, FtpGetFileEx, FtpGetFileSizeEx, FtpGetFileTime, FtpPutFileEx, FtpSetFileTime

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpProxyConnect Function

HCLIENT WINAPI FtpProxyConnect(
 UINT nProxyType,
 LPCTSTR lpszProxyHost,
 UINT nProxyPort,
 LPCTSTR lpszProxyUser,
 LPCTSTR lpszProxyPassword,
 LPCTSTR lpszRemoteHost,
 UINT nTimeout,
 DWORD dwOptions,
 LPSECURITYCREDENTIALS lpCredentials
);

The FtpProxyConnect function establishes a connection through a proxy server.

Parameters
nProxyType

An identifier which specifies the type of proxy server that is being connected to. This value must
be defined as one of the following values:

Constant Description

FTP_PROXY_NONE This value specifies that no proxy server is being used. In this
case, the FtpConnect function is called directly, ignoring the
proxy parameters.

FTP_PROXY_USER This value specifies that the client is not logged into the proxy
server. The USER command is sent in the format
username@ftpsite followed by the password. This is the format
used with the Gauntlet proxy server.

FTP_PROXY_LOGIN This value specifies that the client is logged into the proxy server.
The USER command is then sent in the format username@ftpsite
followed by the password. This is the format used by the
InterLock proxy server.

FTP_PROXY_OPEN This value specifies that the client is not logged into the proxy
server. The OPEN command is sent specifying the host name,
followed by the username and password.

FTP_PROXY_SITE This value specifies that the client is logged into the server. The
SITE command is sent, specifying the host name, followed by the
username and the password.

FTP_PROXY_OTHER This special proxy type specifies that another, undefined proxy
server is being used. The client connects to the proxy host, but
does not attempt to authenticate the client. The application is
responsible for negotiating with the proxy server, typically using
the FtpCommand function to send specific command sequences.

lpszProxyHost

A pointer to the name of the proxy server to connect through; this may be a fully-qualified
domain name or an IP address.

lpszProxyPort

The port number the proxy server is listening on; a value of zero specifies that the default port
number should be used.

lpszProxyUser

A pointer to the user name used to authenticate the client on the proxy server. Not all proxy
servers require this information; it is recommended that you consult the proxy server
documentation to determine if a username is required.

lpszProxyPassword

A pointer to the password used to authenticate the client on the proxy server. Not all proxy
servers require this information; it is recommended that you consult the proxy server
documentation to determine if a password is required.

lpszRemoteHost

A pointer to the name of the server that you want to connect to, through the proxy server.

nTimeout

The number of seconds that the client will wait for a response from the server before failing the
current operation.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

FTP_OPTION_DEFAULT Default options should be used for file transfers.
This is the same as specifying that all file transfers
should use passive mode when establishing a data
connection with the server. It is recommended most
applications use passive mode to prevent potential
compatibility issues with certain types of firewalls
and routers which use Network Address Translation
(NAT).

FTP_OPTION_PASSIVE This option specifies file transfers should attempt to
establish the data connection with the server. If the
local system is behind a firewall or a NAT router,
the server may not be able to establish a data
connection back to the client and the transfer will
fail. This option forces the client to establish an
outbound data connection with the server. It is
recommended that applications use passive mode
whenever possible.

FTP_OPTION_FIREWALL This option specifies the client should always use
the host IP address to establish the data connection
with the server, not the address returned by the
server in response to the PASV command. This
option may be necessary if the server is behind a
router that performs Network Address Translation
(NAT) and it returns an unreachable IP address for
the data connection. If this option is specified, it will

also enable passive mode data transfers.

FTP_OPTION_NOAUTH This option specifies the server does not require
authentication, or that it requires an alternate
authentication method. When this option is used,
the client connection is flagged as authenticated as
soon as the connection to the server has been
established. Note that using this option to bypass
authentication may result in subsequent errors
when attempting to retrieve a directory listing or
transfer a file. It is recommended that you consult
the technical reference documentation for the
server to determine its specific authentication
requirements.

FTP_OPTION_KEEPALIVE This option specifies the client should attempt to
keep the connection with the server active for an
extended period of time. It is important to note that
regardless of this option, the server may still choose
to disconnect client sessions that are holding the
command channel open but are not performing file
transfers.

FTP_OPTION_VIRTUALHOST This option specifies the server supports virtual
hosting, where multiple domains are hosted by a
server using the same external IP address. If this
option is enabled, the client will send the HOST
command to the server upon establishing a
connection.

FTP_OPTION_VERIFY This option specifies that file transfers should be
automatically verified after the transfer has
completed. If the server supports the XMD5
command, the transfer will be verified by calculating
an MD5 hash of the file contents. If the server does
not support the XMD5 command, but does support
the XCRC command, the transfer will be verified by
calculating a CRC32 checksum of the file contents. If
neither the XMD5 or XCRC commands are
supported, the transfer is verified by comparing the
size of the file. Automatic file verification is only
performed for binary mode transfers because of the
end-of-line conversion that may occur when text
files are uploaded or downloaded.

FTP_OPTION_TRUSTEDSITE This option specifies the server is trusted. The server
certificate will not be validated and the connection
will always be permitted. This option only affects
connections using either the SSL or TLS protocols.

FTP_OPTION_SECURE This option specifies the client should attempt to
establish a secure connection with the server. This
option is the same as specifying

FTP_OPTION_SECURE_IMPLICIT which immediately
performs the SSL/TLS protocol negotiation when
the connection is established.

FTP_OPTION_SECURE_IMPLICIT This option specifies the client should attempt to
immediately establish secure SSL/TLS connection
with the server. This option is typically used when
connecting to a server on port 990, which is the
default port number used for FTPS.

FTP_OPTION_SECURE_EXPLICIT This option specifies the client should establish a
standard connection to the server and then use the
AUTH command to negotiate an explicit secure
connection. This option is typically used when
connecting to the server on ports other than 990.

FTP_OPTION_SECURE_FALLBACK This option specifies the client should permit the
use of less secure cipher suites for compatibility
with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

FTP_OPTION_TUNNEL This option specifies that a tunneled TCP
connection and/or port-forwarding is being used to
establish the connection to the server. This changes
the behavior of the client with regards to internal
checks of the destination IP address and remote
port number, default capability selection and how
the connection is established. This option also
forces all connections to be outbound and enables
the firewall compatibility features in the client.

FTP_OPTION_KEEPALIVE_DATA This option specifies the client should attempt to
keep the control connection active during a file
transfer. Normally, when a data transfer is in
progress, no additional commands are issued on
the control channel until the transfer completes.
Specifying this option automatically enables the
FTP_OPTION_KEEPALIVE option and forces the
client to continue to issue NOOP commands during
the file transfer. This option only applies to FTP and
FTPS connections and has no effect on connections
using SFTP (SSH).

FTP_OPTION_PREFER_IPV6 This option specifies the client should prefer the use
of IPv6 if the server hostname can be resolved to
both an IPv6 and IPv4 address. This option is
ignored if the local system does not have IPv6
enabled, or when the hostname can only be
resolved to an IPv4 address. If the server hostname
can only be resolved to an IPv6 address, the client
will attempt to establish a connection using IPv6
regardless if this option has been specified.

FTP_OPTION_FREETHREAD This option specifies the handle returned by this
function may be used by any thread, and is not
limited to the thread which created it. The
application is responsible for ensuring that access to
the handle is synchronized across multiple threads.

FTP_OPTION_HIRES_TIMER This option specifies the elapsed time for data
transfers should be returned in milliseconds instead
of seconds. This will return more accurate transfer
times for smaller files being uploaded or
downloaded using fast network connections.

FTP_OPTION_TLS_REUSE This option specifies that TLS session reuse should
be enabled for secure connections. This option is
only supported on Windows 8.1 or Windows Server
2012 R2 and later platforms, and it should only be
used when explicitly required by the server. This
option is not compatible with servers built using
OpenSSL 1.0.2 and earlier versions which do not
provide Extended Master Secret (EMS) support as
outlined in RFC7627.

lpCredentials

A pointer to a SECURITYCREDENTIALS structure. This parameter should be NULL if the
connection is not secure or when client credentials are not required. Most servers do not
require a client certificate to establish a secure connection. However, if the server does require a
client certificate, the structure members dwSize, lpszCertStore and lpszCertName must be
defined. Undefined structure members must be initialized to a value of zero or NULL and the
dwSize member must be initialized to the size of the SECURITYCREDENTIALS structure.

Return Value
If the function succeeds, the return value is a handle to a client session. If the function fails, the
return value is INVALID_CLIENT. To get extended error information, call FtpGetLastError.

Remarks
This function will block the current thread until a connection has been established or the timeout
period has elapsed. To prevent it from blocking the main user interface thread, the application
should create a background worker thread and establish a connection by calling
FtpProxyConnect in that thread. If the application requires multiple simultaneous connections, it
is recommended you create a worker thread for each connection.

The username and password that is used to authenticate the client with the proxy server are not
the same as those used to login to the target server. Once a connection has been established with
the proxy server, the client must call the FtpLogin function to actually login to the server and
begin a file transfer.

If the FTP_OPTION_KEEPALIVE option is specified, a background worker thread will be created to
monitor the command channel and periodically send NOOP commands to the server if no
commands have been sent recently. This can prevent the server from terminating the client
connection during idle periods where no commands are being issued. However, it is important to
keep in mind that many servers can be configured to also limit the total amount of time a client
can be connected to the server, as well as the amount of time permitted between file transfers. If
the server does not respond to the NOOP command, this option will be automatically disabled for

the remainder of the client session.

If the FTP_OPTION_SECURE_EXPLICIT option is specified, the client will establish a standard
connection to the server and send the AUTH TLS command to the server. If the server does not
accept this command, it will then send the AUTH SSL command. If both commands are rejected
by the server, an explicit SSL session cannot be established. By default, both the command and
data channels will be encrypted when a secure connection is established. To change this, use the
FtpSetChannelMode function.

The dwOptions argument can be used to specify the threading model that is used by the library
when a connection is established. By default, the handle is initially attached to the thread that
created it. From that point on, until the it is released, only the owner may call functions using that
handle. The ownership of the handle may be transferred from one thread to another using the
FtpAttachThread function.

Specifying the FTP_OPTION_FREETHREAD option enables any thread to call any function using the
handle, regardless of which thread created it. It is important to note that this option disables
certain internal safety checks which are performed by the library and may result in unexpected
behavior unless access to the handle is synchronized. If one thread calls a function in the library, it
must ensure that no other thread will call another function at the same time using the same
handle.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpConnect, FtpCreateSecurityCredentials, FtpDeleteSecurityCredentials, FtpDisconnect,
FtpGetSecurityInformation, FtpInitialize, FtpLogin, FtpSetChannelMode

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpPutData Function

INT WINAPI FtpPutData(
 HCLIENT hClient,
 LPCTSTR lpszFileName,
 LPVOID lpvBuffer,
 DWORD dwLength,
 DWORD dwReserved
);

The FtpPutData function transfers the contents of the specified buffer to a file on the server.

Parameters
hClient

Handle to the client session.

lpszFileName

A pointer to a string that specifies the file on the server that will be created, overwritten or
appended to. The file naming conventions must be that of the host operating system.

lpvBuffer

A pointer to the data that will be copied to the server and stored in the specified file.

dwLength

The number of bytes to copy from the buffer.

dwReserved

A reserved parameter. This value should always be zero.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
If the lpvBuffer parameter is pointing to a Unicode string, it is important to note that the value of
the dwLength parameter should specify the number of bytes, not the number of characters. When
using UTF-16, each character is two bytes long and therefore the length of the buffer is effectively
double the length of the string. Because Unicode strings can contain null characters, you must also
set the current file type to FILE_TYPE_IMAGE prior to calling this function.

The FtpPutText function can be used to create a text file from the contents of a string.

This function will cause the current thread to block until the file transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the FTP_EVENT_PROGRESS event will be
periodically fired, enabling the application to update any user interface controls. Event notification
must be enabled, either by calling FtpEnableEvents, or by registering a callback function using
the FtpRegisterEvent function.

To determine the current status of a file transfer while it is in progress, use the
FtpGetTransferStatus function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpChangeDirectory, FtpEnableEvents, FtpGetData, FtpGetFile, FtpGetTransferStatus, FtpPutFile,
FtpRegisterEvent, FtpSetBufferSize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpPutFile Function

INT WINAPI FtpPutFile(
 HCLIENT hClient,
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszRemoteFile,
 DWORD dwOptions,
 DWORD dwOffset
);

The FtpPutFile function transfers the specified file on the local system to the server.

Parameters
hClient

Handle to the client session.

lpszLocalFile

A pointer to a string that specifies the file that will be transferred from the local system. The file
pathing and name conventions must be that of the local host.

lpszRemoteFile

A pointer to a string that specifies the file on the server that will be created, overwritten or
appended to. The file naming conventions must be that of the host operating system.

dwOptions

An unsigned integer that specifies one or more options. This parameter may be any one of the
following values:

Constant Description

FTP_TRANSFER_DEFAULT This option specifies the default transfer mode should be
used. If the remote file exists, it will be overwritten with the
contents of the uploaded file.

FTP_TRANSFER_APPEND This option specifies that if the remote file exists, the
contents of the local file is appended to the remote file. If
the remote file does not exist, it is created.

dwOffset

A byte offset which specifies where the file transfer should begin. The default value of zero
specifies that the file transfer should start at the beginning of the file. A value greater than zero
is typically used to restart a transfer that has not completed successfully. Note that specifying a
non-zero offset requires that the server support the REST command to restart transfers.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
This function will cause the current thread to block until the file transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the FTP_EVENT_PROGRESS event will be
periodically fired, enabling the application to update any user interface controls. Event notification
must be enabled, either by calling FtpEnableEvents, or by registering a callback function using
the FtpRegisterEvent function.

To determine the current status of a file transfer while it is in progress, use the
FtpGetTransferStatus function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpChangeDirectory, FtpEnableEvents, FtpGetData, FtpGetFile, FtpGetMultipleFiles,
FtpGetTransferStatus, FtpPutData, FtpPutMultipleFiles, FtpRegisterEvent, FtpSetBufferSize,
FtpVerifyFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpPutFileEx Function

INT WINAPI FtpPutFileEx(
 HCLIENT hClient,
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszRemoteFile,
 DWORD dwOptions,
 ULARGE_INTEGER uiOffset
);

The FtpPutFileEx function transfers the specified file on the local system to the server. This version
of the function is designed to support files that are larger than 4GB.

Parameters
hClient

Handle to the client session.

lpszLocalFile

A pointer to a string that specifies the file that will be transferred from the local system. The file
pathing and name conventions must be that of the local host.

lpszRemoteFile

A pointer to a string that specifies the file on the server that will be created, overwritten or
appended to. The file naming conventions must be that of the host operating system.

dwOptions

An unsigned integer that specifies one or more options. This parameter may be any one of the
following values:

Constant Description

FTP_TRANSFER_DEFAULT This option specifies the default transfer mode should be
used. If the remote file exists, it will be overwritten with the
contents of the uploaded file.

FTP_TRANSFER_APPEND This option specifies that if the remote file exists, the
contents of the local file is appended to the remote file. If
the remote file does not exist, it is created.

uiOffset

A byte offset which specifies where the file transfer should begin. The default value of zero
specifies that the file transfer should start at the beginning of the file. A value greater than zero
is typically used to restart a transfer that has not completed successfully. Note that specifying a
non-zero offset requires that the server support the REST command to restart transfers.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
This function will cause the current thread to block until the file transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the FTP_EVENT_PROGRESS event will be
periodically fired, enabling the application to update any user interface controls. Event notification
must be enabled, either by calling FtpEnableEvents, or by registering a callback function using

the FtpRegisterEvent function.

To determine the current status of a file transfer while it is in progress, use the
FtpGetTransferStatusEx function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpChangeDirectory, FtpEnableEvents, FtpGetData, FtpGetFileEx, FtpGetMultipleFiles,
FtpGetTransferStatusEx, FtpPutData, FtpPutMultipleFiles, FtpRegisterEvent, FtpSetBufferSize,
FtpVerifyFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpPutMultipleFiles Function

INT WINAPI FtpPutMultipleFiles(
 HCLIENT hClient,
 LPCTSTR lpszLocalDirectory,
 LPCTSTR lpszRemoteDirectory,
 LPCTSTR lpszFileMask,
 DWORD dwReserved
);

The FtpPutMultipleFiles function copies one or more files from the local host to the server, using
the specified wildcard.

Parameters
hClient

Handle to the client session.

lpszLocalDirectory

Pointer to a string which specifies the local directory where the files will be copied from. A NULL
pointer or empty string specifies that files should be copied from the current working directory.

lpszRemoteDirectory

Pointer to a string which specifies the remote directory where the files will be copied to. A NULL
pointer or empty string specifies that the files should be copied to the current working directory
on the server.

lpszFileMask

Pointer to a string which specifies the files that are to be copied from the local system to the
server. The file mask should follow the Windows conventions used for wildcard file matches.

dwReserved

A reserved parameter. This value should always be zero.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
The FtpPutMultipleFiles function is used to transfer files from the local host to the server which
match a specified wildcard file mask. All files will be transferred using the current file type as
specified by the FtpSetFileType function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpChangeDirectory, FtpGetFile, FtpGetMultipleFiles, FtpPutFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpPutText Function

INT WINAPI FtpPutText(
 HCLIENT hClient,
 LPCTSTR lpszRemoteFile,
 LPCTSTR lpszBuffer
);

The FtpPutText function creates a text file on the server using the contents of a string buffer.

Parameters
hClient

Handle to the client session.

lpszRemoteFile

A pointer to a string that specifies the text file on the server that will be created or overwritten.
The file pathing and name conventions must be that of the server.

lpszBuffer

A pointer to a string that contains the text that will be stored in the file.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
The FtpPutText function is used to create a text file on the server from the contents of a string. If
the specified file already exists on the server, its contents will be overwritten. This function will
always set the file type to FILE_TYPE_ASCII before creating the file, and will restore the default file
type before the method returns.

If the Unicode version of this function is called, the string will be converted to UTF-8 and then
uploaded to the server. If you wish to store the contents of the string as UTF-16 Unicode on the
server, you must set the current file type to FILE_TYPE_IMAGE and use the FtpPutData function.
This function should never be used to upload binary data.

This function will cause the current thread to block until the file transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the FTP_EVENT_PROGRESS event will be
periodically fired, enabling the application to update any user interface controls. Event notification
must be enabled, either by calling FtpEnableEvents, or by registering a callback function using
the FtpRegisterEvent function.

To determine the current status of a file transfer while it is in progress, use the
FtpGetTransferStatus function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpChangeDirectory, FtpEnableEvents, FtpGetText, FtpGetTransferStatus, FtpPutData, FtpPutFile,

FtpRegisterEvent, FtpSetBufferSize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpRead Function

INT WINAPI FtpRead(
 HCLIENT hClient,
 LPBYTE lpBuffer,
 INT cbBuffer
);

The FtpRead function reads the specified number of bytes from the client socket and copies them
into the buffer. The data may be of any type, and is not terminated with a null character.

Parameters
hClient

Handle to the client session.

lpBuffer

Pointer to the buffer in which the data will be copied.

cbBuffer

The maximum number of bytes to read and copy into the specified buffer. This value must be
greater than zero.

Return Value
If the function succeeds, the return value is the number of bytes actually read. A return value of
zero indicates that the server has closed the connection and there is no more data available to be
read. If the function fails, the return value is FTP_ERROR. To get extended error information, call
FtpGetLastError.

Remarks
When FtpRead is called and the client is in non-blocking mode, it is possible that the function will
fail because there is no available data to read at that time. This should not be considered a fatal
error. Instead, the application should simply wait to receive the next asynchronous notification that
data is available.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpEnableEvents, FtpGetData, FtpGetFile, FtpIsBlocking, FtpIsReadable, FtpIsWritable,
FtpRegisterEvent, FtpWrite

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpRegisterEvent Function

INT WINAPI FtpRegisterEvent(
 HCLIENT hClient,
 UINT nEventId,
 FTPEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

The FtpRegisterEvent function registers an event handler for the specified event.

Parameters
hClient

Handle to the client session.

nEventId

An unsigned integer which specifies which event should be registered with the specified callback
function. One of the following values may be used:

Constant Description

FTP_EVENT_CONNECT The control connection to the server has completed.

FTP_EVENT_DISCONNECT The server has closed the control connection to the client. The
client should read any remaining data and disconnect.

FTP_EVENT_OPENFILE The data connection to the server has completed.

FTP_EVENT_CLOSEFILE The server has closed the data connection to the client. The client
should read any remaining data and close the data channel.

FTP_EVENT_READFILE Data is available to read by the calling process. No additional
messages will be posted until the client has read at least some of
the data. This event is only generated if the client is in
asynchronous mode.

FTP_EVENT_WRITEFILE The client can now write data. This notification is sent after a
connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking
operation. This event is only generated if the client is in
asynchronous mode.

FTP_EVENT_TIMEOUT The network operation has exceeded the specified timeout period.
The client application may attempt to retry the operation, or may
disconnect from the server and report an error to the user.

FTP_EVENT_CANCEL The current operation has been canceled. Under most
circumstances the client should disconnect from the server and re-
connect if needed. After an operation has been canceled, the
server may abort the connection or refuse to accept further
commands from the client.

FTP_EVENT_COMMAND A command has been issued by the client and the server response
has been received and processed. This event can be used to log
the result codes and messages returned by the server in response
to actions taken by the client.

FTP_EVENT_PROGRESS The client is in the process of sending or receiving a file on the data
channel. This event is called periodically during a transfer so that
the client can update any user interface components such as a
status control or progress bar.

FTP_EVENT_GETFILE This event is generated when a file download has completed. If
multiple files are being downloaded, this event will be generated
for each file.

FTP_EVENT_PUTFILE This event is generated when a file upload has completed. If
multiple files are being uploaded, this event will be generated for
each file.

FTP_EVENT_QUEUE This event is generated during a queued file transfer. It only occurs
when a file is being transferred using the queue management APIs
and the internal state of the queue has changed. The handle
passed to this event will be a handle to the queue, not a client
connection to the server.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the FtpEventProc callback
function. If this parameter is NULL, the callback for the specified event is disabled.

dwParam

A user-defined integer value that is passed to the callback function. If the application targets the
x86 (32-bit) platform, this parameter must be a 32-bit unsigned integer. If the application
targets the x64 (64-bit) platform, this parameter must be a 64-bit unsigned integer.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
The FtpRegisterEvent function associates a callback function with a specific event. The event
handler is an FtpEventProc function that is invoked when the event occurs. Arguments are passed
to the function to identify the client session, the event type and the user-defined value specified
when the event handler is registered. If the event occurs because of an error condition, the error
code will be provided to the handler.

This function is typically used to register an event handler that is invoked while a file is being
uploaded or downloaded. The FTP_EVENT_PROGRESS event will only be generated periodically
during the transfer to ensure the application is not flooded with event notifications. It is
guaranteed that at least one FTP_EVENT_PROGRESS notification will occur at the beginning of the
transfer, and one at the end of the transfer when it has completed.

The callback function specified by the lpEventProc parameter must be declared using the
__stdcall calling convention. This ensures the arguments passed to the event handler are pushed
on to the stack in the correct order. Failure to use the correct calling convention will corrupt the
stack and cause the application to terminate abnormally.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)

Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpDisableEvents, FtpEnableEvents, FtpEventProc, FtpFreezeEvents

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpRegisterFileType Function

BOOL WINAPI FtpRegisterFileType(
 HCLIENT hClient,
 LPCTSTR lpszExtension,
 UINT nFileType
);

The FtpRegisterFileType function associates a file name extension with a specific file type.

Parameters
hClient

Handle to the client session. If this parameter is INVALID_CLIENT, the file type is registered for
all client sessions in the current process. If the parameter specifies a valid client session, then the
association is made only for that specific session.

lpszExtension

A pointer to a null terminated string which specifies the file name extension. If this parameter is
NULL or points to an empty string, the default file type will be changed for the client session.

nFileType

Specifies the type of file associated with the file extension. This parameter can be one of the
following values.

Value Description

FILE_TYPE_ASCII The file is a text file using the ASCII character set. For those servers
which mark the end of a line with characters other than a carriage
return and linefeed, it will be converted to the native client format.
This is the file type used for directory listings.

FILE_TYPE_EBCDIC The file is a text file using the EBCDIC character set. Local files will
be converted to EBCDIC when sent to the server. Remote files will
be converted to the native ASCII character set when retrieved
from the server.

FILE_TYPE_IMAGE The file is a binary image and no data conversion of any type is
performed on the file. This is typically the default file type for data
file transfers. If the type of file that is being transferred is unknown,
this file type should always be used.

Return Value
If the function succeeds, the return value non-zero. If the function fails, the return value is zero. To
get extended error information, call FtpGetLastError.

Remarks
The FtpRegisterFileType function is used to associate specific file types with file name extensions.
The library has an internal list of standard text file extensions which it automatically recognizes.
This method can be used to extend or modify that list for the client session.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpGetAutoFileType, FtpOpenFile, FtpRegisterFileType, FtpSetFileMode, FtpSetFileStructure,
FtpSetFileType, FtpSetPassiveMode

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpRemoveDirectory Function

INT WINAPI FtpRemoveDirectory(
 HCLIENT hClient,
 LPCTSTR lpszDirectory
);

The FtpRemoveDirectory function removes the specified directory on the server.

Parameters
hClient

Handle to the client session.

lpszDirectory

Points to a string that specifies the name of the directory. The file pathing and name
conventions must be that of the server.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
This function uses the RMD command to create the directory. The user must have the appropriate
permission to remove the specified directory. Most servers will not permit you to remove a
directory if it contains one or more files.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpChangeDirectory, FtpCreateDirectory, FtpDeleteFile, FtpGetDirectory

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpRemoveQueuedFile Function

BOOL WINAPI FtpRemoveQueuedFile(
 HQUEUE hQueue,
 DWORD dwFileId
);

The FtpRemoveQueuedFile removes the specified file from the queue.

Parameters
hQueue

A handle to a file transfer queue.

dwFileId

An unsigned integer value which uniquely identifies the file in the queue. This value cannot be
zero.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, it will return zero. To get
extended error information, call FtpGetLastError.

Remarks
Files can only be removed from the queue when in an idle or paused state. If you attempt to
remove a file while the queue manager is in the process of uploading or download files, the
function will fail.

The file identifier can be obtained by several different functions, including FtpEnumQueuedFiles
and FtpGetQueueStatus, which provides information about the current file being processed in
the queue. Do not make any assumptions about the value of the identifier. Although the value is
guaranteed to be unique for the specified queue, it is not guaranteed that file identifiers will be
assigned in sequential order.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpAddQueuedFile, FtpClearQueue, FtpEnumQueuedFiles, FtpGetQueuedFile, FtpGetQueueStatus,
FtpSuspendQueue, FtpResetQueue

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpRenameFile Function

INT WINAPI FtpRenameFile(
 HCLIENT hClient,
 LPCTSTR lpszOldFileName,
 LPCTSTR lpszNewFileName
);

The FtpRenameFile function renames the specified file on the server. The file must exist, and the
current user must have the appropriate permission to change the file name.

Parameters
hClient

Handle to the client session.

lpszOldFileName

Points to a string that specifies the name of the remote file to rename. The file pathing and
name conventions must be that of the server.

lpszNewFileName

Points to a string the specifies the new name for the remote file. The file pathing and name
conventions must be that of the server.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
This function causes two separate commands to be sent to the server, RNFR and RNTO. If either
command fails, the function will fail and return an error code.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpDeleteFile, FtpGetFile, FtpPutFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpReset Function

INT WINAPI FtpReset(
 HCLIENT hClient
);

The FtpReset function resets the client state and resynchronizes with the server. This function is
typically called after an unexpected error has occurred, or an operation has been canceled.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
The client cannot be reset while a file transfer is in progress or if the client is in a blocked state. To
abort a file transfer, use the FtpCancel function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpCancel

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpResetQueue Function

BOOL WINAPI FtpResetQueue(
 HQUEUE hQueue,
 UINT nResetMode
);

The FtpResetQueue function resets the state of all file transfers in the current queue.

Parameters
hQueue

A handle to a file transfer queue.

dwOptions

An integer value which specifies which files should be reset in the queue. It may be one of the
following values:

Constant Description

FTP_QUEUE_RESET_ALL All files in the queue should be reset to their initial
state.

FTP_QUEUE_RESET_COMPLETED All files in the queue which have been successfully
transferred will be reset to their initial state.

FTP_QUEUE_RESET_FAILED All files in the queue which were not transferred will
be reset to their initial state.

FTP_QUEUE_RESET_CANCELED All files in the queue which were canceled will be
reset to their initial state.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, it will return zero. To get
extended error information, call FtpGetLastError.

Remarks
When the FtpStartQueue function is called multiple times using the same queue handle, it will not
attempt to transfer files which have already been successfully copied, and it will not attempt to re-
transfer files if the previous transfer failed. This function resets queued files back to their initial
state, prior to when the queue manager attempted to perform the transfer. The most common
use would be to call the function with the FTP_QUEUE_RESET_FAILED mode and then call
FtpStartQueue to retry failed or canceled file transfers.

Because canceled file transfers are also considered failed transfers, specifying
FTP_QUEUE_RESET_FAILED will reset queued files which either encountered an error during the
transfer or were explicitly canceled by calling the FtpCancelQueuedFile function. The
FTP_QUEUE_RESET_CANCELED option will only reset the state of queued file transfers which were
canceled.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpCancelQueuedFile, FtpGetQueuedFile, FtpResumeQueue, FtpStartQueue, FtpStopQueue,
FtpSuspendQueue

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpResumeQueue Function

BOOL WINAPI FtpResumeQueue(
 HQUEUE hQueue
);

The FtpResumeQueue function resumes transfers in the queue.

Parameters
hQueue

A handle to a file transfer queue.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, it will return zero. To get
extended error information, call FtpGetLastError.

Remarks
This function signals the queue manager to resume processing files in the transfer queue after the
FtpSuspendQueue function has been called. This function will fail if the queue is in an idle
(stopped) state, and will be ignored if the queue manager is already transferring files. The
FtpGetQueueStatus function can be called to obtain the current status of the queue.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpGetQueueStatus, FtpResetQueue, FtpStartQueue, FtpStopQueue, FtpSuspendQueue

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpSetActivePorts Function

INT WINAPI FtpSetActivePorts(
 HCLIENT hClient,
 UINT nLowPort,
 UINT nHighPort
);

The FtpSetActivePorts function changes the range of local port numbers used for active mode
file transfers.

Parameters
hClient

Handle to the client session.

nLowPort

An unsigned integer that specifies the low port number.

lpnHighPort

An unsigned integer that specifies the high port number.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
This function is used to modify the range of local port numbers used for active mode file transfers.
When using active mode, the client listens for an inbound connection from the server rather than
establishing an outbound connection for the data transfer. In most cases, passive mode transfers
are preferred because they mitigate potential compatibility issues with firewalls and NAT routers.

If active mode transfers are required, the default port range used when listening for the server
connection is between 1024 and 5000. This is the standard range of ephemeral ports used by the
Windows operating system. However, under some circumstances that range of ports may be too
small, or a firewall may be configured to deny inbound connections on ephemeral ports. In that
case, the FtpSetActivePorts function can be used to specify a different range of port numbers.

While it is technically permissible to assign the low and high port numbers to the same value,
effectively specifying a single active port number, this is not recommended as it can cause the
transfer to fail unexpectedly if multiple file transfers are performed. A minimum range of at least
1000 ports is recommended. For example, if you specify a low port value of 40000 then it is
recommended that the high port value be at least 41000. The maximum port value is 65535.

To determine the current range of active port numbers being used, call the FtpGetActivePorts
function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also

FtpGetActivePorts, FtpSetPassiveMode

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpSetBufferSize Function

INT WINAPI FtpSetBufferSize(
 HCLIENT hClient,
 INT nBufferSize
);

The FtpSetBufferSize function sets the size in bytes of an internal buffer that will be used during
data transfers.

Parameters
hClient

Handle to the client session.

nBufferSize

The size of an internal buffer, in bytes. Any value greater than or equal to zero is acceptable. If
nBufferSize is zero, then the default value of 4096 will be used. If nBufferSize is less than 256
bytes, the buffer size will be set to 256. The maximum value of nBufferSize is 1048576 (1Mb).

Return Value
If the function succeeds, the return value is the size of the internal buffer that will be used. If the
function fails, the return value is FTP_ERROR. To get extended error information, call
FtpGetLastError.

Remarks
The speed of data transfers, particularly on uploads, may be sensitive to network type and
configuration, and the size of the internal buffer used for data transfers. The default size of this
buffer will result in good performance for a wide range of network characteristics. A larger buffer
will not necessarily result in better performance. For example, a multiple of 1460, which is the
typical Maximum Transmission Unit (MTU), may be optimal in many situations.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpGetBufferSize, FtpGetData, FtpGetFile, FtpPutData, FtpPutFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpSetChannelMode Function

INT WINAPI FtpSetChannelMode(
 HCLIENT hClient,
 INT nChannel,
 INT nMode
);

The FtpSetChannelMode function changes the security mode for the specified communication
channel.

Parameters
hClient

Handle to the client session.

nChannel

An integer value which specifies which channel to return information for. It may be one of the
following values:

Constant Description

FTP_CHANNEL_COMMAND Change information for the command channel. This is
the communication channel used to send commands to
the server and receive command result and status
information from the server.

FTP_CHANNEL_DATA Change information for the data channel. This is the
communication channel used to send or receive data
during a file transfer.

nMode

An integer value which specifies the new mode for the specified channel. It may be one of the
following values:

Constant Description

FTP_CHANNEL_CLEAR Data sent and received on this channel should not be
encrypted.

FTP_CHANNEL_SECURE Data sent and received on this channel should be encrypted.
Specifying this option requires that a secure connection has
already been established with the server.

Return Value
If the function succeeds, the return value is the previous mode for the specified channel. If the
function fails, it will return FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
The FtpSetChannelMode function is used to change the default mode for the specified channel,
and is typically used to control whether or not data is encrypted during a file transfer. If a
standard, non-secure connection has been established with the server, an error will be returned if
you specify the FTP_CHANNEL_SECURE mode for either channel.

If you have established a secure connection and then specify the FTP_CHANNEL_CLEAR mode for

the command channel, the client will send the CCC command to the server to indicate that
commands should no longer be encrypted. If the server does not support this command, an error
will be returned and the channel mode will remain unchanged. Once the command channel has
been changed to clear mode, it cannot be changed back to secure mode. You must disconnect
and re-connect to the server if you want to resume sending commands over an encrypted
channel.

Changing the mode for the data channel requires that the server support the PROT command. If
this command is not supported by the server, the function will fail and the channel mode will
remain unchanged.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpGetChannelMode

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpSetDirectoryFormat Function

INT WINAPI FtpSetDirectoryFormat(
 HCLIENT hClient,
 INT nFormatId
);

The FtpSetDirectoryFormat function is used to specify the format used by the server when
returning a list of files. The format type is used internally by the library when parsing the file list
returned by the server.

Parameters
hClient

Handle to the client session.

nFormatId

An identifier used to specify the format of the file list returned by the server. The following
values are recognized:

Constant Description

FTP_DIRECTORY_AUTO This value specifies that the library should automatically
determine the format of the file lists returned by the
server. It is recommended that most applications use
this value and allow the library to automatically
determine the appropriate file listing format used by
the server.

FTP_DIRECTORY_UNIX This value specifies that the server returns file lists in the
format commonly used by UNIX servers. Note that
many servers can be configured to return file listings in
this format, even if they are not actually a UNIX based
platform. Consult the technical reference
documentation for your server for more information.

FTP_DIRECTORY_MSDOS This value specifies that the server returns file lists in the
format commonly used by MS-DOS based systems.
This includes Windows IIS servers. Long file names will
be returned if supported by the underlying filesystem,
such as NTFS or FAT32.

FTP_DIRECTORY_VMS This value specifies that the server returns file lists in the
format commonly used by VMS servers. Note that VMS
servers can be configured to return a standard UNIX
style listing in additional to the default VMS format.

FTP_DIRECTORY_STERLING_1 This value specifies that the server returns file listings in
a proprietary format used by the Sterling server, which
is used for EDI (Electronic Data Interchange)
applications. This format uses a 13 byte status code.

FTP_DIRECTORY_STERLING_2 This value specifies that the server returns file listings in
a proprietary format used by the Sterling server, which
is used for EDI (Electronic Data Interchange)

applications. This format uses a 10 byte status code.

FTP_DIRECTORY_NETWARE This value specifies that the server returns file listings in
a proprietary format used by NetWare servers. The
format is similar to UNIX style listings except that file
access and permissions are indicated by letter codes
enclosed in brackets. This is the default format selected
if the server identifies itself as a NetWare system.

FTP_DIRECTORY_MLSD This value specifies that the server should return file
listings in a machine-independent format as defined by
RFC 3659. This format specifies file information as a
sequence of name/value pairs, with the same format
being used regardless of the operating system that the
server is hosted on. Note that not all servers support
this format, and some proxy servers may reject the
command even if the remote server supports its use.

Return Value
If the function succeeds, the return value identifies the file list format used by the server. If the
function fails, the return value is FTP_ERROR. To get extended error information, call
FtpGetLastError.

Remarks
This function should only be used when the library cannot automatically determine the directory
format returned by the server. To determine the format used by a server after a file list has been
retrieved, use the FtpGetDirectoryFormat function.

The default directory format is determined both by the server's operating system and by analyzing
the format of the data returned by the server. If the library is unable to automatically determine
the format, it will attempt to parse the list of files as though it is a UNIX style listing.

If the FTP_DIRECTORY_MLSD format is specified, the file information returned by the server may
differ from the default output of the LIST command. For example, on a UNIX based FTP server, the
output of the LIST command is typically the same format that is used by the /bin/ls command,
where file names are sorted and hidden files are not listed. However, the MLSD command may
return an unsorted list of files that includes hidden files and directories.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpCloseDirectory, FtpGetDirectoryFormat, FtpGetFileStatus, FtpGetFirstFile, FtpGetNextFile,
FtpOpenDirectory

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpSetFeatures Function

DWORD WINAPI FtpSetFeatures(
 HCLIENT hClient,
 DWORD dwFeatures
);

The FtpSetFeatures function specifies the server features available to the client.

Parameters
hClient

Handle to the client session.

dwFeatures

An unsigned integer that specifies one or more features. Refer to the documentation for the
FtpGetFeatures function for a list of available features.

Return Value
If the function succeeds, the return value specifies the features that were previously enabled. If the
function fails, it will return zero. Because it is possible that no features were enabled, a return value
of zero does not always indicate an error. An application should call FtpGetLastError to
determine if an error code has been set.

Remarks
The FtpSetFeatures function is used to enable a specific set of features for the current session.
When a client connection is first established, features are enabled based on the server type and
the server's response to the FEAT command. However, as the client issues commands to the
server, if the server reports that the command is unrecognized that feature will automatically be
disabled in the client. To enable or disable a specific feature, an application can use the
FtpEnableFeature function.

For example, the first time an application calls the FtpGetFileSize function to determine the size
of a file, the library will try to use the SIZE command. If the server reports that the SIZE command
is not available, that feature will be disabled and the library will not use the command again during
the session unless it is explicitly re-enabled. This is designed to prevent the library from repeatedly
sending invalid commands to a server, which may result in the server aborting the connection.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpEnableFeature, FtpGetFeatures

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpSetFileMode Function

INT WINAPI FtpSetFileMode(
 HCLIENT hClient,
 UINT nMode
);

The FtpSetFileMode function sets the default file transfer mode for the current client session.

Parameters
hClient

Handle to the client session.

nMode

Specifies the default type of data transfer mode for files being opened or created on the server.
This parameter can be one of the following values.

Value Description

FILE_MODE_STREAM The data is transmitted as a stream of bytes. This is the
default client transfer mode.

FILE_MODE_BLOCK The data is transmitted as a series of data blocks
preceded by one or more header bytes. This transfer
mode is currently not supported.

FILE_MODE_COMPRESSED The data is transmitted in compressed form. This transfer
mode is currently not supported.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
The file transfer mode should be set before a file is opened or created on the server. Once the
transfer mode is set, it is in effect for all files that are subsequently opened or created.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpOpenFile, FtpSetFileStructure, FtpSetFileType, FtpSetPassiveMode

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpSetFileNameEncoding Function

INT WINAPI FtpSetFileNameEncoding(
 HCLIENT hClient,
 INT nEncoding
);

The FtpSetFileNameEncoding function specifies what type of encoding will be used when file
names are sent to the server.

Parameters
hClient

Handle to the client session.

nEncoding

An integer value which specifies the encoding type. It may be one of the following values:

Constant Description

FTP_ENCODING_ANSI File names are sent as 8-bit characters using the default
character encoding for the current codepage. If the Unicode
version of the functions are used, file names are converted
from Unicode to ANSI using the current codepage before
being sent to the server. This is the default encoding type.

FTP_ENCODING_UTF8 File names that contain non-ASCII characters are sent using
UTF-8 encoding. This encoding type is only available on
servers that advertise support for UTF-8 encoding and permit
that encoding type to be enabled by the client.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
The FtpSetFileNameEncoding function can be used to enable UTF-8 encoding of file names,
which provides improved support for the use of international character sets. However, the server
must provide support for UTF-8 encoding by advertising it in response to the FEAT command and
it must support the OPTS command which is used to enable UTF-8 encoding. If the server does
not advertise support for UTF-8, or the OPTS command fails with an error, then this function will
fail with an error and the encoding type will not change.

Although it is possible to use the FtpEnableFeature function to explicitly enable the
FTP_FEATURE_UTF8 feature, this is not recommended. If the server has not advertised support for
UTF-8 encoding in response to the FEAT command, that typically indicates that UTF-8 encoding is
not supported. Attempting to force UTF-8 encoding can result in unpredictable behavior when file
names contain non-ASCII characters.

It is important to note that not all FTP servers support UTF-8 encoding, and in some cases servers
which advertise support for UTF-8 encoding do not implement the feature correctly. For example,
a server may allow a client to enable UTF-8 encoding, but once enabled will not permit the client
to disable it. Some servers may advertise support for UTF-8 encoding, however if the underlying
file system does not support UTF-8 encoded file names, any attempt to upload or download a file

may fail with an error indicating that the file cannot be found or created.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpCommand, FtpEnableFeature FtpGetFeatures, FtpGetFileNameEncoding, FtpSetFeatures

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpSetFilePermissions Function

INT WINAPI FtpSetFilePermissions(
 HCLIENT hClient,
 LPCTSTR lpszFileName,
 DWORD dwPermissions
);

The FtpSetFilePermissions function returns information about the access permissions for a
specific file on the server.

Parameters
hClient

Handle to the client session.

lpszFileName

A pointer to a string which contains the name of the file to be updated. The filename cannot
contain any wildcard characters.

dwPermissions

An unsigned integer which will specify the new access permissions for the file. The file
permissions are represented as bit flags, and may be one or more of the following values
combined with a bitwise Or operator:

Constant Description

FILE_OWNER_READ The owner has permission to open the file for reading. If the
current user is the owner of the file, this grants the user the
right to download the file to the local system.

FILE_OWNER_WRITE The owner has permission to open the file for writing. If the
current user is the owner of the file, this grants the user the
right to replace the file. If this permission is set for a directory,
this grants the user the right to create and delete files.

FILE_OWNER_EXECUTE The owner has permission to execute the contents of the file.
The file is typically either a binary executable, script or batch
file. If this permission is set for a directory, this may also grant
the user the right to open that directory and search for files in
that directory.

FILE_GROUP_READ Users in the specified group have permission to open the file
for reading. If the current user is in the same group as the file
owner, this grants the user the right to download the file.

FILE_GROUP_WRITE Users in the specified group have permission to open the file
for writing. On some platforms, this may also imply
permission to delete the file. If the current user is in the same
group as the file owner, this grants the user the right to
replace the file. If this permission is set for a directory, this
grants the user the right to create and delete files.

FILE_GROUP_EXECUTE Users in the specified group have permission to execute the
contents of the file. If this permission is set for a directory, this
may also grant the user the right to open that directory and

search for files in that directory.

FILE_WORLD_READ All users have permission to open the file for reading. This
permission grants any user the right to download the file to
the local system.

FILE_WORLD_WRITE All users have permission to open the file for writing. This
permission grants any user the right to replace the file. If this
permission is set for a directory, this grants any user the right
to create and delete files.

FILE_WORLD_EXECUTE All users have permission to execute the contents of the file. If
this permission is set for a directory, this may also grant all
users the right to open that directory and search for files in
that directory.

Return Value
If the function succeeds, the return value is a result code. If the function fails, the return value is
FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
This function uses the SITE CHMOD command to set the permissions for the file. This command is
typically only supported on servers that are hosted on UNIX based systems. If the command is not
supported, an error will be returned.

Users who are familiar with the UNIX operating system will recognize the chmod command used
to change the file permissions. However, it should be noted that the numeric value used as an
argument to the command is in octal, not decimal. For example, issuing the command chmod
644 filename.txt on a UNIX based system will make the file readable and writable by the owner,
and readable by other users in the owner's group as well as all other users. The value 644 is an
octal value, which is equivalent to the decimal value 420. If you were to mistakenly specify 644 as
the value for the dwPermissions parameter, rather than the decimal value of 420, the permissions
on the file would be incorrect. It is strongly recommended that you use the pre-defined constants
to prevent this sort of error.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpGetFilePermissions, FtpGetFileStatus

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpSetFileStructure Function

INT WINAPI FtpSetFileStructure(
 HCLIENT hClient,
 UINT nType
);

The FtpSetFileStructure function sets the default file structure for the current client session, which
indicates what type of file is being opened or created on the server.

Parameters
hClient

Handle to the client session.

nType

Specifies the default type of file structure being opened or created on the server. This
parameter can be one of the following values.

Value Description

FILE_STRUCT_NONE The file has no inherent structure and is considered to be a
stream of bytes. This is the default structure for file transfers.

FILE_STRUCT_RECORD The file uses a record structure. This file structure is currently
not supported.

FILE_STRUCT_PAGE The file uses a page structure. This file structure is currently
not supported.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
The file structure should be set before a file is opened or created on the server. Once the file type
is set, it is in effect for all files that are subsequently opened or created.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpOpenFile, FtpSetFileMode, FtpSetFileType, FtpSetPassiveMode

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpSetFileTime Function

INT WINAPI FtpSetFileTime(
 HCLIENT hClient,
 LPCTSTR lpszFileName,
 LPSYSTEMTIME lpFileTime
);

The FtpSetFileTime function sets the modification time for the specified file on the server.

Parameters
hClient

Handle to the client session.

lpszFileName

Points to a string that specifies the name of the remote file.

lpFileTime

Points to a SYSTEMTIME structure that specifies the new modification time for the remote file.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
The FtpSetFileTime function will change the modification time of a file on the server. The values
specified in the SYSTEMTIME structure are expected to represent UTC time, not time adjusted for
the local system's timezone. If the values do represent the local time, it must be converted to UTC
time prior to calling this function. To populate the SYSTEMTIME structure with the current time,
use the GetSystemTime function.

When connected to an FTP server, this function uses the MDTM command to set the modification
time for the specified file. Not all servers implement this command, in which case the function call
will fail. Note that some servers only support the MDTM command to return, but not change, the
file modification time.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpGetFileStatus, FtpGetFileTime, FtpOpenDirectory

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpSetFileType Function

INT WINAPI FtpSetFileType(
 HCLIENT hClient,
 UINT nFileType
);

The FtpSetFileType function sets the default file type for the current client session, which indicates
what type of file is being opened or created on the server.

Parameters
hClient

Handle to the client session.

nFileType

Specifies the default type of file being opened or created on the server. This parameter can be
one of the following values.

Value Description

FILE_TYPE_AUTO
(0)

The file type should be automatically determined based on the file
name extension. If the file extension is unknown, the file type
should be determined based on the contents of the file. The
library has an internal list of common text file extensions, and
additional file extensions can be registered using the
FtpRegisterFileType function.

FILE_TYPE_ASCII
(1)

The file is a text file using the ASCII character set. For those servers
which mark the end of a line with characters other than a carriage
return and linefeed, it will be converted to the native client format.
This is the file type used for directory listings.

FILE_TYPE_EBCDIC
(2)

The file is a text file using the EBCDIC character set. Local files will
be converted to EBCDIC when sent to the server. Remote files will
be converted to the native ASCII character set when retrieved
from the server. Not all servers support this file type. It is
recommended that you only specify this type if you know that it is
required by the server to transfer data correctly.

FILE_TYPE_IMAGE
(3)

The file is a binary file and no data conversion of any type is
performed on the file. This is the default file type for most data
files and executable programs. If the type of file cannot be
automatically determined, it will always be considered a binary file.
If this file type is specified when uploading or downloading text
files, the native end-of-line character sequences will be preserved.

FILE_TYPE_LOCAL
(4)

The file is a binary file that uses the local byte size for the server
platform. On most servers, this file type is considered to be the
same as FILE_TYPE_IMAGE. Not all servers support this file type. It
is recommended that you only specify this type if you know that it
is required by the server to transfer data correctly.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return

value is FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
The file type should be set before a file is opened or created on the server. Once the file type is
set, it is in effect for all files that are subsequently opened or created. Some functions, such as
FtpOpenDirectory and FtpGetText, will temporarily change the default file type to
FILE_TYPE_ASCII and then restore the current file type when they return.

Calling this function has no practical effect when connected to an SFTP (SSH) server. They do not
differentiate between text and binary files and the default file type will always be
FILE_TYPE_IMAGE. If your application is uploading or downloading a text file, this difference
between FTP and SFTP is important because the operating system that hosts the server may have
different end-of-line character conventions than the client system. For example, if you download a
text file from a UNIX system using SFTP, the end-of-line is indicated by a single linefeed (LF)
character. However, on the Windows platform, the end-of-line is indicated by a carriage-return
and linefeed sequence (CRLF).

The FtpGetFileType function can be used to determine the current file type. To determine the
transfer file type for a specific file, use the FtpGetAutoFileType function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpGetAutoFileType, FtpGetFileType, FtpOpenFile, FtpRegisterFileType, FtpSetFileMode,
FtpSetFileStructure, FtpSetPassiveMode

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpSetLastError Function

VOID WINAPI FtpSetLastError(
 DWORD dwErrorCode
);

The FtpSetLastError function sets the last error code for the current thread. This function is
typically used to clear the last error by specifying a value of zero as the parameter.

Parameters
dwErrorCode

Specifies the last error code for the current thread.

Return Value
None.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. Most functions will
set the last error code value when they fail; a few functions set it when they succeed. Function
failure is typically indicated by a return value such as FALSE, NULL, INVALID_CLIENT or
FTP_ERROR. Those functions which call FtpSetLastError when they succeed are noted on the
function reference page.

Applications can retrieve the value saved by this function by using the FtpGetLastError function.
The use of FtpGetLastError is optional; an application can call the function to determine the
specific reason for a function failure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpGetErrorString, FtpGetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpSetPassiveMode Function

INT WINAPI FtpSetPassiveMode(
 HCLIENT hClient,
 BOOL bPassiveMode
);

The FtpSetPassiveMode function enables or disables passive mode file transfers for the specified
client session.

Parameters
hClient

Handle to the client session.

bPassiveMode

A boolean flag which specifies that the client should enter passive mode and establish all
connections with the server to transfer data.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
By default, the File Transfer Protocol uses active mode transfers, whereby the data connection is
established from the server back to the local client. However, this can introduce problems for a
client application that is behind a proxy server, firewall or a router which uses Network Address
Translation (NAT). Enabling passive mode transfers instructs the client to create an outbound
connection from the local system to the server for the data connection, similarly to how the
control connection is established.

Not all servers may support passive mode, in which case an error will be returned to the client
when this function is called.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpConnect, FtpGetActivePorts, FtpGetData, FtpGetFile, FtpProxyConnect, FtpPutData, FtpPutFile,
FtpSetActivePorts

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpSetPriority Function

INT WINAPI FtpSetPriority(
 HCLIENT hClient,
 INT nPriority
);

The FtpSetPriority function specifies the priority for file transfers.

Parameters
hClient

Handle to the client session.

nPriority

An integer value which specifies the new priority for file transfers. It may be one of the following
values:

Constant Description

FTP_PRIORITY_NORMAL The default priority which balances resource utilization
and transfer speed. It is recommended that most
applications use this priority.

FTP_PRIORITY_BACKGROUND This priority significantly reduces the memory,
processor and network resource utilization for the
transfer. It is typically used with worker threads running
in the background when the amount of time required
perform the transfer is not critical.

FTP_PRIORITY_LOW This priority lowers the overall resource utilization for
the transfer and meters the bandwidth allocated for
the transfer. This priority will increase the average
amount of time required to complete a file transfer.

FTP_PRIORITY_HIGH This priority increases the overall resource utilization
for the transfer, allocating more memory for internal
buffering. It can be used when it is important to
transfer the file quickly, and there are no other threads
currently performing file transfers at the time.

FTP_PRIORITY_CRITICAL This priority can significantly increase processor,
memory and network utilization while attempting to
transfer the file as quickly as possible. If the file transfer
is being performed in the main UI thread, this priority
can cause the application to appear to become non-
responsive. No events will be generated during the
transfer.

Return Value
If the function succeeds, the return value is the previous file transfer priority. If the function fails,
the return value is FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
The FtpSetPriority function can be used to control the processor usage, memory and network

bandwidth allocated for file transfers. The default priority balances resource utilization and transfer
speed while ensuring that a single-threaded application remains responsive to the user. Lower
priorities reduce the overall resource utilization at the expense of transfer speed. For example, if
you create a worker thread to download a file in the background and want to ensure that it has a
minimal impact on the process, the FTP_PRIORITY_BACKGROUND value can be used.

Higher priority values increase the memory allocated for the transfers and increases processor
utilization for the transfer. The FTP_PRIORITY_CRITICAL priority maximizes transfer speed at the
expense of system resources. It is not recommended that you increase the file transfer priority
unless you understand the implications of doing so and have thoroughly tested your application. If
the file transfer is being performed in the main UI thread, increasing the priority may interfere with
the normal processing of Windows messages and cause the application to appear to become
non-responsive. It is also important to note that when the priority is set to
FTP_PRIORITY_CRITICAL, normal progress events will not be generated during the transfer.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpGetPriority

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpSetTimeout Function

INT WINAPI FtpSetTimeout(
 HCLIENT hClient,
 UINT nTimeout
);

The FtpSetTimeout function sets the number of seconds the client will wait for a response from
the server. Once the specified number of seconds has elapsed, the function will fail and return to
the caller.

Parameters
hClient

Handle to the client session.

nTimeout

The number of seconds to wait for a blocking operation to complete.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
The timeout value is only used with blocking client connections.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpConnect, FtpGetTimeout, FtpIsReadable, FtpIsWritable, FtpProxyConnect, FtpRead, FtpWrite

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpStartQueue Function

BOOL WINAPI FtpStartQueue(
 HQUEUE hQueue,
 DWORD dwQueueMode,
 DWORD dwReserved,
 FTPEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

The FtpStartQueue function begins transferring files in the queue.

Parameters
hQueue

A handle to a file transfer queue.

dwQueueMode

An unsigned integer which specifies which files in the queue should be transferred. It may be
one of the following values:

Constant Description

FTP_QUEUE_ALL All files in the queue should be transferred.

FTP_QUEUE_DOWNLOAD Transfer only those files which have been queued
for download.

FTP_QUEUE_UPLOAD Transfer only those files which have been queued
for upload.

dwReserved

An unsigned integer reserved for internal use. This parameter value should always be zero.

lpEventProc

Specifies the procedure-instance address of an application defined callback function. For more
information about the callback function, see the description of the FtpEventProc callback
function. If this parameter is NULL, there will be no callback notifications.

dwParam

A user-defined integer value that is passed to the callback function. If the application targets the
x86 (32-bit) platform, this parameter must be a 32-bit unsigned integer. If the application
targets the x64 (64-bit) platform, this parameter must be a 64-bit unsigned integer.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, it will return zero. To get
extended error information, call FtpGetLastError.

Remarks
Queued file transfers are performed asynchronously using a background worker thread. If you
provide the address to an event callback function, that function will always be invoked in the
context of the queue manager thread. You must ensure that any access to global or static
variables are synchronized, otherwise the results may be unpredictable. It is recommended that
you do not declare any static variables within the callback function itself and you should avoid
calling any functions which could cause the thread to block. For example, you should not attempt

to establish other network connections from within the event handler.

If your application has a graphical user interface, you should never attempt to directly modify a UI
control from within the callback function. Controls should only be modified by the same UI thread
that created their window. One common approach to address this issue is to post a user-defined
message to the main window to signal that the user interface needs to be updated. The message
handler would then process the user-defined message and update the user interface as needed.

To obtain the handle to the queue from within an event handler, call the FtpGetThreadQueue
function with the dwThreadId parameter set to a value of zero. This will return the handle for the
current queue management session which invoked the callback function.

If a callback function is provided, the FTP_QUEUE_EVENT event notification will be invoked
whenever the internal state of the queue has changed. The handle value passed to the callback
function will be a handle to the queue, not to a client connection. The FtpGetQueueStatus
function can be called within the event handler to obtain the current state of the queue. This will
event will always occur when the queue manager begins processing files in the queue and after it
has stopped. This event will also occur whenever the queue is suspended and then resumed.

The FtpWaitForQueue function can be used to wait for the queue manager to complete
processing the transfer queue.

Example
// Create a new queue
HQUEUE hQueue = FtpCreateQueue(INFINITE, FTP_TIMEOUT, FTP_OPTION_DEFAULT);

if (hQueue == INVALID_QUEUE)
 return;

// Add a file to the queue
DWORD dwFileId = FtpAddQueuedFile(
 hQueue,
 lpszLocalFile,
 lpszRemoteFile,
 FTP_OPTION_DEFAULT,
 FILE_TYPE_AUTO,
 FTP_TIMEOUT);

// Display information about the queued file
if (dwFileId != 0)
{
 FTPQUEUEDFILE queuedFile;

 if (FtpGetQueuedFile(hQueue, dwFileId, &queuedFile))
 {
 switch (queuedFile.dwMode)
 {
 case FTP_QUEUE_DOWNLOAD:
 _tprintf(_T("%u: Download \"%s\" to \"%s\"\n"),
 dwFileId,
 queuedFile.szRemoteFile,
 queuedFile.szLocalFile);
 break;

 case FTP_QUEUE_UPLOAD:
 _tprintf(_T("%u: Upload \"%s\" to \"%s\"\n"),
 dwFileId,
 queuedFile.szLocalFile,

 queuedFile.szRemoteFile);
 break;
 }
 }
}

// Start the queued file transfers and wait for it to complete
if (FtpStartQueue(hQueue, FTP_QUEUE_ALL, 0, NULL, 0))
{
 FtpWaitForQueue(hQueue, INFINITE, &dwElapsed, &dwError);
 FtpStopQueue(hQueue);
}

// Remove all files from the queue
FtpDeleteQueue(hQueue);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpEventProc, FtpGetQueueStatus, FtpGetThreadQueue, FtpResumeQueue, FtpStartQueue,
FtpStopQueue, FtpSuspendQueue, FtpWaitForQueue

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpStopQueue Function

BOOL WINAPI FtpStopQueue(
 HQUEUE hQueue
);

The FtpStopQueue function stops tranfering queued files.

Parameters
hQueue

A handle to a file transfer queue.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, it will return zero. To get
extended error information, call FtpGetLastError.

Remarks
When the FtpStopQueue function is called and there is a file transfer in progress, it will not
immediately stop the upload or download of the file. Instead, the queue manager is signaled to
stop processing additional files in the queue after the transfer has completed. To wait for the
current transfer to complete, call the FtpWaitForQueue function.

It is permitted to call FtpStopQueue from within a queue event handler. In this case, the current
file transfer will complete and the queue manager will terminate.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpCancelQueuedFile, FtpResetQueue, FtpResumeQueue, FtpStartQueue, FtpSuspendQueue,
FtpWaitForQueue

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpSuspendQueue Function

BOOL WINAPI FtpSuspendQueue(
 HQUEUE hQueue
);

The FtpSuspendQueue function pauses all file transfers for the specified queue.

Parameters
hQueue

A handle to a file transfer queue.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, it will return zero. To get
extended error information, call FtpGetLastError.

Remarks
If there is a file transfer in progress when this function is called, the transfer will complete normally.
The queue manager will enter a suspended state after the transfer has completed and before it
begins processing the next file in the queue.

It is permitted to call FtpSuspendQueue from within a queue event handler. In this case, the
current file transfer will complete and the queue manager will stop processing additional files in
the queue until it is resumed or stopped.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpCancelQueuedFile, FtpGetQueueStatus, FtpResetQueue, FtpResumeQueue, FtpStartQueue,
FtpStopQueue

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpTaskAbort Function

BOOL WINAPI FtpTaskAbort(
 UINT nTaskId,
 DWORD dwMilliseconds
);

Abort the specified asynchronous task.

Parameters
nTaskId

The task identifier.

dwMilliseconds

An unsigned integer that specifies the number of milliseconds to wait for the background task
to abort.

Return Value
If the function succeeds and the worker thread has terminated, the return value is non-zero. A
return value of zero indicates that the worker thread is still running or an error has occurred. To
get extended error information, call the FtpGetLastError function.

Remarks
The FtpTaskAbort function signals the background worker thread associated with the task ID to
abort the current operation and terminate as soon as possible. If the dwMilliseconds parameter
has a value of zero, the function returns immediately after the background thread has been
signaled. If the dwMilliseconds parameter is non-zero, the function will wait that amount of time
for the background thread to terminate.

This function should never be called from within the event handler for an asynchronous task
because it can cause the process to deadlock. To abort a file transfer within an event handler, use
the FtpCancel function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpTaskDone, FtpTaskResume, FtpTaskSuspend, FtpTaskWait

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpTaskDone Function

BOOL WINAPI FtpTaskDone(
 UINT nTaskId
);

Determine if an asynchronous task has completed.

Parameters
nTaskId

The task identifier.

Return Value
If the asynchronous task has completed, this function returns a non-zero value. A return value of
zero indicates that the worker thread is still running or an error has occurred. To get extended
error information, call the FtpGetLastError function.

Remarks
The FtpTaskDone function is used to determine if the specified asynchronous task has completed.
If you use this function to poll the status of a background task from within the main UI thread, you
must ensure that Windows messages are processed so that the application remains responsive to
the end-user. To check if a background transfer has completed, it is recommended that you use a
timer to periodically call this function rather than calling it repeatedly within a loop.

To determine if the task completed successfully, the FtpGetTaskError function will return the last
error code associated with the task. A return value of zero indicates success, while a non-zero
return value specifies an error code that indicates the cause of the failure. The last error code for
the task can also be retrieved using the FtpTaskWait function, which causes the application to
wait for the asynchronous task to complete.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpGetTaskError, FtpTaskAbort, FtpTaskResume, FtpTaskSuspend, FtpTaskWait

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpTaskResume Function

BOOL WINAPI FtpTaskResume(
 UINT nTaskId
);

Resume execution of an asynchronous task.

Parameters
nTaskId

The task identifier.

Return Value
If the asynchronous task has resumed, this function returns a non-zero value. A return value of
zero indicates that an error has occurred. To get extended error information, call the
FtpGetLastError function.

Remarks
The FtpTaskResume function resumes execution of the background worker thread that was
previously suspended using the FtpTaskSuspend function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpTaskAbort, FtpTaskDone, FtpTaskSuspend, FtpTaskWait

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpTaskSuspend Function

BOOL WINAPI FtpTaskSuspend(
 UINT nTaskId
);

Suspend execution of an asynchronous task.

Parameters
nTaskId

The task identifier.

Return Value
If the asynchronous task has resumed, this function returns a non-zero value. A return value of
zero indicates that an error has occurred. To get extended error information, call the
FtpGetLastError function.

Remarks
The FtpTaskSuspend function will suspend execution of the background worker thread
associated with the task. Once the task has been suspended, it will no longer be scheduled for
execution, however the client session will remain active and the task may be resumed using the
FtpTaskResume function. Note that if a task is suspended for a long period of time, the
background operation may fail because it has exceeded the timeout period imposed by the
server.

This function should never be called from within the event handler for an asynchronous task
because it can cause the process to deadlock.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpTaskAbort, FtpTaskDone, FtpTaskResume, FtpTaskWait

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpTaskWait Function

BOOL WINAPI FtpTaskWait(
 UINT nTaskId,
 DWORD dwMilliseconds,
 DWORD dwReserved,
 LPDWORD lpdwElapsed,
 LPDWORD lpdwError
);

Wait for an asynchronous task to complete.

Parameters
nTaskId

The task identifier.

dwMilliseconds

An unsigned integer that specifies the number of milliseconds to wait for the background task
to complete.

dwReserved

An unsigned integer reserved for future use. This value should always be zero.

lpdwElapsed

A pointer to an unsigned integer that will contain elapsed time in milliseconds when the
function returns. If this information is not required, this parameter may be NULL.

lpdwError

A pointer to an unsigned integer that will contain the error code associated with the completed
task. If this information is not required, this parameter may be NULL.

Return Value
If the function succeeds and the worker thread has terminated, the return value is non-zero. A
return value of zero indicates that the worker thread is still running or an error has occurred. To
get extended error information, call the FtpGetLastError function.

Remarks
The FtpTaskWait function waits for the specified task to complete. If the task is active and the
dwMilliseconds parameter is non-zero, this function will cause the current working thread to block
until the task completes or the amount of time exceeds the number of milliseconds specified by
the caller. If the dwMilliseconds parameter is zero, then this function will poll the status of the task
and return immediately to the caller.

If the specified task has already completed at the time this function is called, the function will
return immediately without causing the current thread to block. If the lpdwElapsed parameter is
not NULL, it will contain the number of milliseconds that it took for the task to complete. If the
lpdwError parameter is not NULL, it will contain the last error code value that was set by the
worker thread before it terminated. If this value is zero, that means that the background operation
was successful and no error occurred. A non-zero value will indicate that the background
operation has failed.

You should not call this function from the main UI thread with a long timeout period to wait for a
background task to complete. Windows messages will not be processed while this function is
blocked waiting for the background task to complete, and this can cause your application to

appear non-responsive to the end-user. If you have a GUI application and you need to
periodically check to see if a task has completed, create a timer to periodically call the
FtpTaskDone function. When it returns a non-zero value (indicating that the task has completed),
you can safely call FtpTaskWait to obtain the elapsed time and last error code without blocking
the current thread.

This function should never be called from within the event handler for an asynchronous task
because it can cause the process to deadlock.

Example
UINT nTaskId;

// Begin a file transfer in the background

nTaskId = FtpAsyncGetFile(hClient,
 lpszLocalFile,
 lpszRemoteFile,
 FTP_TRANSFER_DEFAULT,
 0,
 NULL,
 0);

if (nTaskId != 0)
{
 DWORD dwError = NO_ERROR;
 DWORD dwElapsed = 0;

 // Wait for the transfer to complete
 FtpTaskWait(nTaskId, INFINTE, &dwElapsed, &dwError);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpTaskDone, FtpTaskResume, FtpTaskSuspend, FtpTaskWait

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpUninitialize Function

VOID WINAPI FtpUninitialize();

The FtpUninitialize function terminates the use of the library.

Parameters
There are no parameters.

Return Value
None.

Remarks
An application is required to perform a successful FtpInitialize call before it can call any of the
other library functions. When it has completed the use of library, the application must call
FtpUninitialize to allow the library to free any resources allocated on behalf of the process. Any
pending blocking or asynchronous calls in this process are canceled without posting any
notification messages, and all sockets that were opened by the process are closed.

There must be a call to FtpUninitialize for every successful call to FtpInitialize made by a
process. In a multithreaded environment, operations for all threads in the client are terminated.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpConnect, FtpDisconnect, FtpInitialize, FtpProxyConnect, FtpReset

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpUploadFile Function

BOOL WINAPI FtpUploadFile(
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszRemoteFile,
 UINT nTimeout
 DWORD dwOptions
 LPFTPTRANSFERSTATUS lpStatus
 FTPEVENTPROC lpEventProc
 DWORD_PTR dwParam
);

The FtpUploadFile function uploads the specified file from the local system to the server.

Parameters
lpszLocalFile

A pointer to a string that specifies the file on the local system that will be uploaded to the
server. The file pathing and name conventions must be that of the local host.

lpszRemoteFile

A pointer to a string that specifies the complete URL of the file that will be created or
overwritten on the server. The URL must follow the conventions for the File Transfer Protocol
and may specify either a standard or secure connection, alternate port number, username,
password and optional working directory.

nTimeout

The number of seconds that the client will wait for a response before failing the operation. A
value of zero specifies that the default timeout period of sixty seconds will be used.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

FTP_OPTION_DEFAULT Default options should be used for file transfers. This
is the same as specifying that all file transfers should
use passive mode when establishing a data
connection with the server. It is recommended most
applications use passive mode to prevent potential
compatibility issues with certain types of firewalls and
routers which use Network Address Translation
(NAT).

FTP_OPTION_PASSIVE This option specifies file transfers should attempt to
establish the data connection with the server. If the
local system is behind a firewall or a NAT router, the
server may not be able to establish a data connection
back to the client and the transfer will fail. This option
forces the client to establish an outbound data
connection with the server. It is recommended that
applications use passive mode whenever possible.

FTP_OPTION_FIREWALL This option specifies the client should always use the

host IP address to establish the data connection with
the server, not the address returned by the server in
response to the PASV command. This option may be
necessary if the server is behind a router that
performs Network Address Translation (NAT) and it
returns an unreachable IP address for the data
connection. If this option is specified, it will also
enable passive mode data transfers.

FTP_OPTION_SECURE This option specifies the client should attempt to
establish a secure connection with the server. Note
that the server must support secure connections
using either the SSL or TLS protocol.

FTP_OPTION_SECURE_EXPLICIT This option specifies the client should use the AUTH
command to negotiate an explicit secure connection.
Some servers may only require this when connecting
to the server on ports other than 990.

lpStatus

A pointer to an FTPTRANSFERSTATUS structure which contains information about the status of
the current file transfer. If this information is not required, a NULL pointer may be specified as
the parameter.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the FtpEventProc callback
function. If this parameter is NULL, the callback for the specified event is disabled.

dwParam

A user-defined integer value that is passed to the callback function.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call FtpGetLastError.

Remarks
The FtpUploadFile function provides a convenient way for an application to upload a file in a
single function call. Based on the connection information specified in the URL, it will connect to the
server, authenticate the session, change the current working directory if necessary and then
upload the file to the server. The URL must be complete, and specify either a standard or secure
FTP scheme:

[ftp|ftps|sftp]://[username : password] @] hostname [:port] / [path /
...] [filename] [;type=a|i]

If no user name and password is provided, then the client session will be authenticated as an
anonymous user. If a path is specified as part of the URL, the function will attempt to change the
current working directory. Note that the path in an FTP URL is relative to the home directory of the
user account and is not an absolute path starting at the root directory on the server. The URL
scheme will always determine if the connection is secure, not the option. In other words, if the "ftp"
scheme is used and the FTP_OPTION_SECURE option is specified, that option will be ignored. To
establish a secure connection, either the "ftps" or "sftp" scheme must be specified.

The optional "type" value at the end of the file name determines if the file should be uploaded as

a text or binary file. A value of "a" specifies that the file should be uploaded as a text file. A value
of "i" specifies that the file should be uploaded as a binary file. If the type is not explicitly specified,
the file will be uploaded as a binary file.

The lpStatus parameter can be used by the application to determine the final status of the
transfer, including the total number of bytes copied, the amount of time elapsed and other
information related to the transfer process. If this information isn't needed, then this parameter
may be specified as NULL.

The lpEventProc parameter specifies a pointer to a function which will be periodically called during
the file transfer process. This can be used to check the status of the transfer by calling
FtpGetTransferStatus and then update the program's user interface. For example, the callback
function could calculate the percentage for how much of the file has been transferred and then
update a progress bar control. The dwParam parameter is used in conjunction with the event
handler and specifies a user-defined value that is passed to the callback function. One common
use in a C++ program is to pass the this pointer as the value, and then cast it back to an object
pointer inside the callback function. If no event handler is required, then a NULL pointer can be
specified as the value for lpEventProc and the dwParam parameter will be ignored.

The FtpUploadFile function is designed to provide a simpler interface for uploading a file.
However, complex connections such as those using a proxy server or a secure connection which
uses a client certificate will require the program to establish the connection using FtpConnect and
then use FtpPutFile to upload the file.

Example
FTPTRANSFERSTATUS ftpStatus;
LPCTSTR lpszLocalFile = _T("c:\\temp\\database.mdb");
LPCTSTR lpszRemoteFile =
_T("ftp://update:secret@ftp.example.com/updates/database.mdb");
BOOL bResult;

// Upload the file using the specified URL
bResult = FtpUploadFile(lpszLocalFile,
 lpszRemoteFile,
 FTP_OPTION_PASSIVE,
 &ftpStatus,
 NULL, 0);

if (!bResult)
{
 TCHAR szError[128];

 // Display a message box that describes the error
 FtpGetErrorString(FtpGetLastError(), szError, 128);
 MessageBox(NULL, szError, NULL, MB_ICONEXCLAMATION|MB_TASKMODAL);
 return;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also

FtpEventProc, FtpDownloadFile, FtpGetTransferStatus, FtpPutFile, FTPTRANSFERSTATUS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpUploadFileEx Function

BOOL WINAPI FtpUploadFileEx(
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszRemoteFile,
 UINT nTimeout
 DWORD dwOptions
 LPFTPTRANSFERSTATUSEX lpStatus
 FTPEVENTPROC lpEventProc
 DWORD_PTR dwParam
);

The FtpUploadFileEx function uploads the specified file from the local system to the server.

Parameters
lpszLocalFile

A pointer to a string that specifies the file on the local system that will be uploaded to the
server. The file pathing and name conventions must be that of the local host.

lpszRemoteFile

A pointer to a string that specifies the complete URL of the file that will be created or
overwritten on the server. The URL must follow the conventions for the File Transfer Protocol
and may specify either a standard or secure connection, alternate port number, username,
password and optional working directory.

nTimeout

The number of seconds that the client will wait for a response before failing the operation. A
value of zero specifies that the default timeout period of sixty seconds will be used.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

FTP_OPTION_PASSIVE This option specifies the client should attempt to
establish the data connection with the server. When
the client uploads or downloads a file, normally the
server establishes a second connection back to the
client which is used to transfer the file data. However,
if the local system is behind a firewall or a NAT
router, the server may not be able to create the data
connection and the transfer will fail. By specifying this
option, it forces the client to establish an outbound
data connection with the server. It is recommended
that applications use passive mode whenever
possible.

FTP_OPTION_FIREWALL This option specifies the client should always use the
host IP address to establish the data connection with
the server, not the address returned by the server in
response to the PASV command. This option may be
necessary if the server is behind a router that
performs Network Address Translation (NAT) and it

returns an unreachable IP address for the data
connection. If this option is specified, it will also
enable passive mode data transfers.

FTP_OPTION_SECURE This option specifies the client should attempt to
establish a secure connection with the server. Note
that the server must support secure connections
using either the SSL or TLS protocol.

FTP_OPTION_SECURE_EXPLICIT This option specifies the client should use the AUTH
command to negotiate an explicit secure connection.
Some servers may only require this when connecting
to the server on ports other than 990.

lpStatus

A pointer to an FTPTRANSFERSTATUSEX structure which contains information about the status
of the current file transfer. If this information is not required, a NULL pointer may be specified as
the parameter.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the FtpEventProc callback
function. If this parameter is NULL, the callback for the specified event is disabled.

dwParam

A user-defined integer value that is passed to the callback function.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call FtpGetLastError.

Remarks
The FtpUploadFileEx function provides a convenient way for an application to upload a file in a
single function call. Based on the connection information specified in the URL, it will connect to the
server, authenticate the session, change the current working directory if necessary and then
upload the file to the server. The URL must be complete, and specify either a standard or secure
FTP scheme:

[ftp|ftps|sftp]://[username : password] @] hostname [:port] / [path /
...] [filename] [;type=a|i]

If no user name and password is provided, then the client session will be authenticated as an
anonymous user. If a path is specified as part of the URL, the function will attempt to change the
current working directory. Note that the path in an FTP URL is relative to the home directory of the
user account and is not an absolute path starting at the root directory on the server. The URL
scheme will always determine if the connection is secure, not the option. In other words, if the "ftp"
scheme is used and the FTP_OPTION_SECURE option is specified, that option will be ignored. To
establish a secure connection, either the "ftps" or "sftp" scheme must be specified.

The optional "type" value at the end of the file name determines if the file should be uploaded as
a text or binary file. A value of "a" specifies that the file should be uploaded as a text file. A value
of "i" specifies that the file should be uploaded as a binary file. If the type is not explicitly specified,
the file will be uploaded as a binary file.

The lpStatus parameter can be used by the application to determine the final status of the

transfer, including the total number of bytes copied, the amount of time elapsed and other
information related to the transfer process. If this information isn't needed, then this parameter
may be specified as NULL.

The lpEventProc parameter specifies a pointer to a function which will be periodically called during
the file transfer process. This can be used to check the status of the transfer by calling
FtpGetTransferStatus and then update the program's user interface. For example, the callback
function could calculate the percentage for how much of the file has been transferred and then
update a progress bar control. The dwParam parameter is used in conjunction with the event
handler and specifies a user-defined value that is passed to the callback function. One common
use in a C++ program is to pass the this pointer as the value, and then cast it back to an object
pointer inside the callback function. If no event handler is required, then a NULL pointer can be
specified as the value for lpEventProc and the dwParam parameter will be ignored.

The FtpUploadFileEx function is designed to provide a simpler interface for uploading a file.
However, complex connections such as those using a proxy server or a secure connection which
uses a client certificate will require the program to establish the connection using FtpConnect and
then use FtpPutFileEx to upload the file.

Example
FTPTRANSFERSTATUSEX ftpStatus;
LPCTSTR lpszLocalFile = _T("c:\\temp\\database.mdb");
LPCTSTR lpszRemoteFile =
_T("ftp://update:secret@ftp.example.com/updates/database.mdb");
BOOL bResult;

// Upload the file using the specified URL
bResult = FtpUploadFileEx(lpszLocalFile,
 lpszRemoteFile,
 FTP_OPTION_PASSIVE,
 &ftpStatus,
 NULL, 0);

if (!bResult)
{
 TCHAR szError[128];

 // Display a message box that describes the error
 FtpGetErrorString(FtpGetLastError(), szError, 128);
 MessageBox(NULL, szError, NULL, MB_ICONEXCLAMATION|MB_TASKMODAL);
 return;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpEventProc, FtpDownloadFileEx, FtpGetTransferStatusEx, FtpPutFileEx, FTPTRANSFERSTATUSEX

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpValidateHostName Function

BOOL WINAPI FtpValidateHostName(
 LPCTSTR lpszHostName,
 LPTSTR lpszAddress,
 INT nMaxLength
);

The FtpValidateHostName function determines if the specified host name is valid and returns its
IP address.

Parameters
lpszHostName

A pointer to a null terminated string which specifies the host name. The function will fail If this
parameter is NULL or an empty string.

lpszAddress

A pointer to a string buffer which will contain the IP address of the host. If specified, this string
must be large enough to store the complete IP address, including the terminating null
character. If this parameter is NULL or the nMaxLength parameter is zero, it will be ignored and
the IP address will not be returned.

nMaxLength

An integer value that specifies the maximum number of characters which can be copied into the
lpszAddress string buffer. The buffer must be large enough to store the complete address.
Because this function can return either an IPv4 or IPv6 address, it is recommended the minimum
length for the buffer to be 46 characters. If this parameter is zero, the lpszAddress parameter
will be ignored.

Return Value
If the function succeeds, the host name is valid and the return value will be non-zero. If the
function fails, the host name could not be resolved to an IP address and the return value will be
zero. To get extended error information, call FtpGetLastError.

Remarks
The FtpValidateHostName function provides a convenient way to determine if a host name is
valid by attempting to resolve the name into an IP address. If the Unicode version of this function
is used, any non-ASCII characters in the host name will be automatically encoded into a
compatible format and then resolved to an IP address. If you are unsure if an internationalized
domain name will be specified as the host name, it is recommended you use the Unicode version.

If the lpszHostName parameter specifies a valid IPv4 or IPv6 address string instead of a host
name, this function will return a copy of that IP address in the buffer provided by the caller. This
allows the function to be used in cases where a user may input either a host name or IP address.

If you wish to validate a complete FTP URL instead of a host name, use the FtpValidateUrl
function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cstools11.h
Import Library: csftpv11.lib

Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpConnectUrl, FtpValidateUrl

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpValidateUrl Function

BOOL WINAPI FtpValidateUrl(
 LPCTSTR lpszUrl
);

The FtpValidateUrl function determines if a string represents a valid FTP URL.

Parameters
lpszUrl

A pointer to a string that specifies the URL to validate.

Return Value
If the specified URL is valid and the host name can be resolved to an IP address, the return value is
non-zero. If the function fails, the return value is zero. To get extended error information, call
FtpGetLastError.

Remarks
The FtpValidateUrl function will check the value of a string to ensure that it represents a
complete, valid URL using either a standard or secure FTP scheme. This function will not establish
a connection with the server to verify that it exists, it will only attempt to resolve the host name to
an IP address. If the remote host is specified as an IP address, this function will check to make sure
that the address is formatted correctly. Note that if you wish to specify an IPv6 address, you must
enclose the address in brackets.

To establish a connection with a server using a URL, use the FtpConnectUrl function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpConnectUrl, FtpValidateHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpVerifyFile Function

BOOL WINAPI FtpVerifyFile(
 HCLIENT hClient,
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszRemoteFile,
 DWORD dwOptions
);

The FtpVerifyFile function attempts to verify that the contents of a file on the local system are the
same as the specified file on the server.

Parameters
hClient

Handle to the client session.

lpszLocalFile

A pointer to a string that specifies the name of file on the local system.

lpszRemoteFile

A pointer to a string that specifies the name of the file on the server.

dwOptions

Specifies the options that may be used when comparing the files. This parameter may be one or
more of the following values:

Value Description

FTP_VERIFY_DEFAULT File verification should use the best option available based on
the available server features. If the server supports the XMD5
command, the library will calculate an MD5 hash of the local
file contents and compare the value with the file on the server.
If the server does not support the XMD5 command, but it does
support the XCRC command, the library will calculate a CRC32
checksum of the local file contents and compare the value with
the file on the server. If the server does not support either the
XMD5 or XCRC commands, the library will compare the size of
the local and remote files.

FTP_VERIFY_SIZE Files are verified by comparing the number of bytes of data in
the local and remote files. This is the least reliable method, and
should only be used if the server does not support either the
XMD5 or XCRC commands.

FTP_VERIFY_CRC32 Files are verified by calculating a CRC32 checksum of the local
file contents and comparing it with the value returned by the
server in response to the XCRC command. This method should
only be used if the server does not support the XMD5
command.

FTP_VERIFY_MD5 Files are verified by calculating an MD5 hash of the local file
contents and comparing it with the value returned by the
server in response to the XMD5 command. This is the preferred
method for performing file verification.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call FtpGetLastError.

Remarks
The FtpVerifyFile function will attempt to verify that the contents of the local and remote files are
identical using one of several methods, based on the features that the server supports. Preference
will be given to the most reliable method available, using either an MD5 hash, a CRC-32 checksum
or comparing the size of the file, in that order.

It is not recommended that you use this function with text files because of the different end-of-line
conventions used by different operating systems. For example, a text file on a Windows system
uses a carriage-return and linefeed pair to indicate the end of a line of text. However, on a UNIX
system, a single linefeed is used to indicate the end of a line. This can cause the FtpVerifyFile
function to indicate the files are not identical, even though the only difference is in the end-of-line
characters that are used.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpDeleteFile, FtpGetFile, FtpPutFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpWaitForQueue Function

BOOL WINAPI FtpWaitForQueue(
 HQUEUE hQueue,
 DWORD dwMilliseconds,
 LPDWORD lpdwElapsed,
 LPDWORD lpdwError
);

The FtpWaitForQueue function waits for the specified queue to complete the file transfers.

Parameters
hQueue

A handle to a file transfer queue.

dwMilliseconds

An unsigned integer value which specifies the number of milliseconds to wait for the queue to
complete processing. If this value is zero, the function will return immediately. If this value is
INFINITE (0xFFFFFFFF), the function will block indefinitely until all files in the queue have been
processed.

lpdwElapsed

A pointer to an unsigned integer which will contain the number of milliseconds the queue
manager has been active when the function returns. If this information is not needed, this
parameter can be NULL. If this parameter is not NULL, it will always be initialized to a value of
zero.

lpdwError

A pointer to an unsigned integer which will contain the last error code set if a file transfer has
failed or was canceled. If this information is not needed, this parameter can be NULL. If this
parameter is not NULL, it will always be initialized to a value of zero.

Return Value
If the function succeeds, the return value is non-zero, which means the queue manager has
completed transferring all queued files. If the function fails, or the timeout period elapses, it will
return zero. To get extended error information, call FtpGetLastError.

Remarks
This function will cause the current thread to block until either the queue manager has completed
processing all files in the queue, or until the specified number of milliseconds have elapsed. It is
important to note that Windows messages will not be processed during this time. If you call this
function within the main UI thread, it can potentially cause the application to become non-
responsive. To determine the current state of the queue without blocking the current thread, call
the FtpGetQueueStatus function.

If the dwMilliseconds parameter is non-zero and file transfers have not completed within the
specified amount of time, the function will return zero and the last error code will be set to
ST_ERROR_OPERATION_TIMEOUT.

If an event callback function has been specified when starting the queue, you should never call this
function within the event handler. Attempting to do so can potentially create a situation which will
cause the application to become non-responsive. The function will return zero if it determines it's
being called within the context of the queue manager thread and will set the last error code to

ST_ERROR_THREAD_DEADLOCK.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpGetQueueStatus, FtpResetQueue, FtpResumeQueue, FtpStartQueue, FtpStopQueue,
FtpSuspendQueue

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpWrite Function

INT WINAPI FtpWrite(
 HCLIENT hClient,
 LPBYTE lpBuffer,
 INT cbBuffer
);

The FtpWrite function sends the specified number of bytes to the server.

Parameters
hClient

Handle to the client session.

lpBuffer

The pointer to the buffer which contains the data that is to be sent to the server.

cbBuffer

The number of bytes to send from the specified buffer.

Return Value
If the function succeeds, the return value is the number of bytes actually written. If the function
fails, the return value is FTP_ERROR. To get extended error information, call FtpGetLastError.

Remarks
The return value may be less than the number of bytes specified by the cbBuffer parameter. In this
case, the data has been partially written and it is the responsibility of the client application to send
the remaining data at some later point. For non-blocking clients, the client must wait for the next
asynchronous notification message before it resumes sending data.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpEnableEvents, FtpIsBlocking, FtpIsReadable, FtpIsWritable, FtpPutData, FtpPutFile, FtpRead,
FtpRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 File Transfer Protocol Data Structures

FTPCLIENTQUOTA
FTPFILESTATUS
FTPFILESTATUSEX
FTPQUEUEDFILE
FTPQUEUESTATUS
FTPTRANSFERSTATUS
FTPTRANSFERSTATUSEX
INITDATA
SECURITYCREDENTIALS
SECURITYINFO
SYSTEMTIME

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FTPCLIENTQUOTA Structure

This structure is used by the FtpGetClientQuota function to return information about the file quota
for the current client session.

typedef struct _FTPCLIENTQUOTA
{
 DWORD dwFileCount;
 DWORD dwFileLimit;
 DWORD dwDiskUsage;
 DWORD dwDiskLimit;
} FTPCLIENTQUOTA, *LPFTPCLIENTQUOTA;

Members
dwFileCount

An unsigned integer value which specifies the number of files that the user has created. If file
quotas have not been enabled for the current user, this value will be zero.

dwFileLimit

An unsigned integer value which specifies the maximum number of files that may be created by
the user. If file quotas have not been enabled for the current user, this value will be zero.

dwDiskUsage

An unsigned integer value which specifies the number of bytes of disk storage that has been
allocated by the current user. If file quotas have not been enabled for the current user, this
value will be zero.

dwDiskLimit

An unsigned integer value which specifies the maximum number of bytes of disk storage that
may be allocated by the current user. If file quotas have not been enabled for the current user,
this value will be zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FTPFILESTATUS Structure

This structure is used by the FtpEnumFiles, FtpGetFirstFile and FtpGetNextFile functions to
return information about files on the server.

typedef struct _FTPFILESTATUS
{
 TCHAR szFileName[FTP_MAXFILENAMELEN];
 TCHAR szFileOwner[FTP_MAXOWNERNAMELEN];
 TCHAR szFileGroup[FTP_MAXGROUPNAMELEN];
 BOOL bIsDirectory;
 DWORD dwFileSize;
 DWORD dwFileLinks;
 DWORD dwFileVersion;
 DWORD dwFilePerms;
 SYSTEMTIME stFileDate;
} FTPFILESTATUS, *LPFTPFILESTATUS;

Members
szFileName

A string buffer which contains the name of the file on the server.

szFileOwner

A string buffer which contains the name of the user that owns the file on the server. Note that
not all server types support the concept of file ownership by a user. Some UNIX systems will not
provide this information if an anonymous login was used. For the proprietary Sterling directory
formats, the "mailbox" is stored in this member.

szFileGroup

A string buffer which contains the name of the group that owns the file on the server. Note that
not all server types support the concept of file ownership by a group. For the proprietary
Sterling directory formats, the "batch number" is stored in this member, with the character #
prepended for the format FTP_DIRECTORY_STERLING_2.

bIsDirectory

A boolean flag which specifies if the file is actually a subdirectory.

dwFileSize

The size of the file in bytes on the server. Servers that return file information in an MS-DOS
format will always set this value to zero if the file refers to a subdirectory. If the file is a text file,
the file size on the server may be different than the size on the local host if different end-of-line
character conventions are used. It should be noted that under VMS, the file size is reported in
512 byte blocks, so the size should be considered approximate on that platform.

dwFileLinks

The number of links to the file. Note that not all server types support the concept of file links, in
which case this value will be zero.

dwFileVersion

The number of revisions made to the file. Note that not all server types support the concept of
file versioning, in which case this value will be zero. Currently this value will only be non-zero for
VMS platforms.

dwFilePerms

The permissions associated with the file. This value is actually a combination of bits that specify

the individual permissions for the file owner, group and world (all other users). For those familiar
with UNIX, the file permissions are the same as those used by the chmod command. For the
proprietary Sterling directory formats, a bit map representing the status codes and transfer
protocol of the file is stored in this member.

stFileDate

A SYSTEMTIME structure which specifies the date that the file was created or last modified.

File Permissions

Constant Description

FILE_OWNER_READ The owner has permission to open the file for reading. If the current
user is the owner of the file, this grants the user the right to download
the file to the local system.

FILE_OWNER_WRITE The owner has permission to open the file for writing. If the current
user is the owner of the file, this grants the user the right to replace
the file. If this permission is set for a directory, this grants the user the
right to create and delete files.

FILE_OWNER_EXECUTE The owner has permission to execute the contents of the file. The file is
typically either a binary executable, script or batch file. If this
permission is set for a directory, this may also grant the user the right
to open that directory and search for files in that directory.

FILE_GROUP_READ Users in the specified group have permission to open the file for
reading. If the current user is in the same group as the file owner, this
grants the user the right to download the file.

FILE_GROUP_WRITE Users in the specified group have permission to open the file for
writing. On some platforms, this may also imply permission to delete
the file. If the current user is in the same group as the file owner, this
grants the user the right to replace the file. If this permission is set for
a directory, this grants the user the right to create and delete files.

FILE_GROUP_EXECUTE Users in the specified group have permission to execute the contents
of the file. If this permission is set for a directory, this may also grant
the user the right to open that directory and search for files in that
directory.

FILE_WORLD_READ All users have permission to open the file for reading. This permission
grants any user the right to download the file to the local system.

FILE_WORLD_WRITE All users have permission to open the file for writing. This permission
grants any user the right to replace the file. If this permission is set for
a directory, this grants any user the right to create and delete files.

FILE_WORLD_EXECUTE All users have permission to execute the contents of the file. If this
permission is set for a directory, this may also grant all users the right
to open that directory and search for files in that directory.

Sterling Status Codes
Bits 0-25 correspond to letters of the alphabet, most of which have distinct meanings in the
Sterling formats.

Letter code Bit position Hexadecimal value

A 0 1h

B 1 2h

C 2 4h

n-th letter of alphabet n-1 2 to the (n-1) power

Z 25 2000000h

For the proprietary Sterling directory formats, bits 26-31 represent the transfer protocol associated
with the file:

Protocol Bit position Hexadecimal value Constant

TCP 26 4000000h FTP_STERLING_STATUS_TCP

FTP 27 8000000h FTP_STERLING_STATUS_FTP

BSC 28 10000000h FTP_STERLING_STATUS_BSC

ASC 29 20000000h FTP_STERLING_STATUS_ASC

FTS 30 40000000h FTP_STERLING_STATUS_FTS

other 31 80000000h FTP_STERLING_STATUS_OTHER

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FTPFILESTATUSEX Structure

This structure is used by the FtpEnumFilesEx, FtpGetFirstFileEx and FtpGetNextFileEx functions
to return information about files on the server. This structure is designed for use with extended
functions that support files larger than 4GB.

typedef struct _FTPFILESTATUSEX
{
 TCHAR szFileName[FTP_MAXFILENAMELEN];
 TCHAR szFileOwner[FTP_MAXOWNERNAMELEN];
 TCHAR szFileGroup[FTP_MAXGROUPNAMELEN];
 BOOL bIsDirectory;
 ULARGE_INTEGER uiFileSize;
 DWORD dwFileLinks;
 DWORD dwFileVersion;
 DWORD dwFilePerms;
 DWORD dwFileFlags;
 SYSTEMTIME stFileDate;
} FTPFILESTATUSEX, *LPFTPFILESTATUSEX;

Members
szFileName

A string buffer which contains the name of the file on the server.

szFileOwner

A string buffer which contains the name of the user that owns the file on the server. Note that
not all server types support the concept of file ownership by a user. Some UNIX systems will not
provide this information if an anonymous login was used. For the proprietary Sterling directory
formats, the "mailbox" is stored in this member.

szFileGroup

A string buffer which contains the name of the group that owns the file on the server. Note that
not all server types support the concept of file ownership by a group. For the proprietary
Sterling directory formats, the "batch number" is stored in this member, with the character #
prepended for the format FTP_DIRECTORY_STERLING_2.

bIsDirectory

A boolean flag which specifies if the file is actually a subdirectory.

uiFileSize

The size of the file in bytes on the server. Servers that return file information in an MS-DOS
format will always set this value to zero if the file refers to a subdirectory. If the file is a text file,
the file size on the server may be different than the size on the local host if different end-of-line
character conventions are used. It should be noted that under VMS, the file size is reported in
512 byte blocks, so the size should be considered approximate on that platform.

dwFileLinks

The number of links to the file. Note that not all server types support the concept of file links, in
which case this value will be zero.

dwFileVersion

The number of revisions made to the file. Note that not all server types support the concept of
file versioning, in which case this value will be zero. Currently this value will only be non-zero for
VMS platforms.

dwFilePerms

The permissions associated with the file. This value is actually a combination of bits that specify
the individual permissions for the file owner, group and world (all other users). For those familiar
with UNIX, the file permissions are the same as those used by the chmod command. For the
proprietary Sterling directory formats, a bit map representing the status codes and transfer
protocol of the file is stored in this member.

dwFileFlags

This structure member is reserved for future use.

stFileDate

A SYSTEMTIME structure which specifies the date that the file was created or last modified.

File Permissions

Constant Description

FILE_OWNER_READ The owner has permission to open the file for reading. If the current
user is the owner of the file, this grants the user the right to download
the file to the local system.

FILE_OWNER_WRITE The owner has permission to open the file for writing. If the current
user is the owner of the file, this grants the user the right to replace
the file. If this permission is set for a directory, this grants the user the
right to create and delete files.

FILE_OWNER_EXECUTE The owner has permission to execute the contents of the file. The file is
typically either a binary executable, script or batch file. If this
permission is set for a directory, this may also grant the user the right
to open that directory and search for files in that directory.

FILE_GROUP_READ Users in the specified group have permission to open the file for
reading. If the current user is in the same group as the file owner, this
grants the user the right to download the file.

FILE_GROUP_WRITE Users in the specified group have permission to open the file for
writing. On some platforms, this may also imply permission to delete
the file. If the current user is in the same group as the file owner, this
grants the user the right to replace the file. If this permission is set for
a directory, this grants the user the right to create and delete files.

FILE_GROUP_EXECUTE Users in the specified group have permission to execute the contents
of the file. If this permission is set for a directory, this may also grant
the user the right to open that directory and search for files in that
directory.

FILE_WORLD_READ All users have permission to open the file for reading. This permission
grants any user the right to download the file to the local system.

FILE_WORLD_WRITE All users have permission to open the file for writing. This permission
grants any user the right to replace the file. If this permission is set for
a directory, this grants any user the right to create and delete files.

FILE_WORLD_EXECUTE All users have permission to execute the contents of the file. If this
permission is set for a directory, this may also grant all users the right
to open that directory and search for files in that directory.

Sterling Status Codes
Bits 0-25 correspond to letters of the alphabet, most of which have distinct meanings in the
Sterling formats.

Letter code Bit position Hexadecimal value

A 0 1h

B 1 2h

C 2 4h

n-th letter of alphabet n-1 2 to the (n-1) power

Z 25 2000000h

For the proprietary Sterling directory formats, bits 26-31 represent the transfer protocol associated
with the file:

Protocol Bit position Hexadecimal value Constant

TCP 26 4000000h FTP_STERLING_STATUS_TCP

FTP 27 8000000h FTP_STERLING_STATUS_FTP

BSC 28 10000000h FTP_STERLING_STATUS_BSC

ASC 29 20000000h FTP_STERLING_STATUS_ASC

FTS 30 40000000h FTP_STERLING_STATUS_FTS

other 31 80000000h FTP_STERLING_STATUS_OTHER

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FTPQUEUEDFILE Structure

This structure is used by the FtpGetFirstQueuedFile, FtpGetNextQueuedFile and
FtpGetQueuedFile functions to return information about a file in the transfer queue.

typedef struct _FTPQUEUEDFILE
{
 DWORD dwFileId;
 DWORD dwQueueMode;
 DWORD dwQueueFlags;
 DWORD dwTimeElapsed;
 DWORD dwLastError;
 ULARGE_INTEGER uiBytesCopied;
 TCHAR szLocalFile[FTP_MAXFILENAMELEN];
 TCHAR szRemoteName[FTP_MAXURLPATHLEN];
} FTPQUEUEDFILE, *LPFTPQUEUEDFILE;

Members
dwFileId

An unsigned integer which specifies a unique identifier for the queued file. The application
should not make any assumptions about the value of the file identifiers. They should be
considered opaque values which are only guaranteed to uniquely identify a file in the transfer
queue. In particular, there is no guarantee that the file identifiers will be sequential and they
should not be used as index values into an array.

dwQueueMode

An unsigned integer value which specifies how the file was queued for transfer. It may be one of
the following values:

Constant Description

FTP_QUEUE_DOWNLOAD The file was queued for download.

FTP_QUEUE_UPLOAD The file was queued for upload.

dwQueueFlags

An unsigned integer which specifies one or more bitflags which provides information about the
status of the file transfer. It may be one or more of the following values:

Constant Description

FTP_QUEUE_FLAG_NONE The file is pending transfer in queue.

FTP_QUEUE_FLAG_COMPLETED The file has been transferred successfully. If this
flag is set, no errors were encountered during the
upload or download.

FTP_QUEUE_FLAG_FAILED The file transfer failed. If this flag is set, the
dwError member of this structure will contain the
error code associated with the failed transfer.

FTP_QUEUE_FLAG_CANCELED The file transfer was canceled. This flag is only set
when the FtpCancelQueuedFile function has
been called and a queued file is in the process of
being uploaded or downloaded.

dwTimeElapsed

An unsigned integer which specifies the number of milliseconds required to complete the
transfer. This value will be zero unless the file has been transferred successfully.

dwLastError

An unsigned integer which specifies the last error code for a failed transfer. If the file was
transferred successfully, this value will be zero.

uiBytesCopied

A value which specifies the number of bytes which were copied during the file transfer. The
ULARGE_INTEGER type is a union of a structure and a 64-bit value which can be used on both
32-bit and 64-bit systems. For languages other than C/C++ you can define this structure
member as an unsigned 64-bit integer type.

szLocalFile

A null terminated string which specifies the full path to the local file being transferred.

szRemoteFile

A null terminated string which specifies the complete URL to the remote file being transferred.

Remarks
It is possible that the szLocalFile and szRemoteFile structure members will be different than the
values passed to the FtpAddQueuedFile function. Those values are normalized, with any relative
paths converted to absolute paths. Internationalized domain names will be encoded and the URL
paths will be collapsed, removing any extraneous path information. For example, if the remote file
name is specified as ftp://ftp.server.tld/folder1/../folder2/filename.txt it would
be normalized as ftp://ftp.server.tld/folder2/filename.txt.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpAddQueuedFile, FtpAddQueuedFileEx, FtpGetFirstQueuedFile, FtpGetNextQueuedFile,
FtpGetQueuedFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FTPQUEUESTATUS Structure

This structure is used by the FtpGetQueueStatus function to return information about the current
status of the file transfer queue.

typedef struct _FTPQUEUESTATUS
{
 DWORD dwStatus;
 DWORD dwThreadId;
 DWORD dwQueuedFiles;
 DWORD dwPendingFiles;
 DWORD dwCopiedFiles;
 DWORD dwFailedFiles;
 DWORD dwTimeElapsed;
 DWORD dwCurrentFile;
 DWORD dwLastError;
 ULARGE_INTEGER uiBytesCopied;
 ULARGE_INTEGER uiBytesTotal;
} FTPQUEUESTATUS, *LPFTPQUEUESTATUS;

Members
dwStatus

An unsigned integer which specifies the current status of the queue. It can be one of the
following values:

Constant Description

FTP_QUEUE_STATUS_IDLE The file transfer queue is idle and no files are being
uploaded or downloaded. This state is returned before
FtpStartQueue has been called or after
FtpStopQueue has been called. The queue will also
automatically enter an idle state after the last file
transfer has completed and the queue manager thread
exits.

FTP_QUEUE_STATUS_ACTIVE Files in the queue are being uploaded or downloaded.
The dwCurrentFile member of this structure identifies
the file which is currently being transferred.

FTP_QUEUE_STATUS_PAUSED File transfers are currently paused. The queue enters
this state after the FtpSuspendQueue function is
called and resumes file transfers after the
FtpResumeQueue function is called.

dwThreadId

An unsigned integer which specifies the thread ID for the queue manager which is performing
the file transfers. All file transfers are performed asynchronously in a background worker thread.
If this structure member is zero, the queue is idle and not performing file transfers. The
application should not use the thread ID to obtain a handle to suspend or terminate the thread.
This can potentially result in unexpected behavior or instability within the application.

dwQueuedFiles

An unsigned integer which specifies the total number of queued files. This value includes
pending and completed file transfers.

dwPendingFiles

An unsigned integer which specifies the number of files which are queued to be transferred.

dwCopiedFiles

An unsigned integer which specifies the number of files which have been successfully
transferred. This value reflects the total number of files which have the
FTP_QUEUE_FLAG_COMPLETED status.

dwFailedFiles

An unsigned integer which specifies the number of files which have failed to transfer or the file
transfer has been canceled. This value reflects the total number of files which have the
FTP_QUEUE_FLAG_FAILED status.

dwTimeElapsed

An unsigned integer which specifies the total amount of time, in milliseconds, the queue
manager has been active performing a file transfer. If the queue is idle, this value will reflect the
total run time for the previously active queue. A value of zero indicates the queue was never
active or the queue state has been reset with a call to FtpResetQueue.

dwCurrentFile

An unsigned integer which specifies the unique identifier for the current file being transferred. If
no file transfer is in progress, this member will have a value of zero. If the value is non-zero, it
can be passed to the FtpGetQueuedFile function to obtain information about the queued file.

dwLastError

An unsigned integer which specifies the last error code for a failed file transfer. If there have
been no errors, this value will be zero.

uiBytesCopied

A value which specifies the number of bytes which were copied during the current or last
transfer. The ULARGE_INTEGER type is a union of a structure and a 64-bit value which can be
used on both 32-bit and 64-bit systems. For languages other than C/C++ you can define this
structure member as an unsigned 64-bit integer type.

uiBytesTotal

A value which specifies the total number of bytes which were copied during the current queue
run. The ULARGE_INTEGER type is a union of a structure and a 64-bit value which can be used
on both 32-bit and 64-bit systems. For languages other than C/C++ you can define this
structure member as an unsigned 64-bit integer type.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftpv11.lib

See Also
FtpGetQueuedFile, FtpGetQueueStatus, FtpCancelQueuedFile, FtpResetQueue, FtpResumeQueue,
FtpStartQueue, FtpStopQueue, FtpSuspendQueue

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/ftp/library/ftgetqueuedfile.html

 FTPTRANSFERSTATUS Structure

This structure is used by the FtpGetTransferStatus function to return information about a file
transfer in progress.

typedef struct _FTPTRANSFERSTATUS
{
 DWORD dwBytesTotal;
 DWORD dwBytesCopied;
 DWORD dwBytesPerSecond;
 DWORD dwTimeElapsed;
 DWORD dwTimeEstimated;
 TCHAR szLocalFile[FTP_MAXFILENAMELEN];
 TCHAR szRemoteFile[FTP_MAXFILENAMELEN];

} FTPTRANSFERSTATUS, *LPFTPTRANSFERSTATUS;

Members
dwBytesTotal

The total number of bytes that will be transferred. If the file is being copied from the server to
the local host, this is the size of the remote file. If the file is being copied from the local host to
the server, it is the size of the local file. If the file size cannot be determined, this value will be
zero.

dwBytesCopied

The total number of bytes that have been copied.

dwBytesPerSecond

The average number of bytes that have been copied per second.

dwTimeElapsed

The number of seconds that have elapsed since the file transfer started.

dwTimeEstimated

The estimated number of seconds until the file transfer is completed. This is based on the
average number of bytes transferred per second.

szLocalFile

A pointer to a string which specifies the local file that is being copied to or from the server.

szRemoteFile

A pointer to a string which specifies the remote file that is being copied to or from the local
system.

Remarks
If the option FTP_OPTION_HIRES_TIMER has been specified when connecting to the server, the
values returned in the dwTimeElapsed and dwTimeEstimated members will be in milliseconds
instead of seconds. You can use this option to obtain more accurate elapsed times when
uploading or downloading small files over a fast network connection.

If you are uploading or downloading large files which exceed 4GB, you should use the
FTPTRANSFERSTATUSEX structure which uses 64-bit integers for the file size.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)

Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

See Also
FtpGetTransferStatus, FtpGetTransferStatusEx, FTPTRANSFERSTATUSEX

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FTPTRANSFERSTATUSEX Structure

This structure is used by the FtpGetTransferStatusEx function to return information about a file
transfer in progress. This structure is designed for use with extended functions that support files
larger than 4GB.

typedef struct _FTPTRANSFERSTATUSEX
{
 ULARGE_INTEGER dwBytesTotal;
 ULARGE_INTEGER dwBytesCopied;
 DWORD dwBytesPerSecond;
 DWORD dwTimeElapsed;
 DWORD dwTimeEstimated;
 DWORD dwReserved;
 TCHAR szLocalFile[FTP_MAXFILENAMELEN];
 TCHAR szRemoteFile[FTP_MAXFILENAMELEN];
} FTPTRANSFERSTATUSEX, *LPFTPTRANSFERSTATUSEX;

Members
uiBytesTotal

The total number of bytes that will be transferred. If the file is being copied from the server to
the local host, this is the size of the remote file. If the file is being copied from the local host to
the server, it is the size of the local file. If the file size cannot be determined, this value will be
zero.

uiBytesCopied

The total number of bytes that have been copied.

dwBytesPerSecond

The average number of bytes that have been copied per second.

dwTimeElapsed

The number of seconds that have elapsed since the file transfer started.

dwTimeEstimated

The estimated number of seconds until the file transfer is completed. This is based on the
average number of bytes transferred per second.

dwReserved

This structure member is reserved for future use.

szLocalFile

A pointer to a string which specifies the local file that is being copied to or from the server.

szRemoteFile

A pointer to a string which specifies the remote file that is being copied to or from the local
system.

Remarks
If the option FTP_OPTION_HIRES_TIMER has been specified when connecting to the server, the
values returned in the dwTimeElapsed and dwTimeEstimated members will be in milliseconds
instead of seconds. You can use this option to obtain more accurate elapsed times when
uploading or downloading small files over a fast network connection.

Requirements

Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

See Also
FtpGetTransferStatus, FtpGetTransferStatusEx, FTPTRANSFERSTATUS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 INITDATA Structure

This structure contains information about the SocketTools library when the initialization function
returns.

typedef struct _INITDATA
{
 DWORD dwSize;
 DWORD dwVersionMajor;
 DWORD dwVersionMinor;
 DWORD dwVersionBuild;
 DWORD dwOptions;
 DWORD_PTR dwReserved1;
 DWORD_PTR dwReserved2;
 TCHAR szDescription[128];
} INITDATA, *LPINITDATA;

Members
dwSize

Size of this structure. This structure member must be set to the size of the structure prior to
calling the initialization function. Failure to do so will cause the function to fail.

dwVersionMajor

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the major version number for the library.

dwVersionMinor

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the minor version number for the library.

dwVersionBuild

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the build number for the library.

dwOptions

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

dwReserved1

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

dwReserved2

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

szDescription

A null terminated string which describes the library.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SECURITYCREDENTIALS Structure

The SECURITYCREDENTIALS structure specifies the information needed by the library to specify
additional security credentials, such as a client certificate or private key, when establishing a secure
connection.

typedef struct _SECURITYCREDENTIALS
{
 DWORD dwSize;
 DWORD dwProtocol;
 DWORD dwOptions;
 DWORD dwReserved;
 LPCTSTR lpszHostName;
 LPCTSTR lpszUserName;
 LPCTSTR lpszPassword;
 LPCTSTR lpszCertStore;
 LPCTSTR lpszCertName;
 LPCTSTR lpszKeyFile;
} SECURITYCREDENTIALS, *LPSECURITYCREDENTIALS;

Members
dwSize

Size of this structure. If the structure is being allocated dynamically, this member must be set to
the size of the structure and all other unused structure members must be initialized to a value of
zero or NULL.

dwProtocol

A bitmask of supported security protocols. The value of this structure member is constructed by
using a bitwise operator with any of the following values:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The
correct protocol is automatically selected, based on

what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.
This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is
supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

SECURITY_PROTOCOL_SSH Either version 1.0 or 2.0 of the Secure Shell protocol
should be used when establishing the connection.
The correct protocol is automatically selected based
on the version of the protocol that is supported by
the server.

SECURITY_PROTOCOL_SSH1 The Secure Shell 1.0 protocol should be used when
establishing the connection. This is an older version
of the protocol which should not be used unless
explicitly required by the server. Most modern SSH
server support version 2.0 of the protocol.

SECURITY_PROTOCOL_SSH2 The Secure Shell 2.0 protocol should be used when
establishing the connection. This is the default

version of the protocol that is supported by most
SSH servers.

dwOptions

A value which specifies one or options. This value should always be zero for connections using
SSH. This member is constructed by using a bitwise operator with any of the following values:

Constant Description

CREDENTIAL_STORE_CURRENT_USER The library will attempt to open a store for
the current user using the certificate store
name provided in this structure. If no options
are specified, then this is the default
behavior.

CREDENTIAL_STORE_LOCAL_MACHINE The library will attempt to open a local
machine store using the certificate store
name provided in this structure. If this option
is specified, the library will always search for a
local machine store before searching for the
store by that name for the current user.

CREDENTIAL_STORE_FILENAME The certificate store name is a file that
contains the certificate and private key that
will be used.

dwReserved

This structure member is reserved for future use and should always be initialized to zero.

lpszHostName

A pointer to a null terminated string which specifies the hostname that will be used when
validating the server certificate. If this member is NULL, then the server certificate will be
validated against the hostname used to establish the connection.

lpszUserName

A pointer to a null terminated string which identifies the owner of client certificate. Currently this
member is not used by the library and should always be initialized as a NULL pointer.

lpszPassword

A pointer to a null terminated string which specifies the password needed to access the
certificate. Currently this member is only used if the CREDENTIAL_STORE_FILENAME option has
been specified. If there is no password associated with the certificate, then this member should
be initialized as a NULL pointer.

lpszCertStore

A pointer to a null terminated string which specifies the name of the certificate store to open. A
certificate store is a collection of certificates and their private keys, typically organized by how
they are used. If this value is NULL or points to an empty string, the default certificate store "MY"
will be used.

Store
Name

Description

CA
Certification authority certificates. These are certificates that are issued by entities
which are entrusted to issue certificates to other individuals or organizations.
Companies such as VeriSign and Thawte act as certification authorities.

MY

Personal certificates and their associated private keys for the current user. This
store typically holds the client certificates used to establish a user's credentials.
This corresponds to the "Personal" store that is displayed by the certificate
manager utility and is the default store used by the library.

ROOT
Certificates that have been self-signed by a certificate authority. Root certificates
for a number of different certification authorities such as VeriSign and Thawte are
installed as part of the operating system and periodically updated by Microsoft.

lpszCertName

A pointer to a null terminated string which specifies the name of the certificate to use. The
library will first search the certificate store for a certificate with a matching "friendly name"; this is
a name for the certificate that is assigned by the user. Note that the name must match
completely, but the comparison is not case sensitive. If no matching certificate is found, the
library will then attempt to find a certificate that has a matching common name (also called the
certificate subject). This comparison is less stringent, and the first partial match will be returned.
If this second search fails, the library will return an error indicating that the certificate could not
be found. If the SECURITY_PROTOCOL_SSH protocol has been specified, this member should
be NULL.

lpszKeyFile

A pointer to a null terminated string which specifies the name of the file which contains the
private key required to establish the connection. This member is only used for SSH connections
and should always be NULL when establishing a secure connection using SSL or TLS.

Remarks
A client application only needs to create this structure if the server requires that the client provide
a certificate as part of the process of negotiating the secure session. If a certificate is required,
note that it must have a private key associated with it. Attempting to use a certificate that does not
have a private key will result in an error during the connection process indicating that the client
credentials could not be established.

If you are using a local certificate store, with the certificate and private key stored in the registry,
you can explicitly specify whether the certificate store for the current user or the local machine (all
users) should be used. This is done by prefixing the certificate store name with "HKCU:" for the
current user, or "HKLM:" for the local machine. For example, a certificate store name of
"HKLM:MY" would specify the personal certificate store for the local machine, rather than the
current user. If neither prefix is specified, then it will default to the certificate store for the current
user. You can manage these certificates using the CertMgr.msc Microsoft Management Console
(MMC) snap-in.

It is possible to load the certificate from a file rather than from current user's certificate store. The
dwOptions member should be set to CREDENTIAL_STORE_FILENAME and the lpszCertStore
member should specify the name of the file that contains the certificate and its private key. The file
must be in Private Information Exchange (PFX) format, also known as PKCS #12. These certificate
files typically have an extension of .pfx or .p12. Note that if a password was specified when the
certificate file was created, it must be provided in the lpszPassword member or the library will be
unable to access the certificate.

Note that the lpszUserName and lpszPassword members are values which are used to access the
certificate store or private key file. They are not the credentials which are used when establishing
the connection with the remote host or authenticating the client session.

The TLS 1.1 and TLS 1.2 protocols are only supported on Windows 7, Windows Server 2008 R2

and later versions of the platform. If these options are specified and the application is running on
Windows XP or Windows Vista, the protocol version will be downgraded to TLS 1.0 for backwards
compatibility with those platforms.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SECURITYINFO Structure

This structure contains information about a secure connection that has been established with a
server.

typedef struct _SECURITYINFO
{
 DWORD dwSize;
 DWORD dwProtocol;
 DWORD dwCipher;
 DWORD dwCipherStrength;
 DWORD dwHash;
 DWORD dwHashStrength;
 DWORD dwKeyExchange;
 DWORD dwCertStatus;
 SYSTEMTIME stCertIssued;
 SYSTEMTIME stCertExpires;
 LPCTSTR lpszCertIssuer;
 LPCTSTR lpszCertSubject;
 LPCTSTR lpszFingerprint;
} SECURITYINFO, *LPSECURITYINFO;

Members
dwSize

Specifies the size of the data structure. This member must always be initialized to
sizeof(SECURITYINFO) prior to passing the address of this structure to the function. Note that
if this member is not initialized, an error will be returned indicating that an invalid parameter has
been passed to the function.

dwProtocol

A numeric value which specifies the protocol that was selected to establish the secure
connection. One of the following values will be returned:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be

used when establishing a secure connection. The
correct protocol is automatically selected, based on
what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.
This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is
supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

SECURITY_PROTOCOL_SSH1 The Secure Shell 1.0 protocol should be used. This
protocol has been deprecated and is no longer
widely used. It is not recommended that this
protocol be used when establishing secure
connections. This protocol can only be specified
when connecting to an SSH server and is not
supported with any other application protocol.

SECURITY_PROTOCOL_SSH2 The Secure Shell 2.0 protocol should be used. This is
the most commonly used version of the protocol. It
is recommended that this version of the protocol be

used unless the server explicitly requires the client to
use an earlier version. This protocol can only be
specified when connecting to an SSH server and is
not supported with any other application protocol.

dwCipher

A numeric value which specifies the cipher that was selected when establishing the secure
connection. One of the following values will be returned:

Constant Description

SECURITY_CIPHER_RC2 The RC2 block cipher was selected. This is a variable
key length cipher which supports keys between 40 and
128 bits, in 8-bit increments.

SECURITY_CIPHER_RC4 The RC4 stream cipher was selected. This is a variable
key length cipher which supports keys between 40 and
128 bits, in 8-bit increments.

SECURITY_CIPHER_RC5 The RC5 block cipher was selected. This is a variable
key length cipher which supports keys up to 2040 bits,
in 8-bit increments.

SECURITY_CIPHER_DES The DES (Data Encryption Standard) block cipher was
selected. This is a fixed key length cipher, using 56-bit
keys.

SECURITY_CIPHER_DES3 The Triple DES block cipher was selected. This cipher
encrypts the data three times using different keys,
effectively providing a 168-bit length key.

SECURITY_CIPHER_DESX A variant of the DES block cipher which XORs an extra
64-bits of the key before and after the plaintext has
been encrypted, increasing the key size to 184 bits.

SECURITY_CIPHER_AES The Advanced Encryption Standard cipher (also known
as the Rijndael cipher) is a fixed block size cipher which
use a key size of 128, 192 or 256 bits. This cipher is
supported on Windows XP SP3 and later versions of
the operating system.

SECURITY_CIPHER_SKIPJACK The Skipjack block cipher was selected. This is a fixed
key length cipher, using 80-bit keys.

SECURITY_CIPHER_BLOWFISH The Blowfish block cipher was selected. This is a
variable key length cipher up to 448 bits, using a 64-bit
block size.

dwCipherStrength

A numeric value which specifies the strength (the length of the cipher key in bits) of the cipher
that was selected. Typically this value will be 128 or 256. 40-bit and 56-bit key lengths are
considered weak encryption, and subject to brute force attacks. 128-bit and 256-bit key lengths
are considered to be secure, and are the recommended key length for secure communications.

dwHash

A numeric value which specifies the hash algorithm which was selected. One of the following

values will be returned:

Constant Description

SECURITY_HASH_MD5 The MD5 algorithm was selected. Its use has been
deprecated and is no longer considered to be
cryptographically secure.

SECURITY_HASH_SHA1 The SHA-1 algorithm was selected. Its use has been
deprecated and is no longer considered to be
cryptographically secure.

SECURITY_HASH_SHA256 The SHA-256 algorithm was selected.

SECURITY_HASH_SHA384 The SHA-384 algorithm was selected.

SECURITY_HASH_SHA512 The SHA-512 algorithm was selected.

dwHashStrength

A numeric value which specifies the strength (the length in bits) of the message digest that was
selected.

dwKeyExchange

A numeric value which specifies the key exchange algorithm which was selected. One of the
following values will be returned:

Constant Description

SECURITY_KEYEX_RSA The RSA public key algorithm was selected.

SECURITY_KEYEX_KEA The Key Exchange Algorithm (KEA) was selected. This is an
improved version of the Diffie-Hellman public key algorithm.

SECURITY_KEYEX_DH The Diffie-Hellman key exchange algorithm was selected.

SECURITY_KEYEX_ECDH The Elliptic Curve Diffie-Hellman key exchange algorithm was
selected. This is a variant of the Diffie-Hellman algorithm
which uses elliptic curve cryptography. This key exchange
algorithm is only supported on Windows XP SP3 and later
versions of the operating system.

dwCertStatus

A numeric value which specifies the status of the certificate returned by the secure server. This
member only has meaning for connections using the SSL or TLS protocols. One of the following
values will be returned:

Constant Description

SECURITY_CERTIFICATE_VALID The certificate is valid.

SECURITY_CERTIFICATE_NOMATCH The certificate is valid, but the domain name
does not match the common name in the
certificate.

SECURITY_CERTIFICATE_EXPIRED The certificate is valid, but has expired.

SECURITY_CERTIFICATE_REVOKED The certificate has been revoked and is no
longer valid.

SECURITY_CERTIFICATE_UNTRUSTED The certificate or certificate authority is not

trusted on the local system.

SECURITY_CERTIFICATE_INVALID The certificate is invalid. This typically indicates
that the internal structure of the certificate has
been damaged.

stCertIssued

A structure which contains the date and time that the certificate was issued by the certificate
authority. If the issue date cannot be determined for the certificate, the SYSTEMTIME structure
members will have zero values. This member only has meaning for connections using the SSL or
TLS protocols.

stCertExpires

A structure which contains the date and time that the certificate expires. If the expiration date
cannot be determined for the certificate, the SYSTEMTIME structure members will have zero
values. This member only has meaning for connections using the SSL or TLS protocols.

lpszCertIssuer

A pointer to a string which contains information about the organization that issued the
certificate. This string consists of one or more comma-separated tokens. Each token consists of
an identifier, followed by an equal sign and a value. If the certificate issuer could not be
determined, this member may be NULL. This member only has meaning for connections using
the SSL or TLS protocols.

lpszCertSubject

A pointer to a string which contains information about the organization that the certificate was
issued to. This string consists of one or more comma-separated tokens. Each token consists of
an identifier, followed by an equal sign and a value. If the certificate subject could not be
determined, this member may be NULL. This member only has meaning for connections using
the SSL or TLS protocols.

lpszFingerprint

A pointer to a string which contains a sequence of hexadecimal values that uniquely identify the
server. This member is only used when a connection has been established using the Secure
Shell (SSH) protocol.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SYSTEMTIME Structure

The SYSTEMTIME structure represents a date and time using individual members for the month,
day, year, weekday, hour, minute, second, and millisecond.

typedef struct _SYSTEMTIME
{
 WORD wYear;
 WORD wMonth;
 WORD wDayOfWeek;
 WORD wDay;
 WORD wHour;
 WORD wMinute;
 WORD wSecond;
 WORD wMilliseconds;
} SYSTEMTIME, *LPSYSTEMTIME;

Members
wYear

Specifies the current year. The year value must be greater than 1601.

wMonth

Specifies the current month. January is 1, February is 2 and so on.

wDayOfWeek

Specifies the current day of the week. Sunday is 0, Monday is 1 and so on.

wDay

Specifies the current day of the month

wHour

Specifies the current hour.

wMinute

Specifies the current minute

wSecond

Specifies the current second.

wMilliseconds

Specifies the current millisecond.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include windows.h.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

File Transfer Protocol Server Library

Implements a server that enables the application to send and receive files using the File Transfer
Protocol.

Reference

Functions
Data Structures
Error Codes

Library Information

File Name CSFTSV11.DLL

Version 11.0.2180.1635

LibID 263021C1-CB49-4122-9D4B-244AA9EFF668

Import Library CSFTSV11.LIB

Dependencies None

Standards RFC 959, RFC 1579, RFC 2228

Overview
This library provides an interface for implementing an embedded, lightweight server that can be
used to exchange files with a client using the standard File Transfer Protocol. The server can
accept connections from any third-party application or a program developed using the
SocketTools FTP client API.

The application specifies an initial server configuration and then responds to events that are raised
by the API when the client sends a request to the server. An application may implement only
minimal handlers for most events, in which case the default actions are performed for most
standard FTP commands. However, an application may also use the event mechanism to filter
specific commands or to extend the protocol by providing custom implementations of existing
commands or add entirely new commands.

The server supports active and passive mode file transfers, has compatibility options for NAT
router and firewall support, and provides support for secure file transfers using explicit TLS. Secure
connections require a valid security certificate to be installed on the system.

Requirements
The SocketTools Library Edition libraries are compatible with any programming language which
supports calling functions exported from a standard dynamic link library (DLL). If you are using
Visual C++ 6.0 it is required that you have Service Pack 6 (SP6) installed. You should install all
updates for your development tools and have the current Windows SDK installed. The minimum
recommended version of Visual Studio is Visual Studio 2010.

This library is supported on Windows 7, Windows Server 2008 R2 and later versions of the desktop
and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1) installed as
a minimum requirement. It is recommended that you install the current service pack and all critical
updates available for your version of the operating system.

This library provides an implementation of a multithreaded server which should only be used with

languages that support the creation of multithreaded applications. It is important that you do not
attempt to link against static libraries which were not built with support for threading.

This product includes both 32-bit and 64-bit libraries. Native 64-bit CPU support requires the 64-
bit version of Windows 7 or later versions of the Windows operating system.

Distribution
When you distribute your application that uses this library, it is recommended that you install the
file in the same folder as your application executable. If you install the library into a shared location
on the system, it is important that you distribute the correct version for the target platform and it
should be registered as a shared DLL. This is a standard Windows dynamic link library, not an
ActiveX component, and does not require COM registration.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 File Transfer Protocol Server Functions

Function Description

FtpAddVirtualUser Add a new virtual user for the specified server

FtpAuthenticateClient Authenticate the client and assign access rights for the session

FtpChangeClientDirectory Change the current working directory for the client session

FtpCreateServerCredentials Create a new server security credentials structure

FtpDeleteServerCredentials Delete a previously created security credentials structure

FtpDeleteVirtualUser Delete a virtual user from the specified server

FtpDisconnectClient Disconnect the specific client session, closing the control channel and
aborting any file transfer

FtpEnableClientAccess Enable or disable access rights for the specified client session

FtpEnableCommand Enable or disable a specific server command

FtpEnumServerClients Returns a list of active client sessions established with the specified server

FtpGetActiveClient Return the client ID for the active client session associated with the
current thread

FtpGetClientAccess Return the access rights that have been granted to the client session

FtpGetClientAddress Return the IP address of the specified client session

FtpGetClientCredentials Return the credentials for the specified client session

FtpGetClientDirectory Return the current working directory for a client session

FtpGetClientFileType Return the current file type used for transfers by the specified client

FtpGetClientHomeDirectory Return the home directory for an authenticated client session

FtpGetClientIdentity Return the identity of the specified client session

FtpGetClientIdleTime Return the idle timeout period for the specified client

FtpGetClientLocalPath Return the full local path for the specified virtual path

FtpGetClientServer Return the handle to the server that created the specified client session

FtpGetClientThreadId Returns the thread ID associated with the specified client session

FtpGetClientUserName Return the user name associated with the specified client session

FtpGetClientVirtualPath Return the virtual path for a local file on the server

FtpGetCommandFile Return the full path to the local file name or directory specified by the
client

FtpGetCommandLine Return the complete command line issued by the client

FtpGetCommandName Return the name of the last command issued by the client

FtpGetCommandParam Return the value of the specified parameter for the command issued by
the client

FtpGetCommandParamCount Return the number of parameters to the current command issued by the

client

FtpGetCommandResult Return the result code and a description of the last command processed
by the server

FtpGetCommandUsage Return the number of times a specific command has been issued by all
clients

FtpGetProgramExitCode Return the exit code of the last program executed by the client

FtpGetProgramName Return the name of the last program executed by the client

FtpGetProgramOutput Return a copy of the standard output from the last program executed by
the client

FtpGetProgramText Return a copy of the standard output from the last program in a string
buffer

FtpGetRenamedFile Return the original name of a file being renamed by the client

FtpGetServerAddress Return the IP address for the server

FtpGetServerDirectory Return the full path to the root directory assigned to the specified server

FtpGetServerError Return information about the last server error that occurred

FtpGetServerIdentity Return the identity and version information for the specified server

FtpGetServerLogFile Return the current log file format and full path for the file

FtpGetServerMemoryUsage Return the amount of memory allocated for the server and all client
sessions

FtpGetServerName Return the host name assigned to the server or specified client session

FtpGetServerOptions Return the configuration options for the specified server

FtpGetServerPriority Return the current priority assigned to the specified server

FtpGetServerStackSize Return the initial size of the stack allocated for threads created by the
server

FtpGetServerTransferInfo Return information about the current file transfer for the client session

FtpGetServerUuid Return the UUID assigned to the specified server

FtpGetServerUuidString Return the UUID assigned to the server as a printable string

FtpIsClientAnonymous Determine if the specified client has authenticated as an anonymous user

FtpIsClientAuthenticated Determine if the specified client session has been authenticated

FtpIsCommandEnabled Determine if the specified command is currently enabled or disabled

FtpRegisterProgram Register a program for use with the SITE EXEC command

FtpRenameServerLogFile Rename or delete the current log file being updated by the server

FtpSendResponse Send a result code and optional message to the client in response to a
command

FtpServerAsyncNotify Enable or disable asynchronous notification of changes in server status

FtpServerDisableTrace Disable logging of network function calls

FtpServerEnableTrace Enable logging of network function calls to a file

file:///C|/Projects/cstools11/pdf/ftpsrv/library/ftpgetserveroptions.html

FtpServerInitialize Initialize the library and validate the specified license key at runtime

FtpServerProc Callback function used to process server events

FtpServerRestart Restart the server, terminating all active client sessions

FtpServerResume Resume accepting client connections on the specified server

FtpServerStart Start the server and begin accepting client connections

FtpServerStop Stop the server and terminate all active client connections

FtpServerSuspend Suspend accepting client connections on the specified server

FtpServerThrottle Limit the number of active client connections, connections per address
and connection rate

FtpServerUninitialize Terminate use of the library by the application

FtpSetClientAccess Change the access rights associated with the specified client session

FtpSetClientFileType Change the current file type used for transfers by the specified client

FtpSetClientIdentity Change the identity string associated with the specified client session

FtpSetClientIdleTime Change the idle timeout period for the specified client session

FtpSetCommandFile Change the name of the local file or directory that is the target of the
current command

FtpSetServerAddress Change the IP address that the server will use with passive data
connections

FtpSetServerError Set the last error code for the specified server session

FtpSetServerIdentity Change the identity and version information for the specified server

FtpSetServerLogFile Change the current log format, level of detail and file name

FtpSetServerName Change the hostname assigned to the specified server or client session

FtpSetServerPriority Change the priority assigned to the specified server

FtpSetServerStackSize Change the initial size of the stack allocated for threads created by the
server

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpAddVirtualUser Function

BOOL WINAPI FtpAddVirtualUser(
 HSERVER hServer,
 UINT nHostId,
 DWORD dwUserAccess,
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword,
 LPCTSTR lpszDirectory
);

Add a new virtual user for the specified server.

Parameters
hServer

The server handle.

nHostId

An integer value which identifies the virtual host. This parameter is reserved for future use and
must always have a value of zero.

dwUserAccess

An integer value which specifies the access clients will be given when authenticated as this user.
For a list of user access permissions, see User Access Constants.

lpszUserName

A pointer to a string which specifies the user name. The maximum length of a username is 63
characters and it is recommended that names be limited to alphanumeric characters.
Whitespace, control characters and certain symbols such as path delimiters and wildcard
characters are not permitted. If an invalid character is included in the name, the function will fail
with an error indicating the username is invalid. This parameter cannot be NULL and the name
must be at least three characters in length. Usernames are not case sensitive.

lpszPassword

A pointer to a string which specifies the user password. The maximum length of a password is
63 characters and is limited to printable characters. Whitespace and control characters are not
permitted. If an invalid character is included in the password, the function will fail with an error
indicating the password is invalid. This parameter cannot be NULL and must be at least one
character in length. Passwords are case sensitive.

lpszDirectory

A pointer to a string which specifies the directory that will be the virtual user's home directory. If
the server was started in multi-user mode, this directory will be relative to the user directory
created by the server, otherwise it will be relative to the server root directory. If the directory
does not exist, it will be created the first time that the virtual user successfully logs in to the
server. If this parameter is NULL or an empty string, a default home directory will be created for
the virtual user.

Return Value
If the function succeeds, the return value is non-zero. If the server handle is invalid or the virtual
host ID does not specify a valid host, the function will return zero. If the function fails, the last error
code will be updated to indicate the cause of the failure.

file:///C|/Projects/cstools11/pdf/ftpsrv/library/useraccess.html
file:///C|/Projects/cstools11/pdf/ftpsrv/library/useraccess.html

Remarks
The FtpAddVirtualUser function adds a virtual user that is associated with the specified virtual
host. When a client connects with the server and provides authentication credentials, the server
will check if the username has been created using this function. If a match is found, the client
access rights will be updated.

If you wish to modify the information for a user, it is not necessary to delete the username first. If
this function is called with a username that already exists, that record is replaced with the values
passed to this function. You cannot use this function to create a virtual user named "anonymous".

The virtual users created by this function exist only as long as the server is active. If you wish to
maintain a persistent database of users and passwords, you are responsible for its implementation
based on the requirements of your specific application. For example, a simple implementation
would be to store the user information in a local XML or INI file and then read that configuration
file after the server has started, calling this function for each user that is listed.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpDeleteVirtualUser

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpAuthenticateClient Function

BOOL WINAPI FtpAuthenticateClient(
 HSERVER hServer,
 UINT nClientId,
 DWORD dwUserAccess,
 BOOL bCreateHome,
 LPCTSTR lpszDirectory
);

Authenticate the client and assign access rights for the session.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

dwUserAccess

An unsigned integer which specifies one or more user access rights. For a list of user access
rights that can be granted to the client, see User Access Constants.

bCreateHome

An integer value that specifics if the server should create the home directory for the
authenticated client if it does not already exist. If this value is non-zero, the home directory will
be created. If value is zero, the home directory will not be created and if it does not exist, this
function will fail.

lpszDirectory

A pointer to a string that specifies the home directory for the user. If an absolute path is
specified, it will be relative to the server root directory. If a relative path is specified, it will be a
subdirectory of the home directory for the server instance. If this parameter is NULL or an
empty string, a home directory will be assigned based on the server home directory and the
user name.

Return Value
If the the client session could be authenticated, the return value is non-zero. If the server handle
and client ID do not specify a valid client session, or the client has already been authenticated, this
function will return zero.

Remarks
The FtpAuthenticateClient function is used to authenticate a specific client session, typically in
response to an FTP_CLIENT_USERAUTH event that indicates a client has requested authentication.
This function is also used internally to automatically grant the appropriate access rights to local
user and anonymous client sessions.

It is recommended that most applications specify FTP_ACCESS_DEFAULT as the dwUserAccess
value for a client session, since this allows the server automatically grant the appropriate access
based on the server configuration options for normal and anonymous users. If the server is going
to be publicly accessible or third-party FTP clients will be used to access the server, you should
always grant the FTP_ACCESS_LIST permission to clients. Many client applications will not function
correctly if they are unable to obtain a list of files in the user's home directory.

file:///C|/Projects/cstools11/pdf/ftpsrv/library/useraccess.html

If FTP_ACCESS_RESTRICTED is specified and the server was started in multi-user mode, the client
session will be effectively locked to its home directory and cannot navigate to the server root
directory. By default, restricted client sessions are also limited to only downloading files and
requesting directory listings. If a client session is not restricted, the client can access files outside of
its home directory. Regardless of this option, a client cannot access files outside of the server root
directory.

If FTP_ACCESS_RESTRICTED or FTP_ACCESS_ANONYMOUS is specified, the client session will be
authenticated in a restricted mode and the access rights for the session will persist until the client
disconnects from the server. Unlike regular users, the access rights for a restricted client cannot be
changed by the server at a later point. This restriction is designed to prevent the inadvertent
granting of rights to an untrusted client that could compromise the security of the server.

If the lpszDirectory parameter is NULL or an empty string and the server has been started in
multi-user mode, each user is assigned their own home directory based on their username. If the
server has not been started in multi-user mode, then the default home directory will be the server
root directory and is shared by all users. The FtpGetClientHomeDirectory function will return the
full path to the home directory for an authenticated client.

If the FTP_ACCESS_EXECUTE permission is granted to the client session, it can execute external
programs using the SITE EXEC command. Because the program is executed in the context of the
server process, it is recommended that you limit access to this functionality and ensure that the
programs being executed do not introduce any security risks to the operating system. This
permission is never granted by default, and the SITE EXEC command will return an error if the
client session is anonymous, regardless of whether this permission is granted or not.

This function is should only be used for custom authentication schemes and is not necessary if you
have used the FtpAddVirtualUser function to create virtual users.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpAddVirtualUser, FtpChangeClientDirectory, FtpGetClientCredentials, FtpGetClientDirectory,
FtpGetClientHomeDirectory

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpChangeClientDirectory Function

BOOL WINAPI FtpChangeClientDirectory(
 HSERVER hServer,
 UINT nClientId,
 LPCTSTR lpszDirectory
);

Change the current working directory for the specified client.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

lpszDirectory

A pointer to a string which specifies the new current working directory for the client session. If
this parameter is NULL or an empty string, the current working directory will be changed to the
client home directory. If this parameter is not NULL, it must specify a directory that exists and is
accessible by the server process.

Return Value
If the current working directory was changed, the return value is non-zero. If the server handle
and client ID do not specify a valid client session, or the directory is invalid, this function will return
zero.

Remarks
The FtpChangeClientDirectory function will change the current working directory for the
specified client session. This function is called internally when the client sends the CWD or CDUP
commands, however it may be explicitly used by the application to change the client's working
directory in response to a server event.

This function cannot be used to change the current working directory for a client to an arbitrary
directory outside of the server root directory. If the lpszDirectory parameter specifies a relative
path (i.e.: a path that does not begin with a drive letter or leading path delimiter) then the new
working directory will be relative to the current working directory. If an absolute path is specified,
the absolute path must include the complete path to either the server root directory or the user's
home directory, based on the permissions granted to the client session. If a path outside of the
server root directory is specified, this function will fail with an access denied error.

Use caution when calling this function to override the directory specified by the client when it
sends the CWD or CDUP commands. If your application changes the current working directory to
one not specified by the client, it may cause unpredictable behavior in the client application
because the actual path of the current working directory will not match the directory that was
requested.

If this function is used to change the current working directory in response to the CWD command,
you should not call the FtpGetCommandParam function and pass the command parameter as
an argument to this function. You must use the FtpGetCommandFile function to obtain the
directory name provided by the client prior to calling this function.

The application should never call the SetCurrentDirectory function in the Windows API to change

the current directory for the process to the working directory of a client session. Because the
server is multithreaded and each client session is managed in its own thread, an application using
this library should avoid using relative paths.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpGetClientDirectory, FtpGetClientHomeDirectory, FtpGetCommandFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpCreateServerCredentials Function

BOOL WINAPI FtpCreateServerCredentials(
 DWORD dwProtocol,
 DWORD dwOptions,
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword,
 LPCTSTR lpszCertStore,
 LPCTSTR lpszCertName,
 LPVOID lpvReserved,
 LPSECURITYCREDENTIALS* lppCredentials
);

The FtpCreateServerCredentials function creates a SECURITYCREDENTIALS structure.

Parameters
dwProtocol

A bitmask of supported security protocols. This parameter is constructed by using a bitwise
operator with any of the following values:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The
correct protocol is automatically selected, based on
what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.
This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is

supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

dwOptions

A value which specifies one or options. This member is constructed by using a bitwise operator
with any of the following values:

Constant Description

CREDENTIAL_STORE_CURRENT_USER The library will attempt to open a store for
the current user using the certificate store
name provided in this structure. If no options
are specified, then this is the default
behavior.

CREDENTIAL_STORE_LOCAL_MACHINE The library will attempt to open a local
machine store using the certificate store
name provided in this structure. If this option
is specified, the library will always search for a
local machine store before searching for the
store by that name for the current user.

CREDENTIAL_STORE_FILENAME The certificate store name is a file that
contains the certificate and private key that
will be used.

lpszUserName

A pointer to a string which specifies the certificate owner's username. A value of NULL specifies
that no username is required. Currently this parameter is not used and any value specified will
be ignored.

lpszPassword

A pointer to a string which specifies the certificate owner's password. A value of NULL specifies
that no password is required. This parameter is only used if a PKCS #12 (PFX) certificate file is
specified and that certificate has been secured with a password. This value will be ignored the
current user or local machine certificate store is specified.

lpszCertStore

A pointer to a string which specifies the name of the certificate store to open. A certificate store
is a collection of certificates and their private keys, typically organized by how they are used. If
this value is NULL or points to an empty string, the default certificate store "MY" will be used.

Store Name Description

CA Certification authority certificates. These are certificates that are issued by
entities which are entrusted to issue certificates to other individuals or
organizations. Companies such as VeriSign and Thawte act as
certification authorities.

MY Personal certificates and their associated private keys for the current user.
This store typically holds the client certificates used to establish a user's
credentials. This corresponds to the "Personal" store that is displayed by
the certificate manager utility and is the default store used by the library.

ROOT Certificates that have been self-signed by a certificate authority. Root
certificates for a number of different certification authorities such as
VeriSign and Thawte are installed as part of the operating system and
periodically updated by Microsoft.

lpszCertName

A pointer to a null terminated string which specifies the name of the certificate to use. The
function will first search the certificate store for a certificate with a matching "friendly name"; this
is a name for the certificate that is assigned by the user. Note that the name must match
completely, but the comparison is not case sensitive. If no matching certificate is found, the
function will then attempt to find a certificate that has a matching common name (also called
the certificate subject). This comparison is less stringent, and the first partial match will be
returned. If this second search fails, the function will return an error indicating that the certificate
could not be found.

lpvReserved

Pointer reserved for future use. Set it to NULL when using this function.

lppCredentials

Pointer to an LPSECURITYCREDENTIALS pointer. The memory for the credentials structure will
be allocated by this function and must be released by calling the FtpDeleteServerCredentials
function when it is no longer needed. The pointer value must be set to NULL before the
function is called. It is important to note that this is a pointer to a pointer variable, not a pointer
to the SECURITYCREDENTIALS structure itself.

Return Value

If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call FtpGetServerError.

Remarks
The structure that is created by this function may be used as client credentials when establishing a
secure connection. This is particularly useful for programming languages other than C/C++ which
may not support C structures or pointers. The pointer to the SECURITYCREDENTIALS structure can
be declared as an unsigned integer variable which is passed by reference to this function, and
then passed by value to the FtpServerStart function.

Example
// Create the server credentials that identifies the certificate
// that will be used for secure connections
LPSECURITYCREDENTIALS lpSecCred = NULL;

FtpCreateServerCredentials(SECURITY_PROTOCOL_DEFAULT,
 0,
 NULL,
 NULL,
 lpszCertStore,
 lpszCertName,
 NULL,
 &lpSecCred);

// Start the server
hServer = FtpServerStart(lpszLocalHost,
 FTP_PORT_DEFAULT,
 FTP_SERVER_LOCALUSER | FTP_SERVER_UNIXMODE |
FTP_SERVER_SECURE,
 &ftpConfig,
 lpEventHandler,
 0,
 lpSecCred);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpDeleteServerCredentials, FtpServerStart, SECURITYCREDENTIALS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpDeleteServerCredentials Function

VOID WINAPI FtpDeleteServerCredentials(
 LPSECURITYCREDENTIALS* lppCredentials
);

The FtpDeleteServerCredentials function deletes an existing SECURITYCREDENTIALS structure.

Parameters
lppCredentials

Pointer to an LPSECURITYCREDENTIALS pointer. On exit from the function, the pointer value will
be NULL.

Return Value
None.

Example
if (lpSecCred != NULL)
 FtpDeleteServerCredentials(&lpSecCred);

Remarks
This function can be used to release the memory allocated for the credentials after the server has
been started.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpCreateServerCredentials, FtpServerStop

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpDeleteVirtualUser Function

BOOL WINAPI FtpDeleteVirtualUser(
 HSERVER hServer,
 UINT nHostId,
 LPCTSTR lpszUserName
);

Remove a virtual user from the specified host.

Parameters
hServer

The server handle.

nHostId

An integer value which identifies the virtual host. This parameter is reserved for future use and
must always have a value of zero.

lpszUserName

A pointer to a string which specifies the user that will be removed. This parameter cannot be a
NULL pointer or an empty string.

Return Value
If the function succeeds, the return value is non-zero. If the server handle is invalid or the virtual
host ID does not specify a valid host, the function will return zero. If the function fails, the last error
code will be updated to indicate the cause of the failure.

Remarks
This function removes a virtual user that was created by a previous call to the FtpAddVirtualUser
function. This function will not match partial usernames and wildcard characters cannot be used to
delete multiple users. Usernames are not case sensitive. You cannot use this function to delete the
"anonymous" user.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpAddVirtualUser

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpDisconnectClient Function

BOOL WINAPI FtpDisconnectClient(
 HSERVER hServer,
 UINT nClientId
);

Close the control connection for the specified client and release the resources allocated for the
session

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

Return Value
If the function succeeds, the return value is non-zero. If the server handle and client ID do not
specify a valid client session, the function will return zero.

Remarks
The FtpDisconnectClient function will close the control channel, disconnecting the client from the
server and terminating the client session thread. Resources that we allocated for the client, such as
memory and open handles, will be released back to the operating system. If the client was in the
process of transferring a file, the transfer will be aborted. This performs the same operation as if
the client sent the QUIT command to the server.

This function sends an internal control message that notifies the server that this session should be
terminated. When the session thread is signaled that it should terminate, it will abort any active file
transfers and begin to release the resources allocated for that session. To ensure that the client
session terminates gracefully, there may be a brief period of time where the session thread is still
active after this function has returned.

After this function returns, the application should never use the same client ID with another
function. Client IDs are unique to the session over the lifetime of the server, and are not reused.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
FtpServerRestart, FtpServerStop

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpEnableClientAccess Function

BOOL WINAPI FtpEnableClientAccess(
 HSERVER hServer,
 UINT nClientId,
 DWORD dwUserAccess,
 BOOL bEnable
);

Enable or disable access rights for the specified client session.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

dwUserAccess

An unsigned integer which specifies an access right to enable or disable. For a list of user access
rights that can be granted to the client, see User Access Constants.

bEnable

An integer value which specifies if permission should be granted or revoked for the specified
access right. If this value is non-zero, permission is granted to the client to perform the action
specified by the dwUserAccess parameter. If this value is zero, that permission is revoked.

Return Value
If the function succeeds, the return value is non-zero. If the server handle and client ID do not
specify a valid client session, the function will return zero. This function can only be used with
authenticated clients. If the client session has not been authenticated, the return value will be zero.

Remarks
The FtpEnableClientAccess function is used to enable or disable access to specific functionality
by the client. The function can only change a single access right and cannot be used to enable or
disable multiple access rights in a single function call. To change multiple user access rights for the
client, use the FtpSetClientAccess function.

This function cannot be used to change the access rights for a restricted or anonymous user.
Those rights are granted when the client session is authenticated and will persist until the client
disconnects from the server. This restriction is designed to prevent the inadvertent granting of
rights to an untrusted client that could compromise the security of the server.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
FtpAuthenticateClient, FtpGetClientAccess, FtpSetClientAccess

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/ftpsrv/library/useraccess.html

 FtpEnableCommand Function

BOOL WINAPI FtpEnableCommand(
 HSERVER hServer,
 LPCTSTR lpszCommand,
 BOOL bEnable
);

Enable or disable a specific server command

Parameters
hServer

The server handle.

lpszCommand

A pointer to a NULL terminated string that specifies the name of the command to be enabled
or disabled. The command name is not case-sensitive, but the value must otherwise match the
exact name. Partial matches are not recognized by this function. This parameter cannot be
NULL.

bEnable

An integer value which specifies if the command should be enabled or disabled. If the value is
non-zero, the command is enabled. If the value is zero, the command will be disabled.

Return Value
If the function succeeds, the return value is non-zero. If the server handle is invalid or the
command is not recognized, the function will return zero. If the function fails, the
FtpGetServerError function will return more information about the last error that has occurred.

Remarks
The FtpEnableCommand function is used to enable or disable access to a specific command on
the server. When a command is disabled, it will also disable any corresponding feature related to
that command. For example, if the MDTM command is disabled and a client issues the FEAT
command to request a list of supported features, the command will no longer be listed. This
function is typically used to enable or disable certain commands for compatibility with older client
software. The FtpIsCommandEnabled function can be used to determine if a command is
enabled or not.

The command name provided to this function must match the commands defined in RFC 959 or
related protocol standards. It is important to distinguish between commands recognized by an
FTP server and the commands that client programs may use. For example, the standard Windows
FTP command line program provides commands such as GET and PUT to download and upload
files. However, those are not the actual commands sent to a server. Instead, the corresponding
server commands issued by a client application would bet RETR (retrieve) and STOR (store). Refer
to File Transfer Protocol Commands for a complete list of server commands.

Some commands cannot be disabled because they are required to perform essential server
functions. For example, the USER and PASS commands are required to perform client
authentication and therefore cannot be disabled. If you attempt to disable a required command,
this function will return zero and the last error code will be set to
ST_ERROR_COMMAND_REQUIRED. Because this function affects all clients connected to the
server, it should not be used to limit access to certain commands for specific clients. Instead, either
assign the client the appropriate permissions using the FtpAuthenticateClient function, or use an

file:///C|/Projects/cstools11/pdf/ftpsrv/library/commands.html
file:///C|/Projects/cstools11/pdf/ftpsrv/library/commands.html

event handler to filter the commands.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpAuthenticateClient, FtpIsCommandEnabled

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpEnumServerClients Function

INT WINAPI FtpEnumServerClients(
 HSERVER hServer,
 DWORD dwReserved
 UINT * lpClients,
 INT nMaxClients
);

Return a list of active client sessions established with the specified server.

Parameters
hServer

Handle to the server socket.

dwReserved

An unsigned integer value that is reserved for future use. This parameter should always be zero.

lpClients

Pointer to an array of unsigned integers which will contain client IDs that uniquely identifies each
client when the function returns. If this parameter is NULL, then the function will return the
number of active client connections established with the server.

nMaxClients

Maximum number of client IDs to be returned in the lpClients array. If the lpClients parameter
is NULL, this parameter should have a value of zero.

Return Value
If the function succeeds, the return value is the number of active client connections to the server. If
the function fails, the return value is FTP_ERROR. To get extended error information, call
FtpGetServerError.

Remarks
If the nMaxClients parameter is less than the number of active client connections, the function will
fail and the last error code will be set to the error ST_ERROR_BUFFER_TOO_SMALL. To dynamically
determine the number of active connections, call the function with the lpClients parameter with a
value of NULL, and the nMaxClients parameter with a value of zero.

Example
INT nClients = FtpEnumServerClients(hServer, 0, NULL, 0);

if (nClients > 0)
{
 UINT *lpClients = NULL;

 // Allocate memory for an array of client IDs
 lpClients = (UINT *)LocalAlloc(LPTR, nClients * sizeof(UINT));

 if (lpClients == NULL)
 {
 // Virtual memory has been exhausted
 return;
 }

 nClients = FtpEnumServerClients(hServer, 0, lpClients, nClients);

 if (nClients == FTP_ERROR)
 {
 // Unable to obtain list of connected clients
 return;
 }

 for (INT nIndex = 0; nIndex < nClients; nIndex++)
 {
 TCHAR szUserName[FTP_MAXUSERNAME];

 if (FtpGetClientUserName(hServer, lpClients[nIndex], szUserName,
FTP_MAXUSERNAME))
 {
 // Perform some action with the client user name
 }
 }

 // Free the memory allocated for the client IDs
 LocalFree((HLOCAL)lpClients);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
FtpServerStart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetActiveClient Function

UINT WINAPI FtpGetActiveClient(
 HSERVER hServer
);

Return the client ID for the active client session associated with the current thread.

Parameters
hServer

The server handle.

Return Value
If the function succeeds, the return value is the unique ID associated with the client session for the
current thread. If the server handle is invalid or there is no client session active on the current
thread, the return value is zero.

Remarks
The FtpGetActiveClient function is used to obtain the client ID associated with the current thread.
This means this function will only return a client ID if it is called within an event handler or a
function called by an event handler. If this function is called by a function that is not executing
within the context of an event handler it will return a value of zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
FtpEnumServerClients, FtpGetClientThreadId

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetClientAccess Function

BOOL WINAPI FtpGetClientAccess(
 HSERVER hServer,
 UINT nClientId,
 LPDWORD lpdwUserAccess
);

Return the access rights that have been granted to the client session.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

lpdwUserAccess

A pointer to an unsigned integer which specifies one or more access rights for the client session.
For a list of user access rights that can be granted to the client, see User Access Constants. This
parameter cannot be NULL.

Return Value
If the function succeeds, the return value is non-zero. If the server handle and client ID do not
specify a valid client session, the function will return zero. This function can only be used with
authenticated clients. If the client session has not been authenticated, the return value will be zero.

Remarks
The FtpGetClientAccess function is used to obtain all of the access rights that are currently
granted to an authenticated client session. The FtpEnableClientAccess function can be used to
enable or disable specific permissions, and the FtpSetClientAccess function can change multiple
access rights at once.

Example
DWORD dwUserAccess = 0;

// Check if the client is a restricted user

if (FtpGetClientAccess(hServer, nClientId, &dwUserAccess))
{
 if (dwUserAccess & FTP_ACCESS_RESTRICTED)
 {
 _tprintf(_T("Client %u authenticated as a restricted user\n"),
nClientId);
 return;
 }
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

file:///C|/Projects/cstools11/pdf/ftpsrv/library/useraccess.html

See Also
FtpAuthenticateClient, FtpEnableClientAccess, FtpSetClientAccess

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetClientAddress Function

INT WINAPI FtpGetClientAddress(
 HSERVER hServer,
 UINT nClientId,
 LPTSTR lpszAddress,
 INT nMaxLength
);

Return the IP address of the specified client session.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

lpszAddress

A pointer to a string buffer that will contain the client IP address, terminated with a null
character. To accommodate both IPv4 and IPv6 addresses, this buffer should be at least 46
characters in length. This parameter cannot be NULL.

nMaxLength

An integer value that specifies the maximum number of characters can be copied into the string
buffer, including the terminating null character. This value must be greater than zero. If the
buffer size is too small, the function will fail.

Return Value
If the function succeeds, the return value is the number of characters copied into the string buffer,
not including the terminating null character. If either the server handle or the client ID is invalid, or
the buffer is not large enough to store the complete address, the function will return a value of
zero.

Remarks
The format and length of IPv4 and IPv6 address strings are very different. An IPv4 address string
looks like "192.168.0.20", while an IPv6 address string can look something like
"fd7c:2f6a:4f4f:ba34::a32". If your application checks for the format of these address strings, it
needs to be aware of the differences. You also need to make sure that you're providing enough
space to display or store an address to avoid buffer overruns.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpGetServerAddress

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetClientCredentials Function

BOOL WINAPI FtpGetClientCredentials(
 HSERVER hServer,
 UINT nClientId,
 LPFTPCLIENTCREDENTIALS lpCredentials
);

Return the user credentials for the specified client session.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

lpCredentials

A pointer to an FTPCLIENTCREDENTIALS structure that will contain information about the user
when the function returns. This parameter cannot be NULL.

Return Value
If the user credentials for the client session are available, the return value is non-zero. If the server
handle and client ID do not specify a valid client session, or the client has not requested
authentication, this function will return zero.

Remarks
The FtpGetClientCredentials function is used to obtain the username and password that was
provided by the client when it requested authentication. Typically this function is used in an event
handler to validate the credentials provided by the client. If the credentials are considered valid,
the event handler would then call the FtpAuthenticateClient function to specify that the session
has been authenticated.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpAuthenticateClient, FTPCLIENTCREDENTIALS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetClientDirectory Function

INT WINAPI FtpGetClientDirectory(
 HSERVER hServer,
 UINT nClientId,
 LPTSTR lpszDirectory,
 INT nMaxLength
);

Returns the current working directory for the specified client session.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

lpszDirectory

A pointer to a string buffer that will contain the current working directory for the specified client
session, terminated with a null character. This buffer should be at least MAX_PATH characters in
length. This parameter cannot be NULL.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer, including the terminating null character. This value must be larger than zero or the
function will fail.

Return Value
If the function succeeds, the return value is the number of characters copied into the string buffer,
not including the terminating null character. If the server handle and client ID do not specify a
valid client session, the function will return zero.

Remarks
This function returns the full path to the current working directory for the specified client session.
For example, if the server root directory is C:\ProgramData\MyServer and the current working
directory for the client is /Research/Documents, this function will return
C:\ProgramData\MyServer\Research\Documents as the current working directory for the client
session.

It is important to note that the current working directory for client sessions is virtual, and does not
reflect the current working directory for the server process. To change the current working
directory for a client, use the FtpChangeClientDirectory function.

This function should only be used with client sessions that have been authenticated.
Unauthenticated clients are not assigned a current working directory and this function will return
zero, with the last error code set to ST_ERROR_AUTHENTICATION_REQUIRED.

To convert a full path to the virtual path for a specific client session, use the
FtpGetClientVirtualPath function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)

Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpChangeClientDirectory, FtpGetClientHomeDirectory, FtpGetClientVirtualPath

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetClientFileType Function

BOOL WINAPI FtpGetClientFileType(
 HSERVER hServer,
 UINT nClientId,
 UINT * lpnFileType
);

Return the current file type used for transfers by the specified client.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

lpnFileType

A pointer to an unsigned integer value that will contain the current file type used by the client
for data transfers. This parameter cannot be NULL.

Return Value
If the function succeeds, the return value is non-zero. If the server handle and client ID do not
specify a valid client session, the function will return zero.

Remarks
The FtpGetClientFileType function will return the current file type that has been specified by the
client sending the TYPE command to the server. The file type determines if there is any conversion
performed on the data that is being exchanged between the client and server. The following file
types are supported:

Value Description

FILE_TYPE_ASCII
(1)

The file is a text file using the ASCII character set. For those clients which use
a different end-of-line character sequence, the text file has been converted
to the local format which uses the carriage return (CR) and linefeed (LF)
characters.

FILE_TYPE_IMAGE
(3)

The file is a binary file and no data conversion of any type has been
performed on the file. This is the default file type for most data files and
executable programs. If the client specified this file type when appending to
a text file, the file will contain the end-of-line sequences used by its native
operating system.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
FtpSetClientFileType

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetClientHomeDirectory Function

INT WINAPI FtpGetClientHomeDirectory(
 HSERVER hServer,
 UINT nClientId,
 LPTSTR lpszDirectory,
 INT nMaxLength
);

Returns the home directory for the specified client session.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

lpszDirectory

A pointer to a string buffer that will contain the home directory for the specified client session,
terminated with a null character. This buffer should be at least MAX_PATH characters in length.
This parameter cannot be NULL.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer, including the terminating null character. This value must be larger than zero or the
function will fail.

Return Value
If the function succeeds, the return value is the number of characters copied into the string buffer,
not including the terminating null character. If the server handle and client ID do not specify a
valid client session, the function will return zero.

Remarks
This function returns the full path to the home working directory assigned to the specified client
session. This will be the same path to the home directory specified when the
FtpAuthenticateClient function was used to authenticate the client session. If a home directory
was not explicitly assigned when the client was authenticated, then this function returns the default
home directory that was created for the client, or the server root directory if the
FTP_SERVER_MULTIUSER option was not specified when the server was started.

This function should only be used with client sessions that have been authenticated.
Unauthenticated clients are not assigned a home directory and this function will return zero, with
the last error code set to ST_ERROR_AUTHENTICATION_REQUIRED.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also

FtpAuthenticateClient, FtpChangeClientDirectory, FtpGetClientDirectory, FtpGetClientVirtualPath

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetClientIdentity Function

INT WINAPI FtpGetClientIdentity(
 HSERVER hServer,
 UINT nClientId,
 LPTSTR lpszIdentity,
 INT nMaxLength
);

Return the identity of the specified client session.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

lpszIdentity

A pointer to a string buffer that will contain the identity of the client when the function returns,
terminated with a null character. This parameter cannot be NULL. It is recommended that this
buffer be at least 32 characters in length.

nMaxLength

An integer value that specifies the maximum number of characters can be copied into the string
buffer, including the terminating null character. This value must be greater than zero. If the
buffer size is too small, the function will fail.

Return Value
If the function succeeds, the return value is the number of characters copied into the string buffer,
not including the terminating null character. If the server handle is invalid, or the buffer is not large
enough to store the complete path, the function will return a value of zero. If the client did not
identify itself, this function will return zero.

Remarks
The FtpGetClientIdentity function returns the string that the client used to identify itself to the
server. The client may use either the CLNT or CSID command to identify itself. Although the CLNT
command is considered to be deprecated, it is supported for backwards compatibility with older
clients. The identity string does not have any standard format and is used for informational
purposes only and does not affect the operation of the server in any way. Not all clients identify
themselves, in which case this function will return zero and the lpszIdentity string buffer will be set
to an empty string.

If the client does identify itself, it typically uses the name of the client application that was used to
establish the connection. The application may choose to assign an identity to a client session for its
own internal purposes using the FtpSetClientIdentity function, regardless of whether the client
identifies itself.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpGetServerIdentity, FtpSetClientIdentity, FtpSetServerIdentity

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetClientIdleTime Function

UINT WINAPI FtpGetClientIdleTime(
 HSERVER hServer,
 UINT nClientId,
 UINT * lpnElapsed
);

Return the idle timeout period for the specified client session.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

lpnElapsed

A pointer to an unsigned integer value that will contain the number of seconds the client
session has been idle. This parameter may be NULL if this information is not required.

Return Value
If the function succeeds, the return value is client idle timeout period in seconds. If the server
handle and client ID do not specify a valid client session, the function will return zero.

Remarks
The FtpGetClientIdleTime function will return the number of seconds that the client may remain
idle before being automatically disconnected by the server. The idle time of a client session is
based on the last time a command was issued to the server or when a file data transfer
completed. The server will never disconnect a client that is in the process of uploading or
downloading a file, regardless of the idle timeout period.

The default idle timeout period for a client is 900 seconds (15 minutes), however the server can be
configured to use a different value and individual clients can request the timeout period be
changed by sending the IDLE command to the server. For a client to be able to change its own
timeout period, it must be granted the FTP_ACCESS_IDLE permission. The minimum timeout
period for a client is 60 seconds, the maximum is 7200 seconds (2 hours). An application can
change the timeout period for a specific client session using the FtpSetClientIdleTime function.

It is important to note that the idle timeout period only affects authenticated clients.
Unauthenticated clients use a different internal timer that limits the amount of time they can
remain connected to the server before successfully authenticating with a valid username and
password. By default, the authentication timeout period is 60 seconds and is set when the server is
started; it cannot be changed for an individual client session.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
FtpSetClientIdleTime

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetClientLocalPath Function

INT WINAPI FtpGetClientLocalPath(
 HSERVER hServer,
 UINT nClientId,
 LPCTSTR lpszVirtualPath,
 LPTSTR lpszLocalPath,
 INT nMaxLength,
);

Return the full local path for a virtual filename or directory on the server.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

lpszVirtualPath

A pointer to a string that specifies an virtual path on the server. This parameter cannot be NULL.

lpszLocalPath

A pointer to a string buffer that will contain the full local path, terminated with a null-character.
This buffer should be at least MAX_PATH characters to accommodate the complete path. This
parameter cannot be NULL.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer, including the terminating null character. This value must be greater than zero.

Return Value
If the function succeeds, the return value is the number of characters copied into the string buffer,
not including the terminating null character. If the server handle and client ID do not specify a
valid client session, the function will return zero. If the string buffer is not large enough to contain
the complete path, this function will return zero and the last error code will be set to
ST_ERROR_BUFFER_TOO_SMALL.

Remarks
The FtpGetClientLocalPath function takes a virtual path and returns the full path to the specified
file or directory on the local system. The virtual path may be absolute or relative to the current
working directory for the client session. This function will recognize a tilde at the beginning of the
path to specify the client home directory.

To obtain the virtual path for a local file or directory, use the FtpGetClientVirtualPath function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also

FtpGetClientVirtualPath

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetClientServer Function

HSERVER WINAPI FtpGetClientServer(
 UINT nClientId
);

The FtpGetClientServer function returns a handle to the server that created the specified client
session.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

Return Value
If the function succeeds, the return value is the handle to the server that created the client session.
If the function fails, the return value is INVALID_SERVER. To get extended error information, call
the FtpGetServerError function.

Remarks
The FtpGetClientServer function returns the handle to the server that created the client session
and is typically used within a notification message handler. If the server is in the process of
shutting down, or the client session thread is terminating, this function will fail and return
INVALID_SERVER indicating that the session ID is invalid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cstools11.h.
Import Library: csftsv11.lib

See Also
FtpServerAsyncNotify

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetClientThreadId Function

DWORD WINAPI FtpGetClientThreadId(
 HSERVER hServer,
 UINT nClientId
);

Returns the thread ID associated with the specified client session.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

Return Value
If the function succeeds, the return value is a thread ID. If the function fails, the return value is
zero. To get extended error information, call the FtpGetServerError function.

Remarks
The FtpGetClientThreadId function returns a thread ID that can be used to identify the thread
that is managing the client session. The thread ID can be used with other Windows API functions
such as OpenThread. Exercise caution when using thread-related functions, interfering with the
normal operation of the thread can have unexpected results. You should never use this function to
obtain a thread handle and then call the TerminateThread function to terminate a client session.
This will prevent the thread from releasing the resources that were allocated for the session and
can leave the server in an unstable state. To terminate a client session, use the
FtpDisconnectClient function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
FtpEnumServerClients, FtpGetActiveClient

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetClientUserName Function

INT WINAPI FtpGetClientUserName(
 HSERVER hServer,
 UINT nClientId,
 LPTSTR lpszUserName,
 INT nMaxLength
);

Return the user name associated with the specified client session.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

lpszUserName

A pointer to a string buffer that will contain the user name associated with the client session.
This buffer must be large enough to store the complete user name, including the terminating
null character. This parameter cannot be NULL.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer, including the terminating null character. This parameter must have a value larger
than zero.

Return Value
If the function succeeds, the return value is the number of characters copied into the string buffer,
not including the terminating null character. If the server handle and client ID do not specify a
valid client session, the function will return zero.

Remarks
The FtpGetClientUserName function returns the user name associated with an authenticated
client session. If the client has not authenticated itself by sending the USER and PASS commands,
this function will return zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpAuthenticateClient, FtpGetClientAccess, FtpGetClientHomeDirectory

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetClientVirtualPath Function

INT WINAPI FtpGetClientVirtualPath(
 HSERVER hServer,
 UINT nClientId,
 LPCTSTR lpszLocalPath,
 LPTSTR lpszVirtualPath,
 INT nMaxLength,
);

Return the virtual path for a local file on the server.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

lpszLocalPath

A pointer to a string that specifies an absolute path on the local system. This parameter cannot
be NULL.

lpszVirtualPath

A pointer to a string buffer that will contain the virtual path, terminated with a null-character.
This buffer should be at least MAX_PATH characters to accommodate the complete path. This
parameter cannot be NULL.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer, including the terminating null character. This value must be greater than zero.

Return Value
If the function succeeds, the return value is the number of characters copied into the string buffer,
not including the terminating null character. If the server handle and client ID do not specify a
valid client session, the function will return zero. If the string buffer is not large enough to contain
the complete path, this function will return zero and the last error code will be set to
ST_ERROR_BUFFER_TOO_SMALL.

Remarks
A virtual path for the client is either relative to the server root directory, or the client home
directory if the client was authenticated as a restricted user. These virtual paths are what the client
will see as an absolute path on the server. For example, if the server was configured to use
"C:\ProgramData\MyServer" as the root directory, and the lpszLocalPath parameter was specified
as "C:\ProgramData\MyServer\Documents\Research", this function would return the virtual path to
that directory as "/Documents/Research".

If the client session was authenticated as a restricted user, then the virtual path is always relative to
the client home directory instead of the server root directory. This is because restricted users are
isolated to their own home directory and any subdirectories. For example, if restricted user "John"
has a home directory of "C:\ProgramData\MyServer\Users\John" and the lpszLocalPath
parameter was specified as "C:\ProgramData\MyServer\Users\John\Accounting\Projections.pdf"
this function would return the virtual path as "/Accounting/Projections.pdf".

If the lpszLocalPath parameter specifies a file or directory outside of the server root directory, this
function will return zero and the last error code will be set to ST_ERROR_INVALID_FILE_NAME. This
function can only be used with authenticated clients. If the nClientId parameter specifies a client
session that has not been authenticated, this function will return zero and the last error code will
be ST_ERROR_AUTHENTICATION_REQUIRED.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpGetCommandFile, FtpGetClientLocalPath

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetCommandFile Function

INT WINAPI FtpGetCommandFile(
 HSERVER hServer,
 UINT nClientId,
 LPTSTR lpszFileName,
 INT nMaxLength
);

Get the full path to the local file name or directory specified by the client

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

lpszFileName

A pointer to a string buffer that will contain the full path to a file name or directory specified by
the client when it issued a command. The string buffer will be null terminated and must be large
enough to store the complete file path. This parameter cannot be NULL.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer. It is recommended that the buffer be at least MAX_PATH characters in size. If the
maximum length specified is smaller than the actual length of the full path, this function will fail.

Return Value
An integer value which specifies the number of characters copied into the buffer, not including the
terminating null character. If the function fails, the return value will be zero and the
FtpGetServerError function can be used to retrieve the last error code. If the last error code is
returned as a value of zero, this means that the command issued by the client accepts a file name
as an argument, but the client did not specify one.

Remarks
The FtpGetCommandFile function is used to obtain the full path to a local file name or directory
specified by the client as an argument to a standard FTP command. For example, if the client
sends the RETR command to the server, this function will return the complete path to the local file
that the client wants to download. This function will only work with those standard commands that
perform some action on a file or directory.

This function should always be used to obtain the file name for a command that performs a file or
directory operation. The FtpGetCommandParam function will return the actual command
parameter, but the file name will typically be relative to the user home directory or server root
directory, and cannot be passed directly to a Windows API function. The FtpGetCommandFile
function normalizes the path provided by the client and ensures that it specifies a file or directory
name in the correct location.

To change the file or directory name that is the target of the current command, use the
FtpSetCommandFile function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)

Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpGetClientDirectory, FtpGetClientHomeDirectory, FtpGetCommandLine, FtpGetCommandParam,
FtpSetCommandFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetCommandLine Function

INT WINAPI FtpGetCommandLine(
 HSERVER hServer,
 UINT nClientId,
 LPTSTR lpszCmdLine,
 INT nMaxLength
);

Return the complete command line issued by the client.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

lpszCmdLine

A pointer to a string buffer that will contain the command, including all arguments. The string
buffer will be null terminated and must be large enough to store the complete command line. If
this parameter is NULL, the function will return the length of the command line.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer. The internal limit on the maximum length of a command is 1024 characters. If the
maximum length specified is smaller than the actual length of the complete command, this
function will fail.

Return Value
An integer value which specifies the number of characters copied into the buffer, not including the
terminating null character. If the function fails, the return value will be zero and the
FtpGetServerError function can be used to retrieve the last error code. If the last error code has a
value of zero then no command has been issued by the client.

Remarks
The FtpGetCommandLine function is used to obtain the command that was issued by the client,
and is commonly used inside FTP_CLIENT_COMMAND and FTP_CLIENT_RESULT event handlers to
pre-process and post-process client commands, respectively. When the function returns, the string
buffer provided by the caller will contain the complete command, including all command
parameters. Any extraneous whitespace will be removed, however quoted parameters will be
retained as-is.

To obtain a specific parameter to a command, use the FtpGetCommandParam function. The
FtpGetCommandParamCount function will return the number of command parameters that
were provided by the client. If the command sent by the client is used to perform an action on a
file or directory, the FtpGetCommandFile function should be called to obtain the full path to the
specified file rather than using the value of the command parameter.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpGetCommandFile, FtpGetCommandParam

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetCommandName Function

INT WINAPI FtpGetCommandName
 HSERVER hServer,
 UINT nClientId,
 LPTSTR lpszCommand,
 INT nMaxLength
);

Return the name of the last command issued by the client.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

lpszCommand

A pointer to a string buffer that will contain the command name. The string buffer will be null
terminated and must be large enough to store the complete command name. If this parameter
is NULL, the function will only return the length of the current command in characters, not
including the terminating null character.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer, including the terminating null character. If the maximum length specified is smaller
than the actual length of the parameter, this function will fail. If the lpszCommand parameter is
NULL, this value should be zero.

Return Value
An integer value which specifies the number of characters copied into the buffer, not including the
terminating null character. If the function fails, the return value will be zero and the
FtpGetServerError function can be used to retrieve the last error code. If the last error code is
returned as a value of zero, this means that no command has been issued by the client.

Remarks
The FtpGetCommandName function is used to obtain the name of the last command that was
issued by the client. The command name returned by this function will always be capitalized,
regardless of how it was sent by the client. This function is typically used inside
FTP_CLIENT_COMMAND and FTP_CLIENT_RESULT event handlers to pre-process and post-
process client commands, respectively.

The FtpGetCommandParam function can be used to return the value of individual command
parameters specified by the client. The FtpGetComandLine function can be used to obtain the
complete command line issued by the client.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpGetCommandFile, FtpGetCommandLine, FtpGetCommandParam

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetCommandParam Function

INT WINAPI FtpGetCommandParam
 HSERVER hServer,
 UINT nClientId,
 INT nParam,
 LPTSTR lpszParam,
 INT nMaxLength
);

Return the value of the specified command parameter from the last command issued by the client.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

nParam

An integer value which specifies the command parameter. A value of zero specifies the
command itself, while values greater than zero specify a particular parameter. This function will
fail if this value is less than zero or greater than the number of parameters available.

lpszParam

A pointer to a string buffer that will contain the command parameter. The string buffer will be
null terminated and must be large enough to store the complete parameter value. If this
parameter is NULL, the function will only return the length of the specified parameter in
characters, not including the terminating null character.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer, including the terminating null character. The internal limit on the maximum length
of a command is 1024 characters. If the maximum length specified is smaller than the actual
length of the parameter, this function will fail. If the lpszParam parameter is NULL, this value
should be zero.

Return Value
An integer value which specifies the number of characters copied into the buffer, not including the
terminating null character. If the function fails, the return value will be zero and the
FtpGetServerError function can be used to retrieve the last error code. If the last error code is
returned as a value of zero, this means that no command has been issued by the client.

Remarks
The FtpGetCommandParam function is used to obtain a specific parameter for the last
command that was issued by the client. If the parameter was surrounded in quotes, those quotes
will be included in the value returned by this function. This function is typically used inside
FTP_CLIENT_COMMAND and FTP_CLIENT_RESULT event handlers to pre-process and post-
process client commands, respectively.

The FtpGetCommandParamCount function will return the number of command parameters that
were provided by the client. If the command sent by the client is used to perform an action on a
file or directory, the FtpGetCommandFile function should be called to obtain the full path to the

specified file rather than using the value of the command parameter. To obtain the complete
command line, use the FtpGetCommandLine function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpGetCommandFile, FtpGetCommandLine, FtpGetCommandName,
FtpGetCommandParamCount

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetCommandParamCount Function

INT WINAPI FtpGetCommandParamCount
 HSERVER hServer,
 UINT nClientId
);

Return the number of command parameters for the last command issued by the client.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

Return Value
An integer value which specifies the number of parameters that were specified in the last
command issued by the client. If the command did not include any parameters, this function will
return zero. If the client has not issued a command, or the client session ID is invalid, this function
will return -1.

Remarks
The FtpGetCommandParamCount function is used to determine the number of parameters
specified in the last client command, and the maximum value that may be passed as the
parameter index to the FtpGetCommandParam function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
FtpGetCommandLine, FtpGetCommandName, FtpGetCommandParam

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetCommandResult Function

INT WINAPI FtpGetCommandResult(
 HSERVER hServer,
 UINT nClientId,
 LPTSTR lpszResult,
 INT nMaxLength
);

Return the result code and description for the last command issued by the client.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

lpszResult

A pointer to a string buffer that will contain the description of the result code. The string buffer
will be null terminated up to the maximum number of characters specified by the caller. This
parameter can be NULL if this information is not required.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer. If the lpszResult parameter is NULL, this value should be zero.

Return Value
An integer value which specifies the result code for the last command issued by the client. A return
value of zero indicates that the command has not completed and there is no result code available.

Remarks
The FtpGetCommandResult function is used to determine the result of the last command that
was issued by the client and is typically called in the FTP_CLIENT_RESULT event handler. This
function should only be called after a command has been processed or the FtpSendResponse
function has been called.

The result code is a three-digit integer value that indicates the success or failure of a command.
Whenever a client sends a command to the server, the server must respond with this numeric
code, and optionally a text message that further describes the result. The text message may be a
single line, or it may span multiple lines, with each line of text terminated by a carriage return and
linefeed. Result codes are generally broken down into the following categories:

Result Code Description

100-199 Result codes in this range indicate that the requested action is being initiated, and
the client should expect another reply from the server before proceeding. This is
normally used with file transfers, indicating to the client that the data transfer has
started.

200-299 Result codes in this range indicate that the server has successfully completed the
requested action. One exception is the 202 result code which indicates that the
command is not implemented, but the client should not consider this to be an
error condition.

300-399 Result codes in this range indicate that the requested action cannot complete
until additional information is provided to the server. This is normally used with
commands that require a specific sequence to complete. For example, the server
will send the 331 result code in response to the USER command, which tells the
client that it must send the PASS command to complete the authentication
process.

400-499 Result codes in this range indicate that the requested action did not take place,
but the error condition is temporary and may be attempted again. This error
response is usually the result of a failed authentication attempt or a file transfer
that could not complete.

500-599 Result codes in this range indicate that the requested action did not take place
and the failure is permanent. The client should not attempt to send the command
again. This error response is usually the result of an invalid command name, a
syntax error or the client not having the appropriate access rights to a resource.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpSendResponse

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetCommandUsage Function

UINT WINAPI FtpGetCommandUsage(
 HSERVER hServer,
 LPCTSTR lpszCommand
);

Return the number of times a specific command has been issued by all clients.

Parameters
hServer

The server handle.

lpszCommand

A pointer to a string that specifies a command name. The name is not case-sensitive, but must
match a valid server command exactly. This parameter cannot be NULL.

Return Value
If the function succeeds, the return value is the number of times the command has been issued by
all clients since the server was started. If the server handle or command name is invalid, or the
command has never been issued, the return value will be zero.

Remarks
The command name provided to this function must match the commands defined in RFC 959 or
related protocol standards. It is important to distinguish between commands recognized by an
FTP server and the commands that client programs may use. For example, the standard Windows
FTP command line program provides commands such as GET and PUT to download and upload
files. However, those are not the actual commands sent to a server. Instead, the corresponding
server commands issued by a client application would bet RETR (retrieve) and STOR (store). Refer
to File Transfer Protocol Commands for a complete list of server commands.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
FtpEnableCommand, FtpGetCommandLine, FtpGetCommandResult

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/ftpsrv/library/commands.html
file:///C|/Projects/cstools11/pdf/ftpsrv/library/commands.html

 FtpGetProgramExitCode Function

BOOL WINAPI FtpGetProgramExitCode(
 HSERVER hServer,
 UINT nClientId,
 LPDWORD lpdwExitCode
);

Return the exit code of the last program executed by the client.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

lpdwExitCode

A pointer to an unsigned integer that will contain the program exit code when the function
returns. This parameter cannot be NULL.

Return Value
If the function succeeds, the return value is non-zero. If the server handle and client ID do not
specify a valid client session, the function will return zero.

Remarks
The FtpGetProgramExitCode function returns the exit code of a registered program that was
executed by the client using the SITE EXEC command. By convention, most programs return an
exit code in the range of 0-255, with an exit code of zero indicating success. The exit code is
commonly used by custom programs to communicate status information back to the server
application.

Permission to use the SITE EXEC is not granted to authenticated users by default, and is limited to
only those programs which are explicitly registered with the server. Exercise caution when allowing
a client to execute a program on the server because this can expose the server to significant
security risks. The programs that are registered for use with the SITE EXEC command should be
thoroughly tested before being deployed on the server and should only be console programs that
write to standard output.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
FtpGetProgramName, FtpGetProgramOutput, FtpRegisterProgram

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetProgramName Function

INT WINAPI FtpGetProgramName(
 HSERVER hServer,
 UINT nClientId,
 LPTSTR lpszProgramName,
 INT nMaxLength
);

Return the name of the last program executed by the client.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

lpszProgramName

A pointer to a string buffer that will contain the name of the last program executed by the client.
This parameter cannot be NULL and should be at least 32 characters in size.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer, including the terminating null character. This parameter must have a value greater
than zero.

Return Value
If the function succeeds, the return value is the length of the command name. If the server handle
and client ID do not specify a valid client session, the function will return zero. If the client has not
executed any programs, this function will return zero.

Remarks
The FtpGetProgramName function returns the name of the last program that was executed by
the client using the SITE EXEC command. The name that is returned is the alias assigned to the
program, not the full path to the executable file. The server application would typically use this
function in an event handler when processing the FTP_CLIENT_EXECUTE event to determine which
program has been executed on behalf of the client. The FtpGetProgramExitCode function will
return the program's exit code and the FtpGetProgramOutput function can be used to obtain a
copy of the output generated by the program.

Permission to use the SITE EXEC is not granted to authenticated users by default, and is limited to
only those programs which are explicitly registered with the server. Exercise caution when allowing
a client to execute a program on the server because this can expose the server to significant
security risks. The programs that are registered for use with the SITE EXEC command should be
thoroughly tested before being deployed on the server and should only be console programs that
write to standard output.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpGetProgramExitCode, FtpGetProgramOutput, FtpRegisterProgram

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetProgramOutput Function

DWORD WINAPI FtpGetProgramOutput(
 HSERVER hServer,
 UINT nClientId,
 LPBYTE lpBuffer,
 DWORD dwBufferSize
);

Return a copy of the standard output from the last program executed by the client.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

lpBuffer

A pointer to a buffer that will contain the output from the last program executed by the client. If
this parameter is NULL, the function will return the number of bytes of data that was output by
the program. Note that this output is not null terminated.

dwBufferSize

The maximum number of bytes that can be copied into the buffer. If the lpBuffer parameter is
NULL, this value should be zero.

Return Value
If the function succeeds, the return value is the number of bytes copied into the specified buffer. If
the server handle and client ID do not specify a valid client session, the function will return zero. If
the client has not executed any programs, the return value will be zero.

Remarks
The FtpGetProgramOutput function is used to obtain a copy of the output generated by the
program executed using the SITE EXEC command. To determine the number of bytes of output
available to read, call this function with the lpBuffer parameter as NULL and the dwBufferSize
parameter with a value of zero. The return value will be the number of bytes of data that was
output by the program. It should be noted that for Unicode builds, the buffer is a byte array, not
an array of characters, and will not be null terminated.

This function returns the raw output from the command which may contain escape sequences,
control characters and embedded nulls. When the application processes the output returned by
this function, it should never coerce the buffer pointer to an LPTSTR value because there is no
guarantee that the data will be null-terminated. To obtain the output from the command as a
string, use the FtpGetProgramText function.

Example
LPBYTE lpBuffer = NULL; // A pointer to the output buffer
DWORD cbBuffer = 0; // Number of bytes in the output buffer

// Determine the number of bytes in the output buffer
cbBuffer = FtpGetProgramOutput(hServer, nClientId, NULL, 0);

if (cbBuffer > 0)

{
 // Allocate memory for the buffer
 lpBuffer = (LPBYTE)LocalAlloc(LPTR, cbBuffer + 1);

 // Copy the program output to the buffer
 if (lpBuffer != NULL)
 cbBuffer = FtpGetProgramOutput(hServer, nClientId, lpBuffer, cbBuffer +
1);
}

// Free the memory allocated for the buffer when finished
if (lpBuffer != NULL)
{
 LocalFree((HLOCAL)lpBuffer);
 lpBuffer = NULL;
 cbBuffer = 0;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
FtpGetProgramExitCode, FtpGetProgramName, FtpGetProgramText, FtpRegisterProgram

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetProgramText Function

INT WINAPI FtpGetProgramText(
 HSERVER hServer,
 UINT nClientId,
 LPTSTR lpszBuffer,
 INT nMaxLength
);

Return a copy of the standard output from the last program in a string buffer.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

lpszBuffer

A pointer to a buffer that will contain the output from the last program executed by the client as
a string. If this parameter is NULL, the function will return the number of bytes of characters that
was output by the program, not including a terminating null character.

nMaxLength

The maximum number of bytes that can be copied into the buffer. If the lpszBuffer parameter is
NULL, this value should be zero.

Return Value
If the function succeeds, the return value is the number of characters copied into the specified
string buffer, not including the terminating null character. If the server handle and client ID do not
specify a valid client session, the function will return zero. If the client has not executed any
programs, the return value will be zero.

Remarks
The FtpGetProgramText function is used to obtain a copy of the output generated by the
program executed using the SITE EXEC command. To determine the number of characters of
output available to read, call this function with the lpszBuffer parameter as NULL and the
nMaxLength parameter with a value of zero. The return value will be the number of characters
that were output by the program. If the application dynamically allocates the string buffer, make
sure that it allocates an extra character for the terminating null character.

This function will only return textual output from the command and any non-printable control
characters and the escape character will be replaced with a space. To obtain the unfiltered output
from the last command that was executed, use the FtpGetProgramOutput function.

Example
LPTSTR lpszBuffer = NULL; // A pointer to the output buffer
INT cchBuffer = 0; // Number of bytes in the output buffer

// Determine the number of bytes in the output buffer
cchBuffer = FtpGetProgramText(hServer, nClientId, NULL, 0);

if (cchBuffer > 0)
{

 // Allocate memory for the string buffer
 lpszBuffer = (LPTSTR)LocalAlloc(LPTR, (cchBuffer + 1) * sizeof(TCHAR));

 // Copy the program output to the buffer
 if (lpszBuffer != NULL)
 cchBuffer = FtpGetProgramText(hServer, nClientId, lpszBuffer, cchBuffer
+ 1);
}

// Free the memory allocated for the buffer when finished
if (lpszBuffer != NULL)
{
 LocalFree((HLOCAL)lpszBuffer);
 lpszBuffer = NULL;
 cchBuffer = 0;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpGetProgramExitCode, FtpGetProgramName, FtpGetProgramOutput, FtpRegisterProgram

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetRenamedFile Function

INT WINAPI FtpGetRenamedFile(
 HSERVER hServer,
 UINT nClientId,
 LPTSTR lpszFileName,
 INT nMaxLength
);

Return the original name of a file being renamed by the client.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

lpszFileName

A pointer to a string buffer that will contain the full path of the last file or directory that was
renamed. It is recommended that this buffer be at least MAX_PATH characters in size. The value
of this parameter cannot be NULL.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer, including the terminating null characters. This parameter must have a value larger
than zero.

Return Value
If the function succeeds, the return value is the length of the file or directory path, not including
the terminating null character. If the server handle and client ID do not specify a valid client
session, the function will return zero. If the client has not renamed a file or directory, this function
will return zero.

Remarks
When a client wishes to rename a file or directory, it must send two commands in sequence to the
server. The first command is RNFR (rename from) which specifies the original name of the file or
directory to be renamed. The second command is RNTO (rename to) and must be sent
immediately after the RNFR command and specifies the new name for the file or directory. The
FtpGetRenamedFile function will return the full path of the local file or directory that was
specified by the RNFR command. Typically this function is used by an event handler that processes
the FTP_CLIENT_COMMAND event to determine the original path name.

This function is only guaranteed to return a meaningful value when called within the context of the
FTP_CLIENT_COMMAND event. Calling this function outside of the event handler will return the
path of the last renamed file, but there is no way to determine at what point the client issued the
command to rename a file or directory. To obtain the new file or directory name, the
FtpGetCommandFile function should be called from within the event handler.

The RNFR and RNTO commands can also be used to move a file or directory to a new location.
For example, they could be used to move a file from one directory to another. An application
should never make the assumption that the paths of the original and new file will be the same.

Requirements

Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpGetCommandFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetServerAddress Function

INT WINAPI FtpGetServerAddress(
 HSERVER hServer,
 UINT nClientId,
 LPTSTR lpszAddress,
 INT nMaxLength
);

Return the IP address of the server.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session. This value may be zero.

lpszAddress

A pointer to a string buffer that will contain the server IP address, terminated with a null
character. To accommodate both IPv4 and IPv6 addresses, this buffer should be at least 46
characters in length. This parameter cannot be NULL.

nMaxLength

An integer value that specifies the maximum number of characters can be copied into the string
buffer, including the terminating null character. This value must be greater than zero. If the
buffer size is too small, the function will fail.

Return Value
If the function succeeds, the return value is the number of characters copied into the string buffer,
not including the terminating null character. If either the server handle or the client ID is invalid, or
the buffer is not large enough to store the complete address, the function will return a value of
zero.

Remarks
This function will return the IP address assigned to the specified server as a printable string. If the
nClientId parameter has a value of zero, this function will return the IP address assigned to the
local system. If the FTP_SERVER_NATROUTER option was specified when the server was started,
this function will return the external IP address assigned to the system. If the nClientId parameter
specifies a valid client session, this function will return the IP address that the client used to
establish the connection with the server. To determine the IP address assigned to the client, use
the FtpGetClientAddress function.

The format and length of IPv4 and IPv6 address strings are very different. An IPv4 address string
looks like "192.168.0.20", while an IPv6 address string can look something like
"fd7c:2f6a:4f4f:ba34::a32". If your application checks for the format of these address strings, it
needs to be aware of the differences. You also need to make sure that you're providing enough
space to display or store an address to avoid buffer overruns.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpGetClientAddress, FtpGetServerName, FtpSetServerAddress

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetServerDirectory Function

INT WINAPI FtpGetServerDirectory(
 HSERVER hServer,
 LPTSTR lpszDirectory,
 INT nMaxLength
);

Return the full path to the root directory assigned to the specified server.

Parameters
hServer

The server handle.

lpszDirectory

A pointer to a string buffer that will contain the server root directory, terminated with a null
character. It is recommended that this buffer be at least MAX_PATH characters in length. This
parameter cannot be NULL.

nMaxLength

An integer value that specifies the maximum number of characters can be copied into the string
buffer, including the terminating null character. This value must be greater than zero. If the
buffer size is too small, the function will fail.

Return Value
If the function succeeds, the return value is the number of characters copied into the string buffer,
not including the terminating null character. If the server handle is invalid, or the buffer is not large
enough to store the complete path, the function will return a value of zero.

Remarks
The FtpGetServerDirectory function will return the full path to the root directory assigned to the
server instance. The root directory may be specified as part of the server configuration, or if no
directory is specified by the application, a temporary root directory will be created and this
function can be used to obtain the full path to the directory. When the application specifies a root
directory, it may use environment variables such as %AppData% in the path. This function will
return the fully resolved path name, with all environment variables expanded.

There is no corresponding function to change the server root directory after the server has started.
To change the root directory, you must stop the server using the FtpServerStop function and
then start another instance of the server with a configuration that specifies the new directory.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpGetServerAddress, FtpGetServerIdentity, FtpGetServerName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetServerError Function

DWORD WINAPI FtpGetServerError(
 HSERVER hServer,
 LPTSTR lpszError,
 INT nMaxLength
);

Return the last server error code and a description of the error.

Parameters
hServer

The server handle.

lpszError

A pointer to a string buffer that will contain a description of the error. If the error description is
not needed, this parameter may be NULL.

nMaxLength

An integer that specifies the maximum number of characters that can be copied into the error
string buffer, including the terminating null character. If the lpszError parameter is NULL, this
value should be zero.

Return Value
An unsigned integer value that specifies the last error that occurred. A value of zero indicates that
there was no error.

Remarks
Error codes are unsigned 32-bit values which are private to each server. You should call the
FtpGetServerError function immediately when a function's return value indicates that an error has
occurred. That is because some functions clear the last error code when they succeed.

If the hServer parameter is specified with a value of INVALID_SERVER, this function will return the
last error that occurred for the current thread. This value should only be used when the function
does not have access to a valid server handle, such as when the FtpServerStart function fails.

It is important to note that the error codes returned by this function are different than the
command result codes that are defined in RFC 959, the standard protocol specification for FTP.
This function is used to determine reason that an API function has failed, and should not be used
to determine if a command issued by the client was successful. The FtpSendResponse function is
used to send result codes to the client, and the FtpGetCommandResult function can be used to
determine the result of the last command sent by the client.

Most functions will set the last error code value when they fail; a few functions set it when they
succeed. Function failure is typically indicated by a return value such as FALSE, NULL,
INVALID_SERVER or FTP_ERROR. Those functions which clear the last error code when they
succeed are noted on the function reference page.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpGetCommandResult, FtpSendResponse

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetServerIdentity Function

INT WINAPI FtpGetServerIdentity(
 HSERVER hServer,
 LPTSTR lpszIdentity,
 INT nMaxLength
);

Return the identity of the specified server.

Parameters
hServer

The server handle.

lpszIdentity

A pointer to a string buffer that will contain the identity of the server when the function returns,
terminated with a null character. This parameter cannot be NULL. It is recommended that this
buffer be at least 32 characters in length.

nMaxLength

An integer value that specifies the maximum number of characters can be copied into the string
buffer, including the terminating null character. This value must be greater than zero. If the
buffer size is too small, the function will fail.

Return Value
If the function succeeds, the return value is the number of characters copied into the string buffer,
not including the terminating null character. If the server handle is invalid, or the buffer is not large
enough to store the complete path, the function will return a value of zero.

Remarks
The FtpGetServerIdentity function returns the identity string that was specified as part of the
server configuration. It is used for informational purposes only and does not affect the operation
of the server. Typically the string specifies the name of the application and a version number, and
is displayed whenever a client establishes its initial connection to the server. The
FtpSetServerIdentity function can be used to change the identity string associated with the
server.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpGetClientIdentity, FtpSetClientIdentity, FtpSetServerIdentity

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetServerLogFile Function

BOOL WINAPI FtpGetServerLogFile(
 HSERVER hServer,
 UINT * lpnLogFormat,
 UINT * lpnLogLevel,
 LPTSTR lpszFileName,
 INT nMaxLength
);

Return the current log file format and the full path to the file.

Parameters
hServer

The server handle.

lpnLogFormat

A pointer to an integer value that will contain the log file format being used when the function
returns. If this information is not needed, this parameter may be NULL. The following formats
are supported:

Constant Description

FTP_LOGFILE_NONE
(0)

This value specifies that the server should not create or
update a log file.

FTP_LOGFILE_COMMON
(1)

This value specifies that the log file should use the common
log format that records a subset of information in a fixed
format. This log format usually only provides information
about file transfers.

FTP_LOGFILE_EXTENDED
(2)

This value specifies that the log file should use the standard
W3C extended log file format. This is an extensible format
that can provide additional information about the client
session.

lpnLogLevel

A pointer to an integer value that will contain the level of detail the server uses when generating
the log file. The minimum value is 1 and the maximum value is 10. If this information is not
needed, this parameter may be NULL.

lpszFileName

A pointer to a string buffer that will contain the full path to the log file. This parameter may be
NULL if this information is not required.

nMaxLength

An integer that specifies the maximum number of characters that can be copied into the file
name string, including the terminating null character. If the lpszFileName parameter is NULL,
this value should be zero.

Return Value
An integer value which specifies the current log file format. Refer to the FTPSERVERCONFIG
structure definition for a list of supported log file formats. If the server handle is invalid or logging
has not been enabled, this function will return a value of zero.

Remarks
If the server is configured with logging enabled, but a log file name is not explicitly provided, then
the server will automatically generate one. This function can be used to get the full path to the
current log file along with the format that is being used to record client session data. Normally the
log file is held open by the server thread while it is active, however you can call the
FtpRenameServerLogFile function to explicitly rename or delete the log file.

To change the name of the log file, the log file format or level of detail, use the
FtpSetServerLogFile function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpRenameServerLogFile, FtpSetServerLogFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetServerMemoryUsage Function

BOOL WINAPI FtpGetServerMemoryUsage(
 HSERVER hServer,
 ULARGE_INTEGER * lpMemUsage
);

Return the amount of memory allocated for the server and all client sessions.

Parameters
hServer

The server handle.

lpMemUsage

A pointer to a ULARGE_INTEGER variable which will specify how much memory has been
allocated by the server. This parameter will be initialized to a value of zero by the function and
updated with the total number of bytes allocated by the server and all active client sessions
when it returns.

Return Value
If the function succeeds, the return value is non-zero and the memory usage value will be
updated. If the server handle is invalid, or the server cannot be locked, the return value is zero.
Call the FtpGetServerError function to determine the cause of the failure.

Remarks
This function returns the amount of memory allocated by the server and all active client sessions. It
enumerates all of memory allocations made by the server process and client session threads and
returns the total number of bytes allocated for the server process. This value reflects the amount
of memory explicitly allocated by this library and does not reflect the total working set size of the
process, or memory allocated by any other libraries. To determine the working set size for the
process, refer to the Win32 GetProcessWorkingSetSize and GetProcessMemoryInfo functions.

This function forces the server into a locked state, and all client sessions will block until the function
returns. Because this function enumerates all heaps allocated for the server process, it can be an
expensive operation, particularly when there are a large number of active clients connected to the
server. Frequent use of this function can significantly degrade the performance of the server. It is
primarily intended for use as a debugging tool to determine if memory usage is the result of an
increase in active client sessions. If the value returned by the function remains reasonably constant,
but the amount of memory allocated for the process continues to grow, it could indicate a
memory leak in some other area of the application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpGetServerStackSize, FtpSetServerStackSize

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetServerName Function

INT WINAPI FtpGetServerName(
 HSERVER hServer,
 UINT nClientId,
 LPTSTR lpszHostName,
 INT nMaxLength
);

Return the host name assigned to the specified server.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session. This value may be zero.

lpszHostName

A pointer to a string buffer that will contain the server host name, terminated with a null
character. It is recommended that this buffer be at least 64 characters in length. This parameter
cannot be NULL.

nMaxLength

An integer value that specifies the maximum number of characters can be copied into the string
buffer, including the terminating null character. This value must be greater than zero. If the
buffer size is too small, the function will fail.

Return Value
If the function succeeds, the return value is the number of characters copied into the string buffer,
not including the terminating null character. If either the server handle or the client ID is invalid, or
the buffer is not large enough to store the complete hostname, the function will return a value of
zero.

Remarks
This function will return the host name assigned to the specified server. If the nClientId parameter
has a value of zero, the function will return the default host name that was specified as part of the
server configuration. If no host name was explicitly assigned to the server, then it will return the
local system name. If the nClientId parameter specifies a client session, then it this function will
return the host name that the client used to establish the connection. If the client sends the HOST
command to the server, this function will return the host name provided by the client.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpGetServerAddress

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetServerPriority Function

INT WINAPI FtpGetServerPriority(
 HSERVER hServer
);

Return the current priority assigned to the specified server.

Parameters
hServer

The server handle.

Return Value
If the function succeeds, the return value is the priority for the specified server. If the function fails,
the return value is FTP_PRIORITY_INVALID. To get extended error information, call
FtpGetServerError.

Remarks
The FtpGetServerPriority function can be used to determine the current priority assigned to the
server. It will return one of the following values:

Constant Description

FTP_PRIORITY_BACKGROUND
(0)

This priority significantly reduces the memory, processor and
network resource utilization for the server. It is typically used
with lightweight services running in the background that are
designed for few client connections. The server thread will be
assigned a lower scheduling priority and will be frequently
forced to yield execution to other threads.

FTP_PRIORITY_LOW
(1)

This priority lowers the overall resource utilization for the server
and meters the processor utilization for the server thread. The
server thread will be assigned a lower scheduling priority and
will occasionally be forced to yield execution to other threads.

FTP_PRIORITY_NORMAL
(2)

The default priority which balances resource and processor
utilization. This is the priority that is initially assigned to the
server when it is started, and it is recommended that most
applications use this priority.

FTP_PRIORITY_HIGH
(3)

This priority increases the overall resource utilization for the
server and the thread will be given higher scheduling priority. It
is not recommended that this priority be used on a system with
a single processor.

FTP_PRIORITY_CRITICAL
(4)

This priority can significantly increase processor, memory and
network utilization. The server thread will be given higher
scheduling priority and will be more responsive to client
connection requests. It is not recommended that this priority be
used on a system with a single processor.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)

Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cstools11.h.
Import Library: csftsv11.lib

See Also
FtpServerStart, FtpSetServerPriority

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetServerStackSize Function

DWORD WINAPI FtpGetServerStackSize(
 SOCKET hServer
);

Return the initial size of the stack allocated for threads created by the server.

Parameters
hServer

The server handle.

Return Value
If the function succeeds, the return value is the amount of memory that will be allocated for the
stack in bytes. If the function fails, the return value is zero. To get extended error information, call
FtpGetServerError.

Remarks
The FtpGetServerStackSize function returns the initial amount of memory that is committed to
the stack for each thread created by the server. By default, the stack size for each thread is set to
256K for 32-bit processes and 512K for 64-bit processes.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cstools11.h.
Import Library: csftsv11.lib

See Also
FtpGetServerMemoryUsage, FtpServerStart, FtpSetServerStackSize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetServerTransferInfo Function

BOOL WINAPI FtpGetServerTransferInfo(
 HSERVER hServer,
 UINT nClientId,
 LPFTPSERVERTRANSFER lpTransferInfo
);

Return information about the file transfer that was performed by the server for the specified client.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

lpTransferInfo

A pointer to an FTPSERVERTRANSFER structure that will contain information about the last file
transfer. This parameter cannot be NULL, and the dwSize member of the structure must be
initialized to specify the structure size prior to calling this function.

Return Value
If the function succeeds, the return value is non-zero. If the server handle and client ID do not
specify a valid client session, the function will return zero. This function should only be called after
the client has issued the APPE, RETR, STOR or STOU commands to initiate a file transfer, otherwise
the return value will be zero.

Remarks
The FtpGetServerTransferInfo function is used to obtain information about the last file transfer
that was performed by the server for the specified client. This function is typically called within an
event handler to determine how many bytes of data were transferred, the type of file and the full
path to the file on the local system.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpGetCommandResult, FTPSERVERTRANSFER

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetServerUuid Function

INT WINAPI FtpGetServerUuid(
 HSERVER hServer,
 UUID * lpUuid
);

Return the UUID assigned to the specified server.

Parameters
hServer

The server handle.

lpUuid

A pointer to a UUID structure that will contain the server UUID when the function returns. This
parameter cannot be NULL.

Return Value
If the function succeeds, the return value is non-zero. If either the server handle is invalid or the
pointer to the UUID structure is NULL, the function will return a value of zero.

Remarks
The FtpGetServerUuid function returns the Universally Unique Identifier (UUID) that has been
assigned to the server. The UUID may either be generated by the application and assigned as part
of the server configuration, or an ephemeral UUID may be automatically generated when the
server is started. To obtain a printable string version of the UUID, use the
FtpGetServerUuidString function.

There is no corresponding function to change the UUID assigned to an active server. The server
UUID is assigned when the server is started, and it must be a unique value that is maintained
throughout the lifetime of the server. To change the UUID associated with the server, the server
must be stopped using the FtpServerStop function and another instance of the server started
with the new UUID.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
FtpGetServerUuidString, FTPSERVERCONFIG

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpGetServerUuidString Function

INT WINAPI FtpGetServerUuidString(
 HSERVER hServer,
 LPTSTR lpszHostUuid,
 INT nMaxLength
);

Return the UUID assigned to the server as a printable string.

Parameters
hServer

The server handle.

lpszHostUuid

A pointer to a string buffer that will contain the server UUID, terminated with a null character. It
is recommended that this buffer be at least 40 characters in length. This parameter cannot be
NULL.

nMaxLength

An integer value that specifies the maximum number of characters can be copied into the string
buffer, including the terminating null character. This value must be greater than zero. If the
buffer size is too small, the function will fail.

Return Value
If the function succeeds, the return value is the number of characters copied into the string buffer,
not including the terminating null character. If either the server handle or the buffer is not large
enough to store the complete UUID string, the function will return a value of zero.

Remarks
The FtpGetServerUuidString function returns the Universally Unique Identifier (UUID) that has
been assigned to the server. The UUID may either be generated by the application and assigned
as part of the server configuration, or an ephemeral UUID may be automatically generated when
the server is started. To obtain the numeric UUID value, use the FtpGetServerUuid function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpGetServerUuid, FTPSERVERCONFIG

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpIsClientAnonymous Function

BOOL WINAPI FtpIsClientAnonymous(
 HSERVER hServer,
 UINT nClientId
);

Determine if the specified client has authenticated as an anonymous user.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

Return Value
If the client session has been authenticated, this function will return a non-zero value, otherwise it
will return zero. If the server handle and client ID are valid, and the client session has been
authenticated, this function will clear the last error code.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
FtpAuthenticateClient, FtpGetClientCredentials, FtpIsClientAuthenticated

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpIsClientAuthenticated Function

BOOL WINAPI FtpIsClientAuthenticated(
 HSERVER hServer,
 UINT nClientId
);

Determine if the specified client session has been authenticated.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

Return Value
If the client session has been authenticated, this function will return a non-zero value, otherwise it
will return zero. If the server handle and client ID are valid, this function will clear the last error
code.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
FtpAuthenticateClient, FtpGetClientCredentials, FtpIsClientAnonymous

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpIsCommandEnabled Function

BOOL WINAPI FtpIsCommandEnabled(
 HSERVER hServer,
 LPCTSTR lpszCommand
);

Determine if a specific server command has been enabled or disabled.

Parameters
hServer

The server handle.

lpszCommand

A pointer to a NULL terminated string that specifies the name of the command. The command
name is not case-sensitive, but the value must otherwise match the exact command name.
Partial matches are not recognized by this function. This parameter cannot be NULL.

Return Value
If the command is enabled, this function will return a non-zero value. If the command is disabled,
the server handle is invalid or the command name does not match a supported command, this
function will return zero.

Remarks
The FtpIsCommandEnabled function is used to determine whether a specific command is
enabled. Typically this function is used in an event handler to make sure the command issued by a
client is recognized by the server and enabled for use. Commands can be enabled and disabled
using the FtpEnableCommand function.

This function does not account for the permissions granted to a specific client session. Clients are
assigned access rights when they are authenticated using the FtpAuthenticateClient function,
and certain commands can be limited by the permissions granted to the client. For example, even
though the STOR command is enabled, a client must have the FTP_ACCESS_WRITE permission to
use the command to upload a file to the server. For a list of access rights, see User Access
Constants.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpAuthenticateClient, FtpEnableCommand, FtpGetCommandName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/ftpsrv/library/useraccess.html
file:///C|/Projects/cstools11/pdf/ftpsrv/library/useraccess.html

 FtpRegisterProgram Function

BOOL WINAPI FtpRegisterProgram(
 HSERVER hServer,
 UINT nHostId,
 LPCTSTR lpszCommandName,
 LPCTSTR lpszProgramFile,
 LPCTSTR lpszParameters,
 LPCTSTR lpszDirectory
);

Register a program for use with the SITE EXEC command.

Parameters
hServer

The server handle.

nHostId

An unsigned integer that identifies the virtual host associated with the program. This value
should always be zero.

lpszCommandName

A pointer to a string which specifies the name of the site specific command. This is the name
that is passed to the SITE EXEC command and does not need to match the actual name of the
executable file on the local system. The maximum length of the command name is 32
characters. This parameter cannot be NULL.

lpszProgramFile

A pointer to a string that specifies the full path to the executable program. This parameter
cannot be NULL.

lpszParameters

A pointer to a string that specifies additional parameters for the program. If the program does
not require any command line parameters, this value may be NULL or point to an empty string.

lpszDirectory

A pointer to a string that specifies the current working directory for the program. If this
parameter is NULL or points to an empty string, the server will use the current working directory
of the client that issues the SITE EXEC command.

Return Value
If the function succeeds, the return value is non-zero. If the server handle and client ID do not
specify a valid client session, the function will return zero.

Remarks
The FtpRegisterProgram function registers an executable program for use with the SITE EXEC
command. Because this can present a significant security risk to the server, clients are not given
permission to use this command by default. A client must be explicitly granted permission to use
SITE EXEC by including FTP_ACCESS_EXECUTE as one of the permissions when authenticating the
client session with the FtpAuthenticateClient function or creating a virtual user using the
FtpAddVirtualUser function.

To give the server complete control over what programs can be executed using SITE EXEC, the
program must be registered with the server and referenced by an alias specified by the

lpszCommandName parameter. The maximum length of a program name is 31 characters and it
must be at least 3 characters in length. The name must only consist of alphanumeric characters
and the first character of the program name cannot be numeric. The program name is not case-
sensitive, however convention is to use upper-case characters. If a program name is specified that
already has been registered, it will be updated with the new information provided by this function.

The lpszProgramFile string specifies file name of the program that will be executed. You should
not install any executable programs in the server root directory or its subdirectories. A client
should never have the ability to directly access the executable file itself. It is permitted to have
multiple command names that reference the same executable file. The only requirement is that the
command names be unique. The program name may contain environment variables surrounded
by % symbols. For example, %ProgramFiles% would be expanded to the C:\Program Files
folder.

It is important to note that the program specified by lpszProgramFile must be an executable file,
not a script or batch file. If the program name does not contain a directory path, then the
standard Windows pathing rules will be used when searching for an executable file that matches
the given name. It is recommended that you always provide a full path to the executable file.

The lpszParameters string is used to define optional command line parameters that will be
included with the command. This string can contain placeholders that are replaced by additional
parameters specified by the client when it sends the SITE EXEC command. First replacement
parameter is %1, the second is %2 and so on.

The executable program that is registered using this function must be a console application that
writes to standard output. Programs that write directly to a console, or programs written to use a
Windows user interface are not supported and will yield unpredictable results. In most cases, those
programs that do not use standard input and output will be forcibly terminated by the server. If
the program attempts to read from standard input, it will immediately encounter an end-of-file
condition. Programs executed by the SITE EXEC command have no input; it is similar to a program
that has its input redirected from the NUL: device. If the program must process a file on the server,
the local file name should be passed as a command line parameter.

The output from the program will be redirected back to the client control channel. The output
should be textual, with each line of text terminated by a carriage return and linefeed (CRLF).
Programs that write binary data to standard output, particular data with embedded nulls, will yield
unpredictable results and are not supported. To ensure that the program output conforms to the
protocol standard, any non-printable characters will be replaced with a space and each line of
output will be prefixed by a single space. The server application can obtain a copy of the output
from the last command by calling the FtpGetProgramOutput function.

If the server is running on a system with User Account Control (UAC) enabled and does not have
elevated privileges, do not register a program that requires elevated privileges or has a manifest
that specifies the requestedExecutionLevel as requiring administrative privileges.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpGetProgramExitCode, FtpGetProgramName, FtpGetProgramOutput

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpRenameServerLogFile Function

BOOL WINAPI FtpRenameServerLogFile(
 HSERVER hServer,
 LPCTSTR lpszFileName
);

Rename or delete the current log file being updated by the server.

Parameters
hServer

The server handle.

lpszFileName

A pointer to a string that specifies the file name the current log file should be renamed to. If this
parameter is NULL or an empty string, the current log file will be deleted.

Return Value
If the function succeeds, the return value is non-zero. If the server handle does not specify a valid
server, the function will return zero. If logging is not currently enabled for the server, this function
will return zero.

Remarks
The FtpRenameServerLogFile function is used to rename or delete the current log file. Note that
this does not change the current log file name or disable logging by the server. It only changes
the file name of the current log file, or removes the log file if the lpszFileName parameter is NULL.
This can be useful if you want your server to perform log file rotation, archiving the current log file.
By renaming the current log file, the server will automatically create a new log file with original file
name.

This function must be used to rename or delete the current log file while logging is active because
the server holds an open handle on the file. The application should not use the
FtpGetServerLogFile function to obtain the log file name and then use the MoveFileEx or
DeleteFile functions with that file.

To disable logging, use the FtpSetServerLogFile function and specify the logging format as
FTP_LOGFILE_NONE.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpGetServerLogFile, FtpSetServerLogFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpSendResponse Function

BOOL WINAPI FtpSendResponse(
 HSERVER hServer,
 UINT nClientId,
 UINT nResultCode,
 LPCTSTR lpszMessage
);

Send a result code and message to the client in response to a command.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

nResultCode

An unsigned integer value which specifies the result code.

lpszMessage

A pointer to a string which specifies a message to be sent to the client. If this parameter is NULL
or points to an empty string, a default message associated with the result code will be used.

Return Value
If the result code and message text was sent to the client, the return value is non-zero. If the
server handle and client ID do not specify a valid client session, or the result code is invalid, this
function will return zero.

Remarks
The FtpSendResponse function is used to respond to a command issued by the client. Command
responses are normally handled by the server as a normal part of processing a command and this
function is only used if the application has implemented custom commands or wishes to modify
the standard responses sent by the server. The message may be a maximum of 2048 characters
and may include embedded carriage-return and linefeed characters. If no message is specified,
then a default message will be sent based on the result code.

Result codes must be three digits (in the range of 100 through 999) and although this function will
support the use of non-standard result codes, it is recommended that the client application use
the standard codes defined in RFC 959 whenever possible. The use of non-standard result codes
may cause problems with FTP clients that expect specific result codes in response to a particular
command. For more information, refer to the FtpGetCommandResult function.

This function should only be called once in response to a command sent by the client. If a result
code has already been sent in response to a command and this function is called, it will fail and
return a value of zero. This is necessary because sending multiple result codes in response to a
single command may cause unpredictable behavior by the client.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpGetCommandResult

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpServerAsyncNotify Function

BOOL WINAPI FtpServerAsyncNotify(
 HSERVER hServer,
 HWND hWnd,
 UINT uMsg
);

Enable or disable asynchronous notification of changes in server status.

Parameters
hServer

The server handle.

hWnd

A handle to the window whose window procedure will receive the notification message.

uMsg

The user-defined message that will be sent to the notification window.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call the FtpGetServerError function.

Remarks
The FtpServerAsyncNotify function is used by an application to enable or disable asynchronous
notifications. The message window is typically the main UI window and these notifications are used
signal to the application that it should update the user interface. If the hWnd parameter is not
NULL, it must specify a valid window handle and the user-defined message must have a value of
WM_USER or higher. The application cannot specify a notification message that is reserved by the
operating system. The pseudo-handle HWND_BROADCAST cannot be specified as the
notification window. If the hWnd parameter is NULL, notifications for the specified server will be
disabled.

When asynchronous notifications are enabled for a server, the server will post the user-defined
message to the window whenever there is a change in status or after a client has connected or
disconnected from the server. The wParam message parameter will contain the notification
message and the lParam message parameter will contain the handle to the server or the client ID.
The following notification messages are defined:

Constant Description

FTP_NOTIFY_STARTUP This notification is sent when the server has started and is
preparing to accept client connections. This notification is
only sent once, and only if asynchronous notifications are
enabled immediately after the FtpServerStart function is
called. This message will not be sent once the server has
begun accepting client connections or when notification
messages are disabled and then subsequently re-enabled
at a later time. The lParam message parameter will
specify the handle to the server.

FTP_NOTIFY_LISTEN This notification is sent when the server is listening for
client connections. This notification message may be sent

to the application multiple times over the lifetime of the
server. If the server was suspended, this notification will be
sent after the application calls the FtpServerResume
function to resume accepting client connections. The
lParam message parameter will specify the handle to the
server.

FTP_NOTIFY_SUSPEND This notification is sent when the server suspends
accepting new connections because the application has
called the FtpServerSuspend function. This notification
message may be sent to the application multiple times
over the lifetime of the server. The lParam message
parameter will specify the handle to the server.

FTP_NOTIFY_RESTART This notification is sent when the server is restarted using
the FtpServerRestart function. Note that the server
socket handle provided by the lParam message
parameter will specify the new socket handle of the
restarted server instance, not the original socket handle.
The lParam message parameter will specify the handle to
the server.

FTP_NOTIFY_CONNECT This notification is sent when the server accepts a client
connection and the thread that manages the client
session has begun processing network events for that
client. This message notification will not be sent if the
client connection is rejected by the server. The lParam
message parameter will specify the unique ID of the client
that connected to the server.

FTP_NOTIFY_DISCONNECT This notification is sent when the client disconnects from
the server and the client socket has been closed. This
notification message may not occur for each client session
that is forced to terminate as the result of the server
being stopped using the FtpServerStop function. The
lParam message parameter will specify the unique ID of
the client that disconnected from the server.

FTP_NOTIFY_SHUTDOWN This notification is sent when the server thread is in the
process of terminating. At the time the application
processes this notification message, the server handle in
lParam will reference the defunct server and cannot be
used with other server functions. The lParam message
parameter will specify the handle to the server.

If asynchronous notifications are enabled, you should never use those notifications as a
replacement for an event handler. When an event occurs, the callback function that handles the
event is invoked in the context of the thread that manages the client session. The application
should exchange data with the client within that event handler and not in response to a
notification message. These notification messages should only be used to update the application
UI in response to changes in the status of the server.

The FTP_NOTIFY_CONNECT and FTP_NOTIFY_DISCONNECT notifications are different from the
other server notifications because the lParam message parameter does not specify the server

handle, but rather the unique client ID associated with the session that connected to or
disconnected from the server. Use the FtpGetClientServer function to obtain a handle to the
server that created the client session. Note that at the time the application processes the
FTP_NOTIFY_DISCONNECT notification message, the client session will have already terminated.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cstools11.h.
Import Library: csftsv11.lib

See Also
FtpGetClientServer, FtpServerStart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpServerDisableTrace Function

BOOL WINAPI FtpServerDisableTrace();

Disable the logging of network function calls.

Parameters
None.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call FtpGetServerError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
FtpServerEnableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpServerEnableTrace Function

BOOL WINAPI FtpServerEnableTrace(
 LPCTSTR lpszTraceFile,
 DWORD dwTraceFlags
);

Enable the logging of network function calls to a file.

Parameters
lpszTraceFile

A pointer to a string that specifies the name of the log file. If this parameter is NULL or points to
an empty string, a log file is created in the temporary directory for the current user.

dwTraceFlags

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

TRACE_DEFAULT
(0)

All function calls are written to the trace file. This is the default
value.

TRACE_ERROR
(1)

Only those function calls which fail are recorded in the trace file.

TRACE_WARNING
(2)

Only those function calls which fail, or return values which indicate
a warning, are recorded in the trace file.

TRACE_HEXDUMP
(4)

All functions calls are written to the trace file, plus all the data that
is sent or received is displayed, in both ASCII and hexadecimal
format.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call FtpGetServerError.

Remarks
When trace logging is enabled, the log file is opened, appended to and closed for each socket
function call. Using the same file name, you can do the same in your application to add additional
information to the file if needed. This can provide an application-level context for the entries made
by the library. Make sure that the file is closed after the data has been written. If a file name is not
specified by the caller, a file named cstrace.log will be created in the temporary directory for the
current user.

The TRACE_HEXDUMP option can produce very large files, since all data that is being sent and
received by the application is logged. To reduce the size of the file, you can enable and disable
logging around limited sections of code that you wish to analyze.

To redistribute an application that includes this debug logging functionality, the cstrcv11.dll
library must be included as part of the installation package. This library provides the trace logging
features, and if it is not available the FtpServerEnableTrace function will fail. Note that this is a
standard Windows DLL and does not need to be registered, it only needs to be redistributed with
your application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpServerDisableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpServerInitialize Function

BOOL WINAPI FtpServerInitialize(
 LPCTSTR lpszLicenseKey,
 LPINITDATA lpData
);

The FtpServerInitialize function initializes the library and validates the specified license key at
runtime.

Parameters
lpszLicenseKey

Pointer to a string that specifies the runtime license key to be validated. If this parameter is
NULL, the library will validate the development license installed on the local system.

lpData

Pointer to an INITDATA data structure. This parameter may be NULL if the initialization data for
the library is not required.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call FtpGetServerError. All other functions will fail until a
license key has been successfully validated.

Remarks
This must be the first function that an application calls before using any of the other functions in
the library. When a NULL license key is specified, the library will only function on the development
system. Before redistributing the application to an end-user, you must insure that this function is
called with a valid license key.

If the lpData argument is specified, it must point to an INITDATA structure which has been
initialized by setting the dwSize member to the size of the structure. All other structure members
should be set to zero. If the function is successful, then the INITDATA structure will be filled with
identifying information about the library.

Although it is only required that FtpServerInitialize be called once for the current process, it may
be called multiple times; however, each call must be matched by a corresponding call to
FtpServerUninitialize.

This function dynamically loads other system libraries and allocates thread local storage. If you are
calling the functions in this library from within another DLL, it is important that you do not call the
FtpServerInitialize or FtpServerUninitialize functions from the DllMain function because it can
result in deadlocks or access violation errors. If the DLL is linked with the C runtime library (CRT), it
will automatically call the constructors and destructors for static and global C++ objects and has
the same restrictions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpServerStart, FtpServerStop, FtpServerUninitialize, INITDATA

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpServerProc Function

VOID CALLBACK FtpServerProc(
 HSERVER hServer,
 UINT nClientId,
 UINT nEventId,
 DWORD dwError,
 DWORD_PTR dwParam
);

The FtpServerProc function is an application-defined callback function that processes events
generated by the server process.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client that has issued a request to the server.

nEventId

An unsigned integer which specifies which event occurred. For a list of events, see Server Event
Constants.

dwError

An unsigned integer which specifies any error that occurred. If no error occurred, then this
parameter will be zero. The FtpGetServerError function can be used to obtain additional
information about the error code.

dwParam

A user-defined integer value which was specified when the server was started. This value is
guaranteed to be large enough to store a pointer or handle value on both 32-bit and 64-bit
platforms.

Return Value
None.

Remarks
The FTP_CLIENT_COMMAND event can be used to filter commands issued by the client. If the
command performs an operation on a file or directory, the FtpGetCommandFile function can be
used to obtain the file name on the server that the client specified. It is possible for the application
to change the file name using the FtpSetCommandFile function to direct the server to use a
different file than the one specified by the client. If the file name is changed and the event handler
returns a value of zero, the server will perform the default action for the command using the new
file name.

The FTP_CLIENT_TIMEOUT event will only occur for authenticated client sessions. The server has a
second, internal timer that is maintained for unauthenticated sessions that requires the client to
successfully authenticate itself within a fixed period of time. If a client does not authenticate within
the allowed time period, the server will automatically close the control channel. For more
information, refer to the documentation for the nAuthTime member of the FTPSERVERCONFIG
structure.

The callback function will be called in the context of the thread that is currently managing the

file:///C|/Projects/cstools11/pdf/ftpsrv/library/eventconst.html
file:///C|/Projects/cstools11/pdf/ftpsrv/library/eventconst.html

client session. You must ensure that any access to global or static variables are synchronized,
otherwise the results may be unpredictable. It is recommended that you do not declare any static
variables within the callback function itself.

If the application has a graphical user interface, you should never attempt to directly modify a UI
control from within an event handler. Controls should only be modified by the same UI thread that
created their window. To change the user interface in response to a server event, use the
FtpServerAsyncNotify function to enable asynchronous notifications and update the UI in
response to the notification message.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
FtpServerAsyncNotify, FtpServerStart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpServerRestart Function

HSERVER WINAPI FtpServerRestart(
 HSERVER hServer
);

Restart the server, terminating all active client sessions.

Parameters
hServer

The server handle.

Return Value
If the function succeeds, the return value is the new handle for the specified server. If the function
fails, the return value is INVALID_SERVER. To get extended error information, call
FtpGetServerError.

Remarks
The FtpServerRestart function will restart the specified server, terminating all active client
sessions. The server handle that is returned by the function is the handle for the new server
instance, and the old handle value is no longer valid. If the function is unable to restart the server
for any reason, the server thread is terminated. The server retains all of the configuration
parameters from the previous instance, however the statistical information (such as the number of
clients, files transferred, etc.) will be reset.

If an application calls this function from within an event handler, the active client session (the client
for which the event handler was invoked) may not get a disconnect notification. It is
recommended that this function only be called by the same thread that created the server using
the FtpServerStart function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
FtpServerStart, FtpServerStop

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpServerResume Function

BOOL WINAPI FtpServerResume(
 HSERVER hServer
);

Resume accepting client connections.

Parameters
hServer

Handle to the server.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call FtpGetServerError.

Remarks
The FtpServerResume function instructs the server to resume accepting new client connections
after the FtpServerSuspend function has been called.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
FtpServerRestart, FtpServerStart, FtpServerStop, FtpServerSuspend, FtpServerThrottle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpServerStart Function

HSERVER WINAPI FtpServerStart(
 LPCTSTR lpszLocalHost,
 UINT nLocalPort,
 DWORD dwOptions,
 LPFTPSERVERCONFIG lpServerConfig,
 FTPSERVPROC lpServerProc,
 DWORD_PTR dwServerParam,
 LPSECURITYCREDENTIALS lpCredentials
);

The FtpServerStart function begins listening for client connections on the specified local address
and port number. The server is started in its own thread and manages the client sessions
independently of the calling thread. All interaction with the server and its client sessions takes
place inside the callback function specified by the caller.

Parameters
lpszLocalHost

A pointer to a string which specifies the local hostname or IP address address that the server
should be bound to. If this parameter is NULL or an empty string, then an appropriate address
will automatically be used. If a specific address is used, the server will only accept client
connections on the network interface that is bound to that address.

nLocalPort

The port number the server should use to listen for client connections. If a value of zero is
specified, the server will use the standard port number 21 to listen for connections, or port 990
if the server is configured to use implicit SSL. The port number used by the application must be
unique and multiple instances of a server cannot use the same port number. It is recommended
that a port number greater than 5000 be used for private, application-specific implementations.

dwOptions

An unsigned integer value that specifies the options used when creating an instance of the
server. For a list of options, see Server Option Constants.

lpServerConfig

A pointer to an FTPSERVERCONFIG structure that specifies the configuration options for the
server. If this parameter is NULL, then default configuration parameters will be used that starts
the server in a restrictive mode.

lpServerProc

Specifies the address of the application defined callback function. For more information about
the callback function, see the description of the FtpServerProc callback function. If this
parameter is NULL, a default internal handler is used to process client commands.

dwServerParam

A user-defined integer value that is passed to the callback function. If the lpServerProc
parameter is NULL, this value should be zero. This value is guaranteed to be large enough to
store a pointer or handle value on both 32-bit and 64-bit platforms.

lpCredentials

Pointer to a SECURITYCREDENTIALS structure. If this parameter is NULL, the default security
credentials for the server host name will be used. If security is enabled for the server, it is
recommended that you provide a pointer to this structure with specific information about the

file:///C|/Projects/cstools11/pdf/ftpsrv/library/options.html

server certificate that should be used. If the security options are not specified in the server
configuration, this parameter is ignored.

Return Value
If the function succeeds, the return value is a handle to a server session. If the function fails, the
return value is INVALID_SERVER. To get extended error information, call FtpGetServerError.

Remarks
In most cases, the lpszLocalHost parameter should be a NULL pointer or an empty string. On a
multihomed system, this will enable the server to accept connections on any appropriately
configured network adapter. Specifying a hostname or IP address will limit client connections to
that particular address. Note that the hostname or address must be one that is assigned to the
local system, otherwise an error will occur.

If an IPv6 address is specified as the local address, the system must have an IPv6 stack installed
and configured, otherwise the function will fail.

To listen for connections on any suitable IPv4 interface, specify the special dotted-quad address
"0.0.0.0". You can accept connections from clients using either IPv4 or IPv6 on the same socket by
specifying the special IPv6 address "::0", however this is only supported on Windows 7 and
Windows Server 2008 R2 or later platforms. If no local address is specified, then the server will only
listen for connections from clients using IPv4. This behavior is by design for backwards
compatibility with systems that do not have an IPv6 TCP/IP stack installed.

The handle returned by this function references the listening socket that was created when the
server was started. The service is managed in another thread, and all interaction with the server
and active client connections are performed inside the event handler. To disconnect all active
connections, close the listening socket and terminate the server thread, call the FtpServerStop
function.

The host UUID that is defined as part of the server configuration should be generated using the
uuidgen utility that is included with the Windows SDK. You should not use the UUID that is
provided in the example code, it is for demonstration purposes only. If no host UUID is specified in
the server configuration, an ephemeral UUID will be generated automatically when the server is
started.

If the server is started with security enabled, the lpCredentials parameter should be used to
provide the server certificate information in a SECURITYCREDENTIALS structure. If the pointer is
NULL, this function will search for a certificate that matches the hostname provided as part of the
server configuration. This requires that the server certificate be installed in the personal certificate
store of the current process user, and it must have a private key associated with it. To use a
certificate with a different name, or one that is stored in a PFX file, a SECURITYCREDENTIALS
structure must be defined and passed to this function.

Example
HSERVER hServer;
FTPSERVERCONFIG ftpConfig;

// Initialize the server configuration
ZeroMemory(&ftpConfig, sizeof(FTPSERVERCONFIG));
ftpConfig.dwSize = sizeof(ftpConfig);
ftpConfig.nMaxClients = 20;
ftpConfig.nMaxGuests = 5;
ftpConfig.nLogFormat = FTP_LOGFILE_EXTENDED;
ftpConfig.nAuthTime = 30;

ftpConfig.nIdleTime = 120;
ftpConfig.lpszIdentity = _T("MyProgram");
ftpConfig.lpszHostName = _T("server.company.com");
ftpConfig.lpszHostUuid = _T("10000000-1000-1000-1000-100000000000");
ftpConfig.lpszDirectory = _T("%ProgramData%\\MyProgram\\Files");
ftpConfig.lpszLogFile = _T("%ProgramData%\\MyProgram\\Server.log");

// Start the server
hServer = FtpServerStart(lpszLocalHost,
 FTP_PORT_DEFAULT,
 FTP_SERVER_LOCALUSER | FTP_SERVER_UNIXMODE,
 &ftpConfig,
 lpEventHandler,
 0,
 NULL);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpEnumServerClients, FtpServerProc, FtpServerRestart, FtpServerStop, FTPSERVERCONFIG,
SECURITYCREDENTIALS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpServerStop Function

BOOL WINAPI FtpServerStop(
 HSERVER hServer
);

Stop the server, terminating all active client sessions and releasing the resources that were
allocated for the server.

Parameters
hServer

The server handle.

Return Value
If the function succeeds, the return value is non-zero. If the server handle is invalid, the function
will return a value of zero.

Remarks
The FtpServerStop function instructs the server to stop accepting client connections, disconnects
all active client connections and terminates the thread that is managing the server session. The
handle is no longer valid after the server has been stopped and should no longer be used. Note
that it is possible that the actual handle value may be re-used at a later point when a new server is
started. An application should always consider the server handle to be opaque and never depend
on it being a specific value.

If an application calls this function from within an event handler, the active client session (the client
for which the event handler was invoked) may not get a disconnect notification. It is
recommended that this function only be called by the same thread that created the server using
the FtpServerStart function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
FtpServerRestart, FtpServerStart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpServerSuspend Function

BOOL WINAPI FtpServerSuspend(
 HSERVER hServer
);

Suspend the server and reject new client connections.

Parameters
hServer

Handle to the server.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call FtpGetServerError.

Remarks
The FtpServerSuspend function instructs the server to suspend accepting new client connections.
Any incoming client connections will be rejected with an error message indicating that the server is
currently unavailable. To resume accepting client connections, call the FtpServerResume function.
Suspending the server will have no effect on clients that have already established a connection
with the server.

It is recommended that you only suspend a server if absolutely necessary, and only for brief
periods of time. If you want to limit the number of active client connections or control the
connection rate for clients, use the FtpServerThrottle function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
FtpServerRestart, FtpServerResume, FtpServerStart, FtpServerStop, FtpServerThrottle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpServerThrottle Function

BOOL WINAPI FtpServerThrottle(
 HSERVER hServer,
 UINT nMaxClients,
 UINT nMaxClientsPerAddress,
 UINT nMaxGuests,
 DWORD dwConnectionRate
);

The FtpServerThrottle function limits the number of active client connections, connections per
address and connection rate.

Parameters
hServer

Handle to the server.

nMaxClients

An integer value which specifies the maximum number of clients that may connect to the server.
A value of zero specifies that there is no fixed limit to the number of client connections. A value
of -1 specifies that the maximum number of clients should not be changed.

nMaxClientsPerAddress

An integer value which specifies the maximum number of clients that may connect to the server
from the same IP address. A value of zero specifies that there is no fixed limit to the number of
client connections per address. By default, there is a limit of four client connections per address.
A value of -1 specifies that the maximum number of clients should not be changed.

nMaxGuests

An integer value which specifies the maximum number of guest users that may login to the
server. A value of zero disables guest logins and requires that all clients authenticate with a valid
username and password. A value of -1 specifies that the maximum number of guest users
should not be changed.

dwConnectionRate

A value which specifies a restriction on the rate of client connections, limiting the number of
connections that will be accepted within that period of time. A value of zero specifies that there
is no restriction on the rate of client connections. The higher this value, the fewer the number of
connections that will be accepted within a specific period of time. By default, there is no limit on
the client connection rate. A value of -1 specifies that the connection rate should not be
changed.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call FtpGetServerError.

Remarks
The FtpServerThrottle function is used to limit the number of connections and the connection
rate to minimize the potential impact of a large number of client connections over a short period
of time. This can be used to protect the server from a client application that is malfunctioning or a
deliberate denial-of-service attack in which the attacker attempts to flood the server with
connection attempts.

If the maximum number of client connections or maximum number of connections per address is
exceeded, the server will reject subsequent connection attempts until the number of active client
sessions drops below the specified threshold. Note that adjusting these values lower than the
current connection limits will not affect clients that have already connected to the server. For
example, if the FtpServerStart function is called with the maximum number of clients set to 100,
and then FtpServerThrottle is called lowering that value to 75, no existing client connections will
be affected by the change. However, the server will not accept any new connections until the
number of active clients drops below 75.

Increasing the connection rate value will force the server to slow down the rate at which it will
accept incoming client connection requests. For example, setting this parameter to a value of 1000
would limit the server to accepting one client connection every second, while a value of 250 would
allow the server to accept four client connections per second. Note that significantly increasing the
amount of time the server must wait to accept client connections can exceed the connection
backlog queue, resulting in client connections being rejected.

It is recommended that you always specify conservative connection limits for your server
application based on expected usage. Allowing an unlimited number of client connections can
potentially expose the system to denial-of-service attacks and should never be done for servers
that are accessible over the Internet.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
FtpServerRestart, FtpServerResume, FtpServerStart, FtpServerSuspend

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpServerUninitialize Function

VOID WINAPI FtpServerUninitialize();

The FtpServerUninitialize function terminates the use of the library.

Parameters
There are no parameters.

Return Value
None.

Remarks
An application is required to perform a successful FtpServerInitialize call before it can call any of
the other library functions. When it has completed the use of library, the application must call
FtpServerUninitialize to allow the library to free any resources allocated on behalf of the process.
Any pending blocking or asynchronous calls in this process are canceled without posting any
notification messages, and all sockets that were opened by the process are closed.

There must be a call to FtpServerUninitialize for every successful call to FtpServerInitialize
made by a process. Operations for all threads in the server are terminated.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpServerInitialize, FtpServerStart, FtpServerStop

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpSetClientAccess Function

BOOL WINAPI FtpSetClientAccess(
 HSERVER hServer,
 UINT nClientId,
 DWORD dwUserAccess
);

Change the access rights associated with the specified client session.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

dwUserAccess

An unsigned integer which specifies one or more user access rights. For a list of user access
rights that can be granted to the client, see User Access Constants.

Return Value
If the function succeeds, the return value is non-zero. If the server handle and client ID do not
specify a valid client session, the function will return zero. This function can only be used with
authenticated clients. If the client session has not been authenticated, the return value will be zero.

Remarks
The FtpSetClientAccess function can change the access rights for an authenticated client session.
This function can only be used after the FtpAuthenticateClient function has been used to grant
the initial set of access rights to the client. The FtpEnableClientAccess function can be used to
grant or revoke a specific permission for the client session.

The dwUserAccess parameter has a value of FTP_ACCESS_DEFAULT, then default permissions will
be granted to the client session. A normal client cannot be changed to a restricted or anonymous
client using this function. If the FTP_ACCESS_RESTRICTED or FTP_ACCESS_ANONYMOUS access
flags are specified, this function will fail.

This function cannot be used to change the access rights for a restricted or anonymous user.
Those rights are granted when the client session is authenticated and will persist until the client
disconnects from the server. This restriction is designed to prevent the inadvertent granting of
rights to an untrusted client that could compromise the security of the server.

Example
DWORD dwUserAccess = 0;

// Allow the client to execute programs using SITE EXEC
if (FtpGetClientAccess(hServer, nClientId, &dwUserAccess))
{
 if (! (dwUserAccess & FTP_ACCESS_ANONYMOUS))
 FtpSetClientAccess(hServer, nClientId, dwUserAccess |
FTP_ACCESS_EXECUTE);
}

Requirements

file:///C|/Projects/cstools11/pdf/ftpsrv/library/useraccess.html

Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
FtpAuthenticateClient, FtpEnableClientAccess, FtpGetClientAccess

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpSetClientFileType Function

BOOL WINAPI FtpSetClientFileType(
 HSERVER hServer,
 UINT nClientId,
 UINT nFileType
);

Change the current file type used for transfers by the specified client.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

nFileType

Specifies the type of file that will be uploaded or downloaded. This parameter determines
whether subsequent file transfers require any data conversion and may be one of the following
values.

Value Description

FILE_TYPE_ASCII
(1)

The file is a text file using the ASCII character set. For those clients
which use a different end-of-line character sequence, the text file
has been converted to the local format which uses the carriage
return (CR) and linefeed (LF) characters.

FILE_TYPE_IMAGE
(3)

The file is a binary file and no data conversion of any type has been
performed on the file. This is the default file type for most data files
and executable programs. If the client specified this file type when
appending to a text file, the file will contain the end-of-line
sequences used by its native operating system.

Return Value
If the function succeeds, the return value is non-zero. If the server handle and client ID do not
specify a valid client session, the function will return zero.

Remarks
The FtpSetClientFileType function will change the default file type that is used for subsequent
transfers by the client. If the file type is set to FILE_TYPE_ASCII then the server will automatically
convert any end-of-line character sequences to match the format used by the local system. For
example, if the client is connecting from a UNIX based system, the server will convert a single
linefeed character to a carriage return (CR) and linefeed (LF) sequence. If the file type is set to
FILE_TYPE_IMAGE, then no conversion is performed.

This function can be used to override the file type specified by filtering the TYPE command issued
by the client. For example, it could be used to force file transfers to use a specific type based on
the file extension, regardless of the type specified by the client. To determine the current file type
set by the client, use the FtpGetClientFileType function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)

Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
FtpGetClientFileType

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpSetClientIdentity Function

BOOL WINAPI FtpSetClientIdentity(
 HSERVER hServer,
 UINT nClientId,
 LPCTSTR lpszIdentity
);

Change the identity of the specified client session.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

lpszIdentity

A pointer to a string that identifies the client. If this parameter is NULL or specifies an empty
string, the current identity for the client is cleared. The maximum length of the identity string is
64 characters, including the terminating null character.

Return Value
If the function succeeds, the return value is non-zero. If the server handle or client ID is invalid, the
function will return a value of zero.

Remarks
The FtpSetClientIdentity function associates a string value with the client that can be used to
identify the session. The identity string does not have any standard format and is used for
informational purposes only. Typically it is used to identify the client application that was used to
establish the connection. Changing the client identity has no effect on the operation of the server.
To obtain the identity string currently associated with the client, use the FtpGetClientIdentity
function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpGetClientIdentity, FtpGetServerIdentity, FtpSetServerIdentity

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpSetClientIdleTime Function

UINT WINAPI FtpSetClientIdleTime(
 HSERVER hServer,
 UINT nClientId,
 UINT nTimeout
);

Change the idle timeout period for the specified client session.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

nTimeout

An unsigned integer value that specifies the number of seconds that the client may remain idle.
If this value is zero, the default idle timeout period for the server will be used.

Return Value
If the function succeeds, the return value is the previous client idle timeout period in seconds. If
the server handle and client ID do not specify a valid client session, the function will return zero.

Remarks
The FtpSetClientIdleTime function is will change the number of seconds that the client may
remain idle before being automatically disconnected by the server. The minimum timeout period
for a client is 60 seconds, the maximum is 7200 seconds (2 hours). The idle time of a client session
is based on the last time a command was issued to the server or when a data transfer completed.

If the value INFINITE is specified as the timeout period, the client activity timer will be refreshed,
extending the idle timeout period for the session. This is typically done inside an event handler to
prevent the client from being disconnected due to inactivity.

To obtain the current idle timeout period for a client, along with the amount of time the client has
been idle, use the FtpGetClientIdleTime function.

This timeout period only affects authenticated clients. Unauthenticated clients use a different
internal timer that limits the amount of time they can remain connected to the server and that
value cannot be changed for individual client sessions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
FtpGetClientIdleTime

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpSetCommandFile Function

BOOL WINAPI FtpSetCommandFile(
 HSERVER hServer,
 UINT nClientId,
 LPCTSTR lpszFileName
);

Change the name of the local file or directory that is the target of the current command.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

lpszFileName

A pointer to a string that specifies the new file name. This parameter may be NULL to specify
that the original file or directory name should be used.

Return Value
If the function succeeds, the return value is non-zero. If the server handle and client ID do not
specify a valid client session, the function will return zero.

Remarks
The FtpSetCommandFile function is used by the application to change the target file or directory
name for the current command from within an FTP_EVENT_COMMAND event handler. This can
be used to effectively redirect the client to use a different file than the one that was actually
requested. For example, if the client issues the RETR command to download a file from the server,
this function can be used to redirect the command to use a different file name. To obtain the full
path to the file or directory that is the target of the current command, use the
FtpGetCommandFile function.

The lpszFileName parameter specifies the path to the new file or directory name. If the path is
absolute, then it will be used as-is . If the path is relative, it will be relative to the current working
directory for the client session. The full path to this file is not limited to the server root directory or
its subdirectory, it can specify a file anywhere on the local system. If this parameter is a NULL
pointer, or points to an empty string, then the server will revert to using the actual file or directory
name specified by the command. This enables the application to effectively undo a previous call to
this function to change the target file name.

Typically this function would be used to redirect a client to a file or directory that it may not
normally have access to. Exercise caution when using this function to provide access to data that is
stored outside of the server root directory. Incorrect use of this function could expose the server to
security risks or cause unpredictable behavior by client applications.

This function should only be called within the context of the FTP_EVENT_COMMAND event, and
only for those commands that perform an action on a file or directory. If the current command
does not target a file or directory, this function will return zero and the last error code will be set
to ST_ERROR_INVALID_COMMAND. To obtain the name of the current command issued by the
client, use the FtpGetCommandName function.

Requirements

Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpGetCommandFile FtpGetCommandLine, FtpGetCommandName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpSetServerAddress Function

BOOL WINAPI FtpSetServerAddress(
 HSERVER hServer,
 LPCTSTR lpszAddress
);

Change the IP address that the server will use with passive data connections.

Parameters
hServer

The server handle.

lpszAddress

A pointer to a string that specifies the IP address that the server should use for passive mode
data transfers. This parameter cannot be NULL.

Return Value
If the function succeeds, the return value is non-zero. If either the server handle or the IP address
is invalid the function will return a value of zero.

Remarks
The FtpSetServerAddress function changes the IP address that the server will use when a client
transfers a file using a passive mode data connection. In passive mode, the server will create a
second passive (listening) socket that will accept an incoming connection from the client. The
server sends the IP address and port number allocated for that socket to the client, and the client
establishes the data connection to the server using that address. The IP address that the server
sends to the client is normally the same as the IP address that the client used to establish the
control connection, however if the server is located behind a router that performs Network
Address Translation (NAT), the IP address reported to the client may not be usable.

This function enables your application to set the external IP address for the server to a specific
value, rather than the server attempting to automatically discover its own external address. If you
wish to set the external address for the server manually, call the FtpServerStart function without
the FTP_SERVER_EXTERNAL option and then call this function to set the external IP address to the
desired value.

This function will not change the IP address the server is using to listen for client connections. The
only way to change the listening IP address is to stop and restart the server using the new address.
This function only changes the IP address that is reported to clients when a passive data
connection is used. Incorrect use of this function can prevent the client from establishing a data
connection to the server. The address must be in the same address family as the local address that
the server was started with. For example, if the server was started using an IPv4 address, the IP
address passed to this function cannot be an IPv6 address.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also

FtpGetServerAddress, FtpGetServerName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpSetServerError Function

VOID WINAPI FtpSetServerError(
 HSERVER hServer,
 DWORD dwError
);

Set the last error code for the specified server session.

Parameters
hServer

The server handle.

dwError

An unsigned integer that specifies an error code.

Return Value
None.

Remarks
Error codes are unsigned 32-bit values which are private to each server session. Most functions will
set the last error code value when they fail; a few functions set it when they succeed. Function
failure is typically indicated by a return value such as FALSE, NULL, INVALID_SERVER or
FTP_ERROR.

If the hServer parameter is specified as INVALID_SERVER, this function will set the last error code
for the current thread, but will not change the error code associated with any server session. This
should only be done if the application does not have access to a valid server handle.

If the dwError parameter is specified with a value of zero, this effectively clears the error code for
the last function that failed. Those functions which clear the last error code when they succeed are
noted on the function reference page.

Applications can retrieve the value saved by this function by using the FtpGetServerError function
to determine the specific reason for a function failure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib

See Also
FtpGetCommandResult, FtpGetServerError, FtpSendResponse

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpSetServerIdentity Function

BOOL WINAPI FtpSetServerIdentity(
 HSERVER hServer,
 LPCTSTR lpszIdentity
);

Change the identity of the specified server.

Parameters
hServer

The server handle.

lpszIdentity

A pointer to a string that identifies the server. If this parameter is NULL or specifies an empty
string, the current identity for the server is reset to a default value. The maximum length of the
identity string is 64 characters, including the terminating null character.

Return Value
If the function succeeds, the return value is non-zero. If the server handle is invalid, the function
will return a value of zero.

Remarks
The FtpSetClientIdentity function changes a string value used by the server to identify itself to
clients. The identity string does not have any standard format and is used for informational
purposes only. Typically it consists of the application name and a version number. Changing the
server identity has no effect on the operation of the server. To obtain the identity string currently
associated with the server, use the FtpGetServerIdentity function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpGetClientIdentity, FtpSetClientIdentity, FtpGetServerIdentity

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpSetServerLogFile Function

BOOL WINAPI FtpSetServerLogFile(
 HSERVER hServer,
 UINT nLogFormat,
 UINT nLogLevel,
 LPCTSTR lpszFileName
);

Change the current log format, level of detail and file name.

Parameters
hServer

The server handle.

nLogFormat

An integer value that specifies the format used when creating or updating the server log file.
The following formats are supported:

Constant Description

FTP_LOGFILE_NONE
(0)

This value specifies that the server should not create or
update a log file.

FTP_LOGFILE_COMMON
(1)

This value specifies that the log file should use the common
log format that records a subset of information in a fixed
format. This log format usually only provides information
about file transfers.

FTP_LOGFILE_EXTENDED
(2)

This value specifies that the log file should use the standard
W3C extended log file format. This is an extensible format
that can provide additional information about the client
session.

nLogLevel

An integer value that specifies the level of detail that should generated in the log file. The
minimum value is 1 and the maximum value is 10. If this parameter is zero, it is the same as
specifying a log file format of FTP_LOGFILE_NONE and will disable logging by the server.

lpszFileName

A pointer to a string that specifies the name of the log file that should be created or appended
to. If the server was configured with logging enabled and this parameter is NULL or an empty
string, the current log file name will not be changed. If the log file does not exist, it will be
created. If it does exist, the contents of the log file will be appended to.

Return Value
If the function succeeds, the return value is non-zero. If the server handle does not specify a valid
server, the function will return zero.

Remarks
The FtpSetServerLogFile function can be used to change the current log file name, the format of
the log file or the level of detail recorded in the log file. In some situations it may be desirable to
delete the current log file contents when changing the format or ensure that a new log file is
created. To do this, combine the nLogFormat parameter with the constant FTP_LOGFILE_DELETE.

The higher the value of the nLogLevel parameter, the greater the level of detail that is recorded by
the server. A log level of 1 instructs the server to only record file transfers, while a level of 10
instructs the server to record all commands processed by the server. Because a higher level of
logging detail can negatively impact the performance of the server, it is recommended that you
do not exceed a level of 5 for most applications. A log level of 10 should only be used for
debugging purposes.

Example
UINT nLogFormat = FTP_LOGFILE_NONE;
UINT nLogLevel = 0;
UINT nNewLevel = 5;
BOOL bChanged = FALSE;

// Change the level of detail for the current log file if logging
// has been enabled and the current level is a lower value

if (FtpGetServerLogFile(hServer, &nLogFormat, &nLogLevel, NULL, 0))
{
 if (nLogFormat != FTP_LOGFILE_NONE && nLogLevel < nNewLevel)
 bChanged = FtpSetServerLogFile(hServer, nLogFormat, nNewLevel, NULL);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpGetServerLogFile, FtpRenameServerLogFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpSetServerName Function

BOOL WINAPI FtpSetServerName(
 HSERVER hServer,
 UINT nClientId,
 LPCTSTR lpszHostName
);

Change the host name assigned to the specified server or client session.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session. This value may be zero.

lpszHostName

A pointer to a string that specifies the new host name assigned to the server or client session. If
this value is NULL or points to an empty string, the current host name will be changed to use
the default host name.

Return Value
If the function succeeds, the return value is non-zero. If either the server handle or the client ID is
invalid, or the buffer is not large enough to store the complete hostname, the function will return
a value of zero.

Remarks
This function will change the host name assigned to the specified client session. If the nClientId
parameter has a value of zero, the function will change default host name that was assigned to the
server as part of the server configuration. If the nClientId parameter specifies a valid client session
and the lpszHostName parameter is NULL, the host name associated with the client session will be
changed to the current host name assigned to the server.

When a client connects to the server, it can specify the host name that it used to establish the
connection by sending the HOST command. This is typically used with virtual hosting, where one
server may accept client connections for multiple domains. The FtpGetServerName function will
return the host name specified by the client, and FtpSetServerName can be used by the
application to either explicitly assign a different host name to the client session, or override the
host name provided by the client.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csftsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpGetServerAddress, FtpGetServerName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpSetServerPriority Function

INT WINAPI FtpSetServerPriority(
 HSERVER hServer,
 INT nPriority
);

Change the priority assigned to the specified server.

Parameters
hServer

The server handle.

nPriority

An integer value which specifies the new priority for the server. It may be one of the following
values:

Constant Description

FTP_PRIORITY_BACKGROUND
(0)

This priority significantly reduces the memory,
processor and network resource utilization for the
server. It is typically used with lightweight services
running in the background that are designed for few
client connections. The server thread will be assigned a
lower scheduling priority and will be frequently forced
to yield execution to other threads.

FTP_PRIORITY_LOW
(1)

This priority lowers the overall resource utilization for
the server and meters the processor utilization for the
server thread. The server thread will be assigned a
lower scheduling priority and will occasionally be
forced to yield execution to other threads.

FTP_PRIORITY_NORMAL
(2)

The default priority which balances resource and
processor utilization. This is the priority that is initially
assigned to the server when it is started, and it is
recommended that most applications use this priority.

FTP_PRIORITY_HIGH
(3)

This priority increases the overall resource utilization
for the server and the thread will be given higher
scheduling priority. It is not recommended that this
priority be used on a system with a single processor.

FTP_PRIORITY_CRITICAL
(4)

This priority can significantly increase processor,
memory and network utilization. The server thread will
be given higher scheduling priority and will be more
responsive to client connection requests. It is not
recommended that this priority be used on a system
with a single processor.

Return Value
If the function succeeds, the return value is the previous priority assigned to the server. If the
function fails, the return value is FTP_PRIORITY_INVALID. To get extended error information, call
FtpGetServerError.

Remarks
The FtpSetServerPriority function can be used to change the current priority assigned to the
specified server. Client connections that are accepted after this function is called will inherit the
new priority as their default priority. Previously existing client connections will not be affected by
this function.

Higher priority values increase the thread priority and processor utilization for each client session.
You should only change the server priority if you understand the impact it will have on the system
and have thoroughly tested your application. Configuring the server to run with a higher priority
can have a negative effect on the performance of other programs running on the system.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cstools11.h.
Import Library: csftsv11.lib

See Also
FtpGetServerPriority, FtpServerStart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FtpSetServerStackSize Function

BOOL WINAPI FtpSetServerStackSize(
 SOCKET hServer,
 DWORD dwStackSize
);

Change the initial size of the stack allocated for threads created by the server.

Parameters
hServer

Handle to the server socket.

dwStackSize

The amount of memory that will be committed to the stack for each thread created by the
server. If this value is zero, a default stack size will be used.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call FtpGetServerError.

Remarks
The FtpSetServerStackSize function changes the initial amount of memory that is committed to
the stack for each thread created by the server. By default, the stack size for each thread is set to
256K for 32-bit processes and 512K for 64-bit processes. Increasing or decreasing the stack size
will only affect new threads that are created by the server, it will not affect those threads that have
already been created to manage active client sessions. It is recommended that most applications
use the default stack size.

You should not change the stack size unless you understand the impact that it will have on your
system and have thoroughly tested your application. Increasing the initial commit size of the stack
will remove pages from the total system commit limit, and every page of memory that is reserved
for stack cannot be used for any other purpose.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cstools11.h
Import Library: csftsv11.lib

See Also
FtpGetServerMemoryUsage, FtpGetServerStackSize, FtpServerStart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 File Transfer Protocol Server Data Structures

FTPCLIENTCREDENTIALS
FTPSERVERCONFIG
FTPSERVERTRANSFER
INITDATA
SECURITYCREDENTIALS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FTPCLIENTCREDENTIALS Structure

The FTPCLIENTCREDENTIALS structure defines the credentials used to authenticate a specific
user.

typedef struct _FTPCLIENTCREDENTIALS
{
 DWORD dwSize;
 DWORD dwFlags;
 TCHAR szHostName[FTP_MAXHOSTNAME];
 TCHAR szUserName[FTP_MAXUSERNAME];
 TCHAR szPassword[FTP_MAXPASSWORD];
} FTPCLIENTCREDENTIALS, *LPFTPCLIENTCREDENTIALS;

Members
dwSize

An unsigned integer value that specifies the size of the structure.

dwFlags

An unsigned integer value reserved for future use. This member will always be initialized to a
value of zero.

szHostName

A pointer to a string that specifies the server host name.

szUserName

A pointer to a string that specifies the user name.

szPassword

A pointer to a string that specifies the user password.

Remarks
When an instance of this structure is passed to the FtpGetClientCredentials function, this
member must be initialized to the size of the structure and all other members must be initialized
with a value of zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpGetClientCredentials

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FTPSERVERCONFIG Structure

The FTPSERVERCONFIG structure provides the configuration information used to create an
instance of an FTP server.

typedef struct _FTPSERVERCONFIG
{
 DWORD dwSize;
 UINT nMaxClients;
 UINT nMaxClientsPerAddress;
 UINT nMaxGuests;
 UINT nLogFormat;
 UINT nLogLevel;
 UINT nMinPort;
 UINT nMaxPort;
 UINT nAuthFail;
 UINT nAuthTime;
 UINT nIdleTime;
 UINT nExecTime;
 LPCTSTR lpszIdentity;
 LPCTSTR lpszHostUuid;
 LPCTSTR lpszHostName;
 LPCTSTR lpszRootPath;
 LPCTSTR lpszTempPath;
 LPCTSTR lpszLogFile;
} FTPSERVERCONFIG, *LPFTPSERVERCONFIG;

Members
dwSize

An unsigned integer value that specifies the size of the structure.

nMaxClients

An integer value that specifies the maximum number of active client connections that will be
accepted by the server. If the maximum number of clients is reached, any further connections
are rejected by the server until one or more clients close their connection to the server or are
disconnected. A value of zero specifies the default configuration value of 100 connections
should be used.

nMaxClientsPerAddress

An integer value that specifies the maximum number of active client connections per IP address
that will be accepted by the server. If the maximum number of clients from the same IP address
is reached, any further connections are rejected until one of the clients closes its connection to
the server. A value of zero specifies the default configuration value of 4 connections per address
should be used.

nMaxGuests

An integer value that specifies the maximum number of anonymous client connections. If the
server does not permit anonymous connections, this value is ignored. It is recommended that
this value always be less than the value of the nMaxClients member. A value of zero specifies
that the default configuration limit of 20 anonymous connections should be used.

nLogFormat

An integer value that specifies the format used when creating or updating the server log file.
The following formats are supported:

Constant Description

FTP_LOGFILE_NONE
(0)

This value specifies that the server should not create or
update a log file.

FTP_LOGFILE_COMMON
(1)

This value specifies that the log file should use the common
log format that records a subset of information in a fixed
format. This log format usually only provides information
about file transfers.

FTP_LOGFILE_EXTENDED
(2)

This value specifies that the log file should use the standard
W3C extended log file format. This is an extensible format
that can provide additional information about the client
session.

nLogLevel

An integer value that specifies the level of detail that should generated in the log file. The
minimum value is 1 and the maximum value is 10. If the nLogFormat member specifies a valid
log file format and this value is zero, a default level of detail will be selected based on the
format. The common log file format generally contains less information by default, only logging
the data transfers between the client and server. The W3C extended log file format defaults to a
higher level of detail that includes additional information about the client session. The higher
the level of detail, the larger the log file will be.

nMinPort

An integer value that specifies the minimum range of port numbers that will be used with
passive data connections. A value of zero specifies that the default value of 30000 should be
used. The minimum value of this member is 5000 and the maximum value is 65535. If the value
is non-zero, it must be less than the value of the nMaxPort structure member.

nMaxPort

An integer value that specifies the maximum range of port numbers that will be used with
passive data connections. A value of zero specifies the default value of 65535 should be used.
The minimum value of this member is 5000 and the maximum value is 65535. If the value is
non-zero, it must be greater than the value of the nMinPort structure member.

nAuthFail

An integer value that specifies the maximum number of user authentication attempts that are
permitted until the server terminates the client connection. A value of zero specifies that the
default configuration limit of 3 authentication attempts per login should be allowed. The
maximum number of authentication attempts is 10.

nAuthTime

An integer value that specifies the maximum number of user authentication attempts that are
permitted until the server terminates the client connection. A value of zero specifies the default
value of 60 seconds. If the value is non-zero, the minimum value is 20 seconds and the
maximum value is 300 seconds (5 minutes). This value is used to ensure that a client has
successfully authenticated itself within a limited period of time. This prevents a potential denial-
of-service attack against the server where clients establish connections and hold them open
without authentication. In conjunction with the nAuthFail member, this also limits the ability of a
client to attempt to probe the server for valid username and password combinations.

nIdleTime

An integer value that specifies the maximum number of seconds that a client session may be

idle before the server closes the control connection to the client. A value of zero specifies the
default value of 900 seconds (15 minutes). If the value is non-zero, the minimum value is 60
seconds and the maximum value is 7200 seconds (2 hours). This value is used to initialize the
default idle timeout period for each client session. A client may request that the server change
the idle timeout period for its session by sending the SITE IDLE command. The server
determines if a client is idle based on the time the last command was issued and whether or not
a file transfer is in progress.

nExecTime

An unsigned integer value that specifies the maximum number of seconds that an external
program is permitted to run on the server. External programs are registered using the
FtpRegisterProgram function, and are executed by the client sending the SITE EXEC command
to the server. If this value is zero, the default timeout period of 5 seconds will be used. The
minimum execution time is 1 second and the maximum time limit is 30 seconds.

lpszIdentity

A pointer to a string that identifies the server. It is used for informational purposes only and has
no effect on the operation of the server. If this member is not initialized to a value, then a
default identity will be used. The server identity is provided when a client establishes the initial
connection and when the client sends the STAT or CSID commands. If this member is defined, it
is recommended that you only use printable ASCII characters.

lpszHostUuid

A pointer to a string that specifies a Universally Unique Identifier (UUID) that is used to uniquely
identify the server. This value can be used when storing information about the server, and
should be generated using a utility such as uuidgen which is included with Visual Studio. This
structure member may be initialized to an empty string, in which case a temporary UUID will be
randomly generated.

lpszHostName

A pointer to a string that specifies the fully-qualified host name for the server. If this structure
member is initialized with an empty string, the local host name assigned to the Windows system
will be used. This value does not need to correspond to the actual host name associated with
the server's IP address. This value is used for informational purposes only and has no effect on
the operation of the server.

lpszRootPath

A pointer to a string that specifies the path to the root directory for the server. If this structure
member is initialized with an empty string, the current working directory for the process will be
used as the root directory. It is recommended that you provide a full path to an existing
directory and do not specify the root of a local or network drive. If the path does not exist at the
time the server is started, it will be automatically created.

lpszTempPath

A pointer to a string that specifies the path to the temporary directory for the server. If this
structure member is initialized with an empty string, the current temporary directory for the
process will be used. The temporary directory cannot be the same as the root directory, and it is
strongly recommended that you do not specify the root of a local or network drive. If the path
does not exist at the time the server is started, it will be automatically created.

lpszLogFile

A pointer to a string that specifies the name of the server log file to create, if a logging format
has been specified. If logging is enabled and this member is an empty string, then a default log
file name will be created. If the file name does not include a path, then the file is created in the

server log directory. If the file name includes a path, the log file will be created using that
specific name. If the server is in multi-user mode, then the default location for log files will be
the Logs subdirectory in the server root directory. If the server is not in multi-user mode, the
default location for log files will be the temporary directory for the server process.

Remarks
When an instance of this structure is passed to the FtpServerStart function, the dwSize member
must be initialized to the size of the structure, otherwise the function will fail with an error
indicating that the configuration is invalid.

The nMaxClients member limits the total number of client connections and the nMaxGuests
member limits the total number of guest connections. The server will notify the client if either
number of connections has been exceeded and will automatically close the connection. However,
one difference is that a new client that exceeds the maximum number of connections will not
generate any events; a client that exceeds the maximum number of guest connections will
generate events. The reason for the difference is that the check for the number of active clients is
made immediately after the client connects to the server, prior to session context being created
for that client. The check for the number of anonymous clients is made later, after the client has
sent the USER and PASS commands to the server. For more control over how the server accepts
client connections, use the FtpServerThrottle function.

If the server is running on a system that is behind a firewall that restricts the range of port
numbers for inbound connections, the nMinPort and nMaxPort members can be used to limit the
ports which the server will use to listen for passive data connections from clients. By default, the
server will use data port numbers that range from 30000 to 65535, which is typical for many
firewall configurations. If you provide your own port range, the minimum number of ports
available must be at least 1000. Specifying a port range that is too small will cause the
FtpServerStart function to fail with an error indicating that the server configuration is invalid.

When specifying the root directory for the server configuration, it is important to consider that a
client's access to files on the system will be limited to these directories and any subdirectories. If a
root directory is not specified, then one will be created using the current working directory for the
process. The root directory path may include environment variables surrounded by % symbols and
these will be expanded.

If you have configured the server to permit clients to upload files, you must ensure that your
application has permission to create files in the directory that you specify. A recommended
location for the server root directory would be a subdirectory of the %ALLUSERSPROFILE%
directory. Using the environment variable ensures that your server will work correctly on different
versions of Windows. If the root directory does not exist at the time that the server is started, it will
be created.

For servers that are publicly accessible, or where you want files to be a accessible across multiple
server sessions, you should always populate the szHostUuid member with a valid UUID string, and
the szDirectory member should specify an absolute path to an existing directory.

If the FTP_SERVER_MULTIUSER option is specified, the server will start in multi-user mode, with
each user assigned to their own home directory based on their username. This option will cause
the server to create a directory structure in the root directory that includes three subdirectories:
Public, Users and Logs. The Public directory is the home directory for anonymous users, and they
are isolated to that directory. The Users directory is where the user home directories are created.
The Logs directory is where log files are created by default. If this option is not specified, then no
subdirectories are created and all users will share the server root directory by default.

If the FTP_SERVER_LOCALUSER option is specified, the server will never attempt to authenticate
the local Administrator or Guest accounts. This is done to prevent clients from attempting to
probe for the administrator account password. However, the application can override this
behavior by implementing a handler for the FTP_CLIENT_LOGIN event.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpServerStart, FtpServerStop, FtpServerThrottle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FTPSERVERTRANSFER Structure

The FTPSERVERTRANSFER structure provides information about the last file transfer performed
by a client.

typedef struct _FTPSERVERTRANSFER
{
 DWORD dwSize;
 DWORD dwReserved;
 DWORD dwFileAccess;
 DWORD dwTimeElapsed;
 ULARGE_INTEGER uiBytesCopied;
 TCHAR szFileName[MAX_PATH];
} FTPSERVERTRANSFER, *LPFTPSERVERTRANSFER;

Members
dwSize

An unsigned integer value that specifies the size of the structure.

dwReserved

An unsigned integer value that is reserved for future use. This value will always be zero.

dwFileAccess

An unsigned integer value that specifies the how the local file was accessed. It can be one of the
following values:

Constant Description

FTP_FILE_READ
(0)

The file was opened for reading. This mode indicates that the client
issued the RETR command to download the contents of a file from
the server to the client system. The szFileName member specifies
the name of the local file on the server that was downloaded by
the client.

FTP_FILE_WRITE
(1)

The file was opened for writing. This mode indicates that the client
issued the STOR or STOU command to upload the contents of a
file from the client system to server. The szFileName member
specifies the name of the local file on the server that was created
by the client. If a file already existed with the name name, it was
replaced.

FTP_FILE_APPEND
(2)

The file was opened for writing. This mode indicates the client
issued the APPE command to upload the contents of a file from
the client system and append the data to a file on the server. If the
file did not exist, then it was created. The szFileName member
specifies the name of the local file that was appended to or
created by the client.

dwTimeElapsed

The amount of time that it took for the file transfer to complete in milliseconds. This value is
limited to the resolution of the system timer, which is typically in the range of 10 to 16
milliseconds. This value may be zero if the transfer occurred over a local network or on the
same host using a loopback address.

uiBytesCopied

A 64-bit integer value that specifies the total number of bytes copied during the file transfer.
This value is represented by a ULARGE_INTEGER union which provides support for those
programming languages that do not have intrinsic support for 64-bit integers. For more
information, refer to the Windows SDK documentation. The application should not make the
assumption that this is the actual size of the file. If the client specified a restart offset using the
REST command, this value would only represent the number of bytes transferred from that byte
offset, not the total file size.

szFileName

A pointer to a string value that will contain the full path to the local file that was transferred. The
dwFileAccess member determines whether the file name represents a file that was downloaded
by the client, or uploaded from the client and stored on the server.

Remarks
When an instance of this structure is passed to the FtpGetServerTransferInfo function, the
dwSize member must be initialized to the size of the structure, otherwise the function will fail with
an error indicating that the parameter is invalid. All other members should be initialized to a value
of zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

See Also
FtpGetServerTransferInfo

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 INITDATA Structure

This structure contains information about the SocketTools library when the initialization function
returns.

typedef struct _INITDATA
{
 DWORD dwSize;
 DWORD dwVersionMajor;
 DWORD dwVersionMinor;
 DWORD dwVersionBuild;
 DWORD dwOptions;
 DWORD_PTR dwReserved1;
 DWORD_PTR dwReserved2;
 TCHAR szDescription[128];
} INITDATA, *LPINITDATA;

Members
dwSize

Size of this structure. This structure member must be set to the size of the structure prior to
calling the initialization function. Failure to do so will cause the function to fail.

dwVersionMajor

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the major version number for the library.

dwVersionMinor

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the minor version number for the library.

dwVersionBuild

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the build number for the library.

dwOptions

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

dwReserved1

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

dwReserved2

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

szDescription

A null terminated string which describes the library.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SECURITYCREDENTIALS Structure

The SECURITYCREDENTIALS structure specifies the information needed by the library to specify
additional security credentials, such as a client certificate or private key, when establishing a secure
connection.

typedef struct _SECURITYCREDENTIALS
{
 DWORD dwSize;
 DWORD dwProtocol;
 DWORD dwOptions;
 DWORD dwReserved;
 LPCTSTR lpszHostName;
 LPCTSTR lpszUserName;
 LPCTSTR lpszPassword;
 LPCTSTR lpszCertStore;
 LPCTSTR lpszCertName;
 LPCTSTR lpszKeyFile;
} SECURITYCREDENTIALS, *LPSECURITYCREDENTIALS;

Members
dwSize

Size of this structure. If the structure is being allocated dynamically, this member must be set to
the size of the structure and all other unused structure members must be initialized to a value of
zero or NULL.

dwProtocol

A bitmask of supported security protocols. The value of this structure member is constructed by
using a bitwise operator with any of the following values:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The
correct protocol is automatically selected, based on

what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.
This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is
supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

dwOptions

A value which specifies one or options. This member is constructed by using a bitwise operator
with any of the following values:

Constant Description

CREDENTIAL_STORE_CURRENT_USER The library will attempt to open a store for
the current user using the certificate store
name provided in this structure. If no options
are specified, then this is the default
behavior.

CREDENTIAL_STORE_LOCAL_MACHINE The library will attempt to open a local
machine store using the certificate store

name provided in this structure. If this option
is specified, the library will always search for a
local machine store before searching for the
store by that name for the current user.

CREDENTIAL_STORE_FILENAME The certificate store name is a file that
contains the certificate and private key that
will be used.

dwReserved

This structure member is reserved for future use and should always be initialized to zero.

lpszHostName

A pointer to a null terminated string which specifies the hostname that will be used when
validating the server certificate. If this member is NULL, then the server certificate will be
validated against the hostname used to establish the connection.

lpszUserName

A pointer to a null terminated string which identifies the owner of client certificate. Currently this
member is not used by the library and should always be initialized as a NULL pointer.

lpszPassword

A pointer to a null terminated string which specifies the password needed to access the
certificate. Currently this member is only used if the CREDENTIAL_STORE_FILENAME option has
been specified. If there is no password associated with the certificate, then this member should
be initialized as a NULL pointer.

lpszCertStore

A pointer to a null terminated string which specifies the name of the certificate store to open. A
certificate store is a collection of certificates and their private keys, typically organized by how
they are used. If this value is NULL or points to an empty string, the default certificate store "MY"
will be used.

Store
Name

Description

CA
Certification authority certificates. These are certificates that are issued by entities
which are entrusted to issue certificates to other individuals or organizations.
Companies such as VeriSign and Thawte act as certification authorities.

MY

Personal certificates and their associated private keys for the current user. This
store typically holds the client certificates used to establish a user's credentials.
This corresponds to the "Personal" store that is displayed by the certificate
manager utility and is the default store used by the library.

ROOT
Certificates that have been self-signed by a certificate authority. Root certificates
for a number of different certification authorities such as VeriSign and Thawte are
installed as part of the operating system and periodically updated by Microsoft.

lpszCertName

A pointer to a null terminated string which specifies the name of the certificate to use. The
library will first search the certificate store for a certificate with a matching "friendly name"; this is
a name for the certificate that is assigned by the user. Note that the name must match
completely, but the comparison is not case sensitive. If no matching certificate is found, the
library will then attempt to find a certificate that has a matching common name (also called the
certificate subject). This comparison is less stringent, and the first partial match will be returned.

If this second search fails, the library will return an error indicating that the certificate could not
be found. If the SECURITY_PROTOCOL_SSH protocol has been specified, this member should
be NULL.

lpszKeyFile

A pointer to a null terminated string which specifies the name of the file which contains the
private key required to establish the connection. This member is only used for SSH connections
and should always be NULL when establishing a secure connection using SSL or TLS.

Remarks
A client application only needs to create this structure if the server requires that the client provide
a certificate as part of the process of negotiating the secure session. If a certificate is required,
note that it must have a private key associated with it. Attempting to use a certificate that does not
have a private key will result in an error during the connection process indicating that the client
credentials could not be established.

If you are using a local certificate store, with the certificate and private key stored in the registry,
you can explicitly specify whether the certificate store for the current user or the local machine (all
users) should be used. This is done by prefixing the certificate store name with "HKCU:" for the
current user, or "HKLM:" for the local machine. For example, a certificate store name of
"HKLM:MY" would specify the personal certificate store for the local machine, rather than the
current user. If neither prefix is specified, then it will default to the certificate store for the current
user. You can manage these certificates using the CertMgr.msc Microsoft Management Console
(MMC) snap-in.

It is possible to load the certificate from a file rather than from current user's certificate store. The
dwOptions member should be set to CREDENTIAL_STORE_FILENAME and the lpszCertStore
member should specify the name of the file that contains the certificate and its private key. The file
must be in Private Information Exchange (PFX) format, also known as PKCS #12. These certificate
files typically have an extension of .pfx or .p12. Note that if a password was specified when the
certificate file was created, it must be provided in the lpszPassword member or the library will be
unable to access the certificate.

Note that the lpszUserName and lpszPassword members are values which are used to access the
certificate store or private key file. They are not the credentials which are used when establishing
the connection with the remote host or authenticating the client session.

The TLS 1.1 and TLS 1.2 protocols are only supported on Windows 7, Windows Server 2008 R2
and later versions of the platform. If these options are specified and the application is running on
Windows XP or Windows Vista, the protocol version will be downgraded to TLS 1.0 for backwards
compatibility with those platforms.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Hypertext Transfer Protocol Client Library

Transfer files between the local system and a web server, execute scripts and perform remote file
management functions.

Reference

Functions
Data Structures
Error Codes

Library Information

File Name CSHTPV11.DLL

Version 11.0.2180.1635

LibID 1EE620E7-5A9E-4DC3-8403-9153F19C51D9

Import Library CSHTPV11.LIB

Dependencies None

Standards RFC 1945, RFC 2616, RFC 7230, RFC 7540

Overview
The Hypertext Transfer Protocol (HTTP) is a lightweight, stateless application protocol that is used
to access resources on web servers, as well as send data to those servers for processing. The
library provides direct, low-level access to the server and the commands that are used to retrieve
resources (i.e.: documents, images, etc.). The library also provides a simple interface for
downloading resources to the local host, similar to how the HTTP library can be used to download
files.

In a typical session, the library is used to establish a connection, send a request (to download a
resource, post data for processing, etc.), read the data returned by the server and then disconnect.
It is the responsibility of the client to process the data returned by the server, depending on the
type of resource that was requested.

This library supports supports secure, encrypted file transfers using TLS 1.2 and later versions of
the protocol.

Requirements
The SocketTools Library Edition libraries are compatible with any programming language which
supports calling functions exported from a standard dynamic link library (DLL). If you are using
Visual C++ 6.0 it is required that you have Service Pack 6 (SP6) installed. You should install all
updates for your development tools and have the current Windows SDK installed. The minimum
recommended version of Visual Studio is Visual Studio 2010.

This library is supported on Windows 7, Windows Server 2008 R2 and later versions of the desktop
and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1) installed as
a minimum requirement. It is recommended that you install the current service pack and all critical
updates available for your version of the operating system.

This product includes both 32-bit and 64-bit libraries. Native 64-bit CPU support requires the 64-
bit version of Windows 7 or later versions of the Windows operating system.

Distribution
When you distribute your application that uses this library, it is recommended that you install the
file in the same folder as your application executable. If you install the library into a shared location
on the system, it is important that you distribute the correct version for the target platform and it
should be registered as a shared DLL. This is a standard Windows dynamic link library, not an
ActiveX component, and does not require COM registration.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Hypertext Transfer Protocol Functions

Function Description

HttpAddFormField Add the form field and its value to the specified form

HttpAddFormFile Add the contents of the file to the specified form

HttpAddQueuedFile Add a new file to the queue to be uploaded or downloaded

HttpAddQueuedFileEx Add a new file to the queue with additional transfer options

HttpAddRequestHeaders Add one or more request headers for the current client session

HttpAsyncConnect Establish an asynchronous connection to the specified server

HttpAsyncGetData Copy the contents of a resource on the server to a local buffer

HttpAsyncGetFile Copy a file from the server to the local system

HttpAsyncGetFileEx Copy a file from the server to the local system, use with files larger than
4GB

HttpAsyncPostData Post data from a local buffer to a script executed on the server

HttpAsyncPostJson Post JSON formatted data to a script executed on the server

HttpAsyncPostXml Post XML formatted data to a script executed on the server

HttpAsyncProxyConnect Establish an asynchronous connection to a proxy server

HttpAsyncPutData Create a file on the server using the contents of a local buffer

HttpAsyncPutFile Copy a file from the local system to the server

HttpAsyncPutFileEx Copy a file from the local system to the server, use with files larger than
4GB

HttpAsyncSubmitForm Submit the specified form to the server for processing

HttpAttachThread Attach the specified client handle to another thread

HttpAuthenticate Specify authentication information for restricted resources

HttpCancel Cancel the current blocking operation

HttpCancelQueuedFile Cancel the queued file transfer

HttpClearForm Remove all defined fields from the specified form

HttpClearQueue Remove all files from the current transfer queue

HttpCloseFile Close the file opened on the server

HttpCommand Send a command to the server

HttpConnect Connect to the specified server

HttpConnectUrl Establish a client connection using the specified URL

HttpCreateFile Create or replace a file on the server

HttpCreateForm Create a new form and return the form handle

HttpCreateQueue Create a new file transfer queue

HttpCreateSecurityCredentials Create a new security credentials structure

HttpDeleteFile Remove a file from the server

HttpDeleteFormField Delete the form field and its value from the specified form

HttpDeleteHeaders Delete all of the response or request headers for the current session

HttpDeleteQueue Delete a previously created file transfer queue

HttpDeleteSecurityCredentials Delete a previously created security credentials structure

HttpDestroyForm Destroy the specified form and free the memory allocated for it

HttpDisableEvents Disable asynchronous event notification

HttpDisableTrace Disable logging of network function calls to the trace log

HttpDisconnect Disconnect from the current server

HttpDownloadFile Download a file from the server to the local system

HttpEnableCompression Enable or disable support for data compression

HttpEnableEvents Enable asynchronous event notification

HttpEnableTrace Enable logging of network function calls to a file

HttpEnumQueuedFiles Return a list of files in the transfer queue

HttpEnumTasks Return a list of asynchronous tasks

HttpEventProc Callback function that processes events generated by the client

HttpFindQueuedFile Find a file in the transfer queue which matches the search criteria

HttpFreezeEvents Suspend asynchronous event processing

HttpGetBearerToken Return the current OAuth 2.0 bearer token for the client session

HttpGetContentType Return the content type for the current resource

HttpGetCookie Return information about the specified cookie

HttpGetData Copy the specified resource to a local buffer

HttpGetDefaultUserAgent Return the default user agent strring included with requests

HttpGetEncodingType Determines which content encoding option is enabled

HttpGetErrorString Return a description for the specified error code

HttpGetFile Copy a file from the server to the local system

HttpGetFileEx Copy a file from the server to the local system, use with large files over
4GiB

HttpGetFileSize Return the size of a file on the server

HttpGetFileSizeEx Return the size of a file on the server, supports large files over 4GiB

HttpGetFileTime Return the date and time a file on the server was last modified

HttpGetFirstCookie Return the first cookie set by the server

HttpGetFirstHeader Return the name and value of the first request or response header field

HttpGetFirstQueuedFile Return information about the first file in the transfer queue

HttpGetFormProperties Return the properties of the specified form

HttpGetLastError Return the last error code

HttpGetNextCookie Return the next cookie set by the server

HttpGetNextHeader Return the name and value of the next request or response header field

HttpGetNextQueuedFile Return information about the next file in the transfer queue

HttpGetOption Return the enabled/disabled state of a specified option

HttpGetPriority Return the current priority for file transfers

HttpGetQueueClient Return the handle to the current client session

HttpGetQueuedFile Return information about a file queued for transfer

HttpGetQueueStatus Return the status of the current file transfer queue

HttpGetQueueThread Return a value which uniquely identifies the queue manager thread

HttpGetRedirectUrl Return the URL for a redirected resource

HttpGetResourceUrl Return the URL for the current request

HttpGetRequestHeader Return the value of the specified request header field

HttpGetResponseHeader Return the value of the specified response header field

HttpGetResultCode Return the result code from the previous command

HttpGetResultString Return the result string from the previous command

HttpGetSecurityInformation Return security information about the current client connection

HttpGetStatus Return the current client status

HttpGetTaskError Return the last error code for the specified asynchronous task

HttpGetTaskId Return the unique task identifier associated with the specified client
session

HttpGetText Return the contents of a text resource to a string buffer

HttpGetTextEx Return the contents of a text resource with additional conversion options

HttpGetThreadQueue Return the handle to a queue associated with the specified thread

HttpGetTimeout Return the number of seconds until an operation times out

HttpGetTransferStatus Return data transfer statistics

HttpInitialize Initialize the library and validate the specified runtime license key

HttpIsBlocking Determine if the client is blocked, waiting for information

HttpIsConnected Determine if the client is connected to the server

HttpIsReadable Determine if data can be read from the server

HttpIsWritable Determine if data can be written to the server

HttpOpenFile Open a file on the server for reading

HttpPatchData Submits JSON or XML patch data to the server and returns the response

HttpPostData Submit data to the server using the POST command and returns the

response

HttpPostFile Submit the contents of a local file to the server

HttpPostJson Post JSON formatted data to the server and returns the response

HttpPostXml Post XML formatted data to the server and returns the response

HttpProxyConnect Establish a connection with the specified proxy server

HttpPutData Create a file on the server using the contents of a local buffer

HttpPutDataEx Submit data to the server using the PUT command and returns the
response

HttpPutFile Copy a file from the local system to the server

HttpPutFileEx Copy a file from the local system to the server, use with large files over
4GiB

HttpPutText Create a text file on the server from the contents of a string buffer

HttpPutTextEx Submit text to the server using the PUT command and returns the
response

HttpRead Read data from the server

HttpRegisterEvent Register an event callback function

HttpRemoveQueuedFile Remove a file from the transfer queue

HttpResetQueue Reset the internal state of file transfers in the specified queue

HttpResumeQueue Resume the transfer of files after queue processing has been paused

HttpSetBearerToken Set the value of the OAuth 2.0 bearer token for the client session

HttpSetContentType Set the content type for the next request

HttpSetCookie Set the value of the specified cookie

HttpSetDefaultUserAgent Set the default user agent string included with requests

HttpSetEncodingType Specifies the type of encoding to be applied to data submitted to the
server

HttpSetFormProperties Modify the properties of the specified form

HttpSetLastError Set the last error code

HttpSetOption Enable or disable the specified option

HttpSetPriority Set the priority for file transfers

HttpSetRequestHeader Set the value of a request header field

HttpSetTimeout Set the number of seconds until an operation times out

HttpStartQueue Begin transferring the files in the specified queue

HttpStopQueue Stop transferring the files in the specified queue

HttpSubmitForm Submit the specified form to the server for processing

HttpSubmitRequest Submit a request to the server and return the response

HttpSuspendQueue Pause the transfer of files in the specified queue

HttpTaskAbort Abort the specified asynchronous task

HttpTaskDone Determine if an asynchronous task has completed

HttpTaskResume Resume execution of an asynchronous task

HttpTaskSuspend Suspend execution of an asynchronous task

HttpTaskWait Wait for an asynchronous task to complete

HttpUninitialize Terminate use of the library by the application

HttpUploadFile Upload a file from the local system to the server

HttpValidateHostName Validate the specified host name and return the resolved IP address

HttpValidateUrl Check the contents of a string to ensure it represents a valid URL

HttpVerifyFile Compare the size of a local file against a file stored on the server

HttpWaitForQueue Wait for the transfer of all queued files to complete

HttpWrite Write data to the server

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpAddFormField Function

INT WINAPI HttpAddFormField(
 HFORM hForm,
 LPCTSTR lpszFieldName,
 LPVOID lpFieldData,
 DWORD cbFieldData,
 DWORD dwReserved
);

The HttpAddFormField function adds a new field to the specified form.

Parameters
hForm

Handle to the virtual form.

lpszFieldName

A pointer to a string which specifies the name of the field to add to the form. If this parameter is
NULL or points to an empty string, then a default field name will be assigned.

lpFieldData

A pointer to the form field data. Typically this will either by a pointer to an array of bytes or a
string which specifies the value for the form field. If no data is to be associated with the form
field, then this argument may be NULL.

cbFieldData

An unsigned integer value which specifies the number of bytes of data in the form field. If this
value is 0xFFFFFFFF (-1) then it is assumed that the lpFieldData parameter is a pointer to a null-
terminated string. If lpFieldData is NULL, this value must be zero.

dwReserved

A reserved parameter. This value must be zero.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
HTTP_ERROR. To get extended error information, call HttpGetLastError.

Remarks
The HttpAddFormField function is used to add a field and its associated value to a form created
using the HttpCreateForm function. If the field name has already been added to the form, the
previous value is deleted and replaced by the new value.

Example
HFORM hForm = INVALID_FORM;
HGLOBAL hgblResult = (HGLOBAL)NULL;
DWORD cbResult = 0;
INT nResult = 0;

hForm = HttpCreateForm(_T("/login.php"), HTTP_METHOD_POST, HTTP_FORM_ENCODED);

if (hForm == INVALID_FORM)
 return;

HttpAddFormField(hForm, _T("UserName"), lpszUserName, (DWORD)-1L, 0);
HttpAddFormField(hForm, _T("Password"), lpszPassword, (DWORD)-1L, 0);

nResult = HttpSubmitForm(hClient, hForm, &hgblResult, &cbResult, 0);
HttpDestroyForm(hForm);

if (hgblResult != NULL)
{
 LPBYTE lpBuffer = (LPBYTE)GlobalLock(hgblResult);

 // lpBuffer points to data returned by the server after the form
 // data was submitted

 GlobalUnlock(hgblResult);
 GlobalFree(hgblResult);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpAddFormFile, HttpClearForm, HttpCreateForm, HttpDeleteFormField, HttpSubmitForm

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpAddFormFile Function

INT WINAPI HttpAddFormFile(
 HFORM hForm,
 LPCTSTR lpszFieldName,
 LPCTSTR lpszFileName,
 DWORD dwReserved
);

The HttpAddFormFile function adds the contents of a file to the specified form.

Parameters
hForm

Handle to the virtual form.

lpszFieldName

A pointer to a string which specifies the name of the field to add to the form. If this parameter is
NULL or points to an empty string, then a default field name will be assigned.

lpszFileName

A pointer to a string which specifies the name of the file. The contents of the file will be added
to the form data that is submitted to the server.

dwReserved

A reserved parameter. This value must be zero.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
HTTP_ERROR. To get extended error information, call HttpGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpAddFormField, HttpClearForm, HttpCreateForm, HttpDeleteFormField, HttpPostFile,
HttpSubmitForm

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpAddQueuedFile Function

DWORD WINAPI HttpAddQueuedFileEx(
 HQUEUE hQueue,
 DWORD dwQueueMode,
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszRemoteFile,
 DWORD dwOptions,
 UINT nTimeout
);

The HttpAddQueuedFile function adds a new file to the queue with additional transfer options.

Parameters
hQueue

A handle to a file transfer queue.

dwQueueMode

An integer value which specifies if the file should be downloaded from the server or uploaded
to the server. This parameter must be one of the following options and cannot have a value of
zero.

Constant Description

HTTP_QUEUE_DOWNLOAD The file should be queued for downloading from
the server to the local system.

HTTP_QUEUE_UPLOAD The file should be queued for uploading from the
local system to the server.

lpszLocalFile

A pointer to a null terminated string which specifies the name of the local file to be queued for
transfer. This parameter cannot be NULL or point to an empty string. If the file is being queued
for an upload, the file must exist on the local system or the function will fail. If the file is being
downloaded, it will be created or replaced on the local system.

lpszRemoteFile

A pointer to a null terminated string which specifies the URL to the location of the file on the
server. The URL must follow the conventions for the File Transfer Protocol and may specify
either a standard or secure connection, alternate port number, username, password and
optional working directory.

dwOptions

An unsigned integer value which specifies one or more options. This parameter is constructed
by using a bitwise operator and can be any of the options used with the HttpConnect function.
If this value is zero, the default options for the queue will be used. The most common options
are:

Constant Description

HTTP_OPTION_DEFAULT Default options should be used for the queued transfer. All
standard headers will be included with the request and
redirected resources will return an error, allowing the
application to determine if it should request the resource

from the new location or inform the user the resource
location has changed.

HTTP_OPTION_REDIRECT This option specifies the client should automatically handle
resource redirection. If the server indicates that the
requested resource has moved to a new location, the client
will close the current connection and request the resource
from the new location. Note that it is possible that the
redirected resource will be located on a different server.

HTTP_OPTION_PROXY This option specifies the client should use the default proxy
configuration for the local system. If the system is
configured to use a proxy server, then the connection will
be automatically established through that proxy; otherwise,
a direct connection to the server is established. The local
proxy configuration can be changed in the system settings
or control panel.

HTTP_OPTION_HTTP2 This option specifies the client should attempt a HTTP/2
connection with the server. If a connection cannot be
established using HTTP/2 the client will attempt to connect
using an earlier version of the protocol.

HTTP_OPTION_SECURE This option specifies the client should attempt to establish a
secure connection with the server. Note that the server
must support secure connections using either the SSL or
TLS protocol. The client will default to using TLS 1.2 or later
for secure connections.

nTimeout

The number of seconds to wait for a response from the server before failing the file transfer. If
this value is zero, the default timeout period for the queue will be used.

Return Value
If the function succeeds, the return value is a unique identifier which corresponds to the queued
file. If the function fails, the return value is zero. To get extended error information, call
HttpGetLastError.

Remarks
This function will add a file to the current transfer queue. If successful, the value returned is a
unique integer which identifies that file in the queue. To obtain information about the queued file,
you can call the HttpGetQueuedFile function and provide this return value as the dwFileId
parameter. To remove a file from the queue, use the HttpRemoveQueuedFile function.

Files can only be added to the queue when in an idle or paused state. If you attempt to add a file
to the queue while the queue manager is transferring files, the function will fail. To determine the
current state of the queue, call the HttpGetQueueStatus function

There are no fixed limits to the number of files which can be queued for transfer. To release the
memory allocated for the queue, call the HttpClearQueue function. To determine the current
status of the queue, including how many file transfers have been queued and how many are
pending completion, call the HttpGetQueueStatus function.

If the local file name includes environment variables enclosed in percentage (%) symbols, those
values will automatically be expanded based on the environment variables defined for the current

user using the ExpandEnvironmentStrings function in the Windows API. Note that environment
variable names are not case-sensitive.

This function will not immediately begin the process of uploading or downloading the file. It will
only add the transfer request to the current queue. The file transfers are managed by a
background worker thread which is created when the HttpStartQueue function is called.

The HttpAddQueuedFileEx function is an extended version of this function with additional
parameters to specify a hostname, port number, user name and password. Because most file
uploads require authentication, using the extended function may be preferred to composing a
URL which includes the account credentials.

Example
// Create a new queue
HQUEUE hQueue = HttpCreateQueue(INFINITE, HTTP_TIMEOUT, HTTP_OPTION_DEFAULT);

if (hQueue == INVALID_QUEUE)
 return;

// Add a file to the queue
DWORD dwFileId = HttpAddQueuedFile(
 hQueue,
 lpszLocalFile,
 lpszRemoteFile,
 HTTP_OPTION_DEFAULT,
 HTTP_TIMEOUT);

// Display information about the queued file
if (dwFileId != 0)
{
 HTTPQUEUEDFILE queuedFile;

 if (HttpGetQueuedFile(hQueue, dwFileId, &queuedFile))
 {
 switch (queuedFile.dwMode)
 {
 case HTTP_QUEUE_DOWNLOAD:
 _tprintf(_T("%u: Download \"%s\" to \"%s\"\n"),
 dwFileId,
 queuedFile.szRemoteFile,
 queuedFile.szLocalFile);
 break;

 case HTTP_QUEUE_UPLOAD:
 _tprintf(_T("%u: Upload \"%s\" to \"%s\"\n"),
 dwFileId,
 queuedFile.szLocalFile,
 queuedFile.szRemoteFile);
 break;
 }
 }
}

// Start the queued file transfers and wait for it to complete
if (HttpStartQueue(hQueue, HTTP_QUEUE_ALL, 0, NULL, 0))
{
 HttpWaitForQueue(hQueue, INFINITE, &dwElapsed, &dwError);
 HttpStopQueue(hQueue);

}

// Remove all files from the queue
HttpDeleteQueue(hQueue);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpAddQueuedFileEx, HttpCreateQueue, HttpDeleteQueue, HttpFindQueuedFile,
HttpGetFirstQueuedFile, HttpGetNextQueuedFile, HttpGetQueuedFile, HttpRemoveQueuedFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpAddQueuedFileEx Function

DWORD WINAPI HttpAddQueuedFileEx(
 HQUEUE hQueue,
 DWORD dwQueueMode,
 LPCTSTR lpszHostName,
 UINT nHostPort,
 UINT nAuthType,
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword,
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszRemoteFile,
 DWORD dwOptions,
 UINT nTimeout,
 LPVOID lpvReserved
);

The HttpAddQueuedFileEx function adds a new file to the queue with additional transfer
options.

Parameters
hQueue

A handle to a file transfer queue.

dwQueueMode

An integer value which specifies if the file should be downloaded from the server or uploaded
to the server. This parameter must be one of the following options and cannot have a value of
zero.

Constant Description

HTTP_QUEUE_DOWNLOAD The file should be queued for downloading from
the server to the local system.

HTTP_QUEUE_UPLOAD The file should be queued for uploading from the
local system to the server.

lpszHostName

A pointer to the name of the server to establish a connection with. This may be a fully-qualified
domain name or an IP address. If this parameter is NULL or points to an empty string, the
lpszRemoteFile parameter must specify a complete URL which identifies the server as well as the
path to the remote file.

nHostPort

The port number which should be used when establishing the connection. A value of zero
specifies that the default port number should be used. For standard connections, the default
port number is 80. For secure connections, the default port number is 443. If this parameter is
zero and a URL is specified with the lpszRemoteFile parameter, the port number included in the
URL will be used as the default value.

nAuthType

An unsigned integer value which specifies the method to be used when authenticating the
client. The following values are supported:

Constant Description

HTTP_AUTH_NONE No client authentication should be performed. The
lpszUserName and lpszPassword parameters are ignored and
current authentication settings are cleared.

HTTP_AUTH_BASIC The Basic authentication scheme should be used. This option is
supported by all servers that support at least version 1.0 of the
protocol. The user credentials are not encrypted and Basic
authentication should not be used over standard (non-secure)
connections. Most web services which use Basic authentication
require the connection to be secure.

HTTP_AUTH_BEARER The Bearer authentication scheme should be used. This
authentication method does not require a user name and the
lpszPassword parameter must specify the OAuth 2.0 bearer
token issued by the service provider. If the access token has
expired, the request will fail with an authorization error.

lpszUserName

Points to a null terminated string which specifies the user name to be used to authenticate the
connection. If this parameter is NULL or an empty string, no client credentials are provided. If
the authentication type is HTTP_AUTH_BEARER, this parameter is ignored.

lpszPassword

Points to a null terminated string which specifies the password to be used to authenticate the
current client session. This parameter may be NULL or an empty string if no password is
required for the specified user, or if no username has been specified. If the authentication type
is HTTP_AUTH_BEARER, this value must be the bearer token issued by the service provider.

lpszLocalFile

A pointer to a null terminated string which specifies the name of the local file to be queued for
transfer. This parameter cannot be NULL or point to an empty string. If the file is being queued
for an upload, the file must exist on the local system or the function will fail. If the file is being
downloaded, it will be created or replaced on the local system.

lpszRemoteFile

A pointer to a null terminated string which specifies the name of the file on the server. If the file
is being downloaded, the file must exist on the server or the transfer will fail. If the file is being
uploaded, the file will be created or replaced on the server. This parameter may specify a
complete URL. Note that any values you specify as arguments to this function will override the
values specified in the URL. If you want to use a URL as the remote file name, the
lpszHostName parameter should be NULL and the nHostPort parameter should be zero.

dwOptions

An unsigned integer value which specifies one or more options. This parameter is constructed
by using a bitwise operator and can be any of the options used with the HttpConnect function.
If this value is zero, the default options for the queue will be used. The most common options
are:

Constant Description

HTTP_OPTION_DEFAULT Default options should be used for the queued transfer. All
standard headers will be included with the request and
redirected resources will return an error, allowing the
application to determine if it should request the resource

from the new location or inform the user the resource
location has changed.

HTTP_OPTION_REDIRECT This option specifies the client should automatically handle
resource redirection. If the server indicates that the
requested resource has moved to a new location, the client
will close the current connection and request the resource
from the new location. Note that it is possible that the
redirected resource will be located on a different server.

HTTP_OPTION_PROXY This option specifies the client should use the default proxy
configuration for the local system. If the system is
configured to use a proxy server, then the connection will
be automatically established through that proxy; otherwise,
a direct connection to the server is established. The local
proxy configuration can be changed in the system settings
or control panel.

HTTP_OPTION_HTTP2 This option specifies the client should attempt a HTTP/2
connection with the server. If a connection cannot be
established using HTTP/2 the client will attempt to connect
using an earlier version of the protocol.

HTTP_OPTION_SECURE This option specifies the client should attempt to establish a
secure connection with the server. Note that the server
must support secure connections using either the SSL or
TLS protocol. The client will default to using TLS 1.2 or later
for secure connections.

nTimeout

The number of seconds to wait for a response from the server before failing the file transfer. If
this value is zero, the default timeout period for the queue will be used.

lpvReserved

A reserved parameter which should always be NULL.

Return Value
If the function succeeds, the return value is a unique identifier which corresponds to the queued
file. If the function fails, the return value is zero. To get extended error information, call
HttpGetLastError.

Remarks
This function will add a file to the current transfer queue. If successful, the value returned is a
unique integer which identifies that file in the queue. To obtain information about the queued file,
you can call the HttpGetQueuedFile function and provide this return value as the dwFileId
parameter. To remove a file from the queue, use the HttpRemoveQueuedFile function.

Files can only be added to the queue when in an idle or paused state. If you attempt to add a file
to the queue while the queue manager is transferring files, the function will fail. To determine the
current state of the queue, call the HttpGetQueueStatus function

There are no fixed limits to the number of files which can be queued for transfer. To release the
memory allocated for the queue, call the HttpClearQueue function. To determine the current
status of the queue, including how many file transfers have been queued and how many are

pending completion, call the HttpGetQueueStatus function.

If the local file name includes environment variables enclosed in percentage (%) symbols, those
values will automatically be expanded based on the environment variables defined for the current
user using the ExpandEnvironmentStrings function in the Windows API. Note that environment
variable names are not case-sensitive.

This function will not immediately begin the process of uploading or downloading the file. It will
only add the transfer request to the current queue. The file transfers are managed by a
background worker thread which is created when the HttpStartQueue function is called.

Example
// Create a new queue
HQUEUE hQueue = HttpCreateQueue(INFINITE, HTTP_TIMEOUT, HTTP_OPTION_DEFAULT);

if (hQueue == INVALID_QUEUE)
 return;

// Add a file to the queue
DWORD dwFileId = HttpAddQueuedFileEx(
 hQueue,
 HTTP_QUEUE_DOWNLOAD,
 lpszHostName,
 HTTP_PORT_DEFAULT,
 HTTP_AUTH_DEFAULT,
 lpszUserName,
 lpszPassword,
 lpszLocalFile,
 lpszRemoteFile,
 HTTP_OPTION_DEFAULT,
 HTTP_TIMEOUT,
 NULL);

// Display information about the queued file
if (dwFileId != 0)
{
 HTTPQUEUEDFILE queuedFile;

 if (HttpGetQueuedFile(hQueue, dwFileId, &queuedFile))
 {
 switch (queuedFile.dwMode)
 {
 case HTTP_QUEUE_DOWNLOAD:
 _tprintf(_T("%u: Download \"%s\" to \"%s\"\n"),
 dwFileId,
 queuedFile.szRemoteFile,
 queuedFile.szLocalFile);
 break;

 case HTTP_QUEUE_UPLOAD:
 _tprintf(_T("%u: Upload \"%s\" to \"%s\"\n"),
 dwFileId,
 queuedFile.szLocalFile,
 queuedFile.szRemoteFile);
 break;
 }
 }
}

// Start the queued file transfers and wait for it to complete
if (HttpStartQueue(hQueue, HTTP_QUEUE_ALL, 0, NULL, 0))
{
 HttpWaitForQueue(hQueue, INFINITE, &dwElapsed, &dwError);
 HttpStopQueue(hQueue);
}

// Remove all files from the queue
HttpDeleteQueue(hQueue);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpAddQueuedFile, HttpCreateQueue, HttpDeleteQueue, HttpFindQueuedFile,
HttpGetFirstQueuedFile, HttpGetNextQueuedFile, HttpGetQueuedFile, HttpRemoveQueuedFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpAddRequestHeaders Function

BOOL WINAPI HttpAddRequestHeaders(
 HCLIENT hClient,
 LPCTSTR lpszHeaderList
);

The HttpAddRequestHeaders function adds one or more request headers for the current client
session.

Parameters
hClient

Handle to the client session.

lpszHeaderList

Points to a null-terminated string which specifies one or more header values which should be
set for the current client session. This parameter cannot be NULL.

Return Value
If the function succeeds, the return value is non-zero. If the client handle is invalid, the function
returns a value of zero. To get extended error information, call HttpGetLastError.

Remarks
The HttpAddRequestHeaders function enables your application to set one or more header
values by providing a list of name/value pairs separated by a colon. Multiple header values may be
provided by separating them with a newline character. This function is similar to calling the
HttpSetRequestHeader function for each value. When the list of header values is parsed,
extraneous whitespace is ignored; however, if the header list contains invalid text (for example, a
missing colon separating a header name from its value) the function will fail and an error will be
returned.

Exercise caution when providing a header list created directly from user input, such as a list of
values input using a textbox control. Any header values which have been previously set by your
application can be overridden by this function and may yield unpredictable results. If the service
you are using requires a custom authorization header, such as an API token or other user
credentials, allowing users to directly modify request header values this way can present a security
risk.

Example
// Define a list of header values which should be included with the
// request submitted to the server
LPCTSTR lpszHeaderList = _T("X-API-Token: 99d2fe39-0246-4efa-98e0-
4d775579fa5d\n") \
 _T("X-API-UserId: someuser@domain.tld\n") \
 _T("X-API-Version: 1.1\n")

if (!HttpAddRequestHeaders(hClient, lpszHeaderList))
{
 // Unable to add the headers for this client session
 return;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)

Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpGetFirstHeader, HttpGetNextHeader, HttpGetRequestHeader, HttpGetResponseHeader,
HttpSetRequestHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpAsyncConnect Function

HCLIENT WINAPI HttpAsyncConnect(
 LPCTSTR lpszRemoteHost,
 UINT nRemotePort,
 UINT nTimeout,
 DWORD dwOptions,
 DWORD dwVersion,
 LPSECURITYCREDENTIALS lpCredentials,
 HWND hEventWnd,
 UINT uEventMsg

);

The HttpAsyncConnect function is used to establish a connection with the specified server

This function has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

The application should create a background worker thread and establish a connection by calling
HttpConnect within that thread. If the application requires multiple simultaneous connections, it is
recommended you create a worker thread for each client session.

Parameters
lpszRemoteHost

A pointer to the name of the server to connect to. This may be a fully-qualified domain name or
an IP address.

nRemotePort

The port number the server is listening on. A value of zero specifies that the default port
number should be used. For standard connections, the default port number is 80. For secure
connections, the default port number is 443.

nTimeout

The number of seconds that the client will wait for a response from the server before failing the
current operation.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

HTTP_OPTION_NOCACHE This instructs the server to not return a cached
copy of the resource. When connected to an
HTTP 1.0 or earlier server, this directive may be
ignored.

HTTP_OPTION_KEEPALIVE This instructs the server to maintain a persistent
connection between requests. This can improve
performance because it eliminates the need to
establish a separate connection for each resource
that is requested.

HTTP_OPTION_REDIRECT This option specifies the client should
automatically handle resource redirection. If the
server indicates that the requested resource has
moved to a new location, the client will close the
current connection and request the resource from
the new location. Note that it is possible that the
redirected resource will be located on a different
server.

HTTP_OPTION_PROXY This option specifies the client should use the
default proxy configuration for the local system. If
the system is configured to use a proxy server,
then the connection will be automatically
established through that proxy; otherwise, a direct
connection to the server is established. The local
proxy configuration can be changed using the
system Control Panel.

HTTP_OPTION_ERRORDATA This option specifies the client should return the
content of an error response from the server,
rather than returning an error code. Note that this
option will disable automatic resource redirection,
and should not be used with
HTTP_OPTION_REDIRECT.

HTTP_OPTION_NOUSERAGENT This option specifies the client should not include
a User-Agent header with any requests made
during the session. The user agent is a string
which is used to identify the client application to
the server. An application can provide its own
custom user agent value using the
HttpSetRequestHeader function.

HTTP_OPTION_HTTP2 This option specifies the client should attempt a
HTTP/2 connection with the server. If a
connection cannot be established using HTTP/2
the client will attempt to connect using an earlier
version of the protocol. The value of the
dwVersion parameter will be ignored when this
option is used.

HTTP_OPTION_TUNNEL This option specifies that a tunneled TCP
connection and/or port-forwarding is being used
to establish the connection to the server. This
changes the behavior of the client with regards to
internal checks of the destination IP address and
remote port number, default capability selection
and how the connection is established.

HTTP_OPTION_TRUSTEDSITE This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option
only affects connections using either the SSL or

TLS protocols.

HTTP_OPTION_SECURE This option specifies the client should attempt to
establish a secure connection with the server.
Note that the server must support secure
connections using either the SSL or TLS protocol.
The client will default to using TLS 1.2 or later for
secure connections.

HTTP_OPTION_SECURE_FALLBACK This option specifies the client should permit the
use of less secure cipher suites for compatibility
with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

HTTP_OPTION_PREFER_IPV6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be resolved
to both an IPv6 and IPv4 address. This option is
ignored if the local system does not have IPv6
enabled, or when the hostname can only be
resolved to an IPv4 address. If the server
hostname can only be resolved to an IPv6
address, the client will attempt to establish a
connection using IPv6 regardless if this option has
been specified.

HTTP_OPTION_FREETHREAD This option specifies the handle returned by this
function may be used by any thread, and is not
limited to the thread which created it. The
application is responsible for ensuring that access
to the handle is synchronized across multiple
threads.

HTTP_OPTION_HIRES_TIMER This option specifies the elapsed time for data
transfers should be returned in milliseconds
instead of seconds. This will return more accurate
transfer times for smaller amounts of data over
fast network connections.

dwVersion

The requested protocol version used when sending requests to the server. The high word
should specify the major version, and the low word should specify the minor version number.
The HTTPVERSION macro can be used to create a version value and the following values are
defined:

Constant Description

HTTP_VERSION_DEFAULT The client should use the default protocol version for this
session. This is the same as specifying HTTP_VERSION_11
and is recommended to ensure the broadest compatibility
with most servers.

HTTP_VERSION_09 The client should use the original one-line protocol which
includes no version number and no request header block.

This version has been deprecated and should only be used
with legacy servers which do not support the protocol
standard. This version of the protocol does not support
virtual hosts and is not supported by most modern web
services.

HTTP_VERSION_10 The client should use the HTTP/1.0 protocol standard
originally defined in RFC 1945. This version of the protocol
supports the use of request header blocks, however it does
not support persistent connections or chunked data and
has limited cache control mechanisms.

HTTP_VERSION_11 The client should use the HTTP/1.1 protocol standard
defined in RFC 2616 and RFC 7230. This is the most widely
used version of the protocol and is the default for client
connections. It is recommended most applications use this
version.

HTTP_VERSION_20 The client should use the HTTP/2 protocol standard
defined in RFC 7540. This protocol version is a significant
change from previous versions and can provide improved
performance with header compression and optimizing how
requests are serviced. If the client or server does not
support HTTP/2, the client will automatically attempt to use
an earlier version of the protocol.

lpCredentials

Pointer to credentials structure SECURITYCREDENTIALS. This parameter is only used if the
HTTP_OPTION_SECURE option is specified for the connection. This parameter may be NULL, in
which case no client credentials will be provided to the server. If client credentials are required,
the fields dwSize, lpszCertStore, and lpszCertName must be defined, while other fields may be
left undefined. Set dwSize to the size of the SECURITYCREDENTIALS structure.

hEventWnd

The handle to the event notification window. This window receives messages which notify the
client of various asynchronous network events that occur.

uEventMsg

The message identifier that is used when an asynchronous network event occurs. This value
should be greater than WM_USER as defined in the Windows header files.

Return Value
If the function succeeds, the return value is a handle to a client session. If the function fails, the
return value is INVALID_CLIENT. To get extended error information, call HttpGetLastError.

Remarks
When a message is posted to the notification window, the low word of the lParam parameter
contains the event identifier. The high word of lParam contains the low word of the error code, if
an error has occurred. The wParam parameter contains the client handle. One or more of the
following event identifiers may be sent:

Constant Description

HTTP_EVENT_CONNECT The connection to the server has completed. The high word of

the lParam parameter should be checked, since this notification
message will be posted if an error has occurred.

HTTP_EVENT_DISCONNECT The server has closed the connection to the client. The client
should read any remaining data and disconnect.

HTTP_EVENT_READ Data is available to read by the calling process. No additional
messages will be posted until the client has read at least some of
the data. This event is only generated if the client is in
asynchronous mode.

HTTP_EVENT_WRITE The client can now write data. This notification is sent after a
connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking
operation. This event is only generated if the client is in
asynchronous mode.

HTTP_EVENT_TIMEOUT The network operation has exceeded the specified timeout
period. The client application may attempt to retry the operation,
or may disconnect from the server and report an error to the
user.

HTTP_EVENT_CANCEL The current operation has been canceled. Under most
circumstances the client should disconnect from the server and
re-connect if needed. After an operation has been canceled, the
server may abort the connection or refuse to accept further
commands from the client.

HTTP_EVENT_COMMAND A command has been issued by the client and the server
response has been received and processed. This event can be
used to log the result codes and messages returned by the server
in response to actions taken by the client.

HTTP_EVENT_PROGRESS The client is in the process of sending or receiving data from the
server. This event is called periodically during a transfer so that
the client can update any user interface components such as a
status control or progress bar.

HTTP_EVENT_REDIRECT This event is generated when a the server indicates that the
requested resource has been moved to a new location. The new
resource location may be on the same server, or it may be
located on another server. Check the value of the Location
header field to determine where the resource has been moved to.

To cancel asynchronous notification and return the client to a blocking mode, use the
HttpDisableEvents function.

The dwOptions argument can be used to specify the threading model that is used by the library
when a connection is established. By default, the handle is initially attached to the thread that
created it. From that point on, until the it is released, only the owner may call functions using that
handle. The ownership of the handle may be transferred from one thread to another using the
HttpAttachThread function.

Specifying the HTTP_OPTION_FREETHREAD option enables any thread to call any function using
the handle, regardless of which thread created it. It is important to note that this option disables
certain internal safety checks which are performed by the library and may result in unexpected

behavior unless access to the handle is synchronized. If one thread calls a function in the library, it
must ensure that no other thread will call another function at the same time using the same
handle.

If the HTTP_OPTION_KEEPALIVE option is specified and the server does not support persistent
connections, the client will automatically reconnect when each resource is requested. Although it
will not provide any performance benefits, this allows the option to be used with all servers. This
option is automatically enabled when using HTTP/2.

Applications should use HTTP_VERSION_DEFAULT as the value for the dwVersion parameter. This
will default to an appropriate version for the Windows platform and ensures the broadest
compatibility with most servers. If your application specifies HTTP_VERSION_20, a secure
connection using TLS 1.2 will always be used. The minimum required platform for HTTP/2 support
is Windows 10 (Version 1903) or Windows Server 2019. Earlier versions of the Schannel SSP do not
support the features required for a secure HTTP/2 connection.

If your application requests a HTTP/2 connection and the server only accepts earlier versions of
the protocol, the client will attempt to automatically downgrade the request to HTTP/1.1. If a
connection using an earlier version of the protocol cannot be established, the function will fail and
return INVALID_CLIENT.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpAsyncProxyConnect, HttpConnect, HttpDisconnect, HttpInitialize, HttpProxyConnect

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpAsyncGetData Function

UINT WINAPI HttpAsyncGetData(
 HCLIENT hClient,
 LPCTSTR lpszResource,
 LPVOID lpvBuffer,
 LPDWORD lpdwLength,
 DWORD dwOptions,
 HTTPEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

Copies the contents of a resource on the server to the specified buffer.

Parameters
hClient

Handle to the client session.

lpszResource

A pointer to a string that specifies the resource on the server that will be transferred to the local
system.

lpvBuffer

A pointer to a byte buffer which will contain the data transferred from the server, or a pointer to
a global memory handle which will reference the data when the function returns.

lpdwLength

A pointer to an unsigned integer which should be initialized to the maximum number of bytes
that can be copied to the buffer specified by the lpvBuffer parameter. If the lpvBuffer
parameter points to a global memory handle, the length value should be initialized to zero.
When the function returns, this value will be updated with the actual length of the file that was
downloaded.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

HTTP_TRANSFER_DEFAULT The default transfer mode. The resource data is copied
to the local system exactly as it is stored on the server.

HTTP_TRANSFER_CONVERT If the resource being downloaded from the server is
textual, the data is automatically converted so that the
end of line character sequence is compatible with the
Windows platform. Individual carriage return or linefeed
characters are converted to carriage return/linefeed
character sequences.

HTTP_TRANSFER_COMPRESS This option informs the server that the client is willing to
accept compressed data. If the server supports
compression for the specified resource, then the data
will be automatically expanded before being returned
to the caller. This option is selected by default if
compression has been enabled using the

HttpEnableCompression function.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the HttpEventProc callback
function. This parameter may be NULL if you do not wish to implement an event handler.

dwParam

A user-defined integer value that is passed to the callback function. This parameter is ignored if
the lpEventProc parameter is NULL.

Return Value
If the function succeeds, the return value is non-zero integer value that specifies a unique
asynchronous task identifier. If the function fails, the return value is zero. To get extended error
information, call the HttpGetLastError function. The application should treat the task ID as an
opaque value and never make an assumption about the sequence in which IDs are assigned to a
background task.

Remarks
The HttpAsyncGetData function is used to download the contents of a server resource into a
local buffer. This function is similar to the HttpGetData function, however it retrieves the contents
of the file using a background worker thread and does not block the current working thread. This
enables the application to continue to perform other operations while the file is being copied to
the local system.

Because this function works asynchronously, it is important that the memory allocated for the
buffer is not released before the asynchronous task completes. If you provide a buffer that is
allocated on the stack, such as with the example listed below, then you must ensure that your
code does not return from the function while the data is being downloaded. In the example, this is
achieved by calling the HttpTaskWait function. You can also perform other operation and poll
the status of the task by calling the HttpTaskDone function. If you wish to return from the calling
function immediately, then you must dynamically allocate memory for the lpvBuffer and
lpdwLength parameters on the heap and free that memory after the task has completed and the
data is no longer needed.

If the address of an event handler is provided to this function, it is guaranteed that the handler will
be invoked with the HTTP_EVENT_CONNECT event after the connection has been established, and
the HTTP_EVENT_DISCONNECT event after the transfer has completed. This enables your
application to know when the data transfer is about to begin, and immediately before the worker
thread is terminated. The worker thread creates a secondary connection to the server with its own
session handle. This ensures that the asynchronous operation will not interfere with the current
client session. Your application can interact with this background worker thread using the client
handle that is passed to the event handler.

The lpvBuffer parameter may be specified in one of two ways, depending on the needs of the
application. It can either be a pre-allocated buffer large enough to store the contents of the file or
it can specify the address of a global memory handle that will contain the data. If it points to a
pre-allocated buffer, the lpdwLength parameter must be initialized to the maximum number of
bytes that can be copied into the buffer. If specifies the address of a global memory handle, then
lpdwLength must be initialized to a value of zero. See the example code below.

Example
HGLOBAL hgblBuffer = NULL;

DWORD dwLength = 0;
UINT nTaskId;

// Copy the data into block of global memory allocated by
// the GlobalAlloc function; the handle to this memory will be
// returned in the hgblBuffer parameter

nTaskId = HttpAsyncGetData(hClient,
 lpszResource,
 &hgblBuffer,
 &dwLength,
 HTTP_TRANSFER_DEFAULT,
 NULL, 0);

if (nTaskId != 0)
{
 DWORD dwError = NO_ERROR;
 DWORD dwElapsed = 0;

 // Wait for the transfer to complete
 HttpTaskWait(nTaskId, INFINTE, &dwElapsed, &dwError);

 // Lock the global memory handle, returning a pointer to the
 // contents of the file data
 lpBuffer = (LPBYTE)GlobalLock(hgblBuffer);

 // After the data has been used, the handle must be unlocked
 // and freed, otherwise a memory leak will occur
 GlobalUnlock(hgblBuffer);
 GlobalFree(hgblBuffer);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpAsyncGetFile, HttpAsyncPutData, HttpAsyncPutFile, HttpEventProc, HttpGetFile, HttpTaskWait

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpAsyncGetFile Function

UINT WINAPI HttpAsyncGetFile(
 HCLIENT hClient,
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszRemoteFile,
 DWORD dwOptions,
 DWORD dwOffset,
 HTTPEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

Downloads the specified file from the server to the local system.

Parameters
hClient

Handle to the client session.

lpszLocalFile

A pointer to a string that specifies the file on the local system that will be created, overwritten or
appended to. The file pathing and name conventions must be that of the local host.

lpszRemoteFile

A pointer to a string that specifies the file on the server that will be transferred to the local
system.

dwOptions

An unsigned integer that specifies one or more options. This parameter may be any one of the
following values:

Constant Description

HTTP_TRANSFER_DEFAULT The default transfer mode. The resource data is copied
to the local system exactly as it is stored on the server.

HTTP_TRANSFER_CONVERT If the resource being downloaded from the server is
textual, the data is automatically converted so that the
end of line character sequence is compatible with the
Windows platform. Individual carriage return or linefeed
characters are converted to carriage return/linefeed
character sequences.

HTTP_TRANSFER_COMPRESS This option informs the server that the client is willing to
accept compressed data. If the server supports
compression for the specified resource, then the data
will be automatically expanded before being returned
to the caller. This option is selected by default if
compression has been enabled using the
HttpEnableCompression function. This option is
ignored if the dwOffset parameter is non-zero.

dwOffset

A byte offset which specifies where the file transfer should begin. The default value of zero
specifies that the file transfer should start at the beginning of the file. A value greater than zero

is typically used to restart a transfer that has not completed successfully. Note that specifying a
non-zero offset requires that the server support the REST command to restart transfers.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the HttpEventProc callback
function. This parameter may be NULL if you do not wish to implement an event handler.

dwParam

A user-defined integer value that is passed to the callback function. This parameter is ignored if
the lpEventProc parameter is NULL.

Return Value
If the function succeeds, the return value is non-zero integer value that specifies a unique
asynchronous task identifier. If the function fails, the return value is zero. To get extended error
information, call the HttpGetLastError function. The application should treat the task ID as an
opaque value and never make an assumption about the sequence in which IDs are assigned to a
background task.

Remarks
The HttpAsyncGetFile function is used to download the contents of a remote file to a file on the
local system. This function is similar to the HttpGetFile function, however it retrieves the file using
a background worker thread and does not block the current working thread. This enables the
application to continue to perform other operations while the file is being transferred to the local
system.

If the address of an event handler is provided to this function, it is guaranteed that the handler will
be invoked with the HTTP_EVENT_CONNECT event after the connection has been established, and
the HTTP_EVENT_DISCONNECT event after the transfer has completed. This enables your
application to know when the file transfer is about to begin, and immediately before the worker
thread is terminated. During the file transfer, the callback function will be invoked periodically with
the HTTP_EVENT_PROGRESS event. The client session handle is passed to the event handler,
allowing you to call functions such as HttpGetTransferStatus to determine the amount of data
that has been copied.

To determine when the transfer has completed without implementing an event handler,
periodically call the HttpTaskDone function. If you wish to block the current thread and wait for
the transfer to complete, call the HttpTaskWait function. To stop a background file transfer that is
in progress, call the HttpTaskAbort function. This will signal the background worker thread to
cancel the transfer and terminate the session.

This function can be called multiple times to download multiple files in the background; however,
most servers limit the number of simultaneous connections that can originate from a single IP
address. It is recommended that you only perform two simultaneous background transfers from
the same server at any one time. The application should not make any assumptions about the
order in which multiple background transfers may complete or how they are sequenced. For
example, it should never be assumed that a background task with a lower task ID will complete
before a task with a higher ID value.

Example
UINT nTaskId;

// Begin a file transfer in the background

nTaskId = HttpAsyncGetFile(hClient,
 lpszLocalFile,
 lpszRemoteFile,
 HTTP_TRANSFER_DEFAULT,
 0, NULL, 0);

if (nTaskId != 0)
{
 DWORD dwError = NO_ERROR;
 DWORD dwElapsed = 0;

 // Wait for the transfer to complete
 HttpTaskWait(nTaskId, INFINTE, &dwElapsed, &dwError);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpAsyncGetData, HttpAsyncPutData, HttpAsyncPutFile, HttpEventProc, HttpGetFile,
HttpTaskDone, HttpTaskWait

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpAsyncGetFileEx Function

UINT WINAPI HttpAsyncGetFileEx(
 HCLIENT hClient,
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszRemoteFile,
 DWORD dwOptions,
 ULARGE_INTEGER uiOffset,
 HTTPEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

Downloads the specified file from the server to the local system. This version of the function is
designed to support files that are larger than 4GB.

Parameters
hClient

Handle to the client session.

lpszLocalFile

A pointer to a string that specifies the file on the local system that will be created, overwritten or
appended to. The file pathing and name conventions must be that of the local host.

lpszRemoteFile

A pointer to a string that specifies the file on the server that will be transferred to the local
system. The file naming conventions must be that of the host operating system.

dwOptions

An unsigned integer that specifies one or more options. This parameter may be any one of the
following values:

Constant Description

HTTP_TRANSFER_DEFAULT The default transfer mode. The resource data is copied
to the local system exactly as it is stored on the server.

HTTP_TRANSFER_CONVERT If the resource being downloaded from the server is
textual, the data is automatically converted so that the
end of line character sequence is compatible with the
Windows platform. Individual carriage return or linefeed
characters are converted to carriage return/linefeed
character sequences.

HTTP_TRANSFER_COMPRESS This option informs the server that the client is willing to
accept compressed data. If the server supports
compression for the specified resource, then the data
will be automatically expanded before being returned
to the caller. This option is selected by default if
compression has been enabled using the
HttpEnableCompression function. This option is
ignored if the dwOffset parameter is non-zero.

uiOffset

A byte offset which specifies where the file transfer should begin. The default value of zero

specifies that the file transfer should start at the beginning of the file. A value greater than zero
is typically used to restart a transfer that has not completed successfully. Note that specifying a
non-zero offset requires that the server support the REST command to restart transfers.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the HttpEventProc callback
function. This parameter may be NULL if you do not wish to implement an event handler.

dwParam

A user-defined integer value that is passed to the callback function. This parameter is ignored if
the lpEventProc parameter is NULL.

Return Value
If the function succeeds, the return value is non-zero integer value that specifies a unique
asynchronous task identifier. If the function fails, the return value is zero. To get extended error
information, call the HttpGetLastError function. The application should treat the task ID as an
opaque value and never make an assumption about the sequence in which IDs are assigned to a
background task.

Remarks
The HttpAsyncGetFileEx function is used to download the contents of a remote file to a file on
the local system. This function is similar to the HttpGetFileEx function, however it retrieves the file
using a background worker thread and does not block the current working thread. This enables
the application to continue to perform other operations while the file is being transferred to the
local system.

If the address of an event handler is provided to this function, it is guaranteed that the handler will
be invoked with the HTTP_EVENT_CONNECT event after the connection has been established, and
the HTTP_EVENT_DISCONNECT event after the transfer has completed. This enables your
application to know when the file transfer is about to begin, and immediately before the worker
thread is terminated. During the file transfer, the callback function will be invoked periodically with
the HTTP_EVENT_PROGRESS event. The client session handle is passed to the event handler,
allowing you to call functions such as HttpGetTransferStatusEx to determine the amount of data
that has been copied.

To determine when the transfer has completed without implementing an event handler,
periodically call the HttpTaskDone function. If you wish to block the current thread and wait for
the transfer to complete, call the HttpTaskWait function. To stop a background file transfer that is
in progress, call the HttpTaskAbort function. This will signal the background worker thread to
cancel the transfer and terminate the session.

This function can be called multiple times to download multiple files in the background; however,
most servers limit the number of simultaneous connections that can originate from a single IP
address. It is recommended that you only perform two simultaneous background transfers from
the same server at any one time. The application should not make any assumptions about the
order in which multiple background transfers may complete or how they are sequenced. For
example, it should never be assumed that a background task with a lower task ID will complete
before a task with a higher ID value.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)

Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpAsyncPutFileEx, HttpEventProc, HttpGetFileEx, HttpPutFileEx, HttpTaskDone, HttpTaskWait

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpAsyncPostData Function

UINT WINAPI HttpAsyncPostData(
 HCLIENT hClient,
 LPCTSTR lpszResource,
 LPVOID lpvBuffer,
 DWORD cbBuffer,
 LPVOID lpvResult,
 LPDWORD lpcbResult,
 DWORD dwOptions,
 HTTPEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

Post data from a local buffer to a script executed on the server.

Parameters
hClient

Handle to the client session.

lpszResource

A pointer to a string that specifies the resource that the data will be posted to on the server.
Typically this is the name of a script that will be executed. This string may specify a valid URL for
the current server that the client is connected to.

lpvBuffer

A pointer to the data that will be provided to the script. This parameter may be NULL if the
script does not require any additional data from the client.

cbBuffer

The number of bytes to copy from the buffer. If this lpvBuffer parameter is NULL, this value
should be zero.

lpvResult

A pointer to a byte buffer which will contain the data returned by the server, or a pointer to a
global memory handle which will reference the data when the function returns.

lpcbResult

A pointer to an unsigned integer which should be initialized to the maximum number of bytes
that can be copied to the buffer specified by the lpvBuffer parameter. If the lpvResult
parameter points to a global memory handle, the length value should be initialized to zero.
When the function returns, this value will be updated with the actual number of bytes of data
that was returned.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

HTTP_POST_DEFAULT The default post mode. The contents of the buffer are
encoded and sent as standard form data. The data returned
by the server is copied to the result buffer exactly as it is
returned from the server.

HTTP_POST_CONVERT If the data being returned from the server is textual, it is
automatically converted so that the end of line character
sequence is compatible with the Windows platform.
Individual carriage return or linefeed characters are
converted to carriage return/linefeed character sequences.
Note that this option does not have any effect on the form
data being submitted to the server, only on the data
returned by the server.

HTTP_POST_MULTIPART The contents of the buffer being sent to the server consists
of multipart form data and will be sent as-is without any
encoding.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the HttpEventProc callback
function. This parameter may be NULL if you do not wish to implement an event handler.

dwParam

A user-defined integer value that is passed to the callback function. This parameter is ignored if
the lpEventProc parameter is NULL.

Return Value
If the function succeeds, the return value is non-zero integer value that specifies a unique
asynchronous task identifier. If the function fails, the return value is zero. To get extended error
information, call the HttpGetLastError function. The application should treat the task ID as an
opaque value and never make an assumption about the sequence in which IDs are assigned to a
background task.

Remarks
The HttpAsyncPostData function is used to submit data to a script that executes on the server
and then copy the output from that script into a local buffer. This function is similar to the
HttpPostData function, however it submits the data using a background worker thread and does
not block the current working thread. This enables the application to continue to perform other
operations while the data is being sent and the response from the server is being returned to the
caller.

Because this function works asynchronously, it is important that the memory allocated for the
lpvBuffer and lpvResult parameters will not be released before the asynchronous task completes.
If you provide pointers to memory that is allocated on the stack, ensure that your code does not
return from the function until the background task completes. This can be achieved by calling the
HttpTaskWait function or periodically calling the HttpTaskDone function to determine if the
operation has completed. If you wish to return from the calling function immediately, then you
must dynamically allocate memory on the heap and free that memory after the task has
completed and the data is no longer needed.

If the address of an event handler is provided to this function, it is guaranteed that the handler will
be invoked with the HTTP_EVENT_CONNECT event after the connection has been established, and
the HTTP_EVENT_DISCONNECT event after the transfer has completed. This enables your
application to know when the file transfer is about to begin, and immediately before the worker
thread is terminated.

The lpvResult parameter may be specified in one of two ways, depending on the needs of the

application. It can either be a pre-allocated buffer large enough to store the contents of the server
response or it can specify the address of a global memory handle that will contain the data. If it
points to a pre-allocated buffer, the lpcbResult parameter must be initialized to the maximum
number of bytes that can be copied into the buffer. If specifies the address of a global memory
handle, then lpcbResult must be initialized to a value of zero. See the example code below.

If you wish to submit XML formatted data to the server, it is recommended that you use the
HttpAsyncPostXml function instead.

Example
HGLOBAL hgblBuffer = (HGLOBAL)NULL;
LPBYTE lpBuffer = (LPBYTE)NULL;
DWORD cbBuffer = 0;
UINT nTaskId;

// Store the script output into block of global memory allocated by
// the GlobalAlloc function; the handle to this memory will be
// returned in the hgblBuffer parameter. Since the output from the
// script is textual, the HTTP_POST_CONVERT option is used

nTaskId = HttpAsyncPostData(hClient,
 lpszResource,
 lpParameters,
 cbParameters,
 &hgblBuffer,
 &cbBuffer,
 HTTP_POST_CONVERT,
 NULL, 0);

if (nTaskId != 0)
{
 DWORD dwError = NO_ERROR;
 DWORD dwElapsed = 0;

 // Wait for the task to complete
 HttpTaskWait(nTaskId, INFINTE, &dwElapsed, &dwError);

 // Lock the global memory handle, returning a pointer to the
 // output data from the script
 lpBuffer = (LPBYTE)GlobalLock(hgblBuffer);

 // After the data has been used, the handle must be unlocked
 // and freed, otherwise a memory leak will occur
 GlobalUnlock(hgblBuffer);
 GlobalFree(hgblBuffer);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpAsyncGetData, HttpAsyncPostJson, HttpAsyncPostXml, HttpEventProc, HttpPostData,

HttpTaskWait

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpAsyncPostJson Function

UINT WINAPI HttpAsyncPostJson(
 HCLIENT hClient,
 LPCTSTR lpszResource,
 LPCTSTR lpszJsonData,
 LPVOID lpvResult,
 LPDWORD lpcbResult,
 DWORD dwOptions,
 HTTPEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

Submit JSON formatted data to the server and return the response to the caller.

Parameters
hClient

Handle to the client session.

lpszResource

A pointer to a string that specifies the resource name that the JSON data will be submitted to.
Typically this is the name of a script on the server.

lpszJsonData

A pointer to a string that specifies the JSON data that will be submitted to the server.

lpvResult

A pointer to a byte buffer which will contain the data returned by the server, or a pointer to a
global memory handle which will reference the data when the function returns.

lpcbResult

A pointer to an unsigned integer which should be initialized to the maximum number of bytes
that can be copied to the buffer specified by the lpvBuffer parameter. If the lpvResult
parameter points to a global memory handle, the length value should be initialized to zero.
When the function returns, this value will be updated with the actual number of bytes of data
that was returned.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

HTTP_POST_DEFAULT The default post mode. The contents of the buffer are
encoded and sent as standard form data. The data returned
by the server is copied to the result buffer exactly as it is
returned from the server.

HTTP_POST_CONVERT If the data being returned from the server is textual, it is
automatically converted so that the end of line character
sequence is compatible with the Windows platform. Individual
carriage return or linefeed characters are converted to
carriage return/linefeed character sequences. Note that this
option does not have any effect on the form data being
submitted to the server, only on the data returned by the

server.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the HttpEventProc callback
function. This parameter may be NULL if you do not wish to implement an event handler.

dwParam

A user-defined integer value that is passed to the callback function. This parameter is ignored if
the lpEventProc parameter is NULL.

Return Value
If the function succeeds, the return value is non-zero integer value that specifies a unique
asynchronous task identifier. If the function fails, the return value is zero. To get extended error
information, call the HttpGetLastError function. The application should treat the task ID as an
opaque value and never make an assumption about the sequence in which IDs are assigned to a
background task.

Remarks
The HttpAsyncPostJson function is used to submit JSON formatted data to a script that executes
on the server and then copy the output from that script into a local buffer. It automatically sets the
correct content type and encoding required for submitting JSON data to a server, however it does
not parse the JSON data itself to ensure that it is well-formed. Your application is responsible for
ensuring that the JSON data that is being submitted to the server is formatted correctly. This
function is similar to the HttpPostJson function, however it submits the data using a background
worker thread and does not block the current working thread.

Because this function works asynchronously, it is important that the memory allocated for the
lpszJsonData and lpvResult parameters will not be released before the asynchronous task
completes. If you provide pointers to memory that is allocated on the stack, ensure that your code
does not return from the function until the background task completes. This can be achieved by
calling the HttpTaskWait function or periodically calling the HttpTaskDone function to
determine if the operation has completed. If you wish to return from the calling function
immediately, then you must dynamically allocate memory on the heap and free that memory after
the task has completed and the data is no longer needed.

If the address of an event handler is provided to this function, it is guaranteed that the handler will
be invoked with the HTTP_EVENT_CONNECT event after the connection has been established, and
the HTTP_EVENT_DISCONNECT event after the transfer has completed. This enables your
application to know when the file transfer is about to begin, and immediately before the worker
thread is terminated.

The lpvResult parameter may be specified in one of two ways, depending on the needs of the
application. It can either be a pre-allocated buffer large enough to store the contents of the server
response or it can specify the address of a global memory handle that will contain the data. If it
points to a pre-allocated buffer, the lpcbResult parameter must be initialized to the maximum
number of bytes that can be copied into the buffer. If specifies the address of a global memory
handle, then lpcbResult must be initialized to a value of zero. See the example code below.

Example
HGLOBAL hgblBuffer = (HGLOBAL)NULL;
LPBYTE lpBuffer = (LPBYTE)NULL;
DWORD cbBuffer = 0;

UINT nTaskId;

// Store the script output into block of global memory allocated by
// the GlobalAlloc function; the handle to this memory will be
// returned in the hgblBuffer parameter. Since the output from the
// script is textual, the HTTP_POST_CONVERT option is used

nTaskId = HttpAsyncPostJson(hClient,
 lpszResource,
 lpszJsonData,
 &hgblBuffer,
 &cbBuffer,
 HTTP_POST_CONVERT,
 NULL, 0);

if (nTaskId != 0)
{
 DWORD dwError = NO_ERROR;
 DWORD dwElapsed = 0;

 // Wait for the task to complete
 HttpTaskWait(nTaskId, INFINTE, &dwElapsed, &dwError);

 // Lock the global memory handle, returning a pointer to the
 // output data from the script
 lpBuffer = (LPBYTE)GlobalLock(hgblBuffer);

 // After the data has been used, the handle must be unlocked
 // and freed, otherwise a memory leak will occur
 GlobalUnlock(hgblBuffer);
 GlobalFree(hgblBuffer);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpAsyncGetData, HttpAsyncPostData, HttpEventProc, HttpPostJson, HttpTaskWait

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpAsyncPostXml Function

UINT WINAPI HttpAsyncPostXml(
 HCLIENT hClient,
 LPCTSTR lpszResource,
 LPCTSTR lpszXmlData,
 LPVOID lpvResult,
 LPDWORD lpcbResult,
 DWORD dwOptions,
 HTTPEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

Submit XML formatted data to the server and return the response to the caller.

Parameters
hClient

Handle to the client session.

lpszResource

A pointer to a string that specifies the resource name that the XML data will be submitted to.
Typically this is the name of a script on the server.

lpszXmlData

A pointer to a string that specifies the XML data that will be submitted to the server.

lpvResult

A pointer to a byte buffer which will contain the data returned by the server, or a pointer to a
global memory handle which will reference the data when the function returns.

lpcbResult

A pointer to an unsigned integer which should be initialized to the maximum number of bytes
that can be copied to the buffer specified by the lpvBuffer parameter. If the lpvResult
parameter points to a global memory handle, the length value should be initialized to zero.
When the function returns, this value will be updated with the actual number of bytes of data
that was returned.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

HTTP_POST_DEFAULT The default post mode. The contents of the buffer are
encoded and sent as standard form data. The data returned
by the server is copied to the result buffer exactly as it is
returned from the server.

HTTP_POST_CONVERT If the data being returned from the server is textual, it is
automatically converted so that the end of line character
sequence is compatible with the Windows platform. Individual
carriage return or linefeed characters are converted to
carriage return/linefeed character sequences. Note that this
option does not have any effect on the form data being
submitted to the server, only on the data returned by the

server.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the HttpEventProc callback
function. This parameter may be NULL if you do not wish to implement an event handler.

dwParam

A user-defined integer value that is passed to the callback function. This parameter is ignored if
the lpEventProc parameter is NULL.

Return Value
If the function succeeds, the return value is non-zero integer value that specifies a unique
asynchronous task identifier. If the function fails, the return value is zero. To get extended error
information, call the HttpGetLastError function. The application should treat the task ID as an
opaque value and never make an assumption about the sequence in which IDs are assigned to a
background task.

Remarks
The HttpAsyncPostXml function is used to submit XML formatted data to a script that executes
on the server and then copy the output from that script into a local buffer. It automatically sets the
correct content type and encoding required for submitting XML data to a server, however it does
not parse the XML data itself to ensure that it is well-formed. Your application is responsible for
ensuring that the XML data that is being submitted to the server is formatted correctly. This
function is similar to the HttpPostXml function, however it submits the data using a background
worker thread and does not block the current working thread.

Because this function works asynchronously, it is important that the memory allocated for the
lpszXmlData and lpvResult parameters will not be released before the asynchronous task
completes. If you provide pointers to memory that is allocated on the stack, ensure that your code
does not return from the function until the background task completes. This can be achieved by
calling the HttpTaskWait function or periodically calling the HttpTaskDone function to
determine if the operation has completed. If you wish to return from the calling function
immediately, then you must dynamically allocate memory on the heap and free that memory after
the task has completed and the data is no longer needed.

If the address of an event handler is provided to this function, it is guaranteed that the handler will
be invoked with the HTTP_EVENT_CONNECT event after the connection has been established, and
the HTTP_EVENT_DISCONNECT event after the transfer has completed. This enables your
application to know when the file transfer is about to begin, and immediately before the worker
thread is terminated.

The lpvResult parameter may be specified in one of two ways, depending on the needs of the
application. It can either be a pre-allocated buffer large enough to store the contents of the server
response or it can specify the address of a global memory handle that will contain the data. If it
points to a pre-allocated buffer, the lpcbResult parameter must be initialized to the maximum
number of bytes that can be copied into the buffer. If specifies the address of a global memory
handle, then lpcbResult must be initialized to a value of zero. See the example code below.

Example
HGLOBAL hgblBuffer = (HGLOBAL)NULL;
LPBYTE lpBuffer = (LPBYTE)NULL;
DWORD cbBuffer = 0;

UINT nTaskId;

// Store the script output into block of global memory allocated by
// the GlobalAlloc function; the handle to this memory will be
// returned in the hgblBuffer parameter. Since the output from the
// script is textual, the HTTP_POST_CONVERT option is used

nTaskId = HttpAsyncPostXml(hClient,
 lpszResource,
 lpszXmlData,
 &hgblBuffer,
 &cbBuffer,
 HTTP_POST_CONVERT,
 NULL, 0);

if (nTaskId != 0)
{
 DWORD dwError = NO_ERROR;
 DWORD dwElapsed = 0;

 // Wait for the task to complete
 HttpTaskWait(nTaskId, INFINTE, &dwElapsed, &dwError);

 // Lock the global memory handle, returning a pointer to the
 // output data from the script
 lpBuffer = (LPBYTE)GlobalLock(hgblBuffer);

 // After the data has been used, the handle must be unlocked
 // and freed, otherwise a memory leak will occur
 GlobalUnlock(hgblBuffer);
 GlobalFree(hgblBuffer);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpAsyncGetData, HttpAsyncPostData, HttpEventProc, HttpPostXml, HttpTaskWait

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpAsyncProxyConnect Function

HCLIENT WINAPI HttpAsyncProxyConnect(
 UINT nProxyType,
 LPCTSTR lpszProxyHost,
 UINT nProxyPort,
 LPCTSTR lpszProxyUser,
 LPCTSTR lpszProxyPassword,
 LPCTSTR lpszRemoteHost,
 UINT nRemotePort,
 UINT nTimeout,
 DWORD dwOptions,
 DWORD dwVersion,
 LPSECURITYCREDENTIALS lpCredentials,
 HWND hEventWnd,
 UINT uEventMsg
);

The HttpAsyncProxyConnect function is used to establish a connection through a proxy server.

This function has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

The application should create a background worker thread and establish a connection by calling
HttpProxyConnect within that thread. If the application requires multiple simultaneous
connections, it is recommended you create a worker thread for each client session.

Parameters
nProxyType

An unsigned integer which specifies the type of proxy that the client is connecting to. The
supported proxy server types are as follows:

Constant Description

HTTP_PROXY_NONE A direct connection will be established with the server.
When this value is specified the proxy parameters are
ignored.

HTTP_PROXY_STANDARD A standard connection is established through the specified
proxy server, and all resource requests will be specified
using a complete URL. This proxy type should be used with
standard connections.

HTTP_PROXY_SECURE A secure connection is established through the specified
proxy server. This proxy type should be used with secure
connections and the HTTP_OPTION_SECURE option should
also be set via the dwOptions parameter.

HTTP_PROXY_WINDOWS The configuration options for the current system should be
used. If the system is configured to use a proxy server, then
the connection will be automatically established through
that proxy; otherwise, a direct connection to the server is
established. These settings are the same proxy server

settings configured in Windows.

lpszProxyHost

A pointer to a string which specifies the proxy server host name or IP address. This argument is
ignored if the proxy type is set to HTTP_PROXY_NONE or HTTP_PROXY_WINDOWS and no
proxy configuration has been specified for the local system.

nProxyPort

The port number that the proxy server is listening for connections on. A value of zero specifies
that the default port number 80 should be used. Note that in most cases, a proxy server is not
configured to use the default port. This argument is ignored if the proxy type is set to
HTTP_PROXY_NONE or HTTP_PROXY_WINDOWS and no proxy configuration has been
specified for the local system.

lpszProxyUser

A pointer to a string which specifies the user name that will be used to authenticate the client
session to the proxy server. If the server does not require user authentication, then a NULL
pointer may be passed in this argument.

lpszProxyPassword

A pointer to a string which specifies the password that will be used to authenticate the client
session to the proxy server. If the server does not require user authentication, then a NULL
pointer may be passed in this argument.

lpszRemoteHost

A pointer to a string which specifies the name of the server to connect to through the proxy
server. This may be a fully-qualified domain name or an IP address.

nRemotePort

The port number the server is listening on. A value of zero specifies that the default port
number should be used. For standard connections, the default port number is 80. For secure
connections, the default port number is 443.

nTimeout

The number of seconds that the client will wait for a response from the server before failing the
current operation.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

HTTP_OPTION_NOCACHE This instructs the server to not return a cached
copy of the resource. When connected to an
HTTP 1.0 or earlier server, this directive may be
ignored.

HTTP_OPTION_KEEPALIVE This instructs the server to maintain a persistent
connection between requests. This can improve
performance because it eliminates the need to
establish a separate connection for each resource
that is requested.

HTTP_OPTION_REDIRECT This option specifies the client should
automatically handle resource redirection. If the

server indicates that the requested resource has
moved to a new location, the client will close the
current connection and request the resource from
the new location. Note that it is possible that the
redirected resource will be located on a different
server.

HTTP_OPTION_ERRORDATA This option specifies the client should return the
content of an error response from the server,
rather than returning an error code. Note that this
option will disable automatic resource redirection,
and should not be used with
HTTP_OPTION_REDIRECT.

HTTP_OPTION_NOUSERAGENT This option specifies the client should not include
a User-Agent header with any requests made
during the session. The user agent is a string
which is used to identify the client application to
the server. An application can provide its own
custom user agent value using the
HttpSetRequestHeader function.

HTTP_OPTION_HTTP2 This option specifies the client should attempt a
HTTP/2 connection with the server. If a
connection cannot be established using HTTP/2
the client will attempt to connect using an earlier
version of the protocol. The value of the
dwVersion parameter will be ignored when this
option is used.

HTTP_OPTION_TUNNEL This option specifies that a tunneled TCP
connection and/or port-forwarding is being used
to establish the connection to the proxy server.
This changes the behavior of the client with
regards to internal checks of the destination IP
address and remote port number, default
capability selection and how the connection is
established.

HTTP_OPTION_TRUSTEDSITE This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option
only affects connections using either the SSL or
TLS protocols.

HTTP_OPTION_SECURE This option specifies the client should attempt to
establish a secure connection with the server.
Note that the server must support secure
connections using either the SSL or TLS protocol.
The client will default to using TLS 1.2 or later for
secure connections.

HTTP_OPTION_SECURE_FALLBACK This option specifies the client should permit the
use of less secure cipher suites for compatibility

with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

HTTP_OPTION_PREFER_IPV6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be resolved
to both an IPv6 and IPv4 address. This option is
ignored if the local system does not have IPv6
enabled, or when the hostname can only be
resolved to an IPv4 address. If the server
hostname can only be resolved to an IPv6
address, the client will attempt to establish a
connection using IPv6 regardless if this option has
been specified.

HTTP_OPTION_FREETHREAD This option specifies the handle returned by this
function may be used by any thread, and is not
limited to the thread which created it. The
application is responsible for ensuring that access
to the handle is synchronized across multiple
threads.

HTTP_OPTION_HIRES_TIMER This option specifies the elapsed time for data
transfers should be returned in milliseconds
instead of seconds. This will return more accurate
transfer times for smaller amounts of data over
fast network connections.

dwVersion

The requested protocol version used when sending requests to the server. The high word
should specify the major version, and the low word should specify the minor version number.
The HTTPVERSION macro can be used to create a version value and the following values are
defined:

Constant Description

HTTP_VERSION_DEFAULT The client should use the default protocol version for this
session. This is the same as specifying HTTP_VERSION_11
and is recommended to ensure the broadest compatibility
with most servers.

HTTP_VERSION_09 The client should use the original one-line protocol which
includes no version number and no request header block.
This version has been deprecated and should only be used
with legacy servers which do not support the protocol
standard. This version of the protocol does not support
virtual hosts and is not supported by most modern web
services.

HTTP_VERSION_10 The client should use the HTTP/1.0 protocol standard
originally defined in RFC 1945. This version of the protocol
supports the use of request header blocks, however it does
not support persistent connections or chunked data and
has limited cache control mechanisms.

HTTP_VERSION_11 The client should use the HTTP/1.1 protocol standard
defined in RFC 2616 and RFC 7230. This is the most widely
used version of the protocol and is the default for client
connections. It is recommended most applications use this
version.

HTTP_VERSION_20 The client should use the HTTP/2 protocol standard
defined in RFC 7540. This protocol version is a significant
change from previous versions and can provide improved
performance with header compression and optimizing how
requests are serviced. If the client or server does not
support HTTP/2, the client will automatically attempt to use
an earlier version of the protocol.

lpCredentials

Pointer to credentials structure SECURITYCREDENTIALS. This parameter is only used if the
HTTP_OPTION_SECURE option is specified for the connection. This parameter may be NULL, in
which case no client credentials will be provided to the server. If client credentials are required,
the fields dwSize, lpszCertStore, and lpszCertName must be defined, while other fields may be
left undefined. Set dwSize to the size of the SECURITYCREDENTIALS structure.

hEventWnd

The handle to the event notification window. This window receives messages which notify the
client of various asynchronous network events that occur.

uEventMsg

The message identifier that is used when an asynchronous network event occurs. This value
should be greater than WM_USER as defined in the Windows header files.

Return Value
If the function succeeds, the return value is a handle to a client session. If the function fails, the
return value is INVALID_CLIENT. To get extended error information, call HttpGetLastError.

Remarks
If the HTTP_PROXY_WINDOWS proxy type is specified, then the proxy configuration for the local
system is used. If no proxy server has been defined, then the proxy-related parameters will be
ignored and the function will establish a connection directly to the server.

When a message is posted to the notification window, the low word of the lParam parameter
contains the event identifier. The high word of lParam contains the low word of the error code, if
an error has occurred. The wParam parameter contains the client handle. One or more of the
following event identifiers may be sent:

Constant Description

HTTP_EVENT_CONNECT The connection to the server has completed. The high word of
the lParam parameter should be checked, since this notification
message will be posted if an error has occurred.

HTTP_EVENT_DISCONNECT The server has closed the connection to the client. The client
should read any remaining data and disconnect.

HTTP_EVENT_READ Data is available to read by the calling process. No additional
messages will be posted until the client has read at least some of

the data. This event is only generated if the client is in
asynchronous mode.

HTTP_EVENT_WRITE The client can now write data. This notification is sent after a
connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking
operation. This event is only generated if the client is in
asynchronous mode.

HTTP_EVENT_TIMEOUT The network operation has exceeded the specified timeout
period. The client application may attempt to retry the operation,
or may disconnect from the server and report an error to the
user.

HTTP_EVENT_CANCEL The current operation has been canceled. Under most
circumstances the client should disconnect from the server and
re-connect if needed. After an operation has been canceled, the
server may abort the connection or refuse to accept further
commands from the client.

HTTP_EVENT_COMMAND A command has been issued by the client and the server
response has been received and processed. This event can be
used to log the result codes and messages returned by the server
in response to actions taken by the client.

HTTP_EVENT_PROGRESS The client is in the process of sending or receiving data from the
server. This event is called periodically during a transfer so that
the client can update any user interface components such as a
status control or progress bar.

HTTP_EVENT_REDIRECT This event is generated when a the server indicates that the
requested resource has been moved to a new location. The new
resource location may be on the same server, or it may be
located on another server. Check the value of the Location
header field to determine where the resource has been moved to.

To cancel asynchronous notification and return the client to a blocking mode, use the
HttpDisableEvents function.

The dwOptions argument can be used to specify the threading model that is used by the library
when a connection is established. By default, the handle is initially attached to the thread that
created it. From that point on, until the it is released, only the owner may call functions using that
handle. The ownership of the handle may be transferred from one thread to another using the
HttpAttachThread function.

Specifying the HTTP_OPTION_FREETHREAD option enables any thread to call any function using
the handle, regardless of which thread created it. It is important to note that this option disables
certain internal safety checks which are performed by the library and may result in unexpected
behavior unless access to the handle is synchronized. If one thread calls a function in the library, it
must ensure that no other thread will call another function at the same time using the same
handle.

If the HTTP_OPTION_KEEPALIVE option is specified and the server does not support persistent
connections, the client will automatically reconnect when each resource is requested. Although it
will not provide any performance benefits, this allows the option to be used with all servers. This
option is automatically enabled when using HTTP/2.

Applications should use HTTP_VERSION_DEFAULT as the value for the dwVersion parameter. This
will default to an appropriate version for the Windows platform and ensures the broadest
compatibility with most servers. If your application specifies HTTP_VERSION_20, a secure
connection using TLS 1.2 will always be used. The minimum required platform for HTTP/2 support
is Windows 10 (Version 1903) or Windows Server 2019. Earlier versions of the Schannel SSP do not
support the features required for a secure HTTP/2 connection.

If your application requests a HTTP/2 connection and the server only accepts earlier versions of
the protocol, the client will attempt to automatically downgrade the request to HTTP/1.1. If a
connection using an earlier version of the protocol cannot be established, the function will fail and
return INVALID_CLIENT.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpAsyncConnect, HttpConnect, HttpDisconnect, HttpInitialize, HttpProxyConnect

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpAsyncPutData Function

UINT WINAPI HttpAsyncPutData(
 HCLIENT hClient,
 LPCTSTR lpszFileName,
 LPVOID lpvBuffer,
 DWORD dwLength,
 DWORD dwReserved,
 HTTPEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

Copies the contents of the specified buffer to a file on the server.

Parameters
hClient

Handle to the client session.

lpszFileName

A pointer to a string that specifies the file on the server that will be created, overwritten or
appended to. The file naming conventions must be that of the host operating system.

lpvBuffer

A pointer to the data that will be copied to the server and stored in the specified file.

dwLength

The number of bytes to copy from the buffer.

dwReserved

A reserved parameter. This value should always be zero.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the HttpEventProc callback
function. This parameter may be NULL if you do not wish to implement an event handler.

dwParam

A user-defined integer value that is passed to the callback function. This parameter is ignored if
the lpEventProc parameter is NULL.

Return Value
If the function succeeds, the return value is non-zero integer value that specifies a unique
asynchronous task identifier. If the function fails, the return value is zero. To get extended error
information, call the HttpGetLastError function. The application should treat the task ID as an
opaque value and never make an assumption about the sequence in which IDs are assigned to a
background task.

Remarks
The HttpAsyncPutData function is used to upload the contents of a local buffer to the server.
This function is similar to the HttpPutData function, however it uses a background worker thread
and does not block the current working thread. This enables the application to continue to
perform other operations while the data is being sent to the server.

Because this function works asynchronously, it is important that the memory allocated for the
buffer is not released before the asynchronous task completes. If you provide a buffer that is

allocated on the stack, ensure that your code does not return from the function while the data is
being uploaded. This can be achieved by calling the HttpTaskWait function or periodically calling
the HttpTaskDone function to determine if the transfer has completed. If you wish to return from
the calling function immediately, then you must dynamically allocate memory for the lpvBuffer
parameter on the heap and free that memory after the task has completed and the data is no
longer needed.

If the address of an event handler is provided to this function, it is guaranteed that the handler will
be invoked with the HTTP_EVENT_CONNECT event after the connection has been established, and
the HTTP_EVENT_DISCONNECT event after the transfer has completed. This enables your
application to know when the data transfer is about to begin, and immediately before the worker
thread is terminated. The worker thread creates a secondary connection to the server with its own
session handle. This ensures that the asynchronous operation will not interfere with the current
client session. Your application can interact with this background worker thread using the client
handle that is passed to the event handler.

If the lpvBuffer parameter is pointing to a Unicode string, it is important to note that the value of
the dwLength parameter should specify the number of bytes, not the number of characters. When
using UTF-16, each character is two bytes long and therefore the length of the buffer is effectively
double the length of the string. Because Unicode strings can contain null characters, you must also
set the current file type to FILE_TYPE_IMAGE prior to calling this function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpAsyncGetData, HttpAsyncGetFile, HttpAsyncPutFile, HttpEventProc, HttpPutData, HttpTaskWait

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpAsyncPutFile Function

UINT WINAPI HttpAsyncPutFile(
 HCLIENT hClient,
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszRemoteFile,
 DWORD dwOptions,
 DWORD dwOffset,
 HTTPEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

Uploads the specified file from the local system to the server.

Parameters
hClient

Handle to the client session.

lpszLocalFile

A pointer to a string that specifies the file that will be transferred from the local system. The file
pathing and name conventions must be that of the local host.

lpszRemoteFile

A pointer to a string that specifies the file on the server that will be created, overwritten or
appended to. The file naming conventions must be that of the host operating system.

dwOptions

An unsigned integer that specifies one or more options. This parameter may be any one of the
following values:

Constant Description

HTTP_TRANSFER_DEFAULT This option specifies the default transfer mode should be
used. If the remote file exists, it will be overwritten with
the contents of the uploaded file.

dwOffset

A byte offset which specifies where the file transfer should begin. The default value of zero
specifies that the file transfer should start at the beginning of the file. A value greater than zero
is typically used to restart a transfer that has not completed successfully. Note that specifying a
non-zero offset requires that the server support the REST command to restart transfers.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the HttpEventProc callback
function. This parameter may be NULL if you do not wish to implement an event handler.

dwParam

A user-defined integer value that is passed to the callback function. This parameter is ignored if
the lpEventProc parameter is NULL.

Return Value
If the function succeeds, the return value is non-zero integer value that specifies a unique
asynchronous task identifier. If the function fails, the return value is zero. To get extended error

information, call the HttpGetLastError function. The application should treat the task ID as an
opaque value and never make an assumption about the sequence in which IDs are assigned to a
background task.

Remarks
The HttpAsyncPutFile function is used to upload the contents of a local file to the server. This
function is similar to the HttpPutFile function, however it uploads the file using a background
worker thread and does not block the current working thread. This enables the application to
continue to perform other operations while the file is being transferred to the server.

If the address of an event handler is provided to this function, it is guaranteed that the handler will
be invoked with the HTTP_EVENT_CONNECT event after the connection has been established, and
the HTTP_EVENT_DISCONNECT event after the transfer has completed. This enables your
application to know when the file transfer is about to begin, and immediately before the worker
thread is terminated. During the file transfer, the callback function will be invoked periodically with
the HTTP_EVENT_PROGRESS event. The client session handle is passed to the event handler,
allowing you to call functions such as HttpGetTransferStatus to determine the amount of data
that has been copied.

To determine when the transfer has completed without implementing an event handler,
periodically call the HttpTaskDone function. If you wish to block the current thread and wait for
the transfer to complete, call the HttpTaskWait function. To stop a background file transfer that is
in progress, call the HttpTaskAbort function. This will signal the background worker thread to
cancel the transfer and terminate the session.

This function can be called multiple times to upload multiple files in the background; however,
most servers limit the number of simultaneous connections that can originate from a single IP
address. It is recommended that you only perform two simultaneous background transfers from
the same server at any one time. The application should not make any assumptions about the
order in which multiple background transfers may complete or how they are sequenced. For
example, it should never be assumed that a background task with a lower task ID will complete
before a task with a higher ID value.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpAsyncGetData, HttpAsyncGetFile, HttpAsyncPutData, HttpEventProc, HttpPutFile,
HttpTaskDone, HttpTaskWait

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpAsyncPutFileEx Function

UINT WINAPI HttpAsyncPutFileEx(
 HCLIENT hClient,
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszRemoteFile,
 DWORD dwOptions,
 ULARGE_INTEGER uiOffset,
 HTTPEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

Uploads the specified file from the local system to the server. This version of the function is
designed to support files that are larger than 4GB.

Parameters
hClient

Handle to the client session.

lpszLocalFile

A pointer to a string that specifies the file that will be transferred from the local system. The file
pathing and name conventions must be that of the local host.

lpszRemoteFile

A pointer to a string that specifies the file on the server that will be created, overwritten or
appended to. The file naming conventions must be that of the host operating system.

dwOptions

An unsigned integer that specifies one or more options. This parameter may be any one of the
following values:

Constant Description

HTTP_TRANSFER_DEFAULT This option specifies the default transfer mode should be
used. If the remote file exists, it will be overwritten with
the contents of the uploaded file.

uiOffset

A byte offset which specifies where the file transfer should begin. The default value of zero
specifies that the file transfer should start at the beginning of the file. A value greater than zero
is typically used to restart a transfer that has not completed successfully. Note that specifying a
non-zero offset requires that the server support the REST command to restart transfers.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the HttpEventProc callback
function. This parameter may be NULL if you do not wish to implement an event handler.

dwParam

A user-defined integer value that is passed to the callback function. This parameter is ignored if
the lpEventProc parameter is NULL.

Return Value
If the function succeeds, the return value is non-zero integer value that specifies a unique

asynchronous task identifier. If the function fails, the return value is zero. To get extended error
information, call the HttpGetLastError function. The application should treat the task ID as an
opaque value and never make an assumption about the sequence in which IDs are assigned to a
background task.

Remarks
The HttpAsyncPutFileEx function is used to upload the contents of a local file to the server. This
function is similar to the HttpPutFileEx function, however it uploads the file using a background
worker thread and does not block the current working thread. This enables the application to
continue to perform other operations while the file is being transferred to the server.

If the address of an event handler is provided to this function, it is guaranteed that the handler will
be invoked with the HTTP_EVENT_CONNECT event after the connection has been established, and
the HTTP_EVENT_DISCONNECT event after the transfer has completed. This enables your
application to know when the file transfer is about to begin, and immediately before the worker
thread is terminated. During the file transfer, the callback function will be invoked periodically with
the HTTP_EVENT_PROGRESS event. The client session handle is passed to the event handler,
allowing you to call functions such as HttpGetTransferStatusEx to determine the amount of data
that has been copied.

To determine when the transfer has completed without implementing an event handler,
periodically call the HttpTaskDone function. If you wish to block the current thread and wait for
the transfer to complete, call the HttpTaskWait function. To stop a background file transfer that is
in progress, call the HttpTaskAbort function. This will signal the background worker thread to
cancel the transfer and terminate the session.

This function can be called multiple times to upload multiple files in the background; however,
most servers limit the number of simultaneous connections that can originate from a single IP
address. It is recommended that you only perform two simultaneous background transfers from
the same server at any one time. The application should not make any assumptions about the
order in which multiple background transfers may complete or how they are sequenced. For
example, it should never be assumed that a background task with a lower task ID will complete
before a task with a higher ID value.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpAsyncGetFileEx, HttpEventProc, HttpGetFileEx, HttpPutFileEx, HttpTaskDone, HttpTaskWait

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpAsyncSubmitForm Function

UINT WINAPI HttpAsyncSubmitForm(
 HCLIENT hClient,
 HFORM hForm,
 LPVOID lpvResult,
 LPDWORD lpcbResult,
 DWORD dwOptions,
 HTTPEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

Submit the specified form to the server for processing and return the response to the caller.

Parameters
hClient

Handle to the client session.

hForm

Handle to the virtual form which contains the data to be submitted to the server.

lpvResult

A pointer to a byte buffer which will contain the data returned by the server, or a pointer to a
global memory handle which will reference the data when the function returns.

lpcbResult

A pointer to an unsigned integer which should be initialized to the maximum number of bytes
that can be copied to the buffer specified by the lpvBuffer parameter. If the lpvResult parameter
points to a global memory handle, the length value should be initialized to zero. When the
function returns, this value will be updated with the actual number of bytes of data that was
returned.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

HTTP_SUBMIT_DEFAULT The default post mode. The contents of the buffer are
encoded and sent as standard form data. The data returned
by the server is copied to the result buffer exactly as it is
returned from the server.

HTTP_SUBMIT_CONVERT If the data being returned from the server is textual, it is
automatically converted so that the end of line character
sequence is compatible with the Windows platform.
Individual carriage return or linefeed characters are
converted to carriage return/linefeed character sequences.
Note that this option does not have any effect on the form
data being submitted to the server, only on the data
returned by the server.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more

information about the callback function, see the description of the HttpEventProc callback
function. This parameter may be NULL if you do not wish to implement an event handler.

dwParam

A user-defined integer value that is passed to the callback function. This parameter is ignored if
the lpEventProc parameter is NULL.

Return Value
If the function succeeds, the return value is non-zero integer value that specifies a unique
asynchronous task identifier. If the function fails, the return value is zero. To get extended error
information, call the HttpGetLastError function. The application should treat the task ID as an
opaque value and never make an assumption about the sequence in which IDs are assigned to a
background task.

Remarks
The HttpAsyncSubmitForm function is used to submit form data to a script that executes on the
server and then copy the output from that script into a local buffer. This function is similar to the
HttpSubmitForm function, however it submits the data using a background worker thread and
does not block the current working thread. This enables the application to continue to perform
other operations while the data is being sent and the response from the server is being returned
to the caller.

Because this function works asynchronously, it is important that the memory allocated for the
lpvResult parameter will not be released before the asynchronous task completes. If you provide a
buffer that is allocated on the stack, ensure that your code does not return from the function until
the background task completes. This can be achieved by calling the HttpTaskWait function or
periodically calling the HttpTaskDone function to determine if the operation has completed. If
you wish to return from the calling function immediately, then you must dynamically allocate the
buffer on the heap and free that memory after the task has completed and the data is no longer
needed.

Do not call the HttpDestroyForm function to release the memory allocated for the virtual form
until the background task completes. Doing so may result in unpredictable behavior and could
cause your application to terminate abnormally.

If the address of an event handler is provided to this function, it is guaranteed that the handler will
be invoked with the HTTP_EVENT_CONNECT event after the connection has been established, and
the HTTP_EVENT_DISCONNECT event after the transfer has completed. This enables your
application to know when the file transfer is about to begin, and immediately before the worker
thread is terminated.

The lpvResult parameter may be specified in one of two ways, depending on the needs of the
application. It can either be a pre-allocated buffer large enough to store the contents of the server
response or it can specify the address of a global memory handle that will contain the data. If it
points to a pre-allocated buffer, the lpcbResult parameter must be initialized to the maximum
number of bytes that can be copied into the buffer. If specifies the address of a global memory
handle, then lpcbResult must be initialized to a value of zero. See the example code below.

Example
HFORM hForm = INVALID_FORM;
HGLOBAL hgblResult = (HGLOBAL)NULL;
DWORD cbResult = 0;
INT nResult = 0;
UINT nTaskId;

hForm = HttpCreateForm(_T("/login.php"), HTTP_METHOD_POST, HTTP_FORM_ENCODED);

if (hForm == INVALID_FORM)
 return;

HttpAddFormField(hForm, _T("UserName"), lpszUserName, (DWORD)-1L, 0);
HttpAddFormField(hForm, _T("Password"), lpszPassword, (DWORD)-1L, 0);

nTaskId = HttpAsyncSubmitForm(hClient, hForm, &hgblResult, &cbResult, 0);

if (nTaskId != 0)
{
 DWORD dwError = NO_ERROR;
 DWORD dwElapsed = 0;

 // Wait for the task to complete
 HttpTaskWait(nTaskId, INFINTE, &dwElapsed, &dwError);

 // Get a pointer to the data returned by the server
 LPBYTE lpBuffer = (LPBYTE)GlobalLock(hgblResult);

 // lpBuffer now points to data returned by the server after
 // the form data was submitted

 // Release the memory allocated for the buffer
 GlobalUnlock(hgblResult);
 GlobalFree(hgblResult);
}

// Release the memory allocated for the virtual form
HttpDestroyForm(hForm);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpAddFormField, HttpAddFormFile, HttpClearForm, HttpCreateForm, HttpDeleteFormField,
HttpRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpAttachThread Function

DWORD WINAPI HttpAttachThread(
 HCLIENT hClient
 DWORD dwThreadId
);

The HttpAttachThread function attaches the specified client handle to another thread.

Parameters
hClient

Handle to the client session.

dwThreadId

The ID of the thread that will become the new owner of the handle. A value of zero specifies
that the current thread should become the owner of the client handle.

Return Value
If the function succeeds, the return value is the thread ID of the previous owner. If the function
fails, the return value is HTTP_ERROR. To get extended error information, call HttpGetLastError.

Remarks
When a client handle is created, it is associated with the current thread that created it. Normally, if
another thread attempts to perform an operation using that handle, an error is returned since it
does not own the handle. This is used to ensure that other threads cannot interfere with an
operation being performed by the owner thread. In some cases, it may be desirable for one
thread in a client application to create the client handle, and then pass that handle to another
worker thread. The HttpAttachThread function can be used to change the ownership of the
handle to the new worker thread. By preserving the return value from the function, the original
owner of the handle can be restored before the worker thread terminates.

This function should be called by the new thread immediately after it has been created, and if the
new thread does not release the handle itself, the ownership of the handle should be restored to
the parent thread before it terminates. Under no circumstances should HttpAttachThread be
used to forcibly release a handle allocated by another thread while a blocking operation is in
progress. To cancel an operation, use the HttpCancel function and then release the handle after
the blocking function exits and control is returned to the current thread.

Note that the dwThreadId parameter is presumed to be a valid thread ID and no checks are
performed to ensure that the thread actually exists. Specifying an invalid thread ID will orphan the
handle until the HttpUninitialize function is called.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
HttpConnect, HttpDisconnect, HttpUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpAuthenticate Function

INT WINAPI HttpAuthenticate(
 HCLIENT hClient,
 UINT nAuthType,
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword
);

Parameters
hClient

Handle to the client session.

nAuthType

An unsigned integer value which specifies the method to be used when authenticating the
client. The following values are supported:

Constant Description

HTTP_AUTH_NONE No client authentication should be performed. The
lpszUserName and lpszPassword parameters are ignored and
current authentication settings are cleared.

HTTP_AUTH_BASIC The Basic authentication scheme should be used. This option is
supported by all servers that support at least version 1.0 of the
protocol. The user credentials are not encrypted and Basic
authentication should not be used over standard (non-secure)
connections. Most web services which use Basic authentication
require the connection to be secure.

HTTP_AUTH_BEARER The Bearer authentication scheme should be used. This
authentication method does not require a user name and the
lpszPassword parameter must specify the OAuth 2.0 bearer
token issued by the service provider. If the access token has
expired, the request will fail with an authorization error. This
function will not automatically refresh an expired token.

lpszUserName

A null terminated string which specifies the user name used to authenticate the client session.
This parameter may be NULL or an empty string if a user name is not required for the specified
authentication type. If the authentication type is HTTP_AUTH_BEARER, this parameter is ignored.

lpszPassword

A pointer to a string that specifies the password used to authenticate the client session. If the
authentication type is HTTP_AUTH_BEARER, this value must be the bearer token issued by the
service provider.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
HTTP_ERROR. To get extended error information, call HttpGetLastError.

Remarks
This function will set the Authorization request header for the client session using the

credentials provided by the caller. This function will always override any custom Authorization
header value that may have been previously set using the HttpSetRequestHeader function.

If both the lpszUserName and lpszPassword parameters are NULL pointers or specify zero length
strings, the current authentication type will always be set to HTTP_AUTH_NONE regardless of the
value of the nAuthType parameter. This effectively clears the current user credentials for the client
session.

If the web service requires OAuth 2.0 authentication, it is recommended you use the
HttpSetBearerToken function to specify the access token.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpConnect, HttpSetBearerToken, HttpSetRequestHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpCancel Function

INT WINAPI HttpCancel(
 HCLIENT hClient
);

The HttpCancel function cancels any outstanding blocking operation in the client, causing the
blocking function to fail. The application may then retry the operation or terminate the client
session.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
HTTP_ERROR. To get extended error information, call HttpGetLastError.

Remarks
When the HttpCancel function is called, the blocking function will not immediately fail. An internal
flag is set which causes the blocking operation to exit with an error. This means that the
application cannot cancel an operation and immediately perform some other operation. Instead it
must allow the calling stack to unwind, returning back to the blocking operation before making
any further function calls.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
HttpIsBlocking

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpCancelQueuedFile Function

BOOL WINAPI HttpCancelQueuedFile(
 HQUEUE hQueue,
 DWORD dwFileId
);

The HttpCancelQueuedFile function cancels the queued file transfer.

Parameters
hQueue

A handle to a file transfer queue.

dwFileId

An unsigned integer value which uniquely identifies the file in the queue. If this value is zero, the
function will cancel the current file transfer in progress. If queue transfers have been suspended,
this parameter cannot be zero.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, it will return zero. To get
extended error information, call HttpGetLastError.

Remarks
When this function is called, the queued file transfer may not immediately stop. An internal flag is
set which causes the file transfer to exit with an error and the queue manager will begin
processing the next file in the queue. If the queue is in an idle state, this function will fail.

It is permitted to call HttpCancelQueuedFile from within a queue event handler to cancel the
current file transfer. In this case, the dwFileId parameter should be zero. If you specify a file which
has not been transferred, it will be flagged as canceled and skipped by the queue manager when
processing the queue. If you specify a file which has already been processed, this function will fail.

A canceled file transfer is also considered a failed transfer. When you call HttpGetQueueStatus
after a queued file transfer is canceled, the dwFailedFiles member of the HTTPQUEUESTATUS
structure will be incremented to reflect this change. You can determine the status of an individual
file transfer by calling the HttpGetQueuedFile function and checking the value of the
dwQueueFlags member of the HTTPQUEUEDFILE structure.

The HttpResetQueue function can be used to reset the state of previously canceled transfers.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
HttpCancel, HttpGetQueuedFile, HttpGetQueueStatus, HttpResetQueue, HttpResumeQueue,
HttpStartQueue, HttpSuspendQueue, HttpStopQueue

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpClearForm Function

INT WINAPI HttpClearForm(
 HFORM hForm
);

The HttpClearForm function clears the specified form, removing all fields.

Parameters
hForm

Handle to the virtual form.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
HTTP_ERROR. To get extended error information, call HttpGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
HttpAddFormField, HttpAddFormFile, HttpCreateForm, HttpDeleteFormField, HttpDestroyForm,
HttpSubmitForm

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpClearQueue Function

BOOL WINAPI HttpClearQueue(
 HQUEUE hQueue
);

The HttpClearQueue function removes all files from the queue.

Parameters
hQueue

A handle to a file transfer queue.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, it will return zero. To get
extended error information, call HttpGetLastError.

Remarks
This function can only be called when the queue is in an idle state. An error will be returned if the
function is called while the queue manager is paused or actively transferring files in the queue. To
determine the current state of the queue, call the HttpGetQueueStatus function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
HttpCancelQueuedFile, HttpGetQueueStatus, HttpResetQueue, HttpResumeQueue,
HttpStartQueue, HttpStopQueue, HttpSuspendQueue

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpCloseFile Function

INT WINAPI HttpCloseFile(
 HCLIENT hClient
);

The HttpCloseFile function flushes the internal client buffers and closes the previously opened file
on the server.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is HTTP_ERROR. To get extended error information, call HttpGetLastError.

Remarks
If the file is opened for writing, all buffered data is written to the server before the file is closed.
This may cause the client to block until all of the data can be written. The client application should
not perform any other action until the function returns.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
HttpCommand, HttpGetData, HttpGetFile, HttpOpenFile, HttpPutData, HttpPutFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpCommand Function

INT WINAPI HttpCommand(
 HCLIENT hClient,
 LPCTSTR lpszCommand,
 LPCTSTR lpszResource,
 LPBYTE lpParameter,
 DWORD cbParameter,
 DWORD dwReserved
);

The HttpCommand function sends a command to the server and returns the result code back to
the caller. This function is typically used for extended commands not directly supported by the API.

Parameters
hClient

Handle to the client session.

lpszCommand

A pointer to a string which specifies the command to be executed by the server. The following
table lists the standard commands recognized by most HTTP servers. Other commands may
also be used, such as those extensions used by WebDAV to edit and manage files on a server.

Command Description

GET Return the contents of the specified resource. This command is recognized
by all servers.

HEAD Return only header information for the specified resource. This command
is recognized by servers that support at least version 1.0 of the protocol.

POST Post data to the specified resource. This command is recognized by
servers that support at least version 1.0 of the protocol.

PUT Create or replace the specified resource on the server. This command is
recognized by servers that support at least version 1.0 of the protocol. Not
all servers support this command.

DELETE Delete the specified resource from the server. This command is
recognized by servers that support at least version 1.1 of the protocol. Not
all servers support this command.

lpszResource

A pointer to a string which specifies the resource to be used with the command. This can be the
name of a file, an executable script or any other valid resource name recognized by the server.
Resource names must be absolute and include the complete path to the resource.

lpParameter

A pointer to a byte array which contains data that is to be passed to the command as one or
more parameters. Typically this is used to pass additional information to a script that executes
on the server. The data is encoded according to the encoding type specified for the client
session. If the resource does not require any parameters, this value should be NULL.

cbParameter

Specifies the number of bytes stored in the parameter buffer. If the resource does not require

any parameters, this value should be zero.

dwReserved

A reserved parameter. This value should always be zero.

Return Value
If the function succeeds, the return value is the result code returned by the server. If the function
fails, the return value is HTTP_ERROR. To get extended error information, call HttpGetLastError.

Remarks
Not all servers support all of the listed commands, and some commands may require specific
changes to the server configuration. In particular, the PUT and DELETE commands typically require
that configuration changes be made by the site administrator. All servers will support the use of
the GET command, and all servers that support at least version 1.0 of the protocol will support the
POST command.

If the lpszResource parameter specifies a path that contains reserved or restricted characters, such
as a space, it will automatically be URL encoded by the library.

It is permissible to include a query string in the resource name specified by the lpszResource
parameter. Query strings begin with a question mark, and then are followed by one or more
name/value pairs separated by an equal sign. For example, the following resource includes a
query string:

/cgi-bin/test.cgi?field1=value1&field2=value2

In this case, the query string is "?field1=value1&field2=value2". If the query string contains
reserved or restricted characters, such as spaces, then it will be automatically URL encoded prior to
being sent to the server. If additional resource data is specified in the lpParameter argument
along with a query string in the resource name, the action taken by the library depends on the
command being sent. If the command is a POST or PUT command, then query string is included
with command request to the server and the parameter data is sent separately. For example, if the
POST command was used, the script running on the server would see that both query data and
form data has been provided to it. However, if any other command is specified, the parameter
data is simply appended to the query string.

The lpParameter argument is used to pass additional information to the server when a resource is
requested. This is most commonly used to provide information to scripts, similar to how
arguments are used when executing a program from the command line. Unless the POST
command is being executed, the data in the buffer will automatically be encoded using the current
encoding mechanism specified for the client. By default, the data is URL encoded, which means
that any spaces and non-printable characters are converted to printable characters before
submitted to the server. The type of encoding that is performed can be set by calling the
HttpSetEncodingType function. Although the default encoding is appropriate for most
applications, those that submit XML formatted data may need to change the encoding type.

Only one request may be in progress at one time for each client session. Use the HttpCloseFile
function to terminate the request after all of the data has been read from the server.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpCloseFile, HttpCreateFile, HttpGetData, HttpGetFile, HttpGetResultCode, HttpGetResultString,
HttpOpenFile, HttpPostData, HttpPutData, HttpPutFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpConnect Function

HCLIENT WINAPI HttpConnect(
 LPCTSTR lpszRemoteHost,
 UINT nRemotePort,
 UINT nTimeout,
 DWORD dwOptions,
 DWORD dwVersion,
 LPSECURITYCREDENTIALS lpCredentials
);

Parameters
lpszRemoteHost

A pointer to the name of the server to connect to; this may be a fully-qualified domain name or
an IP address.

nRemotePort

The port number the server is listening on; a value of zero specifies that the default port
number should be used. For standard connections, the default port number is 80. For secure
connections, the default port number is 443.

nTimeout

The number of seconds that the client will wait for a response from the server before failing the
current operation.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

HTTP_OPTION_NOCACHE This instructs the server to not return a cached
copy of the resource. When connected to an
HTTP 1.0 or earlier server, this directive may be
ignored.

HTTP_OPTION_KEEPALIVE This instructs the server to maintain a persistent
connection between requests. This can improve
performance because it eliminates the need to
establish a separate connection for each resource
that is requested.

HTTP_OPTION_REDIRECT This option specifies the client should
automatically handle resource redirection. If the
server indicates that the requested resource has
moved to a new location, the client will close the
current connection and request the resource from
the new location. Note that it is possible that the
redirected resource will be located on a different
server.

HTTP_OPTION_PROXY This option specifies the client should use the
default proxy configuration for the local system. If
the system is configured to use a proxy server,

then the connection will be automatically
established through that proxy; otherwise, a direct
connection to the server is established. The local
proxy configuration can be changed in the system
settings or control panel.

HTTP_OPTION_ERRORDATA This option specifies the client should return the
content of an error response from the server,
rather than returning an error code. Note that this
option will disable automatic resource redirection,
and should not be used with
HTTP_OPTION_REDIRECT.

HTTP_OPTION_NOUSERAGENT This option specifies the client should not include
a User-Agent header with any requests made
during the session. The user agent is a string
which is used to identify the client application to
the server. An application can provide its own
custom user agent value using the
HttpSetRequestHeader function.

HTTP_OPTION_HTTP2 This option specifies the client should attempt a
HTTP/2 connection with the server. If a
connection cannot be established using HTTP/2
the client will attempt to connect using an earlier
version of the protocol. The value of the
dwVersion parameter will be ignored when this
option is used.

HTTP_OPTION_TUNNEL This option specifies that a tunneled TCP
connection and/or port-forwarding is being used
to establish the connection to the server. This
changes the behavior of the client with regards to
internal checks of the destination IP address and
remote port number, default capability selection
and how the connection is established.

HTTP_OPTION_TRUSTEDSITE This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option
only affects connections using either the SSL or
TLS protocols.

HTTP_OPTION_SECURE This option specifies the client should attempt to
establish a secure connection with the server.
Note that the server must support secure
connections using either the SSL or TLS protocol.
The client will default to using TLS 1.2 or later for
secure connections.

HTTP_OPTION_SECURE_FALLBACK This option specifies the client should permit the
use of less secure cipher suites for compatibility
with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and

cipher suites that use RC4, MD5 and SHA1.

HTTP_OPTION_PREFER_IPV6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be resolved
to both an IPv6 and IPv4 address. This option is
ignored if the local system does not have IPv6
enabled, or when the hostname can only be
resolved to an IPv4 address. If the server
hostname can only be resolved to an IPv6
address, the client will attempt to establish a
connection using IPv6 regardless if this option has
been specified.

HTTP_OPTION_FREETHREAD This option specifies the handle returned by this
function may be used by any thread, and is not
limited to the thread which created it. The
application is responsible for ensuring that access
to the handle is synchronized across multiple
threads.

HTTP_OPTION_HIRES_TIMER This option specifies the elapsed time for data
transfers should be returned in milliseconds
instead of seconds. This will return more accurate
transfer times for smaller amounts of data over
fast network connections.

dwVersion

The requested protocol version used when sending requests to the server. The high word
should specify the major version, and the low word should specify the minor version number.
The HTTPVERSION macro can be used to create a version value, or the following values can be
used:

Constant Description

HTTP_VERSION_DEFAULT The client should use the default protocol version for this
session. This is the same as specifying HTTP_VERSION_11
and is recommended to ensure the broadest compatibility
with most servers.

HTTP_VERSION_09 The client should use the original one-line protocol which
includes no version number and no request header block.
This version has been deprecated and should only be used
with legacy servers which do not support the protocol
standard. This version of the protocol does not support
virtual hosts and is not supported by most modern web
services.

HTTP_VERSION_10 The client should use the HTTP/1.0 protocol standard
originally defined in RFC 1945. This version of the protocol
supports the use of request header blocks, however it does
not support persistent connections or chunked data and
has limited cache control mechanisms.

HTTP_VERSION_11 The client should use the HTTP/1.1 protocol standard

defined in RFC 2616 and RFC 7230. This is the most widely
used version of the protocol and is the default for client
connections. It is recommended most applications use this
version.

HTTP_VERSION_20 The client should use the HTTP/2 protocol standard
defined in RFC 7540. This protocol version is a significant
change from previous versions and can provide improved
performance with header compression and optimizing how
requests are serviced. If the client or server does not
support HTTP/2, the client will automatically attempt to use
an earlier version of the protocol.

lpCredentials

Pointer to credentials structure SECURITYCREDENTIALS. This parameter is only used if the
HTTP_OPTION_SECURE option is specified for the connection. This parameter may be NULL, in
which case no client credentials will be provided to the server. If client credentials are required,
the fields dwSize, lpszCertStore, and lpszCertName must be defined, while other fields may be
left undefined. Set dwSize to the size of the SECURITYCREDENTIALS structure.

Return Value
If the function succeeds, the return value is a handle to a client session. If the function fails, the
return value is INVALID_CLIENT. To get extended error information, call HttpGetLastError.

Remarks
This function will block the current thread until a connection has been established or the timeout
period has elapsed. To prevent it from blocking the main user interface thread, the application
should create a background worker thread and establish a connection by calling HttpConnect in
that thread. If the application requires multiple simultaneous connections, it is recommended you
create a worker thread for each connection.

The dwOptions argument can be used to specify the threading model that is used by the library
when a connection is established. By default, the handle is initially attached to the thread that
created it. From that point on, until the it is released, only the owner may call functions using that
handle. The ownership of the handle may be transferred from one thread to another using the
HttpAttachThread function.

Specifying the HTTP_OPTION_FREETHREAD option enables any thread to call any function using
the handle, regardless of which thread created it. It is important to note that this option disables
certain internal safety checks which are performed by the library and may result in unexpected
behavior unless access to the handle is synchronized. If one thread calls a function in the library, it
must ensure that no other thread will call another function at the same time using the same
handle.

If the HTTP_OPTION_KEEPALIVE option is specified and the server does not support persistent
connections, the client will automatically reconnect when each resource is requested. Although it
will not provide any performance benefits, this allows the option to be used with all servers. This
option is automatically enabled when using HTTP/2.

Applications should use HTTP_VERSION_DEFAULT as the value for the dwVersion parameter. This
will default to an appropriate version for the Windows platform and ensures the broadest
compatibility with most servers. If your application specifies HTTP_VERSION_20, a secure
connection using TLS 1.2 will always be used. The minimum required platform for HTTP/2 support
is Windows 10 (Version 1903) or Windows Server 2019. Earlier versions of the Schannel SSP do not

support the features required for a secure HTTP/2 connection.

If your application requests a HTTP/2 connection and the server only accepts earlier versions of
the protocol, the client will attempt to automatically downgrade the request to HTTP/1.1. If a
connection using an earlier version of the protocol cannot be established, the function will fail and
return INVALID_CLIENT.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpConnectUrl, HttpDisconnect, HttpInitialize, HttpProxyConnect

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpConnectUrl Function

HCLIENT WINAPI HttpConnectUrl(
 LPCTSTR lpszUrl,
 UINT nTimeout,
 DWORD dwOptions
);

The HttpConnectUrl function establishes a connection with the specified server using a URL.

Parameters
lpszUrl

A pointer to a string which specifies the URL for the server. The URL must follow the
conventions for the Hypertext Transfer Protocol and may specify either a standard or secure
connection, alternate port number, username, password and optional working directory.

nTimeout

The number of seconds that the client will wait for a response from the server before failing the
current operation.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

HTTP_OPTION_NOCACHE This instructs the server to not return a cached
copy of the resource. When connected to an
HTTP 1.0 or earlier server, this directive may be
ignored.

HTTP_OPTION_KEEPALIVE This instructs the server to maintain a persistent
connection between requests. This can improve
performance because it eliminates the need to
establish a separate connection for each resource
that is requested.

HTTP_OPTION_REDIRECT This option specifies the client should
automatically handle resource redirection. If the
server indicates that the requested resource has
moved to a new location, the client will close the
current connection and request the resource from
the new location. Note that it is possible that the
redirected resource will be located on a different
server.

HTTP_OPTION_PROXY This option specifies the client should use the
default proxy configuration for the local system. If
the system is configured to use a proxy server,
then the connection will be automatically
established through that proxy; otherwise, a direct
connection to the server is established. The local
proxy configuration can be changed in the system
settings or control panel.

HTTP_OPTION_ERRORDATA This option specifies the client should return the
content of an error response from the server,
rather than returning an error code. Note that this
option will disable automatic resource redirection,
and should not be used with
HTTP_OPTION_REDIRECT.

HTTP_OPTION_NOUSERAGENT This option specifies the client should not include
a User-Agent header with any requests made
during the session. The user agent is a string
which is used to identify the client application to
the server. An application can provide its own
custom user agent value using the
HttpSetRequestHeader function.

HTTP_OPTION_HTTP2 This option specifies the client should attempt a
HTTP/2 connection with the server. If a
connection cannot be established using HTTP/2
the client will attempt to connect using an earlier
version of the protocol.

HTTP_OPTION_TUNNEL This option specifies that a tunneled TCP
connection and/or port-forwarding is being used
to establish the connection to the server. This
changes the behavior of the client with regards to
internal checks of the destination IP address and
remote port number, default capability selection
and how the connection is established.

HTTP_OPTION_TRUSTEDSITE This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option
only affects connections using either the SSL or
TLS protocols.

HTTP_OPTION_SECURE This option specifies the client should attempt to
establish a secure connection with the server.
Note that the server must support secure
connections using either the SSL or TLS protocol.
The client will default to using TLS 1.2 or later for
secure connections.

HTTP_OPTION_SECURE_FALLBACK This option specifies the client should permit the
use of less secure cipher suites for compatibility
with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

HTTP_OPTION_PREFER_IPV6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be resolved
to both an IPv6 and IPv4 address. This option is
ignored if the local system does not have IPv6
enabled, or when the hostname can only be
resolved to an IPv4 address. If the server

hostname can only be resolved to an IPv6
address, the client will attempt to establish a
connection using IPv6 regardless if this option has
been specified.

HTTP_OPTION_FREETHREAD This option specifies the handle returned by this
function may be used by any thread, and is not
limited to the thread which created it. The
application is responsible for ensuring that access
to the handle is synchronized across multiple
threads.

HTTP_OPTION_HIRES_TIMER This option specifies the elapsed time for data
transfers should be returned in milliseconds
instead of seconds. This will return more accurate
transfer times for smaller amounts of data over
fast network connections.

Return Value
If the function succeeds, the return value is a handle to a client session. If the function fails, the
return value is INVALID_CLIENT. To get extended error information, call HttpGetLastError.

Remarks
The HttpConnectUrl function uses an HTTP URL to establish a connection with a server. The URL
must be in the following format:

[http|https]://[username : password] @] hostname [:port] / [path / ...]
[filename]

If no user name and password is provided, then the client session will be authenticated as an
anonymous user. The URL scheme will always determine if the connection is secure, not the
option. In other words, if the "http" scheme is used and the HTTP_OPTION_SECURE option is
specified, that option will be ignored. To establish a secure connection, the "https" scheme must
be specified. The HttpValidateUrl function can be used to verify that a URL is valid prior to calling
this function.

The HttpConnectUrl function is designed to provide a simpler, more convenient interface to
establishing a connection with a server. However, complex connections such as those using a
proxy server or a secure connection which uses a client certificate will require the program to use
the lower-level connection functions. If you only need to upload or download a file using a URL,
then refer to the HttpUploadFile and HttpDownloadFile functions.

This function will block the current thread until a connection has been established or the timeout
period has elapsed. To prevent it from blocking the main user interface thread, the application
should create a background worker thread and establish a connection by calling HttpConnectUrl
in that thread. If the application requires multiple simultaneous connections, it is recommended
you create a worker thread for each connection.

The dwOptions argument can be used to specify the threading model that is used by the library
when a connection is established. By default, the handle is initially attached to the thread that
created it. From that point on, until the it is released, only the owner may call functions using that
handle. The ownership of the handle may be transferred from one thread to another using the
HttpAttachThread function.

Specifying the HTTP_OPTION_FREETHREAD option enables any thread to call any function using

the handle, regardless of which thread created it. It is important to note that this option disables
certain internal safety checks which are performed by the library and may result in unexpected
behavior unless access to the handle is synchronized. If one thread calls a function in the library, it
must ensure that no other thread will call another function at the same time using the same
handle.

If the HTTP_OPTION_KEEPALIVE option is specified and the server does not support persistent
connections, the client will automatically reconnect when each resource is requested. Although it
will not provide any performance benefits, this allows the option to be used with all servers. This
option is automatically enabled when using HTTP/2.

If your application specifies the HTTP_OPTION_HTTP2 option, a secure connection using TLS 1.2
or later will always be used. The miniumum required platform for HTTP/2 support is Windows 10
(Version 1903) or Windows Server 2019. Earlier versions of Windows do not support the features
required for a secure HTTP/2 connection. If the server only accepts earlier versions of the protocol,
the client will attempt to automatically downgrade the request to HTTP/1.1. If a connection using
an earlier version of the protocol cannot be established, the function will fail and return
INVALID_CLIENT.

Example
HCLIENT hClient;
LPCTSTR lpszUrl = _T("https://www.example.com/");

// Connect to the site specified by the URL
hClient = HttpConnectUrl(lpszUrl, HTTP_TIMEOUT, HTTP_OPTION_DEFAULT);

if (hClient == INVALID_CLIENT)
{
 TCHAR szError[128];

 // Display a message box that describes the error
 HttpGetErrorString(HttpGetLastError(), szError, 128);
 MessageBox(NULL, szError, NULL, MB_ICONEXCLAMATION|MB_TASKMODAL);
 return;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpConnect, HttpDisconnect, HttpDownloadFile, HttpUploadFile, HttpValidateUrl

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpCreateFile Function

INT WINAPI HttpCreateFile(
 HCLIENT hClient,
 LPCTSTR lpszRemoteFile,
 DWORD dwLength,
 DWORD dwOffset
);

The HttpCreateFile function creates the specified file on the server.

Parameters
hClient

Handle to the client session.

lpszRemoteFile

Points to a string that specifies the name of the file being created on the server. The client must
have the appropriate access rights to create the file or an error will be returned.

dwLength

Specifies the length of the file that will be created on the server. This value must be greater than
zero.

dwOffset

Specifies a byte offset in the file. If this value is greater than zero, the server must support the
ability to specify a byte range with the request to create the file, otherwise this function will fail.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is HTTP_ERROR. To get extended error information, call HttpGetLastError.

Remarks
The HttpCreateFile function uses the PUT command to create the file. The server must support
this command and the user must have the appropriate permission to create the specified file. If
this function is successful, the client should then use the HttpWrite function to send the contents
of the file to the server. Once all of the data has been written, the HttpCloseFile function should
be called to close the file and complete the operation. Note that this function is typically only
accepted by servers that support version 1.1 of the protocol or later.

When using HttpWrite to send the contents of the file to the server, it is recommended that the
data be written in logical blocks that are no larger than 8,192 bytes in size. Attempting to write
very large amounts of data in a single call can either cause the thread to block or, in the case of an
asynchronous connection, return an error if the internal buffers cannot accommodate all of the
data. To send the entire contents of a file in a single function call, use the HttpPutData function
instead of calling HttpCreateFile.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpCloseFile, HttpOpenFile, HttpPutData, HttpPutFile, HttpWrite

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpCreateFileEx Function

INT WINAPI HttpCreateFileEx(
 HCLIENT hClient,
 LPCTSTR lpszRemoteFile,
 ULARGE_INTEGER uiLength,
 ULARGE_INTEGER uiOffset
);

The HttpCreateFileEx function creates the specified file on the server. This version of the function
is designed to support files that are larger than 4GB.

Parameters
hClient

Handle to the client session.

lpszRemoteFile

Points to a string that specifies the name of the file being created on the server. The client must
have the appropriate access rights to create the file or an error will be returned.

uiLength

Specifies the length of the file that will be created on the server. This value must be greater than
zero.

uiOffset

Specifies a byte offset into the file. If this value is greater than zero, the server must support the
ability to specify a byte range with the request to create the file, otherwise this function will fail.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is HTTP_ERROR. To get extended error information, call HttpGetLastError.

Remarks
The HttpCreateFileEx function uses the PUT command to create the file. The server must support
this command and the user must have the appropriate permission to create the specified file. If
this function is successful, the client should then use the HttpWrite function to send the contents
of the file to the server. Once all of the data has been written, the HttpCloseFile function should
be called to close the file and complete the operation. Note that this function is typically only
accepted by servers that support version 1.1 of the protocol or later.

When using HttpWrite to send the contents of the file to the server, it is recommended that the
data be written in logical blocks that are no larger than 8,192 bytes in size. Attempting to write
very large amounts of data in a single call can either cause the thread to block or, in the case of an
asynchronous connection, return an error if the internal buffers cannot accommodate all of the
data. To send the entire contents of a file in a single function call, use the HttpPutData function
instead of calling HttpCreateFileEx.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpCloseFile, HttpOpenFile, HttpPutData, HttpPutFile, HttpWrite

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpCreateForm Function

HFORM WINAPI HttpCreateForm(
 LPCTSTR lpszAction,
 UINT nFormMethod,
 UINT nFormType,
 DWORD dwReserved
);

The HttpCreateForm function creates a new form and returns a handle for use with the other
form-related functions.

Parameters
lpszAction

A pointer to a string which specifies the name of the resource that the form data will be
submitted to. Typically this is the name of a script that is executed on the server.

nFormMethod

An unsigned integer value which specifies how the form data will be submitted to the server.
This parameter may be one of the following values:

Constant Description

HTTP_METHOD_DEFAULT The form data should be submitted using the default
method, using the GET command.

HTTP_METHOD_GET The form data should be submitted using the GET
command. This method should be used when the amount
of form data is relatively small. If the total amount of form
data exceeds 2048 bytes, it is recommended that the POST
method be used instead.

HTTP_METHOD_POST The form data should be submitted using the POST
command. This is the preferred method of submitting
larger amounts of form data. If the total amount of form
data exceeds 2048 bytes, it is recommended that the POST
method be used.

nFormType

An unsigned integer value which specifies the type of form and how the data will be encoded
when it is submitted to the server. This parameter may be one of the following values:

Constant Description

HTTP_FORM_DEFAULT The form data should be submitted using the default
encoding method.

HTTP_FORM_ENCODED The form data should be submitted as URL encoded values.
This is typically used when the GET method is used to
submit the data to the server.

HTTP_FORM_MULTIPART The form data should be submitted as multipart form data.
This is typically used when the POST method is used to
submit a file to the server. Note that the script must
understand how to process multipart form data if this form

type is specified.

dwReserved

A reserved parameter. This value must be zero.

Return Value
If the function succeeds, the return value is a handle to the virtual form. If the function fails, the
return value is INVALID_FORM. To get extended error information, call HttpGetLastError.

Remarks
The HttpCreateForm function is used to create a new form that will be populated with values and
then submitted to the server for processing. When the form is no longer needed, it should be
destroyed using the HttpDestroyForm function.

Example
HFORM hForm = INVALID_FORM;
HGLOBAL hgblResult = (HGLOBAL)NULL;
DWORD cbResult = 0;
INT nResult = 0;

hForm = HttpCreateForm(_T("/login.php"), HTTP_METHOD_POST, HTTP_FORM_ENCODED);

if (hForm == INVALID_FORM)
 return;

HttpAddFormField(hForm, _T("UserName"), lpszUserName, (DWORD)-1L, 0);
HttpAddFormField(hForm, _T("Password"), lpszPassword, (DWORD)-1L, 0);

nResult = HttpSubmitForm(hClient, hForm, &hgblResult, &cbResult, 0);
HttpDestroyForm(hForm);

if (hgblResult != NULL)
{
 LPBYTE lpBuffer = (LPBYTE)GlobalLock(hgblResult);

 // lpBuffer points to data returned by the server after the form
 // data was submitted

 GlobalUnlock(hgblResult);
 GlobalFree(hgblResult);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpAddFormField, HttpAddFormFile, HttpClearForm, HttpDeleteFormField, HttpDestroyForm,
HttpSubmitForm

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpCreateQueue Function

HQUEUE WINAPI HttpCreateQueue(
 UINT nMaxFiles,
 UINT nTimeout,
 DWORD dwOptions
);

The HttpCreateQueue function creates new file transfer queue.

Parameters
nMaxFiles

An unsigned integer which specifies the maximum number of files which can be added to the
queue. The constant INFINITE can be used to specify that there is no fixed limit to the number
of files in the queue.

nTimeout

An unsigned integer which specifies the default timeout for all queued file transfers. If this value
is zero, a reasonable default timeout period will be used. This timeout period is used when a file
is added to the queue without providing a timeout period for that specific file transfer. If a
timeout period is specified for a particular file, it will override this value.

dwOptions

An unsigned integer value which specifies one or more default options for all queued files. This
parameter is constructed by using a bitwise operator and can be any of the options used with
the HttpConnect function. If transfer options are specified for a particular file, it will override
this value. The most common options are:

Constant Description

HTTP_OPTION_DEFAULT Default options should be used for queued file transfers. All
standard headers will be included with the request and
redirected resources will return an error, allowing the
application to determine if it should request the resource
from the new location or inform the user the resource
location has changed.

HTTP_OPTION_REDIRECT This option specifies the client should automatically handle
resource redirection. If the server indicates that the
requested resource has moved to a new location, the client
will close the current connection and request the resource
from the new location. Note that it is possible that the
redirected resource will be located on a different server.

HTTP_OPTION_PROXY This option specifies the client should use the default proxy
configuration for the local system. If the system is
configured to use a proxy server, then the connection will
be automatically established through that proxy; otherwise,
a direct connection to the server is established. The local
proxy configuration can be changed in the system settings
or control panel.

HTTP_OPTION_HTTP2 This option specifies the client should attempt a HTTP/2
connection with the server. If a connection cannot be

established using HTTP/2 the client will attempt to connect
using an earlier version of the protocol.

HTTP_OPTION_SECURE This option specifies the client should attempt to establish a
secure connection with the server. Note that the server
must support secure connections using either the SSL or
TLS protocol. The client will default to using TLS 1.2 or later
for secure connections.

Return Value
If the function succeeds, the return value is a handle to the queue which can be used with
subsequent function calls. If the function fails, the return value is INVALID_QUEUE. To get
extended error information, call HttpGetLastError.

Remarks
If the nMaxFiles parameter is INFINITE, memory will be dynamically allocated on the process heap
with no limit to the number of files which can be queued. If there is a logic error which causes the
application to recursively add files to the queue, or repeatedly queue the same file, this can result
in virtual memory being exhausted for the process. You can avoid this by specifying a reasonable
maximum queue size, which will cause the HttpAddQueuedFile function to fail if that limit is
exceeded.

The memory allocated for the queue will be released when the HttpDeleteQueue function is
called.

Example
// Create a new queue
HQUEUE hQueue = HttpCreateQueue(INFINITE, HTTP_TIMEOUT, HTTP_OPTION_DEFAULT);

if (hQueue == INVALID_QUEUE)
 return;

// Add a file to the queue
DWORD dwFileId = HttpAddQueuedFile(
 hQueue,
 lpszLocalFile,
 lpszRemoteFile,
 HTTP_OPTION_DEFAULT,
 HTTP_TIMEOUT);

// Display information about the queued file
if (dwFileId != 0)
{
 HTTPQUEUEDFILE queuedFile;

 if (HttpGetQueuedFile(hQueue, dwFileId, &queuedFile))
 {
 switch (queuedFile.dwMode)
 {
 case HTTP_QUEUE_DOWNLOAD:
 _tprintf(_T("%u: Download \"%s\" to \"%s\"\n"),
 dwFileId,
 queuedFile.szRemoteFile,
 queuedFile.szLocalFile);
 break;

 case HTTP_QUEUE_UPLOAD:
 _tprintf(_T("%u: Upload \"%s\" to \"%s\"\n"),
 dwFileId,
 queuedFile.szLocalFile,
 queuedFile.szRemoteFile);
 break;
 }
 }
}

// Start the queued file transfers and wait for it to complete
if (HttpStartQueue(hQueue, HTTP_QUEUE_ALL, 0, NULL, 0))
{
 HttpWaitForQueue(hQueue, INFINITE, &dwElapsed, &dwError);
 HttpStopQueue(hQueue);
}

// Remove all files from the queue
HttpDeleteQueue(hQueue);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
HttpAddQueuedFile, HttpDeleteQueue, HttpClearQueue, HttpStartQueue, HttpStopQueue,
HttpWaitForQueue

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpCreateSecurityCredentials Function

BOOL WINAPI HttpCreateSecurityCredentials(
 DWORD dwProtocol,
 DWORD dwOptions,
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword,
 LPCTSTR lpszCertStore,
 LPCTSTR lpszCertName,
 LPVOID lpvReserved,
 LPSECURITYCREDENTIALS* lppCredentials
);

The HttpCreateSecurityCredentials function creates a SECURITYCREDENTIALS structure.

Parameters
dwProtocol

A bitmask of supported security protocols. This parameter is constructed by using a bitwise
operator with any of the following values:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The
correct protocol is automatically selected, based on
what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.
This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is

supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

dwOptions

A value which specifies one or options. This member is constructed by using a bitwise operator
with any of the following values:

Constant Description

CREDENTIAL_STORE_CURRENT_USER The library will attempt to open a store for
the current user using the certificate store
name provided in this structure. If no options
are specified, then this is the default
behavior.

CREDENTIAL_STORE_LOCAL_MACHINE The library will attempt to open a local
machine store using the certificate store
name provided in this structure. If this option
is specified, the library will always search for a
local machine store before searching for the
store by that name for the current user.

CREDENTIAL_STORE_FILENAME The certificate store name is a file that
contains the certificate and private key that
will be used.

lpszUserName

A pointer to a string which specifies the certificate owner's username. A value of NULL specifies
that no username is required. Currently this parameter is not used and any value specified will
be ignored.

lpszPassword

A pointer to a string which specifies the certificate owner's password. A value of NULL specifies
that no password is required. This parameter is only used if a PKCS #12 (PFX) certificate file is
specified and that certificate has been secured with a password. This value will be ignored the
current user or local machine certificate store is specified.

lpszCertStore

A pointer to a string which specifies the name of the certificate store to open. A certificate store
is a collection of certificates and their private keys, typically organized by how they are used. If
this value is NULL or points to an empty string, the default certificate store "MY" will be used.

Store Name Description

CA Certification authority certificates. These are certificates that are issued by
entities which are entrusted to issue certificates to other individuals or
organizations. Companies such as VeriSign and Thawte act as
certification authorities.

MY Personal certificates and their associated private keys for the current user.
This store typically holds the client certificates used to establish a user's
credentials. This corresponds to the "Personal" store that is displayed by
the certificate manager utility and is the default store used by the library.

ROOT Certificates that have been self-signed by a certificate authority. Root
certificates for a number of different certification authorities such as
VeriSign and Thawte are installed as part of the operating system and
periodically updated by Microsoft.

lpszCertName

A pointer to a null terminated string which specifies the name of the certificate to use. The
function will first search the certificate store for a certificate with a matching "friendly name"; this
is a name for the certificate that is assigned by the user. Note that the name must match
completely, but the comparison is not case sensitive. If no matching certificate is found, the
function will then attempt to find a certificate that has a matching common name (also called
the certificate subject). This comparison is less stringent, and the first partial match will be
returned. If this second search fails, the function will return an error indicating that the certificate
could not be found.

lpvReserved

Pointer reserved for future use. Set it to NULL when using this function.

lppCredentials

Pointer to an LPSECURITYCREDENTIALS pointer. The memory for the credentials structure will
be allocated by this function and must be released by calling the
HttpDeleteSecurityCredentials function when it is no longer needed. The pointer value must
be set to NULL before the function is called. It is important to note that this is a pointer to a
pointer variable, not a pointer to the SECURITYCREDENTIALS structure itself.

Return Value

If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call HttpGetLastError.

Remarks
The structure that is created by this function may be used as client credentials when establishing a
secure connection. This is particularly useful for programming languages other than C/C++ which
may not support C structures or pointers. The pointer to the SECURITYCREDENTIALS structure can
be declared as an unsigned integer variable which is passed by reference to this function, and
then passed by value to the HttpAsyncConnect or HttpConnect functions.

Example
LPSECURITYCREDENTIALS lpSecCred = NULL;
HttpCreateSecurityCredentials(SECURITY_PROTOCOL_DEFAULT,
 0,
 NULL,
 NULL,
 lpszCertStore,
 lpszCertName,
 NULL,
 &lpSecCred);

hClient = HttpConnect(lpszHostName,
 HTTP_PORT_SECURE,
 HTTP_TIMEOUT,
 HTTP_OPTION_SECURE | HTTP_OPTION_KEEPALIVE,
 HTTP_VERSION_11,
 lpSecCred);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpConnect, HttpDeleteSecurityCredentials, HttpGetSecurityInformation, HttpProxyConnect,
SECURITYCREDENTIALS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpDeleteFile Function

INT WINAPI HttpDeleteFile(
 HCLIENT hClient,
 LPCTSTR lpszFileName
);

The HttpDeleteFile function deletes the specified file from the server.

Parameters
hClient

Handle to the client session.

lpszFileName

Points to a string that specifies the name of the remote file to delete. The file pathing and name
conventions must be that of the server.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is HTTP_ERROR. To get extended error information, call HttpGetLastError.

Remarks
This function uses the DELETE command to delete the specified file from the server. The server
must be configured to support this command, and client must have the appropriate permission to
delete the file, or an error will be returned.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpGetFile, HttpPutFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpDeleteFormField Function

INT WINAPI HttpDeleteFormField(
 HFORM hForm,
 LPCTSTR lpszFieldName
);

The HttpDeleteFormField function deletes the specified field from the form.

Parameters
hForm

Handle to the virtual form.

lpszFieldName

Points to a string that specifies the name of the field to delete.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
HTTP_ERROR. To get extended error information, call HttpGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpAddFormField, HttpAddFormFile, HttpClearForm, HttpCreateForm, HttpSubmitForm

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpDeleteHeaders Function

BOOL WINAPI HttpDeleteHeaders(
 HCLIENT hClient,
 UINT nHeaderType
);

Delete all of the response or request headers for the current session.

Parameters
hClient

Handle to the client session.

nHeaderType

Specifies the type of header to delete. It may be one of the following values:

Constant Description

HTTP_HEADERS_REQUEST Delete all of the request headers that have been set for
the next request sent to the server. This will clear all of
the header values that were set using the
HttpSetRequestHeader function.

HTTP_HEADERS_RESPONSE Delete all of the headers that were set in response to the
previous request. A call to the
HttpGetResponseHeader function to obtain a specific
header value will fail after this function returns.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call HttpGetLastError.

Remarks
The HttpDeleteHeaders function will release the memory allocated for the request or response
headers for the current session. This function is typically used to clear all of the current request
headers so that the application may create a new set of headers when a persistent connection is
being used. The memory allocated for the request and response headers is normally released
when the session handle is closed by calling the HttpDisconnect function.

Whenever a request for a resource is sent to the server, the response headers from the previous
request are automatically cleared. It is not necessary for an application to call the
HttpDeleteHeaders function to delete the response headers prior to each request.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
HttpGetFirstHeader, HttpGetNextHeader, HttpGetResponseHeader, HttpSetRequestHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpDeleteQueue Function

BOOL WINAPI HttpDeleteQueue(
 HQUEUE hQueue
);

The HttpDeleteQueue function deletes the specified file transfer queue, releasing all memory
allocated for the queued files.

Parameters
hQueue

A handle to a file transfer queue.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call HttpGetLastError.

Remarks
This function can only be called when the queue is in an idle state. If the queue manager is in the
process of uploading or downloading files, the function will fail and return a value of zero. You can
determine the current state of the queue by calling the HttpGetQueueStatus function. It is not
necessary to explicitly clear the queue prior to calling this function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
HttpCreateQueue, HttpGetQueueStatus, HttpCancelQueuedFile, HttpClearQueue, HttpStartQueue,
HttpStopQueue, HttpWaitForQueue

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpDeleteSecurityCredentials Function

VOID WINAPI HttpDeleteSecurityCredentials(
 LPSECURITYCREDENTIALS *lppCredentials
);

The HttpDeleteSecurityCredentials function deletes an existing SECURITYCREDENTIALS
structure.

Parameters
lppCredentials

Pointer to an LPSECURITYCREDENTIALS pointer. On exit from the function, the pointer will be
NULL.

Return Value
None.

Example
if (lpSecCred != NULL)
 HttpDeleteSecurityCredentials(&lpSecCred);

HttpUninitialize();

Remarks
This function can be used to release the memory allocated to the client or server credentials after
a secure connection has been terminated.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpCreateSecurityCredentials, HttpUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpDestroyForm Function

INT WINAPI HttpDestroyForm(
 HFORM hForm
);

The HttpDestroyForm function destroys the specified form, releasing the memory allocated for it.

Parameters
hForm

Handle to the form.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
HTTP_ERROR. To get extended error information, call HttpGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
HttpAddFormField, HttpAddFormFile, HttpClearForm, HttpCreateForm, HttpDeleteFormField,
HttpSubmitForm

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpDisableEvents Function

INT WINAPI HttpDisableEvents(
 HCLIENT hClient
);

The HttpDisableEvents function disables the event notification mechanism, preventing
subsequent event notification messages from being posted to the application's message queue.

This function has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
HTTP_ERROR. To get extended error information, call HttpGetLastError.

Remarks
This function affects both event notification and event callbacks. Any outstanding events in the
message queue should be ignored by the client application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpEnableEvents, HttpFreezeEvents, HttpRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpDisableTrace Function

BOOL WINAPI HttpDisableTrace();

The HttpDisableTrace function disables the logging of socket function calls to the trace log.

Parameters
None.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpEnableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpDisconnect Function

INT WINAPI HttpDisconnect(
 HCLIENT hClient
);

The HttpDisconnect function terminates the connection with the server, closing the socket and
releasing the memory allocated for the client session.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
HTTP_ERROR. To get extended error information, call HttpGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpConnect, HttpUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpDownloadFile Function

BOOL WINAPI HttpDownloadFile(
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszRemoteFile,
 UINT nTimeout
 DWORD dwOptions
 LPHTTPTRANSFERSTATUS lpStatus
 HTTPEVENTPROC lpEventProc
 DWORD_PTR dwParam
);

The HttpDownloadFile function downloads the specified file from the server to the local system.

Parameters
lpszLocalFile

A pointer to a string that specifies the file on the local system that will be created, overwritten or
appended to. The file pathing and name conventions must be that of the local host.

lpszRemoteFile

A pointer to a string that specifies the complete URL of the file to be downloaded. The URL
must follow the conventions for the File Transfer Protocol and may specify either a standard or
secure connection, alternate port number, username, password and optional working directory.

nTimeout

The number of seconds that the client will wait for a response before failing the operation. A
value of zero specifies that the default timeout period of sixty seconds will be used.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

HTTP_OPTION_NOCACHE This instructs the server to not return a cached
copy of the resource. When connected to an
HTTP 1.0 or earlier server, this directive may be
ignored.

HTTP_OPTION_REDIRECT This option specifies the client should
automatically handle resource redirection. If the
server indicates that the requested resource has
moved to a new location, the client will close the
current connection and request the resource from
the new location. Note that it is possible that the
redirected resource will be located on a different
server.

HTTP_OPTION_PROXY This option specifies the client should use the
default proxy configuration for the local system. If
the system is configured to use a proxy server,
then the connection will be automatically
established through that proxy; otherwise, a direct
connection to the server is established. The local

proxy configuration can be changed using the
system Control Panel.

HTTP_OPTION_NOUSERAGENT This option specifies the client should not include
a User-Agent header with any requests made
during the session. The user agent is a string
which is used to identify the client application to
the server. If this option is not specified, a default
user agent string will be included with the request.

HTTP_OPTION_HTTP2 This option specifies the client should attempt a
HTTP/2 connection with the server. If a
connection cannot be established using HTTP/2
the client will attempt to connect using an earlier
version of the protocol.

HTTP_OPTION_TUNNEL This option specifies that a tunneled TCP
connection and/or port-forwarding is being used
to establish the connection to the server. This
changes the behavior of the client with regards to
internal checks of the destination IP address and
remote port number, default capability selection
and how the connection is established.

HTTP_OPTION_TRUSTEDSITE This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option
only affects connections using either the SSL or
TLS protocols.

HTTP_OPTION_SECURE This option specifies the client should attempt to
establish a secure connection with the server.
Note that the server must support secure
connections using either the SSL or TLS protocol.
The client will default to using TLS 1.2 or later for
secure connections.

HTTP_OPTION_SECURE_FALLBACK This option specifies the client should permit the
use of less secure cipher suites for compatibility
with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

HTTP_OPTION_PREFER_IPV6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be resolved
to both an IPv6 and IPv4 address. This option is
ignored if the local system does not have IPv6
enabled, or when the hostname can only be
resolved to an IPv4 address. If the server
hostname can only be resolved to an IPv6
address, the client will attempt to establish a
connection using IPv6 regardless if this option has
been specified.

HTTP_OPTION_HIRES_TIMER This option specifies the elapsed time for data
transfers should be returned in milliseconds
instead of seconds. This will return more accurate
transfer times for smaller amounts of data over
fast network connections.

lpStatus

A pointer to an HTTPTRANSFERSTATUS structure which contains information about the status of
the current file transfer. If this information is not required, a NULL pointer may be specified as
the parameter.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the HttpEventProc callback
function. If this parameter is NULL, the callback for the specified event is disabled.

dwParam

A user-defined integer value that is passed to the callback function.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call HttpGetLastError.

Remarks
The HttpDownloadFile function provides a convenient way for an application to download a file
in a single function call. Based on the connection information specified in the URL, it will connect
to the server, authenticate the session and then download the file to the local system. The URL
must be complete, and specify either a standard or secure HTTP scheme:

[http|https]://[username : password] @] hostname [:port] / [path / ...]
[filename]

If no user name and password is provided, then the client session will be authenticated as an
anonymous user. The URL scheme will always determine if the connection is secure, not the
option. In other words, if the "http" scheme is used and the HTTP_OPTION_SECURE option is
specified, that option will be ignored. To establish a secure connection, the "https" scheme must
be specified.

If your application requests a HTTP/2 connection and the server only accepts earlier versions of
the protocol, the client will attempt to automatically downgrade the request to HTTP/1.1. If a
connection using an earlier version of the protocol cannot be established, the function will fail and
return a value of zero.

The lpStatus parameter can be used by the application to determine the final status of the
transfer, including the total number of bytes copied, the amount of time elapsed and other
information related to the transfer process. If this information isn't needed, then this parameter
may be specified as NULL.

The lpEventProc parameter specifies a pointer to a function which will be periodically called during
the file transfer process. This can be used to check the status of the transfer by calling
HttpGetTransferStatus and then update the program's user interface. For example, the callback
function could calculate the percentage for how much of the file has been transferred and then
update a progress bar control. The dwParam parameter is used in conjunction with the event
handler and specifies a user-defined value that is passed to the callback function. One common
use in a C++ program is to pass the this pointer as the value, and then cast it back to an object

pointer inside the callback function. If no event handler is required, then a NULL pointer can be
specified as the value for lpEventProc and the dwParam parameter will be ignored.

The HttpDownloadFile function is designed to provide a simpler interface for downloading a file.
However, complex connections such as those using a specific proxy server or a secure connection
which uses a client certificate will require the program to establish the connection using
HttpConnect or HttpProxyConnect and then use HttpGetFile to download the file.

Example
HTTPTRANSFERSTATUS httpStatus;
LPCTSTR lpszLocalFile = _T("c:\\temp\\database.mdb");
LPCTSTR lpszRemoteFile = _T("http://www.example.com/updates/database.mdb");
BOOL bResult;

// Download the file using the specified URL
bResult = HttpDownloadFile(lpszLocalFile,
 lpszRemoteFile,
 HTTP_OPTION_DEFAULT,
 &httpStatus,
 NULL, 0);

if (!bResult)
{
 TCHAR szError[128];

 // Display a message box that describes the error
 HttpGetErrorString(HttpGetLastError(), szError, 128);
 MessageBox(NULL, szError, NULL, MB_ICONEXCLAMATION|MB_TASKMODAL);
 return;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpEventProc, HttpGetFile, HttpGetTransferStatus, HttpSubmitRequest, HttpUploadFile,
HTTPTRANSFERSTATUS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpDownloadFileEx Function

BOOL WINAPI HttpDownloadFileEx(
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszRemoteFile,
 UINT nTimeout
 DWORD dwOptions
 LPHTTPTRANSFERSTATUSEX lpStatus
 HTTPEVENTPROC lpEventProc
 DWORD_PTR dwParam
);

The HttpDownloadFileEx function downloads the specified file from the server to the local
system. This version of the function is designed to support files that are larger than 4GB.

Parameters
lpszLocalFile

A pointer to a string that specifies the file on the local system that will be created, overwritten or
appended to. The file pathing and name conventions must be that of the local host.

lpszRemoteFile

A pointer to a string that specifies the complete URL of the file to be downloaded. The URL
must follow the conventions for the File Transfer Protocol and may specify either a standard or
secure connection, alternate port number, username, password and optional working directory.

nTimeout

The number of seconds that the client will wait for a response before failing the operation. A
value of zero specifies that the default timeout period of sixty seconds will be used.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

HTTP_OPTION_NOCACHE This instructs the server to not return a cached
copy of the resource. When connected to an
HTTP 1.0 or earlier server, this directive may be
ignored.

HTTP_OPTION_REDIRECT This option specifies the client should
automatically handle resource redirection. If the
server indicates that the requested resource has
moved to a new location, the client will close the
current connection and request the resource from
the new location. Note that it is possible that the
redirected resource will be located on a different
server.

HTTP_OPTION_PROXY This option specifies the client should use the
default proxy configuration for the local system. If
the system is configured to use a proxy server,
then the connection will be automatically
established through that proxy; otherwise, a direct

connection to the server is established. The local
proxy configuration can be changed using the
system Control Panel.

HTTP_OPTION_NOUSERAGENT This option specifies the client should not include
a User-Agent header with any requests made
during the session. The user agent is a string
which is used to identify the client application to
the server. If this option is not specified, a default
user agent string will be included with the request.

HTTP_OPTION_HTTP2 This option specifies the client should attempt a
HTTP/2 connection with the server. If a
connection cannot be established using HTTP/2
the client will attempt to connect using an earlier
version of the protocol.

HTTP_OPTION_TUNNEL This option specifies that a tunneled TCP
connection and/or port-forwarding is being used
to establish the connection to the server. This
changes the behavior of the client with regards to
internal checks of the destination IP address and
remote port number, default capability selection
and how the connection is established.

HTTP_OPTION_TRUSTEDSITE This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option
only affects connections using either the SSL or
TLS protocols.

HTTP_OPTION_SECURE This option specifies the client should attempt to
establish a secure connection with the server.
Note that the server must support secure
connections using either the SSL or TLS protocol.
The client will default to using TLS 1.2 or later for
secure connections.

HTTP_OPTION_SECURE_FALLBACK This option specifies the client should permit the
use of less secure cipher suites for compatibility
with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

HTTP_OPTION_PREFER_IPV6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be resolved
to both an IPv6 and IPv4 address. This option is
ignored if the local system does not have IPv6
enabled, or when the hostname can only be
resolved to an IPv4 address. If the server
hostname can only be resolved to an IPv6
address, the client will attempt to establish a
connection using IPv6 regardless if this option has
been specified.

HTTP_OPTION_HIRES_TIMER This option specifies the elapsed time for data
transfers should be returned in milliseconds
instead of seconds. This will return more accurate
transfer times for smaller amounts of data over
fast network connections.

lpStatus

A pointer to an HTTPTRANSFERSTATUSEX structure which contains information about the status
of the current file transfer. If this information is not required, a NULL pointer may be specified as
the parameter.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the HttpEventProc callback
function. If this parameter is NULL, the callback for the specified event is disabled.

dwParam

A user-defined integer value that is passed to the callback function.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call HttpGetLastError.

Remarks
The HttpDownloadFileEx function provides a convenient way for an application to download a
file in a single function call. Based on the connection information specified in the URL, it will
connect to the server, authenticate the session and then download the file to the local system. The
URL must be complete, and specify either a standard or secure HTTP scheme:

[http|https]://[username : password] @] hostname [:port] / [path / ...]
[filename]

If no user name and password is provided, then the client session will be authenticated as an
anonymous user. The URL scheme will always determine if the connection is secure, not the
option. In other words, if the "http" scheme is used and the HTTP_OPTION_SECURE option is
specified, that option will be ignored. To establish a secure connection, the "https" scheme must
be specified.

If your application requests a HTTP/2 connection and the server only accepts earlier versions of
the protocol, the client will attempt to automatically downgrade the request to HTTP/1.1. If a
connection using an earlier version of the protocol cannot be established, the function will fail and
return a value of zero.

The lpStatus parameter can be used by the application to determine the final status of the
transfer, including the total number of bytes copied, the amount of time elapsed and other
information related to the transfer process. If this information isn't needed, then this parameter
may be specified as NULL.

The lpEventProc parameter specifies a pointer to a function which will be periodically called during
the file transfer process. This can be used to check the status of the transfer by calling
HttpGetTransferStatus and then update the program's user interface. For example, the callback
function could calculate the percentage for how much of the file has been transferred and then
update a progress bar control. The dwParam parameter is used in conjunction with the event
handler and specifies a user-defined value that is passed to the callback function. One common
use in a C++ program is to pass the this pointer as the value, and then cast it back to an object

pointer inside the callback function. If no event handler is required, then a NULL pointer can be
specified as the value for lpEventProc and the dwParam parameter will be ignored.

The HttpDownloadFileEx function is designed to provide a simpler interface for downloading a
file. However, complex connections such as those using a specific proxy server or a secure
connection which uses a client certificate will require the program to establish the connection
using HttpConnect or HttpProxyConnect and then use HttpGetFile to download the file.

Example
HTTPTRANSFERSTATUSEX httpStatus;
LPCTSTR lpszLocalFile = _T("c:\\temp\\database.mdb");
LPCTSTR lpszRemoteFile = _T("http://www.example.com/updates/database.mdb");
BOOL bResult;

// Download the file using the specified URL
bResult = HttpDownloadFileEx(lpszLocalFile,
 lpszRemoteFile,
 HTTP_OPTION_DEFAULT,
 &httpStatus,
 NULL, 0);

if (!bResult)
{
 TCHAR szError[128];

 // Display a message box that describes the error
 HttpGetErrorString(HttpGetLastError(), szError, 128);
 MessageBox(NULL, szError, NULL, MB_ICONEXCLAMATION|MB_TASKMODAL);
 return;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpEventProc, HttpGetFileEx, HttpGetTransferStatusEx, HttpUploadFileEx,
HTTPTRANSFERSTATUSEX

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpEnableCompression Function

INT WINAPI HttpEnableCompression(
 HCLIENT hClient,
 BOOL bEnable
);

The HttpEnableCompression function enables or disables support for data compression.

Parameters
hClient

Handle to the client session.

bEnable

A boolean value which specifies if data compression should be enabled or disabled. A non-zero
value enables compression, while a value of zero will disable compression.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
HTTP_ERROR. To get extended error information, call HttpGetLastError.

Remarks
The HttpEnableCompression function is used to indicate to the server whether or not it is
acceptable to compress the data that is returned to the client. If compression is enabled, the client
will advertise that it will accept compressed data by setting the Accept-Encoding request header.
The server will decide whether a resource being requested can be compressed. If the data is
compressed, the library will automatically expand the data before returning it to the caller.

Enabling compression does not guarantee that the data returned by the server will actually be
compressed, it only informs the server that the client is willing to accept compressed data.
Whether or not a particular resource is compressed depends on the server configuration, and the
server may decide to only compress certain types of resources, such as text files. Disabling
compression informs the server that the client is not willing to accept compressed data; this is the
default.

If the HttpSetRequestHeader function is used to explicitly set the Accept-Encoding header to
request compressed data and compression is not enabled, the library will not attempt to
automatically expand the data returned by the server. In this case, the raw compressed data will
be returned to the caller and the application is responsible for processing it. This behavior is by
design to maintain backwards compatibility with previous versions of the library that did not have
internal support for compression.

To determine if the server compressed the data returned to the client, use the
HttpGetResponseHeader function to get the value of the Content-Encoding header. If the
header is defined, the value specifies the compression method used, otherwise the data was not
compressed.

Enabling compression is only meaningful when downloading files from a server that supports file
compression. It has no effect on file uploads.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

Import Library: cshtpv11.lib

See Also
HttpGetData, HttpGetFile, HttpGetFileEx, HttpGetResponseHeader, HttpGetText,
HttpSetRequestHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpEnableEvents Function

INT WINAPI HttpEnableEvents(
 HCLIENT hClient,
 HWND hEventWnd,
 UINT uEventMsg
);

The HtpEnableEvents function enables event notifications using Windows messages.

This function has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Applications should use the HttpRegisterEvent function to register an event handler which is
invoked when an event occurs.

Parameters
hClient

Handle to the client session.

hEventWnd

Handle to the event notification window. This window receives a user-defined message which
specifies the event that has occurred. If this value is NULL, event notification is disabled.

uEventMsg

An unsigned integer which specifies the user-defined message that is sent when an event
occurs. This parameter's value must be greater than the value of WM_USER. If the hEventWnd
parameter is NULL, this value must be specified as WM_NULL.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
HTTP_ERROR. To get extended error information, call HttpGetLastError.

Remarks
When a message is posted to the notification window, the low word of the lParam parameter
contains the event identifier. The high word of lParam contains the low word of the error code, if
an error has occurred. The wParam parameter contains the client handle. One or more of the
following event identifiers may be sent:

Constant Description

HTTP_EVENT_CONNECT The connection to the server has completed. The high word of
the lParam parameter should be checked, since this notification
message will be posted if an error has occurred.

HTTP_EVENT_DISCONNECT The server has closed the connection to the client. The client
should read any remaining data and disconnect.

HTTP_EVENT_READ Data is available to read by the calling process. No additional
messages will be posted until the client has read at least some of
the data. This event is only generated if the client is in
asynchronous mode.

HTTP_EVENT_WRITE The client can now write data. This notification is sent after a
connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking
operation. This event is only generated if the client is in
asynchronous mode.

HTTP_EVENT_TIMEOUT The network operation has exceeded the specified timeout
period. The client application may attempt to retry the operation,
or may disconnect from the server and report an error to the
user.

HTTP_EVENT_CANCEL The current operation has been canceled. Under most
circumstances the client should disconnect from the server and
re-connect if needed. After an operation has been canceled, the
server may abort the connection or refuse to accept further
commands from the client.

HTTP_EVENT_COMMAND A command has been issued by the client and the server
response has been received and processed. This event can be
used to log the result codes and messages returned by the server
in response to actions taken by the client.

HTTP_EVENT_PROGRESS The client is in the process of sending or receiving data from the
server. This event is called periodically during a transfer so that
the client can update any user interface components such as a
status control or progress bar.

HTTP_EVENT_REDIRECT This event is generated when a the server indicates that the
requested resource has been moved to a new location. The new
resource location may be on the same server, or it may be
located on another server. Check the value of the Location
header field to determine where the resource has been moved to.

As noted, some events are only generated when the client is asynchronous mode. These events
depend on the Windows Sockets asynchronous notification mechanism.

If event notification is disabled by specifying a NULL window handle, there may still be outstanding
events in the message queue that must be processed. Since event handling has been disabled,
these events should be ignored by the client application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
HttpDisableEvents, HttpFreezeEvents, HttpRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpEnableTrace Function

BOOL WINAPI HttpEnableTrace(
 LPCTSTR lpszTraceFile,
 DWORD dwTraceFlags
);

The HttpEnableTrace function enables the logging of Windows Sockets function calls to a file.

Parameters
lpszTraceFile

A pointer to a string which specifies the name of the trace log file. If this parameter is NULL or
an empty string, the default file name cstrace.log is used. The file is stored in the directory
specified by the TEMP environment variable, if it is defined; otherwise, the current working
directory is used.

dwTraceFlags

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

TRACE_INFO All function calls are written to the trace file. This is the default
value.

TRACE_ERROR Only those function calls which fail are recorded in the trace file.

TRACE_WARNING Only those function calls which fail or return values which indicate
a warning are recorded in the trace file.

TRACE_HEXDUMP All functions calls are written to the trace file, plus all the data that
is sent or received is displayed, in both ASCII and hexadecimal
format.

TRACE_PROCESS All function calls in the current process are logged, rather than
only those functions in the current thread. This option is useful for
multithreaded applications that are using worker threads.

Return Value
If the function succeeds, the return value is non-zero. A return value of zero indicates an error.
Failure typically indicates that the tracing library cstrcv11.dll cannot be loaded on the local
system.

Remarks
When trace logging is enabled, the file is opened, appended to and closed for each socket
function call. This makes it possible for an application to append its own logging information,
however care should be taken to ensure that the file is closed before the next network operation is
performed. To limit the size of the log files, enable and disable logging only around those sections
of code that you wish to trace.

Note that the TRACE_HEXDUMP trace level generates very large log files since it includes all of the
data exchanged between your application and the server.

Logging is managed on a per-thread basis, not for each client handle. This means that all
SocketTools libraries and components share the same settings in the current thread. If you are

using multiple SocketTools libraries or components in your application, you only need to enable
logging once.

When logging is enabled for HTTP/2 client sessions, it is normal to see HTTP/1.1 in the request
and server response. HTTP/2 is a binary protocol and the request and response header blocks
emulate a standard HTTP/1.1 text response for backwards compatibility. Applications running on
the server should work in the same way regardless of which protocol version is selected, however
it is possible to check the server environment to determine which version of HTTP was used with
the request.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpDisableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpEnumQueuedFiles Function

LONG WINAPI HttpEnumQueuedFiles(
 HQUEUE hQueue,
 LPCTSTR lpszFileMask,
 DWORD dwQueueMode,
 DWORD dwExcludeFiles,
 LPDWORD lpFileList,
 LONG nMaxFiles
);

The HttpEnumQueuedFiles function returns a list of files in the current transfer queue.

Parameters
hQueue

A handle to a file transfer queue.

lpszFileMask

A pointer to a null terminated string which specifies a file name which can include wildcards.
Only those files which match this value will be enumerated. The character '?' will match against
any single character, and '*' will match any number of characters. If this parameter is NULL or
points to an empty string, all eligible files in the queue will be matched.

dwQueueMode

An unsigned integer value which specifies if the file name should be matched against
downloaded files, uploaded files or all files in the queue. Only those files which match the queue
mode will be enumerated. This is a bitmask which may be one or more of the following values:

Constant Description

HTTP_QUEUE_ALL Match the file name to all files in the queue.

HTTP_QUEUE_DOWNLOAD Match file names which are queued for download.

HTTP_QUEUE_UPLOAD Match file names which are queued for upload.

HTTP_QUEUE_LOCAL Match against the local file name instead of the
remote file name.

dwExcludeFiles

An unsigned integer value which specifies which files to exclude from the enumeration. If this
value is zero, no files will be excluded; otherwise, this value is constructed by using a bitwise
operator with any of the following values:

Constant Description

HTTP_QUEUE_FLAG_NONE No files should be excluded.

HTTP_QUEUE_FLAG_COMPLETED Exclude files which have been transferred. This flag
is set after a queued file has been uploaded or
downloaded successfully.

HTTP_QUEUE_FLAG_FAILED Exclude files which where not successfully
uploaded or downloaded. This flag is set when an
error occurs, either when establishing a connection
with the server or during the file transfer.

HTTP_QUEUE_FLAG_CANCELED Exclude files which were canceled during the file
transfer. This flag is only set when the
HttpCancelQueuedFile function has been called
and a queued file is in the process of being
uploaded or downloaded.

lpFileList

A pointer to an array of unsigned integer values which will contain the unique file identifiers for
each matching file in the queue. This parameter must specify an array large enough to store all
of the file identifiers, otherwise the function will fail with a ST_ERROR_BUFFER_TOO_SMALL
error. If this parameter is NULL, the function will return the number of matching files.

nMaxFiles

An integer value which specifies the maximum number of file identifiers which can be copied
into the lpFileList array. If the lpFileList parameter is not NULL, this value must be greater than
zero.

Return Value
If the function succeeds, the return value is the number of matching files. If the queue is empty or
there are no matching files, this function will return zero. If the function fails, the return value is
HTTP_ERROR. To get extended error information, call HttpGetLastError.

Remarks
This function populates an array of unique file identifiers which can be used to obtain information
about the files in the current queue. The values returned in the lpFileList array can be used in
conjunction with the HttpGetQueuedFile function. This provides an alternative to using the
HttpGetFirstQueuedFile and HttpGetNextQueuedFile functions.

The application should not make any assumptions about the value of the file identifiers returned
by this function. They should be considered opaque values which are only guaranteed to uniquely
identify a file in the transfer queue. In particular, there is no guarantee that the file identifiers will
be sequential and they should not be used as index values into an array.

Example
// Get the total number of files in the queue
LONG nFiles = HttpEnumQueuedFiles(hQueue, NULL, HTTP_QUEUE_ALL,
HTTP_QUEUE_FLAG_NONE, NULL, 0)

// Display information about the queued files
if (nFiles > 0)
{
 DWORD *pdwFileList = new DWORD[nFiles];

 nFiles = HttpEnumQueuedFiles(hQueue, NULL, HTTP_QUEUE_ALL,
HTTP_QUEUE_FLAG_NONE, pdwFileList, nFiles);

 for (LONG nIndex = 0; nIndex < nFiles; nIndex++)
 {
 HTTPQUEUEDFILE queuedFile;

 if (HttpGetQueuedFile(hQueue, pdwFileList[nIndex], &queuedFile) ==
FALSE)
 break;

 switch (queuedFile.dwMode)

 {
 case HTTP_QUEUE_DOWNLOAD:
 _tprintf(_T("%u: Download \"%s\" to \"%s\"\n"),
 queuedFile.dwFileId,
 queuedFile.szRemoteFile,
 queuedFile.szLocalFile);
 break;

 case HTTP_QUEUE_UPLOAD:
 _tprintf(_T("%u: Upload \"%s\" to \"%s\"\n"),
 queuedFile.dwFileId,
 queuedFile.szLocalFile,
 queuedFile.szRemoteFile);
 break;
 }
 }

 delete pdwFileList;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpAddQueuedFile, HttpFindQueuedFile, HttpGetFirstQueuedFile, HttpGetNextQueuedFile,
HttpGetQueuedFile, HttpRemoveQueuedFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpEnumTasks Function

INT WINAPI HttpEnumTasks(
 UINT * lpTasks,
 INT nMaxTasks,
 DWORD dwOptions
);

Return a list of active, suspended or finished asynchronous tasks.

Parameters
lpTasks

A pointer to an array of unsigned integer values that will contain unique task identifiers when
the function returns. If this parameter is NULL, the function will return the number of tasks.

nMaxTasks

An integer value that specifies the maximum number of task identifiers that may be copied into
the lpTasks array. If the lpTasks parameter is NULL, this value must be zero.

dwOptions

An unsigned integer that specifies the type of asynchronous tasks that may be returned by this
function. It may be a combination of the following values:

Constant Description

HTTP_TASK_DEFAULT The list of asynchronous task IDs should include both active
and suspended tasks. This option is the same as specifying
both the HTTP_TASK_ACTIVE and HTTP_TASK_SUSPENDED
options.

HTTP_TASK_ACTIVE The list of asynchronous task IDs should include those tasks
which are currently active. An active task represents a
background connection to a server that is in the process of
performing the requested action, such as uploading or
downloading a file.

HTTP_TASK_SUSPENDED The list of asynchronous task IDs should include those tasks
which have been suspended. A suspended task represents a
background connection that has been established, but the
worker thread is not scheduled for execution.

HTTP_TASK_FINISHED The list of asynchronous task IDs should include those tasks
which have completed recently.

Return Value
If the function is successful, the return value is the number of task identifiers copied into the
provided array. If there are no tasks which match the requested criteria, the return value is zero. A
return value of HTTP_ERROR indicates an error has occurred. To get extended error information,
call the HttpGetLastError function.

Remarks
The HttpEnumTasks function can be used to obtain a list of numeric identifiers that represent the
asynchronous tasks that have been started or those that have completed. These task IDs are used
by other functions to reference the background worker thread that has been created and obtain

status information for the task. For example, the HttpTaskDone function can be used to
determine if a particular task has completed, and the HttpTaskWait function can be used to wait
for a task to complete and return an error status code if the background operation failed.

There is an internal limit of 128 asynchronous tasks per process that may be active at any one
time. When a task completes, the status information about that task is maintained for period of
time after the task has completed.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
HttpTaskDone, HttpTaskResume, HttpTaskSuspend, HttpTaskWait

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpEventProc Function

VOID CALLBACK HttpEventProc(
 HCLIENT hClient,
 UINT nEvent,
 DWORD dwError,
 DWORD_PTR dwParam
);

The HttpEventProc function is an application-defined callback function that processes events
generated by the client.

Parameters
hClient

Handle to the client session.

nEvent

An unsigned integer which specifies which event occurred. For a complete list of events, refer to
the HttpRegisterEvent function.

dwError

An unsigned integer which specifies any error that occurred. If no error occurred, then this
parameter will be zero.

dwParam

A user-defined integer value which was specified when the event callback was registered.

Return Value
None.

Remarks
An application must register this callback function by passing its address to the
HttpRegisterEvent function. This callback function is also used by asynchronous tasks to notify
the application when the task has started and completed. The HttpEventProc function is a
placeholder for the application-defined function name.

If the callback function is invoked by an asynchronous task, it will execute in the context of the
worker thread that is managing the client session. You must ensure that any access to global or
static variables are synchronized, otherwise the results may be unpredictable. It is recommended
that you do not declare any static variables within the callback function itself.

If the application has a graphical user interface, you should never attempt to directly modify a UI
control from within the callback function for an asynchronous task. Controls should only be
modified by the same UI thread that created their window. One common approach to resolve this
issue is to post a user-defined message to the main window to signal that the user interface needs
to be updated. The message handler would then process the user-defined message and update
the user interface as needed.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpDisableEvents, HttpEnableEvents, HttpFreezeEvents, HttpRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpFindQueuedFile Function

DWORD WINAPI HttpFindQueuedFile(
 HQUEUE hQueue,
 LPCTSTR lpszFileName,
 DWORD dwQueueMode,
 DWORD dwExcludeFiles
);

The HttpFindQueuedFile function finds a file in the transfer queue which matches the search
criteria.

Parameters
hQueue

A handle to a file transfer queue.

lpszFileName

A pointer to a null terminated string which specifies the name of the file to search for. The string
may contain the wildcard character '?' to match against any single character, and '*' will match
any number of characters. This parameter cannot be NULL or point to an empty string.

dwQueueMode

An unsigned integer value which specifies if the file name should be matched against
downloaded files, uploaded files or all files in the queue. This is a bitmask which may be one or
more of the following values:

Constant Description

HTTP_QUEUE_ALL Match the file name to all files in the queue.

HTTP_QUEUE_DOWNLOAD Match file names which are queued for download.

HTTP_QUEUE_UPLOAD Match file names which are queued for upload.

HTTP_QUEUE_LOCAL Match against the local file name instead of the
remote file name.

dwExcludeFiles

An unsigned integer value which specifies which files to exclude from the search. If this value is
zero, no files will be excluded from the search; otherwise, this value is constructed by using a
bitwise operator with any of the following values:

Constant Description

HTTP_QUEUE_FLAG_NONE No files should be excluded from the search.

HTTP_QUEUE_FLAG_COMPLETED Exclude files which have been transferred. This flag
is set after a queued file has been uploaded or
downloaded successfully.

HTTP_QUEUE_FLAG_FAILED Exclude files which where not successfully
uploaded or downloaded. This flag is set when an
error occurs, either when establishing a connection
with the server or during the file transfer.

HTTP_QUEUE_FLAG_CANCELED Exclude files which were canceled during the file
transfer. This flag is only set when the

HttpCancelQueuedFile function has been called
and a queued file is in the process of being
uploaded or downloaded.

Return Value
If the function succeeds, the return value is a unique identifier for the file. To obtain information
about the file, call the HttpGetQueuedFile function. If the function fails, the return value is zero.
To get extended error information, call HttpGetLastError.

Remarks
This function returns a unique file identifier for the first file which matches the specified file name in
the queue. If the lpszFileName parameter includes wildcard characters, this function will return the
first file in the queue which matches the name. File name matches are not case-sensitive, even
when matching against remote file names on servers which use case-sensitive naming, such as
UNIX based servers.

To perform more complex searches based on the file name, or to find multiple files, you can use
the HttpGetFirstQueuedFile and HttpGetNextQueuedFile functions to iterate through all
queued files.

Example
// Find a local file in the download queue
DWORD dwFileId = HttpFindQueuedFile(
 hQueue,
 lpszFileName,
 HTTP_QUEUE_DOWNLOAD | HTTP_QUEUE_LOCAL,
 HTTP_QUEUE_FLAG_NONE);

// Display information about the queued file
if (dwFileId != 0)
{
 HTTPQUEUEDFILE queuedFile;

 if (HttpGetQueuedFile(hQueue, dwFileId, &queuedFile))
 {
 switch (queuedFile.dwMode)
 {
 case HTTP_QUEUE_DOWNLOAD:
 _tprintf(_T("%u: Download \"%s\" to \"%s\"\n"),
 dwFileId,
 queuedFile.szRemoteFile,
 queuedFile.szLocalFile);
 break;

 case HTTP_QUEUE_UPLOAD:
 _tprintf(_T("%u: Upload \"%s\" to \"%s\"\n"),
 dwFileId,
 queuedFile.szLocalFile,
 queuedFile.szRemoteFile);
 break;
 }
 }
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)

Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpAddQueuedFile, HttpEnumQueuedFiles, HttpGetFirstQueuedFile, HttpGetNextQueuedFile,
HttpGetQueuedFile, HttpRemoveQueuedFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpFreezeEvents Function

INT WINAPI HttpFreezeEvents(
 HCLIENT hClient,
 BOOL bFreeze
);

The HttpFreezeEvents function is used to suspend and resume event handling by the client.

Parameters
hClient

Handle to the client session.

bFreeze

A non-zero value specifies that event handling should be suspended by the client. A zero value
specifies that event handling should be resumed.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
HTTP_ERROR. To get extended error information, call HttpGetLastError.

Remarks
This function should be used when the application does not want to process events, such as when
a modal dialog is being displayed. When events are suspended, all client events are queued. If
events are re-enabled at a later point, those queued events will be sent to the application for
processing. Note that only one of each event will be generated. For example, if the client has
suspended event handling, and four read events occur, once event handling is resumed only one
of those read events will be posted to the client. This prevents the application from being flooded
by a potentially large number of queued events.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpDisableEvents, HttpEnableEvents, HttpRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetBearerToken Function

INT WINAPI HttpGetBearerToken(
 HCLIENT hClient,
 LPTSTR lpszBearerToken,
 INT nMaxLength
);

The HttpGetBearerToken function returns the OAuth 2.0 bearer token used to authenticate the
client session with a web service.

Parameters
hClient

Handle to the client session.

lpszBearerToken

A pointer to a string buffer which will contain the bearer token when the function returns. The
string will be null terminated and the the buffer must be large enough to accommodate the
entire bearer token or the function will fail. This parameter cannot be a NULL pointer.

nMaxLength

The maximum number of characters that may be copied into the string buffer. This value must
be greater than zero.

Return Value
If the function succeeds, the return value is the length of the bearer token string. A return value of
zero indicates that no bearer token has been specified. If the function fails, the return value is
HTTP_ERROR. To get extended error information, call HttpGetLastError.

Remarks
This function returns the bearer token which was previously set by a call to HttpSetBearerToken.
Bearer tokens can be very long strings and do not contain any human readable information. For
Google services, these tokens are usually about 180 characters in length. For Microsoft services,
their bearer tokens are typically 1,200 characters in length. It is recommended that you provide a
buffer size of at least 2,000 characters.

Your application should not store the bearer tokens provided by a web service. These tokens are
short-lived and typically only valid for about an hour. If the token has expired, the authorization to
access the resource will fail and it must be refreshed. The refresh tokens used to acquire a new
bearer token should be stored and they are typically valid for a period of months.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpAuthenticate, HttpSetBearerToken

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetContentType Function

INT WINAPI HttpGetContentType(
 HCLIENT hClient,
 LPTSTR lpszContentType,
 INT nMaxLength
);

The HttpGetContentType function returns the content type for the current resource.

Parameters
hClient

Handle to the client session.

lpszContentType

A pointer to a buffer which will contain the MIME content type of the resource returned by the
web server. The buffer must be large enough to contain the entire content type string including
the terminating null character. This parameter is optional and may be NULL if the information is
not required.

nMaxLength

An integer value which specifies the maximum number of characters which can be copied into
the buffer. If the lpszContentType parameter is NULL, this value must be zero.

Return Value
If the function succeeds, the value indicates the type of resource returned by the server. If the
function fails, the return value is HTTP_ERROR. To get extended error information, call
HttpGetLastError.

Constant Description

HTTP_CONTENT_UNKNOWN The content type for the resource could not be
determined. This can occur if the content type returned
by the server does not match a known value, such as
an experimental or non-standard content type.

HTTP_CONTENT_BINARY Application specific binary data which doesn't explicitly
fall into any of the other standard MIME types. The
most common type for binary data is application/octet-
stream which can represent any type of data. Other
examples are application/pdf and application/zip.

HTTP_CONTENT_TEXT Textual data which can include plain text, HTML
documents, XML, comma-separated value (CSV) data
or any other human readable text formats. Examples
are text/plain and text/html.

HTTP_CONTENT_AUDIO Audio data which can include MEPG audio and
Windows Media formats. Examples are audio/mpeg,
audio/mp4 and audio/x-ms-wma.

HTTP_CONTENT_IMAGE Image data which can include GIF, JPEG and PNG
image formats. Examples are image/gif and
image/jpeg.

HTTP_CONTENT_MESSAGE A content type which specifies the response includes
other messages, typically email messages in a standard
MIME format. This content type is not commonly used
with web services.

HTTP_CONTENT_MULTIPART A content type which includes multiple types of data in
a single response. The payload will typically be
encoded text and the contents will need to be decoded
to extract any binary data included in the message.

HTTP_CONTENT_VIDEO Video data which can include MP4 movies or Window
Media format video. Examples are video/mp4 and
video/x-ms-wmv.

HTTP_CONTENT_FONT Font data which can include TrueType and OpenType
fonts. Examples are font/tff and font/otf.

HTTP_CONTENT_MODEL Model data for 3D objects and scenes, such as those
used with the Virtual Reality Modeling Language
(VRML). Examples are model/3mf and model/vrml.

Remarks
This function does not examine the contents of the payload returned by the server and only
returns a value based on the Content-Type response header. If the web server does not recognize
the data format of the resource it is returning, it should identify it as application/octet-stream
and the content type would be returned as HTTP_CONTENT_BINARY. However, some servers
incorrectly return unrecognized formats as text/plain, causing the payload to be identified as
human-readable text rather than binary data.

Some servers will return a content type of text/plain for JSON responses and others will use the
IANA standard type of application/json. To ensure consistency with these two content types, this
function will always return MIME_CONTENT_TEXT for JSON responses.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
HttpGetResponseHeader, HttpSetContentType

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetCookie Function

BOOL WINAPI HttpGetCookie(
 HCLIENT hClient,
 LPCTSTR lpszCookieName,
 LPTSTR lpszCookieValue,
 INT nCookieValue,
 LPTSTR lpszCookiePath,
 INT nCookiePath,
 LPTSTR lpszCookieDomain,
 INT nCookieDomain,
 LPSYSTEMTIME lpCookieExpires,
 LPDWORD lpdwCookieFlags
);

The HttpGetCookie function returns information about a cookie set by the server.

Parameters
hClient

Handle to the client session.

lpszCookieName

A pointer to a string which specifies the name of the cookie to return information about.

lpszCookieValue

A pointer to a string buffer that will contain the value of the cookie. If this information is not
required, a NULL pointer may be specified.

nCookieValue

The maximum number of characters that may be copied into the buffer specified by the
lpszCookieValue parameter, including the terminating null character.

lpszCookiePath

A pointer to a string buffer that will contain the cookie path. If this information is not required, a
NULL pointer may be specified.

nCookiePath

The maximum number of characters that may be copied into the buffer specified by the
lpszCookiePath parameter, including the terminating null character.

lpszCookieDomain

A pointer to a string buffer that will contain the cookie domain. If this information is not
required, a NULL pointer may be specified.

nCookieDomain

The maximum number of characters that may be copied into the buffer specified by the
lpszCookieDomain parameter, including the terminating null character.

lpCookieExpires

A pointer to a SYSTEMTIME structure which specifies the date and time that the cookie expires.
If this information is not required, a NULL pointer may be specified.

lpdwCookieFlags

One or more bit flags which specify status information about the cookie. A value of zero
indicates that there are no special status flags for the cookie. This parameter may be NULL if the

information is not required. The following values are currently defined:

Constant Description

HTTP_COOKIE_SECURE This flag specifies that the cookie should only be provided to
the server if the connection is secure.

HTTP_COOKIE_SESSION This flag specifies that the cookie should only be used for the
current application session and should not be stored
permanently on the local system.

Return Value
If the function succeeds, the return value is non-zero. If the specified cookie does not exist or
function fails, the return value is zero. To get extended error information, call HttpGetLastError.

Remarks
The Hypertext Transfer Protocol uses special tokens called "cookies" to maintain persistent state
information between requests for a resource. These cookies are exchanged between the client and
server by setting specific header fields. When a server wants the client to use a cookie, it will
include a header field named Set-Cookie in the response header when the client requests a
resource. The client can then take this cookie and store it, either temporarily in memory or
permanently in a file on the local system. The next time that the client requests a resource from
that server, it can send the cookie back to the server by setting the Cookie header field. The
HttpGetCookie function searches for a cookie set by the server in the Set-Cookie header field.
The HttpSetCookie function creates or modifies the Cookie header field for the next resource
requested by the client.

There are two general types of cookies that are used by servers. Session cookies exist only for the
duration of the client session; they are stored in memory and not saved in any kind of permanent
storage. When the client application terminates, session cookies are deleted and no longer used.
Persistent cookies are stored on the local system and are used by the client until their expiration
time. It is the responsibility of the client application to store persistent cookies; applications may
use a flat text file, a database or any other storage method available.

In addition to the cookie name and value, the server may return additional information about the
cookie which the client should use to determine if it should send the cookie back to the server:

The cookie path specifies a path for the resources where the cookie should be used. For
example, a path of "/" indicates that the cookie should be provided for all resources
requested from the server. A path of "/data" would mean that the cookie should be
included if the resource is found in the /data folder or a sub-folder, such as
/data/projections.asp. However, the cookie would not be provided if the resource
/info/status.asp was requested, since it is not in the /data path.

The cookie domain specifies the domain for which the cookie should be used. Matches
are made by comparing the name of the server against the domain name specified in the
cookie. If the domain is example.com, then any server in the example.com domain would
match; for example, both shipping.example.com and orders.example.com would match
the domain value. However, if the cookie domain was orders.example.com, then the
cookie would only be sent if the resource was requested from orders.example.com, not if
the resource was located on shipping.example.com or www.example.com.

The cookie expiration specifies the date and time that the cookie should be deleted and
no longer sent when a resource is requested from the server. This is only valid for
persistent cookies, since session cookies are automatically deleted when the client

application terminates. The time is always expressed as Coordinated Universal Time.

The cookie flags provide additional information about the cookie. In some cases, a cookie
should only be submitted to the server if the resource is requested using a secure
connection. In this case, the bit flag HTTP_COOKIE_SECURE will be set.

It is the responsibility of the client application to determine if a cookie meets the criteria required
to be submitted to the server. If the application wishes to send the cookie, it can use the
HttpSetCookie function and specify the cookie name and value.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
HttpGetFirstCookie, HttpGetNextCookie, HttpGetResponseHeader, HttpSetCookie,
HttpSetRequestHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetData Function

INT WINAPI HttpGetData(
 HCLIENT hClient,
 LPCTSTR lpszResource,
 LPVOID lpvBuffer,
 LPDWORD lpdwLength,
 DWORD dwOptions
);

The HttpGetData function requests a resource from the server and copies the data to the
specified buffer.

Parameters
hClient

Handle to the client session.

lpszResource

A pointer to a string that specifies the resource on the server. This may be the name of a file on
the server, or it may specify the name of a script that will be executed and the output returned
to the caller. This string may specify a valid URL for the current server that the client is
connected to.

lpvBuffer

A pointer to a byte buffer which will contain the data transferred from the server, or a pointer to
a global memory handle which will reference the data when the function returns.

lpdwLength

A pointer to an unsigned integer which should be initialized to the maximum number of bytes
that can be copied to the buffer specified by the lpvBuffer parameter. If the lpvBuffer
parameter points to a global memory handle, the length value should be initialized to zero.
When the function returns, this value will be updated with the actual length of the file that was
downloaded.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

HTTP_TRANSFER_DEFAULT The default transfer mode. The resource data is
downloaded to the local system exactly as it is stored
on the server. If you are requesting a text-based
resource, the data may use a different end-of-line
character sequence. For example, the end-of-line
character may be a single linefeed character instead of
a carriage return and linefeed pair.

HTTP_TRANSFER_CONVERT If the resource being downloaded from the server is
textual, the data is automatically converted so that the
end of line character sequence is compatible with the
Windows platform. Individual carriage return or
linefeed characters are converted to carriage
return/linefeed character sequences.

HTTP_TRANSFER_COMPRESS This option informs the server that the client is willing
to accept compressed data. If the server supports
compression for the specified resource, then the data
will be automatically expanded before being returned
to the caller. This option is selected by default if
compression has been enabled using the
HttpEnableCompression function.

HTTP_TRANSFER_ERRORDATA This option causes the client to accept error data from
the server if the request fails. If this option is specified,
an error response from the server will not cause the
function to fail. Instead, the response is returned to
the client and the function will succeed. If this option is
used, your application should call
HttpGetResultCode to obtain the HTTP status code
returned by the server. This will enable you to
determine if the operation was successful.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is HTTP_ERROR. To get extended error information, call HttpGetLastError.

Remarks
The HttpGetData function is used to retrieve a resource from the server and copy it into a local
buffer. The function may be used in one of two ways, depending on the needs of the application.
The first method is to pre-allocate a buffer large enough to store the contents of the file. In this
case, the lpvBuffer parameter will point to the buffer that was allocated and the value that the
lpdwLength parameter points to should be initialized to the size of that buffer.

The second method that can be used is have the lpvBuffer parameter point to a global memory
handle which will contain the file data when the function returns. In this case, the value that the
lpdwLength parameter points to must be initialized to zero. It is important to note that the
memory handle returned by the function must be freed by the application, otherwise a memory
leak will occur. See the example code below.

If compression has been enabled and the server returns compressed data, it will be automatically
expanded before being returned to the caller. This will result in a difference between the value
returned in the lpdwLength parameter, which contains the actual number of bytes copied into the
buffer, and the values reported by HttpGetTransferStatus. For example, if the server returns
5,000 bytes of compressed data that expands into 15,000 bytes, this function will return 15,000 as
the number of bytes copied into the buffer. However, the HttpGetTransferStatus function will
return the content length as the original 5,000 bytes of compressed data. For this reason, you
should always use the value returned in the lpdwLength parameter to determine the amount of
data that has been copied into the buffer.

This function will cause the current thread to block until the file transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the HTTP_EVENT_PROGRESS event will be
periodically fired, enabling the application to update any user interface controls. Event notification
must be enabled, either by calling HttpEnableEvents, or by registering a callback function using
the HttpRegisterEvent function.

To determine the current status of a file transfer while it is in progress, use the
HttpGetTransferStatus function.

Example
HGLOBAL hgblBuffer = (HGLOBAL)NULL;
LPBYTE lpBuffer = (LPBYTE)NULL;
DWORD cbBuffer = 0;

// Store the response in a block of global memory allocated by
// the GlobalAlloc function; the handle to this memory will be
// returned in the hgblBuffer parameter
nResult = HttpGetData(hClient,
 lpszResource,
 &hgblBuffer,
 &cbBuffer,
 HTTP_TRANSFER_DEFAULT);

if (nResult != HTTP_ERROR)
{
 // Lock the global memory handle, returning a pointer to the
 // resource data
 lpBuffer = (LPBYTE)GlobalLock(hgblBuffer);

 // After the data has been used, the handle must be unlocked
 // and freed, otherwise a memory leak will occur
 GlobalUnlock(hgblBuffer);
 GlobalFree(hgblBuffer);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpEnableCompression, HttpEnableEvents, HttpGetFile, HttpGetTransferStatus, HttpPostData,
HttpPutData, HttpPutFile, HttpRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetDefaultUserAgent Function

INT WINAPI HttpGetDefaultUserAgent(
 LPTSTR lpszUserAgent,
 INT nMaxLength
);

The HttpGetDefaultUserAgent function returns the default user agent string which is included
with all requests.

Parameters
lpszUserAgent

A pointer to a buffer which will contain the default user agent string when the function returns.
The buffer must be large enough to contain the entire user agent string including the
terminating null character. This parameter cannot be NULL.

nMaxLength

An integer value which specifies the maximum number of characters which can be copied into
the buffer.

Return Value
If the function succeeds, the return value is the number of characters copied into the string buffer.
If the function fails, the return value is HTTP_ERROR. To get extended error information, call
HttpGetLastError.

Remarks
When you submit a request to the server, a header named User-Agent is automatically defined
which identifies your application. It typically uses a format where you have a product name and
version number separated by a slash. There can be multiple products listed in the user agent
string, with additional optional information enclosed in parenthesis.

A server uses the user agent to determine what type of client has issued the request, including
what operating system and browser version was used. The HttpGetDefaultUserAgent function
returns a copy of that default value. The value of the user agent string depends on which version
of Windows the client is running on and whether the process is 32-bit or 64-bit. For example, a
64-bit application will typically return a value like this:

Mozilla/5.0 (Windows NT 6.2; Win64; x64) Chrome/74.0.3729.169
Safari/537.36 SocketTools/11.0

Some web services check the value of the user agent string to determine if a compatible client is
being used to issue the request. The default value is designed to emulate a common browser, but
some services may require you change the user agent to use a specific value or include certain
product names and versions.

You can change the value of the user agent string in one of two ways. You can use
HttpSetRequestHeader to set the User-Agent header to a specific value for a client session, or
you can use HttpSetDefaultUserAgent to set the default user agent string for all requests. If you
use HttpSetRequestHeader to change the user agent string for a client session, it will always
override the default value.

To prevent any user agent string from being included with a request, include the
HTTP_OPTION_NOUSERAGENT option when connecting to the server or use HttpSetOption to
enable that option after a connection has been established.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpSetDefaultUserAgent, HttpSetOption, HttpSetRequestHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetEncodingType Function

INT WINAPI HttpGetEncodingType(
 HCLIENT hClient
);

The HttpGetEncodingType function determines which content-encoding option is enabled.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is one of the following values:

Constant Description

HTTP_ENCODING_NONE No encoding will be applied to the content of a request and no
default content type will be specified. This encoding type should be
used with REST APIs and other services which expect XML or JSON
request payloads.

HTTP_ENCODING_URL Non-printable and extended ASCII characters will be encoded so
they can be safely used with URLs and form data. Encoded
characters will be represented by a percent symbol prefix, followed
by a two digit hexadecimal value which represents the ASCII
character code. This encoding is typically used with web services
which process HTML form data.

HTTP_ENCODING_XML This encoding is identical to URL encoding, except spaces are not
encoded. It is used with legacy web services which expect form data
in an XML format and cannot process encoded whitespace. This
encoding should not be specified for services which use REST APIs.

If the function fails, the return value is HTTP_ERROR. To get extended error information, call
HttpGetLastError.

Remarks
The default encoding type is HTTP_ENCODING_URL which is used for submitting data to services
which expect HTML form data using the HttpPostData or HttpSubmitForm functions.

When submitting a JSON or XML request to a service using a REST API, your application should
use HTTP_ENCODING_NONE and set the appropriate content type for the request payload. The
HTTP_ENCODING_XML encoding type should only be used if the server expects URL encoded
form data. The HttpPostJson and HttpPostXml functions will automatically set the correct
encoding and content type for those requests.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpGetContentType, HttpPostData, HttpPostJson, HttpPostXml, HttpSetEncodingType,
HttpSubmitForm

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetErrorString Function

INT WINAPI HttpGetErrorString(
 DWORD dwErrorCode,
 LPTSTR lpszDescription,
 INT cbDescription
);

The HttpGetErrorString function is used to return a description of a specific error code. Typically
this is used in conjunction with the HttpGetLastError function for use with warning dialogs or as
diagnostic messages.

Parameters
dwErrorCode

The error code for which a description is returned.

lpszDescription

A pointer to the buffer that will contain a description of the specified error code. This buffer
should be at least 128 characters in length.

cbDescription

The maximum number of characters that may be copied into the description buffer.

Return Value
If the function succeeds, the return value is the length of the description string. If the function fails,
the return value is zero, meaning that no description exists for the specified error code. Typically
this indicates that the error code passed to the function is invalid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpGetLastError, HttpSetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetFile Function

INT WINAPI HttpGetFile(
 HCLIENT hClient,
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszRemoteFile,
 DWORD dwOptions,
 DWORD dwOffset
);

The HttpGetFile function transfers the specified file on the server to the local system.

Parameters
hClient

Handle to the client session.

lpszLocalFile

A pointer to a string that specifies the file on the local system that will be created, overwritten or
appended to. The file pathing and name conventions must be that of the local system.

lpszRemoteFile

A pointer to a string that specifies the resource on the server. This may be the name of a file on
the server, or it may specify the name of a script that will be executed and the output returned
to the caller. This string may specify a valid URL for the current server that the client is
connected to.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

HTTP_TRANSFER_DEFAULT The default transfer mode. The resource data is
downloaded to the local system exactly as it is stored
on the server. If you are requesting a text-based
resource, the data may use a different end-of-line
character sequence. For example, the end-of-line
character may be a single linefeed character instead of
a carriage return and linefeed pair.

HTTP_TRANSFER_CONVERT If the resource being downloaded from the server is
textual, the data is automatically converted so that the
end of line character sequence is compatible with the
Windows platform. Individual carriage return or
linefeed characters are converted to carriage
return/linefeed character sequences.

HTTP_TRANSFER_COMPRESS This option informs the server that the client is willing
to accept compressed data. If the server supports
compression for the specified resource, then the data
will be automatically expanded before being returned
to the caller. This option is selected by default if
compression has been enabled using the
HttpEnableCompression function. This option is

ignored if the dwOffset parameter is non-zero.

HTTP_TRANSFER_ERRORDATA This option causes the client to accept error data from
the server if the request fails. If this option is specified,
an error response from the server will not cause the
function to fail. Instead, the response is returned to
the client and the function will succeed. If this option is
used, your application should call
HttpGetResultCode to obtain the HTTP status code
returned by the server. This will enable you to
determine if the operation was successful.

dwOffset

Specifies a byte offset into the file. If this value is greater than zero, the server must support the
ability to specify a byte range with the request to download the file, otherwise this function will
fail.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is HTTP_ERROR. To get extended error information, call HttpGetLastError.

Remarks
Enabling compression does not guarantee that the data returned by the server will actually be
compressed, it only informs the server that the client is willing to accept compressed data.
Whether or not a particular resource is compressed depends on the server configuration, and the
server may decide to only compress certain types of resources, such as text files. To determine if
the server compressed the data returned to the client, use the HttpGetResponseHeader function
to get the value of the Content-Encoding header after this function returns. If the header is
defined, the value specifies the compression method used, otherwise the data was not
compressed.

To download large files that are over 4GB, use the HttpGetFileEx function.

This function will cause the current thread to block until the file transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the HTTP_EVENT_PROGRESS event will be
periodically fired, enabling the application to update any user interface controls. Event notification
must be enabled, either by calling HttpEnableEvents, or by registering a callback function using
the HttpRegisterEvent function.

To determine the current status of a file transfer while it is in progress, use the
HttpGetTransferStatus function.

Example
LPCTSTR lpszLocalFile = _T("index.html");
LPCTSTR lpszRemoteFile = _T("http://sockettools.com/");

if (HttpGetFile(hClient, lpszLocalFile, lpszRemoteFile) == HTTP_ERROR)
{
 dwError = HttpGetLastError();
 _tprintf(stderr, "Unable to download %s, error 0x%lx\n", lpszRemoteFile,
dwError);
}

Requirements

Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpEnableEvents, HttpGetData, HttpGetFileEx, HttpGetText, HttpGetTransferStatus, HttpPutFile,
HttpRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetFileEx Function

INT WINAPI HttpGetFileEx(
 HCLIENT hClient,
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszRemoteFile,
 DWORD dwOptions,
 ULARGE_INTEGER uiOffset
);

The HttpGetFileEx function transfers the specified file on the server to the local system. This
version of the function is designed to support files that are larger than 4GB.

Parameters
hClient

Handle to the client session.

lpszLocalFile

A pointer to a string that specifies the file on the local system that will be created, overwritten or
appended to. The file pathing and name conventions must be that of the local host.

lpszRemoteFile

A pointer to a string that specifies the resource on the server. This may be the name of a file on
the server, or it may specify the name of a script that will be executed and the output returned
to the caller. This string may specify a valid URL for the current server that the client is
connected to.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

HTTP_TRANSFER_DEFAULT The default transfer mode. The resource data is
downloaded to the local system exactly as it is stored
on the server. If you are requesting a text-based
resource, the data may use a different end-of-line
character sequence. For example, the end-of-line
character may be a single linefeed character instead of
a carriage return and linefeed pair.

HTTP_TRANSFER_CONVERT If the resource being downloaded from the server is
textual, the data is automatically converted so that the
end of line character sequence is compatible with the
Windows platform. Individual carriage return or
linefeed characters are converted to carriage
return/linefeed character sequences.

HTTP_TRANSFER_COMPRESS This option informs the server that the client is willing
to accept compressed data. If the server supports
compression for the specified resource, then the data
will be automatically expanded before being returned
to the caller. This option is selected by default if
compression has been enabled using the

 HttpEnableCompression function. This option is
ignored if the uiOffset parameter is non-zero.

HTTP_TRANSFER_ERRORDATA This option causes the client to accept error data from
the server if the request fails. If this option is specified,
an error response from the server will not cause the
function to fail. Instead, the response is returned to
the client and the function will succeed. If this option is
used, your application should call
HttpGetResultCode to obtain the HTTP status code
returned by the server. This will enable you to
determine if the operation was successful.

uiOffset

Specifies a byte offset into the file. If this value is greater than zero, the server must support the
ability to specify a byte range with the request to download the file, otherwise this function will
fail.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is HTTP_ERROR. To get extended error information, call HttpGetLastError.

Remarks
Enabling compression does not guarantee that the data returned by the server will actually be
compressed, it only informs the server that the client is willing to accept compressed data.
Whether or not a particular resource is compressed depends on the server configuration, and the
server may decide to only compress certain types of resources, such as text files. To determine if
the server compressed the data returned to the client, use the HttpGetResponseHeader function
to get the value of the Content-Encoding header after this function returns. If the header is
defined, the value specifies the compression method used, otherwise the data was not
compressed.

This function will cause the current thread to block until the file transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the HTTP_EVENT_PROGRESS event will be
periodically fired, enabling the application to update any user interface controls. Event notification
must be enabled, either by calling HttpEnableEvents, or by registering a callback function using
the HttpRegisterEvent function.

To determine the current status of a file transfer while it is in progress, use the
HttpGetTransferStatusEx function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpEnableEvents, HttpGetData, HttpGetText, HttpGetTransferStatusEx, HttpPutFileEx,
HttpRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetFileSize Function

INT WINAPI HttpGetFileSize(
 HCLIENT hClient,
 LPCTSTR lpszFileName,
 LPDWORD lpdwFileSize
);

The HttpGetFileSize function returns the size of the specified file on the server.

Parameters
hClient

Handle to the client session.

lpszFileName

Points to a string that specifies the name of the remote file.

lpdwFileSize

Points to an unsigned integer that will contain the size of the specified file in bytes.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is HTTP_ERROR. To get extended error information, call HttpGetLastError.

Remarks
This function uses the HEAD command to retrieve header information about the file without
downloading the contents of the file itself. This requires that the server support at least version 1.0
of the protocol standard, or an error will be returned.

The server may not return a file size for some resources. This is typically the case with scripts that
generate dynamic content because the server has no way of determining the size of the output
generated by the script without actually executing it. The server may also not provide a file size for
HTML documents which use server side includes (SSI) because that content is also dynamically
created by the server. If the request to the server was successful and the file exists, but the server
does not return a file size, the function will succeed but the file size returned to the caller will be
zero.

When a request is made to the server for information about the file, the library will attempt to
keep the connection alive, even if the HTTP_OPTION_KEEPALIVE option has not been specified for
the session. This allows an application to request the file size and then download the file without
having to write additional code to re-establish the connection. However, it is possible that the
attempt to keep the connection open will fail. In that case, an error will be returned and the client
handle will no longer be valid. If this happens, the lpdwFileSize parameter may still contain a valid
value. If the library was able to determine the file size, but was not able to maintain the connection
to the server, the returned file size will be greater than zero even if the function returns an error.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpCommand, HttpGetFileTime, HttpVerifyFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetFileSizeEx Function

INT WINAPI HttpGetFileSizeEx(
 HCLIENT hClient,
 LPCTSTR lpszFileName,
 LPULARGE_INTEGER lpuiFileSize
);

The HttpGetFileSizeEx function returns the size of the specified file on the server. This version of
the function is designed to support files that are larger than 4GB.

Parameters
hClient

Handle to the client session.

lpszFileName

Points to a string that specifies the name of the remote file.

lpdwFileSize

Points to a ULARGE_INTEGER structure that will contain the size of the specified file in bytes.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is HTTP_ERROR. To get extended error information, call HttpGetLastError.

Remarks
This function uses the HEAD command to retrieve header information about the file without
downloading the contents of the file itself. This requires that the server support at least version 1.0
of the protocol standard, or an error will be returned.

The server may not return a file size for some resources. This is typically the case with scripts that
generate dynamic content because the server has no way of determining the size of the output
generated by the script without actually executing it. The server may also not provide a file size for
HTML documents which use server side includes (SSI) because that content is also dynamically
created by the server. If the request to the server was successful and the file exists, but the server
does not return a file size, the function will succeed but the file size returned to the caller will be
zero.

When a request is made to the server for information about the file, the library will attempt to
keep the connection alive, even if the HTTP_OPTION_KEEPALIVE option has not been specified for
the session. This allows an application to request the file size and then download the file without
having to write additional code to re-establish the connection. However, it is possible that the
attempt to keep the connection open will fail. In that case, an error will be returned and the client
handle will no longer be valid. If this happens, the lpdwFileSize parameter may still contain a valid
value. If the library was able to determine the file size, but was not able to maintain the connection
to the server, the returned file size will be greater than zero even if the function returns an error.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpCommand, HttpGetFileTime, HttpVerifyFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetFileTime Function

INT WINAPI HttpGetFileTime(
 HCLIENT hClient,
 LPCTSTR lpszFileName,
 LPSYSTEMTIME lpFileTime,
 BOOL bLocalize
);

The HttpGetFileTime function returns the modification time for the specified file on the server.

Parameters
hClient

Handle to the client session.

lpszFileName

Points to a string that specifies the name of the remote file.

lpFileTime

Points to a SYSTEMTIME structure that will be set to the current modification time for the
remote file.

bLocalize

A boolean flag which specifies if the file time is localized to the current timezone. If this value is
non-zero, then the file time is adjusted to that the time is local to the current system. If this
value is zero, the file time is returned in UTC time.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is HTTP_ERROR. To get extended error information, call HttpGetLastError.

Remarks
The HttpGetFileTime function can be used to determine the date and time that a file was last
modified on the server. The time may either be localized to the current system, or it may be
returned as UTC time.

This function uses the HEAD command to retrieve header information about the file without
downloading the contents of the file itself. This requires that the server support at least version 1.0
of the protocol standard, or an error will be returned.

The server may not return a modification time for some resources. If the request to the server was
successful and the file exists, but the server does not return a modification time, the function will
succeed but all of the members of the SYSTEMTIME structure will be zero.

When a request is made to the server for information about the file, the library will attempt to
keep the connection alive, even if the HTTP_OPTION_KEEPALIVE option has not been specified for
the session. This allows an application to request the modification time and then download the file
without having to write additional code to re-establish the connection. However, it is possible that
the attempt to keep the connection open will fail. In that case, an error will be returned and the
client handle will no longer be valid. If this happens, the SYSTEMTIME structure may still contain a
valid value. If the library was able to determine the modification time, but was not able to maintain
the connection to the server, the members of the SYSTEMTIME structure will specify a valid date
and time.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpCommand, HttpGetFileSize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetFirstCookie

DWORD WINAPI HttpGetFirstCookie(
 HCLIENT hClient,
 LPTSTR lpszCookieName,
 LPINT lpnNameLen,
 LPTSTR lpszCookieValue,
 LPINT lpnValueLen
);

The HttpGetFirstCookie function returns the first cookie set by the server.

Parameters
hClient

Handle to the client session.

lpszCookieName

A pointer to a string buffer which will contain the name of the first cookie set by the server.

lpnNameLen

A pointer to an integer which specifies the maximum number of characters which may be
copied into the buffer, including the terminating null character. When the function returns, this
value is updated to specify the actual length of the cookie name string.

lpszCookieValue

A pointer to a string buffer which will contain the name of the first cookie value set by the
server. If the cookie value is not required, this parameter may be NULL.

lpnValueLen

A pointer to an integer which specifies the maximum number of characters which may be
copied into the buffer, including the terminating null character. When the function returns, this
value is updated to specify the actual length of the cookie value string. If the lpszCookieValue
parameter is NULL, this parameter should also be NULL.

Return Value
If the function succeeds, the return value is a 32-bit token which will be passed to the
HttpGetNextCookie function to retrieve the next cookie. If there are no cookies or the function
fails, the return value is zero. To get extended error information, call HttpGetLastError.

Remarks
The HttpGetFirstCookie function is used to enumerate the cookies set by the server after a
resource has been requested. To get information about a specific cookie, use the HttpGetCookie
function.

Example
TCHAR szCookieName[MAXCOOKIENAME];
TCHAR szCookieValue[MAXCOOKIEVALUE];
INT nNameLen, nValueLen;
DWORD dwCookie;

// Initialize the nNameLen and nValueLen variables to
// the maximum number of characters that can be copied
// into the string buffers
nNameLen = MAXCOOKIENAME;

nValueLen = MAXCOOKIEVALUE;

// Get the first cookie set by the server
dwCookie = HttpGetFirstCookie(hClient,
 szCookieName,
 &nNameLen,
 szCookieValue,
 &nValueLen);

while (dwCookie != 0)
{
 // The szCookieName and szCookieValue strings contain the
 // the name and value for a cookie set by the server

 // Re-initialize the nNameLen and nValueLen variables
 // to the maximum length of the strings
 nNameLen = MAXCOOKIENAME;
 nValueLen = MAXCOOKIEVALUE;

 // Get the next cookie set by the server
 dwCookie = HttpGetNextCookie(hClient,
 dwCookie,
 szCookieName,
 &nNameLen,
 szCookieValue,
 &nValueLen);
};

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
HttpGetCookie, HttpGetNextCookie, HttpGetResponseHeader, HttpSetCookie,
HttpSetRequestHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetFirstHeader Function

BOOL WINAPI HttpGetFirstHeader(
 HCLIENT hClient,
 UINT nHeaderType,
 LPTSTR lpszHeader,
 LPINT lpcchHeader
 LPTSTR lpszValue,
 LPINT lpcchValue
);

The HttpGetFirstHeader function returns the name and value of the first request or response
header.

Parameters
hClient

Handle to the client session.

nHeaderType

Specifies the type of header to return. It may be one of the following values:

Constant Description

HTTP_HEADERS_REQUEST Return the first header set by the client before a resource
has been requested. Request headers typically specify
information that the server needs to complete the
request, such as the name of the host that has the
resource, or what types of resources are acceptable to
the client.

HTTP_HEADERS_RESPONSE Return the first header set by the server after a request
has been submitted to the server. The response headers
typically contain information about the resource, such as
its size, the content type and the date it was last
modified.

lpszHeader

A pointer to a string buffer that will contain the name of the header field when the function
returns.

lpcchHeader

A pointer to an integer which specifies the maximum number of characters which may be
copied into the buffer, including the terminating null character. When the function returns, this
value is updated to specify the actual length of the header name string.

lpszValue

A pointer to a string buffer that will contain the name of the header value when the function
returns.

lpcchValue

A pointer to an integer which specifies the maximum number of characters which may be
copied into the buffer, including the terminating null character. When the function returns, this
value is updated to specify the actual length of the header value string.

Return Value
If the function succeeds, the return value is non-zero. If the header field does not exist or the client
handle is invalid, the function returns a value of zero. To get extended error information, call
HttpGetLastError.

Remarks
Use this function together with HttpGetNextHeader to enumerate all request or response
headers.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpGetResponseHeader, HttpSetRequestHeader, HttpGetNextHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetFirstQueuedFile Function

DWORD WINAPI HttpGetFirstQueuedFile(
 HQUEUE hQueue,
 DWORD dwQueueMode,
 DWORD dwExcludeFiles,
 LPHTTPQUEUEDFILE lpFileInfo
);

The HttpGetFirstQueuedFile function returns information about the first file in the transfer
queue.

Parameters
hQueue

A handle to a file transfer queue.

dwQueueMode

An unsigned integer value which specifies if the file name should be matched against
downloaded files, uploaded files or all files in the queue. It may be one of the following values:

Constant Description

HTTP_QUEUE_ALL Return information about all files in the queue.

HTTP_QUEUE_DOWNLOAD Return information for files which are queued for
download.

HTTP_QUEUE_UPLOAD Return information for files which are queued for
upload.

dwExcludeFiles

An unsigned integer value which specifies which files to exclude from the search. If this value is
zero, no files will be excluded from the search; otherwise, this value is constructed by using a
bitwise operator with any of the following values:

Constant Description

HTTP_QUEUE_FLAG_NONE No files should be excluded.

HTTP_QUEUE_FLAG_COMPLETED Exclude files which have been transferred. This flag
is set after a queued file has been uploaded or
downloaded successfully.

HTTP_QUEUE_FLAG_FAILED Exclude files which where not successfully
uploaded or downloaded. This flag is set when an
error occurs, either when establishing a connection
with the server or during the file transfer.

HTTP_QUEUE_FLAG_CANCELED Exclude files which were canceled during the file
transfer. This flag is only set when the
HttpCancelQueuedFile function has been called
and a queued file is in the process of being
uploaded or downloaded.

lpFileInfo

A pointer to a HTTPQUEUEDFILE structure which will contain information about the file. This

 parameter cannot be NULL.

Return Value
If the function succeeds, the return value is an unsigned integer with a non-zero value which
uniquely identifies the file in the queue. If there are no queued files which match the specified
parameters, or the function fails, the return value is zero. To get extended error information, call
HttpGetLastError.

Remarks
This function returns information about the first file in the current transfer queue. It is used in
conjunction with the HttpGetNextQueuedFile function to obtain information about all queued
files.

Example
// List all files in a file transfer queue
HTTPQUEUEDFILE queuedFile;
DWORD dwFileId;

dwFileId = HttpGetFirstQueuedFile(hQueue, HTTP_QUEUE_ALL, HTTP_QUEUE_FLAG_NONE,
&queuedFile);

while (dwFileId != 0)
{
 switch (queuedFile.dwQueueMode)
 {
 case HTTP_QUEUE_DOWNLOAD:
 _tprintf(_T("%u: download \"%s\" to \"%s\"\n"),
 queuedFile.dwFileId,
 queuedFile.szRemoteFile,
 queuedFile.szLocalFile);
 break;

 case HTTP_QUEUE_UPLOAD:
 _tprintf(_T("%u: upload \"%s\" to \"%s\"\n"),
 queuedFile.dwFileId,
 queuedFile.szRemoteFile,
 queuedFile.szLocalFile);
 break;
 }

 dwFileId = HttpGetNextQueuedFile(hQueue, &queuedFile);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpAddQueuedFile, HttpEnumQueuedFiles, HttpFindQueuedFile, HttpGetNextQueuedFile,
HttpGetQueuedFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetFormProperties Function

INT WINAPI HttpGetFormProperties(
 HFORM hForm,
 LPHTTPFORMPROPERTIES lpFormProp
);

The HttpGetFormProperties function returns information about the specified form.

Parameters
hForm

Handle to the virtual form.

lpFormProp

Points to a HTTPFORMPROPERTIES structure which will contain information about the specified
form.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
HTTP_ERROR. To get extended error information, call HttpGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpCreateForm, HttpSetFormProperties, HttpSubmitForm, HTTPFORMPROPERTIES

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetLastError Function

DWORD WINAPI HttpGetLastError();

Parameters
None.

Return Value
The return value is the last error code value for the current thread. Functions set this value by
calling the HttpSetLastError function. The Return Value section of each reference page notes the
conditions under which the function sets the last error code.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. You should call
the HttpGetLastError function immediately when a function's return value indicates that an error
has occurred. That is because some functions call HttpSetLastError(0) when they succeed,
clearing the error code set by the most recently failed function.

Most functions will set the last error code value when they fail; a few functions set it when they
succeed. Function failure is typically indicated by a return value such as FALSE, NULL,
INVALID_CLIENT or HTTP_ERROR. Those functions which call HttpSetLastError when they
succeed are noted on the function reference page.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
HttpGetErrorString, HttpSetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetFirstCookie

DWORD WINAPI HttpGetNextCookie(
 HCLIENT hClient,
 DWORD dwCookie,
 LPTSTR lpszCookieName,
 LPINT lpnNameLen,
 LPTSTR lpszCookieValue,
 LPINT lpnValueLen
);

The HttpGetNextCookie function returns the next cookie set by the server.

Parameters
hClient

Handle to the client session.

dwCookie

An unsigned integer value which specifies a cookie token returned by a previous call to either
HttpGetFirstCookie or HttpGetNextCookie.

lpszCookieName

A pointer to a string buffer which will contain the name of the first cookie set by the server.

lpnNameLen

A pointer to an integer which specifies the maximum number of characters which may be
copied into the buffer, including the terminating null character. When the function returns, this
value is updated to specify the actual length of the cookie name string.

lpszCookieValue

A pointer to a string buffer which will contain the name of the first cookie value set by the
server. If the cookie value is not required, this parameter may be NULL.

lpnValueLen

A pointer to an integer which specifies the maximum number of characters which may be
copied into the buffer, including the terminating null character. When the function returns, this
value is updated to specify the actual length of the cookie value string. If the lpszCookieValue
parameter is NULL, this parameter should also be NULL.

Return Value
If the function succeeds, the return value is a 32-bit token which will be passed to the
HttpGetNextCookie function to retrieve the next cookie. If there are no more cookies or the
function fails, the return value is zero. To get extended error information, call HttpGetLastError.

Remarks
The HttpGetNextCookie function is used to enumerate the cookies set by the server after a
resource has been requested. To get information about a specific cookie, use the HttpGetCookie
function.

Example
TCHAR szCookieName[MAXCOOKIENAME];
TCHAR szCookieValue[MAXCOOKIEVALUE];
INT nNameLen, nValueLen;
DWORD dwCookie;

// Initialize the nNameLen and nValueLen variables to
// the maximum number of characters that can be copied
// into the string buffers
nNameLen = MAXCOOKIENAME;
nValueLen = MAXCOOKIEVALUE;

// Get the first cookie set by the server
dwCookie = HttpGetFirstCookie(hClient,
 szCookieName,
 &nNameLen,
 szCookieValue,
 &nValueLen);

while (dwCookie != 0)
{
 // The szCookieName and szCookieValue strings contain the
 // the name and value for a cookie set by the server

 // Re-initialize the nNameLen and nValueLen variables
 // to the maximum length of the strings
 nNameLen = MAXCOOKIENAME;
 nValueLen = MAXCOOKIEVALUE;

 // Get the next cookie set by the server
 dwCookie = HttpGetNextCookie(hClient,
 dwCookie,
 szCookieName,
 &nNameLen,
 szCookieValue,
 &nValueLen);
};

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
HttpGetCookie, HttpGetFirstCookie, HttpGetResponseHeader, HttpSetCookie,
HttpSetRequestHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetNextHeader Function

BOOL WINAPI HttpGetNextHeader(
 HCLIENT hClient,
 UINT nHeaderType,
 LPTSTR lpszHeader,
 LPINT lpcchHeader,
 LPTSTR lpszValue,
 LPINT lpcchValue
);

The HttpGetNextHeader function returns the name and value of the next request or response
header.

Parameters
hClient

Handle to the client session.

nHeaderType

Specifies the type of header to return. It may be one of the following values:

Constant Description

HTTP_HEADERS_REQUEST Return the first header set by the client before a resource
has been requested. Request headers typically specify
information that the server needs to complete the
request, such as the name of the host that has the
resource, or what types of resources are acceptable to
the client.

HTTP_HEADERS_RESPONSE Return the first header set by the server after a request
has been submitted to the server. The response headers
typically contain information about the resource, such as
its size, the content type and the date it was last
modified.

lpszHeader

A pointer to a string buffer that will contain the name of the header field when the function
returns.

lpcchHeader

A pointer to an integer which specifies the maximum number of characters which may be
copied into the buffer, including the terminating null character. When the function returns, this
value is updated to specify the actual length of the header name string.

lpszValue

A pointer to a string buffer that will contain the name of the header value when the function
returns.

lpcchValue

A pointer to an integer which specifies the maximum number of characters which may be
copied into the buffer, including the terminating null character. When the function returns, this
value is updated to specify the actual length of the header value string.

Return Value
If the function succeeds, the return value is non-zero. If the header field does not exist or the client
handle is invalid, the function returns a value of zero. To get extended error information, call
HttpGetLastError.

Remarks
Use this function iteratively after HttpGetFirstHeader to enumerate all request or response
headers.

Unlike the HttpGetResponseHeader function, which returns a single header name and value, the
HttpGetFirstHeader and HttpGetNextHeader functions will return multiple headers that have
the same common name.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpGetResponseHeader, HttpSetRequestHeader, HttpGetFirstHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetNextQueuedFile Function

DWORD WINAPI HttpGetFirstQueuedFile(
 HQUEUE hQueue,
 LPHTTPQUEUEDFILE lpFileInfo
);

The HttpGetFirstQueuedFile function returns information about the next file in the transfer
queue.

Parameters
hQueue

A handle to a file transfer queue.

lpFileInfo

A pointer to a HTTPQUEUEDFILE structure which will contain information about the file. This
parameter cannot be NULL.

Return Value
If the function succeeds, the return value is an unsigned integer with a non-zero value which
uniquely identifies the file in the queue. If there are no additional queued files which match the
exclusion criteria specified with the call to HttpGetFirstQueuedFile, the return value is zero. To
get extended error information, call HttpGetLastError.

Remarks
This function returns information about the next file in the current transfer queue after an initial
call to HttpGetFirstQueuedFile. To obtain a list of all matching files in the queue, call this
function repeatedly until it returns a value of zero. When information about the last file in the
queue has been returned, the last error code will be set to ST_ERROR_END_OF_QUEUE.

Example
// List all files in a file transfer queue
HTTPQUEUEDFILE queuedFile;
DWORD dwFileId;

dwFileId = HttpGetFirstQueuedFile(hQueue, HTTP_QUEUE_ALL, HTTP_QUEUE_FLAG_NONE,
&queuedFile);

while (dwFileId != 0)
{
 switch (queuedFile.dwQueueMode)
 {
 case HTTP_QUEUE_DOWNLOAD:
 _tprintf(_T("%u: download \"%s\" to \"%s\"\n"),
 queuedFile.dwFileId,
 queuedFile.szRemoteFile,
 queuedFile.szLocalFile);
 break;

 case HTTP_QUEUE_UPLOAD:
 _tprintf(_T("%u: upload \"%s\" to \"%s\"\n"),
 queuedFile.dwFileId,
 queuedFile.szRemoteFile,
 queuedFile.szLocalFile);
 break;

 }

 dwFileId = HttpGetNextQueuedFile(hQueue, &queuedFile);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpAddQueuedFile, HttpEnumQueuedFiles, HttpFindQueuedFile, HttpGetFirstQueuedFile,
HttpGetQueuedFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetOption Function

INT WINAPI HttpGetOption(
 HCLIENT hClient,
 DWORD dwOption,
 LPBOOL lpbEnabled
);

The HttpGetOption function determines whether a specified HTTP option is enabled.

Parameters
hClient

Handle to the client session.

dwOption

An unsigned integer which specifies the option that is to be checked. It may be one of the
following values:

Constant Description

HTTP_OPTION_NOCACHE This instructs the server to not return a cached
copy of the resource. When connected to an
HTTP 1.0 or earlier server, this directive may be
ignored.

HTTP_OPTION_KEEPALIVE This instructs the server to maintain a persistent
connection between requests. This can improve
performance because it eliminates the need to
establish a separate connection for each resource
that is requested.

HTTP_OPTION_REDIRECT This option specifies the client should
automatically handle resource redirection. If the
server indicates that the requested resource has
moved to a new location, the client will close the
current connection and request the resource from
the new location. Note that it is possible that the
redirected resource will be located on a different
server.

HTTP_OPTION_ERRORDATA This option specifies the client should return the
content of an error response from the server,
rather than returning an error code. Note that this
option will disable automatic resource redirection,
and should not be used with
HTTP_OPTION_REDIRECT.

HTTP_OPTION_NOUSERAGENT This option specifies the client should not include
a User-Agent header with any requests made
during the session. The user agent is a string
which is used to identify the client application to
the server.

HTTP_OPTION_TUNNEL This option specifies that a tunneled TCP

connection and/or port-forwarding is being used
to establish the connection to the server. This
changes the behavior of the client with regards to
internal checks of the destination IP address and
remote port number, default capability selection
and how the connection is established.

HTTP_OPTION_TRUSTEDSITE This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option
only affects connections using either the SSL or
TLS protocols.

HTTP_OPTION_SECURE This option specifies the client should attempt to
establish a secure connection with the server.
Note that the server must support secure
connections using either the SSL or TLS protocol.
The client will default to using TLS 1.2 or later for
secure connections.

HTTP_OPTION_SECURE_FALLBACK This option specifies the client should permit the
use of less secure cipher suites for compatibility
with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

HTTP_OPTION_PREFER_IPV6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be resolved
to both an IPv6 and IPv4 address. This option is
ignored if the local system does not have IPv6
enabled, or when the hostname can only be
resolved to an IPv4 address. If the server
hostname can only be resolved to an IPv6
address, the client will attempt to establish a
connection using IPv6 regardless if this option has
been specified.

HTTP_OPTION_FREETHREAD This option specifies the handle returned by this
function may be used by any thread, and is not
limited to the thread which created it. The
application is responsible for ensuring that access
to the handle is synchronized across multiple
threads.

HTTP_OPTION_HIRES_TIMER This option specifies the elapsed time for data
transfers should be returned in milliseconds
instead of seconds. This will return more accurate
transfer times for smaller amounts of data over
fast network connections.

lpbEnabled

A pointer to an integer which will be set to a non-zero value when the function returns if the
specified option has been enabled. If the option has not been enabled, a zero value will be

returned in the variable.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
HTTP_ERROR. To get extended error information, call HttpGetLastError. Note that the value
returned in the lpbEnabled parameter is only valid if the function succeeds.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
HttpConnect, HttpSetOption

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetPriority Function

INT WINAPI HttpGetPriority(
 HCLIENT hClient
);

The HttpGetPriority function returns a value which specifies the priority of file transfers.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is the current file transfer priority. If the function fails, the
return value is HTTP_ERROR. To get extended error information, call HttpGetLastError.

Remarks
The HttpGetPriority function can be used to determine the current priority assigned to file
transfers performed by the client. It may be one of the following values:

Constant Description

HTTP_PRIORITY_NORMAL The default priority which balances resource utilization and
transfer speed. It is recommended that most applications use
this priority.

HTTP_PRIORITY_BACKGROUND This priority significantly reduces the memory, processor and
network resource utilization for the transfer. It is typically used
with worker threads running in the background when the
amount of time required perform the transfer is not critical.

HTTP_PRIORITY_LOW This priority lowers the overall resource utilization for the
transfer and meters the bandwidth allocated for the transfer.
This priority will increase the average amount of time required
to complete a file transfer.

HTTP_PRIORITY_HIGH This priority increases the overall resource utilization for the
transfer, allocating more memory for internal buffering. It can
be used when it is important to transfer the file quickly, and
there are no other threads currently performing file transfers
at the time.

HTTP_PRIORITY_CRITICAL This priority can significantly increase processor, memory and
network utilization while attempting to transfer the file as
quickly as possible. If the file transfer is being performed in
the main UI thread, this priority can cause the application to
appear to become non-responsive. No events will be
generated during the transfer.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpSetPriority

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetQueueClient Function

HCLIENT WINAPI HttpGetQueueClient(
 HQUEUE hQueue
);

The HttpGetQueueClient function returns a handle to the current client session.

Parameters
hQueue

A handle to a file transfer queue.

Return Value
If the function succeeds, the return value a handle to a client session. If the function fails, it will
return INVALID_CLIENT. To get extended error information, call HttpGetLastError.

Remarks
The HttpGetQueueClient function returns the handle to a client session which may be used with
other functions, such as HttpGetTransferStatus. A valid handle will only be returned if the queue
manager is currently uploading or downloading a file. If the queue is active but there are no file
transfers in progress at the time this function is called, it will fail and set the last error code to
ST_ERROR_NO_QUEUED_TRANSFER.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
HttpGetTransferStatus, HttpGetTransferStatusEx, HttpGetQueueStatus, HttpGetThreadQueue,
HttpStartQueue, HttpStopQueue

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetQueuedFile Function

BOOL WINAPI HttpGetQueuedFile(
 HQUEUE hQueue,
 DWORD dwFileId,
 LPHTTPQUEUEDFILE lpFileInfo
);

The HttpGetQueuedFile function returns information about the specified file in the transfer
queue.

Parameters
hQueue

A handle to a file transfer queue.

dwFileId

An unsigned integer value which uniquely identifies the file in the queue. This value cannot be
zero.

lpFileInfo

A pointer to a HTTPQUEUEDFILE structure which will contain information about the file. This
parameter cannot be NULL.

Return Value
If the function succeeds, the return value is non-zero. If the file identifier is not valid or the file has
been removed from the queue, the return value is zero. To get extended error information, call
HttpGetLastError.

Remarks
The file identifier can be obtained by several different functions, including HttpEnumQueuedFiles
and HttpGetQueueStatus, which provides information about the current file being processed in
the queue. Do not make any assumptions about the value of the identifier. Although the value is
guaranteed to be unique for the specified queue, it is not guaranteed that file identifiers will be
assigned in sequential order.

Example
// Get the number of files in the queue
LONG nFiles = HttpEnumQueuedFiles(hQueue, NULL, 0)

// Display information about the queued files
if (nFiles > 0)
{
 DWORD *pdwFileList = new DWORD[nFiles];

 nFiles = HttpEnumQueuedFiles(hQueue, pdwFileList, nFiles);

 for (LONG nIndex = 0; nIndex < nFiles; nIndex++)
 {
 HTTPQUEUEDFILE queuedFile;

 if (HttpGetQueuedFile(hQueue, pdwFileList[nIndex], &queuedFile) ==
FALSE)
 break;

 switch (queuedFile.dwMode)
 {
 case HTTP_QUEUE_DOWNLOAD:
 _tprintf(_T("%u: Download \"%s\" to \"%s\"\n"),
 queuedFile.dwFileId,
 queuedFile.szRemoteFile,
 queuedFile.szLocalFile);
 break;

 case HTTP_QUEUE_UPLOAD:
 _tprintf(_T("%u: Upload \"%s\" to \"%s\"\n"),
 queuedFile.dwFileId,
 queuedFile.szLocalFile,
 queuedFile.szRemoteFile);
 break;
 }
 }

 delete pdwFileList;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpAddQueuedFile, HttpEnumQueuedFiles, HttpFindQueuedFile, HttpGetFirstQueuedFile,
HttpGetNextQueuedFile, HttpGetQueueStatus

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetQueueStatus Function

INT WINAPI HttpGetQueueStatus(
 HQUEUE hQueue,
 LPHTTPQUEUESTATUS lpQueueStatus
);

The HttpGetQueuedFile function returns information about the specified file in the transfer
queue.

Parameters
hQueue

A handle to a file transfer queue.

lpQueueStatus

A pointer to a HTTPQUEUESTATUS structure which will contain information about the current
state of the file transfer queue. If this parameter is NULL, the function will ignore the parameter
and only return the current status of the queue.

Return Value
If the function succeeds, the return value is the current queue status. If the function fails, the return
value is HTTP_ERROR. To get extended error information, call HttpGetLastError. The following
status values may be returned:

Constant Description

HTTP_QUEUE_STATUS_IDLE The file transfer queue is idle and no files are being
uploaded or downloaded. This state is returned
before HttpStartQueue has been called or after
HttpStopQueue has been called. The queue will
also automatically enter an idle state after the last file
transfer has completed and the queue manager
thread exits.

HTTP_QUEUE_STATUS_ACTIVE The queue manager is active and files are currently
being uploaded or downloaded.

HTTP_QUEUE_STATUS_PAUSED The queue manager is active although file transfers
are currently paused. The queue enters this state
after the HttpSuspendQueue function is called and
resumes file transfers after the HttpResumeQueue
function is called.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
HttpCancelQueuedFile, HttpResetQueue, HttpResumeQueue, HttpStartQueue,
HttpSuspendQueue, HttpStopQueue

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetQueueThread Function

DWORD WINAPI HttpGetQueueThread(
 HQUEUE hQueue
);

The HttpGetQueueThread function returns a value which uniquely identifies the queue manager
thread.

Parameters
hQueue

A handle to a file transfer queue.

Return Value
If the function succeeds, the return value is non-zero and specifies a unique identifier for the
queue manager thread. If the function fails, it will return zero. To get extended error information,
call HttpGetLastError.

Remarks
The HttpGetQueueThread function can be used to obtain a unique identifier for the queue
manager thread which is responsible for performing the file transfers. If the function returns zero,
this indicates that either the queue handle is no longer valid, or the queue is idle and no files are
currently being processed. To obtain the handle to a queue associated with a particular thread,
call the HttpGetThreadQueue function.

You should not store the thread ID or consider it a persistent value, even during the lifetime of the
process. It is only valid while the queue manager is actively processing files in the queue. The
thread ID value will change every time the HttpStartQueue function is called.

Never use the thread ID to obtain a handle to the thread and call Windows API functions such as
SuspendThread or TerminateThread. This can result inconsistency within the internal state of the
queue manager and may result in incomplete or corrupted file transfers.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
HttpGetQueueStatus, HttpGetThreadQueue, HttpStartQueue, HttpStopQueue

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetRedirectUrl Function

INT WINAPI HttpGetRedirectUrl(
 HCLIENT hClient,
 LPTSTR lpszResource,
 INT nMaxLength
);

The HttpGetRedirectUrl function returns the URL for a redirected resource.

Parameters
hClient

Handle to the client session.

lpszResource

A pointer to a string buffer which will contain the URL of the redirected resource when the
function returns. The string will be null terminated and the the buffer must be large enough to
accommodate the entire URL or the function will fail. This parameter cannot be a NULL pointer.

nMaxLength

The maximum number of characters that may be copied into the string buffer. This value must
be greater than zero.

Return Value
If the function succeeds, the return value is the length of the URL. A return value of zero indicates
that the request was not redirected. If the function fails, the return value is HTTP_ERROR. To get
extended error information, call HttpGetLastError.

Remarks
This function returns the complete URL for a request which has been redirected to a different
resource. This is useful for applications which do not wish to use automatic redirection and instead
prefer to handle the redirection by establishing a new connection by passing this value to the
HttpConnectUrl function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpConnectUrl, HttpGetResourceUrl, HttpGetResponseHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetRequestHeader Function

BOOL WINAPI HttpGetRequestHeader(
 HCLIENT hClient,
 LPCTSTR lpszHeader,
 LPTSTR lpszValue,
 INT nMaxLength
);

The HttpGetRequestHeader function returns the value of the specified request header field.

Parameters
hClient

Handle to the client session.

lpszHeader

Pointer to a string which specifies the header value to be returned.

lpszValue

Pointer to a buffer which will contain the null-terminated string value of the specified header
field.

nMaxLength

Maximum number of characters that may be copied into the buffer, including the terminating
null character.

Return Value
If the function succeeds, the return value is non-zero. If the header field does not exist or the client
handle is invalid, the function returns a value of zero. To get extended error information, call
HttpGetLastError.

Remarks
When a resource is requested from the server, it consists of two parts. The first part is the
command issued to the server, along with the name of the resource and any optional encoded
parameters. The second part consists of one or more header fields which can be used to provide
additional information to the server. For example, here is what the command and header may
look like for a simple request:

GET /test HTTP/1.0
Host: api.sockettools.com
Accept: text/*

The first line consists of the command, the resource and the protocol version. The subsequent
lines are the header, which is similar to the headers used in email messages. The Host field
specifies the name of the server the resource is being requested from, and the Accept field
specifies the type of resources that are acceptable to the client; in this case, any type of text file.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpGetResponseHeader, HttpSetRequestHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetResourceUrl Function

INT WINAPI HttpGetResourceUrl(
 HCLIENT hClient,
 LPTSTR lpszResource,
 INT nMaxLength
);

The HttpGetResourceUrl function returns the URL for the current request.

Parameters
hClient

Handle to the client session.

lpszResource

A pointer to a string buffer which will contain the URL of the current resource when the function
returns. The string will be null terminated and the the buffer must be large enough to
accommodate the entire URL or the function will fail. This parameter cannot be a NULL pointer.

nMaxLength

The maximum number of characters that may be copied into the string buffer. This value must
be greater than zero.

Return Value
If the function succeeds, the return value is the length of the URL. If the function fails, the return
value is HTTP_ERROR. To get extended error information, call HttpGetLastError.

Remarks
This function returns the URL for the current request which has been submitted to the server. This
can be useful for applications which need to compose a URL for display or logging purposes,
combining the connection information and resource path provided to functions such as
HttpGetData or HttpPostData.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpConnectUrl, HttpGetData, HttpGetRedirectUrl, HttpPostData

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetResponseHeader Function

BOOL WINAPI HttpGetResponseHeader(
 HCLIENT hClient,
 LPCTSTR lpszHeader,
 LPTSTR lpszValue,
 INT nMaxLength
);

The HttpGetResponseHeader function returns the value of the specified response header field.

Parameters
hClient

Handle to the client session.

lpszHeader

Pointer to a string which specifies the header value to be returned.

lpszValue

Pointer to a buffer which will contain the null-terminated string value of the specified header
field.

nMaxLength

Maximum number of characters that may be copied into the buffer, including the terminating
null character.

Return Value
If the function succeeds, the return value is non-zero. If the header field does not exist or the client
handle is invalid, the function returns a value of zero. To get extended error information, call
HttpGetLastError.

Remarks
When a resource is returned by the server, it consists of three parts. The first part consists of a
single line that indicates the result of the request. The second part is one or more header fields
which provides specific information about the resource, such as its size in bytes. The third part
consists of the resource data itself, such as the HTML document or image data. For example, this is
what the response to a request for a simple HTML document can look like:

HTTP/1.0 200 OK
Date: Mon, 5 Jan 2004 20:18:33 GMT
Content-Type: text/html
Last-Modified: Mon, 5 Jan 2004 19:34:19 GMT
Content-Length: 115

<html>
<head>
<title>Simple Document</title>
</head>
<body>
This is a simple HTML document.
<body>
</html>

The first line consists of the protocol version, a numeric response code and some text describing
the result. The subsequent lines are the header, which is similar to the headers used in email
messages. For example, the Date field specifies the date the resource was requested, the Content-

Type field specifies what type of resource was requested, and the Content-Length field specifies
the size of the resource in bytes. The end of the header block is indicated by an empty line (two
carriage-return/linefeed sequences), and is followed by the resource itself, in this case a simple
HTML document.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpGetContentType, HttpGetCookie, HttpGetFirstCookie, HttpGetFirstHeader,
HttpGetNextCookie, HttpGetNextHeader, HttpGetRequestHeader, HttpSetRequestHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetResultCode Function

INT WINAPI HttpGetResultCode(
 HCLIENT hClient
);

The HttpGetResultCode function reads the result code returned by the server in response to a
command. The result code is a three-digit numeric code, and indicates if the operation succeeded,
failed or requires additional action by the client.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is the result code. If the function fails, the return value is
HTTP_ERROR. To get extended error information, call HttpGetLastError.

Remarks
Result codes are three-digit numeric values returned by the server. They may be broken down into
the following ranges:

Value Description

100-
199

Positive preliminary result. This indicates that the requested action is being initiated, and
the client should expect another reply from the server before proceeding.

200-
299

Positive completion result. This indicates that the server has successfully completed the
requested action.

300-
399

Positive intermediate result. This indicates that the requested action cannot complete
until additional information is provided to the server.

400-
499

Transient negative completion result. This indicates that the requested action did not
take place, but the error condition is temporary and may be attempted again.

500-
599

Permanent negative completion result. This indicates that the requested action did not
take place.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpCommand, HttpGetResultString

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetResultString Function

INT WINAPI HttpGetResultString(
 HCLIENT hClient,
 LPTSTR lpszResult,
 INT nMaxLength
);

The HttpGetResultString function returns the last message sent by the server along with the
result code.

Parameters
hClient

Handle to the client session.

lpszResult

A pointer to the buffer that will contain the result string returned by the server.

nMaxLength

The maximum number of characters that may be copied into the result string buffer, including
the terminating null character.

Return Value
If the function succeeds, the return value is the length of the result string. If a value of zero is
returned, this means that no result string was sent by the server. If the function fails, the return
value is HTTP_ERROR. To get extended error information, call HttpGetLastError.

Remarks
The HttpGetResultString function is most useful when an error occurs because the server will
typically include a brief description of the cause of the error. This can then be parsed by the
application or displayed to the user. The result string is updated each time the client sends a
command to the server and then calls HttpGetResultCode to obtain the result code for the
operation.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpCommand, HttpGetResultCode

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetSecurityInformation Function

BOOL WINAPI HttpGetSecurityInformation(
 HCLIENT hClient,
 LPSECURITYINFO lpSecurityInfo
);

The HttpGetSecurityInformation function returns security protocol, encryption and certificate
information about the current client connection.

Parameters
hClient

Handle to the client session.

lpSecurityInfo

A pointer to a SECURITYINFO structure which contains information about the current client
connection. The dwSize member of this structure must be initialized to the size of the structure
before passing the address of the structure to this function.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call HttpGetLastError.

Remarks
This function is used to obtain security related information about the current client connection to
the server. It can be used to determine if a secure connection has been established, what security
protocol was selected, and information about the server certificate. Note that a secure connection
has not been established, the dwProtocol structure member will contain the value
SECURITY_PROTOCOL_NONE.

Example
The following example notifies the user if the connection is secure or not:

SECURITYINFO securityInfo;

securityInfo.dwSize = sizeof(SECURITYINFO);
if (HttpGetSecurityInformation(hClient, &securityInfo))
{
 if (securityInfo.dwProtocol == SECURITY_PROTOCOL_NONE)
 {
 MessageBox(NULL, _T("The connection is not secure"),
 _T("Connection"), MB_OK);
 }
 else
 {
 if (securityInfo.dwCertStatus == SECURITY_CERTIFICATE_VALID)
 {
 MessageBox(NULL, _T("The connection is secure"),
 _T("Connection"), MB_OK);
 }
 else
 {
 MessageBox(NULL, _T("The server certificate not valid"),
 _T("Connection"), MB_OK);
 }

 }
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpConnect, HttpDisconnect, HttpGetOption, HttpProxyConnect, HttpSetOption, SECURITYINFO

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetStatus Function

INT WINAPI HttpGetStatus(
 HCLIENT hClient
);

The HttpGetStatus function returns the current status of the client session.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is the client status code. If the function fails, the return
value is HTTP_ERROR. To get extended error information, call HttpGetLastError.

Remarks
The HttpGetStatus function returns a numeric code which identifies the current state of the client
session. The following values may be returned:

Value Constant Description

1 HTTP_STATUS_IDLE The client is current idle and not sending or
receiving data.

2 HTTP_STATUS_CONNECT The client is establishing a connection with the
server.

3 HTTP_STATUS_READ The client is reading data from the server.

4 HTTP_STATUS_WRITE The client is writing data to the server.

5 HTTP_STATUS_DISCONNECT The client is disconnecting from the server.

6 HTTP_STATUS_GETDATA The client is downloading data from the server.

7 HTTP_STATUS_PUTDATA The client is uploading data to the server.

8 HTTP_STATUS_POSTDATA The client is posting data to a script on the
server.

In a multithreaded application, any thread in the current process may call this function to obtain
status information for the specified client session. To obtain status information about a file transfer,
use the HttpGetTransferStatus function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
HttpIsBlocking, HttpIsReadable, HttpIsWritable, HttpGetTransferStatus

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetTaskError Function

DWORD WINAPI HttpGetTaskError(
 UINT nTaskId
);

Return the last error code for the specified asynchronous task.

Parameters
nTaskId

The task identifier.

Return Value
If the asynchronous task has completed successfully, this function returns a value of zero. A non-
zero return value indicates an error has occurred.

Remarks
The HttpGetTaskError function returns the last error code associated with the specified
asynchronous task. If the task completed successfully, the return value will be zero. If the task is still
active, the function will return the error ST_ERROR_TASK_ACTIVE. If the task has been suspended,
the function will return ST_ERROR_TASK_SUSPENDED. Any other value indicates that the task
completed, but the operation has failed and the error code will specify the cause of the failure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
HttpTaskAbort, HttpTaskResume, HttpTaskSuspend, HttpTaskWait

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetTaskId Function

UINT WINAPI HttpGetTaskId(
 HCLIENT hClient
);

Return the asynchronous task identifier associated with the client session.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is non-zero integer value that specifies a unique
asynchronous task identifier. If the client handle is not associated with an asynchronous task, the
function will return a value of zero.

Remarks
The HttpGetTaskId function will return the task ID that is associated with a client session. This is a
unique unsigned integer value that references the worker thread that was created to manage the
asynchronous client session. This function should only be called within an event handler that is
invoked by a background task that has been started using a function such as HttpAsyncGetFile.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
HttpTaskAbort, HttpTaskDone, HttpTaskResume, HttpTaskSuspend, HttpTaskWait

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetText Function

INT WINAPI HttpGetText(
 HCLIENT hClient,
 LPCTSTR lpszResource,
 LPTSTR lpszBuffer,
 INT nMaxLength
);

The HttpGetText function returns the contents of a text resource in a null-terminated string
buffer.

Parameters
hClient

Handle to the client session.

lpszResource

A pointer to a string that specifies the resource that will be transferred to the local system. This
may be the name of a file on the server, or it may specify the name of a script that will be
executed and the output returned to the caller. This string may specify a valid URL for the
current server that the client is connected to.

lpszBuffer

A pointer to a string buffer which will contain the contents of the text file when the function
returns. This buffer should be large enough to store the contents of the file, including a
terminating null character. This parameter cannot be NULL.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer. This value must be larger than zero. If this value is smaller than the actual size of
the text file, the data returned will be truncated.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is HTTP_ERROR. To get extended error information, call HttpGetLastError.

Remarks
The HttpGetText function is used to retrieve the contents of a text resource and return it in a null-
terminated string buffer. Because binary data can include embedded null characters which would
truncate the string, this function should only be used with text files or script output that is known
to be textual. For example, it is safe to use this function when a resource returns HTML or XML
data, but should not be used if it returns an image or executable file.

This function has been included as a convenience for applications that need to retrieve relatively
small amounts of textual data and manipulate the contents as a string. If the Unicode version of
this function is called, the text is automatically converted to a Unicode string. If the maximum
amount of data being returned is unknown or the amount of text is very large, it is recommended
that you use the HttpGetTextEx or HttpGetFile functions.

If the ANSI version of this function is called, the text returned will always be UTF-8 encoded. If you
need to return the text using a different code page, use the HttpGetTextEx function which will
allow you to specify a different code page used for the conversion.

If you use the HttpGetFileSize function to determine how large the string buffer should be prior

to calling this function, it is important to be aware that the actual number of characters may differ
based on the end-of-line conventions used by the host operating system. For example, if you call
HttpGetFileSize to obtain the size of a text file on a UNIX system, the value will not be large
enough to store the complete file because UNIX uses a single linefeed (LF) character to indicate
the end-of-line, while a Windows system will use a carriage-return and linefeed (CRLF) pair. To
accommodate this difference, you should always allocate extra memory for the string buffer to
store the additional end-of-line characters.

HTTP_EVENT_PROGRESS event will be periodically fired, enabling the application to update any
user interface controls. Event notification must be enabled, either by calling HttpEnableEvents, or
by registering a callback function using the HttpRegisterEvent function.

To determine the current status of a file transfer while it is in progress, use the
HttpGetTransferStatus function.

Example
LPTSTR lpszBuffer = (LPTSTR)calloc(MAXFILESIZE, sizeof(TCHAR));

if (lpszBuffer == NULL)
 return;

nResult = HttpGetText(hClient, lpszRemoteFile, lpszBuffer, MAXFILESIZE);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpGetData, HttpGetFile, HttpGetTextEx, HttpPutData, HttpPutFile, HttpRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetTextEx Function

INT WINAPI HttpGetTextEx(
 HCLIENT hClient,
 LPCTSTR lpszResource,
 LPVOID lpvBuffer,
 LPINT lpcchBuffer,
 UINT nCodePage,
 DWORD dwOptions
);

The HttpGetDataEx function requests the contents of text resource from the server and copies
the data to the specified buffer.

Parameters
hClient

Handle to the client session.

lpszResource

A pointer to a string that specifies the resource on the server. This may be the name of a file on
the server, or it may specify the name of a script that will be executed and the output returned
to the caller. This string may specify a valid URL for the current server.

lpvBuffer

A pointer to a null-terminated string buffer which will contain the text return by the server, or a
pointer to a global memory handle which will reference the text when the function returns. If
you are providing a pre-allocated string buffer, it must be large enough to store the terminating
null character.

lpcchBuffer

A pointer to an integer which should be initialized to the maximum number of characters which
can be copied to the string specified by the lpvBuffer parameter. If the lpvBuffer parameter
points to a global memory handle, the length value should be initialized to zero. When the
function returns, this value will be updated with the actual number of characters copied into the
string.

nCodePage

An unsigned integer that specifies the ANSI code page which should be used to convert the text
returned by the server. A value of zero specifies the default system code page should be used
with the conversion. See the remarks below for more information.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

HTTP_TRANSFER_DEFAULT The default transfer mode. The resource data is
downloaded to the local system exactly as it is stored
on the server. If you are requesting a text-based
resource, the data may use a different end-of-line
character sequence. For example, the end-of-line
character may be a single linefeed character instead of
a carriage return and linefeed pair.

HTTP_TRANSFER_CONVERT If the resource being downloaded from the server is
textual, the data is automatically converted so that the
end of line character sequence is compatible with the
Windows platform. Individual carriage return or
linefeed characters are converted to carriage
return/linefeed character sequences. This option is
enabled by default.

HTTP_TRANSFER_ERRORDATA This option causes the client to accept error data from
the server if the request fails. If this option is specified,
an error response from the server will not cause the
function to fail. Instead, the response is returned to
the client and the function will succeed. If this option is
used, your application should call
HttpGetResultCode to obtain the HTTP status code
returned by the server. This will enable you to
determine if the operation was successful.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is HTTP_ERROR. To get extended error information, call HttpGetLastError.

Remarks
The HttpGetTextEx function is used to retrieve the contents of a text resource and return it in a
null-terminated string buffer. Because binary data can include embedded null characters which
would truncate the string, this function should only be used with text files or script output that is
known to be textual. For example, it is safe to use this function when a resource returns HTML or
XML data, but should not be used if it returns an image or executable file. Attempting to use this
function to retrieve a resource which is not textual will result in an error.

This function may be used in one of two ways, depending on the needs of the application. The
first method is to pre-allocate a buffer large enough to store the contents of the file. In this case,
the lpvBuffer parameter will point to the buffer that was allocated and the value the lpcchBuffer
parameter points to should be initialized to the size of that buffer. The buffer must be large
enough to contain the entire response from the server, including a terminating null character to
indicate the end of the string. If the string buffer is too small, the function will fail.

The second approach is to have the lpvBuffer parameter point to a global memory handle which
will contain the text when the function returns. In this case, the value that the lpcchBuffer
parameter points to must be initialized to zero. It is important to note that the memory handle
returned by the function must be freed by the application, otherwise a memory leak will occur. See
the example code below.

Important: The lpcchBuffer parameter specifies the number of characters, not the number of
bytes. If the Unicode version of this function is called, the string buffer will contain Unicode text . If
the ANSI version of the function is called, the string will contain ANSI text using the code page
specified by the nCodePage parameter. When the function returns, the lpcchBuffer parameter will
contain the number of characters copied into the string buffer, not including the terminating null
character.

The nCodePage parameter is only meaningful when using the ANSI version of this function. If the
Unicode version of the function is called, this value of this parameter should always be either
CP_ACP or CP_UTF8. When the ANSI version of this function is called, the text returned by the

server will be automatically converted to the requested code page. For example, if you specify
CP_ACP as the code page and the server returns the text as UTF-8 encoded text, this function will
attempt to convert the text to the local system's default code page. If the conversion cannot be
performed, an the function will fail. This can occur if you use a code page which cannot represent
the all of the characters in the string. In most cases, it is recommended you use CP_UTF8 as the
code page.

This function will attempt to determine the encoding used based on the character set returned by
the server. If the character set used is not explicitly specified by the server, the function will try to
determine the character set based on the contents of the server response. The function will always
check if the text is UTF-8 encoded first, and then check if the text matches the default character set
used by the local system (e.g.: windows-1252 or iso-8859-1). The function will fail if it cannot
determine how the text should be converted to Unicode or the specified ANSI code page.

If you use the HttpGetFileSize function to determine how large the string buffer should be prior
to calling this function, it is important to be aware that the actual number of characters may differ
based on the end-of-line conventions and character encoding used by the host operating system.
For example, if you call HttpGetFileSize to obtain the size of a text file on a UNIX system, the
value will not be large enough to store the complete file because UNIX uses a single linefeed (LF)
character to indicate the end-of-line, while a Windows system will use a carriage-return and
linefeed (CRLF) pair. To accommodate this difference, you should always allocate extra memory
for the string buffer to store the additional end-of-line characters.

This function will cause the current thread to block until the file transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the HTTP_EVENT_PROGRESS event will be
periodically fired, enabling the application to update any user interface controls. Event notification
must be enabled, either by calling HttpEnableEvents, or by registering a callback function using
the HttpRegisterEvent function.

To determine the current status of a file transfer while it is in progress, use the
HttpGetTransferStatus function.

Example
HGLOBAL hgblBuffer = NULL;
DWORD cchBuffer = 0;

// Store the response in a block of global memory allocated by
// the GlobalAlloc function; the handle to this memory will be
// returned in the hgblBuffer parameter
nResult = HttpGetTextEx(hClient,
 lpszResource,
 &hgblBuffer,
 &cchBuffer,
 CP_UTF8,
 HTTP_TRANSFER_DEFAULT);

if (nResult != HTTP_ERROR)
{
 // Lock the global memory handle, returning a pointer to the
 // resource data
 LPTSTR lpszBuffer = (LPTSTR)GlobalLock(hgblBuffer);

 // After the data has been used, the handle must be unlocked
 // and freed, otherwise a memory leak will occur
 GlobalUnlock(hgblBuffer);
 GlobalFree(hgblBuffer);

}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpGetFile, HttpGetText, HttpPostJson, HttpPostXml HttpRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/http/library/httpostjson.html

 HttpGetThreadQueue Function

HQUEUE WINAPI HttpGetThreadQueue(
 DWORD dwThreadId
);

The HttpGetThreadQueue function returns a handle to the queue associated with the specified
thread.

Parameters
dwThreadId

An unsigned integer value which specifies a unique identifier for the queue manager thread. If
this value is zero, it will return the handle associated with the current thread.

Return Value
If the function succeeds, the return value is the handle to the queue. If the function fails, it will
return INVAID_QUEUE. To get extended error information, call HttpGetLastError.

Remarks
All queued file transfers are handled by a queue manager which executes asynchronously in a
background worker thread. This worker thread is created when the HttpStartQueue function is
called and terminates when all files in the queue have been processed, or when the
HttpStopQueue function is called. This function will return the queue handle associated with that
worker thread.

The most common use of this function would be to obtain the handle for the queue from within a
queue event handler. The application would pass in a value of zero as the thread ID and the
function will return the handle to the queue which invoked the event notification.

If you call this function outside of an event handler and the dwThreadId parameter is zero, or if
the queue is idle and not transferring files, this function will return INVALID_QUEUE. The thread ID
is only valid while the queue manager is actively processing files in the queue.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
HttpGetQueueStatus, HttpGetQueueThread, HttpStartQueue, HttpStopQueue

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetTimeout Function

INT WINAPI HttpGetTimeout(
 HCLIENT hClient
);

The HttpGetTimeout function returns the number of seconds the client will wait for a response
from the server. Once the specified number of seconds has elapsed, the function will fail and
return to the caller.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is the timeout period in seconds. If the function fails, the
return value is HTTP_ERROR. To get extended error information, call HttpGetLastError.

Remarks
The timeout value is only used with blocking client connections. A value of zero indicates that the
default timeout period of 20 seconds should be used.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
HttpConnect, HttpProxyConnect, HttpSetTimeout

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetTransferStatus Function

INT WINAPI HttpGetTransferStatus(
 HCLIENT hClient,
 LPHTTPTRANSFERSTATUS lpStatus
);

The HttpGetTransferStatus function returns information about the current data transfer in
progress.

Parameters
hClient

Handle to the client session.

lpStatus

A pointer to an HTTPTRANSFERSTATUS structure which contains information about the status
of the current data transfer.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
HTTP_ERROR. To get extended error information, call HttpGetLastError.

Remarks
The HttpGetTransferStatus function returns information about the current data transfer,
including the average number of bytes transferred per second and the estimated amount of time
until the transfer completes. If there is no data currently being transferred, this function will return
the status of the last successful transfer made by the client.

In a multithreaded application, any thread in the current process may call this function to obtain
status information for the specified client session.

If the option HTTP_OPTION_HIRES_TIMER has been specified when connecting to the server, the
values of the dwTimeElapsed and dwTimeEstimated members of the HTTPTRANSFERSTATUS
structure will be in milliseconds instead of seconds. You can use this option to obtain more
accurate elapsed times when uploading or downloading small amounts of data over a fast
network connection.

If you are uploading or downloading large files which exceed 4GB, you should use the
HttpGetTransferStatusEx function which returns the size as a 64-bit value.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

See Also
HttpEnableEvents, HttpGetTransferStatusEx, HttpRegisterEvent, HTTPTRANSFERSTATUS,
HTTPTRANSFERSTATUSEX

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetTransferStatusEx Function

INT WINAPI HttpGetTransferStatusEx(
 HCLIENT hClient,
 LPHTTPTRANSFERSTATUSEX lpStatus
);

The HttpGetTransferStatusEx function returns information about the current data transfer in
progress. This version of the function is designed to support files that are larger than 4GB.

Parameters
hClient

Handle to the client session.

lpStatus

A pointer to an HTTPTRANSFERSTATUSEX structure which contains information about the
status of the current data transfer.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
HTTP_ERROR. To get extended error information, call HttpGetLastError.

Remarks
The HttpGetTransferStatusEx function returns information about the current data transfer,
including the average number of bytes transferred per second and the estimated amount of time
until the transfer completes. If there is no data currently being transferred, this function will return
the status of the last successful transfer made by the client.

In a multithreaded application, any thread in the current process may call this function to obtain
status information for the specified client session.

If the option HTTP_OPTION_HIRES_TIMER has been specified when connecting to the server, the
values of the dwTimeElapsed and dwTimeEstimated members of the HTTPTRANSFERSTATUSEX
structure will be in milliseconds instead of seconds. You can use this option to obtain more
accurate elapsed times when uploading or downloading small amounts of data over a fast
network connection.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

See Also
HttpEnableEvents, HttpGetTransferStatus, HttpRegisterEvent, HTTPTRANSFERSTATUS,
HTTPTRANSFERSTATUSEX

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpInitialize Function

BOOL WINAPI HttpInitialize(
 LPCTSTR lpszLicenseKey,
 LPINITDATA lpData
);

The HttpInitialize function initializes the library and validates the specified license key at runtime.

Parameters
lpszLicenseKey

Pointer to a string that specifies the runtime license key to be validated. If this parameter is
NULL, the library will validate the development license installed on the local system.

lpData

Pointer to an INITDATA data structure. This parameter may be NULL if the initialization data for
the library is not required.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call HttpGetLastError. All other client functions will fail until a
license key has been successfully validated.

Remarks
This must be the first function that an application calls before using any of the other functions in
the library. When a NULL license key is specified, the library will only function on the development
system. Before redistributing the application to an end-user, you must insure that this function is
called with a valid license key.

If the lpData argument is specified, it must point to an INITDATA structure which has been
initialized by setting the dwSize member to the size of the structure. All other structure members
should be set to zero. If the function is successful, then the INITDATA structure will be filled with
identifying information about the library.

Although it is only required that HttpInitialize be called once for the current process, it may be
called multiple times; however, each call must be matched by a corresponding call to
HttpUninitialize.

This function dynamically loads other system libraries and allocates thread local storage. If you are
calling the functions in this library from within another DLL, it is important that you do not call the
HttpInitialize or HttpUninitialize functions from the DllMain function because it can result in
deadlocks or access violation errors. If the DLL is linked with the C runtime library (CRT), it will
automatically call the constructors and destructors for static and global C++ objects and has the
same restrictions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also

HttpConnect, HttpDisconnect, HttpProxyConnect, HttpUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpIsBlocking Function

BOOL WINAPI HttpIsBlocking(
 HCLIENT hClient
);

The HttpIsBlocking function is used to determine if the client is currently performing a blocking
operation.

Parameters
hClient

Handle to the client session.

Return Value
If the client is performing a blocking operation, the function returns a non-zero value. If the client
is not performing a blocking operation, or the client handle is invalid, the function returns zero.

Remarks
Because a blocking operation can allow the application to be re-entered (for example, by pressing
a button while the operation is being performed), it is possible that another blocking function may
be called while it is in progress. Since only one thread of execution may perform a blocking
operation at any one time, an error would occur. The HttpIsBlocking function can be used to
determine if the client is already blocked, and if so, take some other action (such as warning the
user that they must wait for the operation to complete).

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpCancel, HttpIsConnected, HttpIsReadable, HttpIsWritable, HttpRead, HttpWrite

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpIsConnected Function

BOOL WINAPI HttpIsConnected(
 HCLIENT hClient
);

The HttpIsConnected function is used to determine if the client is currently connected to a server.

Parameters
hClient

Handle to the client session.

Return Value
If the client is connected to a server, the function returns a non-zero value. If the client is not
connected, or the client handle is invalid, the function returns zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpIsBlocking, HttpIsReadable, HttpIsWritable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpIsReadable Function

BOOL WINAPI HttpIsReadable(
 HCLIENT hClient,
 INT nTimeout,
 LPDWORD lpdwAvail
);

The HttpIsReadable function is used to determine if data is available to be read from the server.

Parameters
hClient

Handle to the client session.

nTimeout

Timeout for server response, in seconds. A value of zero specifies that the connection should be
polled without blocking the current thread.

lpdwAvail

A pointer to an unsigned integer which will contain the number of bytes available to read. This
parameter may be NULL if this information is not required.

Return Value
If the client can read data from the server within the specified timeout period, the function returns
a non-zero value. If the client cannot read any data, the function returns zero.

Remarks
On some platforms, this value will not exceed the size of the receive buffer (typically 64K bytes).
Because of differences between TCP/IP stack implementations, it is not recommended that your
application exclusively depend on this value to determine the exact number of bytes available.
Instead, it should be used as a general indicator that there is data available to be read.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
HttpGetStatus, HttpIsBlocking, HttpIsConnected, HttpIsWritable, HttpRead

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpIsWritable Function

BOOL WINAPI HttpIsWritable(
 HCLIENT hClient,
 INT nTimeout
);

The HttpIsWritable function is used to determine if data can be written to the server.

Parameters
hClient

Handle to the client session.

nTimeout

Timeout for server response, in seconds. A value of zero specifies that the connection should be
polled without blocking the current thread.

Return Value
If the client can write data to the server within the specified timeout period, the function returns a
non-zero value. If the client cannot write any data, the function returns zero.

Remarks
Although this function can be used to determine if some amount of data can be sent to the
remote process it does not indicate the amount of data that can be written without blocking the
client. In most cases, it is recommended that large amounts of data be broken into smaller logical
blocks, typically some multiple of 512 bytes in length.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
HttpGetStatus, HttpIsBlocking, HttpIsConnected, HttpIsReadable, HttpWrite

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpOpenFile Function

INT WINAPI HttpOpenFile(
 HCLIENT hClient,
 LPCTSTR lpszFileName,
 DWORD dwOffset
);

The HttpOpenFile function opens the specified file on the server.

Parameters
hClient

Handle to the client session.

lpszFileName

Points to a string that specifies the name of the remote file to open.

dwOffset

Specifies a byte offset into the file. If this value is greater than zero, the server must support the
ability to specify a byte range with the request to open the file, otherwise this function will fail.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is HTTP_ERROR. To get extended error information, call HttpGetLastError.

Remarks
Only one file may be opened at a time for each client session. Use the HttpCloseFile function to
close the file on the server.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpCloseFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpOpenFileEx Function

INT WINAPI HttpOpenFileEx(
 HCLIENT hClient,
 LPCTSTR lpszFileName,
 ULARGE_INTEGER uiOffset
);

The HttpOpenFileEx function opens the specified file on the server. This version of the function is
designed to support files that are larger than 4GB.

Parameters
hClient

Handle to the client session.

lpszFileName

Points to a string that specifies the name of the remote file to open.

uiOffset

Specifies a byte offset into the file. If this value is greater than zero, the server must support the
ability to specify a byte range with the request to open the file, otherwise this function will fail.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is HTTP_ERROR. To get extended error information, call HttpGetLastError.

Remarks
Only one file may be opened at a time for each client session. Use the HttpCloseFile function to
close the file on the server.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpCloseFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpPatchData Function

INT WINAPI HttpPatchData(
 HCLIENT hClient,
 LPCTSTR lpszResource,
 LPCTSTR lpszPatchData,
 LPVOID lpvResult,
 LPDWORD lpcbResult,
 DWORD dwOptions
);

The HttpPatchData function submits patch data to the server and returns the result in a buffer
provided by the caller.

Parameters
hClient

Handle to the client session.

lpszResource

A pointer to a string that specifies the resource name that the patch data will be submitted to.
Typically this is the name of a script on the server.

lpszPatchData

A pointer to a string that specifies the patch data that will be submitted to the server.

lpvResult

A pointer to a byte buffer which will contain the data returned by the server, or a pointer to a
global memory handle which will reference the data when the function returns.

lpcbResult

A pointer to an unsigned integer which should be initialized to the maximum number of bytes
that can be copied to the buffer specified by the lpvResult parameter. If the lpvResult
parameter points to a global memory handle, the length value should be initialized to zero.
When the function returns, this value will be updated with the actual number of bytes of data
that was returned.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

HTTP_PATCH_DEFAULT The default post mode. The contents of the buffer will be
submitted without encoding. The data returned by the
server is copied to the result buffer exactly as it is returned
from the server.

HTTP_PATCH_CONVERT If the data being returned from the server is textual, it is
automatically converted so that the end of line character
sequence is compatible with the Windows platform.
Individual carriage return or linefeed characters are
converted to carriage return/linefeed character sequences.
Note that this option does not have any effect on the form
data being submitted to the server, only on the data

returned by the server.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is HTTP_ERROR. To get extended error information, call HttpGetLastError.

Remarks
The HttpPatchData function is used to submit XML or JSON formatted patch data to a service,
and then returns a copy of the response from the server into a local buffer. This function will not
perform any encoding and will not automatically define the type of patch data being submitted.
Your application is responsible for specifying the content type for the patch data, and ensuring
that the XML or JSON data that is being submitted to the server is formatted correctly.

This function sends a PATCH command to the server, which is similar to a POST or PUT request. It
is used to make partial updates to a resource, rather than creating or replacing it entirely. The
format of the patch data is specific to the service being used. If the resource being patched does
not exist, the behavior is defined by the server. If enough information is provided, it may choose to
create the resource just as if a PUT command was used, or it may return an error.

Your application should use the HttpSetRequestHeader function to define the Content-Type
header prior to calling the HttpPatchData function. One of the most common formats used is the
JSON Merge Patch which is defined in RFC 7396. The value for the Content-Type header for this
patch format is "application/merge-patch+json". Refer to your service API documentation to
determine what patch formats are acceptable, along with any additional header values that must
be defined.

The function may be used in one of two ways, depending on the needs of the application. The first
approach is to pre-allocate a buffer large enough to store the resulting output of the script. In this
case, the lpvResult parameter will point to the buffer that was allocated by the client and the value
that the lpcbResult parameter points to should be initialized to the size of that buffer.

The second approach is to have the lpvResult parameter point to a global memory handle which
will contain the data when the function returns. In this case, the value that the lpcbResult
parameter points to must be initialized to zero. It is important to note that the memory handle
returned by the function must be freed by the application, otherwise a memory leak will occur. See
the example code below.

This function will cause the current thread to block until the post completes, a timeout occurs or
the operation is canceled. During the transfer, the HTTP_EVENT_PROGRESS event will be
periodically fired, enabling the application to update any user interface controls. Event notification
can be enabled by registering a callback function using the HttpRegisterEvent function.

To determine the current status of the transaction while it is in progress, use the
HttpGetTransferStatus function.

Example
HGLOBAL hgblBuffer = (HGLOBAL)NULL;
LPBYTE lpBuffer = (LPBYTE)NULL;
DWORD cbBuffer = 0;

// Store the script output into block of global memory allocated by
// the GlobalAlloc function; the handle to this memory will be
// returned in the hgblBuffer parameter. Since the output from the
// script is textual, the HTTP_PATCH_CONVERT option is used

nResult = HttpPatchData(hClient,
 lpszResource,
 lpszPatchData,
 &hgblBuffer,
 &cbBuffer,
 HTTP_PATCH_CONVERT);

if (nResult != HTTP_ERROR)
{
 // Lock the global memory handle, returning a pointer to the
 // output data from the script
 lpBuffer = (LPBYTE)GlobalLock(hgblBuffer);

 // After the data has been used, the handle must be unlocked
 // and freed, otherwise a memory leak will occur
 GlobalUnlock(hgblBuffer);
 GlobalFree(hgblBuffer);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpGetData, HttpGetTransferStatus, HttpPostData, HttpPostJson, HttpPostXml, HttpRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpPostData Function

INT WINAPI HttpPostData(
 HCLIENT hClient,
 LPCTSTR lpszResource,
 LPCVOID lpvBuffer,
 DWORD cbBuffer,
 LPVOID lpvResult,
 LPDWORD lpcbResult,
 DWORD dwOptions
);

The HttpPostData function submits the contents of the specified buffer to a script on the server
and returns the result in a buffer provided by the caller.

Parameters
hClient

Handle to the client session.

lpszResource

A pointer to a string that specifies the resource that the data will be posted to on the server.
Typically this is the name of a script that will be executed. This string may specify a valid URL for
the current server that the client is connected to.

lpvBuffer

A pointer to the data that will be provided to the script. This parameter may be NULL if the
script does not require any additional data from the client.

cbBuffer

The number of bytes to copy from the buffer. If this lpvBuffer parameter is NULL, this value
should be zero.

lpvResult

A pointer to a byte buffer which will contain the data returned by the server, or a pointer to a
global memory handle which will reference the data when the function returns.

lpcbResult

A pointer to an unsigned integer which should be initialized to the maximum number of bytes
that can be copied to the buffer specified by the lpvBuffer parameter. If the lpvResult
parameter points to a global memory handle, the length value should be initialized to zero.
When the function returns, this value will be updated with the actual number of bytes of data
that was returned.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

HTTP_POST_DEFAULT The default post mode. The contents of the buffer are
encoded and sent as standard form data. The data
returned by the server is copied to the result buffer exactly
as it is returned from the server.

HTTP_POST_CONVERT If the data being returned from the server is textual, it is

automatically converted so that the end of line character
sequence is compatible with the Windows platform.
Individual carriage return or linefeed characters are
converted to carriage return/linefeed character sequences.
Note that this option does not have any effect on the form
data being submitted to the server, only on the data
returned by the server.

HTTP_POST_MULTIPART The contents of the buffer being sent to the server consists
of multipart form data and will be sent as-is without any
encoding.

HTTP_POST_ERRORDATA This option causes the client to accept error data from the
server if the request fails. If this option is specified, an error
response from the server will not cause the function to fail.
Instead, the response is returned to the client and the
function will succeed.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is HTTP_ERROR. To get extended error information, call HttpGetLastError.

Remarks
The HttpPostData function is used to submit data to a script that executes on the server and then
copy the output from that script into a local buffer. If you are submitting XML or JSON formatted
data to the server, it is recommended that you use the HttpPostXml or HttpPostJson functions
instead to ensure that the correct content type and encoding is automatically selected.

The function may be used in one of two ways, depending on the needs of the application. The first
method is to pre-allocate a buffer large enough to store the resulting output of the script. In this
case, the lpvResult parameter will point to the buffer that was allocated by the client and the value
that the lpcbResult parameter points to should be initialized to the size of that buffer.

The second method that can be used is have the lpvResult parameter point to a global memory
handle which will contain the data when the function returns. In this case, the value that the
lpcbResult parameter points to must be initialized to zero. It is important to note that the memory
handle returned by the function must be freed by the application, otherwise a memory leak will
occur. See the example code below.

It is common for servers to return additional information about a failed request in their response
to the client. If you need to process this information, use the HTTP_POST_ERRORDATA option
which causes the error message to be returned in the lpvResult buffer provided by the caller. If
this option is used, your application should call HttpGetResultCode to obtain the HTTP status
code returned by the server. This will enable you to determine if the operation was successful.

This function will cause the current thread to block until the post completes, a timeout occurs or
the operation is canceled. During the transfer, the HTTP_EVENT_PROGRESS event will be
periodically fired, enabling the application to update any user interface controls. Event notification
can be enabled by registering a callback function using the HttpRegisterEvent function.

To determine the current status of the transaction while it is in progress, use the
HttpGetTransferStatus function.

Example

HGLOBAL hgblBuffer = (HGLOBAL)NULL;
LPBYTE lpBuffer = (LPBYTE)NULL;
DWORD cbBuffer = 0;

// Store the response in block of global memory allocated by
// the GlobalAlloc function; the handle to this memory will be
// returned in the hgblBuffer parameter. Since the output from the
// script is textual, the HTTP_POST_CONVERT option is used

nResult = HttpPostData(hClient,
 lpszResource,
 lpParameters,
 cbParameters,
 &hgblBuffer,
 &cbBuffer,
 HTTP_POST_CONVERT);

if (nResult != HTTP_ERROR)
{
 // Lock the global memory handle, returning a pointer to the
 // output data from the script
 lpBuffer = (LPBYTE)GlobalLock(hgblBuffer);

 // After the data has been used, the handle must be unlocked
 // and freed, otherwise a memory leak will occur
 GlobalUnlock(hgblBuffer);
 GlobalFree(hgblBuffer);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpGetData, HttpGetTransferStatus, HttpPostJson, HttpPostXml, HttpPutData, HttpRegisterEvent,
HttpSubmitRequest

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpPostFile Function

INT WINAPI HttpPostFile(
 HCLIENT hClient,
 LPCTSTR lpszFileName,
 LPCTSTR lpszResource,
 LPCTSTR lpszFieldName,
 DWORD dwOptions,
 DWORD dwReserved
);

The HttpPostFile function posts the contents of the specified file to a script executed on the
server.

Parameters
hClient

Handle to the client session.

lpszFileName

A pointer to a string that specifies the file that will be transferred from the local system. The file
pathing and name conventions must be that of the local host.

lpszResource

A pointer to a string that specifies the resource on the server that the file data will be posted to.
Typically this is the name of a script that is responsible for processing and storing the file data.

lpszFieldName

A pointer to a string that corresponds to the form field name that the script expects. If this
parameter is NULL or an empty string, a default field name of "File1" is used.

dwOptions

An unsigned integer that specifies one or more options. This parameter may be any one of the
following values:

Constant Description

HTTP_TRANSFER_DEFAULT This option specifies the default transfer mode should be
used. If the remote file exists, it will be overwritten with
the contents of the uploaded file.

dwReserved

A reserved parameter. This value should always be zero.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is HTTP_ERROR. To get extended error information, call HttpGetLastError.

Remarks
The HttpPostFile function is similar to the HttpPutFile function in that it can be used to upload
the contents of a local file to a server. However, instead of using the PUT command, the POST
command is used to send the file data to a script that is executed on the server. This method has
the advantage of not requiring any special configuration settings on the server, however it does
require that the script be able to process multipart/form-data as defined in RFC 2388.

To support uploading files from a form on a webpage, the FILE input type is used along with the

action that specifies the script that will accept the file data and process it. For example, the HTML
code could look like this:

<form action="/cgi-bin/upload.cgi" method="post" enctype="multipart/form-
data">
<input type="file" name="datafile" size="20">
<input type="submit">
</form>

In this example, the script /cgi-bin/upload.cgi is responsible for processing the file data that is
posted by the client, and the form field name "datafile" is used. The user can select a file, and
when the Submit button is clicked, the file data is posted to the script. To simulate this using the
HttpPostFile function, the lpszFileName parameter should be set to the name of the local file
that will be posted to the server. The lpszResource parameter should be the name of the script, in
this case "/cgi-bin/upload.cgi". The lpszFieldName parameter should be specified as the string
"datafile" to match the name of the field used by the form.

Note that the HttpPostFile function always submits the file contents as multipart/form-data with
the content type set to application/octet-stream. The script that accepts the posted data must be
able to parse the multipart header block and correctly process 8-bit data. If the script assumes that
the data will be posted using a specific encoding type such as base64 then the file data may not
be accepted or may be corrupted by the script.

This function will cause the current thread to block until the file transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the HTTP_EVENT_PROGRESS event will be
periodically fired, enabling the application to update any user interface controls. Event notification
must be enabled, either by calling HttpEnableEvents, or by registering a callback function using
the HttpRegisterEvent function.

To determine the current status of a file transfer while it is in progress, use the
HttpGetTransferStatus function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpEnableEvents, HttpGetData, HttpGetFile, HttpGetTransferStatus, HttpPostData, HttpPutData,
HttpPutFile, HttpRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpPostJson Function

INT WINAPI HttpPostJson(
 HCLIENT hClient,
 LPCTSTR lpszResource,
 LPCTSTR lpszJsonData,
 LPVOID lpvResult,
 LPDWORD lpcbResult,
 DWORD dwOptions
);

The HttpPostJson function submits JSON formatted data to the server and returns the result in a
buffer provided by the caller.

Parameters
hClient

Handle to the client session.

lpszResource

A pointer to a string that specifies the resource name that the JSON data will be submitted to.
Typically this is the name of a script on the server.

lpszJsonData

A pointer to a string that specifies the JSON data that will be submitted to the server.

lpvResult

A pointer to a byte buffer which will contain the data returned by the server, or a pointer to a
global memory handle which will reference the data when the function returns.

lpcbResult

A pointer to an unsigned integer which should be initialized to the maximum number of bytes
that can be copied to the buffer specified by the lpvResult parameter. If the lpvResult
parameter points to a global memory handle, the length value should be initialized to zero.
When the function returns, this value will be updated with the actual number of bytes of data
that was returned.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

HTTP_POST_DEFAULT The default post mode. The contents of the buffer will be
submitted without encoding and should use the standard
JSON format. The data returned by the server is copied to
the result buffer exactly as it is returned from the server.

HTTP_POST_CONVERT If the data being returned from the server is textual, it is
automatically converted so that the end of line character
sequence is compatible with the Windows platform.
Individual carriage return or linefeed characters are
converted to carriage return/linefeed character sequences.
Note that this option does not have any effect on the form
data being submitted to the server, only on the data

returned by the server.

HTTP_POST_ERRORDATA This option causes the client to accept error data from the
server if the request fails. If this option is specified, an error
response from the server will not cause the function to fail.
Instead, the response is returned to the client and the
function will succeed.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is HTTP_ERROR. To get extended error information, call HttpGetLastError.

Remarks
The HttpPostJson function is used to submit JSON formatted data to a script that executes on the
server and then copy the output from that script into a local buffer. This function automatically
sets the correct content type and encoding required for submitting JSON data to a server,
however it does not parse the JSON data itself to ensure that it is well-formed. Your application is
responsible for ensuring that the JSON data that is being submitted to the server is formatted
correctly.

The function may be used in one of two ways, depending on the needs of the application. The first
method is to pre-allocate a buffer large enough to store the resulting output of the script. In this
case, the lpvResult parameter will point to the buffer that was allocated by the client and the value
that the lpcbResult parameter points to should be initialized to the size of that buffer.

The second method that can be used is have the lpvResult parameter point to a global memory
handle which will contain the data when the function returns. In this case, the value that the
lpcbResult parameter points to must be initialized to zero. It is important to note that the memory
handle returned by the function must be freed by the application, otherwise a memory leak will
occur. See the example code below.

If the content type for the request has not been explicitly specified, it will be automatically updated
by this function to use the "application/json" content type. You can override the default content
type for the request by calling the HttpSetRequestHeader function prior to calling this function.
Most servers require you to explicitly specify what type of data is being submitted by the client and
will reject requests which do not correctly identify the content type.

It is common for servers to return additional information about a failed request in their response
to the client. If you need to process this information, use the HTTP_POST_ERRORDATA option
which causes the error message to be returned in the lpvResult buffer provided by the caller. If
this option is used, your application should call HttpGetResultCode to obtain the HTTP status
code returned by the server. This will enable you to determine if the operation was successful.

This function will cause the current thread to block until the post completes, a timeout occurs or
the operation is canceled. During the transfer, the HTTP_EVENT_PROGRESS event will be
periodically fired, enabling the application to update any user interface controls. Event notification
can be enabled by registering a callback function using the HttpRegisterEvent function.

To determine the current status of the transaction while it is in progress, use the
HttpGetTransferStatus function.

Example
HGLOBAL hgblBuffer = (HGLOBAL)NULL;
LPBYTE lpBuffer = (LPBYTE)NULL;
DWORD cbBuffer = 0;

// Store the response in a block of global memory allocated by
// the GlobalAlloc function; the handle to this memory will be
// returned in the hgblBuffer parameter. Since the output from the
// script is textual, the HTTP_POST_CONVERT option is used

nResult = HttpPostJson(hClient,
 lpszResource,
 lpszJsonData,
 &hgblBuffer,
 &cbBuffer,
 HTTP_POST_CONVERT);

if (nResult != HTTP_ERROR)
{
 // Lock the global memory handle, returning a pointer to the
 // output data from the script
 lpBuffer = (LPBYTE)GlobalLock(hgblBuffer);

 // After the data has been used, the handle must be unlocked
 // and freed, otherwise a memory leak will occur
 GlobalUnlock(hgblBuffer);
 GlobalFree(hgblBuffer);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpGetData, HttpGetTransferStatus, HttpPatchData, HttpPostData, HttpPostXml, HttpPutData,
HttpRegisterEvent, HttpSubmitRequest

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpPostXml Function

INT WINAPI HttpPostXml(
 HCLIENT hClient,
 LPCTSTR lpszResource,
 LPCTSTR lpszXmlData,
 LPVOID lpvResult,
 LPDWORD lpcbResult,
 DWORD dwOptions
);

The HttpPostXml function submits XML formatted data to the server and returns the result in a
buffer provided by the caller.

Parameters
hClient

Handle to the client session.

lpszResource

A pointer to a string that specifies the resource name that the XML data will be submitted to.
Typically this is the name of a script on the server.

lpszXmlData

A pointer to a string that specifies the XML data that will be submitted to the server.

lpvResult

A pointer to a byte buffer which will contain the data returned by the server, or a pointer to a
global memory handle which will reference the data when the function returns.

lpcbResult

A pointer to an unsigned integer which should be initialized to the maximum number of bytes
that can be copied to the buffer specified by the lpvResult parameter. If the lpvResult
parameter points to a global memory handle, the length value should be initialized to zero.
When the function returns, this value will be updated with the actual number of bytes of data
that was returned.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

HTTP_POST_DEFAULT The default post mode. The contents of the buffer will be
submitted without encoding and should use the standard
XML format. The data returned by the server is copied to
the result buffer exactly as it is returned from the server.

HTTP_POST_CONVERT If the data being returned from the server is textual, it is
automatically converted so that the end of line character
sequence is compatible with the Windows platform.
Individual carriage return or linefeed characters are
converted to carriage return/linefeed character sequences.
Note that this option does not have any effect on the form
data being submitted to the server, only on the data

returned by the server.

HTTP_POST_ERRORDATA This option causes the client to accept error data from the
server if the request fails. If this option is specified, an error
response from the server will not cause the function to fail.
Instead, the response is returned to the client and the
function will succeed.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is HTTP_ERROR. To get extended error information, call HttpGetLastError.

Remarks
The HttpPostXml function is used to submit XML formatted data to a script that executes on the
server and then copy the output from that script into a local buffer. This function automatically
sets the correct content type and encoding required for submitting XML data to a server, however
it does not parse the XML data itself to ensure that it is well-formed. Your application is
responsible for ensuring that the XML data that is being submitted to the server is formatted
correctly.

The function may be used in one of two ways, depending on the needs of the application. The first
method is to pre-allocate a buffer large enough to store the resulting output of the script. In this
case, the lpvResult parameter will point to the buffer that was allocated by the client and the value
that the lpcbResult parameter points to should be initialized to the size of that buffer.

The second method that can be used is have the lpvResult parameter point to a global memory
handle which will contain the data when the function returns. In this case, the value that the
lpcbResult parameter points to must be initialized to zero. It is important to note that the memory
handle returned by the function must be freed by the application, otherwise a memory leak will
occur. See the example code below.

If the content type for the request has not been explicitly specified, it will be automatically updated
by this function to use the "text/xml" content type. You can override the default content type for
the request by calling the HttpSetRequestHeader function prior to calling this function. Most
servers require you to explicitly specify what type of data is being submitted by the client and will
reject requests which do not correctly identify the content type.

It is common for servers to return additional information about a failed request in their response
to the client. If you need to process this information, use the HTTP_POST_ERRORDATA option
which causes the error message to be returned in the lpvResult buffer provided by the caller. If
this option is used, your application should call HttpGetResultCode to obtain the HTTP status
code returned by the server. This will enable you to determine if the operation was successful.

This function will cause the current thread to block until the post completes, a timeout occurs or
the operation is canceled. During the transfer, the HTTP_EVENT_PROGRESS event will be
periodically fired, enabling the application to update any user interface controls. Event notification
can be enabled by registering a callback function using the HttpRegisterEvent function.

To determine the current status of the transaction while it is in progress, use the
HttpGetTransferStatus function.

Example
HGLOBAL hgblBuffer = (HGLOBAL)NULL;
LPBYTE lpBuffer = (LPBYTE)NULL;
DWORD cbBuffer = 0;

// Store the response in a block of global memory allocated by
// the GlobalAlloc function; the handle to this memory will be
// returned in the hgblBuffer parameter. Since the output from the
// script is textual, the HTTP_POST_CONVERT option is used

nResult = HttpPostXml(hClient,
 lpszResource,
 lpszXmlData,
 &hgblBuffer,
 &cbBuffer,
 HTTP_POST_CONVERT);

if (nResult != HTTP_ERROR)
{
 // Lock the global memory handle, returning a pointer to the
 // output data from the script
 lpBuffer = (LPBYTE)GlobalLock(hgblBuffer);

 // After the data has been used, the handle must be unlocked
 // and freed, otherwise a memory leak will occur
 GlobalUnlock(hgblBuffer);
 GlobalFree(hgblBuffer);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpGetData, HttpGetTransferStatus, HttpPatchData, HttpPostData, HttpPostJson, HttpPutData,
HttpRegisterEvent, HttpSubmitRequest

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpProxyConnect Function

HCLIENT WINAPI HttpProxyConnect(
 UINT nProxyType,
 LPCTSTR lpszProxyHost,
 UINT nProxyPort,
 LPCTSTR lpszProxyUser,
 LPCTSTR lpszProxyPassword,
 LPCTSTR lpszRemoteHost,
 UINT nRemotePort,
 UINT nTimeout,
 DWORD dwOptions,
 DWORD dwVersion,
 LPSECURITYCREDENTIALS lpCredentials
);

The HttpProxyConnect function is used to establish a connection through a proxy server.

Parameters
nProxyType

An unsigned integer which specifies the type of proxy that the client is connecting to. The
supported proxy server types are as follows:

Constant Description

HTTP_PROXY_NONE A direct connection will be established with the server.
When this value is specified the proxy parameters are
ignored.

HTTP_PROXY_STANDARD A standard connection is established through the specified
proxy server, and all resource requests will be specified
using a complete URL. This proxy type should be used with
standard connections.

HTTP_PROXY_SECURE A secure connection is established through the specified
proxy server. This proxy type should be used with secure
connections and the HTTP_OPTION_SECURE option should
also be set via the dwOptions parameter.

HTTP_PROXY_WINDOWS The configuration options for the current system should be
used. If the system is configured to use a proxy server, then
the connection will be automatically established through
that proxy; otherwise, a direct connection to the server is
established. These settings are the same proxy server
settings configured in Windows.

lpszProxyHost

A pointer to a string which specifies the proxy server host name or IP address. This argument is
ignored if the proxy type is set to HTTP_PROXY_NONE or HTTP_PROXY_WINDOWS and no
proxy configuration has been specified for the local system.

nProxyPort

The port number that the proxy server is listening for connections on. A value of zero specifies
that the default port number 80 should be used. Note that in most cases, a proxy server is not

configured to use the default port. This argument is ignored if the proxy type is set to
HTTP_PROXY_NONE or HTTP_PROXY_WINDOWS and no proxy configuration has been
specified for the local system.

lpszProxyUser

A pointer to a string which specifies the user name that will be used to authenticate the client
session to the proxy server. If the server does not require user authentication, then a NULL
pointer may be passed in this argument.

lpszProxyPassword

A pointer to a string which specifies the password that will be used to authenticate the client
session to the proxy server. If the server does not require user authentication, then a NULL
pointer may be passed in this argument.

lpszRemoteHost

A pointer to a string which specifies the name of the server to connect to through the proxy
server. This may be a fully-qualified domain name or an IP address.

nRemotePort

The port number the server is listening on. A value of zero specifies that the default port
number 80 should be used. For standard connections, the default port number is 80. For secure
connections, the default port number is 443.

nTimeout

The number of seconds that the client will wait for a response from the server before failing the
current operation.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

HTTP_OPTION_NOCACHE This instructs the server to not return a cached
copy of the resource. When connected to an
HTTP 1.0 or earlier server, this directive may be
ignored.

HTTP_OPTION_KEEPALIVE This instructs the server to maintain a persistent
connection between requests. This can improve
performance because it eliminates the need to
establish a separate connection for each resource
that is requested.

HTTP_OPTION_REDIRECT This option specifies the client should
automatically handle resource redirection. If the
server indicates that the requested resource has
moved to a new location, the client will close the
current connection and request the resource from
the new location. Note that it is possible that the
redirected resource will be located on a different
server.

HTTP_OPTION_ERRORDATA This option specifies the client should return the
content of an error response from the server,
rather than returning an error code. Note that this

option will disable automatic resource redirection,
and should not be used with
HTTP_OPTION_REDIRECT.

HTTP_OPTION_NOUSERAGENT This option specifies the client should not include
a User-Agent header with any requests made
during the session. The user agent is a string
which is used to identify the client application to
the server. An application can provide its own
custom user agent value using the
HttpSetRequestHeader function.

HTTP_OPTION_HTTP2 This option specifies the client should attempt a
HTTP/2 connection with the server. If a
connection cannot be established using HTTP/2
the client will attempt to connect using an earlier
version of the protocol. The value of the
dwVersion parameter will be ignored when this
option is used.

HTTP_OPTION_TUNNEL This option specifies that a tunneled TCP
connection and/or port-forwarding is being used
to establish the connection to the server. This
changes the behavior of the client with regards to
internal checks of the destination IP address and
remote port number, default capability selection
and how the connection is established.

HTTP_OPTION_TRUSTEDSITE This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option
only affects connections using either the SSL or
TLS protocols.

HTTP_OPTION_SECURE This option specifies the client should attempt to
establish a secure connection with the server.
Note that the server must support secure
connections using either the SSL or TLS protocol.
The client will default to using TLS 1.2 or later for
secure connections.

HTTP_OPTION_SECURE_FALLBACK This option specifies the client should permit the
use of less secure cipher suites for compatibility
with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

HTTP_OPTION_PREFER_IPV6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be resolved
to both an IPv6 and IPv4 address. This option is
ignored if the local system does not have IPv6
enabled, or when the hostname can only be
resolved to an IPv4 address. If the server
hostname can only be resolved to an IPv6

address, the client will attempt to establish a
connection using IPv6 regardless if this option has
been specified.

HTTP_OPTION_FREETHREAD This option specifies the handle returned by this
function may be used by any thread, and is not
limited to the thread which created it. The
application is responsible for ensuring that access
to the handle is synchronized across multiple
threads.

HTTP_OPTION_HIRES_TIMER This option specifies the elapsed time for data
transfers should be returned in milliseconds
instead of seconds. This will return more accurate
transfer times for smaller amounts of data over
fast network connections.

dwVersion

The requested protocol version used when sending requests to the server. The high word
should specify the major version, and the low word should specify the minor version number.
The HTTPVERSION macro can be used to create a version value and the following values are
defined:

Constant Description

HTTP_VERSION_DEFAULT The client should use the default protocol version for this
session. This is the same as specifying HTTP_VERSION_11
and is recommended to ensure the broadest compatibility
with most servers.

HTTP_VERSION_09 The client should use the original one-line protocol which
includes no version number and no request header block.
This version has been deprecated and should only be used
with legacy servers which do not support the protocol
standard. This version of the protocol does not support
virtual hosts and is not supported by most modern web
services.

HTTP_VERSION_10 The client should use the HTTP/1.0 protocol standard
originally defined in RFC 1945. This version of the protocol
supports the use of request header blocks, however it does
not support persistent connections or chunked data and
has limited cache control mechanisms.

HTTP_VERSION_11 The client should use the HTTP/1.1 protocol standard
defined in RFC 2616 and RFC 7230. This is the most widely
used version of the protocol and is the default for client
connections. It is recommended most applications use this
version.

HTTP_VERSION_20 The client should use the HTTP/2 protocol standard
defined in RFC 7540. This protocol version is a significant
change from previous versions and can provide improved
performance with header compression and optimizing how

requests are serviced. If the client or server does not
support HTTP/2, the client will automatically attempt to use
an earlier version of the protocol.

lpCredentials

Pointer to credentials structure SECURITYCREDENTIALS. This parameter is only used if the
HTTP_OPTION_SECURE option is specified for the connection. This parameter may be NULL, in
which case no client credentials will be provided to the server. If client credentials are required,
the fields dwSize, lpszCertStore, and lpszCertName must be defined, while other fields may be
left undefined. Set dwSize to the size of the SECURITYCREDENTIALS structure.

Return Value
If the function succeeds, the return value is a handle to the client session. If the function fails, the
return value is INVALID_CLIENT. To get extended error information, call HttpGetLastError.

Remarks
This function will block the current thread until a connection has been established or the timeout
period has elapsed. To prevent it from blocking the main user interface thread, the application
should create a background worker thread and establish a connection by calling
HttpProxyConnect in that thread. If the application requires multiple simultaneous connections, it
is recommended you create a worker thread for each connection.

If the HTTP_PROXY_WINDOWS proxy type is specified, then the proxy configuration for the local
system is used. If no proxy server has been defined, then the proxy-related parameters will be
ignored and the function will establish a connection directly to the server.

The username and password information is only used when connecting to a server which supports
version 1.1 or later of the protocol.

The dwOptions argument can be used to specify the threading model that is used by the library
when a connection is established. By default, the handle is initially attached to the thread that
created it. From that point on, until the it is released, only the owner may call functions using that
handle. The ownership of the handle may be transferred from one thread to another using the
HttpAttachThread function.

Specifying the HTTP_OPTION_FREETHREAD option enables any thread to call any function using
the handle, regardless of which thread created it. It is important to note that this option disables
certain internal safety checks which are performed by the library and may result in unexpected
behavior unless access to the handle is synchronized. If one thread calls a function in the library, it
must ensure that no other thread will call another function at the same time using the same
handle.

If the HTTP_OPTION_KEEPALIVE option is specified and the server does not support persistent
connections, the client will automatically reconnect when each resource is requested. Although it
will not provide any performance benefits, this allows the option to be used with all servers. This
option is automatically enabled when using HTTP/2.

Applications should use HTTP_VERSION_DEFAULT as the value for the dwVersion parameter. This
will default to an appropriate version for the Windows platform and ensures the broadest
compatibility with most servers. If your application specifies HTTP_VERSION_20, a secure
connection using TLS 1.2 will always be used. The minimum required platform for HTTP/2.0
support is Windows 10 (Version 1903) or Windows Server 2019. Earlier versions of the Schannel
SSP do not support the features required for a secure HTTP/2 connection.

If your application requests a HTTP/2 connection and the server only accepts earlier versions of

the protocol, the client will attempt to automatically downgrade the request to HTTP/1.1. If a
connection using an earlier version of the protocol cannot be established, the function will fail and
return INVALID_CLIENT.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpConnect, HttpConnectUrl, HttpDisconnect, HttpInitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpPutData Function

INT WINAPI HttpPutData(
 HCLIENT hClient,
 LPCTSTR lpszRemoteFile,
 LPCVOID lpvBuffer,
 DWORD dwLength,
 DWORD dwReserved
);

The HttpPutData function copies the contents of the specified buffer and stores it in a file on the
server.

Parameters
hClient

Handle to the client session.

lpszRemoteFile

A pointer to a string that specifies the file on the server that will be created. This string may
specify a valid URL for the current server that the client is connected to.

lpvBuffer

A pointer to a buffer which will contain the data to be transferred from the client and stored in a
file on the server.

dwLength

The number of bytes to copy from the buffer.

dwReserved

A reserved parameter. This value should always be zero.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is HTTP_ERROR. To get extended error information, call HttpGetLastError.

Remarks
The HttpPutData function is used to store the contents of the specified buffer in a file on the
server. Not all servers permit files to be created using this method, and some may require that
specific configuration changes be made to the server in order to support this functionality. Consult
your server's technical reference documentation to see if it supports the PUT command, and if so,
what must be done to enable it. It may be required that the client authenticate itself using the
HttpAuthenticate function prior to uploading the data.

This function is designed for uploading the contents of a buffer to be stored as a file on the server.
If you need to use the PUT command to as part of a RESTful API where the PUT command is used
to submit data to the server, use the HttpPutDataEx function. That function will return the success
or failure responses back to the client.

This function will cause the current thread to block until the file transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the HTTP_EVENT_PROGRESS event will be
periodically fired, enabling the application to update any user interface controls. Event notification
must be enabled, either by calling HttpEnableEvents, or by registering a callback function using
the HttpRegisterEvent function.

To determine the current status of a transfer while it is in progress, use the

HttpGetTransferStatus function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpEnableEvents, HttpGetData, HttpGetFile, HttpGetTransferStatus, HttpPostData, HttpPutDataEx,
HttpPutFile, HttpRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpPutDataEx Function

INT WINAPI HttpPutDataEx(
 HCLIENT hClient,
 LPCTSTR lpszResource,
 LPCVOID lpvBuffer,
 DWORD cbBuffer,
 LPVOID lpvResult,
 LPDWORD lpcbResult,
 DWORD dwOptions
);

The HttpPutDataEx function submits the contents of the specified buffer to the server using the
PUT command and returns the server's response to the command.

Parameters
hClient

Handle to the client session.

lpszResource

A pointer to a string which specifies the resource path on the server. This string may specify a
valid URL for the current server that the client is connected to.

lpvBuffer

A pointer to a buffer which will contain the data to be transferred from the client and submitted
to the server. This parameter may not be NULL.

cbBuffer

The number of bytes to copy from the buffer. This value must be larger than zero.

lpvResult

A pointer to a byte buffer which will contain the data returned by the server, or a pointer to a
global memory handle which will reference the data when the function returns.

lpcbResult

A pointer to an unsigned integer which should be initialized to the maximum number of bytes
that can be copied to the buffer specified by the lpvResult parameter. If the lpvResult
parameter points to a global memory handle, the length value should be initialized to zero.
When the function returns, this value will be updated with the actual number of bytes of data
that was returned.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

HTTP_PUT_DEFAULT The default mode. The contents of the buffer are sent
unmodified and the data returned by the server is copied to
the result buffer exactly as it is returned from the server. This
option should be used if the server is expected to return
binary data in the response to the PUT request.

HTTP_PUT_CONVERT If the data being returned from the server is textual, it is
automatically converted so that the end of line character

sequence is compatible with the Windows platform.
Individual carriage return or linefeed characters are
converted to carriage return/linefeed character sequences.
Note that this option does not have any effect on the data
being submitted to the server, only on the data returned by
the server.

HTTP_PUT_ERRORDATA This option causes the client to accept error data from the
server if the request fails. If this option is specified, an error
response from the server will not cause the function to fail.
Instead, the response is returned to the client and the
function will succeed.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is HTTP_ERROR. To get extended error information, call HttpGetLastError.

Remarks
The HttpPutDataEx function is used to submit data to the server using the PUT command. This is
typically used with RESTful APIs and is similar in functionality to the POST command. However, the
data that is submitted will be sent to the server as-is and will not be encoded.

The function may be used in one of two ways, depending on the needs of the application. The first
method is to pre-allocate a buffer large enough to store the response from the server. In this case,
the lpvResult parameter will point to the buffer allocated by the client and the value that the
lpcbResult parameter points to should be initialized to the size of that buffer.

The second method is to have the lpvResult parameter point to a global memory handle which
will reference the data when the function returns. In this case, the value that the lpcbResult
parameter points to must be initialized to zero. It is important to note that the memory handle
returned by the function must be freed by the application, otherwise a memory leak will occur.

If the Unicode version of this function is called and the server returns a text response to the PUT
request, it is the application's responsibility to convert the contents of the lpvResult buffer to UTF-
16 text. If the server returns text, most likely it will use UTF-8 encoding.

If the content type for the request has not been explicitly specified, it will be automatically updated
by this function to use the "application/octet-stream" content type. You can override the default
content type for the request by calling the HttpSetRequestHeader function prior to calling this
function. Most servers require you to explicitly specify what type of data is being submitted by the
client and will reject requests which do not correctly identify the content type.

It is common for servers to return additional information about a failed request in their response
to the client. If you need to process this information, use the HTTP_PUT_ERRORDATA option which
causes the error message to be returned in the lpvResult buffer provided by the caller. If this
option is used, your application should call HttpGetResultCode to obtain the HTTP status code
returned by the server. This will enable you to determine if the operation was successful.

This function will cause the current thread to block until the data transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the HTTP_EVENT_PROGRESS event will be
periodically fired, enabling the application to update any user interface controls. Event notification
must be enabled, either by calling HttpEnableEvents, or by registering a callback function using
the HttpRegisterEvent function.

To determine the current status of a data transfer while it is in progress, use the

HttpGetTransferStatus function.

Example
HGLOBAL hgblResponse = (HGLOBAL)NULL;
LPBYTE lpResponse = (LPBYTE)NULL;
DWORD cbResponse = 0;

// Store the response into block of global memory allocated by
// the GlobalAlloc function; the handle to this memory will be
// returned in the hgblBuffer parameter. Since the response from
// the server is textual, the HTTP_PUT_CONVERT option is used

nResult = HttpPutDataEx(hClient,
 lpszResource,
 lpRequest,
 cbRequest,
 &hgblResponse,
 &cbResponse,
 HTTP_PUT_CONVERT);

if (nResult != HTTP_ERROR)
{
 // Lock the global memory handle, returning a pointer to the
 // response from the server
 lpResponse = (LPBYTE)GlobalLock(hgblResponse);

 // After the data has been used, the handle must be unlocked
 // and freed, otherwise a memory leak will occur
 GlobalUnlock(hgblResponse);
 GlobalFree(hgblResponse);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpEnableEvents, HttpGetData, HttpGetFile, HttpGetTransferStatus, HttpPostData, HttpPutData,
HttpRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpPutFile Function

INT WINAPI HttpPutFile(
 HCLIENT hClient,
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszRemoteFile,
 DWORD dwOptions
 DWORD dwOffset
);

The HttpPutFile function transfers the specified file on the local system to the server.

Parameters
hClient

Handle to the client session.

lpszLocalFile

A pointer to a string that specifies the file that will be transferred from the local system. The file
pathing and name conventions must be that of the local system.

lpszRemoteFile

A pointer to a string that specifies the file on the server that will be created, overwritten or
appended to. This string may specify a valid URL for the current server that the client is
connected to.

dwOptions

An unsigned integer that specifies one or more options. This parameter may be any one of the
following values:

Constant Description

HTTP_TRANSFER_DEFAULT This option specifies the default transfer mode should be
used. If the remote file exists, it will be overwritten with
the contents of the uploaded file.

dwOffset

Specifies a byte offset into the file. If this value is greater than zero, the server must support the
ability to specify a byte range with the request to open the file, otherwise this function will fail.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is HTTP_ERROR. To get extended error information, call HttpGetLastError.

Remarks
The HttpPutFile function is used to transfer a file from the local system to a server. Not all servers
permit files to be uploaded and some may require that specific configuration changes be made to
the server in order to support this functionality. Consult your server's technical reference
documentation to see if it supports the PUT command, and if so, what must be done to enable it.
It may be required that the client authenticate itself using the HttpAuthenticate function prior to
uploading the file.

To upload large files that are over 4GB, use the HttpPutFileEx function.

This function will cause the current thread to block until the file transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the HTTP_EVENT_PROGRESS event will be

periodically fired, enabling the application to update any user interface controls. Event notification
must be enabled, either by calling HttpEnableEvents, or by registering a callback function using
the HttpRegisterEvent function.

To determine the current status of a file transfer while it is in progress, use the
HttpGetTransferStatus function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpEnableEvents, HttpGetFile, HttpGetTransferStatus, HttpPostData, HttpPostFile, HttpPutData,
HttpPutFileEx, HttpRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpPutFileEx Function

INT WINAPI HttpPutFileEx(
 HCLIENT hClient,
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszRemoteFile,
 DWORD dwOptions
 ULARGE_INTEGER uiOffset
);

The HttpPutFileEx function transfers the specified file on the local system to the server. This
version of the function is designed to support files that are larger than 4GB.

Parameters
hClient

Handle to the client session.

lpszLocalFile

A pointer to a string that specifies the file that will be transferred from the local system. The file
pathing and name conventions must be that of the local host.

lpszRemoteFile

A pointer to a string that specifies the file on the server that will be created, overwritten or
appended to. The file naming conventions must be that of the host operating system.

dwOptions

An unsigned integer that specifies one or more options. This parameter may be any one of the
following values:

Constant Description

HTTP_TRANSFER_DEFAULT This option specifies the default transfer mode should be
used. If the remote file exists, it will be overwritten with
the contents of the uploaded file.

uiOffset

Specifies a byte offset into the file. If this value is greater than zero, the server must support the
ability to specify a byte range with the request to open the file, otherwise this function will fail.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is HTTP_ERROR. To get extended error information, call HttpGetLastError.

Remarks
The HttpPutFileEx function is used to transfer a file from the local system to a server. Not all
servers permit files to be uploaded and some may require that specific configuration changes be
made to the server in order to support this functionality. Consult your server's technical reference
documentation to see if it supports the PUT command, and if so, what must be done to enable it.
It may be required that the client authenticate itself using the HttpAuthenticate function prior to
uploading the file.

This function will cause the current thread to block until the file transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the HTTP_EVENT_PROGRESS event will be
periodically fired, enabling the application to update any user interface controls. Event notification

must be enabled, either by calling HttpEnableEvents, or by registering a callback function using
the HttpRegisterEvent function.

To determine the current status of a file transfer while it is in progress, use the
HttpGetTransferStatusEx function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpEnableEvents, HttpGetFileEx, HttpGetTransferStatusEx, HttpPostData, HttpPostFile,
HttpPutData, HttpRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpPutText Function

INT WINAPI HttpPutText(
 HCLIENT hClient,
 LPCTSTR lpszResource,
 LPCTSTR lpszBuffer
);

The HttpPutText function creates a text file on the server using the contents of a string buffer.

Parameters
hClient

Handle to the client session.

lpszResource

A pointer to a string that specifies the resource on the server which will be created or
overwritten. This string may specify a valid URL for the current server.

lpszBuffer

A pointer to a string that contains the text which will be submitted to the server .

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is HTTP_ERROR. To get extended error information, call HttpGetLastError.

Remarks
The HttpPutText function is used to create a text file on the server from the contents of a string. If
the specified file already exists on the server, its contents will be overwritten. Not all servers permit
files to be created using this method, and some may require that specific configuration changes
be made to the server in order to support this functionality. Consult your server's technical
reference documentation to see if it supports the PUT command, and if so, what must be done to
enable it. It may be required that the client authenticate itself using the HttpAuthenticate
command prior to uploading the data.

If the Unicode version of this function is called, the string will be automatically converted to UTF-8
and then uploaded to the server. If you wish to upload UTF-16 Unicode or ANSI text to the server,
you must use the HttpPutData function. This function should never be used to upload binary
data.

This function will cause the current thread to block until the file transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the HTTP_EVENT_PROGRESS event will be
periodically fired, enabling the application to update any user interface controls. Event notification
must be enabled, either by calling HttpEnableEvents, or by registering a callback function using
the HttpRegisterEvent function.

To determine the current status of a file transfer while it is in progress, use the
HttpGetTransferStatus function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpEnableEvents, HttpGetText, HttpGetTransferStatus, HttpPutData, HttpPutFile,
HttpRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpPutTextEx Function

INT WINAPI HttpPutTextEx(
 HCLIENT hClient,
 LPCTSTR lpszResource,
 LPCTSTR lpszBuffer,
 LPVOID lpvResult,
 LPDWORD lpcbResult,
 DWORD dwOptions
);

The HttpPutTextEx function submits the contents of a string buffer to the server using the PUT
command and returns the server's response to the command.

Parameters
hClient

Handle to the client session.

lpszResource

A pointer to a string which specifies the resource path on the server. This string may specify a
valid URL for the current server.

lpszBuffer

A pointer to a string that contains the text that will be submitted to the server. This parameter
cannot be NULL and may not specify an empty string.

lpvResult

A pointer to a byte buffer which will contain the data returned by the server, or a pointer to a
global memory handle which will reference the data when the function returns.

lpcbResult

A pointer to an unsigned integer which should be initialized to the maximum number of bytes
that can be copied to the buffer specified by the lpvResult parameter. If the lpvResult
parameter points to a global memory handle, the length value should be initialized to zero.
When the function returns, this value will be updated with the actual number of bytes of data
that was returned.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

HTTP_PUT_DEFAULT The default mode. automatically converted so that the end
of line character sequence is compatible with the Windows
platform. Individual carriage return or linefeed characters are
converted to carriage return/linefeed character sequences.
Note that this option does not have any effect on the data
being submitted to the server, only on the data returned by
the server.

HTTP_PUT_ERRORDATA This option causes the client to accept error data from the
server if the request fails. If this option is specified, an error
response from the server will not cause the function to fail.

Instead, the response is returned to the client and the
function will succeed.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is HTTP_ERROR. To get extended error information, call HttpGetLastError.

Remarks
The HttpPutTextEx function is used to submit the contents of a null terminated string to the
server using the PUT command. This is typically used with RESTful APIs and is similar in
functionality to the POST command. However, the text that is submitted will not be encoded in the
same way that the HttpPostData function submits data.

If the Unicode version of this function is called, the text will be converted to UTF-8 and then
submitted to the server. If you wish to submit the contents of the string as UTF-16 Unicode text, or
the payload contains binary data, you must use the HttpPutDataEx function. This function should
never be used to upload binary data. If the server returns a text response and the Unicode version
of this function is called, it is the application's responsibility to convert the contents of the
lpvResult buffer to UTF-16 text. If the server returns text, most likely it will use UTF-8 encoding.

If the content type for the request has not been explicitly specified, it will be automatically updated
by this function to use the "text/plain" content type. You can override the default content type for
the request by calling the HttpSetRequestHeader function prior to calling this function. Most
servers require you to explicitly specify what type of data is being submitted by the client and will
reject requests which do not correctly identify the content type.

It is common for servers to return additional information about a failed request in their response
to the client. If you need to process this information, use the HTTP_PUT_ERRORDATA option which
causes the error message to be returned in the lpvResult buffer provided by the caller. If this
option is used, your application should call HttpGetResultCode to obtain the HTTP status code
returned by the server. This will enable you to determine if the operation was successful.

This function will cause the current thread to block until the data transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the HTTP_EVENT_PROGRESS event will be
periodically fired, enabling the application to update any user interface controls. Event notification
must be enabled, either by calling HttpEnableEvents, or by registering a callback function using
the HttpRegisterEvent function.

To determine the current status of a data transfer while it is in progress, use the
HttpGetTransferStatus function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpEnableEvents, HttpGetText, HttpGetTransferStatus, HttpPutDataEx, HttpPutFile, HttpPutText,
HttpRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpRead Function

INT WINAPI HttpRead(
 HCLIENT hClient,
 LPBYTE lpBuffer,
 INT cbBuffer
);

The HttpRead function reads the specified number of bytes from the client socket and copies
them into the buffer. The data may be of any type, and is not terminated with a null character.

Parameters
hClient

Handle to the client session.

lpBuffer

Pointer to the buffer in which the data will be copied.

cbBuffer

The maximum number of bytes to read and copy into the specified buffer. This value must be
greater than zero.

Return Value
If the function succeeds, the return value is the number of bytes actually read. A return value of
zero indicates that the server has closed the connection and there is no more data available to be
read. If the function fails, the return value is HTTP_ERROR. To get extended error information, call
HttpGetLastError.

Remarks
When HttpRead is called and the client is in non-blocking mode, it is possible that the function
will fail because there is no available data to read at that time. This should not be considered a
fatal error. Instead, the application should simply wait to receive the next asynchronous notification
that data is available.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
HttpIsBlocking, HttpIsReadable, HttpIsWritable, HttpWrite

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpRegisterEvent Function

INT WINAPI HttpRegisterEvent(
 HCLIENT hClient,
 UINT nEventId,
 HTTPEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

The HttpRegisterEvent function registers an event handler for the specified event.

Parameters
hClient

Handle to the client session.

nEventId

An unsigned integer which specifies which event should be registered with the specified callback
function. One of the following values may be used:

Constant Description

HTTP_EVENT_CONNECT The connection to the server has completed.

HTTP_EVENT_DISCONNECT The server has closed the connection to the client. The client
should read any remaining data and disconnect.

HTTP_EVENT_READ Data is available to read by the calling process. No additional
messages will be posted until the client has read at least some of
the data. This event is only generated if the client is in
asynchronous mode.

HTTP_EVENT_WRITE The client can now write data. This notification is sent after a
connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking
operation. This event is only generated if the client is in
asynchronous mode.

HTTP_EVENT_TIMEOUT The network operation has exceeded the specified timeout
period. The client application may attempt to retry the operation,
or may disconnect from the server and report an error to the
user.

HTTP_EVENT_CANCEL The current operation has been canceled. Under most
circumstances the client should disconnect from the server and
re-connect if needed. After an operation has been canceled, the
server may abort the connection or refuse to accept further
commands from the client.

HTTP_EVENT_COMMAND A command has been issued by the client and the server
response has been received and processed. This event can be
used to log the result codes and messages returned by the server
in response to actions taken by the client.

HTTP_EVENT_PROGRESS The client is in the process of sending or receiving a file on the
data channel. This event is called periodically during a transfer so
that the client can update any user interface components such as

a status control or progress bar.

HTTP_EVENT_REDIRECT This event is generated when a the server indicates that the
requested resource has been moved to a new location. The new
resource location may be on the same server, or it may be
located on another server. Check the value of the Location
header field to determine where the resource has been moved to.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the HttpEventProc callback
function. If this parameter is NULL, the callback for the specified event is disabled.

dwParam

A user-defined integer value that is passed to the callback function. If the application targets the
x86 (32-bit) platform, this parameter must be a 32-bit unsigned integer. If the application
targets the x64 (64-bit) platform, this parameter must be a 64-bit unsigned integer.

Remarks
The HttpRegisterEvent function associates a callback function with a specific event. The event
handler is an HttpEventProc function that is invoked when the event occurs. Arguments are
passed to the function to identify the client session, the event type and the user-defined value
specified when the event handler is registered. If the event occurs because of an error condition,
the error code will be provided to the handler.

This function is typically used to register an event handler that is invoked while a file is being
uploaded or downloaded. The HTTP_EVENT_PROGRESS event will only be generated periodically
during the transfer to ensure the application is not flooded with event notifications. It is
guaranteed that at least one HTTP_EVENT_PROGRESS notification will occur at the beginning of
the transfer, and one at the end of the transfer when it has completed.

The callback function specified by the lpEventProc parameter must be declared using the
__stdcall calling convention. This ensures the arguments passed to the event handler are pushed
on to the stack in the correct order. Failure to use the correct calling convention will corrupt the
stack and cause the application to terminate abnormally.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
HTTP_ERROR. To get extended error information, call HttpGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpDisableEvents, HttpEnableEvents, HttpEventProc, HttpFreezeEvents, HttpGetTransferStatus

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpRemoveQueuedFile Function

BOOL WINAPI HttpRemoveQueuedFile(
 HQUEUE hQueue,
 DWORD dwFileId
);

The HttpRemoveQueuedFile removes the specified file from the queue.

Parameters
hQueue

A handle to a file transfer queue.

dwFileId

An unsigned integer value which uniquely identifies the file in the queue. This value cannot be
zero.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, it will return zero. To get
extended error information, call HttpGetLastError.

Remarks
Files can only be removed from the queue when in an idle or paused state. If you attempt to
remove a file while the queue manager is in the process of uploading or download files, the
function will fail.

The file identifier can be obtained by several different functions, including HttpEnumQueuedFiles
and HttpGetQueueStatus, which provides information about the current file being processed in
the queue. Do not make any assumptions about the value of the identifier. Although the value is
guaranteed to be unique for the specified queue, it is not guaranteed that file identifiers will be
assigned in sequential order.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
HttpAddQueuedFile, HttpClearQueue, HttpEnumQueuedFiles, HttpGetQueuedFile,
HttpGetQueueStatus, HttpSuspendQueue, HttpResetQueue

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpResetQueue Function

BOOL WINAPI HttpResetQueue(
 HQUEUE hQueue,
 UINT nResetMode
);

The HttpResetQueue function resets the state of all file transfers in the current queue.

Parameters
hQueue

A handle to a file transfer queue.

dwOptions

An integer value which specifies which files should be reset in the queue. It may be one of the
following values:

Constant Description

HTTP_QUEUE_RESET_ALL All files in the queue should be reset to their initial
state.

HTTP_QUEUE_RESET_COMPLETED All files in the queue which have been successfully
transferred will be reset to their initial state.

HTTP_QUEUE_RESET_FAILED All files in the queue which were not transferred
will be reset to their initial state.

HTTP_QUEUE_RESET_CANCELED All files in the queue which were canceled will be
reset to their initial state.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, it will return zero. To get
extended error information, call HttpGetLastError.

Remarks
When the HttpStartQueue function is called multiple times using the same queue handle, it will
not attempt to transfer files which have already been successfully copied, and it will not attempt to
re-transfer files if the previous transfer failed. This function resets queued files back to their initial
state, prior to when the queue manager attempted to perform the transfer. The most common
use would be to call the function with the HTTP_QUEUE_RESET_FAILED mode and then call
HttpStartQueue to retry failed or canceled file transfers.

Because canceled file transfers are also considered failed transfers, specifying
HTTP_QUEUE_RESET_FAILED will reset queued files which either encountered an error during the
transfer or were explicitly canceled by calling the HttpCancelQueuedFile function. The
HTTP_QUEUE_RESET_CANCELED option will only reset the state of queued file transfers which
were canceled.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
HttpCancelQueuedFile, HttpGetQueuedFile, HttpResumeQueue, HttpStartQueue, HttpStopQueue,
HttpSuspendQueue

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpResumeQueue Function

BOOL WINAPI HttpResumeQueue(
 HQUEUE hQueue
);

The HttpResumeQueue function resumes transfers in the queue.

Parameters
hQueue

A handle to a file transfer queue.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, it will return zero. To get
extended error information, call HttpGetLastError.

Remarks
This function signals the queue manager to resume processing files in the transfer queue after the
HttpSuspendQueue function has been called. This function will fail if the queue is in an idle
(stopped) state, and will be ignored if the queue manager is already transferring files. The
HttpGetQueueStatus function can be called to obtain the current status of the queue.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
HttpGetQueueStatus, HttpResetQueue, HttpStartQueue, HttpStopQueue, HttpSuspendQueue

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpSetBearerToken Function

INT WINAPI HttpSetBearerToken(
 HCLIENT hClient,
 LPTSTR lpszBearerToken
);

The HttpSetBearerToken function sets the OAuth 2.0 bearer token used to authenticate the
client session with a web service.

Parameters
hClient

Handle to the client session.

lpszBearerToken

A pointer to a null terminated string buffer which contains the bearer token used to authorize
client requests. If this parameter is NULL or a zero length string, the current bearer token will be
cleared and no client authentication will be performed.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
HTTP_ERROR. To get extended error information, call HttpGetLastError.

Remarks
Using OAuth 2.0 requires you to understand the process of how to request the bearer (access)
token. Obtaining a bearer token requires registering your application with the web service
provider, getting a unique client ID associated with your application and then requesting the token
using the appropriate scope for the service. Obtaining the initial token will typically involve
interactive confirmation on the part of the user, requiring they grant permission to your
application to access the service.

Your application should not store a bearer token for later use. They have a relatively short lifespan,
typically about an hour, and are designed to be used with that session. You should specify offline
access as part of the OAuth 2.0 scope if necessary and store the refresh token provided by the
service. The refresh token has a much longer validity period and can be used to obtain a new
bearer token when needed.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpAuthenticate, HttpGetBearerToken, HttpSetRequestHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpSetContentType Function

BOOL WINAPI HttpSetContentType(
 HCLIENT hClient,
 LPCTSTR lpszContentType
);

The HttpSetContentType function sets the content type for the next request.

Parameters
hClient

Handle to the client session.

lpszContentType

A pointer to a null terminated string which contains the MIME content type of the data being
submitted to the web server. If this parameter is NULL or an empty string, the current type will
be cleared and the client will use a default type based on the request and content encoding.

Return Value
If the function succeeds, it will return a non-zero value. If the function fails, it will return zero. To
get extended error information, call HttpGetLastError.

Remarks
The content type string must use the standard IANA format which consists of a type and subtype
separated by a forward slash. Some common content types are:

Content Type Description

text/plain The request payload is unstructured text in a human
readable format. This content type serves a default
for textual data which does not explicitly have
another standard subtype.

text/csv The request payload is in a comma-separated value
(CSV) text format.

application/octet-stream The request payload contains binary data. This
content type serves a default for binary data which
does not explicitly have another standard subtype.

application/json The request payload is standard JSON formatted
text. This is the default content type used when
submitting JSON requests, however some servers
may expect the client to use the non-standard
text/json type.

application/xml The request payload is standard XML formatted text.
This is the default content type used when submitting
XML requests, however some servers may expect the
client use the deprecated text/xml type. The standard
content type for XML is defined in RFC 7303,
however most servers will recognize both types as
valid.

If a content type is not explicitly specified with a request, an appropriate default content type will
be automatically selected. For example, the HttpPostJson function will set the content type to
application/json by default. This function can be used to override that default value.

This function will validate the content type, but does not validate the subtype. Unregistered
subtypes should always be prefixed with "x-" which designates it as experimental. Some commonly
used types also use this designation, such as text/x-vcalendar for the vCalendar format.

If your application needs to set the content type to a non-standard value for a proprietary API, use
the HttpSetRequestHeader function to set the Content-Type header value. That function will
not perform any validation on the header value and will include it in the request as-is.

The contents of the payload is not checked to ensure the content type is valid. It is the
responsibility of the application to ensure that the correct content type is used when submitting
the request.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
HttpGetContentType, HttpSetRequestHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpSetCookie Function

BOOL WINAPI HttpSetCookie(
 HCLIENT hClient,
 LPCTSTR lpszCookieName,
 LPCTSTR lpszCookieValue
);

The HttpSetCookie function sends the specified cookie to the server when a resource is
requested.

Parameters
hClient

Handle to the client session.

lpszCookieName

Pointer to a string which specifies the name of the cookie that will be sent to the server when
the next resource is requested.

lpszCookieValue

Pointer to a string which specifies the value of the cookie. To delete a cookie that has been
previously set, this parameter should be NULL or point to an empty string.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call HttpGetLastError.

Remarks
The HttpSetCookie function submits the cookie name and value to the server when a resource is
requested or data is posted to a script. For more information about cookies and how they are
used, refer to the HttpGetCookie function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
HttpGetCookie, HttpGetFirstCookie, HttpGetNextCookie, HttpSetRequestHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpSetDefaultUserAgent Function

INT WINAPI HttpSetDefaultUserAgent(
 LPCTSTR lpszUserAgent
);

The HttpSetDefaultUserAgent function sets the default user agent string which is included with
all requests.

Parameters
lpszUserAgent

A pointer to a null terminated string which specifies the new default user agent string. If this
parameter is NULL or an empty string, the client will revert to using the default user agent string
defined when the library was first initialized.

Return Value
If the function succeeds, the return value is the number of characters copied into the string buffer.
If the function fails, the return value is HTTP_ERROR. To get extended error information, call
HttpGetLastError.

Remarks
The HttpSetDefaultUserAgent function changes the default user agent string which is included
with each request made by the client. This default value is global and changing it will change the
default user agent for all client sessions in all threads created by the process.

The user agent string should use a format with the product name and version number separated
by a slash. There can be multiple products listed in the user agent string separated by spaces, with
additional optional information enclosed in parenthesis. For example, a valid user agent string for
an application named "MyProgram" could look like this:

MyProgram/1.0 (Win32)

Some web services check the value of the user agent string to determine if a compatible client is
being used to issue the request. The default value used by SocketTools is designed to emulate a
common browser, but some services may require you change the user agent to use a specific
value or include certain product names and versions.

To change the user agent string for a specific client session, use the HttpSetRequestHeader
function to set a value for the User-Agent header. To get the current value of the default user
agent string, use the HttpGetDefaultUserAgent function.

To prevent any user agent string from being included with a request, include the
HTTP_OPTION_NOUSERAGENT option when connecting to the server or use HttpSetOption to
enable that option after a connection has been established.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpGetDefaultUserAgent, HttpSetOption, HttpSetRequestHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpSetEncodingType Function

INT WINAPI HttpSetEncodingType(
 HCLIENT hClient
 INT nEncodingType
);

The HttpSetEncodingType function specifies the type of encoding to be applied to the content
of a HTTP request.

Parameters
hClient

Handle to the client session.

nEncodingType

Specifies the content encoding type for the request. The following values are defined:

Constant Description

HTTP_ENCODING_NONE No encoding will be applied to the content of a request
and no default content type will be specified. This encoding
type should be used with REST APIs and other services
which expect XML or JSON request payloads.

HTTP_ENCODING_URL Non-printable and extended ASCII characters will be
encoded so they can be safely used with URLs and form
data. Encoded characters will be represented by a percent
symbol prefix, followed by a two digit hexadecimal value
which represents the ASCII character code. This encoding is
typically used with web services which process HTML form
data.

HTTP_ENCODING_XML This encoding is identical to URL encoding, except spaces
are not encoded. It is used with legacy web services which
expect form data in an XML format and cannot process
encoded whitespace. This encoding should not be specified
for services which use REST APIs.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
HTTP_ERROR. To get extended error information, call HttpGetLastError.

Remarks
The HttpSetEncodingType function explicitly sets the type of encoding used when optional
parameter data is submitted with a request for a resource. If an encoding type is specified, and the
content type for the request payload has not been defined, it will default to application/x-www-
form-urlencoded.

When submitting a JSON or XML request to a service using a REST API, your application should
use HTTP_ENCODING_NONE and set the appropriate content type for the request payload. The
HTTP_ENCODING_XML encoding type should only be used if the server expects URL encoded
form data. The HttpPostJson and HttpPostXml functions will automatically set the correct
encoding and content type for those requests.

If an application specifies HTTP_ENCODING_NONE, parameter data is not encoded and no
content type header will created by default. The client application can specify the content type by
calling the HttpSetContentType function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpGetEncodingType, HttpPostData, HttpPostJson, HttpPostXml, HttpSetContentType,
HttpSubmitForm

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpSetFormProperties Function

INT WINAPI HttpSetFormProperties(
 HFORM hForm,
 LPHTTPFORMPROPERTIES lpFormProp
);

The HttpSetFormProperties function updates the properties of the specified form.

Parameters
hForm

Handle to the virtual form.

lpFormProp

Points to a HTTPFORMPROPERTIES structure which specifies the new properties for the form.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
HTTP_ERROR. To get extended error information, call HttpGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpCreateForm, HttpGetFormProperties, HttpSubmitForm, HTTPFORMPROPERTIES

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpSetLastError Function

VOID WINAPI HttpSetLastError(
 DWORD dwErrorCode
);

The HttpSetLastError function sets the last error code for the current thread. This function is
typically used to clear the last error by specifying a value of zero as the parameter.

Parameters
dwErrorCode

Specifies the last error code for the current thread.

Return Value
None.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. Most functions will
set the last error code value when they fail; a few functions set it when they succeed. Function
failure is typically indicated by a return value such as FALSE, NULL, INVALID_CLIENT or
HTTP_ERROR. Those functions which call HttpSetLastError when they succeed are noted on the
function reference page.

Applications can retrieve the value saved by this function by using the HttpGetLastError function.
The use of HttpGetLastError is optional; an application can call the function to determine the
specific reason for a function failure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
HttpGetErrorString, HttpGetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpSetOption Function

INT WINAPI HttpSetOption(
 HCLIENT hClient,
 DWORD dwOption,
 BOOL bEnabled
);

The HttpSetOption function enables or disables the specified option.

Parameters
hClient

Handle to the client session.

dwOption

An unsigned integer which specifies one of the following options:

Constant Description

HTTP_OPTION_NOCACHE This instructs the server to not return a cached copy
of the resource. When connected to an HTTP 1.0 or
earlier server, this directive may be ignored.

HTTP_OPTION_KEEPALIVE This instructs the server to maintain a persistent
connection between requests. This can improve
performance because it eliminates the need to
establish a separate connection for each resource
that is requested. If the server does not support the
keep-alive option, the client will automatically
reconnect when each resource is requested.
Although it will not provide any performance
benefits, this allows the option to be used with all
servers.

HTTP_OPTION_REDIRECT This option specifies the client should automatically
handle resource redirection. If the server indicates
that the requested resource has moved to a new
location, the client will close the current connection
and request the resource from the new location.
Note that it is possible that the redirected resource
will be located on a different server.

HTTP_OPTION_NOUSERAGENT This option specifies the client should not include a
User-Agent header with any requests made during
the session. The user agent is a string which is used
to identify the client application to the server.

HTTP_OPTION_ERRORDATA This option specifies the client should return the
content of an error response from the server, rather
than returning an error code. Note that this option
will disable automatic resource redirection, and
should not be used with HTTP_OPTION_REDIRECT.

HTTP_OPTION_FREETHREAD This option specifies the handle returned by this

function may be used by any thread, and is not
limited to the thread which created it. The application
is responsible for ensuring that access to the handle
is synchronized across multiple threads.

HTTP_OPTION_HIRES_TIMER This option specifies the elapsed time for data
transfers should be returned in milliseconds instead
of seconds. This will return more accurate transfer
times for smaller amounts of data over fast network
connections.

bEnabled

An integer value which determines if the option should be enabled or disabled. A non-zero
value specifies that the option should be enabled, while a zero value specifies that the option
should be disabled.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
HTTP_ERROR. To get extended error information, call HttpGetLastError.

Remarks
The HttpSetOption function can only enable or disable the options listed above. Other options
are only available when the connection is initially established. For example, you cannot use this
function to enable security options or switch to using HTTP/2 after the connection has been made.

If you use HTTP_OPTION_FREETHREAD to permit any thread to reference a client handle allocated
in another thread, your application is responsible for ensuring it does not attempt to submit
requests using the same handle on different threads at the same time. If two different threads
attempt to perform an operation using the same handle, there is no guarantee as to which thread
will complete the operation first.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
HttpConnect, HttpGetOption, HttpProxyConnect

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpSetPriority Function

INT WINAPI HttpSetPriority(
 HCLIENT hClient,
 INT nPriority
);

The HttpSetPriority function specifies the priority for file transfers.

Parameters
hClient

Handle to the client session.

nPriority

An integer value which specifies the new priority for file transfers. It may be one of the following
values:

Constant Description

HTTP_PRIORITY_NORMAL The default priority which balances resource
utilization and transfer speed. It is recommended that
most applications use this priority.

HTTP_PRIORITY_BACKGROUND This priority significantly reduces the memory,
processor and network resource utilization for the
transfer. It is typically used with worker threads
running in the background when the amount of time
required perform the transfer is not critical.

HTTP_PRIORITY_LOW This priority lowers the overall resource utilization for
the transfer and meters the bandwidth allocated for
the transfer. This priority will increase the average
amount of time required to complete a file transfer.

HTTP_PRIORITY_HIGH This priority increases the overall resource utilization
for the transfer, allocating more memory for internal
buffering. It can be used when it is important to
transfer the file quickly, and there are no other
threads currently performing file transfers at the time.

HTTP_PRIORITY_CRITICAL This priority can significantly increase processor,
memory and network utilization while attempting to
transfer the file as quickly as possible. If the file
transfer is being performed in the main UI thread,
this priority can cause the application to appear to
become non-responsive. No events will be generated
during the transfer.

Return Value
If the function succeeds, the return value is the previous file transfer priority. If the function fails,
the return value is HTTP_ERROR. To get extended error information, call HttpGetLastError.

Remarks
The HttpSetPriority function can be used to control the processor usage, memory and network

bandwidth allocated for file transfers. The default priority balances resource utilization and transfer
speed while ensuring that a single-threaded application remains responsive to the user. Lower
priorities reduce the overall resource utilization at the expense of transfer speed. For example, if
you create a worker thread to download a file in the background and want to ensure that it has a
minimal impact on the process, the HTTP_PRIORITY_BACKGROUND value can be used.

Higher priority values increase the memory allocated for the transfers and increases processor
utilization for the transfer. The HTTP_PRIORITY_CRITICAL priority maximizes transfer speed at the
expense of system resources. It is not recommended that you increase the file transfer priority
unless you understand the implications of doing so and have thoroughly tested your application. If
the file transfer is being performed in the main UI thread, increasing the priority may interfere with
the normal processing of Windows messages and cause the application to appear to become
non-responsive. It is also important to note that when the priority is set to
HTTP_PRIORITY_CRITICAL, normal progress events will not be generated during the transfer.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpGetPriority

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpSetRequestHeader Function

BOOL WINAPI HttpSetRequestHeader(
 HCLIENT hClient,
 LPCTSTR lpszHeader,
 LPCTSTR lpszValue
);

The HttpSetRequestHeader function sets the value of the specified request header field.

Parameters
hClient

Handle to the client session.

lpszHeader

Points to a string which specifies the request header field name.

lpszValue

Points to a string which specifies the value of the request header field.

Return Value
If the function succeeds, the return value is non-zero. If the client handle is invalid, the function
returns a value of zero. To get extended error information, call HttpGetLastError.

Remarks
The HttpSetRequestHeader function defines a header field and value that is submitted to the
server when a resource is requested. If the header field has already been defined, it will be
replaced by the new value. There are a number of header fields which are automatically created
by the library, and others that are conditionally created depending on whether or not certain
options are specified. The following header fields are automatically created by the library:

Header Field Description

Accept This header specifies the types of resources that are acceptable
to the client. By default, all resource data types are accepted by
the client.

Authorization This header is automatically created if the client uses the
HttpAuthenticate function to authenticate a client session.

Connection This header determines if the connection is maintained after a
resource has been requested, or if the connection should be
immediately closed. The value of this header depends on
whether the HTTP_OPTION_KEEPALIVE option has been
specified.

Content-Length This header defines the length of the data that is being posted to
the server or the size of a file being uploaded to the server.

Content-Type This header defines the content type for data posted to the
server. This header is automatically created if required.

Host This header specifies the name of the server that the client has
connected to. This is automatically generated when any resource
is requested.

Pragma This header is used to control caching performed by the server. If
the option HTTP_OPTION_NOCACHE has been specified, this
header will automatically be defined with the value "no-cache".

Proxy-Authorization This header is automatically created if a proxy connection has
been established and a username and password is required to
authenticate the client session.

Request headers are generated by functions that send resource requests. In some cases, header
values are supplied by the requesting function only if the application has not previously defined
the header. For others, the requesting function overrides what the application may have defined.

If you use this function to set the Authorization header to a custom value for this client session,
you must not call the HttpAuthenticate function. The HttpAuthenticate function will always
override any custom Authorization header value and replace it with the credentials token
generated from the username and password provided. If your application was using this function
to specify an OAuth 2.0 bearer token, it is recommended you use the HttpSetBearerToken
function instead.

If you need to change the default content type for the next request, it is recommended you use
the HttpSetContentType function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpAuthenticate, HttpGetFirstHeader, HttpGetNextHeader, HttpGetRequestHeader,
HttpGetResponseHeader, HttpSetBearerToken, HttpSetContentType, HttpSetEncodingType

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpSetTimeout Function

INT WINAPI HttpSetTimeout(
 HCLIENT hClient,
 INT nTimeout
);

The HttpSetTimeout function sets the number of seconds the client will wait for a response from
the server. Once the specified number of seconds has elapsed, the function will fail and return to
the caller.

Parameters
hClient

Handle to the client session.

nTimeout

The number of seconds to wait for a blocking operation to complete.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
HTTP_ERROR. To get extended error information, call HttpGetLastError.

Remarks
The timeout value is only used with blocking client connections.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
HttpGetTimeout, HttpIsBlocking, HttpIsReadable, HttpIsWritable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpStartQueue Function

BOOL WINAPI HttpStartQueue(
 HQUEUE hQueue,
 DWORD dwQueueMode,
 DWORD dwReserved,
 HTTPEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

The HttpStartQueue function begins transferring files in the queue.

Parameters
hQueue

A handle to a file transfer queue.

dwQueueMode

An unsigned integer which specifies which files in the queue should be transferred. It may be
one of the following values:

Constant Description

HTTP_QUEUE_ALL All files in the queue should be transferred.

HTTP_QUEUE_DOWNLOAD Transfer only those files which have been queued
for download.

HTTP_QUEUE_UPLOAD Transfer only those files which have been queued
for upload.

dwReserved

An unsigned integer reserved for internal use. This parameter value should always be zero.

lpEventProc

Specifies the procedure-instance address of an application defined callback function. For more
information about the callback function, see the description of the HttpEventProc callback
function. If this parameter is NULL, there will be no callback notifications.

dwParam

A user-defined integer value that is passed to the callback function. If the application targets the
x86 (32-bit) platform, this parameter must be a 32-bit unsigned integer. If the application
targets the x64 (64-bit) platform, this parameter must be a 64-bit unsigned integer.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, it will return zero. To get
extended error information, call HttpGetLastError.

Remarks
Queued file transfers are performed asynchronously using a background worker thread. If you
provide the address to an event callback function, that function will always be invoked in the
context of the queue manager thread. You must ensure that any access to global or static
variables are synchronized, otherwise the results may be unpredictable. It is recommended that
you do not declare any static variables within the callback function itself and you should avoid
calling any functions which could cause the thread to block. For example, you should not attempt

to establish other network connections from within the event handler.

If your application has a graphical user interface, you should never attempt to directly modify a UI
control from within the callback function. Controls should only be modified by the same UI thread
that created their window. One common approach to address this issue is to post a user-defined
message to the main window to signal that the user interface needs to be updated. The message
handler would then process the user-defined message and update the user interface as needed.

To obtain the handle to the queue from within an event handler, call the HttpGetThreadQueue
function with the dwThreadId parameter set to a value of zero. This will return the handle for the
current queue management session which invoked the callback function.

If a callback function is provided, the HTTP_QUEUE_EVENT event notification will be invoked
whenever the internal state of the queue has changed. The handle value passed to the callback
function will be a handle to the queue, not to a client connection. The HttpGetQueueStatus
function can be called within the event handler to obtain the current state of the queue. This will
event will always occur when the queue manager begins processing files in the queue and after it
has stopped. This event will also occur whenever the queue is suspended and then resumed.

The HttpWaitForQueue function can be used to wait for the queue manager to complete
processing the transfer queue.

Example
// Create a new queue
HQUEUE hQueue = HttpCreateQueue(INFINITE, HTTP_TIMEOUT, HTTP_OPTION_DEFAULT);

if (hQueue == INVALID_QUEUE)
 return;

// Add a file to the queue
DWORD dwFileId = HttpAddQueuedFile(
 hQueue,
 lpszLocalFile,
 lpszRemoteFile,
 HTTP_OPTION_DEFAULT,
 HTTP_TIMEOUT);

// Display information about the queued file
if (dwFileId != 0)
{
 HTTPQUEUEDFILE queuedFile;

 if (HttpGetQueuedFile(hQueue, dwFileId, &queuedFile))
 {
 switch (queuedFile.dwMode)
 {
 case HTTP_QUEUE_DOWNLOAD:
 _tprintf(_T("%u: Download \"%s\" to \"%s\"\n"),
 dwFileId,
 queuedFile.szRemoteFile,
 queuedFile.szLocalFile);
 break;

 case HTTP_QUEUE_UPLOAD:
 _tprintf(_T("%u: Upload \"%s\" to \"%s\"\n"),
 dwFileId,
 queuedFile.szLocalFile,
 queuedFile.szRemoteFile);

 break;
 }
 }
}

// Start the queued file transfers and wait for it to complete
if (HttpStartQueue(hQueue, HTTP_QUEUE_ALL, 0, NULL, 0))
{
 HttpWaitForQueue(hQueue, INFINITE, &dwElapsed, &dwError);
 HttpStopQueue(hQueue);
}

// Remove all files from the queue
HttpDeleteQueue(hQueue);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
HttpEventProc, HttpGetQueueStatus, HttpGetThreadQueue, HttpResumeQueue, HttpStartQueue,
HttpStopQueue, HttpSuspendQueue, HttpWaitForQueue

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpStopQueue Function

BOOL WINAPI HttpStopQueue(
 HQUEUE hQueue
);

The HttpStopQueue function stops tranfering queued files.

Parameters
hQueue

A handle to a file transfer queue.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, it will return zero. To get
extended error information, call HttpGetLastError.

Remarks
When the HttpStopQueue function is called and there is a file transfer in progress, it will not
immediately stop the upload or download of the file. Instead, the queue manager is signaled to
stop processing additional files in the queue after the transfer has completed. To wait for the
current transfer to complete, call the HttpWaitForQueue function.

It is permitted to call HttpStopQueue from within a queue event handler. In this case, the current
file transfer will complete and the queue manager will terminate.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
HttpCancelQueuedFile, HttpResetQueue, HttpResumeQueue, HttpStartQueue,
HttpSuspendQueue, HttpWaitForQueue

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpSubmitForm Function

INT WINAPI HttpSubmitForm(
 HCLIENT hClient,
 HFORM hForm,
 LPVOID lpvResult,
 LPDWORD lpcbResult,
 DWORD dwOptions
);

The HttpSubmitForm function submits the contents of the specified form to a script on the server
and returns the result in a buffer provided by the caller.

Parameters
hClient

Handle to the client session.

hForm

Handle to the virtual form which contains the data to be submitted to the server.

lpvResult

A pointer to a byte buffer which will contain the data returned by the server, or a pointer to a
global memory handle which will reference the data when the function returns.

lpcbResult

A pointer to an unsigned integer which should be initialized to the maximum number of bytes
that can be copied to the buffer specified by the lpvBuffer parameter. If the lpvResult
parameter points to a global memory handle, the length value should be initialized to zero.
When the function returns, this value will be updated with the actual number of bytes of data
that was returned.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

HTTP_SUBMIT_DEFAULT The default post mode. The contents of the buffer are
encoded and sent as standard form data. The data returned
by the server is copied to the result buffer exactly as it is
returned from the server.

HTTP_SUBMIT_CONVERT If the data being returned from the server is textual, it is
automatically converted so that the end of line character
sequence is compatible with the Windows platform.
Individual carriage return or linefeed characters are
converted to carriage return/linefeed character sequences.
Note that this option does not have any effect on the form
data being submitted to the server, only on the data
returned by the server.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is HTTP_ERROR. To get extended error information, call HttpGetLastError.

Remarks
The HttpSubmitForm function is used to submit form data to a script that executes on the server
and then copy the output from that script into a local buffer. The function may be used in one of
two ways, depending on the needs of the application. The first method is to pre-allocate a buffer
large enough to store the resulting output of the script. In this case, the lpvResult parameter will
point to the buffer that was allocated by the client and the value that the lpcbResult parameter
points to should be initialized to the size of that buffer.

The second method that can be used is have the lpvResult parameter point to a global memory
handle which will contain the data when the function returns. In this case, the value that the
lpcbResult parameter points to must be initialized to zero. It is important to note that the memory
handle returned by the function must be freed by the application, otherwise a memory leak will
occur. See the example code below.

This function will cause the current thread to block until the post completes, a timeout occurs or
the operation is canceled. During the transfer, the HTTP_EVENT_PROGRESS event will be
periodically fired, enabling the application to update any user interface controls. Event notification
must be enabled, either by calling HttpEnableEvents, or by registering a callback function using
the HttpRegisterEvent function.

To determine the current status of a transaction while it is in progress, use the
HttpGetTransferStatus function.

Example
HFORM hForm = INVALID_FORM;
HGLOBAL hgblResult = (HGLOBAL)NULL;
DWORD cbResult = 0;
INT nResult = 0;

hForm = HttpCreateForm(_T("/login.php"), HTTP_METHOD_POST, HTTP_FORM_ENCODED);

if (hForm == INVALID_FORM)
 return;

HttpAddFormField(hForm, _T("UserName"), lpszUserName, (DWORD)-1L, 0);
HttpAddFormField(hForm, _T("Password"), lpszPassword, (DWORD)-1L, 0);

nResult = HttpSubmitForm(hClient, hForm, &hgblResult, &cbResult, 0);
HttpDestroyForm(hForm);

if (hgblResult != NULL)
{
 LPBYTE lpBuffer = (LPBYTE)GlobalLock(hgblResult);

 // lpBuffer points to data returned by the server after the form
 // data was submitted

 GlobalUnlock(hgblResult);
 GlobalFree(hgblResult);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpAddFormField, HttpAddFormFile, HttpClearForm, HttpCreateForm, HttpDeleteFormField,
HttpRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpSubmitRequest Function

INT WINAPI HttpSubmitRequest(
 DWORD dwRequestType,
 LPCTSTR lpszResource,
 LPHTTPCONNECTION lpConnection,
 LPCVOID lpvRequest,
 DWORD dwRequestLength,
 LPVOID lpvResponse,
 LPDWORD lpdwResponseLength
);

The HttpSubmitRequest function provides a high-level interface for submitting requests to a web
service.

Parameters
dwRequestType

An unsigned integer which specifies the type of request being submitted to the server. It may be
one of the following values:

Constant Description

HTTP_METHOD_DEFAULT
(0)

Perform a default request action based on the value of
parameters passed to this function. If there is no request
payload, the action will default to HTTP_METHOD_GET,
otherwise it will default to HTTP_METHOD_POST. It is
generally recommended that you explicitly specify the
request method; however, this default value can be useful
if your application does not know if a payload will be
included with the request at the time the function is called.

HTTP_METHOD_GET
(1)

Use the GET method when submitting the request to the
server. If this action is used, the lpvRequest and
dwRequestLength parameters will be ignored. The buffer
specified by the lpvResponse parameter will contain the
server's response to the request.

HTTP_METHOD_POST
(2)

Use the POST method when submitting the request to the
server. The payload specified by the lpvRequest parameter
will be included with the request and the buffer specified
by the lpvResponse parameter will contain the server's
response to the request.

HTTP_METHOD_PUT
(3)

Use the PUT method when submitting the request to the
server. The payload specified by the lpvRequest parameter
will be included with the request. This method is typically
used with persistent storage on the server, such as
uploading the contents of a file. If the lpvResponse
parameter is not NULL, it will contain any response from
the server after the operation has completed.

lpszResource

A pointer to a null-terminated string which specifies the complete URL for the resource. Both

standard and secure connections are supported, and query parameters may be included with
the URL. This parameter cannot be NULL and must specify an absolute (fully qualified) URI
which begins with either http:// or https://.

lpConnection

A pointer to a HTTPCONNECTION structure which contains additional information about the
client connection. This structure is required if your application must connect through a proxy
server or when authentication is required to access a resource. This parameter can be NULL, in
which case default values will be used when establishing the connection.

lpvRequest

A pointer to a buffer which contains the payload data submitted to the server as part of the
request. This parameter may point to a byte buffer or a null-terminated string. If there is no
payload required for the request this parameter may be NULL. If the Unicode version of this
function is called and the request buffer contains text, it will be automatically converted to UTF-
8 prior to submitting the data to the server. If the dwRequestLength parameter is -1, the
payload will always be processed as a null-terminated string and the function will fail if the
buffer does not contain text characters.

dwRequestLength

An unsigned integer which specifies the size of the request payload. If the payload contains text,
this should specify the number of characters in the buffer. If the payload contains binary data,
this value should specify the number of bytes in the buffer. If the lpvRequest parameter points
to a null-terminated string, this value can be -1 and the length of the payload will be
determined automatically. If the Unicode version of this function is called and the length is -1,
the request payload will be UTF-8 encoded prior to being submitted to the server.

lpvResponse

A pointer to a byte buffer which will contain the data returned by the server, or a pointer to a
global memory handle which will reference the data when the function returns. This parameter
may be NULL if the response data is not required. If this parameter is NULL, the
lpdwResponseLength parameter must also be NULL. If a response buffer is provided, the data
will always be returned as a byte stream, even when the Unicode version of this function is
called. If the server returns a text payload, it will typically be UTF-8 encoded and the application
can convert the text to Unicode using the MultiByteToWideChar function.

lpdwResponseLength

A pointer to an unsigned integer which should be initialized to the maximum number of bytes
that can be copied to the buffer specified by the lpvResponse parameter. If the lpvResponse
parameter points to a global memory handle, the length value should be initialized to zero.
When the function returns, this value will be updated with the actual number of bytes of data
that was returned. If the lpvResponse parameter is not NULL, this parameter cannot be NULL.

Return Value
If the function succeeds, the return value is the server status code. If the function fails, the return
value is HTTP_ERROR. To get extended error information, call HttpGetLastError. The application
should always check the return value to determine if the request was successful. If the server
returns a 4xx or 5xx status code, this indicates the request was not accepted and the response
buffer will typically contain information about the cause of the failure.

Remarks
The HttpSubmitRequest function provides a single high-level interface for submitting requests to
a web server and returning the server's response. This function is entirely self-contained and does

not require a client session handle. The current thread will block until the function returns and will
not generate event notifications. If you need to download a large file from a web server and want
progress updates, it is recommended you use the HttpDownloadFile function.

If the service you are using requires authentication, you will need to allocate a
HTTPCONNECTION structure and set the appropriate member values to specify the
authentication method and user credentials. This structure also allows you to provide additional
information, such as additional request header values, a custom timeout period and additional
connection options.

When the lpvRequest parameter is not NULL, the contents of the buffer will be examined to
determine if it contains text or binary data. If the dwRequestLength parameter is -1, the
lpvRequest parameter is always considered to be a pointer a null-terminated string, with the
length calculated by counting the number of characters up to the terminating null character. If the
request payload is text, the function will also attempt to determine if the payload looks like XML or
JSON and will automatically set the appropriate content type. The application can explicitly
provide a MIME content type by setting the lpszContentType member of the
HTTPCONNECTION structure.

Example
// Submit an XML payload to the server and return the response in a global
// memory buffer allocated by the function
LPCTSTR lpszResource = _T("https://www.example.com/postxml");
LPCTSTR lpszRequest = _T("<?xml version=\"1.0\" encoding=\"utf-8\"?>\r\n") \
 _T("<test>\r\n") \
 _T(" <data param=\"A\">Value1</data>\r\n") \
 _T(" <data param=\"B\">Value2</data>\r\n") \
 _T("</test>\r\n");

// Provide additional connection information which includes user credentials
// and a custom header which includes an API token for the service; note that
// we need to initialize the dwSize member of the structure
HTTPCONNECTION httpConnection = { 0, };
httpConnection.dwSize = sizeof(httpConnection);
httpConnection.nAuthType = HTTP_AUTH_BASIC;
httpConnection.lpszUserName = _T("userid");
httpConnection.lpszPassword = _T("secret");
httpConnection.lpszContentType = _T("application/xml");
httpConnection.lpszHeaders = _T("X-API-Token: 99d2fe39-0246-4efa-98e0-
4d775579fa5d");

// Declare the global memory handle which will contain the server response
// and initialize the length to 0, which tells the API that a HGLOBAL handle
// is being used rather than a pointer to a pre-allocated buffer
HGLOBAL hgblResponse = NULL;
DWORD dwLength = 0;

INT nResult = HttpSubmitRequest(
 HTTP_METHOD_POST,
 lpszResource,
 &httpConnection,
 lpszRequest,
 (DWORD)-1,
 &hgblResponse,
 &dwLength);

if (nResult != HTTP_ERROR && hgblResponse != NULL)

{
 LPBYTE lpBuffer = (LPBYTE)GlobalLock(hgblResponse);

 // The lpBuffer variable points to the data returned by the server and
 // the application is responsible for freeing the global memory handle

 GlobalUnlock(hgblResponse);
 GlobalFree(hgblResponse);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpDownloadFile, HttpGetData, HttpPostData, HttpPostJson, HttpPostXml, HttpUploadFile,
HTTPCONNECTION

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpSuspendQueue Function

BOOL WINAPI HttpSuspendQueue(
 HQUEUE hQueue
);

The HttpSuspendQueue function pauses all file transfers for the specified queue.

Parameters
hQueue

A handle to a file transfer queue.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, it will return zero. To get
extended error information, call HttpGetLastError.

Remarks
If there is a file transfer in progress when this function is called, the transfer will complete normally.
The queue manager will enter a suspended state after the transfer has completed and before it
begins processing the next file in the queue.

It is permitted to call HttpSuspendQueue from within a queue event handler. In this case, the
current file transfer will complete and the queue manager will stop processing additional files in
the queue until it is resumed or stopped.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
HttpCancelQueuedFile, HttpGetQueueStatus, HttpResetQueue, HttpResumeQueue,
HttpStartQueue, HttpStopQueue

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpTaskAbort Function

BOOL WINAPI HttpTaskAbort(
 UINT nTaskId,
 DWORD dwMilliseconds
);

Abort the specified asynchronous task.

Parameters
nTaskId

The task identifier.

dwMilliseconds

An unsigned integer that specifies the number of milliseconds to wait for the background task
to abort.

Return Value
If the function succeeds and the worker thread has terminated, the return value is non-zero. A
return value of zero indicates that the worker thread is still running or an error has occurred. To
get extended error information, call the HttpGetLastError function.

Remarks
The HttpTaskAbort function signals the background worker thread associated with the task ID to
abort the current operation and terminate as soon as possible. If the dwMilliseconds parameter
has a value of zero, the function returns immediately after the background thread has been
signaled. If the dwMilliseconds parameter is non-zero, the function will wait that amount of time
for the background thread to terminate.

This function should never be called from within the event handler for an asynchronous task
because it can cause the process to deadlock. To abort a file transfer within an event handler, use
the HttpCancel function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
HttpTaskDone, HttpTaskResume, HttpTaskSuspend, HttpTaskWait

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpTaskDone Function

BOOL WINAPI HttpTaskDone(
 UINT nTaskId
);

Determine if an asynchronous task has completed.

Parameters
nTaskId

The task identifier.

Return Value
If the asynchronous task has completed, this function returns a non-zero value. A return value of
zero indicates that the worker thread is still running or an error has occurred. To get extended
error information, call the HttpGetLastError function.

Remarks
The HttpTaskDone function is used to determine if the specified asynchronous task has
completed. If you use this function to poll the status of a background task from within the main UI
thread, you must ensure that Windows messages are processed so that the application remains
responsive to the end-user. To check if a background transfer has completed, it is recommended
that you use a timer to periodically call this function rather than calling it repeatedly within a loop.

To determine if the task completed successfully, the HttpGetTaskError function will return the last
error code associated with the task. A return value of zero indicates success, while a non-zero
return value specifies an error code that indicates the cause of the failure. The last error code for
the task can also be retrieved using the HttpTaskWait function, which causes the application to
wait for the asynchronous task to complete.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
HttpGetTaskError, HttpTaskAbort, HttpTaskResume, HttpTaskSuspend, HttpTaskWait

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpTaskResume Function

BOOL WINAPI HttpTaskResume(
 UINT nTaskId
);

Resume execution of an asynchronous task.

Parameters
nTaskId

The task identifier.

Return Value
If the asynchronous task has resumed, this function returns a non-zero value. A return value of
zero indicates that an error has occurred. To get extended error information, call the
HttpGetLastError function.

Remarks
The HttpTaskResume function resumes execution of the background worker thread that was
previously suspended using the HttpTaskSuspend function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
HttpTaskAbort, HttpTaskDone, HttpTaskSuspend, HttpTaskWait

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpTaskSuspend Function

BOOL WINAPI HttpTaskSuspend(
 UINT nTaskId
);

Suspend execution of an asynchronous task.

Parameters
nTaskId

The task identifier.

Return Value
If the asynchronous task has resumed, this function returns a non-zero value. A return value of
zero indicates that an error has occurred. To get extended error information, call the
HttpGetLastError function.

Remarks
The HttpTaskSuspend function will suspend execution of the background worker thread
associated with the task. Once the task has been suspended, it will no longer be scheduled for
execution, however the client session will remain active and the task may be resumed using the
HttpTaskResume function. Note that if a task is suspended for a long period of time, the
background operation may fail because it has exceeded the timeout period imposed by the
server.

This function should never be called from within the event handler for an asynchronous task
because it can cause the process to deadlock.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
HttpTaskAbort, HttpTaskDone, HttpTaskResume, HttpTaskWait

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpTaskWait Function

BOOL WINAPI HttpTaskWait(
 UINT nTaskId,
 DWORD dwMilliseconds,
 DWORD dwReserved,
 LPDWORD lpdwElapsed,
 LPDWORD lpdwError
);

Wait for an asynchronous task to complete.

Parameters
nTaskId

The task identifier.

dwMilliseconds

An unsigned integer that specifies the number of milliseconds to wait for the background task
to complete.

dwReserved

An unsigned integer reserved for future use. This value should always be zero.

lpdwElapsed

A pointer to an unsigned integer that will contain elapsed time in milliseconds when the
function returns. If this information is not required, this parameter may be NULL.

lpdwError

A pointer to an unsigned integer that will contain the error code associated with the completed
task. If this information is not required, this parameter may be NULL.

Return Value
If the function succeeds and the worker thread has terminated, the return value is non-zero. A
return value of zero indicates that the worker thread is still running or an error has occurred. To
get extended error information, call the HttpGetLastError function.

Remarks
The HttpTaskWait function waits for the specified task to complete. If the task is active and the
dwMilliseconds parameter is non-zero, this function will cause the current working thread to block
until the task completes or the amount of time exceeds the number of milliseconds specified by
the caller. If the dwMilliseconds parameter is zero, then this function will poll the status of the task
and return immediately to the caller.

If the specified task has already completed at the time this function is called, the function will
return immediately without causing the current thread to block. If the lpdwElapsed parameter is
not NULL, it will contain the number of milliseconds that it took for the task to complete. If the
lpdwError parameter is not NULL, it will contain the last error code value that was set by the
worker thread before it terminated. If this value is zero, that means that the background operation
was successful and no error occurred. A non-zero value will indicate that the background
operation has failed.

You should not call this function from the main UI thread with a long timeout period to wait for a
background task to complete. Windows messages will not be processed while this function is
blocked waiting for the background task to complete, and this can cause your application to

appear non-responsive to the end-user. If you have a GUI application and you need to
periodically check to see if a task has completed, create a timer to periodically call the
HttpTaskDone function. When it returns a non-zero value (indicating that the task has
completed), you can safely call HttpTaskWait to obtain the elapsed time and last error code
without blocking the current thread.

This function should never be called from within the event handler for an asynchronous task
because it can cause the process to deadlock.

Example
UINT nTaskId;

// Begin a file transfer in the background

nTaskId = HttpAsyncGetFile(hClient,
 lpszLocalFile,
 lpszRemoteFile,
 HTTP_TRANSFER_DEFAULT,
 0,
 NULL,
 0);

if (nTaskId != 0)
{
 DWORD dwError = NO_ERROR;
 DWORD dwElapsed = 0;

 // Wait for the transfer to complete
 HttpTaskWait(nTaskId, INFINTE, &dwElapsed, &dwError);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
HttpTaskDone, HttpTaskResume, HttpTaskSuspend, HttpTaskWait

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpUninitialize Function

VOID WINAPI HttpUninitialize();

The HttpUninitialize function terminates the use of the library.

Parameters
There are no parameters.

Return Value
None.

Remarks
An application is required to perform a successful HttpInitialize call before it can call any of the
other library functions. When it has completed the use of library, the application must call
HttpUninitialize to allow the library to free any resources allocated on behalf of the process. Any
pending blocking or asynchronous calls in this process are canceled without posting any
notification messages, and all sockets that were opened by the process are closed.

There must be a call to HttpUninitialize for every successful call to HttpInitialize made by a
process. In a multithreaded environment, operations for all threads in the client are terminated.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
HttpDisconnect, HttpInitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpUploadFile Function

BOOL WINAPI HttpUploadFile(
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszRemoteFile,
 UINT nTimeout
 DWORD dwOptions
 LPHTTPTRANSFERSTATUS lpStatus
 HTTPEVENTPROC lpEventProc
 DWORD_PTR dwParam
);

The HttpUploadFile function uploads the specified file from the local system to the server.

Parameters
lpszLocalFile

A pointer to a string that specifies the file on the local system that will be uploaded to the
server. The file pathing and name conventions must be that of the local host.

lpszRemoteFile

A pointer to a string that specifies the complete URL of the file that will be created or
overwritten on the server. The URL must follow the conventions for the Hypertext Transfer
Protocol and may specify either a standard or secure connection, alternate port number,
username, password and optional working directory.

nTimeout

The number of seconds that the client will wait for a response before failing the operation. A
value of zero specifies that the default timeout period of sixty seconds will be used.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

HTTP_OPTION_NOCACHE This instructs the server to not return a cached
copy of the resource. When connected to an
HTTP 1.0 or earlier server, this directive may be
ignored.

HTTP_OPTION_REDIRECT This option specifies the client should
automatically handle resource redirection. If the
server indicates that the requested resource has
moved to a new location, the client will close the
current connection and request the resource from
the new location. Note that it is possible that the
redirected resource will be located on a different
server.

HTTP_OPTION_PROXY This option specifies the client should use the
default proxy configuration for the local system. If
the system is configured to use a proxy server,
then the connection will be automatically
established through that proxy; otherwise, a direct

connection to the server is established. The local
proxy configuration can be changed using the
system Control Panel.

HTTP_OPTION_NOUSERAGENT This option specifies the client should not include
a User-Agent header with any requests made
during the session. The user agent is a string
which is used to identify the client application to
the server. If this option is not specified, a default
user agent string will be included with the request.

HTTP_OPTION_HTTP2 This option specifies the client should attempt a
HTTP/2 connection with the server. If a
connection cannot be established using HTTP/2
the client will attempt to connect using an earlier
version of the protocol.

HTTP_OPTION_TUNNEL This option specifies that a tunneled TCP
connection and/or port-forwarding is being used
to establish the connection to the server. This
changes the behavior of the client with regards to
internal checks of the destination IP address and
remote port number, default capability selection
and how the connection is established.

HTTP_OPTION_TRUSTEDSITE This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option
only affects connections using either the SSL or
TLS protocols.

HTTP_OPTION_SECURE This option specifies the client should attempt to
establish a secure connection with the server.
Note that the server must support secure
connections using either the SSL or TLS protocol.
The client will default to using TLS 1.2 or later for
secure connections.

HTTP_OPTION_SECURE_FALLBACK This option specifies the client should permit the
use of less secure cipher suites for compatibility
with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

HTTP_OPTION_PREFER_IPV6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be resolved
to both an IPv6 and IPv4 address. This option is
ignored if the local system does not have IPv6
enabled, or when the hostname can only be
resolved to an IPv4 address. If the server
hostname can only be resolved to an IPv6
address, the client will attempt to establish a
connection using IPv6 regardless if this option has
been specified.

HTTP_OPTION_HIRES_TIMER This option specifies the elapsed time for data
transfers should be returned in milliseconds
instead of seconds. This will return more accurate
transfer times for smaller amounts of data over
fast network connections.

lpStatus

A pointer to an HTTPTRANSFERSTATUS structure which contains information about the status of
the current file transfer. If this information is not required, a NULL pointer may be specified as
the parameter.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the HttpEventProc callback
function. If this parameter is NULL, the callback for the specified event is disabled.

dwParam

A user-defined integer value that is passed to the callback function.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call HttpGetLastError.

Remarks
The HttpUploadFile function provides a convenient way for an application to upload a file in a
single function call. Based on the connection information specified in the URL, it will connect to the
server, authenticate the session and then upload the file to the server. The URL must be complete,
and specify either a standard or secure HTTP scheme:

[http|https]://[username : password] @] hostname [:port] / [path / ...]
[filename]

If no user name and password is provided, then the client session will be authenticated as an
anonymous user. The URL scheme will always determine if the connection is secure, not the
option. In other words, if the "http" scheme is used and the HTTP_OPTION_SECURE option is
specified, that option will be ignored. To establish a secure connection, the "https" scheme must
be specified.

Not all web servers permit files to be uploaded and some may require that specific configuration
changes be made to the server in order to support this functionality. Consult your server's
technical reference documentation to see if it supports the PUT command, and if so, what must be
done to enable it. It may be required that the URL specify a username and password to upload a
file.

If your application requests a HTTP/2 connection and the server only accepts earlier versions of
the protocol, the client will attempt to automatically downgrade the request to HTTP/1.1. If a
connection using an earlier version of the protocol cannot be established, the method will fail and
return a value of zero.

The lpStatus parameter can be used by the application to determine the final status of the
transfer, including the total number of bytes copied, the amount of time elapsed and other
information related to the transfer process. If this information isn't needed, then this parameter
may be specified as NULL.

The lpEventProc parameter specifies a pointer to a function which will be periodically called during

the file transfer process. This can be used to check the status of the transfer by calling
HttpGetTransferStatus and then update the program's user interface. For example, the callback
function could calculate the percentage for how much of the file has been transferred and then
update a progress bar control. The dwParam parameter is used in conjunction with the event
handler and specifies a user-defined value that is passed to the callback function. One common
use in a C++ program is to pass the this pointer as the value, and then cast it back to an object
pointer inside the callback function. If no event handler is required, then a NULL pointer can be
specified as the value for lpEventProc and the dwParam parameter will be ignored.

The HttpUploadFile function is designed to provide a simpler interface for uploading a file.
However, complex connections such as those using a specific proxy server or a secure connection
which uses a client certificate will require the program to establish the connection using
HttpConnect or HttpProxyConnect and then use HttpPutFile to upload the file. If the server
does not support the PUT command, you may be able to upload files using the HttpPostFile
function. Refer to that function for more information.

Example
HTTPTRANSFERSTATUS httpStatus;
LPCTSTR lpszLocalFile = _T("c:\\temp\\database.mdb");
LPCTSTR lpszRemoteFile =
_T("https://update:secret@www.example.com/updates/database.mdb");
BOOL bResult;

// Upload the file using the specified URL
bResult = HttpUploadFile(lpszLocalFile,
 lpszRemoteFile,
 HTTP_OPTION_DEFAULT,
 &httpStatus,
 NULL, 0);

if (!bResult)
{
 TCHAR szError[128];

 // Display a message box that describes the error
 HttpGetErrorString(HttpGetLastError(), szError, 128);
 MessageBox(NULL, szError, NULL, MB_ICONEXCLAMATION|MB_TASKMODAL);
 return;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpDownloadFile, HttpEventProc, HttpGetTransferStatus, HttpPostFile, HttpPutFile,
HttpSubmitRequest, HTTPTRANSFERSTATUS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpUploadFileEx Function

BOOL WINAPI HttpUploadFileEx(
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszRemoteFile,
 UINT nTimeout
 DWORD dwOptions
 LPHTTPTRANSFERSTATUSEX lpStatus
 HTTPEVENTPROC lpEventProc
 DWORD_PTR dwParam
);

The HttpUploadFileEx function uploads the specified file from the local system to the server. This
version of the function is designed to support files that are larger than 4GB.

Parameters
lpszLocalFile

A pointer to a string that specifies the file on the local system that will be uploaded to the
server. The file pathing and name conventions must be that of the local host.

lpszRemoteFile

A pointer to a string that specifies the complete URL of the file that will be created or
overwritten on the server. The URL must follow the conventions for the Hypertext Transfer
Protocol and may specify either a standard or secure connection, alternate port number,
username, password and optional working directory.

nTimeout

The number of seconds that the client will wait for a response before failing the operation. A
value of zero specifies that the default timeout period of sixty seconds will be used.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

HTTP_OPTION_NOCACHE This instructs the server to not return a cached
copy of the resource. When connected to an
HTTP 1.0 or earlier server, this directive may be
ignored.

HTTP_OPTION_REDIRECT This option specifies the client should
automatically handle resource redirection. If the
server indicates that the requested resource has
moved to a new location, the client will close the
current connection and request the resource from
the new location. Note that it is possible that the
redirected resource will be located on a different
server.

HTTP_OPTION_PROXY This option specifies the client should use the
default proxy configuration for the local system. If
the system is configured to use a proxy server,
then the connection will be automatically

established through that proxy; otherwise, a direct
connection to the server is established. The local
proxy configuration can be changed using the
system Control Panel.

HTTP_OPTION_NOUSERAGENT This option specifies the client should not include
a User-Agent header with any requests made
during the session. The user agent is a string
which is used to identify the client application to
the server. If this option is not specified, a default
user agent string will be included with the request.

HTTP_OPTION_HTTP2 This option specifies the client should attempt a
HTTP/2 connection with the server. If a
connection cannot be established using HTTP/2
the client will attempt to connect using an earlier
version of the protocol.

HTTP_OPTION_TUNNEL This option specifies that a tunneled TCP
connection and/or port-forwarding is being used
to establish the connection to the server. This
changes the behavior of the client with regards to
internal checks of the destination IP address and
remote port number, default capability selection
and how the connection is established.

HTTP_OPTION_TRUSTEDSITE This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option
only affects connections using either the SSL or
TLS protocols.

HTTP_OPTION_SECURE This option specifies the client should attempt to
establish a secure connection with the server.
Note that the server must support secure
connections using either the SSL or TLS protocol.
The client will default to using TLS 1.2 or later for
secure connections.

HTTP_OPTION_SECURE_FALLBACK This option specifies the client should permit the
use of less secure cipher suites for compatibility
with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

HTTP_OPTION_PREFER_IPV6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be resolved
to both an IPv6 and IPv4 address. This option is
ignored if the local system does not have IPv6
enabled, or when the hostname can only be
resolved to an IPv4 address. If the server
hostname can only be resolved to an IPv6
address, the client will attempt to establish a
connection using IPv6 regardless if this option has

been specified.

HTTP_OPTION_HIRES_TIMER This option specifies the elapsed time for data
transfers should be returned in milliseconds
instead of seconds. This will return more accurate
transfer times for smaller amounts of data over
fast network connections.

lpStatus

A pointer to an HTTPTRANSFERSTATUSEX structure which contains information about the status
of the current file transfer. If this information is not required, a NULL pointer may be specified as
the parameter.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the HttpEventProc callback
function. If this parameter is NULL, the callback for the specified event is disabled.

dwParam

A user-defined integer value that is passed to the callback function.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call HttpGetLastError.

Remarks
The HttpUploadFileEx function provides a convenient way for an application to upload a file in a
single function call. Based on the connection information specified in the URL, it will connect to the
server, authenticate the session and then upload the file to the server. The URL must be complete,
and specify either a standard or secure HTTP scheme:

[http|https]://[username : password] @] hostname [:port] / [path / ...]
[filename]

If no user name and password is provided, then the client session will be authenticated as an
anonymous user. The URL scheme will always determine if the connection is secure, not the
option. In other words, if the "http" scheme is used and the HTTP_OPTION_SECURE option is
specified, that option will be ignored. To establish a secure connection, the "https" scheme must
be specified.

Not all web servers permit files to be uploaded and some may require that specific configuration
changes be made to the server in order to support this functionality. Consult your server's
technical reference documentation to see if it supports the PUT command, and if so, what must be
done to enable it. It may be required that the URL specify a username and password to upload a
file.

If your application requests a HTTP/2 connection and the server only accepts earlier versions of
the protocol, the client will attempt to automatically downgrade the request to HTTP/1.1. If a
connection using an earlier version of the protocol cannot be established, the method will fail and
return a value of zero.

The lpStatus parameter can be used by the application to determine the final status of the
transfer, including the total number of bytes copied, the amount of time elapsed and other
information related to the transfer process. If this information isn't needed, then this parameter
may be specified as NULL.

The lpEventProc parameter specifies a pointer to a function which will be periodically called during
the file transfer process. This can be used to check the status of the transfer by calling
HttpGetTransferStatus and then update the program's user interface. For example, the callback
function could calculate the percentage for how much of the file has been transferred and then
update a progress bar control. The dwParam parameter is used in conjunction with the event
handler and specifies a user-defined value that is passed to the callback function. One common
use in a C++ program is to pass the this pointer as the value, and then cast it back to an object
pointer inside the callback function. If no event handler is required, then a NULL pointer can be
specified as the value for lpEventProc and the dwParam parameter will be ignored.

The HttpUploadFileEx function is designed to provide a simpler interface for uploading a file.
However, complex connections such as those using a specific proxy server or a secure connection
which uses a client certificate will require the program to establish the connection using
HttpConnect or HttpProxyConnect and then use HttpPutFileEx to upload the file. If the server
does not support the PUT command, you may be able to upload files using the HttpPostFile
function. Refer to that function for more information.

Example
HTTPTRANSFERSTATUSEX httpStatus;
LPCTSTR lpszLocalFile = _T("c:\\temp\\database.mdb");
LPCTSTR lpszRemoteFile =
_T("http://update:secret@www.example.com/updates/database.mdb");
BOOL bResult;

// Upload the file using the specified URL
bResult = HttpUploadFileEx(lpszLocalFile,
 lpszRemoteFile,
 HTTP_OPTION_DEFAULT,
 &httpStatus,
 NULL, 0);

if (!bResult)
{
 TCHAR szError[128];

 // Display a message box that describes the error
 HttpGetErrorString(HttpGetLastError(), szError, 128);
 MessageBox(NULL, szError, NULL, MB_ICONEXCLAMATION|MB_TASKMODAL);
 return;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpEventProc, HttpDownloadFileEx, HttpGetTransferStatusEx, HttpPostFile, HttpPutFileEx,
HTTPTRANSFERSTATUSEX

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpValidateHostName Function

BOOL WINAPI HttpValidateHostName(
 LPCTSTR lpszHostName,
 LPTSTR lpszAddress,
 INT nMaxLength
);

The HttpValidateHostName function determines if the specified host name is valid and returns
its IP address.

Parameters
lpszHostName

A pointer to a null terminated string which specifies the host name. The function will fail If this
parameter is NULL or an empty string.

lpszAddress

A pointer to a string buffer which will contain the IP address of the host. If specified, this string
must be large enough to store the complete IP address, including the terminating null
character. If this parameter is NULL or the nMaxLength parameter is zero, it will be ignored and
the IP address will not be returned.

nMaxLength

An integer value that specifies the maximum number of characters which can be copied into the
lpszAddress string buffer. The buffer must be large enough to store the complete address.
Because this function can return either an IPv4 or IPv6 address, it is recommended the minimum
length for the buffer to be 46 characters. If this parameter is zero, the lpszAddress parameter
will be ignored.

Return Value
If the function succeeds, the host name is valid and the return value will be non-zero. If the
function fails, the host name could not be resolved to an IP address and the return value will be
zero. To get extended error information, call HttpGetLastError.

Remarks
The HttpValidateHostName function provides a convenient way to determine if a host name is
valid by attempting to resolve the name into an IP address. If the Unicode version of this function
is used, any non-ASCII characters in the host name will be automatically encoded into a
compatible format and then resolved to an IP address. If you are unsure if an internationalized
domain name will be specified as the host name, it is recommended you use the Unicode version.

If the lpszHostName parameter specifies a valid IPv4 or IPv6 address string instead of a host
name, this function will return a copy of that IP address in the buffer provided by the caller. This
allows the function to be used in cases where a user may input either a host name or IP address.

If you wish to validate a complete HTTP URL instead of a host name, use the HttpValidateUrl
function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cstools11.h
Import Library: cshtpv11.lib

Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpConnectUrl, HttpValidateUrl

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpValidateUrl Function

BOOL WINAPI HttpValidateUrl(
 LPCTSTR lpszUrl
);

The HttpValidateUrl function determines if a string represents a valid HTTP URL.

Parameters
lpszUrl

A pointer to a string that specifies the URL to validate.

Return Value
If the specified URL is valid and the host name can be resolved to an IP address, the return value is
non-zero. If the function fails, the return value is zero. To get extended error information, call
HttpGetLastError.

Remarks
The HttpValidateUrl function will check the value of a string to ensure that it represents a
complete, valid URL using either a standard or secure HTTP scheme. This function will not establish
a connection with the server to verify that it exists, it will only attempt to resolve the host name to
an IP address. If the remote host is specified as an IP address, this function will check to make sure
that the address is formatted correctly. Note that if you wish to specify an IPv6 address, you must
enclose the address in brackets.

To establish a connection with a server using a URL, use the HttpConnectUrl function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpConnectUrl, HttpValidateHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpVerifyFile Function

BOOL WINAPI HttpVerifyFile(
 HCLIENT hClient,
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszRemoteFile,
 DWORD dwReserved
);

The HttpVerifyFile function attempts to verify that the size of a file on the local system is the
same as the specified file on the server.

Parameters
hClient

Handle to the client session.

lpszLocalFile

A pointer to a string that specifies the name of file on the local system.

lpszRemoteFile

A pointer to a string that specifies the name of the file on the server.

dwReserved

A reserved parameter. This value should always be zero.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call HttpGetLastError.

Remarks
The HttpVerifyFile function will attempt to verify that the contents of the local and remote files
are identical by comparing the size of the files. This function is provided for compatibility with the
File Transfer Protocol API, and should not be considered a reliable method for comparing files.
Web servers may not consistently return file size information for dynamically created content such
as HTML pages which use server-side includes.

It is not recommended that you use this function with text files because of the different end-of-line
conventions used by different operating systems. For example, a text file on a Windows system
uses a carriage-return and linefeed pair to indicate the end of a line of text. However, on a UNIX
system, a single linefeed is used to indicate the end of a line. This can cause the HttpVerifyFile
function to indicate the files are not identical, even though the only difference is in the end-of-line
characters that are used.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpDeleteFile, HttpGetFile, HttpGetFileSize, HttpPutFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpWaitForQueue Function

BOOL WINAPI HttpWaitForQueue(
 HQUEUE hQueue,
 DWORD dwMilliseconds,
 LPDWORD lpdwElapsed,
 LPDWORD lpdwError
);

The HttpWaitForQueue function waits for the specified queue to complete the file transfers.

Parameters
hQueue

A handle to a file transfer queue.

dwMilliseconds

An unsigned integer value which specifies the number of milliseconds to wait for the queue to
complete processing. If this value is zero, the function will return immediately. If this value is
INFINITE (0xFFFFFFFF), the function will block indefinitely until all files in the queue have been
processed.

lpdwElapsed

A pointer to an unsigned integer which will contain the number of milliseconds the queue
manager has been active when the function returns. If this information is not needed, this
parameter can be NULL. If this parameter is not NULL, it will always be initialized to a value of
zero.

lpdwError

A pointer to an unsigned integer which will contain the last error code set if a file transfer has
failed or was canceled. If this information is not needed, this parameter can be NULL. If this
parameter is not NULL, it will always be initialized to a value of zero.

Return Value
If the function succeeds, the return value is non-zero, which means the queue manager has
completed transferring all queued files. If the function fails, or the timeout period elapses, it will
return zero. To get extended error information, call HttpGetLastError.

Remarks
This function will cause the current thread to block until either the queue manager has completed
processing all files in the queue, or until the specified number of milliseconds have elapsed. It is
important to note that Windows messages will not be processed during this time. If you call this
function within the main UI thread, it can potentially cause the application to become non-
responsive. To determine the current state of the queue without blocking the current thread, call
the HttpGetQueueStatus function.

If the dwMilliseconds parameter is non-zero and file transfers have not completed within the
specified amount of time, the function will return zero and the last error code will be set to
ST_ERROR_OPERATION_TIMEOUT.

If an event callback function has been specified when starting the queue, you should never call this
function within the event handler. Attempting to do so can potentially create a situation which will
cause the application to become non-responsive. The function will return zero if it determines it's
being called within the context of the queue manager thread and will set the last error code to

ST_ERROR_THREAD_DEADLOCK.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
HttpGetQueueStatus, HttpResetQueue, HttpResumeQueue, HttpStartQueue, HttpStopQueue,
HttpSuspendQueue

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpWrite Function

INT WINAPI HttpWrite(
 HCLIENT hClient,
 LPBYTE lpBuffer,
 INT cbBuffer
);

The HttpWrite function sends the specified number of bytes to the server.

Parameters
hClient

Handle to the client session.

lpBuffer

The pointer to the buffer which contains the data that is to be sent to the server.

cbBuffer

The number of bytes to send from the specified buffer.

Return Value
If the function succeeds, the return value is the number of bytes actually written. If the function
fails, the return value is HTTP_ERROR. To get extended error information, call HttpGetLastError.

Remarks
The return value may be less than the number of bytes specified by the cbBuffer parameter. In this
case, the data has been partially written and it is the responsibility of the client application to send
the remaining data at some later point. For non-blocking clients, the client must wait for an
asynchronous notification message before it resumes sending data.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
HttpIsBlocking, HttpIsReadable, HttpIsWritable, HttpRead

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Hypertext Transfer Protocol Data Structures

HTTPCONNECTION
HTTPFORMPROPERTIES
HTTPQUEUEDFILE
HTTPQUEUESTATUS
HTTPTRANSFERSTATUS
HTTPTRANSFERSTATUSEX
INITDATA
SECURITYCREDENTIALS
SECURITYINFO
SYSTEMTIME

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HTTPCONNECTION Structure

The HTTPCONNECTION structure provides additional information used when submitting a
request to the server.

typedef struct _HTTPCONNECTION
{
 DWORD dwSize;
 DWORD dwOptions;
 DWORD dwVersion;
 UINT nTimeout;
 UINT nEncoding;
 UINT nProxyType;
 UINT nProxyPort;
 UINT nAuthType;
 LPCTSTR lpszProxyServer;
 LPCTSTR lpszProxyUser;
 LPCTSTR lpszProxyPassword;
 LPCTSTR lpszUserAgent;
 LPCTSTR lpszUserName;
 LPCTSTR lpszPassword;
 LPCTSTR lpszContentType;
 LPCTSTR lpszHeaders;
 LPSECURITYCREDENTIALS lpCredentials;
} HTTPCONNECTION, *LPHTTPCONNECTION;

Members
dwSize

The size of this structure in bytes. If this member is not initialized to the correct value, the
structure will be considered invalid.

dwOptions

A bitmask of supported options. The value of this structure member is constructed by using a
bitwise operator with any of the following values:

Constant Description

HTTP_OPTION_NOCACHE This instructs the server to not return a cached
copy of the resource.

HTTP_OPTION_REDIRECT This option specifies the client should
automatically handle resource redirection. If the
server indicates that the requested resource has
moved to a new location, the client will close the
current connection and request the resource from
the new location. Note that it is possible that the
redirected resource will be located on a different
server.

HTTP_OPTION_PROXY This option specifies the client should use the
default proxy configuration for the local system. If
the system is configured to use a proxy server,
then the connection will be automatically
established through that proxy; otherwise, a direct
connection to the server is established. The local

proxy configuration can be changed in the system
settings or control panel.

HTTP_OPTION_NOUSERAGENT This option specifies the client should not include
a User-Agent header with any requests made
during the session. The user agent is a string
which is used to identify the client application to
the server. If this option is set, the value of the
lpszUserAgent member will be ignored.

HTTP_OPTION_HTTP2 This option specifies the client should attempt a
HTTP/2 connection with the server. If a
connection cannot be established using HTTP/2
the client will attempt to connect using an earlier
version of the protocol. The value of the
dwVersion member will be ignored when this
option is used.

HTTP_OPTION_TRUSTEDSITE This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option
only affects secure connections.

HTTP_OPTION_SECURE This option specifies the client should attempt to
establish a secure connection with the server even
if the request URL does not use the https://
scheme. If this option is not specified, the type of
connection depends on the URL scheme provided
when submitting the request.

HTTP_OPTION_SECURE_FALLBACK This option specifies the client should permit the
use of less secure cipher suites for compatibility
with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

HTTP_OPTION_PREFER_IPV6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be resolved
to both an IPv6 and IPv4 address. This option is
ignored if the local system does not have IPv6
enabled, or when the hostname can only be
resolved to an IPv4 address. If the server
hostname can only be resolved to an IPv6
address, the client will attempt to establish a
connection using IPv6 regardless if this option has
been specified.

dwVersion

A value which specifies the requested protocol version used when sending requests to the
server. The high word should specify the major version, and the low word should specify the
minor version number. If this value is zero, the default protocol version will be used. The
HTTPVERSION macro can be used to create a version value, or the following values can be
used:

Constant Description

HTTP_VERSION_DEFAULT The client should use the default protocol version for this
session. This is the same as specifying HTTP_VERSION_11
and is recommended to ensure the broadest compatibility
with most servers.

HTTP_VERSION_10 The client should use the HTTP/1.0 protocol standard
originally defined in RFC 1945. This version of the protocol
supports the use of request header blocks, however it does
not support persistent connections or chunked data and
has limited cache control mechanisms.

HTTP_VERSION_11 The client should use the HTTP/1.1 protocol standard
defined in RFC 2616 and RFC 7230. This is the most widely
used version of the protocol and is the default for client
connections. It is recommended most applications use this
version.

HTTP_VERSION_20 The client should use the HTTP/2 protocol standard
defined in RFC 7540. This protocol version is a significant
change from previous versions and can provide improved
performance with header compression and optimizing how
requests are serviced. If the client or server does not
support HTTP/2, the client will automatically attempt to use
an earlier version of the protocol.

nTimeout

The number of seconds that the client will wait for a response from the server before failing the
operation. If this value is zero, a default timeout period of 20 seconds will be used.

nEncoding

A value which specifies the content encoding type for the request. If the value is zero, no
encoding will be used. The following values are defined:

Constant Description

HTTP_ENCODING_NONE No encoding will be applied to the content of a request
and no default content type will be specified. This encoding
type should be used with REST APIs and other services
which expect XML or JSON request payloads.

HTTP_ENCODING_URL Non-printable and extended ASCII characters will be
encoded so they can be safely used with URLs and form
data. Encoded characters will be represented by a percent
symbol prefix, followed by a two digit hexadecimal value
which represents the ASCII character code. This encoding is
typically used with web services which process HTML form
data.

HTTP_ENCODING_XML This encoding is identical to URL encoding, except spaces
are not encoded. It is used with legacy web services which
expect form data in an XML format and cannot process
encoded whitespace. This encoding should not be specified
for services which use REST APIs.

nProxyType

A value which specifies the type of proxy server the client is connecting to. A value of zero
specifies no proxy server is being used and the client should establish a direct connection to the
server. The following proxy server types are supported:

Constant Description

HTTP_PROXY_NONE A direct connection will be established with the server.
When this value is specified the proxy parameters are
ignored.

HTTP_PROXY_STANDARD A standard connection is established through the specified
proxy server, and all resource requests will be specified
using a complete URL. This proxy type should be used with
standard connections.

HTTP_PROXY_SECURE A secure connection is established through the specified
proxy server. This proxy type should be used with secure
connections and the HTTP_OPTION_SECURE option should
also be set via the dwOptions parameter.

HTTP_PROXY_WINDOWS The configuration options for the current system should be
used. If the system is configured to use a proxy server, then
the connection will be automatically established through
that proxy; otherwise, a direct connection to the server is
established. These settings are the same proxy server
settings configured in Windows.

nProxyPort

A value which specifies the port the proxy server will use to accept connections. This value is
ignored if the proxy type is set to HTTP_PROXY_NONE or HTTP_PROXY_WINDOWS and no
proxy configuration has been specified for the local system.

nAuthType

A value which specifies the type of authentication used to establish the connection. If the value
is zero, the client session will not be authenticated. The following values are defined:

Constant Description

HTTP_AUTH_NONE No client authentication should be performed. The
lpszUserName and lpszPassword members are ignored.

HTTP_AUTH_BASIC The Basic authentication scheme should be used. This option is
supported by all servers that support at least version 1.0 of the
protocol. The user credentials are not encrypted and Basic
authentication should not be used over standard (non-secure)
connections. Most web services which use Basic authentication
require the connection to be secure.

HTTP_AUTH_BEARER The Bearer authentication scheme should be used. This
authentication method does not require a user name and the
lpszPassword member must specify the OAuth 2.0 bearer token
issued by the service provider. If the access token has expired,
the request will fail with an authorization error.

lpszProxyServer

A pointer to a null terminated string which identifies the proxy server which should be used to
establish the connection. If this value is ignored if the nProxyType member is zero. If a proxy
server type has been been specified, this value cannot be a NULL pointer or an empty string.

lpszProxyUser

A pointer to a null terminated string which specifies the user name used to authenticate the
connection to the proxy server. If the proxy server does not require user authentication, this
member can be a NULL pointer or an empty string. This member is ignored if the nProxyType
member is zero.

lpszProxyPassword

A pointer to a null terminated string which specifies the password used to authenticate the
connection to the proxy server. If the proxy server does not require user authentication, this
member can be a NULL pointer or an empty string. This member is ignored if the nProxyType
member is zero.

lpszUserAgent

A pointer to a null terminated string which identifies the application which is making a request
to the server. If this value is NULL or an empty string, a default user agent string will be included
with the request. To prevent a user agent from being included with the request, use the
HTTP_OPTION_NOUSERAGENT option.

lpszUserName

A pointer to a null terminated string which specifies the user name used to authenticate the
client session. This member may be NULL or an empty string if a user name is not required for
the specified authentication type.

lpszPassword

A pointer to a null terminated string which specifies the password used to authenticate the client
session. This member may be NULL or an empty string if a password is not required for the
specified authentication type. If the authentication type is HTTP_AUTH_BEARER, this value must
be the bearer token issued by the service provider.

lpszContentType

A pointer to a null terminated string which specifies the MIME content type for the request. If
this member is NULL or specifies an empty string, the content type will be automatically
determined based on the contents of the request payload. This value will only be used with PUT
and POST methods.

lpszHeaders

A pointer to a null terminated string which specifies one or more additional header values which
should be included with the request. The string must contain header name and value pairs
separated by a colon, and multiple header values must be terminated with a carriage
return/linefeed (CRLF) sequence after each value. The header values defined in this string will
override any default values.

lpCredentials

A pointer to a SECURITYCREDENTIALS structure. This value is only used if the
HTTP_OPTION_SECURE option is specified in the dwOptions member. This member may be
NULL, in which case no client credentials will be provided to the server.

Remarks
This structure is used with the HttpSubmitRequest function to provide additional information

used to establish a connection with the server. The dwSize member must be initialized to the
actual size of the structure in bytes, and all other members should be initialized to a value of zero
or NULL. If the structure is not initialized correctly, the function will fail and the last error code will
be set to ST_ERROR_INVALID_PARAMETER.

Member values which are zero or NULL pointers will either be ignored or cause the function to
use appropriate default values.

If the dwVersion member has a value of zero, the protocol version will default to an appropriate
value which ensures the broadest compatibility with most servers. If your application specifies
HTTP_VERSION_20, a secure connection using TLS 1.2 or later will always be used. The minimum
required platform for HTTP/2 support is Windows 10 (Version 1903) or Windows Server 2019.
Earlier versions of the Schannel SSP do not support the features required for a secure HTTP/2
connection.

If your application requests a HTTP/2 connection and the server only accepts earlier versions of
the protocol, the client will attempt to automatically downgrade the request to HTTP/1.1. If a
connection using an earlier version of the protocol cannot be established, the connection attempt
will fail.

If the server requires a secure connection with a client certificate, the
HttpCreateSecurityCredentials function can be used to allocate a credentials structure which
can be assigned to the lpCredentials member. Call HttpDeleteSecurityCredentials after the
HttpSubmitRequest function has returned to ensure the memory allocated for the security
credentials has been freed.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpCreateSecurityCredentials, HttpSubmitRequest, SECURITYCREDENTIALS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HTTPFORMPROPERTIES Structure

This structure is used by the HttpGetFormProperties and HttpSetFormProperties function to
return and modify the properties of the specified form.

typedef struct _HTTPFORMPROPERTIES
{
 UINT nFormMethod;
 UINT nFormType;
 LPCTSTR lpszFormAction;
 DWORD dwReserved1;
 DWORD dwReserved2;
} HTTPFORMPROPERTIES, *LPHTTPFORMPROPERTIES;

Members
nFormMethod

An unsigned integer value which specifies how the form data will be submitted to the server. It
may be one of the following values:

Constant Description

HTTP_METHOD_GET The form data should be submitted using the GET command.
This method should be used when the amount of form data is
relatively small. If the total amount of form data exceeds 2048
bytes, it is recommended that the POST method be used
instead.

HTTP_METHOD_POST The form data should be submitted using the POST command.
This is the preferred method of submitting larger amounts of
form data. If the total amount of form data exceeds 2048
bytes, it is recommended that the POST method be used.

nFormType

An unsigned integer value which specifies the type of form and how the data will be encoded
when it is submitted to the server. It may be one of the following values:

Constant Description

HTTP_FORM_ENCODED The form data should be submitted as URL encoded values.
This is typically used when the GET method is used to
submit the data to the server.

HTTP_FORM_MULTIPART The form data should be submitted as multipart form data.
This is typically used when the POST method is used to
submit a file to the server. Note that the script must
understand how to process multipart form data if this form
type is specified.

lpszFormAction

A pointer to a string which specifies the name of the resource that the form data will be
submitted to. Typically this is the name of a script that is executed on the server.

dwReserved1

A reserved structure member.

dwReserved2

A reserved structure member.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpCreateForm, HttpGetFormProperties, HttpSetFormProperties, HttpSubmitForm

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HTTPQUEUEDFILE Structure

This structure is used by the HttpGetFirstQueuedFile, HttpGetNextQueuedFile and
HttpGetQueuedFile functions to return information about a file in the transfer queue.

typedef struct _HTTPQUEUEDFILE
{
 DWORD dwFileId;
 DWORD dwQueueMode;
 DWORD dwQueueFlags;
 DWORD dwTimeElapsed;
 DWORD dwLastError;
 ULARGE_INTEGER uiBytesCopied;
 TCHAR szLocalFile[HTTP_MAXFILENAMELEN];
 TCHAR szRemoteFile[HTTP_MAXURLPATHLEN];
} HTTPQUEUEDFILE, *LPHTTPQUEUEDFILE;

Members
dwFileId

An unsigned integer which specifies a unique identifier for the queued file. The application
should not make any assumptions about the value of the file identifiers. They should be
considered opaque values which are only guaranteed to uniquely identify a file in the transfer
queue. In particular, there is no guarantee that the file identifiers will be sequential and they
should not be used as index values into an array.

dwQueueMode

An unsigned integer value which specifies how the file was queued for transfer. It may be one of
the following values:

Constant Description

HTTP_QUEUE_DOWNLOAD The file was queued for download.

HTTP_QUEUE_UPLOAD The file was queued for upload.

dwQueueFlags

An unsigned integer which specifies one or more bitflags which provides information about the
status of the file transfer. It may be one or more of the following values:

Constant Description

HTTP_QUEUE_FLAG_NONE The file is pending transfer in queue.

HTTP_QUEUE_FLAG_COMPLETED The file has been transferred successfully. If this
flag is set, no errors were encountered during the
upload or download.

HTTP_QUEUE_FLAG_FAILED The file transfer failed. If this flag is set, the
dwError member of this structure will contain the
error code associated with the failed transfer.

HTTP_QUEUE_FLAG_CANCELED The file transfer was canceled. This flag is only set
when the HttpCancelQueuedFile function has
been called and a queued file is in the process of
being uploaded or downloaded.

dwTimeElapsed

An unsigned integer which specifies the number of milliseconds required to complete the
transfer. This value will be zero unless the file has been transferred successfully.

dwLastError

An unsigned integer which specifies the last error code for a failed transfer. If the file was
transferred successfully, this value will be zero.

uiBytesCopied

A value which specifies the number of bytes which were copied during the file transfer. The
ULARGE_INTEGER type is a union of a structure and a 64-bit value which can be used on both
32-bit and 64-bit systems. For languages other than C/C++ you can define this structure
member as an unsigned 64-bit integer type.

szLocalFile

A null terminated string which specifies the full path to the local file being transferred.

szRemoteFile

A null terminated string which specifies the complete URL to the remote file being transferred.

Remarks
It is possible that the szLocalFile and szRemoteFile structure members will be different than the
values passed to the HttpAddQueuedFile function. Those values are normalized, with any
relative paths converted to absolute paths. Internationalized domain names will be encoded and
the URL paths will be collapsed, removing any extraneous path information. For example, if the
remote file name is specified as
https://www.server.tld/folder1/../folder2/filename.txt it would be normalized as
https://www.server.tld/folder2/filename.txt.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpAddQueuedFile, HttpAddQueuedFileEx, HttpGetFirstQueuedFile, HttpGetNextQueuedFile,
HttpGetQueuedFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HTTPQUEUESTATUS Structure

This structure is used by the HttpGetQueueStatus function to return information about the
current status of the file transfer queue.

typedef struct _HTTPQUEUESTATUS
{
 DWORD dwStatus;
 DWORD dwThreadId;
 DWORD dwQueuedFiles;
 DWORD dwPendingFiles;
 DWORD dwCopiedFiles;
 DWORD dwFailedFiles;
 DWORD dwTimeElapsed;
 DWORD dwCurrentFile;
 DWORD dwLastError;
 ULARGE_INTEGER uiBytesCopied;
 ULARGE_INTEGER uiBytesTotal;
} HTTPQUEUESTATUS, *LPHTTPQUEUESTATUS;

Members
dwStatus

An unsigned integer which specifies the current status of the queue. It can be one of the
following values:

Constant Description

HTTP_QUEUE_STATUS_IDLE The file transfer queue is idle and no files are being
uploaded or downloaded. This state is returned
before HttpStartQueue has been called or after
HttpStopQueue has been called. The queue will
also automatically enter an idle state after the last file
transfer has completed and the queue manager
thread exits.

HTTP_QUEUE_STATUS_ACTIVE Files in the queue are being uploaded or
downloaded. The dwCurrentFile member of this
structure identifies the file which is currently being
transferred.

HTTP_QUEUE_STATUS_PAUSED File transfers are currently paused. The queue enters
this state after the HttpSuspendQueue function is
called and resumes file transfers after the
HttpResumeQueue function is called.

dwThreadId

An unsigned integer which specifies the thread ID for the queue manager which is performing
the file transfers. All file transfers are performed asynchronously in a background worker thread.
If this structure member is zero, the queue is idle and not performing file transfers. The
application should not use the thread ID to obtain a handle to suspend or terminate the thread.
This can potentially result in unexpected behavior or instability within the application.

dwQueuedFiles

An unsigned integer which specifies the total number of queued files. This value includes
pending and completed file transfers.

dwPendingFiles

An unsigned integer which specifies the number of files which are queued to be transferred.

dwCopiedFiles

An unsigned integer which specifies the number of files which have been successfully
transferred. This value reflects the total number of files which have the
HTTP_QUEUE_FLAG_COMPLETED status.

dwFailedFiles

An unsigned integer which specifies the number of files which have failed to transfer or the file
transfer has been canceled. This value reflects the total number of files which have the
HTTP_QUEUE_FLAG_FAILED status.

dwTimeElapsed

An unsigned integer which specifies the total amount of time, in milliseconds, the queue
manager has been active performing a file transfer. If the queue is idle, this value will reflect the
total run time for the previously active queue. A value of zero indicates the queue was never
active or the queue state has been reset with a call to HttpResetQueue.

dwCurrentFile

An unsigned integer which specifies the unique identifier for the current file being transferred. If
no file transfer is in progress, this member will have a value of zero. If the value is non-zero, it
can be passed to the HttpGetQueuedFile function to obtain information about the queued
file.

dwLastError

An unsigned integer which specifies the last error code for a failed file transfer. If there have
been no errors, this value will be zero.

uiBytesCopied

A value which specifies the number of bytes which were copied during the current or last
transfer. The ULARGE_INTEGER type is a union of a structure and a 64-bit value which can be
used on both 32-bit and 64-bit systems. For languages other than C/C++ you can define this
structure member as an unsigned 64-bit integer type.

uiBytesTotal

A value which specifies the total number of bytes which were copied during the current queue
run. The ULARGE_INTEGER type is a union of a structure and a 64-bit value which can be used
on both 32-bit and 64-bit systems. For languages other than C/C++ you can define this
structure member as an unsigned 64-bit integer type.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtpv11.lib

See Also
HttpGetQueuedFile, HttpGetQueueStatus, HttpCancelQueuedFile, HttpResetQueue,
HttpResumeQueue, HttpStartQueue, HttpStopQueue, HttpSuspendQueue

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/http/library/ftgetqueuedfile.html

 HTTPTRANSFERSTATUS Structure

This structure is used by the HttpGetTransferStatus function to return information about a data
transfer in progress.

typedef struct _HTTPTRANSFERSTATUS
{
 DWORD dwBytesTotal;
 DWORD dwBytesCopied;
 DWORD dwBytesPerSecond;
 DWORD dwTimeElapsed;
 DWORD dwTimeEstimated;
} HTTPTRANSFERSTATUS, *LPHTTPTRANSFERSTATUS;

Members
dwBytesTotal

The total number of bytes that will be transferred. If the data is being downloaded from the
server to the local host, this is the size of the requested resource. If the data is being uploaded
from the local host to the server, it is the size of the local file or memory buffer. If the size of the
resource cannot be determined, this value will be zero.

dwBytesCopied

The total number of bytes that have been copied.

dwBytesPerSecond

The average number of bytes that have been copied per second.

dwTimeElapsed

The number of seconds that have elapsed since the file transfer started.

dwTimeEstimated

The estimated number of seconds until the data transfer is completed. This is based on the
average number of bytes transferred per second.

Remarks
If the option HTTP_OPTION_HIRES_TIMER has been specified when connecting to the server, the
values returned in the dwTimeElapsed and dwTimeEstimated members will be in milliseconds
instead of seconds. You can use this option to obtain more accurate elapsed times when
uploading or downloading small amounts of data over a fast network connection.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

See Also
HttpEnableEvents, HttpGetTransferStatus, HttpGetTransferStatusEx, HttpRegisterEvent,
HTTPTRANSFERSTATUSEX

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HTTPTRANSFERSTATUSEX Structure

This structure is used by the HttpGetTransferStatusEx function to return information about a
data transfer in progress. This structure is designed for use with extended functions that support
files larger than 4GB.

typedef struct _HTTPTRANSFERSTATUSEX
{
 ULARGE_INTEGER uiBytesTotal;
 ULARGE_INTEGER uiBytesCopied;
 DWORD dwBytesPerSecond;
 DWORD dwTimeElapsed;
 DWORD dwTimeEstimated;
} HTTPTRANSFERSTATUSEX, *LPHTTPTRANSFERSTATUSEX;

Members
uiBytesTotal

The total number of bytes that will be transferred. If the data is being downloaded from the
server to the local host, this is the size of the requested resource. If the data is being uploaded
from the local host to the server, it is the size of the local file or memory buffer. If the size of the
resource cannot be determined, this value will be zero.

uiBytesCopied

The total number of bytes that have been copied.

dwBytesPerSecond

The average number of bytes that have been copied per second.

dwTimeElapsed

The number of seconds that have elapsed since the file transfer started.

dwTimeEstimated

The estimated number of seconds until the data transfer is completed. This is based on the
average number of bytes transferred per second.

Remarks
If the option HTTP_OPTION_HIRES_TIMER has been specified when connecting to the server, the
values returned in the dwTimeElapsed and dwTimeEstimated members will be in milliseconds
instead of seconds. You can use this option to obtain more accurate elapsed times when
uploading or downloading small amounts of data over a fast network connection.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

See Also
HttpEnableEvents, HttpGetTransferStatus, HttpGetTransferStatusEx, HttpRegisterEvent,
HTTPTRANSFERSTATUS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 INITDATA Structure

This structure contains information about the SocketTools library when the initialization function
returns.

typedef struct _INITDATA
{
 DWORD dwSize;
 DWORD dwVersionMajor;
 DWORD dwVersionMinor;
 DWORD dwVersionBuild;
 DWORD dwOptions;
 DWORD_PTR dwReserved1;
 DWORD_PTR dwReserved2;
 TCHAR szDescription[128];
} INITDATA, *LPINITDATA;

Members
dwSize

Size of this structure. This structure member must be set to the size of the structure prior to
calling the initialization function. Failure to do so will cause the function to fail.

dwVersionMajor

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the major version number for the library.

dwVersionMinor

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the minor version number for the library.

dwVersionBuild

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the build number for the library.

dwOptions

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

dwReserved1

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

dwReserved2

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

szDescription

A null terminated string which describes the library.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SECURITYCREDENTIALS Structure

The SECURITYCREDENTIALS structure specifies the information needed by the library to specify
additional security credentials, such as a client certificate or private key, when establishing a secure
connection.

typedef struct _SECURITYCREDENTIALS
{
 DWORD dwSize;
 DWORD dwProtocol;
 DWORD dwOptions;
 DWORD dwReserved;
 LPCTSTR lpszHostName;
 LPCTSTR lpszUserName;
 LPCTSTR lpszPassword;
 LPCTSTR lpszCertStore;
 LPCTSTR lpszCertName;
 LPCTSTR lpszKeyFile;
} SECURITYCREDENTIALS, *LPSECURITYCREDENTIALS;

Members
dwSize

Size of this structure. If the structure is being allocated dynamically, this member must be set to
the size of the structure and all other unused structure members must be initialized to a value of
zero or NULL.

dwProtocol

A bitmask of supported security protocols. The value of this structure member is constructed by
using a bitwise operator with any of the following values:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The
correct protocol is automatically selected, based on

what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.
This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is
supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

dwOptions

A value which specifies one or options. This member is constructed by using a bitwise operator
with any of the following values:

Constant Description

CREDENTIAL_STORE_CURRENT_USER The library will attempt to open a store for
the current user using the certificate store
name provided in this structure. If no options
are specified, then this is the default
behavior.

CREDENTIAL_STORE_LOCAL_MACHINE The library will attempt to open a local
machine store using the certificate store

name provided in this structure. If this option
is specified, the library will always search for a
local machine store before searching for the
store by that name for the current user.

CREDENTIAL_STORE_FILENAME The certificate store name is a file that
contains the certificate and private key that
will be used.

dwReserved

This structure member is reserved for future use and should always be initialized to zero.

lpszHostName

A pointer to a null terminated string which specifies the hostname that will be used when
validating the server certificate. If this member is NULL, then the server certificate will be
validated against the hostname used to establish the connection.

lpszUserName

A pointer to a null terminated string which identifies the owner of client certificate. Currently this
member is not used by the library and should always be initialized as a NULL pointer.

lpszPassword

A pointer to a null terminated string which specifies the password needed to access the
certificate. Currently this member is only used if the CREDENTIAL_STORE_FILENAME option has
been specified. If there is no password associated with the certificate, then this member should
be initialized as a NULL pointer.

lpszCertStore

A pointer to a null terminated string which specifies the name of the certificate store to open. A
certificate store is a collection of certificates and their private keys, typically organized by how
they are used. If this value is NULL or points to an empty string, the default certificate store "MY"
will be used.

Store
Name

Description

CA
Certification authority certificates. These are certificates that are issued by entities
which are entrusted to issue certificates to other individuals or organizations.
Companies such as VeriSign and Thawte act as certification authorities.

MY

Personal certificates and their associated private keys for the current user. This
store typically holds the client certificates used to establish a user's credentials.
This corresponds to the "Personal" store that is displayed by the certificate
manager utility and is the default store used by the library.

ROOT
Certificates that have been self-signed by a certificate authority. Root certificates
for a number of different certification authorities such as VeriSign and Thawte are
installed as part of the operating system and periodically updated by Microsoft.

lpszCertName

A pointer to a null terminated string which specifies the name of the certificate to use. The
library will first search the certificate store for a certificate with a matching "friendly name"; this is
a name for the certificate that is assigned by the user. Note that the name must match
completely, but the comparison is not case sensitive. If no matching certificate is found, the
library will then attempt to find a certificate that has a matching common name (also called the
certificate subject). This comparison is less stringent, and the first partial match will be returned.

If this second search fails, the library will return an error indicating that the certificate could not
be found. If the SECURITY_PROTOCOL_SSH protocol has been specified, this member should
be NULL.

lpszKeyFile

A pointer to a null terminated string which specifies the name of the file which contains the
private key required to establish the connection. This member is only used for SSH connections
and should always be NULL when establishing a secure connection using SSL or TLS.

Remarks
An application only needs to create this structure if the server requires the client to provide a
certificate as part of the process of negotiating the secure session. If a certificate is required, note
that it must have a private key associated with it. Attempting to use a certificate that does not have
a private key will result in an error during the connection process indicating that the client
credentials could not be established.

If you are using a local certificate store, with the certificate and private key stored in the registry,
you can explicitly specify whether the certificate store for the current user or the local machine (all
users) should be used. This is done by prefixing the certificate store name with "HKCU:" for the
current user, or "HKLM:" for the local machine. For example, a certificate store name of
"HKLM:MY" would specify the personal certificate store for the local machine, rather than the
current user. If neither prefix is specified, then it will default to the certificate store for the current
user. You can manage these certificates using the CertMgr.msc Microsoft Management Console
(MMC) snap-in.

It is possible to load the certificate from a file rather than from current user's certificate store. The
dwOptions member should be set to CREDENTIAL_STORE_FILENAME and the lpszCertStore
member should specify the name of the file that contains the certificate and its private key. The file
must be in Private Information Exchange (PFX) format, also known as PKCS #12. These certificate
files typically have an extension of .pfx or .p12. Note that if a password was specified when the
certificate file was created, it must be provided in the lpszPassword member or the library will be
unable to access the certificate.

Note that the lpszUserName and lpszPassword members are values which are used to access the
certificate store or private key file. They are not the credentials which are used when establishing
the connection with the remote host or authenticating the client session.

The TLS 1.1 and TLS 1.2 protocols are only supported on Windows 7, Windows Server 2008 R2
and later versions of the platform. If these options are specified and the application is running on
Windows XP or Windows Vista, the protocol version will be downgraded to TLS 1.0 for backwards
compatibility with those platforms.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SECURITYINFO Structure

This structure contains information about a secure connection that has been established.

typedef struct _SECURITYINFO
{
 DWORD dwSize;
 DWORD dwProtocol;
 DWORD dwCipher;
 DWORD dwCipherStrength;
 DWORD dwHash;
 DWORD dwHashStrength;
 DWORD dwKeyExchange;
 DWORD dwCertStatus;
 SYSTEMTIME stCertIssued;
 SYSTEMTIME stCertExpires;
 LPCTSTR lpszCertIssuer;
 LPCTSTR lpszCertSubject;
 LPCTSTR lpszFingerprint;
} SECURITYINFO, *LPSECURITYINFO;

Members
dwSize

Specifies the size of the data structure. This member must always be initialized to
sizeof(SECURITYINFO) prior to passing the address of this structure to the function. Note that
if this member is not initialized, an error will be returned indicating that an invalid parameter has
been passed to the function.

dwProtocol

A numeric value which specifies the protocol that was selected to establish the secure
connection. One of the following values will be returned:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The

correct protocol is automatically selected, based on
what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.
This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is
supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

dwCipher

A numeric value which specifies the cipher that was selected when establishing the secure
connection. One of the following values will be returned:

Constant Description

SECURITY_CIPHER_RC2 The RC2 block cipher was selected. This is a variable
key length cipher which supports keys between 40 and
128 bits, in 8-bit increments.

SECURITY_CIPHER_RC4 The RC4 stream cipher was selected. This is a variable
key length cipher which supports keys between 40 and
128 bits, in 8-bit increments.

SECURITY_CIPHER_RC5 The RC5 block cipher was selected. This is a variable
key length cipher which supports keys up to 2040 bits,
in 8-bit increments.

SECURITY_CIPHER_DES The DES (Data Encryption Standard) block cipher was
selected. This is a fixed key length cipher, using 56-bit
keys.

SECURITY_CIPHER_DES3 The Triple DES block cipher was selected. This cipher
encrypts the data three times using different keys,
effectively providing a 168-bit length key.

SECURITY_CIPHER_DESX A variant of the DES block cipher which XORs an extra
64-bits of the key before and after the plaintext has
been encrypted, increasing the key size to 184 bits.

SECURITY_CIPHER_AES The Advanced Encryption Standard cipher (also known
as the Rijndael cipher) is a fixed block size cipher which
use a key size of 128, 192 or 256 bits. This cipher is
supported on Windows XP SP3 and later versions of
the operating system.

SECURITY_CIPHER_SKIPJACK The Skipjack block cipher was selected. This is a fixed
key length cipher, using 80-bit keys.

SECURITY_CIPHER_BLOWFISH The Blowfish block cipher was selected. This is a
variable key length cipher up to 448 bits, using a 64-bit
block size.

dwCipherStrength

A numeric value which specifies the strength (the length of the cipher key in bits) of the cipher
that was selected. Typically this value will be 128 or 256. 40-bit and 56-bit key lengths are
considered weak encryption, and subject to brute force attacks. 128-bit and 256-bit key lengths
are considered to be secure, and are the recommended key length for secure communications.

dwHash

A numeric value which specifies the hash algorithm which was selected. One of the following
values will be returned:

Constant Description

SECURITY_HASH_MD5 The MD5 algorithm was selected. Its use has been
deprecated and is no longer considered to be
cryptographically secure.

SECURITY_HASH_SHA1 The SHA-1 algorithm was selected. Its use has been
deprecated and is no longer considered to be
cryptographically secure.

SECURITY_HASH_SHA256 The SHA-256 algorithm was selected.

SECURITY_HASH_SHA384 The SHA-384 algorithm was selected.

SECURITY_HASH_SHA512 The SHA-512 algorithm was selected.

dwHashStrength

A numeric value which specifies the strength (the length in bits) of the message digest that was

selected.

dwKeyExchange

A numeric value which specifies the key exchange algorithm which was selected. One of the
following values will be returned:

Constant Description

SECURITY_KEYEX_RSA The RSA public key algorithm was selected.

SECURITY_KEYEX_KEA The Key Exchange Algorithm (KEA) was selected. This is an
improved version of the Diffie-Hellman public key algorithm.

SECURITY_KEYEX_DH The Diffie-Hellman key exchange algorithm was selected.

SECURITY_KEYEX_ECDH The Elliptic Curve Diffie-Hellman key exchange algorithm was
selected. This is a variant of the Diffie-Hellman algorithm
which uses elliptic curve cryptography. This key exchange
algorithm is only supported on Windows XP SP3 and later
versions of the operating system.

dwCertStatus

A numeric value which specifies the status of the certificate returned by the secure server. This
member only has meaning for connections using the SSL or TLS protocols. One of the following
values will be returned:

Constant Description

SECURITY_CERTIFICATE_VALID The certificate is valid.

SECURITY_CERTIFICATE_NOMATCH The certificate is valid, but the domain name
does not match the common name in the
certificate.

SECURITY_CERTIFICATE_EXPIRED The certificate is valid, but has expired.

SECURITY_CERTIFICATE_REVOKED The certificate has been revoked and is no
longer valid.

SECURITY_CERTIFICATE_UNTRUSTED The certificate or certificate authority is not
trusted on the local system.

SECURITY_CERTIFICATE_INVALID The certificate is invalid. This typically indicates
that the internal structure of the certificate has
been damaged.

stCertIssued

A structure which contains the date and time that the certificate was issued by the certificate
authority. If the issue date cannot be determined for the certificate, the SYSTEMTIME structure
members will have zero values. This member only has meaning for connections using the SSL or
TLS protocols.

stCertExpires

A structure which contains the date and time that the certificate expires. If the expiration date
cannot be determined for the certificate, the SYSTEMTIME structure members will have zero
values. This member only has meaning for connections using the SSL or TLS protocols.

lpszCertIssuer

A pointer to a string which contains information about the organization that issued the
certificate. This string consists of one or more comma-separated tokens. Each token consists of
an identifier, followed by an equal sign and a value. If the certificate issuer could not be
determined, this member may be NULL. This member only has meaning for connections using
the SSL or TLS protocols.

lpszCertSubject

A pointer to a string which contains information about the organization that the certificate was
issued to. This string consists of one or more comma-separated tokens. Each token consists of
an identifier, followed by an equal sign and a value. If the certificate subject could not be
determined, this member may be NULL. This member only has meaning for connections using
the SSL or TLS protocols.

lpszFingerprint

A pointer to a string which contains a sequence of hexadecimal values that uniquely identify the
server. This member is only used when a connection has been established using the Secure
Shell (SSH) protocol.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SYSTEMTIME Structure

The SYSTEMTIME structure represents a date and time using individual members for the month,
day, year, weekday, hour, minute, second, and millisecond.

typedef struct _SYSTEMTIME
{
 WORD wYear;
 WORD wMonth;
 WORD wDayOfWeek;
 WORD wDay;
 WORD wHour;
 WORD wMinute;
 WORD wSecond;
 WORD wMilliseconds;
} SYSTEMTIME, *LPSYSTEMTIME;

Members
wYear

Specifies the current year. The year value must be greater than 1601.

wMonth

Specifies the current month. January is 1, February is 2 and so on.

wDayOfWeek

Specifies the current day of the week. Sunday is 0, Monday is 1 and so on.

wDay

Specifies the current day of the month

wHour

Specifies the current hour.

wMinute

Specifies the current minute

wSecond

Specifies the current second.

wMilliseconds

Specifies the current millisecond.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include windows.h.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Hypertext Transfer Protocol Server Library

Implements a server that enables the application to access documents using the Hypertext
Transfer Protocol.

Reference

Functions
Data Structures
Error Codes

Library Information

File Name CSHTSV11.DLL

Version 11.0.2180.1635

LibID 475FBDFE-E206-4E5A-93E0-D69A7FC2E858

Import Library CSHTSV11.LIB

Dependencies None

Standards RFC 1945, RFC 2616, RFC 3875

Overview
This library provides an interface for implementing an embedded, lightweight server that can be
used to provide access to documents and other resources using the Hypertext Transfer Protocol.
The server can accept connections from any standard web browser, third-party applications or
programs developed using the SocketTools HTTP client API.

The application specifies an initial server configuration and then responds to events that are
generated when the client sends a request to the server. An application may implement only
minimal handlers for most events, in which case the default actions are performed for most
standard HTTP commands. However, an application may also use the event mechanism to filter
specific commands or to extend the protocol by providing custom implementations of existing
commands or add entirely new commands.

The server includes support for CGI scripting, virtual hosting, client authentication and the creation
of virtual directories and files. The server also supports secure connections using TLS 1.2 and later
versions. Secure connections require that a valid security certificate be installed on the system.

Requirements
The SocketTools Library Edition libraries are compatible with any programming language which
supports calling functions exported from a standard dynamic link library (DLL). If you are using
Visual C++ 6.0 it is required that you have Service Pack 6 (SP6) installed. You should install all
updates for your development tools and have the current Windows SDK installed. The minimum
recommended version of Visual Studio is Visual Studio 2010.

This library is supported on Windows 7, Windows Server 2008 R2 and later versions of the desktop
and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1) installed as
a minimum requirement. It is recommended that you install the current service pack and all critical
updates available for your version of the operating system.

This library provides an implementation of a multithreaded server which should only be used with

languages that support the creation of multithreaded applications. It is important that you do not
link against static libraries which were not built with support for threading.

This product includes both 32-bit and 64-bit libraries. Native 64-bit CPU support requires the 64-
bit version of Windows 7 or later versions of the Windows operating system.

Distribution
When you distribute your application that uses this library, it is recommended that you install the
file in the same folder as your application executable. If you install the library into a shared location
on the system, it is important that you distribute the correct version for the target platform and it
should be registered as a shared DLL. This is a standard Windows dynamic link library, not an
ActiveX component, and does not require COM registration.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Hypertext Transfer Protocol Server Functions

Function Description

HttpAddVirtualHost Add a new virtual host to the server virtual host table

HttpAddVirtualHostAlias Add an alternate host name for an existing virtual host

HttpAddVirtualPath Add a new virtual path for the specified host

HttpAddVirtualUser Add a new virtual user for the specified host

HttpAuthenticateClient Authenticate the client and assign access rights for the session

HttpCheckVirtualPath Determine if the client has permission to access the specified virtual path

HttpCreateServerCredentials Create a new server security credentials structure

HttpDeleteAllClientHeaders Delete all of the request or response headers for the specified client
session

HttpDeleteClientHeader Delete a request or response header for the specified client session

HttpDeleteServerCredentials Delete a previously created security credentials structure

HttpDeleteVirtualHost Delete a virtual host associated with the specified server

HttpDeleteVirtualPath Delete a virtual path from the specified virtual host

HttpDeleteVirtualUser Delete a virtual user from the specified virtual host

HttpDisconnectClient Disconnect the specific client session, closing the control channel and
aborting any file transfer

HttpEnableClientAccess Enable or disable access rights for the specified client session

HttpEnableCommand Enable or disable a specific server command

HttpEnumServerClients Returns a list of active client sessions established with the specified server

HttpGetActiveClient Return the client ID for the active client session associated with the current
thread

HttpGetAllClientHeaders Return all client request or response headers in a string buffer

HttpGetClientAccess Return the access rights that have been granted to the client session

HttpGetClientAddress Return the IP address of the specified client session

HttpGetClientCredentials Return the credentials for the specified client session

HttpGetClientDirectory Return the root document directory for a client session

HttpGetClientHeader Return the value of a request or response header for the specified client
session

HttpGetClientIdleTime Return the idle timeout period for the specified client

HttpGetClientLocalPath Return the full local path for the specified virtual path

HttpGetClientServer Return the handle to the server that created the specified client session

HttpGetClientThreadId Returns the thread ID associated with the specified client session

HttpGetClientUserName Return the user name associated with the specified client session

file:///C|/Projects/cstools11/pdf/httpsrv/library/httpgetallclientheaders.html

HttpGetClientVariable Return the value of a CGI environment variable for the specified client

HttpGetClientVirtualHost Return the name of the virtual host the client used to establish the
connection

HttpGetClientVirtualHostId Return the virtual host ID associated with the specified client session

HttpGetClientVirtualPath Return the virtual path for a local file on the server

HttpGetCommandFile Return the full path to the local file name or directory specified by the
client

HttpGetCommandLine Return the complete command line issued by the client

HttpGetCommandName Return the name of the command that was issued by the client

HttpGetCommandQuery Return the query parameters included with the command

HttpGetCommandResource Return the path for the resource requested by the client

HttpGetCommandResult Return the result code and a description of the last command processed
by the server

HttpGetCommandUrl Return the complete URL of the resource requested by the client

HttpGetProgramExitCode Return the exit code of the last program executed by the client

HttpGetProgramName Return the name of the CGI program executed by the client

HttpGetProgramOutput Return a copy of the standard output from a CGI program executed by
the client

HttpGetProgramText Return a copy of the standard output from a CGI program in a string
buffer

HttpGetServerAddress Return the IP address for the server

HttpGetServerDirectory Return the full path to the root directory assigned to the specified server

HttpGetServerError Return information about the last server error that occurred

HttpGetServerIdentity Return the identity and version information for the specified server

HttpGetServerLogFile Return the current log file format and full path for the file

HttpGetServerMemoryUsage Return the amount of memory allocated for the server and all client
sessions

HttpGetServerName Return the host name assigned to the server or specified client session

HttpGetServerOptions Return the configuration options for the specified server

HttpGetServerPriority Return the current priority assigned to the specified server

HttpGetServerStackSize Return the initial size of the stack allocated for threads created by the
server

HttpGetServerTransferInfo Return information about the current file transfer

HttpGetServerUuid Return the UUID assigned to the specified server

HttpGetServerUuidString Return the UUID assigned to the server as a printable string

HttpGetVirtualHostId Return the virtual host ID associated with the specified hostname

HttpGetVirtualHostName Return the hostname associated with the specified virtual host ID

HttpIsClientAuthenticated Determine if the specified client session has been authenticated

HttpIsCommandEnabled Determine if the specified command is currently enabled or disabled

HttpReceiveRequest Receive the request that was sent by the client to the server

HttpRedirectRequest Redirect the request from the client to another URL

HttpRegisterHandler Register a CGI program for use and associate it with a file name extension

HttpRegisterProgram Register a CGI program for use and associate it with a virtual path on the
server

HttpRenameServerLogFile Rename or delete the current log file being updated by the server

HttpRequireAuthentication Send a response to the client indicating that authentication is required

HttpSendErrorResponse Send a customized error response to the specified client

HttpSendResponse Send a response from the server to the specified client

HttpSendResponseData Send additional data to the client in response to a command

HttpServerAsyncNotify Enable or disable asynchronous notification of changes in server status

HttpServerDisableTrace Disable logging of network function calls

HttpServerEnableTrace Enable logging of network function calls to a file

HttpServerInitialize Initialize the library and validate the specified license key at runtime

HttpServerProc Callback function used to process server events

HttpServerRestart Restart the server, terminating all active client sessions

HttpServerResume Resume accepting client connections on the specified server

HttpServerStart Start the server and begin accepting client connections

HttpServerStop Stop the server and terminate all active client connections

HttpServerSuspend Suspend accepting client connections on the specified server

HttpServerThrottle Limit the number of active client connections, connections per address
and connection rate

HttpServerUninitialize Terminate use of the library by the application

HttpSetClientAccess Change the access rights associated with the specified client session

HttpSetClientHeader Create or change the value of a request or response header for the client
session

HttpSetClientIdleTime Change the idle timeout period for the specified client session

HttpSetClientVariable Create or change the value of a CGI environment variable for the
specified client

HttpSetCommandFile Change the name of the local file or directory that is the target of the
current command

HttpSetServerError Set the last error code for the specified server session

HttpSetServerIdentity Change the identity and version information for the specified server

HttpSetServerLogFile Change the current log format, level of detail and file name

HttpSetServerName Change the hostname assigned to the specified server or client session

HttpSetServerPriority Change the priority assigned to the specified server

HttpSetServerStackSize Change the initial size of the stack allocated for threads created by the
server.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpAddVirtualHost Function

UINT WINAPI HttpAddVirtualHost(
 HSERVER hServer,
 LPCTSTR lpszHostName,
 UINT nHostPort,
 LPCTSTR lpszDirectory
);

Add a new virtual host to the server virtual host table.

Parameters
hServer

The server handle.

lpszHostName

A pointer to a string which specifies the hostname that will be added to the virtual host table.
This parameter must specify a valid hostname and cannot be a NULL pointer or a zero-length
string.

nHostPort

An integer value which specifies the port number for the virtual host. This value must be zero or
the same value as the original port number that the server was configured to use.

lpszDirectory

A pointer to a NULL terminated string which specifies the root document directory for the
virtual host. If this parameter is NULL or a zero-length string, the virtual host will use the same
root directory that was specified when the server was started. This parameter may contain
environment variables enclosed in % symbols.

Return Value
If the function is successful, it will return a non-zero integer value that identifies the virtual host. If
the function fails, it will return INVALID_VIRTUAL_HOST and the last error code will be updated to
indicate the cause of the failure.

Remarks
Virtual hosting is a method for sharing multiple domain names on a single instance of a server.
The client provides the server with the hostname that it has used to establish the connection, and
that name is compared against a table of virtual hosts configured for the server. If the hostname
matches a virtual host, the client will use the root directory and any virtual paths that have been
assigned to that host.

When the server is first started, a default virtual host with an ID of zero is automatically created
and is identified as VIRTUAL_HOST_DEFAULT. This virtual host uses the same hostname, port
number and root directory that the server instance was created with. The application should treat
all other host IDs as opaque values and never make assumptions about how they are allocated.

The nHostPort parameter should always be specified with a value of zero, or the same port
number that the server was configured to use. Port-based virtual hosting is currently not
supported and this parameter is included for future use.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)

Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpAddVirtualHostAlias, HttpAddVirtualPath, HttpAddVirtualUser, HttpDeleteVirtualHost

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpAddVirtualHostAlias Function

BOOL WINAPI HttpAddVirtualHostAlias(
 HSERVER hServer,
 UINT nHostId,
 LPCTSTR lpszHostAlias
);

Add an alternate host name for an existing virtual host.

Parameters
hServer

The server handle.

nHostId

An integer value which identifies the virtual host.

lpszHostAlias

A pointer to a string which specifies the alias for the virtual host. The alias must be a valid
domain name that uniquely identifies the host. This parameter cannot be a NULL pointer or
specify an empty string.

Return Value
If the function succeeds, the return value is non-zero. If the server handle is invalid or the virtual
host ID does not specify a valid host, the function will return zero. If the function fails, the last error
code will be updated to indicate the cause of the failure.

Remarks
The HttpAddVirtualHostAlias function adds an alias for an existing virtual host. This enables a
client to establish a connection using a number of different domain names which all reference the
same virtual host. When the server responds to the client, it will identify itself with the primary
domain name assigned to the virtual host rather than the alias provided by the client.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpAddVirtualHost, HttpAddVirtualPath

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpAddVirtualPath Function

BOOL WINAPI HttpAddVirtualPath(
 HSERVER hServer,
 UINT nHostId,
 DWORD dwFileAccess,
 LPCTSTR lpszVirtualPath,
 LPCTSTR lpszLocalPath
);

Add a new virtual path for the specified host.

Parameters
hServer

The server handle.

nHostId

An integer value which identifies the virtual host.

dwFileAccess

An integer value which specifies the access clients will be given to the virtual path. For a list of
file access permissions, see User and File Access Constants.

lpszVirtualPath

A pointer to a string which specifies the virtual path that will be created. This parameter cannot
be a NULL pointer or an empty string. The maximum length of the virtual path is 1024
characters.

lpszLocalPath

A pointer to a string which specifies the local directory or file name that the virtual path will be
mapped to. This path must exist and can be no longer than MAX_PATH characters. This
parameter cannot be a NULL pointer or an empty string.

Return Value
If the function succeeds, the return value is non-zero. If the server handle is invalid or the virtual
host ID does not specify a valid host, the function will return zero. If the function fails, the last error
code will be updated to indicate the cause of the failure.

Remarks
The HttpAddVirtualPath function maps a virtual path name to a directory or file name on the
local system. Virtual paths are assigned to specific hosts and if multiple virtual hosts are created for
the server, each can have its own virtual paths which map to different files. To create a virtual path
for the default server, the nHostId parameter should be specified as VIRTUAL_HOST_DEFAULT.

It is recommended that the lpszLocalPath parameter always specify the full path to the local file or
directory. If the path is relative, it will be considered relative to the current working directory for
the process and expanded to its full path name. The local path can include environment variables
surrounded by % symbols. For example, if the value %ProgramData% is included in the path, it will
be expanded to the full path for the common application data folder. The local path cannot
specify a Windows system folder or the root directory of a mounted drive volume.

The local file or directory does not need to located in the document root directory for the server
or virtual host. It can specify any valid local path that the server process has the appropriate
permissions to access. You should exercise caution when creating virtual paths to files or

file:///C|/Projects/cstools11/pdf/httpsrv/library/useraccess.html
file:///C|/Projects/cstools11/pdf/httpsrv/library/useraccess.html

directories outside of the server root directory. If the lpszLocalPath parameter specifies a
directory, clients will have access to that directory and all subdirectories using its virtual path.

If you wish to password protect the virtual file or directory, include the HTTP_ACCESS_PROTECTED
flag in the file permissions. The default command handlers will recognize this flag and require that
the client authenticate itself to grant access to the resource. If the server application implements a
custom command handler, it is responsible for checking for the presence of this flag and perform
the appropriate checks to ensure that the client session has been authenticated.

If the server was started in restricted mode, the client will be unable to access documents outside
of the server root directory and its subdirectories. This restriction also applies to virtual paths that
reference documents or other resources outside of the root directory. To allow a client to access a
document outside of the server root directory, the HttpSetClientAccess function should be used
to grant the client HTTP_ACCESS_READ permission.

The HttpGetClientVirtualPath function will return the virtual path that is associated with a local
file or directory. The HttpGetClientLocalPath function will return the full path to a local file or
directory that is mapped to a virtual path.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpAddVirtualHost, HttpCheckVirtualPath, HttpGetClientLocalPath, HttpGetClientVirtualPath,
HttpDeleteVirtualPath

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpAddVirtualUser Function

BOOL WINAPI HttpAddVirtualUser(
 HSERVER hServer,
 UINT nHostId,
 DWORD dwUserAccess,
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword,
 LPCTSTR lpszDirectory
);

Add a new virtual user for the specified host.

Parameters
hServer

The server handle.

nHostId

An integer value which identifies the virtual host.

dwUserAccess

An integer value which specifies the access clients will be given when authenticated as this user.
For a list of user access permissions, see User and File Access Constants.

lpszUserName

A pointer to a string which specifies the user name. The maximum length of a username is 63
characters and it is recommended that names be limited to alphanumeric characters.
Whitespace, control characters and certain symbols such as path delimiters and wildcard
characters are not permitted. If an invalid character is included in the name, the function will fail
with an error indicating the username is invalid. This parameter cannot be NULL and the name
must be at least three characters in length. Usernames are not case sensitive.

lpszPassword

A pointer to a string which specifies the user password. The maximum length of a password is
63 characters and is limited to printable characters. Whitespace and control characters are not
permitted. If an invalid character is included in the password, the function will fail with an error
indicating the password is invalid. This parameter cannot be NULL and must be at least one
character in length. Passwords are case sensitive.

lpszDirectory

A pointer to a string which specifies the local directory that is considered to be the virtual user's
home directory. This path must exist and can be no longer than MAX_PATH characters. The
maximum length of the local path is 260 characters. The directory cannot be located in a
Windows system folder or the root directory of a mounted disk volume. If this parameter is
NULL or an empty string, the server root directory will be assigned as the user home directory.

Return Value
If the function succeeds, the return value is non-zero. If the server handle is invalid or the virtual
host ID does not specify a valid host, the function will return zero. If the function fails, the last error
code will be updated to indicate the cause of the failure.

Remarks
The HttpAddVirtualUser function adds a virtual user that is associated with the specified virtual

file:///C|/Projects/cstools11/pdf/httpsrv/library/useraccess.html
file:///C|/Projects/cstools11/pdf/httpsrv/library/useraccess.html

host. If a client attempts to access a protected document and provides credentials, the server will
attempt to automatically authenticate the session by searching for virtual user with the same
username and password. If a match is found, then the client session is assigned the same access
permissions as the virtual user.

If the server is started with the HTTP_SERVER_MULTIUSER option, then documents in the virtual
user's home directory can be accessed by specifying their username using a specially formatted
request URL. For example, if a virtual user named "Thomas" is created, the documents in that
user's home directory could be accessed as http://servername/~thomas/document.html

All files and subdirectories in the user's home directory are considered to be read-only. A client
cannot create files in a user's home directory, even if they are authenticated as that user. In
addition, CGI programs and scripts cannot be executed from a user's home directory.

If you wish to modify the information for a user, it is not necessary to delete the username first. If
this function is called with a username that already exists, that record is replaced with the values
passed to this function.

The virtual users created by this function exist only as long as the server is active. If you wish to
maintain a persistent database of users and passwords, you are responsible for its implementation
based on the requirements of your specific application. For example, a simple implementation
would be to store the user information in a local XML or INI file and then read that configuration
file after the server has started, calling this function for each user that is listed.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpAddVirtualHost, HttpDeleteVirtualUser

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpAuthenticateClient Function

BOOL WINAPI HttpAuthenticateClient(
 HSERVER hServer,
 UINT nClientId,
 DWORD dwUserAccess
);

Authenticate the client and assign access rights for the session.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

dwUserAccess

An unsigned integer which specifies one or more user access rights. For a list of user access
rights that can be granted to the client, see User and File Access Constants.

Return Value
If the the client session could be authenticated, the return value is non-zero. If the server handle
and client ID do not specify a valid client session, or the client has already been authenticated, this
function will return zero.

Remarks
The HttpAuthenticateClient function is used to authenticate a specific client session, typically in
response to an HTTP_CLIENT_USERAUTH event that indicates a client has provided authentication
credentials as part of the request for a document or other resource.

To enable the server to automatically authenticate a client session, use the HttpAddVirtualUser
function to add one or more virtual users. The server will search the list of virtual users for a match
to the credentials provided by the client and will set the appropriate permissions for the session
without requiring a event handler to manually authenticate the session using this function.

If the server was started with the HTTP_SERVER_LOCALUSER option and the client session is not
authenticated using this function, the server will attempt to authenticate the client session using
the local Windows user database. Although this option can be convenient because it does not
require the implementation of an event handler for the HTTP_CLIENT_USERAUTH event, it can be
used by clients to attempt to discover valid usernames and passwords for the local system. It is
recommended that you use the HttpAddVirtualUser function to create virtual users rather than
using the local user database.

It is recommended that most applications specify HTTP_ACCESS_DEFAULT as the dwUserAccess
value for a client session, since this allows the server automatically grant the appropriate access
based on the server configuration options.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

file:///C|/Projects/cstools11/pdf/httpsrv/library/useraccess.html

See Also
HttpAddVirtualUser, HttpGetClientCredentials, HttpGetClientDirectory

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpCreateServerCredentials Function

BOOL WINAPI HttpCreateServerCredentials(
 DWORD dwProtocol,
 DWORD dwOptions,
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword,
 LPCTSTR lpszCertStore,
 LPCTSTR lpszCertName,
 LPVOID lpvReserved,
 LPSECURITYCREDENTIALS* lppCredentials
);

The HttpCreateServerCredentials function creates a SECURITYCREDENTIALS structure.

Parameters
dwProtocol

A bitmask of supported security protocols. This parameter is constructed by using a bitwise
operator with any of the following values:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The
correct protocol is automatically selected, based on
what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.
This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is

supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

dwOptions

A value which specifies one or options. This member is constructed by using a bitwise operator
with any of the following values:

Constant Description

CREDENTIAL_STORE_CURRENT_USER The library will attempt to open a store for
the current user using the certificate store
name provided in this structure. If no options
are specified, then this is the default
behavior.

CREDENTIAL_STORE_LOCAL_MACHINE The library will attempt to open a local
machine store using the certificate store
name provided in this structure. If this option
is specified, the library will always search for a
local machine store before searching for the
store by that name for the current user.

CREDENTIAL_STORE_FILENAME The certificate store name is a file that
contains the certificate and private key that
will be used.

lpszUserName

A pointer to a string which specifies the certificate owner's username. A value of NULL specifies
that no username is required. Currently this parameter is not used and any value specified will
be ignored.

lpszPassword

A pointer to a string which specifies the certificate owner's password. A value of NULL specifies
that no password is required. This parameter is only used if a PKCS #12 (PFX) certificate file is
specified and that certificate has been secured with a password. This value will be ignored the
current user or local machine certificate store is specified.

lpszCertStore

A pointer to a string which specifies the name of the certificate store to open. A certificate store
is a collection of certificates and their private keys, typically organized by how they are used. If
this value is NULL or points to an empty string, the default certificate store "MY" will be used.

Store Name Description

CA Certification authority certificates. These are certificates that are issued by
entities which are entrusted to issue certificates to other individuals or
organizations. Companies such as VeriSign and Thawte act as
certification authorities.

MY Personal certificates and their associated private keys for the current user.
This store typically holds the client certificates used to establish a user's
credentials. This corresponds to the "Personal" store that is displayed by
the certificate manager utility and is the default store used by the library.

ROOT Certificates that have been self-signed by a certificate authority. Root
certificates for a number of different certification authorities such as
VeriSign and Thawte are installed as part of the operating system and
periodically updated by Microsoft.

lpszCertName

A pointer to a null terminated string which specifies the name of the certificate to use. The
function will first search the certificate store for a certificate with a matching "friendly name"; this
is a name for the certificate that is assigned by the user. Note that the name must match
completely, but the comparison is not case sensitive. If no matching certificate is found, the
function will then attempt to find a certificate that has a matching common name (also called
the certificate subject). This comparison is less stringent, and the first partial match will be
returned. If this second search fails, the function will return an error indicating that the certificate
could not be found.

lpvReserved

Pointer reserved for future use. Set it to NULL when using this function.

lppCredentials

Pointer to an LPSECURITYCREDENTIALS pointer. The memory for the credentials structure will
be allocated by this function and must be released by calling the HttpDeleteServerCredentials
function when it is no longer needed. The pointer value must be set to NULL before the
function is called. It is important to note that this is a pointer to a pointer variable, not a pointer
to the SECURITYCREDENTIALS structure itself.

Return Value

If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call HttpGetServerError.

Remarks
The structure that is created by this function may be used as client credentials when establishing a
secure connection. This is particularly useful for programming languages other than C/C++ which
may not support C structures or pointers. The pointer to the SECURITYCREDENTIALS structure can
be declared as an unsigned integer variable which is passed by reference to this function, and
then passed by value to the HttpServerStart function.

Example
// Create the server credentials that identifies the certificate
// that will be used for secure connections
LPSECURITYCREDENTIALS lpSecCred = NULL;

HttpCreateServerCredentials(SECURITY_PROTOCOL_DEFAULT,
 0,
 NULL,
 NULL,
 lpszCertStore,
 lpszCertName,
 NULL,
 &lpSecCred);

// Start the server
hServer = HttpServerStart(lpszLocalHost,
 HTTP_PORT_SECURE,
 HTTP_SERVER_SECURE,
 &httpConfig,
 lpEventHandler,
 0,
 lpSecCred);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpDeleteServerCredentials, HttpServerStart, SECURITYCREDENTIALS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpCheckVirtualPath Function

BOOL WINAPI HttpCheckVirtualPath(
 HSERVER hServer,
 UINT nClientId,
 LPCTSTR lpszVirtualPath,
 DWORD dwFileAccess
);

Determine if the client has permission to access the specified virtual path.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

lpszVirtualPath

A pointer to a string which specifies the virtual path that should be checked. This path must be
absolute and cannot be a NULL pointer or an empty string. The maximum length of the virtual
path is 1024 characters.

dwFileAccess

An unsigned integer value which specifies the access permissions that should be checked. For a
list of file access permissions, see User and File Access Constants.

Return Value
If the function succeeds, the return value is non-zero. If the server handle is invalid or the client ID
does not specify a valid client, the function will return zero. If the function fails, the last error code
will be updated to indicate the cause of the failure.

Remarks
The HttpCheckVirtualPath function is used to determine if the client has permission to access the
virtual file or directory, based on the value of the dwFileAccess parameter. For example, if the
dwFileAccess parameter has the value HTTP_ACCESS_WRITE, this function will check if the client
has write permission for the file or directory. The function will return a non-zero value if the client
does have the requested permission, or zero if it does not.

Applications that implement their own custom handlers for standard HTTP commands should use
this function to ensure that the client has the appropriate permissions to access the requested
resource. Failure to check the access permissions for the client can result in the client being able to
access restricted documents and other resources. It is recommended that most applications use
the default command handlers.

To obtain the path to the local file or directory that the virtual path is mapped to, use the
HttpGetClientLocalPath function.

Example
TCHAR szPathName[1024];

// Get the current request URL path
INT cchPathName = HttpGetCommandResource(
 hServer,

file:///C|/Projects/cstools11/pdf/httpsrv/library/useraccess.html
file:///C|/Projects/cstools11/pdf/httpsrv/library/useraccess.html

 nClientId,
 szPathName,
 1024);

if (cchPathName == 0)
{
 HttpSendErrorResponse(hServer, nClientId, 500, NULL);
 return;
}

// Check if the client has write access to that resource
BOOL bAllowed = HttpCheckVirtualPath(
 hServer,
 nClientId,
 szPathName,
 HTTP_ACCESS_WRITE);

if (!bAllowed)
{
 HttpSendErrorResponse(hServer, nClientId, 403, NULL);
 return;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpAddVirtualPath, HttpDeleteVirtualPath, HttpGetClientLocalPath, HttpGetClientVirtualPath

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpDeleteAllClientHeaders Function

BOOL WINAPI HttpDeleteAllClientHeaders(
 HSERVER hServer,
 UINT nClientId,
 UINT nHeaderType
);

Delete all of the request or response headers for the specified client session.

Parameters
hServer

The server handle.

nClientId

Delete all of the request or response headers for the specified client session.

nHeaderType

Specifies the type of headers to delete. It may be one of the following values:

Constant Description

HTTP_HEADERS_REQUEST Delete all of the request headers that were provided by
the client. Request header values provide additional
information to the server about the type of request being
made.

HTTP_HEADERS_RESPONSE Delete all of the response headers that were created by
the server in response to a request made by the client.
Response header values provide additional information
to the client about the type of information that is being
returned by the server.

Return Value
If the function succeeds, the return value is non-zero. If the server handle and client ID do not
specify a valid client session, the function will return zero.

Remarks
The HttpDeleteAllClientHeaders function is used to delete all of the request or response
headers that were set as the result of the client issuing a request for a document or other
resource. If this function is used to delete all of the response headers, the server will automatically
generate a standard set of response headers when it returns the requested information to the
client.

It is not necessary to call this function inside an HTTP_CLIENT_DISCONNECT event handler to
delete the header values that were set during the client session. This is done automatically when
the client disconnects from the server.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
HttpDeleteClientHeader, HttpSetClientHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpDeleteClientHeader Function

BOOL WINAPI HttpDeleteClientHeader(
 HSERVER hServer,
 UINT nClientId,
 UINT nHeaderType,
 LPCTSTR lpszHeaderName
);

Delete a request or response header for the specified client session.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

nHeaderType

Specifies the type of header to delete. It may be one of the following values:

Constant Description

HTTP_HEADERS_REQUEST Delete a request header that was provided by the client.
Request header values provide additional information to
the server about the type of request being made.

HTTP_HEADERS_RESPONSE Delete a response header that was created by the server.
Response header values provide additional information
to the client about the type of information that is being
returned by the server.

lpszHeaderName

A pointer to a string that specifies the name of the header that should be deleted. Header
names are not case-sensitive and should not include the colon which acts as a delimiter that
separates the header name from its value. This parameter cannot be a NULL pointer or an
empty string.

Return Value
If the function succeeds, the return value is non-zero. If the server handle and client ID do not
specify a valid client session, the function will return zero. If the function fails, the
HttpGetServerError function will return more information about the last error that has occurred.

Remarks
The HttpDeleteClientHeader function will delete a request or response header for the specified
client session. There are a number of required response headers that are always sent to a client
and deleting the header using this function will cause the server to automatically generate a new
default header value. You should not delete response header values unless you are certain of the
impact that it would have on the normal operation of the client.

It is not necessary for you to delete a header value to change the value of an existing header. The
HttpSetClientHeader function will replace an existing header value with a new value, or create a
new header if the header name does not already exist.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpDeleteAllClientHeaders, HttpGetClientHeader, HttpSetClientHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpDeleteServerCredentials Function

VOID WINAPI HttpDeleteServerCredentials(
 LPSECURITYCREDENTIALS* lppCredentials
);

The HttpDeleteServerCredentials function deletes an existing SECURITYCREDENTIALS
structure.

Parameters
lppCredentials

Pointer to an LPSECURITYCREDENTIALS pointer. On exit from the function, the pointer value will
be NULL.

Return Value
None.

Example
if (lpSecCred != NULL)
 HttpDeleteServerCredentials(&lpSecCred);

Remarks
This function can be used to release the memory allocated for the credentials after the server has
been started.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpCreateServerCredentials, HttpServerStop

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpDeleteVirtualHost Function

BOOL WINAPI HttpDeleteVirtualHost(
 HSERVER hServer,
 UINT nHostId
);

Delete a virtual host associated with the specified server.

Parameters
hServer

The server handle.

nHostId

An integer value which identifies the virtual host.

Return Value
If the function succeeds, the return value is non-zero. If the server handle is invalid or the virtual
host ID does not specify a valid host, the function will return zero. If the function fails, the last error
code will be updated to indicate the cause of the failure.

Remarks
The HttpDeleteVirtualHost function removes a virtual host that was created by a previous call to
the HttpAddVirtualHost function. All virtual paths and users associated with the specified host
are no longer valid. It is not necessary to call this function to delete any of the virtual hosts prior to
stopping the server. Part of the normal shutdown process is releasing the resources allocated for
each virtual host that was added to the server.

This function cannot be used to delete the virtual host with an ID of zero, which is the default
virtual host that is allocated when the server is started.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
HttpAddVirtualHost, HttpAddVirtualPath, HttpAddVirtualUser HttpDeleteVirtualPath,
HttpDeleteVirtualUser

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpDeleteVirtualPath Function

BOOL WINAPI HttpDeleteVirtualPath(
 HSERVER hServer,
 UINT nHostId,
 LPCTSTR lpszVirtualPath
);

Remove a virtual path from the specified host.

Parameters
hServer

The server handle.

nHostId

An integer value which identifies the virtual host.

lpszVirtualPath

A pointer to a string which specifies the virtual path that will be removed. This path must be
absolute and cannot be a NULL pointer or an empty string.

Return Value
If the function succeeds, the return value is non-zero. If the server handle is invalid or the virtual
host ID does not specify a valid host, the function will return zero. If the function fails, the last error
code will be updated to indicate the cause of the failure.

Remarks
This function removes a virtual path that was created by a previous call to the
HttpAddVirtualPath function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpAddVirtualHost, HttpAddVirtualPath, HttpGetClientLocalPath, HttpGetClientVirtualPath

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpDeleteVirtualUser Function

BOOL WINAPI HttpDeleteVirtualUser(
 HSERVER hServer,
 UINT nHostId,
 LPCTSTR lpszUserName
);

Remove a virtual user from the specified host.

Parameters
hServer

The server handle.

nHostId

An integer value which identifies the virtual host.

lpszUserName

A pointer to a string which specifies the user that will be removed. This parameter cannot be a
NULL pointer or an empty string.

Return Value
If the function succeeds, the return value is non-zero. If the server handle is invalid or the virtual
host ID does not specify a valid host, the function will return zero. If the function fails, the last error
code will be updated to indicate the cause of the failure.

Remarks
This function removes a virtual user that was created by a previous call to the
HttpAddVirtualUser function. This function will not match partial usernames and wildcard
characters cannot be used to delete multiple users. Usernames are not case sensitive.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpAddVirtualHost, HttpAddVirtualUser

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpDisconnectClient Function

BOOL WINAPI HttpDisconnectClient(
 HSERVER hServer,
 UINT nClientId
);

Close the control connection for the specified client and release the resources allocated for the
session.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

Return Value
If the function succeeds, the return value is non-zero. If the server handle and client ID do not
specify a valid client session, the function will return zero.

Remarks
The HttpDisconnectClient function will close the control channel, disconnecting the client from
the server and terminating the client session thread. Resources that we allocated for the client,
such as memory and open handles, will be released back to the operating system. If the client was
in the process of transferring a file, the transfer will be aborted.

This function sends an internal control message that notifies the server that this session should be
terminated. When the session thread is signaled that it should terminate, it will abort any active
data transfers and begin to release the resources allocated for that session. To ensure that the
client session terminates gracefully, there may be a brief period of time where the session thread is
still active after this function has returned.

After this function returns, the application should never use the same client ID with another
function. Client IDs are unique to the session over the lifetime of the server, and are not reused.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
HttpServerRestart, HttpServerStop

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpEnableClientAccess Function

BOOL WINAPI HttpEnableClientAccess(
 HSERVER hServer,
 UINT nClientId,
 DWORD dwUserAccess,
 BOOL bEnable
);

Enable or disable access rights for the specified client session.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

dwUserAccess

An unsigned integer which specifies an access right to enable or disable. For a list of user access
rights that can be granted to the client, see User and File Access Constants.

bEnable

An integer value which specifies if permission should be granted or revoked for the specified
access right. If this value is non-zero, permission is granted to the client to perform the action
specified by the dwUserAccess parameter. If this value is zero, that permission is revoked.

Return Value
If the function succeeds, the return value is non-zero. If the server handle and client ID do not
specify a valid client session, the function will return zero.

Remarks
The HttpEnableClientAccess function is used to enable or disable access to specific functionality
by the client. The function can only change a single access right and cannot be used to enable or
disable multiple access rights in a single function call. To change multiple user access rights for the
client, use the HttpSetClientAccess function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
HttpAuthenticateClient, HttpGetClientAccess, HttpSetClientAccess

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/httpsrv/library/useraccess.html

 HttpEnableCommand Function

BOOL WINAPI HttpEnableCommand(
 HSERVER hServer,
 LPCTSTR lpszCommand,
 BOOL bEnable
);

Enable or disable a specific server command

Parameters
hServer

The server handle.

lpszCommand

A pointer to a NULL terminated string that specifies the name of the command to be enabled
or disabled. The command name is not case-sensitive, but the value must otherwise match the
exact name. Partial matches are not recognized by this function. This parameter cannot be
NULL.

bEnable

An integer value which specifies if the command should be enabled or disabled. If the value is
non-zero, the command is enabled. If the value is zero, the command will be disabled.

Return Value
If the function succeeds, the return value is non-zero. If the server handle is invalid or the
command is not recognized, the function will return zero. If the function fails, the
HttpGetServerError function will return more information about the last error that has occurred.

Remarks
The HttpEnableCommand function is used to enable or disable access to a specific command on
the server. This function is typically used to enable or disable certain commands for security
purposes. For example, the PUT command can be disabled, preventing any client from attempting
to upload files directly to the server. The HttpIsCommandEnabled function can be used to
determine if a command is enabled or not.

The command name provided to this function must match the commands defined in RFC 2616 or
related protocol standards. Refer to Hypertext Transfer Protocol Commands for a complete list of
server commands.

Some commands cannot be disabled because they are required to perform essential server
functions. For example, the GET and HEAD commands cannot be disabled. If you attempt to
disable a required command, this function will return zero and the last error code will be set to
ST_ERROR_COMMAND_REQUIRED. Because this function affects all clients connected to the
server, it should not be used to limit access to certain commands for specific clients. Instead, use
an event handler to filter the commands.

The OPTIONS and TRACE commands are disabled by default for all server instances and must be
explicitly enabled using the EnableCommand method if you wish permit clients to use them. It is
not recommended that you enable these commands if your server is going to be publicly
accessible over the Internet. If the server started with the option HTTP_SERVER_READONLY,
commands that can be used to create or modify files on the server will be disabled by default.

Requirements

file:///C|/Projects/cstools11/pdf/httpsrv/library/commands.html
file:///C|/Projects/cstools11/pdf/httpsrv/library/commands.html

Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpAuthenticateClient, HttpIsCommandEnabled

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpEnumServerClients Function

INT WINAPI HttpEnumServerClients(
 HSERVER hServer,
 DWORD dwReserved
 UINT * lpClients,
 INT nMaxClients
);

Return a list of active client sessions established with the specified server.

Parameters
hServer

Handle to the server socket.

dwReserved

An unsigned integer value that is reserved for future use. This parameter should always be zero.

lpClients

Pointer to an array of unsigned integers which will contain client IDs that uniquely identifies each
client when the function returns. If this parameter is NULL, then the function will return the
number of active client connections established with the server.

nMaxClients

Maximum number of client IDs to be returned in the lpClients array. If the lpClients parameter
is NULL, this parameter should have a value of zero.

Return Value
If the function succeeds, the return value is the number of active client connections to the server. If
the function fails, the return value is HTTP_ERROR. To get extended error information, call
HttpGetServerError.

Remarks
If the nMaxClients parameter is less than the number of active client connections, the function will
fail and the last error code will be set to the error ST_ERROR_BUFFER_TOO_SMALL. To dynamically
determine the number of active connections, call the function with the lpClients parameter with a
value of NULL, and the nMaxClients parameter with a value of zero.

Example
INT nClients = HttpEnumServerClients(hServer, 0, NULL, 0);

if (nClients > 0)
{
 UINT *lpClients = NULL;

 // Allocate memory for an array of client IDs
 lpClients = (UINT *)LocalAlloc(LPTR, nClients * sizeof(UINT));

 if (lpClients == NULL)
 {
 // Virtual memory has been exhausted
 return;
 }

 nClients = HttpEnumServerClients(hServer, 0, lpClients, nClients);

 if (nClients == HTTP_ERROR)
 {
 // Unable to obtain list of connected clients
 return;
 }

 for (INT nIndex = 0; nIndex < nClients; nIndex++)
 {
 TCHAR szUserName[HTTP_MAXUSERNAME];

 if (HttpGetClientUserName(hServer, lpClients[nIndex], szUserName,
HTTP_MAXUSERNAME))
 {
 // Perform some action with the client user name
 }
 }

 // Free the memory allocated for the client IDs
 LocalFree((HLOCAL)lpClients);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
HttpServerStart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetActiveClient Function

UINT WINAPI HttpGetActiveClient(
 HSERVER hServer
);

Return the client ID for the active client session associated with the current thread.

Parameters
hServer

The server handle.

Return Value
If the function succeeds, the return value is the unique ID associated with the client session for the
current thread. If the server handle is invalid or there is no client session active on the current
thread, the return value is zero.

Remarks
The HttpGetActiveClient function is used to obtain the client ID associated with the current
thread. This means this function will only return a client ID if it is called within an event handler or a
function called by an event handler. If this function is called by a function that is not executing
within the context of an event handler it will return a value of zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
HttpEnumServerClients

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetClientAccess Function

BOOL WINAPI HttpGetClientAccess(
 HSERVER hServer,
 UINT nClientId,
 LPDWORD lpdwUserAccess
);

Return the access rights that have been granted to the client session.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

lpdwUserAccess

A pointer to an unsigned integer which specifies one or more access rights for the client session.
For a list of user access permissions that can be granted to the client, see User and File Access
Constants. This parameter cannot be NULL.

Return Value
If the function succeeds, the return value is non-zero. If the server handle and client ID do not
specify a valid client session, the function will return zero. This function can only be used with
authenticated clients. If the client session has not been authenticated, the return value will be zero.

Remarks
The HttpGetClientAccess function is used to obtain all of the access rights that are currently
granted to the client session. The HttpEnableClientAccess function can be used to enable or
disable specific permissions, and the HttpSetClientAccess function can change multiple access
rights at once.

Example
DWORD dwUserAccess = 0;

// Check if the client has execute permission
if (HttpGetClientAccess(hServer, nClientId, &dwUserAccess))
{
 if (dwUserAccess & HTTP_ACCESS_EXECUTE)
 {
 _tprintf(_T("Client %u can execute programs and scripts\n"), nClientId);
 return;
 }
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
HttpAuthenticateClient, HttpEnableClientAccess, HttpSetClientAccess

file:///C|/Projects/cstools11/pdf/httpsrv/library/useraccess.html
file:///C|/Projects/cstools11/pdf/httpsrv/library/useraccess.html

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetClientAddress Function

INT WINAPI HttpGetClientAddress(
 HSERVER hServer,
 UINT nClientId,
 LPTSTR lpszAddress,
 INT nMaxLength
);

Return the IP address of the specified client session.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

lpszAddress

A pointer to a string buffer that will contain the client IP address, terminated with a null
character. To accommodate both IPv4 and IPv6 addresses, this buffer should be at least 46
characters in length. This parameter cannot be NULL.

nMaxLength

An integer value that specifies the maximum number of characters can be copied into the string
buffer, including the terminating null character. This value must be greater than zero. If the
buffer size is too small, the function will fail.

Return Value
If the function succeeds, the return value is the number of characters copied into the string buffer,
not including the terminating null character. If either the server handle or the client ID is invalid, or
the buffer is not large enough to store the complete address, the function will return a value of
zero.

Remarks
The format and length of IPv4 and IPv6 address strings are very different. An IPv4 address string
looks like "192.168.0.20", while an IPv6 address string can look something like
"fd7c:2f6a:4f4f:ba34::a32". If your application checks for the format of these address strings, it
needs to be aware of the differences. You also need to make sure that you're providing enough
space to display or store an address to avoid buffer overruns.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpGetServerAddress

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetClientCredentials Function

BOOL WINAPI HttpGetClientCredentials(
 HSERVER hServer,
 UINT nClientId,
 LPHTTPCLIENTCREDENTIALS lpCredentials
);

Return the user credentials for the specified client session.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

lpCredentials

A pointer to an HTTPCLIENTCREDENTIALS structure that will contain information about the
user when the function returns. This parameter cannot be NULL.

Return Value
If the user credentials for the client session are available, the return value is non-zero. If the server
handle and client ID do not specify a valid client session, or the client has not requested
authentication, this function will return zero.

Remarks
The HttpGetClientCredentials function is used to obtain the username and password that was
provided by the client when it requested authentication. Typically this function is used in an event
handler to validate the credentials provided by the client. If the credentials are considered valid,
the event handler would then call the HttpAuthenticateClient function to specify that the session
has been authenticated.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpAuthenticateClient, HttpRequireAuthentication, HTTPCLIENTCREDENTIALS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetClientDirectory Function

INT WINAPI HttpGetClientDirectory(
 HSERVER hServer,
 UINT nClientId,
 LPTSTR lpszDirectory,
 INT nMaxLength
);

Returns the root document directory for the specified client session.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

lpszDirectory

A pointer to a string buffer that will contain the root directory for the specified client session,
terminated with a null character. This buffer should be at least MAX_PATH characters in length.
This parameter cannot be NULL.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer, including the terminating null character. This value must be larger than zero or the
function will fail.

Return Value
If the function succeeds, the return value is the number of characters copied into the string buffer,
not including the terminating null character. If the server handle and client ID do not specify a
valid client session, the function will return zero.

Remarks
This function returns the full path to the root document directory for the specified client session. If
no virtual hosts have been configured, then this path will be the same as the root directory
assigned to the server when it was started. If the server has been configured with multiple virtual
hosts, this function will return the path to the root directory associated with the hostname
provided by the client.

To convert a full path to the virtual path for a specific client session, use the
HttpGetClientVirtualPath function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpGetClientVirtualPath

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetClientHeader Function

INT WINAPI HttpGetClientHeader(
 HSERVER hServer,
 UINT nClientId,
 UINT nHeaderType,
 LPCTSTR lpszHeaderName,
 LPTSTR lpszHeaderValue,
 INT nMaxLength,
);

Return the value of a request or response header for the specified client session.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

nHeaderType

Specifies the type of header. It may be one of the following values:

Constant Description

HTTP_HEADERS_REQUEST Return the value of a request header that was provided
by the client. Request header values provide additional
information to the server about the type of request being
made.

HTTP_HEADERS_RESPONSE Return the value of a response header that was created
by the server. Response header values provide additional
information to the client about the type of information
that is being returned by the server.

lpszHeaderName

A pointer to a string that specifies the name of the header field. Header names are not case-
sensitive and should not include the colon which acts as a delimiter that separates the header
name from its value. This parameter cannot be a NULL pointer or an empty string.

lpszHeaderValue

A pointer to a buffer that will contain the header value, terminated with a null character. To
determine the length of the header value, this parameter can be NULL and the nMaxLength
parameter should be specified with a value of zero.

nMaxLength

An integer that specifies the maximum number of characters that can be copied into the header
value buffer, including the terminating null character. If the lpszHeaderValue parameter is
NULL, this value must be zero.

Return Value
If the function succeeds, the return value is the length of the header value, not including the
terminating null character. If the server handle and client ID do not specify a valid client session, or
there is no header that matches the given name, the function will return zero. If the

lpszHeaderValue parameter is not NULL and the buffer is not large enough to store the complete
header value, the function will return zero and the last error code will be set to
ST_ERROR_BUFFER_TOO_SMALL. If the function fails, the HttpGetServerError function will return
more information about the last error that has occurred.

Remarks
The HttpGetClientHeader function will return the value of a request or response header for the
specified client session. If the lpszHeaderName value matches an existing header field, its value
will be copied to the string buffer provided by the caller.

Refer to Hypertext Transfer Protocol Headers for a list of common request and response headers
that are used.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpDeleteClientHeader, HttpGetAllClientHeaders, HttpSetClientHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/httpsrv/library/headers.html
file:///C|/Projects/cstools11/pdf/httpsrv/library/headers.html
file:///C|/Projects/cstools11/pdf/httpsrv/library/httpgetallclientheaders.html

 HttpGetClientIdleTime Function

UINT WINAPI HttpGetClientIdleTime(
 HSERVER hServer,
 UINT nClientId,
 UINT * lpnElapsed
);

Return the idle timeout period for the specified client session.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

lpnElapsed

A pointer to an unsigned integer value that will contain the number of seconds the client
session has been idle. This parameter may be NULL if this information is not required.

Return Value
If the function succeeds, the return value is client idle timeout period in seconds. If the server
handle and client ID do not specify a valid client session, the function will return zero.

Remarks
The HttpGetClientIdleTime function will return the number of seconds that the client may
remain idle before being automatically disconnected by the server. The idle time of a client session
is based on the last time a command was issued to the server or when a data transfer completed.
The server will never disconnect a client that is in the process of sending or receiving data,
regardless of the idle timeout period.

The default idle timeout period for a client session is 60 seconds, however the server can be
configured to use a different value. The minimum timeout period for a client is 10 seconds, the
maximum is 300 seconds (5 minutes). An application can change the timeout period for a specific
client session using the HttpSetClientIdleTime function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
HttpSetClientIdleTime

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetClientLocalPath Function

INT WINAPI HttpGetClientLocalPath(
 HSERVER hServer,
 UINT nClientId,
 LPCTSTR lpszVirtualPath,
 LPTSTR lpszLocalPath,
 INT nMaxLength,
);

Return the full local path for a virtual filename or directory on the server.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

lpszVirtualPath

A pointer to a string that specifies an virtual path on the server. This parameter cannot be NULL.

lpszLocalPath

A pointer to a string buffer that will contain the full local path, terminated with a null-character.
This buffer should be at least MAX_PATH characters to accommodate the complete path. This
parameter cannot be NULL.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer, including the terminating null character. This value must be greater than zero.

Return Value
If the function succeeds, the return value is the number of characters copied into the string buffer,
not including the terminating null character. If the server handle and client ID do not specify a
valid client session, the function will return zero. If the string buffer is not large enough to contain
the complete path, this function will return zero and the last error code will be set to
ST_ERROR_BUFFER_TOO_SMALL.

Remarks
The HttpGetClientLocalPath function takes a virtual path and returns the full path to the
specified file or directory on the local system. The virtual path may be absolute or relative to the
root directory for the client session.

To obtain the virtual path for a local file or directory, use the HttpGetClientVirtualPath function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpGetClientVirtualPath

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetClientServer Function

HSERVER WINAPI HttpGetClientServer(
 UINT nClientId
);

The HttpGetClientServer function returns a handle to the server that created the specified client
session.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

Return Value
If the function succeeds, the return value is the handle to the server that created the client session.
If the function fails, the return value is INVALID_SERVER. To get extended error information, call
the HttpGetServerError function.

Remarks
The HttpGetClientServer function returns the handle to the server that created the client session
and is typically used within a notification message handler. If the server is in the process of
shutting down, or the client session thread is terminating, this function will fail and return
INVALID_SERVER indicating that the session ID is invalid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cstools11.h
Import Library: cshtsv11.lib

See Also
HttpServerAsyncNotify

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetClientThreadId Function

DWORD WINAPI HttpGetClientThreadId(
 HSERVER hServer,
 UINT nClientId
);

Returns the thread ID associated with the specified client session.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

Return Value
If the function succeeds, the return value is a thread ID. If the function fails, the return value is
zero. To get extended error information, call the HttpGetServerError function.

Remarks
The HttpGetClientThreadId function returns a thread ID that can be used to identify the thread
that is managing the client session. The thread ID can be used with other Windows API functions
such as OpenThread. Exercise caution when using thread-related functions, interfering with the
normal operation of the thread can have unexpected results. You should never use this function to
obtain a thread handle and then call the TerminateThread function to terminate a client session.
This will prevent the thread from releasing the resources that were allocated for the session and
can leave the server in an unstable state. To terminate a client session, use the
HttpDisconnectClient function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
HttpEnumServerClients, HttpGetActiveClient

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetClientUserName Function

INT WINAPI HttpGetClientUserName(
 HSERVER hServer,
 UINT nClientId,
 LPTSTR lpszUserName,
 INT nMaxLength
);

Return the user name associated with the specified client session.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

lpszUserName

A pointer to a string buffer that will contain the user name associated with the client session.
This buffer must be large enough to store the complete user name, including the terminating
null character. This parameter cannot be NULL.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer, including the terminating null character. This parameter must have a value larger
than zero.

Return Value
If the function succeeds, the return value is the number of characters copied into the string buffer,
not including the terminating null character. If the server handle and client ID do not specify a
valid client session, the function will return zero.

Remarks
The HttpGetClientUserName function returns the user name associated with an authenticated
client session. If the client has not authenticated itself, this function will return zero and the
lpszUserName parameter will be set to an empty string.

The HttpIsClientAuthenticated function can be used to determine if the client has provided
credentials as part of the request made to the server.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpAuthenticateClient, HttpGetClientAccess, HttpIsClientAuthenticated

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetClientVariable Function

INT WINAPI HttpGetClientVariable(
 HSERVER hServer,
 UINT nClientId,
 LPCTSTR lpszName,
 LPTSTR lpszValue,
 INT nMaxLength,
);

Return the value of a CGI environment variable for the specified client.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

lpszName

A pointer to a string that specifies the name of the environment variable. Variable names are
not case-sensitive and should not include the equal sign which acts as a delimiter that separates
the variable name from its value. This parameter cannot be a NULL pointer or an empty string.

lpszValue

A pointer to a buffer that will contain the value of the environment variable, terminated with a
null character. To determine the length of the header value, this parameter can be NULL and
the nMaxLength parameter should be specified with a value of zero.

nMaxLength

An integer that specifies the maximum number of characters that can be copied into the value
buffer, including the terminating null character. If the lpszValue parameter is NULL, this value
must be zero.

Return Value
If the function succeeds, the return value is the length of the environment variable value, not
including the terminating null character. If the server handle and client ID do not specify a valid
client session, or there is no environment variable that matches the given name, the function will
return zero. If the lpszValue parameter is not NULL and the buffer is not large enough to store the
complete header value, the function will return zero and the last error code will be set to
ST_ERROR_BUFFER_TOO_SMALL. If the function fails, the HttpGetServerError function will return
more information about the last error that has occurred.

Remarks
The HttpGetClientVariable function will return the value of an environment variable that has
been defined for the client. Each client session inherits a copy of the process environment block,
which is then modified to define various environment variables that are used with CGI programs
and scripts. The HttpSetClientVariable function can be used to change existing environment
variables or create new variables.

The standard CGI environment variables that are defined by the server are not created until the
client request has been processed. This means that environment variables such as REMOTE_ADDR
and SERVER_NAME will not be defined inside an HTTP_CLIENT_CONNECT event handler.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpSetClientVariable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetClientVirtualHost Function

INT WINAPI HttpGetClientVirtualHost(
 HSERVER hServer,
 UINT nClientId,
 LPTSTR lpszHostName,
 INT nMaxLength
);

Return the name of the virtual host the client used to establish the connection.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

lpszHostName

A pointer to a string buffer that will contain the virtual host name. The string buffer will be null
terminated and must be large enough to store the complete hostname. If this parameter is
NULL, the function will only return the length of the current command in characters, not
including the terminating null character.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer, including the terminating null character. If the maximum length specified is smaller
than the actual length of the parameter, this function will fail. If the lpszHostName parameter is
NULL, this value should be zero.

Return Value
An integer value which specifies the number of characters copied into the buffer, not including the
terminating null character. If the function fails, the return value will be zero and the
HttpGetServerError function can be used to retrieve the last error code.

Remarks
The HttpGetClientVirtualHost function is used to obtain the hostname that the client used to
establish a connection with the server. This function is typically used within an event handler to
determine the hostname associated with the request made by the client. It should not be called
inside a HTTP_CLIENT_CONNECT event handler because the virtual host has not been selected at
that point. If the virtual hostname is not available at the time this function is called, the function will
return zero and the last error code will be set to ST_ERROR_VIRTUAL_HOST_NOT_FOUND.

The HttpGetClientVirtualHostId function can be used to obtain the virtual host ID associated
with the hostname.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpGetClientVirtualHostId, HttpGetCommandUrl

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetClientVirtualHostId Function

UINT WINAPI HttpGetClientVirtualHostId(
 HSERVER hServer,
 UINT nClientId
);

Return the virtual host ID associated with the specified client session.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

Return Value
An unsigned integer value which specifies the virtual host ID. If the function fails, the return value
will be INVALID_VIRTUAL_HOST and the HttpGetServerError function can be used to retrieve the
last error code.

Remarks
The HttpGetClientVirtualHostId function is used to obtain the virtual host ID associated with the
hostname the client used to establish a connection with the server. This function should not be
called inside a HTTP_CLIENT_CONNECT event handler because the virtual host has not been
selected at that point. If the virtual host ID is not available at the time this function is called, the
function will return INVALID_VIRTUAL_HOST and the last error code will be set to
ST_ERROR_VIRTUAL_HOST_NOT_FOUND.

The HttpGetClientVirtualHost function can be used to obtain the hostname that the client used
to establish the connection.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
HttpGetClientVirtualHost, HttpGetCommandUrl, HttpGetVirtualHostId, HttpGetVirtualHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetClientVirtualPath Function

INT WINAPI HttpGetClientVirtualPath(
 HSERVER hServer,
 UINT nClientId,
 LPCTSTR lpszLocalPath,
 LPTSTR lpszVirtualPath,
 INT nMaxLength,
);

Return the virtual path for a local file on the server.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

lpszLocalPath

A pointer to a string that specifies an absolute path on the local system. This parameter cannot
be NULL.

lpszVirtualPath

A pointer to a string buffer that will contain the virtual path, terminated with a null-character.
This buffer should be at least MAX_PATH characters to accommodate the complete path. This
parameter cannot be NULL.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer, including the terminating null character. This value must be greater than zero.

Return Value
If the function succeeds, the return value is the number of characters copied into the string buffer,
not including the terminating null character. If the server handle and client ID do not specify a
valid client session, the function will return zero. If the string buffer is not large enough to contain
the complete path, this function will return zero and the last error code will be set to
ST_ERROR_BUFFER_TOO_SMALL.

Remarks
A virtual path for the client is relative to the root directory for the specified client session. These
virtual paths are what the client will see as an absolute path on the server. For example, if the
server was configured to use "C:\ProgramData\MyServer" as the root directory, and the
lpszLocalPath parameter was specified as "C:\ProgramData\MyServer\Documents\Research", this
function would return the virtual path to that directory as "/Documents/Research".

If the lpszLocalPath parameter specifies a file or directory outside of the server root directory, this
function will return zero and the last error code will be set to ST_ERROR_INVALID_FILE_NAME. This
function can only be used with authenticated clients. If the nClientId parameter specifies a client
session that has not been authenticated, this function will return zero and the last error code will
be ST_ERROR_AUTHENTICATION_REQUIRED.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)

Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpGetCommandFile, HttpGetClientLocalPath

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetCommandFile Function

INT WINAPI HttpGetCommandFile(
 HSERVER hServer,
 UINT nClientId,
 LPTSTR lpszFileName,
 INT nMaxLength
);

Get the full path to a file name or directory specified by the client.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

lpszFileName

A pointer to a string buffer that will contain the full path to a file name or directory specified by
the client when it issued a command. The string buffer will be null terminated and must be large
enough to store the complete file path. This parameter cannot be NULL.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer. It is recommended that the buffer be at least MAX_PATH characters in size. If the
maximum length specified is smaller than the actual length of the full path, this function will fail.

Return Value
An integer value which specifies the number of characters copied into the buffer, not including the
terminating null character. If the function fails, the return value will be zero and the
HttpGetServerError function can be used to retrieve the last error code.

Remarks
The HttpGetCommandFile function is used to obtain the full path to a local file name or
directory specified by the client as an argument to a standard HTTP command. For example, if the
client sends the GET command to the server, this function will return the complete path to the
local file that the client wants to retrieve. This function will only work with those standard
commands that perform some action on a file or directory.

This function should always be used to obtain the file name for a command that performs a file or
directory operation. It normalizes the path provided by the client and ensures that it specifies a file
or directory name in the correct location. The HttpGetCommandUrl function can be used to
obtain the URL that was provided by the client.

To map a virtual path to a file or directory on the local system, use the HttpAddVirtualPath
function. To redirect a client to use a different URL to access the resource, use the
HttpRedirectRequest function.

The HttpSetCommandFile function can be used to change the name of the local file or directory
that is the target of the command, however using this function to redirect access to a resource can
have unintended side-effects, particularly in the case where the URL provided by the client actually
resolves to an executable CGI program that handles the request.

If the client has provided a URL that resolves to a CGI program that handles the request, this

function behaves differently than if the URL is resolved to a local file or directory. If the client uses
the GET or POST command that results in a program being executed to handle the request, this
function will return the path to the server root directory along with any additional path information
provided in the URL. In other words, the file name returned by this function will be the same as the
PATH_TRANSLATED value passed to the CGI program.

This function should only be called after the client request has been received by the server,
typically inside a HTTP_CLIENT_COMMAND or HTTP_CLIENT_EXECUTE event handler. It should
not be called inside a HTTP_CLIENT_CONNECT event handler because the server has not
processed the client request at that point.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpAddVirtualPath, HttpGetCommandUrl, HttpRedirectRequest, HttpSetCommandFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetCommandLine Function

INT WINAPI HttpGetCommandLine(
 HSERVER hServer,
 UINT nClientId,
 LPTSTR lpszCmdLine,
 INT nMaxLength
);

Return the complete command line issued by the client.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

lpszCmdLine

A pointer to a string buffer that will contain the command, including all arguments. The string
buffer will be null terminated and must be large enough to store the complete command line. If
this parameter is NULL, the function will return the length of the command line.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer. The internal limit on the maximum length of a command is 1024 characters. If the
maximum length specified is smaller than the actual length of the complete command, this
function will fail.

Return Value
An integer value which specifies the number of characters copied into the buffer, not including the
terminating null character. If the function fails, the return value will be zero and the
HttpGetServerError function can be used to retrieve the last error code. If the last error code has
a value of zero then no command has been issued by the client.

Remarks
The HttpGetCommandLine function is used to obtain the command that was issued by the
client, and is commonly used inside HTTP_CLIENT_COMMAND and HTTP_CLIENT_RESULT event
handlers to pre-process and post-process client commands, respectively. When the function
returns, the string buffer provided by the caller will contain the complete command, including the
resource path and requested HTTP version. Any extraneous whitespace will be removed, however
all encoding will be preserved.

To obtain the complete URL associated with the request issued by the client, use the
HttpGetCommandUrl function. If the command sent by the client is used to perform an action
on a file or directory, the HttpGetCommandFile function should be called to obtain the full path
to the local file rather than using the resource path.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpGetCommandFile, HttpGetCommandUrl

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetCommandName Function

INT WINAPI HttpGetCommandName
 HSERVER hServer,
 UINT nClientId,
 LPTSTR lpszCommand,
 INT nMaxLength
);

Return the name of the last command issued by the client.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

lpszCommand

A pointer to a string buffer that will contain the command name. The string buffer will be null
terminated and must be large enough to store the complete command name. If this parameter
is NULL, the function will only return the length of the current command in characters, not
including the terminating null character.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer, including the terminating null character. If the maximum length specified is smaller
than the actual length of the parameter, this function will fail. If the lpszCommand parameter is
NULL, this value should be zero.

Return Value
An integer value which specifies the number of characters copied into the buffer, not including the
terminating null character. If the function fails, the return value will be zero and the
HttpGetServerError function can be used to retrieve the last error code. If the last error code is
returned as a value of zero, this means that no command has been issued by the client.

Remarks
The HttpGetCommandName function is used to obtain the name of the last command that was
issued by the client. The command name returned by this function will always be capitalized,
regardless of how it was sent by the client. This function is typically used inside
HTTP_CLIENT_COMMAND and HTTP_CLIENT_RESULT event handlers to pre-process and post-
process client commands, respectively. It should not be called inside a HTTP_CLIENT_CONNECT
event handler because the server has not processed the client request at that point.

The HttpGetCommandUrl function can be used to return the resource that was requested by the
client.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpGetCommandFile, HttpGetCommandUrl

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetCommandQuery Function

INT WINAPI HttpGetCommandQuery(
 HSERVER hServer,
 UINT nClientId,
 LPTSTR lpszParameters,
 INT nMaxLength
);

Return the query parameters included with the command.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

lpszParameters

A pointer to a string buffer that will contain the query parameters when the function returns.
The string buffer will be null terminated up to the maximum number of characters specified by
the caller. If this parameter is NULL the function will return the length of the query string.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer. If the lpszParameters parameter is NULL, this value should be zero.

Return Value
An integer value which specifies the number of characters copied into the buffer, not including the
terminating null character. If the function fails, the return value will be zero and the
HttpGetServerError function can be used to retrieve the last error code. If the client did not
provide any query parameters, this function will return zero and the last error code will be zero.

Remarks
The HttpGetCommandQuery function is used to obtain a copy of the query parameters that
were included in the request URL. If there were no query parameters, the string buffer will be
empty and the return value will be zero. If the request did include query parameters, they will be
returned to the caller in their original, encoded form.

This function should not be called within a HTTP_CLIENT_CONNECT event handler because the
client request has not been processed at that point.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpGetCommandName, HttpGetCommandResource, HttpReceiveRequest

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetCommandResource Function

INT WINAPI HttpGetCommandResource(
 HSERVER hServer,
 UINT nClientId,
 LPTSTR lpszResource,
 INT nMaxLength
);

Return the URL path for the resource requested by the client.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

lpszResource

A pointer to a string buffer that will contain the URL path provided by the client for the current
command. The string buffer will be null terminated and must be large enough to store the
complete path. If this parameter is NULL, the function will only return the length of the path.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer, including the terminating null character. If the lpszResource parameter is NULL,
this value should be zero. If this value is less than the length of the URL, the function will fail.

Return Value
An integer value which specifies the number of characters copied into the buffer, not including the
terminating null character. If the function fails, the return value will be zero and the
HttpGetServerError function can be used to retrieve the last error code.

Remarks
The HttpGetCommandResource function returns the URL path that the client provided to access
the requested resource. The path will not include the URI scheme, user credentials or query
parameters. The HttpGetCommandFile function can be used to determine the name of the local
file on the server that will be accessed using this URL.

If you require the complete URL, not just the path to the resource, use the HttpGetCommandUrl
function.

This function should only be called after the client request has been received by the server,
typically inside a HTTP_CLIENT_COMMAND event handler. It should not be called inside a
HTTP_CLIENT_CONNECT event handler because the server has not processed the client request at
that point.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpGetCommandFile, HttpGetCommandQuery, HttpGetCommandUrl, HttpRedirectRequest

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetCommandResult Function

INT WINAPI HttpGetCommandResult(
 HSERVER hServer,
 UINT nClientId,
 LPTSTR lpszResult,
 INT nMaxLength
);

Return the result code and description for the last command issued by the client.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

lpszResult

A pointer to a string buffer that will contain the description of the result code. The string buffer
will be null terminated up to the maximum number of characters specified by the caller. This
parameter can be NULL if this information is not required.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer. If the lpszResult parameter is NULL, this value should be zero.

Return Value
An integer value which specifies the result code for the last command issued by the client. A return
value of zero indicates that the command has not completed and there is no result code available.

Remarks
The HttpGetCommandResult function is used to determine the result of the last command that
was issued by the client and is typically called in the HTTP_CLIENT_RESULT event handler. This
function should only be called after a command has been processed or the HttpSendResponse
function has been called.

The result code is a three-digit integer value that indicates the success or failure of a command.
Whenever a client sends a command to the server, the server must respond with this numeric
code and a brief description of the the result. Result codes are generally broken down into the
following categories:

Result Code Description

100-199 Result codes in this range are informational and only used with version 1.1 of the
protocol. If the server returns a result code in this range, it means that it has
received the request and that the client should proceed.

200-299 Result codes in this range indicate that the server has successfully completed the
requested action. In most cases this means that the server has returned the
requested data to the client, however if a 204 result code is sent, this indicates
that the request has been processed but there is no data available.

300-399 Result codes in this range indicate that the requested resource has been moved
to a new location. The most common result codes are 301 and 302. A value of

301 indicates that the location of the resource has changed permanently and all
future requests should be sent to the new URL. A value of 302 indicates that the
resource location has changed temporarily. The new location of the resource is
sent to the client by setting the Location response header field.

400-499 Result codes in this range indicate an error with the request that was made by the
client. These types of errors include invalid commands, requests that can only be
issued by authenticated clients, or resources that cannot be accessed on the
server. The most common result code in this range is the 404 code which
indicates that the requested document could not be found.

500-599 Result codes in this range indicate a server error has occurred while processing a
valid request. These types of errors are returned when a command has not been
implemented, the execution of a CGI program or script has failed unexpectedly,
or an internal server error has occurred.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpReceiveRequest, HttpSendResponse

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetCommandUrl Function

INT WINAPI HttpGetCommandUrl(
 HSERVER hServer,
 UINT nClientId,
 LPTSTR lpszCmdUrl,
 INT nMaxLength
);

Return the complete URL of the resource requested by the client.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

lpszCmdUrl

A pointer to a string buffer that will contain the URL provided by the client for the current
command. The string buffer will be null terminated and must be large enough to store the
complete URL. If this parameter is NULL, the function will only return the length of the URL.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer, including the terminating null character. If the lpszCmdUrl parameter is NULL, this
value should be zero. If this value is less than the length of the URL, the function will fail.

Return Value
An integer value which specifies the number of characters copied into the buffer, not including the
terminating null character. If the function fails, the return value will be zero and the
HttpGetServerError function can be used to retrieve the last error code.

Remarks
The HttpGetCommandUrl function returns the complete URL that the client provided to access
the requested resource. The URL will include any query parameters that were specified by the
client, but it will not include any user credentials. The HttpGetCommandFile function can be used
to determine the name of the local file on the server that will be accessed using this URL.

If you only require the URL path, without the URI scheme or the query parameters, use the
HttpGetCommandResource function.

This function should only be called after the client request has been received by the server,
typically inside a HTTP_CLIENT_COMMAND event handler. It should not be called inside a
HTTP_CLIENT_CONNECT event handler because the server has not processed the client request at
that point.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpGetCommandFile, HttpGetCommandResource, HttpRedirectRequest

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetProgramExitCode Function

BOOL WINAPI HttpGetProgramExitCode(
 HSERVER hServer,
 UINT nClientId,
 LPDWORD lpdwExitCode
);

Return the exit code of the last program executed by the client.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

lpdwExitCode

A pointer to an unsigned integer that will contain the program exit code when the function
returns. This parameter cannot be NULL.

Return Value
If the function succeeds, the return value is non-zero. If the server handle and client ID do not
specify a valid client session, the function will return zero.

Remarks
The HttpGetProgramExitCode function returns the exit code of a registered CGI program or
script that was executed. By convention, most programs return an exit code in the range of 0-255,
with an exit code of zero indicating success. The exit code is commonly used by programs to
communicate status information back to the server application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
HttpGetProgramOutput, HttpRegisterProgram

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetProgramName Function

INT WINAPI HttpGetProgramName(
 HSERVER hServer,
 UINT nClientId,
 LPTSTR lpszProgramName,
 INT nMaxLength
);

Return the name of the CGI program executed by the client.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

lpszProgramName

A pointer to a string buffer that will contain the name of the CGI program executed by the
client. This parameter cannot be NULL and should be at least MAX_PATH characters in size.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer, including the terminating null character. This parameter must have a value greater
than zero.

Return Value
If the function succeeds, the return value is the length of the executable file name. If the server
handle and client ID do not specify a valid client session, the function will return zero. If the client
has not executed a CGI program this function will return zero and the last error code will be set to
zero.

Remarks
The HttpGetProgramName function returns the local file name of the CGI program that was
executed in response to a request from the client. This is the full path to the executable that was
registered with the server using the HttpRegisterProgram function. If the client specified a
regular document or directory, this function will return a value of zero, indicating that no CGI
program has been executed to handle the request.

To obtain the resource URL that was provided by the client, use the HttpGetCommandUrl
function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpGetProgramExitCode, HttpGetProgramOutput, HttpRegisterProgram

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetProgramOutput Function

DWORD WINAPI HttpGetProgramOutput(
 HSERVER hServer,
 UINT nClientId,
 LPBYTE lpBuffer,
 DWORD dwBufferSize
);

Return a copy of the standard output from a CGI program executed by the client.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

lpBuffer

A pointer to a buffer that will contain the output from the last program executed by the client. If
this parameter is NULL, the function will return the number of bytes of data that was output by
the program. Note that this output is not null terminated.

dwBufferSize

The maximum number of bytes that can be copied into the buffer. If the lpBuffer parameter is
NULL, this value should be zero.

Return Value
If the function succeeds, the return value is the number of bytes copied into the specified buffer. If
the server handle and client ID do not specify a valid client session, the function will return zero. If
the client has not executed any programs, the return value will be zero.

Remarks
The HttpGetProgramOutput function is used to obtain a copy of the output generated by a CGI
program. To determine the number of bytes of output available to read, call this function with the
lpBuffer parameter as NULL and the dwBufferSize parameter with a value of zero. The return
value will be the number of bytes of data that was output by the program. It should be noted that
for Unicode builds, the buffer is a byte array, not an array of characters, and will not be null
terminated.

This function returns the raw output from the program which may contain a response header
block, escape sequences, control characters and embedded nulls. When the application processes
the output returned by this function, it should never coerce the buffer pointer to an LPTSTR value
because there is no guarantee that the data will be null-terminated. To obtain the output from the
program as a string, use the HttpGetProgramText function.

This function should only be used within an HTTP_CLIENT_EXECUTE event handler, which occurs
after the program has terminated.

Example
LPBYTE lpBuffer = NULL; // A pointer to the output buffer
DWORD cbBuffer = 0; // Number of bytes in the output buffer

// Determine the number of bytes in the output buffer

cbBuffer = HttpGetProgramOutput(hServer, nClientId, NULL, 0);

if (cbBuffer > 0)
{
 // Allocate memory for the buffer
 lpBuffer = (LPBYTE)LocalAlloc(LPTR, cbBuffer + 1);

 // Copy the program output to the buffer
 if (lpBuffer != NULL)
 cbBuffer = HttpGetProgramOutput(hServer, nClientId, lpBuffer, cbBuffer +
1);
}

// Free the memory allocated for the buffer when finished
if (lpBuffer != NULL)
{
 LocalFree((HLOCAL)lpBuffer);
 lpBuffer = NULL;
 cbBuffer = 0;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
HttpGetProgramExitCode, HttpGetProgramText, HttpRegisterProgram

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetProgramText Function

INT WINAPI HttpGetProgramText(
 HSERVER hServer,
 UINT nClientId,
 LPTSTR lpszBuffer,
 INT nMaxLength
);

Return a copy of the standard output from a CGI program in a string buffer.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

lpszBuffer

A pointer to a buffer that will contain the output from the last program executed by the client as
a string. If this parameter is NULL, the function will return the number of bytes of characters that
was output by the program, not including a terminating null character.

nMaxLength

The maximum number of bytes that can be copied into the buffer. If the lpszBuffer parameter is
NULL, this value should be zero.

Return Value
If the function succeeds, the return value is the number of characters copied into the specified
string buffer, not including the terminating null character. If the server handle and client ID do not
specify a valid client session, the function will return zero. If the client has not executed any
programs, the return value will be zero.

Remarks
The HttpGetProgramText function is used to obtain a copy of the output generated by a CGI
program. To determine the number of characters of output available to read, call this function with
the lpszBuffer parameter as NULL and the nMaxLength parameter with a value of zero. The return
value will be the number of characters that were output by the program. If the application
dynamically allocates the string buffer, make sure that it allocates an extra character for the
terminating null character.

This function will only return textual output from the program and any non-printable control
characters and the escape character will be replaced with a space. To obtain the unfiltered output
from the program, use the HttpGetProgramOutput function. If the program outputs a response
header block, this will be included in the string buffer.

This function should only be used within an HTTP_CLIENT_EXECUTE event handler, which occurs
after the program has terminated.

Example
LPTSTR lpszBuffer = NULL; // A pointer to the output buffer
INT cchBuffer = 0; // Number of bytes in the output buffer

// Determine the number of bytes in the output buffer

cchBuffer = HttpGetProgramText(hServer, nClientId, NULL, 0);

if (cchBuffer > 0)
{
 // Allocate memory for the string buffer
 lpszBuffer = (LPTSTR)LocalAlloc(LPTR, (cchBuffer + 1) * sizeof(TCHAR));

 // Copy the program output to the buffer
 if (lpszBuffer != NULL)
 cchBuffer = HttpGetProgramText(hServer, nClientId, lpszBuffer, cchBuffer
+ 1);
}

// Free the memory allocated for the buffer when finished
if (lpszBuffer != NULL)
{
 LocalFree((HLOCAL)lpszBuffer);
 lpszBuffer = NULL;
 cchBuffer = 0;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpGetProgramExitCode, HttpGetProgramOutput, HttpRegisterProgram

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetServerAddress Function

INT WINAPI HttpGetServerAddress(
 HSERVER hServer,
 UINT nClientId,
 LPTSTR lpszAddress,
 INT nMaxLength
);

Return the IP address of the server.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session. This value may be zero.

lpszAddress

A pointer to a string buffer that will contain the server IP address, terminated with a null
character. To accommodate both IPv4 and IPv6 addresses, this buffer should be at least 46
characters in length. This parameter cannot be NULL.

nMaxLength

An integer value that specifies the maximum number of characters can be copied into the string
buffer, including the terminating null character. This value must be greater than zero. If the
buffer size is too small, the function will fail.

Return Value
If the function succeeds, the return value is the number of characters copied into the string buffer,
not including the terminating null character. If either the server handle or the client ID is invalid, or
the buffer is not large enough to store the complete address, the function will return a value of
zero.

Remarks
This function will return the IP address assigned to the specified server as a printable string. If the
nClientId parameter has a value of zero, this function will return the IP address assigned to the
local system. If the HTTP_SERVER_NATROUTER option was specified when the server was started,
this function will return the external IP address assigned to the system. If the nClientId parameter
specifies a valid client session, this function will return the IP address that the client used to
establish the connection with the server. To determine the IP address assigned to the client, use
the HttpGetClientAddress function.

The format and length of IPv4 and IPv6 address strings are very different. An IPv4 address string
looks like "192.168.0.20", while an IPv6 address string can look something like
"fd7c:2f6a:4f4f:ba34::a32". If your application checks for the format of these address strings, it
needs to be aware of the differences. You also need to make sure that you're providing enough
space to display or store an address to avoid buffer overruns.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpGetClientAddress, HttpGetServerName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetServerDirectory Function

INT WINAPI HttpGetServerDirectory(
 HSERVER hServer,
 LPTSTR lpszDirectory,
 INT nMaxLength
);

Return the full path to the root directory assigned to the specified server.

Parameters
hServer

The server handle.

lpszDirectory

A pointer to a string buffer that will contain the server root directory, terminated with a null
character. It is recommended that this buffer be at least MAX_PATH characters in length. This
parameter cannot be NULL.

nMaxLength

An integer value that specifies the maximum number of characters can be copied into the string
buffer, including the terminating null character. This value must be greater than zero. If the
buffer size is too small, the function will fail.

Return Value
If the function succeeds, the return value is the number of characters copied into the string buffer,
not including the terminating null character. If the server handle is invalid, or the buffer is not large
enough to store the complete path, the function will return a value of zero.

Remarks
The HttpGetServerDirectory function will return the full path to the root directory assigned to
the server instance. The root directory may be specified as part of the server configuration, or if no
directory is specified by the application, a temporary root directory will be created and this
function can be used to obtain the full path to the directory. When the application specifies a root
directory, it may use environment variables such as %AppData% in the path. This function will
return the fully resolved path name, with all environment variables expanded.

There is no corresponding function to change the server root directory after the server has started.
To change the root directory, you must stop the server using the HttpServerStop function and
then start another instance of the server with a configuration that specifies the new directory.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpGetServerAddress, HttpGetServerIdentity, HttpGetServerName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetServerError Function

DWORD WINAPI HttpGetServerError(
 HSERVER hServer,
 LPTSTR lpszError,
 INT nMaxLength
);

Return the last server error code and a description of the error.

Parameters
hServer

The server handle.

lpszError

A pointer to a string buffer that will contain a description of the error. If the error description is
not needed, this parameter may be NULL.

nMaxLength

An integer that specifies the maximum number of characters that can be copied into the error
string buffer, including the terminating null character. If the lpszError parameter is NULL, this
value should be zero.

Return Value
An unsigned integer value that specifies the last error that occurred. A value of zero indicates that
there was no error.

Remarks
Error codes are unsigned 32-bit values which are private to each server. You should call the
HttpGetServerError function immediately when a function's return value indicates that an error
has occurred. That is because some functions clear the last error code when they succeed.

If the hServer parameter is specified with a value of INVALID_SERVER, this function will return the
last error that occurred for the current thread. This value should only be used when the function
does not have access to a valid server handle, such as when the HttpServerStart function fails.

It is important to note that the error codes returned by this method are different than the
command result codes that are defined in RFC 2616, the standard protocol specification for HTTP.
This function is used to determine reason that an API function has failed, and should not be used
to determine if a command issued by the client was successful. The HttpSendResponse function
is used to send responses to the client, and the HttpGetCommandResult function can be used
to determine the result of the last command sent by the client.

Most functions will set the last error code value when they fail; a few functions set it when they
succeed. Function failure is typically indicated by a return value such as FALSE, NULL,
INVALID_SERVER or HTTP_ERROR. Those functions which clear the last error code when they
succeed are noted on the function reference page.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpGetCommandResult, HttpSendResponse, HttpSetServerError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetServerIdentity Function

INT WINAPI HttpGetServerIdentity(
 HSERVER hServer,
 LPTSTR lpszIdentity,
 INT nMaxLength
);

Return the identity of the specified server.

Parameters
hServer

The server handle.

lpszIdentity

A pointer to a string buffer that will contain the identity of the server when the function returns,
terminated with a null character. This parameter cannot be NULL. It is recommended that this
buffer be at least 32 characters in length.

nMaxLength

An integer value that specifies the maximum number of characters can be copied into the string
buffer, including the terminating null character. This value must be greater than zero. If the
buffer size is too small, the function will fail.

Return Value
If the function succeeds, the return value is the number of characters copied into the string buffer,
not including the terminating null character. If the server handle is invalid, or the buffer is not large
enough to store the complete path, the function will return a value of zero.

Remarks
The HttpGetServerIdentity function returns the identity string that was specified as part of the
server configuration. It is used for informational purposes only and does not affect the operation
of the server. Typically the string specifies the name of the application and a version number. The
HttpSetServerIdentity function can be used to change the identity string associated with the
server.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpSetServerIdentity

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetServerLogFile Function

BOOL WINAPI HttpGetServerLogFile(
 HSERVER hServer,
 UINT * lpnLogFormat,
 UINT * lpnLogLevel,
 LPTSTR lpszFileName,
 INT nMaxLength
);

Return the current log file format and the full path to the file.

Parameters
hServer

The server handle.

lpnLogFormat

A pointer to an integer value that will contain the log file format being used when the function
returns. If this information is not needed, this parameter may be NULL. The following formats
are supported:

Constant Description

HTTP_LOGFILE_NONE
(0)

This value specifies that the server should not create or
update a log file.

HTTP_LOGFILE_COMMON
(1)

This value specifies that the log file should use the
common log format that records a subset of information
in a fixed format. This log format usually only provides
information about file transfers.

HTTP_LOGFILE_COMBINED
(2)

This value specifies that the server should use the
combined log file format. This format is similar to the
common format, however it includes the client referrer
and user agent. This is the format that most Apache web
servers use by default.

HTTP_LOGFILE_EXTENDED
(3)

This value specifies that the log file should use the
standard W3C extended log file format. This is an
extensible format that can provide additional information
about the client session.

lpnLogLevel

A pointer to an integer value that will contain the level of detail the server uses when generating
the log file. The minimum value is 1 and the maximum value is 10. If this information is not
needed, this parameter may be NULL.

lpszFileName

A pointer to a string buffer that will contain the full path to the log file. This parameter may be
NULL if this information is not required.

nMaxLength

An integer that specifies the maximum number of characters that can be copied into the file
name string, including the terminating null character. If the lpszFileName parameter is NULL,
this value should be zero.

Return Value
An integer value which specifies the current log file format. Refer to the HTTPSERVERCONFIG
structure definition for a list of supported log file formats. If the server handle is invalid or logging
has not been enabled, this function will return a value of zero.

Remarks
If the server is configured with logging enabled, but a log file name is not explicitly provided, then
the server will automatically generate one. This function can be used to get the full path to the
current log file along with the format that is being used to record client session data. Normally the
log file is held open by the server thread while it is active, however you can call the
HttpRenameServerLogFile function to explicitly rename or delete the log file.

To change the name of the log file, the log file format or level of detail, use the
HttpSetServerLogFile function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpRenameServerLogFile, HttpSetServerLogFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetServerMemoryUsage Function

BOOL WINAPI HttpGetServerMemoryUsage(
 HSERVER hServer,
 ULARGE_INTEGER * lpMemUsage
);

Return the amount of memory allocated for the server and all client sessions.

Parameters
hServer

The server handle.

lpMemUsage

A pointer to a ULARGE_INTEGER variable which will specify how much memory has been
allocated by the server. This parameter will be initialized to a value of zero by the function and
updated with the total number of bytes allocated by the server and all active client sessions
when it returns.

Return Value
If the function succeeds, the return value is non-zero and the memory usage value will be
updated. If the server handle is invalid, or the server cannot be locked, the return value is zero.
Call the HttpGetServerError function to determine the cause of the failure.

Remarks
This function returns the amount of memory allocated by the server and all active client sessions. It
enumerates all of memory allocations made by the server process and client session threads and
returns the total number of bytes allocated for the server process. This value reflects the amount
of memory explicitly allocated by this library and does not reflect the total working set size of the
process, or memory allocated by any other libraries. To determine the working set size for the
process, refer to the Win32 GetProcessWorkingSetSize and GetProcessMemoryInfo functions.

This function forces the server into a locked state, and all client sessions will block until the function
returns. Because this function enumerates all heaps allocated for the server process, it can be an
expensive operation, particularly when there are a large number of active clients connected to the
server. Frequent use of this function can significantly degrade the performance of the server. It is
primarily intended for use as a debugging tool to determine if memory usage is the result of an
increase in active client sessions. If the value returned by the function remains reasonably constant,
but the amount of memory allocated for the process continues to grow, it could indicate a
memory leak in some other area of the application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpGetServerStackSize, HttpSetServerStackSize

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetServerName Function

INT WINAPI HttpGetServerName(
 HSERVER hServer,
 UINT nClientId,
 LPTSTR lpszHostName,
 INT nMaxLength
);

Return the host name assigned to the specified server.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session. This value may be zero.

lpszHostName

A pointer to a string buffer that will contain the server host name, terminated with a null
character. It is recommended that this buffer be at least 64 characters in length. This parameter
cannot be NULL.

nMaxLength

An integer value that specifies the maximum number of characters can be copied into the string
buffer, including the terminating null character. This value must be greater than zero. If the
buffer size is too small, the function will fail.

Return Value
If the function succeeds, the return value is the number of characters copied into the string buffer,
not including the terminating null character. If either the server handle or the client ID is invalid, or
the buffer is not large enough to store the complete hostname, the function will return a value of
zero.

Remarks
This function will return the host name assigned to the specified server. If the nClientId parameter
has a value of zero, the function will return the default host name that was specified as part of the
server configuration. If no host name was explicitly assigned to the server, then it will return the
local system name. If the nClientId parameter specifies a client session, then it this function will
return the host name that the client used to establish the connection.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpGetServerAddress

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetServerOptions Function

BOOL WINAPI HttpGetServerOptions(
 HSERVER hServer,
 LPDWORD lpdwOptions
);

Return the configuration options for the specified server.

Parameters
hServer

The server handle.

lpdwOptions

A pointer to an unsigned integer that will contain the options that were specified when the
server was started. This parameter cannot be NULL.

Return Value
If the function succeeds, the return value is non-zero. If the server handle is invalid, the function
will return a value of zero.

Remarks
This function will return the options that were specified when the server was started. For a list of
server options see Server Option Constants.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpServerStart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/httpsrv/library/options.html

 HttpGetServerPriority Function

INT WINAPI HttpGetServerPriority(
 HSERVER hServer
);

Return the current priority assigned to the specified server.

Parameters
hServer

The server handle.

Return Value
If the function succeeds, the return value is the priority for the specified server. If the function fails,
the return value is HTTP_PRIORITY_INVALID. To get extended error information, call
HttpGetServerError.

Remarks
The HttpGetServerPriority function can be used to determine the current priority assigned to the
server. It will return one of the following values:

Constant Description

HTTP_PRIORITY_BACKGROUND
(0)

This priority significantly reduces the memory, processor and
network resource utilization for the server. It is typically used
with lightweight services running in the background that are
designed for few client connections. The server thread will be
assigned a lower scheduling priority and will be frequently
forced to yield execution to other threads.

HTTP_PRIORITY_LOW
(1)

This priority lowers the overall resource utilization for the
server and meters the processor utilization for the server
thread. The server thread will be assigned a lower scheduling
priority and will occasionally be forced to yield execution to
other threads.

HTTP_PRIORITY_NORMAL
(2)

The default priority which balances resource and processor
utilization. This is the priority that is initially assigned to the
server when it is started, and it is recommended that most
applications use this priority.

HTTP_PRIORITY_HIGH
(3)

This priority increases the overall resource utilization for the
server and the thread will be given higher scheduling priority.
It is not recommended that this priority be used on a system
with a single processor.

HTTP_PRIORITY_CRITICAL
(4)

This priority can significantly increase processor, memory and
network utilization. The server thread will be given higher
scheduling priority and will be more responsive to client
connection requests. It is not recommended that this priority
be used on a system with a single processor.

Requirements

Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cstools11.h
Import Library: cshtsv11.lib

See Also
HttpServerStart, HttpSetServerPriority

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetServerStackSize Function

DWORD WINAPI HttpGetServerStackSize(
 SOCKET hServer
);

Return the initial size of the stack allocated for threads created by the server.

Parameters
hServer

The server handle.

Return Value
If the function succeeds, the return value is the amount of memory that will be allocated for the
stack in bytes. If the function fails, the return value is zero. To get extended error information, call
HttpGetServerError.

Remarks
The HttpGetServerStackSize function returns the initial amount of memory that is committed to
the stack for each thread created by the server. By default, the stack size for each thread is set to
256K for 32-bit processes and 512K for 64-bit processes.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cstools11.h
Import Library: cshtsv11.lib

See Also
HttpGetServerMemoryUsage, HttpServerStart, HttpSetServerStackSize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetServerTransferInfo Function

BOOL WINAPI HttpGetServerTransferInfo(
 HSERVER hServer,
 UINT nClientId,
 LPHTTPSERVERTRANSFER lpTransferInfo
);

Return information about the current file transfer.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

lpTransferInfo

A pointer to an HTTPSERVERTRANSFER structure that will contain information about the last
file transfer. This parameter cannot be NULL, and the dwSize member of the structure must be
initialized to specify the structure size prior to calling this function.

Return Value
If the function succeeds, the return value is non-zero. If the server handle and client ID do not
specify a valid client session, the function will return zero.

Remarks
The HttpGetServerTransferInfo function is used to obtain information about the last file transfer
that was performed by the server for the specified client. This function is typically called within an
event handler to determine how many bytes of data were transferred, the type of file and the full
path to the file on the local system.

This function will only return information about a file transfer using the GET or PUT commands,
with any other command causing this function to fail.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpReceveRequest, HttpSendResponse, HTTPSERVERTRANSFER

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetServerUuid Function

INT WINAPI HttpGetServerUuid(
 HSERVER hServer,
 UUID * lpUuid
);

Return the UUID assigned to the specified server.

Parameters
hServer

The server handle.

lpUuid

A pointer to a UUID structure that will contain the server UUID when the function returns. This
parameter cannot be NULL.

Return Value
If the function succeeds, the return value is non-zero. If either the server handle is invalid or the
pointer to the UUID structure is NULL, the function will return a value of zero.

Remarks
The HttpGetServerUuid function returns the Universally Unique Identifier (UUID) that has been
assigned to the server. The UUID may either be generated by the application and assigned as part
of the server configuration, or an ephemeral UUID may be automatically generated when the
server is started. To obtain a printable string version of the UUID, use the
HttpGetServerUuidString function.

There is no corresponding function to change the UUID assigned to an active server. The server
UUID is assigned when the server is started, and it must be a unique value that is maintained
throughout the lifetime of the server. To change the UUID associated with the server, the server
must be stopped using the HttpServerStop function and another instance of the server started
with the new UUID.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
HttpGetServerUuidString, HTTPSERVERCONFIG

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetServerUuidString Function

INT WINAPI HttpGetServerUuidString(
 HSERVER hServer,
 LPTSTR lpszHostUuid,
 INT nMaxLength
);

Return the UUID assigned to the server as a printable string.

Parameters
hServer

The server handle.

lpszHostUuid

A pointer to a string buffer that will contain the server UUID, terminated with a null character. It
is recommended that this buffer be at least 40 characters in length. This parameter cannot be
NULL.

nMaxLength

An integer value that specifies the maximum number of characters can be copied into the string
buffer, including the terminating null character. This value must be greater than zero. If the
buffer size is too small, the function will fail.

Return Value
If the function succeeds, the return value is the number of characters copied into the string buffer,
not including the terminating null character. If either the server handle or the buffer is not large
enough to store the complete UUID string, the function will return a value of zero.

Remarks
The HttpGetServerUuidString function returns the Universally Unique Identifier (UUID) that has
been assigned to the server. The UUID may either be generated by the application and assigned
as part of the server configuration, or an ephemeral UUID may be automatically generated when
the server is started. To obtain the numeric UUID value, use the HttpGetServerUuid function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpGetServerUuid, HTTPSERVERCONFIG

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetVirtualHostId Function

UINT WINAPI HttpGetVirtualHostId(
 HSERVER hServer,
 LPCTSTR lpszHostName,
 UINT nHostPort
);

Return the virtual host ID associated with the specified hostname.

Parameters
hServer

The server handle.

lpszHostName

A string that specifies the virtual host name.

nHostPort

An integer value which specifies the port number for the virtual host. This value must be zero or
the same value as the original port number that the server was configured to use.

Return Value
If the function succeeds, the return value is the host ID that uniquely identifies the virtual host. If
the server handle is invalid, or there is no virtual host with the specified name, the function will
return VIRTUAL_HOST_UNKNOWN. If the function fails, the last error code will be updated to
indicate the cause of the failure.

Remarks
The HttpGetVirtualHostId function is used to obtain the unique virtual host ID that is associated
with a specific hostname. This function will match both the primary virtual hostname added using
the HttpAddVirtualHost function, as well as any aliases that were added using the
HttpAddVirtualHostAlias function. To obtain the virtual host ID associated with the active client
session, use the HttpGetClientVirtualHostId function.

The nHostPort parameter should always be specified with a value of zero, or the same port
number that the server was configured to use. Port-based virtual hosting is currently not
supported and this parameter is included for future use.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpAddVirtualHost, HttpAddVirtualHostAlias, HttpDeleteVirtualHost, HttpGetClientVirtualHostId,
HttpGetVirtualHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpGetVirtualHostName Function

INT WINAPI HttpGetVirtualHostName(
 HSERVER hServer,
 UINT nHostId,
 LPTSTR lpszHostName,
 INT nMaxLength
);

Return the hostname associated with the specified virtual host ID.

Parameters
hServer

The server handle.

nHostId

An integer value which identifies the virtual host.

lpszHostName

A pointer to a string buffer that will contain the virtual host name, terminated with a null
character. It is recommended that this buffer be at least 64 characters in length. If this
parameter is NULL, the function will return the length of the virtual hostname.

nMaxLength

An integer value that specifies the maximum number of characters can be copied into the string
buffer, including the terminating null character. If the lpszHostName parameter is NULL this
value must be zero.

Return Value
If the function succeeds, the return value is the number of characters copied into the string buffer,
not including the terminating null character. If either the server handle or the host ID is invalid, or
the buffer is not large enough to store the complete hostname, the function will return a value of
zero.

Remarks
The HttpGetVirtualHostName function returns the primary hostname associated with the
specified virtual host ID. This is the same hostname that was specified when the virtual host was
added to the server configuration using the HttpAddVirtualHost function. To obtain the
hostname that was used by the active client session to connect to the server, use the
HttpGetClientVirtualHost function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpAddVirtualHost, HttpAddVirtualHostAlias, HttpDeleteVirtualHost, HttpGetClientVirtualHost,
HttpGetVirtualHostId

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpIsClientAuthenticated Function

BOOL WINAPI HttpIsClientAuthenticated(
 HSERVER hServer,
 UINT nClientId
);

Determine if the specified client session has been authenticated.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

Return Value
If the client session has been authenticated, this function will return a non-zero value, otherwise it
will return zero. If the server handle and client ID are valid, this function will clear the last error
code.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
HttpAuthenticateClient, HttpGetClientCredentials, HttpRequireAuthentication

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpIsCommandEnabled Function

BOOL WINAPI HttpIsCommandEnabled(
 HSERVER hServer,
 LPCTSTR lpszCommand
);

Determine if a specific server command has been enabled or disabled.

Parameters
hServer

The server handle.

lpszCommand

A pointer to a NULL terminated string that specifies the name of the command. The command
name is not case-sensitive, but the value must otherwise match the exact command name.
Partial matches are not recognized by this function. This parameter cannot be NULL.

Return Value
If the command is enabled, this function will return a non-zero value. If the command is disabled,
the server handle is invalid or the command name does not match a supported command, this
function will return zero.

Remarks
The HttpIsCommandEnabled function is used to determine whether a specific command is
enabled. Typically this function is used in an event handler to make sure the command issued by a
client is recognized by the server and enabled for use. Commands can be enabled and disabled
using the HttpEnableCommand function.

This function does not account for the permissions granted to a specific client session. Clients are
assigned access rights when they are authenticated using the HttpAuthenticateClient function,
and certain commands can be limited by the permissions granted to the client. For example, even
if the PUT command is enabled, a client must have the HTTP_ACCESS_WRITE permission to use
the command to upload a file to the server. For a list of access rights, see User Access Constants.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpAuthenticateClient, HttpEnableCommand, HttpGetCommandName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/httpsrv/library/useraccess.html

 HttpReceiveRequest Function

BOOL WINAPI HttpReceiveRequest(
 HSERVER hServer,
 UINT nClientId,
 DWORD dwOptions,
 LPHTTPREQUEST lpRequest,
 LPVOID lpvBuffer,
 LPDWORD lpdwLength
);

Receive the request that was sent by the client to the server.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

dwOptions

An unsigned integer which specifies how the client request data will be stored. It may be one of
the following values:

Constant Description

HTTP_REQUEST_DEFAULT
(0)

If the lpdwLength parameter points to a integer with a
non-zero value, the lpvBuffer parameter is considered to
be a pointer to a block of memory that has been allocated
to store the request data. This is the same as specifying
the HTTP_REQUEST_MEMORY option. If the lpdwLength
parameter points to an integer with a value of zero, the
lpvBuffer parameter is considered to be a pointer to an
HGLOBAL memory handle. This is the same as specifying
the HTTP_REQUEST_HGLOBAL option.

HTTP_REQUEST_MEMORY
(0x1)

The lpvBuffer parameter is a pointer to a block of
memory that has been allocated to store the request data.
The maximum number of bytes of data that can stored is
determined by the value of the integer that the
lpdwLength parameter points to. When the function
returns, that value will updated with with actual number of
bytes copied into the buffer.

HTTP_REQUEST_STRING
(0x2)

The lpvBuffer parameter is a pointer to a string buffer that
has been allocated to store the request data. The
maximum number of bytes of data that can be copied is
determined by the value of the integer that the
lpdwLength parameter points to. When the function
returns, that value will updated with with actual number of
bytes copied into the buffer. If the Unicode version of this
function is called, the request data will be converted to a
null-terminated Unicode string.

HTTP_REQUEST_HGLOBAL
(0x4)

The lpvBuffer parameter is a pointer to an HGLOBAL
memory handle. When the function returns, the handle
will reference a block of memory that contains the request
data submitted by the client. The lpdwLength parameter
will contain the number of bytes copied to the buffer.

HTTP_REQUEST_FILE
(0x8)

The lpvBuffer parameter is a pointer to a string which
specifies the name of a file that will contain the request
data. If the file does not exist, it will be created. If it does
exist, the contents will be replaced. This option is typically
used in conjunction with the PUT command. If the
lpdwLength parameter is not NULL, the value it points to
will be updated with the actual number of bytes stored in
the file.

HTTP_REQUEST_HANDLE
(0x10)

The lpvBuffer parameter is a handle to an open file. This
option is typically used in conjunction with the POST or
PUT commands. If the lpdwLength parameter is not NULL,
the value it points to will be updated with the actual
number of bytes written to the file. If this option is
specified, the request data will be written from the current
position in the file and will advance the file pointer by the
number of bytes received from the client.

lpRequest

A pointer to a HTTPREQUEST structure which contains information about the request from the
client. This parameter cannot be NULL. The structure that is passed to this function must have all
members set to a value of zero except the dwSize member, which must be initialized to the size
of the structure.

lpvBuffer

A pointer to the buffer that will contain any request data that was submitted by the client. The
dwOptions parameter determines if this pointer references a block of memory, a null-
terminated string buffer, a global memory handle or a file name. If this parameter is NULL, any
data submitted by the client will not be copied.

lpdwLength

A pointer to an unsigned integer that will contain the number of bytes of data submitted by the
client when the function returns. If the lpvBuffer parameter specifies a memory or string buffer,
this value must be initialized to the maximum size of the buffer before the function is called. If
the lpvBuffer parameter points to a global memory handle, this value must be initialized to
zero. If lpvBuffer is NULL or specifies a file name, this parameter may be NULL.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call HttpGetServerError.

Remarks
The HttpReceiveRequest function is called within a HTTP_CLIENT_COMMAND event handler to
process the command issued by the client and return information about the request to the server
application. It is only necessary for the application to call this function if it wants to implement its
own custom handling for a command. It is recommended that most applications use the default
command processing for standard commands such as GET and POST to ensure that the

appropriate security checks are performed and the response conforms to the protocol standard.

This function may only be called once per command issued by the client and the data referenced
in the HTTPREQUEST structure only remains valid while the client is connected to the server. You
should never attempt to directly modify the data referenced by any of the structure members. If
you wish to store or modify any of the string values returned in the structure, you should allocate
a buffer large enough to store the contents of the string, including the terminating null character,
and copy the string into that buffer.

If the HTTP_REQUEST_HGLOBAL option is used to return a copy of the request data in a global
memory buffer, the HGLOBAL handle must be freed by the application when the data is no longer
needed. Failure to free this handle will result in a memory leak.

If the HTTP_REQUEST_HANDLE option is used to write a copy of the request data to an open file,
the handle must reference a disk file that was opened or created using the CreateFile function
with GENERIC_WRITE access. It cannot be a handle to a device or named pipe. If the function
succeeds, the file pointer is advanced by the number of bytes of request data submitted by the
client. If the function fails, the file pointer is returned to its original position prior to the function
being called.

Example
// Initialize the HTTPREQUEST structure
HTTPREQUEST httpRequest;
ZeroMemory(&httpRequest, sizeof(httpRequest));
httpRequest.dwSize = sizeof(httpRequest);

// Return the data in a global memory buffer
HGLOBAL hgblBuffer = NULL;
DWORD dwLength = 0;

bSuccess = HttpReceiveRequest(hServer,
 nClientId,
 HTTP_REQUEST_HGLOBAL,
 &httpRequest,
 &hgblBuffer,
 &dwLength);

if (bSuccess && hgblBuffer != NULL)
{
 LPBYTE lpBuffer = (LPBYTE)GlobalLock(hgblBuffer);

 if (lpBuffer != NULL)
 {
 // Process dwLength bytes of data submitted by the client
 }

 GlobalUnlock(hgblBuffer);
 GlobalFree(hgblBuffer);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpSendResponse, HTTPREQUEST

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpRedirectRequest Function

BOOL WINAPI HttpRedirectRequest(
 HSERVER hServer,
 UINT nClientId,
 UINT nMethod,
 LPCTSTR lpszLocation
);

Redirect the request from the client to another URL.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

nMethod

An integer value that specifies if the redirection is permanent or temporary. The following values
may be used:

Constant Description

HTTP_REDIRECT_PERMANENT
(1)

This value is used for permanent redirection, indicating
that the client should update any record of the link
with the new URL specified by the lpszLocation
parameter. This result is cacheable and when the client
makes subsequent requests for the resource, it should
always use the new URL.

HTTP_REDIRECT_TEMPORARY
(2)

This value is used for temporary redirection, indicating
that the client should issue a request for the resource
using the new URL specified by the lpszLocation
parameter, but subsequent requests should continue
to use the original URL.

HTTP_REDIRECT_OTHER
(3)

This value is used for temporary redirection, however it
instructs the client that it should use the GET
command to request the redirected resource. This
option is typically used to redirect a client after it has
used the POST command.

lpszLocation

A pointer to a string that specifies the new location for the requested resource. This value must
be a complete URL, including the http:// or https:// scheme. This parameter cannot be NULL or
point to zero-length string.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call HttpGetServerError.

Remarks
The HttpRedirectRequest function can be used within a HTTP_CLIENT_COMMAND event

handler to redirect the client to a new location for the resource that it has requested. This
redirection can be permanent or temporary, depending on whether the server expects the client
to continue to use the original URL when requesting the resource.

If the HTTP_REDIRECT_TEMPORARY method is used, the actual status code that is returned to the
client depends on the version of the protocol that is being used. If the client has issued the request
using HTTP 1.0 then the server will return a 302 code to the client. If the client used HTTP 1.1, the
server will return a 307 code to the client that indicates it should use the same command verb
(GET, POST, etc.) when requesting the resource at the new location.

If the HTTP_REDIRECT_OTHER method is used, the status code that is returned to the client
depends on which version of the protocol is being used. For clients who are using HTTP 1.0, the
server will return a 302 code to the client just as with the HTTP_REDIRECT_TEMPORARY method. If
the client is using HTTP 1.1, the server will return a 303 code to the client that indicates it should
always use the GET command to request the new resource, regardless if a different command was
originally used (POST, PUT, etc.)

This function provides a simplified interface for sending a redirection status code that also
implicitly sets the Location response header to the value of the lpszLocation parameter. If the
server application needs to send alternate redirection codes such as 305 (Use Proxy) then it should
use the HttpSendReponse function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpRequireAuthentication, HttpSendErrorResponse, HttpSendResponse

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpRegisterHandler Function

BOOL WINAPI HttpRegisterHandler(
 HSERVER hServer,
 UINT nHostId,
 LPCTSTR lpszExtension,
 LPCTSTR lpszProgramFile,
 LPCTSTR lpszParameters,
 LPCTSTR lpszDirectory
);

Register a CGI program for use and associate it with a file name extension.

Parameters
hServer

The server handle.

nHostId

An unsigned integer that identifies the virtual host associated with the program. The value
VIRTUAL_HOST_DEFAULT should be used for the default host that is created when the server is
first started.

lpszExtension

A pointer to a string which specifies the file name extension that is associated with the CGI
program. This parameter cannot be NULL.

lpszProgramFile

A pointer to a string that specifies the full path to the executable program. This parameter
cannot be NULL.

lpszParameters

A pointer to a string that specifies additional parameters for the program. This value will be
passed to the program as command line arguments. If the program does not require any
command line parameters, this value may be NULL or point to an empty string.

lpszDirectory

A pointer to a string that specifies the current working directory for the program. If this
parameter is NULL or points to an empty string, the server will use the root document directory
for the virtual host.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call HttpGetServerError.

Remarks
The HttpRegisterHandler function registers an executable CGI program and associates it with a
file name extension. When the client issues a GET or POST command that specifies a file with that
extension, the program will be executed and the output return to the client.

The lpszProgramFile string specifies file name of the CGI program. You should not install any
executable programs in the server root directory or its subdirectories. A client should never have
the ability to directly access the executable file itself. It is permitted to have multiple file name
extensions that reference the same program. The only requirement is that the extension be unique
for the given host. The program name may contain environment variables surrounded by %

symbols. For example, %ProgramFiles% would be expanded to the C:\Program Files folder.

It is important to note that the program specified by lpszProgramFile must be an executable file,
not a script or batch file. If the program name does not contain a directory path, then the
standard Windows pathing rules will be used when searching for an executable file that matches
the given name. It is recommended that you always provide a full path to the executable file.

The lpszParameters string can specify additional command line parameters that should be passed
to the CGI program as arguments. This string can also contain a placeholder named "%1" that will
be replaced by the full path to the local script filename. If no placeholder is included in the
parameters, or lpszParameters is a NULL pointer, the script file name will be passed to the
program as its only argument.

The executable program that is registered using this program must be a console application that
conforms to the CGI/1.1 specification defined in RFC 3875. Request data submitted by the client as
part of a POST will be provided to the program as standard input. The output from the program
must be written to standard output. The first lines of output from the program should be any
response headers, followed by an empty line. Each line should be terminated with a carriage-
return and linefeed (CRLF) sequence. If the CGI program outputs additional data to be processed
by the client, it should provide Content-Type and Content-Length response headers.

The application can obtain a copy of the output from the command by calling the
HttpGetProgramOutput function from within a HTTP_CLIENT_EXECUTE event handler.

When developing a CGI program, it is important to take into consideration the environment that it
will be executing in. The program will be started as a child process of the server application, and
will inherit the same privileges. This means that it will typically have access to the boot drive, the
Windows folders and the system registry. CGI programs must ensure that all query parameters
and request data submitted by the client have been validated.

If the server is running on a system with User Account Control (UAC) enabled and does not have
elevated privileges, do not register a program that requires elevated privileges or has a manifest
that specifies the requestedExecutionLevel as requiring administrative privileges.

Example
// Register a handler for VBScript
HttpRegisterHandler(hServer,
 VIRTUAL_HOST_DEFAULT,
 _T("vbs"),
 _T("%SystemRoot%\\System32\\cscript.exe"),
 _T("/nologo /b \"%1\""),
 NULL);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpGetProgramExitCode, HttpGetProgramOutput, HttpRegisterProgram

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpRegisterProgram Function

BOOL WINAPI HttpRegisterProgram(
 HSERVER hServer,
 UINT nHostId,
 LPCTSTR lpszVirtualPath,
 LPCTSTR lpszProgramFile,
 LPCTSTR lpszParameters,
 LPCTSTR lpszDirectory
);

Register a CGI program for use and associate it with a virtual path on the server.

Parameters
hServer

The server handle.

nHostId

An unsigned integer that identifies the virtual host associated with the program. The value
VIRTUAL_HOST_DEFAULT should be used for the default host that is created when the server is
first started.

lpszVirtualPath

A pointer to a string which specifies the virtual path to the CGI program. This must be an
absolute path, but does not have to specify a pre-existing virtual path or map to the directory
structure of the root document directory for the server. This parameter cannot be NULL. The
maximum length of the virtual path is 1024 characters.

lpszProgramFile

A pointer to a string that specifies the full path to the executable program. This parameter
cannot be NULL.

lpszParameters

A pointer to a string that specifies additional parameters for the program. This value will be
passed to the program as command line arguments. If the program does not require any
command line parameters, this value may be NULL or point to an empty string.

lpszDirectory

A pointer to a string that specifies the current working directory for the program. If this
parameter is NULL or points to an empty string, the server will use the root document directory
for the virtual host.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call HttpGetServerError.

Remarks
The HttpRegisterProgram function registers an executable CGI program and associates it with a
virtual path. When the client issues a GET or POST command specifying the virtual path associated
with the program, the program will be executed and the output return to the client.

The lpszProgramFile string specifies file name of the CGI program. You should not install any
executable programs in the server root directory or its subdirectories. A client should never have
the ability to directly access the executable file itself. It is permitted to have multiple virtual paths

 that reference the same executable file. The only requirement is that the virtual path be unique for
the given host. The program name may contain environment variables surrounded by % symbols.
For example, %ProgramFiles% would be expanded to the C:\Program Files folder.

It is important to note that the program specified by lpszProgramFile must be an executable file,
not a script or batch file. If the program name does not contain a directory path, then the
standard Windows pathing rules will be used when searching for an executable file that matches
the given name. It is recommended that you always provide a full path to the executable file.

The lpszParameters string can specify additional command line parameters that should be passed
to the CGI program as arguments. This string can also contain a placeholder named "%1" that will
be replaced by the virtual path associated with the program. If lpszParameters is NULL or a zero-
length string, then no additional parameters are passed to the program.

The executable program that is registered using this program must be a console application that
conforms to the CGI/1.1 specification defined in RFC 3875. Request data submitted by the client as
part of a POST will be provided to the program as standard input. The output from the program
must be written to standard output. The first lines of output from the program should be any
response headers, followed by an empty line. Each line should be terminated with a carriage-
return and linefeed (CRLF) sequence. If the CGI program outputs additional data to be processed
by the client, it should provide Content-Type and Content-Length response headers.

The application can obtain a copy of the output from the command by calling the
HttpGetProgramOutput function from within a HTTP_CLIENT_EXECUTE event handler.

When developing a CGI program, it is important to take into consideration the environment that it
will be executing in. The program will be started as a child process of the server application, and
will inherit the same privileges. This means that it will typically have access to the boot drive, the
Windows folders and the system registry. CGI programs must ensure that all query parameters
and request data submitted by the client have been validated.

If the server is running on a system with User Account Control (UAC) enabled and does not have
elevated privileges, do not register a program that requires elevated privileges or has a manifest
that specifies the requestedExecutionLevel as requiring administrative privileges.

Example
HttpRegisterProgram(hServer,
 VIRTUAL_HOST_DEFAULT,
 HTTP_METHOD_DEFAULT,
 _T("/order/invoice"),
 _T("%ProgramData%\\MyServer\\Programs\\invoice.exe"),
 NULL,
 NULL);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpGetProgramExitCode, HttpGetProgramOutput, HttpRegisterHandler

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpRenameServerLogFile Function

BOOL WINAPI HttpRenameServerLogFile(
 HSERVER hServer,
 LPCTSTR lpszFileName
);

Rename or delete the current log file being updated by the server.

Parameters
hServer

The server handle.

lpszFileName

A pointer to a string that specifies the file name the current log file should be renamed to. If this
parameter is NULL or an empty string, the current log file will be deleted.

Return Value
If the function succeeds, the return value is non-zero. If the server handle does not specify a valid
server, the function will return zero. If logging is not currently enabled for the server, this function
will return zero.

Remarks
The HttpRenameServerLogFile function is used to rename or delete the current log file. Note
that this does not change the current log file name or disable logging by the server. It only
changes the file name of the current log file, or removes the log file if the lpszFileName
parameter is NULL. This can be useful if you want your server to perform log file rotation,
archiving the current log file. By renaming the current log file, the server will automatically create a
new log file with original file name.

This function must be used to rename or delete the current log file while logging is active because
the server holds an open handle on the file. The application should not use the
HttpGetServerLogFile function to obtain the log file name and then use the MoveFileEx or
DeleteFile functions with that file.

To disable logging, use the HttpSetServerLogFile function and specify the logging format as
HTTP_LOGFILE_NONE.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpGetServerLogFile, HttpSetServerLogFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpRequireAuthentication Function

BOOL WINAPI HttpRequireAuthentication(
 HSERVER hServer,
 UINT nClientId,
 UINT nAuthType,
 LPCTSTR lpszRealm
);

Send a response to the client indicating that authentication is required.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

nAuthType

An integer value that corresponds to a result code, informing the client if the redirection is
permanent or temporary. The following values may be used:

Constant Description

HTTP_AUTH_BASIC
(1)

This option specifies the Basic authentication scheme should be
used. This option is supported by all clients that support at least
version 1.0 of the protocol.

lpszRealm

A pointer to a string that is displayed by a web browser to indicate to the user which username
and password they should use. If this parameter is NULL or an empty string, the domain name
the client used to establish the connection will be used.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call HttpGetServerError.

Remarks
The HttpRequireAuthentication function can be used within a HTTP_CLIENT_COMMAND event
handler to indicate to the client that it must provide a username and password to access the
requested resource. The client should respond by issuing another request that includes the
required credentials. To determine if a client has included credentials with its request, use the
HttpIsClientAuthenticated function. The HttpGetClientCredentials function will return the
username and password that was provided by the client.

Some clients may require that the session be secure if authentication is requested or display
warning messages to the user if the connection is not secure. It is recommended that you enable
security using the HTTP_OPTION_SECURE option if your application will require clients to
authenticate before accessing specific resources.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpGetClientCredentials, HttpIsClientAuthenticated, HttpSendResponse

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpSendErrorResponse Function

BOOL WINAPI HttpSendErrorResponse(
 HSERVER hServer,
 UINT nClientId,
 UINT nErrorCode,
 LPCTSTR lpszMessage
);

Send a customized error response to the specified client.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

nErrorCode

An integer value that specifies the error code that should be sent to the client. This value should
correspond to the error result codes defined for HTTP in RFC 2616, which are three-digit values
in the range of 400 through 599. The function will fail if an invalid error code is specified.

lpszMessage

A pointer to a string that describes the error. If this parameter is NULL or specifies a zero-length
string, a default message will be selected based on the error code.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call HttpGetServerError.

Remarks
The HttpSendErrorResponse function sends a response to the client indicating that an error has
occurred, providing a numeric error code and HTML formatted text which may be displayed to the
user. The lpszMessage parameter should provide a brief description of the error that will be
included in the output sent to the client. Note that the message should not contain any special
formatting control characters or HTML markup.

This function provides a simplified interface for sending an error response to the client. In some
cases, a browser may choose to display its own error message to the user in place of the generic
HTML document generated by this function. If you want your application to send a customized
HTML document for a specific type of error, you should use the HttpSendResponse function.

If you wish to redirect the client to use an alternate URL to access the requested resource, it is
recommended that you use the HttpRedirectRequest function rather than sending an error
response.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpRedirectRequest, HttpSendResponse

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpSendResponse Function

BOOL WINAPI HttpSendResponse(
 HSERVER hServer,
 UINT nClientId,
 DWORD dwOptions,
 LPHTTPRESPONSE lpResponse,
 LPVOID lpvBuffer,
 DWORD dwLength
);

Send a response from the server to the specified client.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

dwOptions

An unsigned integer which specifies how the client request data will be copied. It may be one of
the following values:

Constant Description

HTTP_RESPONSE_DEFAULT
(0)

The lpvBuffer parameter is a pointer to a block of
memory that contains the response data. The number
of bytes of data that in the buffer is specified by the
dwLength parameter. This is the same as specifying the
HTTP_RESPONSE_MEMORY option.

HTTP_RESPONSE_MEMORY
(0x1)

The lpvBuffer parameter is a pointer to a block of
memory that contains the response data. The number
of bytes of data that in the buffer is specified by the
dwLength parameter. The data will be sent to the client
as a stream of bytes. If the server application was
compiled using Unicode, it is responsibility of the
application to convert any Unicode text to either ANSI
or UTF-8, depending on the resource that was
requested by the client.

HTTP_RESPONSE_STRING
(0x2)

The lpvBuffer parameter is a pointer to a string buffer
that contains the response data. The maximum number
of bytes of data that will be sent to the client is
determined by the dwLength parameter. If the value of
the dwLength parameter exceeds the string length, the
value will be ignored and the contents of the string will
be sent up to the terminating null character. If the
Unicode version of this function is called, the string will
be converted to a byte array before being sent to the
client.

HTTP_RESPONSE_HGLOBAL The lpvBuffer parameter is an HGLOBAL memory

(0x4) handle which references a block of memory that
contains the response data. The number of bytes of
data that in the buffer is specified by the dwLength
parameter. The data will be sent to the client as a
stream of bytes. It is the responsibility of the application
to free the global memory handle after it is no longer
needed.

HTTP_RESPONSE_FILE
(0x8)

The lpvBuffer parameter is a pointer to a string which
specifies the name of a file that contains the response
data. If the file does not exist, or does not specify a
regular file, this function will fail. The dwLength
parameter is ignored. If the content type for the
specified file is not explicitly defined in the response, the
function will attempt to automatically determine the
correct type based on the file name extension and/or
the contents of the file.

HTTP_RESPONSE_HANDLE
(0x10)

The lpvBuffer parameter is a handle to an open file and
the dwLength parameter specifies the number of bytes
to be read from the file and send to the client. If this
option is specified, the response data will be read from
the current position in the file and will advance the file
pointer by the number of bytes sent to the client.

HTTP_RESPONSE_DYNAMIC
(0x100)

The response data will be generated dynamically. This
prevents the content length from being included in the
response header, and forces the connection to close,
regardless if the client has requested to keep the
connection open. This option must be specified if the
application wishes to use the HttpSendResponseData
function to send additional data to the client.

HTTP_RESPONSE_NOCACHE
(0x200)

Informs the client that the data being returned by the
server should not be cached. Typically this is used in
conjunction with the HTTP_RESPONSE_DYNAMIC
option when the data is being generated dynamically.

lpResponse

A pointer to a HTTPRESPONSE structure which contains additional information about the
response to the client. The structure that is passed by reference to this function must have the
dwSize member initialized to the size of the structure or the function will fail. This parameter
may be NULL, in which case a default response of "200 OK" is sent to the client along with any
data specified by the lpvBuffer parameter.

lpvBuffer

A pointer to the buffer that will contain any response data that should be sent to the client. The
dwOptions parameter determines if this pointer references a block of memory, a null-
terminated string buffer, a global memory handle or a file name. This parameter may be NULL,
in which case no data will be sent to the client. If this function is called in response to a HEAD
command being sent by the client, this parameter is ignored.

dwLength

An unsigned integer that specifies the number of bytes of data to be sent to the client. If the
lpvBuffer parameter is NULL, this value must be zero. If this function is called in response to a
HEAD command being sent by the client, this parameter is ignored.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call HttpGetServerError.

Remarks
The HttpSendResponse function is called within a HTTP_CLIENT_COMMAND event handler to
respond to the request made by the client. This function may only be called once after a
command has been received, and must be called after the HttpReceiveRequest function. It is
only necessary for the application to call this function if it wants to implement its own custom
handling for a command. It is recommended that most applications use the default command
processing for standard commands such as GET and POST to ensure that the appropriate security
checks are performed and the response conforms to the protocol standard.

If the HTTP_RESPONSE_HANDLE option is used to read a copy of the response data from an open
file, the handle must reference a disk file that was opened using the CreateFile function with
GENERIC_READ access. It cannot be a handle to a device or named pipe. If the dwLength
parameter is larger than the total number of bytes available to be read from the current position
in the file, the function will stop sending data to the client when it reaches the end-of-file. If the
function succeeds, the file pointer is advanced by the number of bytes of response data sent to
the the client. If the function fails, the file pointer is returned to its original position prior to the
function being called.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpRecieveRequest, HttpSendResponseData, HTTPRESPONSE

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpSendResponseData Function

INT WINAPI HttpSendResponseData(
 HSERVER hServer,
 UINT nClientId,
 LPBYTE lpBuffer,
 DWORD dwLength,
 LPDWORD lpdwResponse
);

Send additional data to the client in response to a command.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

lpBuffer

A pointer to a buffer that contains the response data that should be sent to the client. This
parameter cannot be NULL and must point to a valid byte buffer. If the response contains non-
ASCII text characters, it should be UTF-8 encoded.

dwLength

An unsigned integer that specifies the size of the response data sent to the client. This value
must be greater than zero and should never exceed the number of bytes stored in the buffer
specified by the lpBuffer parameter.

lpdwResponse

A pointer to an unsigned integer which will contain the total number of bytes successfully sent
to the client in response to the request. This parameter may be NULL, in which case it is
ignored.

Return Value
If the function succeeds, the return value is the number of bytes of data sent to the client. If the
function fails, the return value is HTTP_ERROR. To get extended error information, call
HttpGetServerError.

Remarks
The HttpSendResponseData function is called within a HTTP_CLIENT_COMMAND event handler
to send data to the client in response to a request. This function can only be used to send
dynamically generated content after the HttpSendResponse function has been called. The
HTTP_RESPONSE_DYNAMIC option must have been specified when responding to the client or
this function will fail.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpRecieveRequest, HttpSendResponse, HTTPRESPONSE

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpServerAsyncNotify Function

BOOL WINAPI HttpServerAsyncNotify(
 HSERVER hServer,
 HWND hWnd,
 UINT uMsg
);

Enable or disable asynchronous notification of changes in server status.

Parameters
hServer

The server handle.

hWnd

A handle to the window whose window procedure will receive the notification message.

uMsg

The user-defined message that will be sent to the notification window.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call the HttpGetServerError function.

Remarks
The HttpServerAsyncNotify function is used by an application to enable or disable asynchronous
notifications. The message window is typically the main UI window and these notifications are used
signal to the application that it should update the user interface. If the hWnd parameter is not
NULL, it must specify a valid window handle and the user-defined message must have a value of
WM_USER or higher. The application cannot specify a notification message that is reserved by the
operating system. The pseudo-handle HWND_BROADCAST cannot be specified as the
notification window. If the hWnd parameter is NULL, notifications for the specified server will be
disabled.

When asynchronous notifications are enabled for a server, the server will post the user-defined
message to the window whenever there is a change in status or after a client has connected or
disconnected from the server. The wParam message parameter will contain the notification
message and the lParam message parameter will contain the handle to the server or the client ID.
The following notification messages are defined:

Constant Description

HTTP_NOTIFY_STARTUP This notification is sent when the server has started and
is preparing to accept client connections. This
notification is only sent once, and only if asynchronous
notifications are enabled immediately after the
HttpServerStart function is called. This message will
not be sent once the server has begun accepting client
connections or when notification messages are disabled
and then subsequently re-enabled at a later time. The
lParam message parameter will specify the handle to
the server.

HTTP_NOTIFY_LISTEN This notification is sent when the server is listening for

client connections. This notification message may be
sent to the application multiple times over the lifetime
of the server. If the server was suspended, this
notification will be sent after the application calls the
HttpServerResume function to resume accepting client
connections. The lParam message parameter will
specify the handle to the server.

HTTP_NOTIFY_SUSPEND This notification is sent when the server suspends
accepting new connections because the application has
called the HttpServerSuspend function. This
notification message may be sent to the application
multiple times over the lifetime of the server. The
lParam message parameter will specify the handle to
the server.

HTTP_NOTIFY_RESTART This notification is sent when the server is restarted
using the HttpServerRestart function. Note that the
server socket handle provided by the lParam message
parameter will specify the new socket handle of the
restarted server instance, not the original socket handle.
The lParam message parameter will specify the handle
to the server.

HTTP_NOTIFY_CONNECT This notification is sent when the server accepts a client
connection and the thread that manages the client
session has begun processing network events for that
client. This message notification will not be sent if the
client connection is rejected by the server. The lParam
message parameter will specify the unique ID of the
client that connected to the server.

HTTP_NOTIFY_DISCONNECT This notification is sent when the client disconnects from
the server and the client socket has been closed. This
notification message may not occur for each client
session that is forced to terminate as the result of the
server being stopped using the HttpServerStop
function. The lParam message parameter will specify
the unique ID of the client that disconnected from the
server.

HTTP_NOTIFY_SHUTDOWN This notification is sent when the server thread is in the
process of terminating. At the time the application
processes this notification message, the server handle in
lParam will reference the defunct server and cannot be
used with other server functions. The lParam message
parameter will specify the handle to the server.

If asynchronous notifications are enabled, you should never use those notifications as a
replacement for an event handler. When an event occurs, the callback function that handles the
event is invoked in the context of the thread that manages the client session. The application
should exchange data with the client within that event handler and not in response to a
notification message. These notification messages should only be used to update the application

UI in response to changes in the status of the server.

The HTTP_NOTIFY_CONNECT and HTTP_NOTIFY_DISCONNECT notifications are different from
the other server notifications because the lParam message parameter does not specify the server
handle, but rather the unique client ID associated with the session that connected to or
disconnected from the server. Use the HttpGetClientServer function to obtain a handle to the
server that created the client session. Note that at the time the application processes the
HTTP_NOTIFY_DISCONNECT notification message, the client session will have already terminated.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cstools11.h
Import Library: cshtsv11.lib

See Also
HttpGetClientServer, HttpServerStart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpServerDisableTrace Function

BOOL WINAPI HttpServerDisableTrace();

Disable the logging of network function calls.

Parameters
None.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call HttpGetServerError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
HttpServerEnableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpServerEnableTrace Function

BOOL WINAPI HttpServerEnableTrace(
 LPCTSTR lpszTraceFile,
 DWORD dwTraceFlags
);

Enable the logging of network function calls to a file.

Parameters
lpszTraceFile

A pointer to a string that specifies the name of the log file. If this parameter is NULL or points to
an empty string, a log file is created in the temporary directory for the current user.

dwTraceFlags

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

TRACE_DEFAULT
(0)

All function calls are written to the trace file. This is the default
value.

TRACE_ERROR
(1)

Only those function calls which fail are recorded in the trace file.

TRACE_WARNING
(2)

Only those function calls which fail, or return values which indicate
a warning, are recorded in the trace file.

TRACE_HEXDUMP
(4)

All functions calls are written to the trace file, plus all the data that
is sent or received is displayed, in both ASCII and hexadecimal
format.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call HttpGetServerError.

Remarks
When trace logging is enabled, the log file is opened, appended to and closed for each socket
function call. Using the same file name, you can do the same in your application to add additional
information to the file if needed. This can provide an application-level context for the entries made
by the library. Make sure that the file is closed after the data has been written. If a file name is not
specified by the caller, a file named cstrace.log will be created in the temporary directory for the
current user.

The TRACE_HEXDUMP option can produce very large files, since all data that is being sent and
received by the application is logged. To reduce the size of the file, you can enable and disable
logging around limited sections of code that you wish to analyze.

To redistribute an application that includes this debug logging functionality, the cstrcv11.dll
library must be included as part of the installation package. This library provides the trace logging
features, and if it is not available the HttpServerEnableTrace function will fail. Note that this is a
standard Windows DLL and does not need to be registered, it only needs to be redistributed with
your application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpServerDisableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpServerInitialize Function

BOOL WINAPI HttpServerInitialize(
 LPCTSTR lpszLicenseKey,
 LPINITDATA lpData
);

The HttpServerInitialize function initializes the library and validates the specified license key at
runtime.

Parameters
lpszLicenseKey

Pointer to a string that specifies the runtime license key to be validated. If this parameter is
NULL, the library will validate the development license installed on the local system.

lpData

Pointer to an INITDATA data structure. This parameter may be NULL if the initialization data for
the library is not required.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call HttpGetServerError. All other functions will fail until a
license key has been successfully validated.

Remarks
This must be the first function that an application calls before using any of the other functions in
the library. When a NULL license key is specified, the library will only function on the development
system. Before redistributing the application to an end-user, you must insure that this function is
called with a valid license key.

If the lpData argument is specified, it must point to an INITDATA structure which has been
initialized by setting the dwSize member to the size of the structure. All other structure members
should be set to zero. If the function is successful, then the INITDATA structure will be filled with
identifying information about the library.

Although it is only required that HttpServerInitialize be called once for the current process, it
may be called multiple times; however, each call must be matched by a corresponding call to
HttpServerUninitialize.

This function dynamically loads other system libraries and allocates thread local storage. If you are
calling the functions in this library from within another DLL, it is important that you do not call the
HttpServerInitialize or HttpServerUninitialize functions from the DllMain function because it
can result in deadlocks or access violation errors. If the DLL is linked with the C runtime library
(CRT), it will automatically call the constructors and destructors for static and global C++ objects
and has the same restrictions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpServerStart, HttpServerStop, HttpServerUninitialize, INITDATA

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpServerProc Function

VOID CALLBACK HttpServerProc(
 HSERVER hServer,
 UINT nClientId,
 UINT nEventId,
 DWORD dwError,
 DWORD_PTR dwParam
);

The HttpServerProc function is an application-defined callback function that processes events
generated by the server process.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client that has issued a request to the server.

nEventId

An unsigned integer which specifies which event occurred. For a list of events, see Server Event
Constants.

dwError

An unsigned integer which specifies any error that occurred. If no error occurred, then this
parameter will be zero. The HttpGetServerError function can be used to obtain additional
information about the error code.

dwParam

A user-defined integer value which was specified when the server was started. This value is
guaranteed to be large enough to store a pointer or handle value on both 32-bit and 64-bit
platforms.

Return Value
None.

Remarks
The HTTP_CLIENT_COMMAND event can be used to filter commands issued by the client. If the
command performs an operation on a file or directory, the HttpGetCommandFile function can
be used to obtain the file name on the server that the client specified. It is possible for the
application to change the file name using the HttpSetCommandFile function to direct the server
to use a different file than the one specified by the client. If the file name is changed and the event
handler returns a value of zero, the server will perform the default action for the command using
the new file name.

The callback function will be called in the context of the thread that is currently managing the
client session. You must ensure that any access to global or static variables are synchronized,
otherwise the results may be unpredictable. It is recommended that you do not declare any static
variables within the callback function itself.

If the application has a graphical user interface, you should never attempt to directly modify a UI
control from within an event handler. Controls should only be modified by the same UI thread that
created their window. To change the user interface in response to a server event, use the

file:///C|/Projects/cstools11/pdf/httpsrv/library/eventconst.html
file:///C|/Projects/cstools11/pdf/httpsrv/library/eventconst.html

HttpServerAsyncNotify function to enable asynchronous notifications and update the UI in
response to the notification message.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
HttpServerAsyncNotify, HttpServerStart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpServerRestart Function

HSERVER WINAPI HttpServerRestart(
 HSERVER hServer
);

Restart the server, terminating all active client sessions.

Parameters
hServer

The server handle.

Return Value
If the function succeeds, the return value is the new handle for the specified server. If the function
fails, the return value is INVALID_SERVER. To get extended error information, call
HttpGetServerError.

Remarks
The HttpServerRestart function will restart the specified server, terminating all active client
sessions. The server handle that is returned by the function is the handle for the new server
instance, and the old handle value is no longer valid. If the function is unable to restart the server
for any reason, the server thread is terminated. The server retains all of the configuration
parameters from the previous instance, however the statistical information (such as the number of
clients, files transferred, etc.) will be reset.

If an application calls this function from within an event handler, the active client session (the client
for which the event handler was invoked) may not get a disconnect notification. It is
recommended that this function only be called by the same thread that created the server using
the HttpServerStart function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
HttpServerStart, HttpServerStop

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpServerResume Function

BOOL WINAPI HttpServerResume(
 HSERVER hServer
);

Resume accepting client connections.

Parameters
hServer

Handle to the server.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call HttpGetServerError.

Remarks
The HttpServerResume function instructs the server to resume accepting new client connections
after the HttpServerSuspend function has been called.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
HttpServerRestart, HttpServerStart, HttpServerStop, HttpServerSuspend, HttpServerThrottle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpServerStart Function

HSERVER WINAPI HttpServerStart(
 LPCTSTR lpszLocalHost,
 UINT nLocalPort,
 DWORD dwOptions,
 LPHTTPSERVERCONFIG lpServerConfig,
 HTTPSERVPROC lpServerProc,
 DWORD_PTR dwServerParam,
 LPSECURITYCREDENTIALS lpCredentials
);

The HttpServerStart function begins listening for client connections on the specified local address
and port number. The server is started in its own thread and manages the client sessions
independently of the calling thread. All interaction with the server and its client sessions takes
place inside the callback function specified by the caller.

Parameters
lpszLocalHost

A pointer to a string which specifies the local hostname or IP address address that the server
should be bound to. If this parameter is NULL or an empty string, then an appropriate address
will automatically be used. If a specific address is used, the server will only accept client
connections on the network interface that is bound to that address.

nLocalPort

The port number the server should use to accept client connections. If a value of zero is
specified, the server will use the standard port number 21 to listen for connections, or port 990
if the server is configured to use implicit SSL. The port number used by the application must be
unique and multiple instances of a server cannot use the same port number. It is recommended
that a port number greater than 5000 be used for private, application-specific implementations.

dwOptions

An unsigned integer value that specifies the options used when creating an instance of the
server. For a list of options, see Server Option Constants.

lpServerConfig

A pointer to an HTTPSERVERCONFIG structure that specifies the configuration options for the
server. If this parameter is NULL, then default configuration parameters will be used that starts
the server in a restrictive mode.

lpServerProc

Specifies the address of the application defined callback function. For more information about
the callback function, see the description of the HttpServerProc callback function. If this
parameter is NULL, a default internal handler is used to process client commands.

dwServerParam

A user-defined integer value that is passed to the callback function. If the lpServerProc
parameter is NULL, this value should be zero. This value is guaranteed to be large enough to
store a pointer or handle value on both 32-bit and 64-bit platforms.

lpCredentials

Pointer to a SECURITYCREDENTIALS structure. If this parameter is NULL, the default security
credentials for the server host name will be used. If security is enabled for the server, it is
recommended that you provide a pointer to this structure with specific information about the

file:///C|/Projects/cstools11/pdf/httpsrv/library/options.html

server certificate that should be used. If the security options are not specified in the server
configuration, this parameter is ignored.

Return Value
If the function succeeds, the return value is a handle to a server session. If the function fails, the
return value is INVALID_SERVER. To get extended error information, call HttpGetServerError.

Remarks
In most cases, the lpszLocalHost parameter should be a NULL pointer or an empty string. On a
multihomed system, this will enable the server to accept connections on any appropriately
configured network adapter. Specifying a hostname or IP address will limit client connections to
that particular address. Note that the hostname or address must be one that is assigned to the
local system, otherwise an error will occur.

If an IPv6 address is specified as the local address, the system must have an IPv6 stack installed
and configured, otherwise the function will fail.

To listen for connections on any suitable IPv4 interface, specify the special dotted-quad address
"0.0.0.0". You can accept connections from clients using either IPv4 or IPv6 on the same socket by
specifying the special IPv6 address "::0", however this is only supported on Windows 7 and
Windows Server 2008 R2 or later platforms. If no local address is specified, then the server will only
listen for connections from clients using IPv4. This behavior is by design for backwards
compatibility with systems that do not have an IPv6 TCP/IP stack installed.

The handle returned by this function references the listening socket that was created when the
server was started. The service is managed in another thread, and all interaction with the server
and active client connections are performed inside the event handler. To disconnect all active
connections, close the listening socket and terminate the server thread, call the HttpServerStop
function.

The host UUID that is defined as part of the server configuration should be generated using the
uuidgen utility that is included with the Windows SDK. You should not use the UUID that is
provided in the example code, it is for demonstration purposes only. If no host UUID is specified in
the server configuration, an ephemeral UUID will be generated automatically when the server is
started.

If the server is started with security enabled, the lpCredentials parameter should be used to
provide the server certificate information in a SECURITYCREDENTIALS structure. If the pointer is
NULL, this function will search for a certificate that matches the hostname provided as part of the
server configuration. This requires that the server certificate be installed in the personal certificate
store of the current process user, and it must have a private key associated with it. To use a
certificate with a different name, or one that is stored in a PFX file, a SECURITYCREDENTIALS
structure must be defined and passed to this function.

Example
HSERVER hServer;
HTTPSERVERCONFIG httpConfig;

// Initialize the server configuration
ZeroMemory(&httpConfig, sizeof(HTTPSERVERCONFIG));
httpConfig.dwSize = sizeof(httpConfig);
httpConfig.nMaxClients = 100;
httpConfig.nMaxClientsPerAdress = 8;
httpConfig.nMaxRequests = 5;
httpConfig.nLogFormat = HTTP_LOGFILE_EXTENDED;

httpConfig.nLogLevel = 5;
httpConfig.lpszIdentity = _T("MyProgram");
httpConfig.lpszHostName = _T("server.company.com");
httpConfig.lpszHostUuid = _T("10000000-1000-1000-1000-100000000000");
httpConfig.lpszDirectory = _T("%ProgramData%\\MyProgram\\Files");
httpConfig.lpszLogFile = _T("%ProgramData%\\MyProgram\\Server.log");

// Start the server
hServer = HttpServerStart(lpszLocalHost,
 HTTP_PORT_DEFAULT,
 HTTP_SERVER_DEFAULT,
 &httpConfig,
 lpEventHandler,
 0,
 NULL);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpEnumServerClients, HttpServerProc, HttpServerRestart, HttpServerStop, HTTPSERVERCONFIG,
SECURITYCREDENTIALS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpServerStop Function

BOOL WINAPI HttpServerStop(
 HSERVER hServer
);

Stop the server, terminating all active client sessions and releasing the resources that were
allocated for the server.

Parameters
hServer

The server handle.

Return Value
If the function succeeds, the return value is non-zero. If the server handle is invalid, the function
will return a value of zero.

Remarks
The HttpServerStop function instructs the server to stop accepting client connections,
disconnects all active client connections and terminates the thread that is managing the server
session. The handle is no longer valid after the server has been stopped and should no longer be
used. Note that it is possible that the actual handle value may be re-used at a later point when a
new server is started. An application should always consider the server handle to be opaque and
never depend on it being a specific value.

If an application calls this function from within an event handler, the active client session (the client
for which the event handler was invoked) may not get a disconnect notification. It is
recommended that this function only be called by the same thread that created the server using
the HttpServerStart function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
HttpServerRestart, HttpServerStart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpServerSuspend Function

BOOL WINAPI HttpServerSuspend(
 HSERVER hServer
);

Suspend the server and reject new client connections.

Parameters
hServer

Handle to the server.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call HttpGetServerError.

Remarks
The HttpServerSuspend function instructs the server to suspend accepting new client
connections. Any incoming client connections will be rejected with an error message indicating
that the server is currently unavailable. To resume accepting client connections, call the
HttpServerResume function. Suspending the server will have no effect on clients that have
already established a connection with the server.

It is recommended that you only suspend a server if absolutely necessary, and only for brief
periods of time. If you want to limit the number of active client connections or control the
connection rate for clients, use the HttpServerThrottle function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
HttpServerRestart, HttpServerResume, HttpServerStart, HttpServerStop, HttpServerThrottle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpServerThrottle Function

BOOL WINAPI HttpServerThrottle(
 HSERVER hServer,
 UINT nMaxClients,
 UINT nMaxClientsPerAddress,
 DWORD dwConnectionRate
);

The HttpServerThrottle function limits the number of active client connections, connections per
address and connection rate.

Parameters
hServer

Handle to the server.

nMaxClients

A value which specifies the maximum number of clients that may connect to the server. A value
of zero specifies that there is no fixed limit to the number of client connections.

nMaxClientsPerAddress

A value which specifies the maximum number of clients that may connect to the server from the
same IP address. A value of zero specifies that there is no fixed limit to the number of client
connections per address. By default, there is a limit of four client connections per address.

dwConnectionRate

A value which specifies a restriction on the rate of client connections, limiting the number of
connections that will be accepted within that period of time. A value of zero specifies that there
is no restriction on the rate of client connections. The higher this value, the fewer the number of
connections that will be accepted within a specific period of time. By default, there is no limit on
the client connection rate.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call HttpGetServerError.

Remarks
The HttpServerThrottle function is used to limit the number of connections and the connection
rate to minimize the potential impact of a large number of client connections over a short period
of time. This can be used to protect the server from a client application that is malfunctioning or a
deliberate denial-of-service attack in which the attacker attempts to flood the server with
connection attempts.

If the maximum number of client connections or maximum number of connections per address is
exceeded, the server will reject subsequent connection attempts until the number of active client
sessions drops below the specified threshold. Note that adjusting these values lower than the
current connection limits will not affect clients that have already connected to the server. For
example, if the HttpServerStart function is called with the maximum number of clients set to 100,
and then HttpServerThrottle is called lowering that value to 75, no existing client connections will
be affected by the change. However, the server will not accept any new connections until the
number of active clients drops below 75.

Increasing the connection rate value will force the server to slow down the rate at which it will

accept incoming client connection requests. For example, setting this parameter to a value of 1000
would limit the server to accepting one client connection every second, while a value of 250 would
allow the server to accept four client connections per second. Note that significantly increasing the
amount of time the server must wait to accept client connections can exceed the connection
backlog queue, resulting in client connections being rejected.

It is recommended that you always specify conservative connection limits for your server
application based on expected usage. Allowing an unlimited number of client connections can
potentially expose the system to denial-of-service attacks and should never be done for servers
that are accessible over the Internet.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
HttpServerRestart, HttpServerResume, HttpServerStart, HttpServerSuspend

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpServerUninitialize Function

VOID WINAPI HttpServerUninitialize();

The HttpServerUninitialize function terminates the use of the library.

Parameters
There are no parameters.

Return Value
None.

Remarks
An application is required to perform a successful HttpServerInitialize call before it can call any
of the other library functions. When it has completed the use of library, the application must call
HttpServerUninitialize to allow the library to free any resources allocated on behalf of the
process. Any pending blocking or asynchronous calls in this process are canceled without posting
any notification messages, and all sockets that were opened by the process are closed.

There must be a call to HttpServerUninitialize for every successful call to HttpServerInitialize
made by a process. Operations for all threads in the server are terminated.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpServerInitialize, HttpServerStart, HttpServerStop

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpSetClientAccess Function

BOOL WINAPI HttpSetClientAccess(
 HSERVER hServer,
 UINT nClientId,
 DWORD dwUserAccess
);

Change the access rights associated with the specified client session.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

dwUserAccess

An unsigned integer which specifies one or more user access rights. For a list of user access
rights that can be granted to the client, see User and File Access Constants.

Return Value
If the function succeeds, the return value is non-zero. If the server handle and client ID do not
specify a valid client session, the function will return zero. This function can only be used with
authenticated clients. If the client session has not been authenticated, the return value will be zero.

Remarks
The HttpSetClientAccess function can change the multiple access rights for a client session. The
HttpEnableClientAccess function can be used to grant or revoke a specific permission for the
client session.

If the dwUserAccess parameter has a value of HTTP_ACCESS_DEFAULT, then default permissions
will be granted to the client session based on the configuration of the server. This is the
recommended value for most clients. It is important to consider the implications of changing the
access permissions granted to a client session. For example, if you do not grant clients
HTTP_ACCESS_READ permission, it can effectively disable the site because the server will return
403 Forbidden errors for all GET and HEAD requests.

This function should typically be called in the HTTP_CLIENT_CONNECT event handler to assign
general permissions to the client, or in the HTTP_CLIENT_COMMAND event handler after the
client has issued a request and provided any authentication credentials that are required.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
HttpAuthenticateClient, HttpEnableClientAccess, HttpGetClientAccess

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/httpsrv/library/useraccess.html

 HttpSetClientHeader Function

BOOL WINAPI HttpSetClientHeader(
 HSERVER hServer,
 UINT nClientId,
 UINT nHeaderType,
 LPCTSTR lpszHeaderName,
 LPCTSTR lpszHeaderValue
);

Create or change the value of a request or response header for the client session.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

nHeaderType

Specifies the type of header to create or modify. It may be one of the following values:

Constant Description

HTTP_HEADERS_REQUEST Change a request header that was provided by the
client. Request header values provide additional
information to the server about the type of request being
made.

HTTP_HEADERS_RESPONSE Change a response header that was created by the
server. Response header values provide additional
information to the client about the type of information
that is being returned by the server.

lpszHeaderName

A pointer to a string that specifies the name of the header that should be created or modified.
Header names are not case-sensitive and should not include the colon which acts as a delimiter
that separates the header name from its value. This parameter cannot be a NULL pointer or an
empty string.

lpszHeaderValue

A pointer to a string that specifies the new value of the header. If this parameter is a NULL
pointer or an empty string, it has the same effect as deleting the header value from the list of
request or response headers.

Return Value
If the function succeeds, the return value is non-zero. If the server handle and client ID do not
specify a valid client session, the function will return zero. If the function fails, the
HttpGetServerError function will return more information about the last error that has occurred.

Remarks
The HttpSetClientHeader function will change the value of a request or response header for the
specified client session. If the lpszHeaderName value matches an existing header field, its value
will be replaced. If the header name is not defined, then a new header will be created with the

given value. You should not change the value of most standard response header values unless
you are certain of the impact that it would have on the normal operation of the client.

If you wish to define a custom header value that would be included in the response to a client
request, you should prefix the header name with "X-" to avoid potential conflicts with the standard
response headers. For example, if you wanted to identify a customer, you could create a header
field with the name "X-Customer-ID" and set the value to the customer ID number. The client
application would receive this custom header value as part of the response to its request for a
document.

Refer to Hypertext Transfer Protocol Headers for a list of common request and response headers
that are used.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpDeleteClientHeader, HttpGetClientHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/httpsrv/library/headers.html

 HttpSetClientIdleTime Function

UINT WINAPI HttpSetClientIdleTime(
 HSERVER hServer,
 UINT nClientId,
 UINT nTimeout
);

Change the idle timeout period for the specified client session.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

nTimeout

An unsigned integer value that specifies the number of seconds that the client may remain idle.
If this value is zero, the default idle timeout period for the server will be used.

Return Value
If the function succeeds, the return value is the previous client idle timeout period in seconds. If
the server handle and client ID do not specify a valid client session, the function will return zero.

Remarks
The HttpSetClientIdleTime function is will change the number of seconds that the client may
remain idle before being automatically disconnected by the server. The minimum timeout period
for a client is 10 seconds, the maximum is 300 seconds (5 minutes). The idle time of a client
session is based on the last time a command was issued to the server or when a data transfer
completed.

If the value INFINITE is specified as the timeout period, the client activity timer will be refreshed,
extending the idle timeout period for the session. This is typically done inside an event handler to
prevent the client from being disconnected due to inactivity.

To obtain the current idle timeout period for a client, along with the amount of time the client has
been idle, use the HttpGetClientIdleTime function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
HttpGetClientIdleTime

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpSetClientVariable Function

BOOL WINAPI HttpSetClientVariable(
 HSERVER hServer,
 UINT nClientId,
 LPCTSTR lpszName,
 LPCTSTR lpszValue
);

Create or change the value of a CGI environment variable for the specified client.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

lpszName

A pointer to a string that specifies the name of the environment variable that should be created
or modified. Environment variables are not case-sensitive and should not include the equal sign
which acts as a delimiter that separates the variable name from its value. This parameter cannot
be a NULL pointer or an empty string.

lpszValue

A pointer to a string that specifies the new value of the environment variable. If this parameter is
a NULL pointer or an empty string, it has the same effect as deleting the variable from the
environment block for the client session.

Return Value
If the function succeeds, the return value is non-zero. If the server handle and client ID do not
specify a valid client session, the function will return zero. If the function fails, the
HttpGetServerError function will return more information about the last error that has occurred.

Remarks
The HttpSetClientVariable function will change the value of a environment variable for the
specified client session. If the lpszName value matches an existing variable, its value will be
replaced. If the variable is not defined, then a new variable will be created with the given value.
The value of an environment variable can be obtained using the HttpGetClientVariable function.

The server will automatically create a number of different environment variables that will be
passed to a program or script executed by the server. These variables are defined in RFC 3875 as
part of the Common Gateway Interface (CGI) 1.1 specification. The following variables are defined
by the server and should not be modified directly by the application:

Variable Name Description

AUTH_TYPE The authorization scheme used by the server to authenticate the client
session

CONTENT_LENGTH The length of the request data provided by the client

CONTENT_TYPE The MIME type that identifies the type of content provided by the
client

DOCUMENT_ROOT The full path to the local document root directory on the server

GATEWAY_INTERFACE The version of the Common Gateway Interface that is being used by
the server

PATH_INFO The resource or sub-resource that is to be returned by the program or
script

PATH_TRANSLATED The path information mapped to the server root document directory
structure

QUERY_STRING The URL encoded query parameters passed to the program or script

REMOTE_ADDR The network address of the client sending the request to the server

REMOTE_HOST The same value as the REMOTE_ADDR variable

REMOTE_USER The username specified as part of the authentication credentials
provided by the client

REQUEST_METHOD The method used by the client to request the resource

REQUEST_URI The URI for the script provided by the client

SCRIPT_FILENAME The full path to the program or script on the server

SCRIPT_NAME The path to the program or script specified by the client

SERVER_NAME The hostname or IP address of the server that the client connected to

SERVER_PORT The port number that the client used to connect to the server

SERVER_PORT_SECURE This variable has a value of "1" if the client connection to the server is
secure

SERVER_PROTOCOL The version of the server protocol used

SERVER_SOFTWARE The server identity string which specifies the application name and
version

In addition to the environment variables listed, the server will also create variables that are prefixed
with "HTTP_" that are set to the value of request headers that are not otherwise defined. For
example, the HTTP_USER_AGENT variable will be set to the value of the User-Agent header
provided by the client as part of the request.

Calling the HttpSetClientVariable function in response to an HTTP_CLIENT_EXECUTE event
notification will have no effect because it occurs after the CGI program or script has completed
execution. To create or modify environment variables for the client session, it should be done in
response to the HTTP_CLIENT_COMMAND event notification.

This function will not change the environment block for the server process. Each client session is
allocated its own private environment block which is inherited by the CGI program. When the
client session terminates, the memory allocated for its environment is released.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpGetClientVariable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpSetCommandFile Function

BOOL WINAPI HttpSetCommandFile(
 HSERVER hServer,
 UINT nClientId,
 LPCTSTR lpszFileName
);

Change the name of the local file or directory that is the target of the current command.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session.

lpszFileName

A pointer to a string that specifies the new file name. This parameter may be NULL to specify
that the original file or directory name should be used.

Return Value
If the function succeeds, the return value is non-zero. If the server handle and client ID do not
specify a valid client session, the function will return zero.

Remarks
The HttpSetCommandFile function is used by the application to change the target file or
directory name for the current command from within an HTTP_EVENT_COMMAND event handler.
This can be used to effectively redirect the client to use a different file than the one that was
actually requested. For example, if the client issues the GET command to download a file from the
server, this function can be used to redirect the command to use a different file name. To obtain
the full path to the file or directory that is the target of the current command, use the
HttpGetCommandFile function.

The lpszFileName parameter specifies the path to the new file or directory name. If the path is
absolute, then it will be used as-is. If the path is relative, it will be relative to the root directory for
the client session. Because the root document directory for the client can depend on the
hostname that the client used when connecting to the server, it is recommended that you always
use an absolute path. The full path to this file is not limited to the server root directory or its
subdirectory, it can specify a file anywhere on the local system. If this parameter is a NULL pointer,
or points to an empty string, then the server will revert to using the actual file or directory name
specified by the command. This enables the application to effectively undo a previous call to this
function to change the target file name.

Typically this function would be used to redirect a client to a file or directory that it may not
normally have access to. Exercise caution when using this function to provide access to data that is
stored outside of the server root directory. Incorrect use of this function could expose the server to
security risks or cause unpredictable behavior by client applications. In most cases it is preferable
to use the HttpAddVirtualPath function to create a virtual path or file name on the server, or the
HttpRedirectRequest function to request the client use a different URL to access the resource.

This function should only be called within the context of the HTTP_EVENT_COMMAND event, and
only for those commands that perform an action on a file or directory. If the current command

does not target a file or directory, this function will return zero and the last error code will be set
to ST_ERROR_INVALID_COMMAND.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpAddVirtualPath, HttpGetCommandFile, HttpReceiveRequest, HttpRedirectRequest,
HttpSendResponse

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpSetServerError Function

VOID WINAPI HttpSetServerError(
 HSERVER hServer,
 DWORD dwError
);

Set the last error code for the specified server session.

Parameters
hServer

The server handle.

dwError

An unsigned integer that specifies an error code.

Return Value
None.

Remarks
Error codes are unsigned 32-bit values which are private to each server session. Most functions will
set the last error code value when they fail; a few functions set it when they succeed. Function
failure is typically indicated by a return value such as FALSE, NULL, INVALID_SERVER or
HTTP_ERROR.

If the hServer parameter is specified as INVALID_SERVER, this function will set the last error code
for the current thread, but will not change the error code associated with any server session. This
should only be done if the application does not have access to a valid server handle.

If the dwError parameter is specified with a value of zero, this effectively clears the error code for
the last function that failed. Those functions which clear the last error code when they succeed are
noted on the function reference page.

Applications can retrieve the value saved by this function by using the HttpGetServerError
function to determine the specific reason for a function failure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib

See Also
HttpGetCommandResult, HttpGetServerError, HttpSendResponse

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpSetServerIdentity Function

BOOL WINAPI HttpSetServerIdentity(
 HSERVER hServer,
 LPCTSTR lpszIdentity
);

Change the identity of the specified server.

Parameters
hServer

The server handle.

lpszIdentity

A pointer to a string that identifies the server. If this parameter is NULL or specifies an empty
string, the current identity for the server is reset to a default value. The maximum length of the
identity string is 64 characters, including the terminating null character.

Return Value
If the function succeeds, the return value is non-zero. If the server handle is invalid, the function
will return a value of zero.

Remarks
The HttpSetClientIdentity function changes a string value used by the server to identify itself to
clients. The identity string does not have any standard format and is used for informational
purposes only. Typically it consists of the application name and a version number. Changing the
server identity has no effect on the operation of the server. To obtain the identity string currently
associated with the server, use the HttpGetServerIdentity function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpGetServerIdentity

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpSetServerLogFile Function

BOOL WINAPI HttpSetServerLogFile(
 HSERVER hServer,
 UINT nLogFormat,
 UINT nLogLevel,
 LPCTSTR lpszFileName
);

Change the current log format, level of detail and file name.

Parameters
hServer

The server handle.

nLogFormat

An integer value that specifies the format used when creating or updating the server log file.
The following formats are supported:

Constant Description

HTTP_LOGFILE_NONE
(0)

This value specifies that the server should not create or
update a log file.

HTTP_LOGFILE_COMMON
(1)

This value specifies that the log file should use the
common log format that records a subset of information
in a fixed format. This log format usually only provides
information about GET, PUT and POST requests.

HTTP_LOGFILE_COMBINED
(2)

This value specifies that the server should use the
combined log file format. This format is similar to the
common format, however it includes the client referrer
and user agent. This is the format that most Apache web
servers use by default.

HTTP_LOGFILE_EXTENDED
(3)

This value specifies that the log file should use the
standard W3C extended log file format. This is an
extensible format that can provide additional information
about the client session. This format typically generates
the largest logfiles.

nLogLevel

An integer value that specifies the level of detail that should generated in the log file. The
minimum value is 1 and the maximum value is 10. If this parameter is zero, it is the same as
specifying a log file format of HTTP_LOGFILE_NONE and will disable logging by the server.

lpszFileName

A pointer to a string that specifies the name of the log file that should be created or appended
to. If the server was configured with logging enabled and this parameter is NULL or an empty
string, the current log file name will not be changed. If the log file does not exist, it will be
created. If it does exist, the contents of the log file will be appended to.

Return Value
If the function succeeds, the return value is non-zero. If the server handle does not specify a valid

server, the function will return zero.

Remarks
The HttpSetServerLogFile function can be used to change the current log file name, the format
of the log file or the level of detail recorded in the log file. In some situations it may be desirable
to delete the current log file contents when changing the format or ensure that a new log file is
created. To do this, combine the nLogFormat parameter with the constant
HTTP_LOGFILE_DELETE.

The higher the value of the nLogLevel parameter, the greater the level of detail that is recorded by
the server. A log level of 1 instructs the server to only record GET, POST and PUT requests, while a
level of 10 instructs the server to record all commands processed by the server. Because a higher
level of logging detail can negatively impact the performance of the server, it is recommended
that you do not exceed a level of 5 for most applications. A log level of 10 should only be used for
debugging purposes.

Example
UINT nLogFormat = HTTP_LOGFILE_NONE;
UINT nLogLevel = 0;
UINT nNewLevel = 5;
BOOL bChanged = FALSE;

// Change the level of detail for the current log file if logging
// has been enabled and the current level is a lower value

if (HttpGetServerLogFile(hServer, &nLogFormat, &nLogLevel, NULL, 0))
{
 if (nLogFormat != HTTP_LOGFILE_NONE && nLogLevel < nNewLevel)
 bChanged = HttpSetServerLogFile(hServer, nLogFormat, nNewLevel, NULL);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpGetServerLogFile, HttpRenameServerLogFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpSetServerName Function

BOOL WINAPI HttpSetServerName(
 HSERVER hServer,
 UINT nClientId,
 LPCTSTR lpszHostName
);

Change the host name assigned to the specified server or client session.

Parameters
hServer

The server handle.

nClientId

An unsigned integer which uniquely identifies the client session. This value may be zero.

lpszHostName

A pointer to a string that specifies the new host name assigned to the server or client session. If
this value is NULL or points to an empty string, the current host name will be changed to use
the default host name.

Return Value
If the function succeeds, the return value is non-zero. If either the server handle or the client ID is
invalid, or the buffer is not large enough to store the complete hostname, the function will return
a value of zero.

Remarks
This function will change the host name assigned to the specified client session. If the nClientId
parameter has a value of zero, the function will change default host name that was assigned to the
server as part of the server configuration. If the nClientId parameter specifies a valid client session
and the lpszHostName parameter is NULL, the host name associated with the client session will be
changed to the current host name assigned to the server.

When a client connects to the server, it can specify the host name that it used to establish the
connection by sending the HOST command. This is typically used with virtual hosting, where one
server may accept client connections for multiple domains. The HttpGetServerName function will
return the host name specified by the client, and HttpSetServerName can be used by the
application to either explicitly assign a different host name to the client session, or override the
host name provided by the client.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cshtsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpGetServerAddress, HttpGetServerName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpSetServerPriority Function

INT WINAPI HttpSetServerPriority(
 HSERVER hServer,
 INT nPriority
);

Change the priority assigned to the specified server.

Parameters
hServer

The server handle.

nPriority

An integer value which specifies the new priority for the server. It may be one of the following
values:

Constant Description

HTTP_PRIORITY_BACKGROUND
(0)

This priority significantly reduces the memory,
processor and network resource utilization for the
server. It is typically used with lightweight services
running in the background that are designed for few
client connections. The server thread will be assigned
a lower scheduling priority and will be frequently
forced to yield execution to other threads.

HTTP_PRIORITY_LOW
(1)

This priority lowers the overall resource utilization for
the server and meters the processor utilization for
the server thread. The server thread will be assigned
a lower scheduling priority and will occasionally be
forced to yield execution to other threads.

HTTP_PRIORITY_NORMAL
(2)

The default priority which balances resource and
processor utilization. This is the priority that is initially
assigned to the server when it is started, and it is
recommended that most applications use this
priority.

HTTP_PRIORITY_HIGH
(3)

This priority increases the overall resource utilization
for the server and the thread will be given higher
scheduling priority. It is not recommended that this
priority be used on a system with a single processor.

HTTP_PRIORITY_CRITICAL
(4)

This priority can significantly increase processor,
memory and network utilization. The server thread
will be given higher scheduling priority and will be
more responsive to client connection requests. It is
not recommended that this priority be used on a
system with a single processor.

Return Value
If the function succeeds, the return value is the previous priority assigned to the server. If the
function fails, the return value is HTTP_PRIORITY_INVALID. To get extended error information, call

HttpGetServerError.

Remarks
The HttpSetServerPriority function can be used to change the current priority assigned to the
specified server. Client connections that are accepted after this function is called will inherit the
new priority as their default priority. Previously existing client connections will not be affected by
this function.

Higher priority values increase the thread priority and processor utilization for each client session.
You should only change the server priority if you understand the impact it will have on the system
and have thoroughly tested your application. Configuring the server to run with a higher priority
can have a negative effect on the performance of other programs running on the system.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cstools11.h
Import Library: cshtsv11.lib

See Also
HttpGetServerPriority, HttpServerStart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HttpSetServerStackSize Function

BOOL WINAPI HttpSetServerStackSize(
 SOCKET hServer,
 DWORD dwStackSize
);

Change the initial size of the stack allocated for threads created by the server.

Parameters
hServer

Handle to the server socket.

dwStackSize

The amount of memory that will be committed to the stack for each thread created by the
server. If this value is zero, a default stack size will be used.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call HttpGetServerError.

Remarks
The HttpSetServerStackSize function changes the initial amount of memory that is committed to
the stack for each thread created by the server. By default, the stack size for each thread is set to
256K for 32-bit processes and 512K for 64-bit processes. Increasing or decreasing the stack size
will only affect new threads that are created by the server, it will not affect those threads that have
already been created to manage active client sessions. It is recommended that most applications
use the default stack size.

You should not change the stack size unless you understand the impact that it will have on your
system and have thoroughly tested your application. Increasing the initial commit size of the stack
will remove pages from the total system commit limit, and every page of memory that is reserved
for stack cannot be used for any other purpose.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cstools11.h
Import Library: cshtsv11.lib

See Also
HttpGetServerMemoryUsage, HttpGetServerStackSize, HttpServerStart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Hypertext Transfer Protocol Server Data Structures

HTTPCLIENTCREDENTIALS
HTTPREQUEST
HTTPRESPONSE
HTTPSERVERCONFIG
HTTPSERVERTRANSFER
INITDATA
SECURITYCREDENTIALS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HTTPCLIENTCREDENTIALS Structure

The HTTPCLIENTCREDENTIALS structure defines the credentials used to authenticate a specific
user.

typedef struct _HTTPCLIENTCREDENTIALS
{
 DWORD dwSize;
 DWORD dwFlags;
 UINT nAuthType;
 UINT nHostPort;
 TCHAR szHostName[HTTP_MAXHOSTNAME];
 TCHAR szUserName[HTTP_MAXUSERNAME];
 TCHAR szPassword[HTTP_MAXPASSWORD];
} HTTPCLIENTCREDENTIALS, *LPHTTPCLIENTCREDENTIALS;

Members
dwSize

An unsigned integer value that specifies the size of the structure.

dwFlags

An unsigned integer value is reserved for future use. This value will always be zero.

nAuthType

An unsigned integer value that identifies the authentication method.

nHostPort

The server port number.

szHostName

A pointer to a string that specifies the server host name.

szUserName

A pointer to a string that specifies the user name.

szPassword

A pointer to a string that specifies the user password.

Remarks
When an instance of this structure is passed to the HttpGetClientCredentials function, this
member must be initialized to the size of the structure and all other members must be initialized
with a value of zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpGetClientCredentials

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HTTPREQUEST Structure

The HTTPREQUEST structure provides information about the request made by the client.

typedef struct _HTTPREQUEST
{
 DWORD dwSize;
 DWORD dwFlags;
 DWORD dwVersion;
 DWORD dwAccess;
 DWORD dwLength;
 DWORD dwReserved;
 UINT nHostId;
 UINT nHostPort;
 LPCSTR lpszCommand;
 LPCSTR lpszHostName;
 LPCSTR lpszUserName;
 LPCSTR lpszPassword;
 LPCSTR lpszResource;
 LPCSTR lpszParameters;
 LPCSTR lpszDirectory;
 LPCSTR lpszPathInfo;
 LPCSTR lpszProgram;
 LPCSTR lpszScriptFile;
 LPCSTR lpszLocalFile;
 LPCSTR lpszMediaType;
} HTTPREQUEST, *LPHTTPREQUEST;

Members
dwSize

An unsigned integer value that specifies the size of the structure.

dwFlags

An unsigned integer value that provides additional information about the request. It may be
one or more of the following values:

Constant Description

HTTP_REQUEST_FLAG_PROTECTED
(0x1)

The resource that the client has requested is
protected. The client should only be permitted to
access the resource if the client session has been
authenticated.

HTTP_REQUEST_FLAG_PROGRAM
(0x2)

The resource that the client has requested is a
CGI program or an executable script. The output
from the program or script should be returned to
the client in the response. If this flag is specified,
the lpszProgram member of the structure
specifies the name of the program that should be
executed.

HTTP_REQUEST_FLAG_SCRIPT
(0x4)

The resource that the client has requested is an
executable script. This flag is set when the request
URL is mapped to a registered script handler. The
lpszProgram member specifies the name of the
program that is responsible for executing the

script, and the lpszScriptFile parameter specifies
the full path to the script itself.

dwVersion

An unsigned integer value that specifies the protocol version used. It may be one of the
following values:

Constant Description

HTTP_VERSION_09
(0x00009)

The client issued a GET command without specifying a protocol
version.

HTTP_VERISON_10
(0x10000)

The client issued a command that specified version 1.0 of the
protocol.

HTTP_VERSION_11
(0x10001)

The client issued a command that specified version 1.1 of the
protocol.

dwAccess

An unsigned integer value that specifies the access permissions that were assigned to the
resource. For a list of file access permissions, see User and File Access Constants.

dwLength

An unsigned integer value that will specify the number of bytes of request data provided by the
client. If the client did not submit any data with the request, this member will have a value of
zero.

dwReserved

An unsigned integer value that is reserved for future use.

nHostId

An integer value that identifies the virtual host that was specified by the client. This is based on
the value of the Host request header included in the request. This value will be zero if a host
name is not specified by the client, or does not match one of the virtual hosts that have been
created.

nHostPort

An integer value that specifies the port number that the client used to establish the connection.
This will be the same port number that was used when starting the server.

lpszCommand

A pointer to a string that specifies the command that was issued by the client. The command
will always be in upper case. Refer to Hypertext Transfer Protocol Commands for a list of
standard commands.

lpszHostName

A pointer to a string that identifies the hostname or IP address that the client used to establish
the connection. This will typically correspond to the hostname assigned to the server, or to one
of the virtual hosts that have been created.

lpszUserName

A pointer to a string that specifies the username provided with the request. This member is only
set if the client has included authentication credentials as part of the request. If the client has
not provided any credentials, this member will be NULL.

lpszPassword

file:///C|/Projects/cstools11/pdf/httpsrv/library/useraccess.html
file:///C|/Projects/cstools11/pdf/httpsrv/library/useraccess.html
file:///C|/Projects/cstools11/pdf/httpsrv/library/commands.html
file:///C|/Projects/cstools11/pdf/httpsrv/library/commands.html

A pointer to a string that specifies the password provided with the request. This member is only
set if the client has included authentication credentials as part of the request. If the client has
not provided any credentials, this member will be NULL.

lpszResource

A pointer to a string that specifies the URL path provided by the client.

lpszParameters

A pointer to a string that specifies any query parameters that were included in the request made
by the client. If the URL did not include any query parameters, this member will be NULL.

lpszDirectory

A pointer to a string the specifies the full path to the root directory for the virtual host.

lpszPathInfo

A pointer to a string that specifies additional path information provided by the client when
referencing an executable CGI program or script in the URL. For example, if a program is
mapped to the virtual path "/orders/invoice" and the client requests
"/orders/invoice/pdf/10001" this member will be the string "/pdf/10001". If there is no path
information associated with the request, this member will be NULL.

lpszProgram

A pointer to a string that specifies the local path to the CGI program that should be executed to
process the request made by the client. If this member is NULL, it indicates that the client has
provided a URL that maps to a local file or directory.

lpszScriptFile

A pointer to a string that specifies the local path to the script file that will be executed by the
handler. If this member is NULL, it indicates that the request URL was not mapped to registered
script handler.

lpszLocalFile

A pointer to a string that specifies the local path to the directory or file name referenced by the
URL. If the lpszPathInfo member is not NULL, then this member will point to a local file name
based the path information appended to the root directory for the virtual host.

lpszMediaType

A pointer to a string that identifies the request data using the standard Internet media types
defined in RFC 2046. It is used to designate the format for various types of content and has two
parts, a primary and secondary media type separated by a forward slash. Common examples
are "text/plain", "text/html" and "application/octet-stream". If the client did not submit any data
with the request, this member will be NULL.

Remarks
This structure is used with the HttpReceiveRequest function and all members should be
initialized to a value of zero, except for the dwSize member which should be initialized to size of
the structure. Failure to properly initialize the structure will cause the function call to fail.

The value of the lpszLocalFile member depends on whether the client has requested a static
document, or if the URL is mapped to a registered program or script handler. If the request is for a
static document, then the dwFlags member will not have the HTTP_REQUEST_FLAG_PROGRAM
bit flag set and the lpszLocalFile member will be the full path to the document. If the URL is
mapped to a registered program or script, then the lpszLocalFile member will be the full path to
the server root directory, If the request URL included additional path information, that will be
appended to the root directory.

The value of the lpszScriptFile member is only defined if the dwFlags member has the
HTTP_REQUEST_FLAG_SCRIPT bit flag set. This indicates that the request URL references a file that
is an executable script with a handler that was registered using the HttpRegisterHandler
function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpReceiveRequest, HttpSendResponse, HTTPRESPONSE

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HTTPRESPONSE Structure

The HTTPRESPONSE structure provides additional information about the response to the client.

typedef struct _HTTPRESPONSE
{
 DWORD dwSize;
 DWORD dwFlags;
 DWORD dwVersion;
 DWORD dwReserved;
 UINT nExpires;
 UINT nResultCode;
 LPCTSTR lpszReason;
 LPCTSTR lpszMediaType;
} HTTPRESPONSE, *LPHTTPRESPONSE;

Members
dwSize

An unsigned integer value that specifies the size of the structure.

dwFlags

An unsigned integer value that specifies one or more response flags. This member is reserved
for future use and should always have a value of zero.

dwVersion

An unsigned integer value that specifies the protocol version used. It may be one of the
following values:

Constant Description

HTTP_VERSION_DEFAULT
(0)

The server should respond to the client using the same
version specified in the request.

HTTP_VERISON_10
(0x10000)

The server should respond to the client using version 1.0 of
the protocol.

HTTP_VERSION_11
(0x10001)

The server should respond to the client using version 1.1 of
the protocol.

dwReserved

An unsigned integer value that is reserved for future use.

nExpires

An integer value that specifies the number of seconds until the client should consider any
cached response data to be stale. If this value is zero, the default cache expiration time for the
server will be used. The default cache expiration time is 7200 seconds (2 hours). The value of
this structure member is ignored if the HTTP_RESPONSE_NOCACHE option is specified when
the response is sent to the client.

nResultCode

An integer value that specifies the result code that should be sent in response to the client
request. The result code is a three-digit number that indicates success or failure. For more
information, refer to the HttpGetCommandResult function.

lpszReason

A string that that describes the result code sent to the client. The description should be brief

and should not contain any formatting characters or HTML markup. This parameter may be
NULL, in which case a default description of the result code will be used.

lpszMediaType

A string that specifies the Internet media type for the data that is being sent to the client as
defined in RFC 2046. The format for the content type string consists of two parts, a primary and
secondary media type separated by a forward slash. Common examples are "text/plain",
"text/html" and "application/octet-stream". If this member is NULL, the library will attempt to
automatically determine the appropriate media type.

Remarks
This structure is used with the HttpSendResponse function and the dwSize member must be
initialized to size of the structure. Failure to properly initialize the structure will cause the function
call to fail.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpGetCommandResult, HttpReceiveRequest, HttpSendResponse, HTTPREQUEST

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HTTPSERVERCONFIG Structure

The HTTPSERVERCONFIG structure provides the configuration information used to create an
instance of an HTTP server.

typedef struct _HTTPSERVERCONFIG
{
 DWORD dwSize;
 UINT nMaxClients;
 UINT nMaxClientsPerAddress;
 UINT nMaxRequests;
 UINT nMaxPostSize;
 UINT nLogFormat;
 UINT nLogLevel;
 UINT nCacheTime;
 UINT nIdleTime;
 UINT nExecTime;
 LPCTSTR lpszIdentity;
 LPCTSTR lpszHostUuid;
 LPCTSTR lpszHostName;
 LPCTSTR lpszRootPath;
 LPCTSTR lpszTempPath;
 LPCTSTR lpszLogFile;
} HTTPSERVERCONFIG, *LPHTTPSERVERCONFIG;

Members
dwSize

An unsigned integer value that specifies the size of the structure.

nMaxClients

An integer value that specifies the maximum number of active client connections that will be
accepted by the server. If the maximum number of clients is reached, any further connections
are rejected by the server until one or more clients close their connection to the server or are
disconnected. A value of zero specifies the default configuration value of 100 connections
should be used.

nMaxClientsPerAddress

An integer value that specifies the maximum number of active client connections per IP address
that will be accepted by the server. If the maximum number of clients from the same IP address
is reached, any further connections are rejected until one of the clients closes its connection to
the server. A value of zero specifies the default configuration value of 8 connections per address
should be used.

nMaxRequests

An integer value that specifies the maximum number of a requests a client may make per
connection. When a client reaches the maximum number of requests, the server will close the
connection and the client must establish a new connection to send another request. If this
member has a value of zero, the server will allow 5 requests per connection. The minimum
value is 1 and the maximum is 100.

nMaxPostSize

An integer value that specifies the maximum size of the request data that may be submitted by
a client with a POST command. If the amount of request data submitted to the server exceeds
this limit, the server will return a 413 error to the client and the connection will be closed. If this
member has a value of zero, the server will permit the client to submit up to 4 MB (4,194,304

bytes) of data. The minimum value is 100 KB (102,400 bytes) and the maximum value is 100 MB
(104,857,600 bytes).

nLogFormat

An integer value that specifies the format used when creating or updating the server log file.
The following formats are supported:

Constant Description

HTTP_LOGFILE_NONE
(0)

This value specifies that the server should not create or
update a log file.

HTTP_LOGFILE_COMMON
(1)

This value specifies that the log file should use the
common log format that records a subset of information
in a fixed format. This log format usually only provides
information about file transfers.

HTTP_LOGFILE_COMBINED
(2)

This value specifies that the server should use the
combined log file format. This format is similar to the
common format, however it includes the client referrer
and user agent. This is the format that most Apache web
servers use by default.

HTTP_LOGFILE_EXTENDED
(3)

This value specifies that the log file should use the
standard W3C extended log file format. This is an
extensible format that can provide additional information
about the client session.

nLogLevel

An integer value that specifies the level of detail that should generated in the log file. The
minimum value is 1 and the maximum value is 10. If the nLogFormat member specifies a valid
log file format and this value is zero, a default level of detail will be selected based on the
format. The common log file format generally contains less information by default, only logging
the data transfers between the client and server. The W3C extended log file format defaults to a
higher level of detail that includes additional information about the client session. The higher
the level of detail, the larger the log file will be.

nCacheTime

An integer value that specifies the amount of time that the client should store a document in its
cache before requesting it from the server again. A value of zero specifies that the default value
of 7200 seconds (2 hours) should be used.

nIdleTime

An integer value that specifies the maximum number of seconds that a client session may be
idle before the server closes the control connection to the client. A value of zero specifies the
default value of 60 seconds. If the value is non-zero, the minimum value is 10 seconds and the
maximum value is 300 seconds (5 minutes). This value is used to initialize the default idle
timeout period for each client session. The server determines if a client is idle based on the time
the last command was issued and whether or not a file transfer is in progress.

nExecTime

An unsigned integer value that specifies the maximum number of seconds that an external CGI
program is permitted to run on the server. Programs are registered using the
HttpRegisterProgram function, and are executed when the client sends a request for a
resource that is associated with the program. If this value is zero, the default timeout period of 5

seconds will be used. The minimum execution time is 1 second and the maximum time limit is
30 seconds.

lpszIdentity

A pointer to a string that identifies the server. It is used for informational purposes only and has
no effect on the operation of the server. If this member is not initialized to a value, then a
default identity will be used. The server identity is provided when a client establishes the initial
connection and when the client sends the STAT or CSID commands. If this member is defined, it
is recommended that you only use printable ASCII characters.

lpszHostUuid

A pointer to a string that specifies a Universally Unique Identifier (UUID) that is used to uniquely
identify the server. This value can be used when storing information about the server, and
should be generated using a utility such as uuidgen which is included with Visual Studio. This
structure member may be initialized to an empty string, in which case a temporary UUID will be
randomly generated.

lpszHostName

A pointer to a string that specifies the fully-qualified host name for the server. If this structure
member is initialized with an empty string, the local host name assigned to the Windows system
will be used. This value does not need to correspond to the actual host name associated with
the server's IP address. This value is used for informational purposes only and has no effect on
the operation of the server.

lpszRootPath

A pointer to a string that specifies the path to the root directory for the server. If this structure
member is initialized with an empty string, the current working directory for the process will be
used as the root directory. It is recommended that you provide a full path to an existing
directory and do not specify the root of a local or network drive. If the path does not exist at the
time the server is started, it will be automatically created.

lpszTempPath

A pointer to a string that specifies the path to the temporary directory for the server. If this
structure member is initialized with an empty string, the current temporary directory for the
process will be used. The temporary directory cannot be the same as the root directory, and it is
strongly recommended that you do not specify the root of a local or network drive. If the path
does not exist at the time the server is started, it will be automatically created.

lpszLogFile

A pointer to a string that specifies the name of the server log file to create, if a logging format
has been specified. If logging is enabled and this member is an empty string, then a default log
file name will be created. If the file name does not include a path, then the file is created in the
server log directory. If the file name includes a path, the log file will be created using that
specific name. If the server is in multi-user mode, then the default location for log files will be
the Logs subdirectory in the server root directory. If the server is not in multi-user mode, the
default location for log files will be the temporary directory for the current process.

Remarks
When an instance of this structure is passed to the HttpServerStart function, the dwSize member
must be initialized to the size of the structure, otherwise the function will fail with an error
indicating that the configuration is invalid.

The nMaxClients member limits the total number of client connections and the
nMaxClientsPerAddress member limits the number of simultaneous connections can originate

from the same address. If either client limit is exceeded, the server will automatically close the
connection. For more control over how the server accepts client connections, use the
HttpServerThrottle function. It is not recommended that you set the maximum clients per
address below a value of 4. Lower values can negatively impact the performance of some clients,
particularly web browsers.

The nMaxPostSize member limits the amount of data that a client can submit to the server using a
POST command. The default limit is 4 MB which should be sufficient for most applications. One
situation where you may need to increase this value is if you expect the client to upload large files
using the POST command. Increasing this limit will potentially increase the amount of virtual
memory that the server will allocate. Note that this value does not limit amount of data that can
be uploaded using the PUT command.

When specifying the root directory for the server configuration, it is important to consider that a
client's default access to files on the system will be limited to these directories and any
subdirectories. If a root directory is not specified, then one will be created using the current
working directory for the process. The root directory path may include environment variables
surrounded by % symbols and these will be expanded.

For servers that are publicly accessible, or where you want files to be a accessible across multiple
server sessions, you should always populate the szHostUuid member with a valid UUID string, and
the lpszRootPath member should specify an absolute path to an existing directory.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpServerStart, HttpServerStop, HttpServerThrottle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HTTPSERVERTRANSFER Structure

The HTTPSERVERTRANSFER structure provides information about the last file transfer performed
by a client.

typedef struct _HTTPSERVERTRANSFER
{
 DWORD dwSize;
 DWORD dwReserved;
 DWORD dwFileAccess;
 DWORD dwTimeElapsed;
 ULARGE_INTEGER uiBytesCopied;
 TCHAR szFileName[MAX_PATH];
} HTTPSERVERTRANSFER, *LPHTTPSERVERTRANSFER;

Members
dwSize

An unsigned integer value that specifies the size of the structure.

dwReserved

An unsigned integer value that is reserved for future use. This value will always be zero.

dwFileAccess

An unsigned integer value that specifies the how the local file was accessed. It can be one of the
following values:

Constant Description

HTTP_FILE_READ
(0)

The file was opened for reading. This mode indicates that the client
issued the GET command to download the contents of a file from
the server to the client system. The szFileName member specifies
the name of the local file on the server that was downloaded by
the client.

HTTP_FILE_WRITE
(1)

The file was opened for writing. This mode indicates that the client
issued the PUT command to upload the contents of a file from the
client system to server. The szFileName member specifies the
name of the local file on the server that was created by the client. If
a file already existed with the name name, it was replaced.

dwTimeElapsed

The amount of time that it took for the file transfer to complete in milliseconds. This value is
limited to the resolution of the system timer, which is typically in the range of 10 to 16
milliseconds. This value may be zero if the transfer occurred over a local network or on the
same host using a loopback address.

uiBytesCopied

A 64-bit integer value that specifies the total number of bytes copied during the file transfer.
This value is represented by a ULARGE_INTEGER union which provides support for those
programming languages that do not have intrinsic support for 64-bit integers. For more
information, refer to the Windows SDK documentation. The application should not make the
assumption that this is the actual size of the file.

szFileName

A pointer to a string value that will contain the full path to the local file that was transferred. The

dwFileAccess member determines whether the file name represents a file that was downloaded
by the client, or uploaded from the client and stored on the server.

Remarks
When an instance of this structure is passed to the HttpGetServerTransferInfo function, the
dwSize member must be initialized to the size of the structure, otherwise the function will fail with
an error indicating that the parameter is invalid. All other members should be initialized to a value
of zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

See Also
HttpGetServerTransferInfo

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 INITDATA Structure

This structure contains information about the SocketTools library when the initialization function
returns.

typedef struct _INITDATA
{
 DWORD dwSize;
 DWORD dwVersionMajor;
 DWORD dwVersionMinor;
 DWORD dwVersionBuild;
 DWORD dwOptions;
 DWORD_PTR dwReserved1;
 DWORD_PTR dwReserved2;
 TCHAR szDescription[128];
} INITDATA, *LPINITDATA;

Members
dwSize

Size of this structure. This structure member must be set to the size of the structure prior to
calling the initialization function. Failure to do so will cause the function to fail.

dwVersionMajor

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the major version number for the library.

dwVersionMinor

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the minor version number for the library.

dwVersionBuild

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the build number for the library.

dwOptions

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

dwReserved1

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

dwReserved2

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

szDescription

A null terminated string which describes the library.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SECURITYCREDENTIALS Structure

The SECURITYCREDENTIALS structure specifies the information needed by the library to specify
additional security credentials, such as a client certificate or private key, when establishing a secure
connection.

typedef struct _SECURITYCREDENTIALS
{
 DWORD dwSize;
 DWORD dwProtocol;
 DWORD dwOptions;
 DWORD dwReserved;
 LPCTSTR lpszHostName;
 LPCTSTR lpszUserName;
 LPCTSTR lpszPassword;
 LPCTSTR lpszCertStore;
 LPCTSTR lpszCertName;
 LPCTSTR lpszKeyFile;
} SECURITYCREDENTIALS, *LPSECURITYCREDENTIALS;

Members
dwSize

Size of this structure. If the structure is being allocated dynamically, this member must be set to
the size of the structure and all other unused structure members must be initialized to a value of
zero or NULL.

dwProtocol

A bitmask of supported security protocols. The value of this structure member is constructed by
using a bitwise operator with any of the following values:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The
correct protocol is automatically selected, based on

what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.
This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is
supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

dwOptions

A value which specifies one or options. This member is constructed by using a bitwise operator
with any of the following values:

Constant Description

CREDENTIAL_STORE_CURRENT_USER The library will attempt to open a store for
the current user using the certificate store
name provided in this structure. If no options
are specified, then this is the default
behavior.

CREDENTIAL_STORE_LOCAL_MACHINE The library will attempt to open a local
machine store using the certificate store

name provided in this structure. If this option
is specified, the library will always search for a
local machine store before searching for the
store by that name for the current user.

CREDENTIAL_STORE_FILENAME The certificate store name is a file that
contains the certificate and private key that
will be used.

dwReserved

This structure member is reserved for future use and should always be initialized to zero.

lpszHostName

A pointer to a null terminated string which specifies the hostname that will be used when
validating the server certificate. If this member is NULL, then the server certificate will be
validated against the hostname used to establish the connection.

lpszUserName

A pointer to a null terminated string which identifies the owner of client certificate. Currently this
member is not used by the library and should always be initialized as a NULL pointer.

lpszPassword

A pointer to a null terminated string which specifies the password needed to access the
certificate. Currently this member is only used if the CREDENTIAL_STORE_FILENAME option has
been specified. If there is no password associated with the certificate, then this member should
be initialized as a NULL pointer.

lpszCertStore

A pointer to a null terminated string which specifies the name of the certificate store to open. A
certificate store is a collection of certificates and their private keys, typically organized by how
they are used. If this value is NULL or points to an empty string, the default certificate store "MY"
will be used.

Store
Name

Description

CA
Certification authority certificates. These are certificates that are issued by entities
which are entrusted to issue certificates to other individuals or organizations.
Companies such as VeriSign and Thawte act as certification authorities.

MY

Personal certificates and their associated private keys for the current user. This
store typically holds the client certificates used to establish a user's credentials.
This corresponds to the "Personal" store that is displayed by the certificate
manager utility and is the default store used by the library.

ROOT
Certificates that have been self-signed by a certificate authority. Root certificates
for a number of different certification authorities such as VeriSign and Thawte are
installed as part of the operating system and periodically updated by Microsoft.

lpszCertName

A pointer to a null terminated string which specifies the name of the certificate to use. The
library will first search the certificate store for a certificate with a matching "friendly name"; this is
a name for the certificate that is assigned by the user. Note that the name must match
completely, but the comparison is not case sensitive. If no matching certificate is found, the
library will then attempt to find a certificate that has a matching common name (also called the
certificate subject). This comparison is less stringent, and the first partial match will be returned.

If this second search fails, the library will return an error indicating that the certificate could not
be found. If the SECURITY_PROTOCOL_SSH protocol has been specified, this member should
be NULL.

lpszKeyFile

A pointer to a null terminated string which specifies the name of the file which contains the
private key required to establish the connection. This member is only used for SSH connections
and should always be NULL when establishing a secure connection using SSL or TLS.

Remarks
A client application only needs to create this structure if the server requires that the client provide
a certificate as part of the process of negotiating the secure session. If a certificate is required,
note that it must have a private key associated with it. Attempting to use a certificate that does not
have a private key will result in an error during the connection process indicating that the client
credentials could not be established.

If you are using a local certificate store, with the certificate and private key stored in the registry,
you can explicitly specify whether the certificate store for the current user or the local machine (all
users) should be used. This is done by prefixing the certificate store name with "HKCU:" for the
current user, or "HKLM:" for the local machine. For example, a certificate store name of
"HKLM:MY" would specify the personal certificate store for the local machine, rather than the
current user. If neither prefix is specified, then it will default to the certificate store for the current
user. You can manage these certificates using the CertMgr.msc Microsoft Management Console
(MMC) snap-in.

It is possible to load the certificate from a file rather than from current user's certificate store. The
dwOptions member should be set to CREDENTIAL_STORE_FILENAME and the lpszCertStore
member should specify the name of the file that contains the certificate and its private key. The file
must be in Private Information Exchange (PFX) format, also known as PKCS #12. These certificate
files typically have an extension of .pfx or .p12. Note that if a password was specified when the
certificate file was created, it must be provided in the lpszPassword member or the library will be
unable to access the certificate.

Note that the lpszUserName and lpszPassword members are values which are used to access the
certificate store or private key file. They are not the credentials which are used when establishing
the connection with the remote host or authenticating the client session.

The TLS 1.1 and TLS 1.2 protocols are only supported on Windows 7, Windows Server 2008 R2
and later versions of the platform. If these options are specified and the application is running on
Windows XP or Windows Vista, the protocol version will be downgraded to TLS 1.0 for backwards
compatibility with those platforms.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Internet Control Message Protocol Library

Determine if a remote host is reachable and how packets of data are routed to that system.

Reference

Functions
Data Structures
Error Codes

Library Information

File Name CSICMV11.DLL

Version 11.0.2180.1635

LibID 861142C8-68FD-4BC5-BAA9-25B33F15DD07

Import Library CSICMV11.LIB

Dependencies None

Standards RFC 792

Overview
The Internet Control Message Protocol (ICMP) is commonly used to determine if a remote host is
reachable and how packets of data are routed to that system. Users are most familiar with this
protocol as it is implemented in the ping and traceroute command line utilities. The ping
command is used to check if a system is reachable and the amount of time that it takes for a
packet of data to make a round trip from the local system, to the remote host and then back
again. The traceroute command is used to trace the route that a packet of data takes from the
local system to the remote host, and can be used to identify potential problems with overall
throughput and latency. The library can be used to build in this type of functionality in your own
applications, giving you the ability to send and receive ICMP echo datagrams in order to perform
your own analysis.

Requirements
The SocketTools Library Edition libraries are compatible with any programming language which
supports calling functions exported from a standard dynamic link library (DLL). If you are using
Visual C++ 6.0 it is required that you have Service Pack 6 (SP6) installed. You should install all
updates for your development tools and have the current Windows SDK installed. The minimum
recommended version of Visual Studio is Visual Studio 2010.

This library is supported on Windows 7, Windows Server 2008 R2 and later versions of the desktop
and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1) installed as
a minimum requirement. It is recommended that you install the current service pack and all critical
updates available for your version of the operating system.

This product includes both 32-bit and 64-bit libraries. Native 64-bit CPU support requires the 64-
bit version of Windows 7 or later versions of the Windows operating system.

Distribution
When you distribute your application that uses this library, it is recommended that you install the
file in the same folder as your application executable. If you install the library into a shared location

on the system, it is important that you distribute the correct version for the target platform and it
should be registered as a shared DLL. This is a standard Windows dynamic link library, not an
ActiveX component, and does not require COM registration.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Internet Control Message Protocol Functions

Function Description

IcmpCancel Cancel the current blocking operation

IcmpCloseHandle Close the current client session

IcmpCreateHandle Create a new handle for the current client session

IcmpDisableEvents Disable asynchronous event notification

IcmpDisableTrace Disable logging of socket-level calls to the trace log

IcmpEcho Send one or more echo datagrams to the specified host

IcmpEnableEvents Enable asynchronous event notification

IcmpEnableTrace Enable logging of network function calls to a file

IcmpEventProc Callback function that processes events generated by the client

IcmpFormatAddress Convert a numeric IP address to a string

IcmpFreezeEvents Suspend or resume event handling by the calling process

IcmpGetErrorString Return a description for the specified error code

IcmpGetHostAddress Return the current host IP address

IcmpGetHostName Return the current host name

IcmpGetLastError Return the last error code

IcmpGetPacketSize Return the ICMP datagram packet size

IcmpGetRecvCount Return the number of packets received

IcmpGetSendCount Return the number of packets sent

IcmpGetSequenceId Return the current sequence identifier

IcmpGetTimeout Return the number of milliseconds until an operation times out

IcmpGetTimeToLive Return the current time-to-live for the ICMP datagram

IcmpGetTripTime Return the current trip time statistics

IcmpInitialize Initialize the library and validate the specified license key at runtime

IcmpIsBlocking Determine if the client is blocked, waiting for information

IcmpRecvEcho Read an ICMP datagram returned by the remote host

IcmpRegisterEvent Register an event callback function

IcmpReset Reset the current client state

IcmpResolveAddress Resolve an IP address into a fully qualified host name

IcmpSendEcho Send an ICMP datagram to the specified host

IcmpSetHostAddress Set the IP address of the host to receive the next datagram

IcmpSetHostName Set the name of the host to receive the next datagram

IcmpSetLastError Set the last error code

IcmpSetPacketSize Set the ICMP datagram packet size

IcmpSetSequenceId Set the sequence identifier for the next datagram

IcmpSetTimeout Set the number of milliseconds until an operation times out

IcmpSetTimeToLive Set the time-to-live for the next datagram

IcmpTraceRoute Trace the route from the local system to a remote host

IcmpUninitialize Terminate use of the library by the application

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IcmpCancel Function

INT WINAPI IcmpCancel(
 HCLIENT hClient
);

The IcmpCancel function cancels any outstanding blocking operation in the client, causing the
blocking function to fail. The application may then retry the operation or terminate the client
session.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
ICMP_ERROR. To get extended error information, call IcmpGetLastError.

Remarks
When the IcmpCancel function is called, the blocking function will not immediately fail. An
internal flag is set which causes the blocking operation to exit with an error. This means that the
application cannot cancel an operation and immediately perform some other operation. Instead it
must allow the calling stack to unwind, returning back to the blocking operation before making
any further function calls.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib

See Also
IcmpIsBlocking

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IcmpCloseHandle Function

INT WINAPI IcmpCloseHandle(
 HCLIENT hClient
);

The IcmpCloseHandle function closes the socket and releases the memory allocated for the client
session.

Parameters
hClient

A handle to the client session.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
ICMP_ERROR. To get extended error information, call IcmpGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
IcmpCreateHandle, IcmpInitialize, IcmpUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IcmpCreateHandle Function

HCLIENT WINAPI IcmpCreateHandle(
 UINT nPacketSize,
 UINT nTimeToLive,
 DWORD dwTimeout,
 DWORD dwReserved,
 HWND hEventWnd,
 UINT uEventMsg
);

The IcmpCreateHandle function creates a client handle for sending and receiving ICMP echo
datagrams. If an event notification window is specified, the client will be notified when a network
event occurs.

Parameters
nPacketSize

An unsigned integer which specifies the default packet size used when generating ICMP echo
datagrams. The minimum packet size is 32 bytes and the maximum size is 65,535 bytes.

nTimeToLive

An unsigned integer which specifies the default time-to-live for ICMP echo datagrams. This
determines the maximum number of times that a packet will be routed from one system to
another while enroute to its destination. The minimum time-to-live value is 1, the maximum is
255. The recommend value for this parameter is 255, and typical applications should use a time-
to-live value of at least 30.

dwTimeout

An unsigned integer which specifies the maximum number of milliseconds to wait before the
current operation times out.

dwReserved

A reserved parameter. This value should always be zero.

hEventWnd

The handle to an asynchronous notification window. This window receives messages which
notify the client when asynchronous network events occur. If asynchronous event notification is
not required, this parameter may be NULL.

uEventMsg

The message identifier that is used when an asynchronous network event occurs. This value
should be greater than WM_USER as defined in the Windows header files. If the hEventWnd
parameter is NULL, this parameter should be specified as WM_NULL.

Return Value
If the function succeeds, the return value is a handle to the client session. If the function fails, the
return value is INVALID_CLIENT. To get extended error information, call IcmpGetLastError.

Remarks
The IcmpCreateHandle function creates a client handle that is used with subsequent calls to the
library. This library uses a special type of socket called a raw socket, which is created to send and
receive ICMP echo datagrams. Raw socket support is optional under the Windows Sockets
specification, and may not be available if a non-standard networking libraries are used or may

only be available to privileged accounts.

If the hEventWnd parameter is not NULL, the client operates in asynchronous mode and
messages will be posted to the notification window when a network event occurs. When a
message is posted to the window, the low word of the lParam parameter contains the event
identifier. The high word of lParam contains the low word of the error code, if an error has
occurred. The wParam parameter contains the client handle. One or more of the following event
identifiers may be sent:

Constant Description

ICMP_EVENT_ECHO The client has generated an ICMP echo datagram and has sent it to
the specified host. If the datagram is received, the remote host should
generate a reply and return it to the sender.

ICMP_EVENT_REPLY The client has received an ICMP echo reply datagram from the
remote host. At this point the client can collect statistical information.

ICMP_EVENT_TIMEOUT The network operation has exceeded the specified timeout period.
The client application may attempt to retry the operation.

ICMP_EVENT_CANCEL The current operation has been canceled. TThe client application may
attempt to retry the operation or close the handle.

To cancel asynchronous notification and return the client to a blocking mode, use the
IcmpDisableEvents function.

The ability to create and send ICMP echo datagrams is limited to privileged users. Non-
administrator users will receive an error if they attempt to create a client handle. On Windows NT
it is possible to disable this security check by creating or modifying the system registry. Microsoft
Knowledge Base article 195445 has additional information and instructions for making this change.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib

See Also
IcmpCloseHandle, IcmpInitialize, IcmpUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IcmpDisableEvents Function

INT WINAPI IcmpDisableEvents(
 HCLIENT hClient
);

The IcmpDisableEvents function disables the event notification mechanism, preventing
subsequent event notification messages from being posted to the application's message queue.

This function has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
ICMP_ERROR. To get extended error information, call IcmpGetLastError.

Remarks
This function affects both event notification and event callbacks. Any outstanding events in the
message queue should be ignored by the client application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib

See Also
IcmpEnableEvents, IcmpFreezeEvents, IcmpRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IcmpDisableTrace Function

BOOL WINAPI IcmpDisableTrace();

The IcmpDisableTrace function disables the logging of socket function calls to the trace log file.

Parameters
None.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib

See Also
IcmpEnableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IcmpEcho Function

INT WINAPI IcmpEcho(
 LPCTSTR lpszHostName,
 UINT nIterations,
 UINT nPacketSize,
 DWORD dwTimeout,
 DWORD dwReserved,
 LPICMPTIME lpTime
);

The IcmpEcho function sends one or more ICMP echo datagrams, collecting information about
the reliability and latency of a connection between the local and remote host.

Parameters
lpszHostName

A pointer to a string which specifies the fully qualified domain name of the remote host, or the
IP address in dotted notation.

nIterations

An unsigned integer value which specifies the number of echo datagrams that will be sent to
the remote host. The minimum value for this parameter is 1 and the maximum value is 512.

nPacketSize

An unsigned integer value which specifies the size of the echo datagram in bytes. The minimum
size is 1 byte and the maximum size is 65,535 bytes. It is recommended that most applications
use the minimum size of 32 bytes for this parameter.

dwTimeout

An unsigned integer which specifies the number of milliseconds the function will wait for a
response to an echo datagram.

dwReserved

A reserved parameter. This value should always be zero.

lpTime

A pointer to an ICMPTIME structure which will contain the minimum, maximum and average
round trip times for the echo datagrams sent and received.

Return Value
If the function succeeds, the return value is the number of replies received from the remote host. If
the function fails, the return value is ICMP_ERROR. To get extended error information, call
IcmpGetLastError.

Remarks
The IcmpEcho function sends a series of ICMP echo datagrams to the specified host, providing a
simplified interface for pinging a remote system. If the function returns the same value as the
number of iterations, then replies were received for all of the echo datagrams that were sent. This
would typically indicate that the client can establish a reliable connection to the server; the values
returned in the ICMPTIME structure provide information on the latency between the two hosts.
Higher average time values would indicate greater latency and reduced throughput between the
systems. If the function returns a value less than the specified number of iterations, this indicates
that replies were not received for one or more of the echo datagrams. This may indicate that there

are problems routing data between the local and remote host. A return value of zero indicates
that there was no response to the echo datagrams. The remote host may not exist or may not be
available.

The failure for a host to respond to an ICMP echo datagram may not indicate a problem with the
remote system. In some cases, a router between the local and remote host may be malfunctioning
or discarding the datagrams. Systems can also be configured to specifically ignore ICMP echo
datagrams and not respond to them; this is often a security measure to prevent certain kinds of
Denial of Service attacks.

The ability to send ICMP datagrams may be restricted to users with administrative privileges,
depending on the policies and configuration of the local system. If you are unable to send or
receive any ICMP datagrams, it is recommended that you check the firewall settings and any third-
party security software that could impact the normal operation of this component.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib

See Also
IcmpCreateHandle, IcmpGetTripTime, IcmpRecvEcho, IcmpSendEcho, IcmpTraceRoute

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IcmpEnableEvents Function

INT WINAPI IcmpEnableEvents(
 HCLIENT hClient,
 HWND hEventWnd,
 UINT uEventMsg
);

The IcmpEnableEvents function enables event notifications using Windows messages.

This function has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Applications should use the IcmpRegisterEvent function to register an event handler which is
invoked when an event occurs.

Parameters
hClient

Handle to the client session.

hEventWnd

Handle to the event notification window. This window receives a user-defined message which
specifies the event that has occurred. If this value is NULL, event notification is disabled.

uEventMsg

An unsigned integer which specifies the user-defined message that is sent when an event
occurs. This parameter's value must be greater than the value of WM_USER.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
ICMP_ERROR. To get extended error information, call IcmpGetLastError.

Remarks
When a message is posted to the notification window, the low word of the lParam parameter
contains the event identifier. The high word of lParam contains the low word of the error code, if
an error has occurred. The wParam parameter contains the client handle. One or more of the
following event identifiers may be sent:

Constant Description

ICMP_EVENT_ECHO The client has generated an ICMP echo datagram and has sent it to
the specified host. If the datagram is received, the remote host should
generate a reply and return it to the sender.

ICMP_EVENT_REPLY The client has received an ICMP echo reply datagram from the
remote host. At this point the client can collect statistical information.

ICMP_EVENT_TIMEOUT The network operation has exceeded the specified timeout period.
The client application may attempt to retry the operation.

ICMP_EVENT_CANCEL The current operation has been canceled. TThe client application may
attempt to retry the operation or close the handle.

To cancel asynchronous notification and return the client to a blocking mode, use the

IcmpDisableEvents function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib

See Also
IcmpDisableEvents, IcmpFreezeEvents, IcmpRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IcmpEnableTrace Function

BOOL WINAPI IcmpEnableTrace(
 LPCTSTR lpszTraceFile,
 DWORD dwTraceFlags
);

The IcmpEnableTrace function enables the logging of socket function calls to a file.

Parameters
lpszTraceFile

A pointer to a string which specifies the name of the trace log file. If this parameter is NULL or
an empty string, the default file name cstrace.log is used. The file is stored in the directory
specified by the TEMP environment variable, if it is defined; otherwise, the current working
directory is used.

dwTraceFlags

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

TRACE_INFO All function calls are written to the trace file. This is the default
value.

TRACE_ERROR Only those function calls which fail are recorded in the trace file.

TRACE_WARNING Only those function calls which fail or return values which indicate
a warning are recorded in the trace file.

TRACE_HEXDUMP All functions calls are written to the trace file, plus all the data that
is sent or received is displayed, in both ASCII and hexadecimal
format.

TRACE_PROCESS All function calls in the current process are logged, rather than
only those functions in the current thread. This option is useful for
multithreaded applications that are using worker threads.

Return Value
If the function succeeds, the return value is non-zero. A return value of zero indicates an error.
Failure typically indicates that the tracing library cstrcv11.dll cannot be loaded on the local
system.

Remarks
When trace logging is enabled, the file is opened, appended to and closed for each socket
function call. This makes it possible for an application to append its own logging information,
however care should be taken to ensure that the file is closed before the next network operation is
performed. To limit the size of the log files, enable and disable logging only around those sections
of code that you wish to trace.

Note that the TRACE_HEXDUMP trace level generates very large log files since it includes all of the
data exchanged between your application and the remote host.

Trace function logging is managed on a per-thread basis, not for each client handle. This means
that all SocketTools libraries and components share the same settings in the current thread. If you

are using multiple SocketTools libraries or components in your application, you only need to
enable logging once.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
IcmpDisableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IcmpEventProc Function

VOID CALLBACK IcmpEventProc(
 HCLIENT hClient,
 UINT nEventId,
 DWORD dwError,
 DWORD_PTR dwParam
);

The IcmpEventProc function is an application-defined callback function that processes events
generated by the calling process.

Parameters
hClient

The handle to the client session.

nEvent

An unsigned integer which specifies which event occurred. For a complete list of events, refer to
the IcmpRegisterEvent function.

dwError

An unsigned integer which specifies any error that occurred. If no error occurred, then this
parameter will be zero.

dwParam

A user-defined integer value which was specified when the event callback was registered.

Return Value
None.

Remarks
An application must register this callback function by passing its address to the
IcmpRegisterEvent function. The IcmpEventProc function is a placeholder for the application-
defined function name.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib

See Also
IcmpDisableEvents, IcmpEnableEvents, IcmpFreezeEvents, IcmpRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IcmpFormatAddress Function

INT WINAPI IcmpFormatAddress(
 DWORD dwAddress,
 LPTSTR lpszAddress,
 INT nMaxLength
);

The IcmpFormatAddress function converts a numeric IP address to a string.

Parameters
dwAddress

A unsigned 32-bit integer which specifies the IP address to be converted into a string.

lpszAddress

A pointer to a null-terminated array of characters which will contain the converted IP address in
dot-notation. This string should be at least 16 characters in length.

nMaxLength

The maximum number of characters which may be copied in to the string buffer.

Return Value
If the function succeeds, the return value is the length of the string buffer. If the function fails, the
return value is zero. To get extended error information, call IcmpGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
IcmpGetHostAddress, IcmpGetHostName, IcmpResolveAddress

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IcmpFreezeEvents Function

INT WINAPI IcmpFreezeEvents(
 HCLIENT hClient,
 BOOL bFreeze
);

The IcmpFreezeEvents function is used to suspend and resume event handling by the client.

Parameters
hClient

Handle to the client session.

bFreeze

A non-zero value specifies that event handling should be suspended by the client. A zero value
specifies that event handling should be resumed.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
ICMP_ERROR. To get extended error information, call IcmpGetLastError.

Remarks
This function should be used when the application does not want to process events, such as when
a modal dialog is being displayed. When events are suspended, all client events are queued. If
events are re-enabled at a later point, those queued events will be sent to the application for
processing. Note that only one of each event will be generated. For example, if the client has
suspended event handling, and four read events occur, once event handling is resumed only one
of those read events will be posted to the client. This prevents the application from being flooded
by a potentially large number of queued events.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib

See Also
IcmpDisableEvents, IcmpEnableEvents, IcmpRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IcmpGetErrorString Function

INT WINAPI IcmpGetErrorString(
 DWORD dwErrorCode,
 LPTSTR lpszDescription,
 INT cbDescription
);

The IcmpGetErrorString function is used to return a description of a specific error code. Typically
this is used in conjunction with the IcmpGetLastError function for use with warning dialogs or as
diagnostic messages.

Parameters
dwErrorCode

The error code for which a description is returned.

lpszDescription

A pointer to the buffer that will contain a description of the specified error code. This buffer
should be at least 128 characters in length.

cbDescription

The maximum number of characters that may be copied into the description buffer.

Return Value
If the function succeeds, the return value is the length of the description string. If the function fails,
the return value is 0, meaning that no description exists for the specified error code. Typically this
indicates that the error code passed to the function is invalid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
IcmpGetLastError, IcmpSetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IcmpGetHostAddress Function

INT WINAPI IcmpGetHostAddress(
 HCLIENT hClient,
 LPTSTR lpszHostAddress,
 INT cbHostAddress
);

The IcmpGetHostAddress copies the IP address of the current host into the specified buffer as a
string using dot-notation.

Parameters
hClient

A handle to the client session.

lpszHostAddress

A pointer to the buffer that will contain the IP address of the current remote host in dot-
notation. This buffer should be at least 16 characters in length.

cbHostAddress

The maximum number of characters that may be copied into the buffer, including the
terminating null character character.

Return Value
If the function succeeds, the return value is the length of the address string. If the return value is
zero, this indicates that no remote host has been specified. If the function fails, the return value is
ICMP_ERROR. To get extended error information, call IcmpGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
IcmpFormatAddress, IcmpGetHostName, IcmpResolveAddress, IcmpSetHostAddress,
IcmpSetHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IcmpGetHostName Function

INT WINAPI IcmpGetHostName(
 HCLIENT hClient,
 LPTSTR lpszHostName,
 INT cbHostName
);

The IcmpGetHostName copies the name of the current host into the specified buffer.

Parameters
hClient

A handle to the client session.

lpszHostName

A pointer to the buffer that will contain the name of the current remote host. This buffer should
be at least 64 characters in length.

cbHostName

The maximum number of characters that may be copied into the buffer, including the
terminating null character character.

Return Value
If the function succeeds, the return value is the length of the host name string. If the return value is
zero, this indicates that no remote host has been specified. If the function fails, the return value is
ICMP_ERROR. To get extended error information, call IcmpGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
IcmpFormatAddress, IcmpGetHostAddress, IcmpResolveAddress, IcmpSetHostAddress,
IcmpSetHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IcmpGetLastError Function

DWORD WINAPI IcmpGetLastError();

Parameters
None.

Return Value
The return value is the last error code value for the current thread. Functions set this value by
calling the IcmpSetLastError function. The Return Value section of each reference page notes the
conditions under which the function sets the last error code.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. You should call
the IcmpGetLastError function immediately when a function's return value indicates that an error
has occurred. That is because some functions call IcmpSetLastError(0) when they succeed,
clearing the error code set by the most recently failed function.

Most functions will set the last error code value when they fail; a few functions set it when they
succeed. Function failure is typically indicated by a return value such as FALSE, NULL,
INVALID_CLIENT or ICMP_ERROR. Those functions which call IcmpSetLastError when they
succeed are noted on the function reference page.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib

See Also
IcmpGetErrorString, IcmpSetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IcmpGetPacketSize Function

UINT WINAPI IcmpGetPacketSize(
 HCLIENT hClient
);

The IcmpGetPacketSize function returns the size of the ICMP echo datagram that will be sent to
the remote host. The minimum packet size is 1 byte, the maximum packet size is 65,535 bytes.

Parameters
hClient

A handle to the client session.

Return Value
If the function succeeds, the return value is the size of the datagram. If the function fails, the return
value is ICMP_ERROR. To get extended error information, call IcmpGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
IcmpGetRecvCount, IcmpGetSendCount, IcmpGetSequenceId, IcmpGetTimeToLive,
IcmpGetTripTime, IcmpSetPacketSize, IcmpSetSequenceId, IcmpSetTimeToLive

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IcmpGetRecvCount Function

INT WINAPI IcmpGetRecvCount(
 HCLIENT hClient
);

The IcmpGetRecvCount function returns the number of replies sent to the client from the remote
host.

Parameters
hClient

A handle to the client session.

Return Value
If the function succeeds, the return value is the number of replies. If the function fails, the return
value is ICMP_ERROR. To get extended error information, call IcmpGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
IcmpGetPacketSize, IcmpGetSendCount, IcmpGetSequenceId, IcmpGetTimeToLive,
IcmpGetTripTime, IcmpSetSequenceId, IcmpSetTimeToLive

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IcmpGetSendCount Function

INT WINAPI IcmpGetSendCount(
 HCLIENT hClient
);

The IcmpGetSendCount function returns the number of datagrams sent to the remote host by
the client.

Parameters
hClient

A handle to the client session.

Return Value
If the function succeeds, the return value is the number of datagrams sent by the client. If the
function fails, the return value is ICMP_ERROR. To get extended error information, call
IcmpGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
IcmpGetPacketSize, IcmpGetRecvCount, IcmpGetSequenceId, IcmpGetTimeToLive,
IcmpGetTripTime, IcmpSetSequenceId, IcmpSetTimeToLive

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IcmpGetSequenceId Function

INT WINAPI IcmpGetSequenceId(
 HCLIENT hClient
);

The IcmpGetSequenceId function returns the sequence identifier for the last ICMP echo
datagram received by the client.

Parameters
hClient

A handle to the client session.

Return Value
If the function succeeds, the return value is the sequence identifier. If the function fails, the return
value is ICMP_ERROR. To get extended error information, call IcmpGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
IcmpGetPacketSize, IcmpGetRecvCount, IcmpGetSendCount, IcmpGetTimeToLive,
IcmpGetTripTime, IcmpSetSequenceId, IcmpSetTimeToLive

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IcmpGetTimeout Function

DWORD WINAPI IcmpGetTimeout(
 HCLIENT hClient
);

The IcmpGetTimeout function returns the number of milliseconds the client will wait for a
response from the remote host. Once the specified number of milliseconds has elapsed, the
function will fail and return to the caller.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is the timeout period in milliseconds. If the function fails,
the return value is ICMP_ERROR. To get extended error information, call IcmpGetLastError.

Remarks
The timeout value is only used with blocking client connections. A value of zero indicates that the
default timeout period of 20 seconds should be used.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib

See Also
IcmpIsBlocking, IcmpSetTimeout

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IcmpGetTimeToLive Function

INT WINAPI IcmpGetTimeToLive(
 HCLIENT hClient
);

The IcmpGetTimeToLive function returns the time-to-live for the last ICMP echo datagram
received by the client.

Parameters
hClient

A handle to the client session.

Return Value
If the function succeeds, the return value is the time-to-live for the last datagram. If the function
fails, the return value is ICMP_ERROR. To get extended error information, call IcmpGetLastError.

Remarks
The time-to-live (TTL) value is specified in the IP header of a datagram, and is used to control the
number of routers that the datagram is passed through. Each router that handles the datagram
decrements the TTL value by one. When it drops to zero, a datagram is returned to the sender,
specifying that the TTL has been exceeded. The default value is 255.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib

See Also
IcmpGetPacketSize, IcmpGetRecvCount, IcmpGetSendCount, IcmpGetSequenceId,
IcmpGetTripTime, IcmpSetSequenceId, IcmpSetTimeToLive

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IcmpGetTripTime Function

INT WINAPI IcmpGetTripTime(
 HCLIENT hClient,
 LPICMPTIME lpIcmpTime
);

The IcmpGetTripTime returns round-trip statistics for the datagrams sent to the current remote
host.

Parameters
hClient

A handle to the client session.

lpIcmpTime

A pointer to an ICMPTIME data structure which will contain the round-trip statistics for the
current remote host.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
ICMP_ERROR. To get extended error information, call IcmpGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib

See Also
IcmpGetPacketSize, IcmpGetRecvCount, IcmpGetSendCount, IcmpGetSequenceId,
IcmpGetTimeToLive, IcmpSetSequenceId, IcmpSetTimeToLive

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IcmpInitialize Function

BOOL WINAPI IcmpInitialize(
 LPCTSTR lpszLicenseKey,
 LPINITDATA lpData
);

The IcmpInitialize function initializes the library and validates the specified license key at runtime.

Parameters
lpszLicenseKey

Pointer to a string that specifies the runtime license key to be validated. If this parameter is
NULL, the library will validate the development license installed on the local system.

lpData

Pointer to an INITDATA data structure. This parameter may be NULL if the initialization data for
the library is not required.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call IcmpGetLastError. All other client functions will fail until a
license key has been successfully validated.

Remarks
This must be the first function that an application calls before using any of the other functions in
the library. When a NULL license key is specified, the library will only function on the development
system. Before redistributing the application to an end-user, you must insure that this function is
called with a valid license key.

If the lpData argument is specified, it must point to an INITDATA structure which has been
initialized by setting the dwSize member to the size of the structure. All other structure members
should be set to zero. If the function is successful, then the INITDATA structure will be filled with
identifying information about the library.

Although it is only required that IcmpInitialize be called once for the current process, it may be
called multiple times; however, each call must be matched by a corresponding call to
IcmpUninitialize.

This function dynamically loads other system libraries and allocates thread local storage. If you are
calling the functions in this library from within another DLL, it is important that you do not call the
IcmpInitialize or IcmpUninitialize functions from the DllMain function because it can result in
deadlocks or access violation errors. If the DLL is linked with the C runtime library (CRT), it will
automatically call the constructors and destructors for static and global C++ objects and has the
same restrictions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also

IcmpCloseHandle, IcmpCreateHandle, IcmpUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IcmpIsBlocking Function

BOOL WINAPI IcmpIsBlocking(
 HCLIENT hClient
);

The IcmpIsBlocking function is used to determine if the client is currently performing a blocking
operation.

Parameters
hClient

Handle to the client session.

Return Value
If the client is performing a blocking operation, the function returns a non-zero value. If the client
is not performing a blocking operation, or the client handle is invalid, the function returns zero.

Remarks
Because a blocking operation can allow the application to be re-entered (for example, by pressing
a button while the operation is being performed), it is possible that another blocking function may
be called while it is in progress. Since only one thread of execution may perform a blocking
operation at any one time, an error would occur. The IcmpIsBlocking function can be used to
determine if the client is already blocked, and if so, take some other action (such as warning the
user that they must wait for the operation to complete).

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib

See Also
IcmpCancel

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IcmpRecvEcho Function

INT WINAPI IcmpRecvEcho(
 HCLIENT hClient
);

The IcmpRecvEcho function reads the reply to an ICMP echo datagram generated by the client.
This function should only be called by asynchronous client sessions in response to an event
notification that a datagram has been received.

Parameters
hClient

A handle to the client session.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
ICMP_ERROR. To get extended error information, call IcmpGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib

See Also
IcmpGetRecvCount, IcmpGetSequenceId, IcmpGetTimeToLive, IcmpSendEcho

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IcmpRegisterEvent Function

INT WINAPI IcmpRegisterEvent(
 HCLIENT hClient,
 UINT nEventId,
 INETEVENTPROC lpfnEvent,
 DWORD_PTR dwParam
);

The IcmpRegisterEvent function registers a callback function for the specified event.

Parameters
hClient

Handle to client session.

nEventId

An unsigned integer which specifies which event should be registered with the specified callback
function. One or more of the following values may be used:

Constant Description

ICMP_EVENT_ECHO The client has generated an ICMP echo datagram and has
sent it to the specified host. If the datagram is received, the
remote host should generate a reply and return it to the
sender.

ICMP_EVENT_REPLY The client has received an ICMP echo reply datagram from
the remote host. At this point the client can collect statistical
information.

ICMP_EVENT_TIMEOUT The network operation has exceeded the specified timeout
period. The client application may attempt to retry the
operation.

ICMP_EVENT_CANCEL The current operation has been canceled. The client
application may attempt to retry the operation or close the
handle.

lpfnEvent

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the IcmpEventProc callback
function. If this parameter is NULL, the callback for the specified event is disabled.

dwParam

A user-defined integer value that is passed to the callback function. If the application targets the
x86 (32-bit) platform, this parameter must be a 32-bit unsigned integer. If the application
targets the x64 (64-bit) platform, this parameter must be a 64-bit unsigned integer.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
ICMP_ERROR. To get extended error information, call IcmpGetLastError.

Remarks
The IcmpRegisterEvent function associates a callback function with a specific event. The event

handler is an IcmpEventProc function that is invoked when the event occurs. Arguments are
passed to the function to identify the client session, the event type and the user-defined value
specified when the event handler is registered. If the event occurs because of an error condition,
the error code will be provided to the handler.

The callback function specified by the lpEventProc parameter must be declared using the
__stdcall calling convention. This ensures the arguments passed to the event handler are pushed
on to the stack in the correct order. Failure to use the correct calling convention will corrupt the
stack and cause the application to terminate abnormally.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib

See Also
IcmpDisableEvents, IcmpEnableEvents, IcmpEventProc, IcmpFreezeEvents

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IcmpReset Function

INT WINAPI IcmpReset(
 HCLIENT hClient
);

The IcmpReset function resets the client session, clearing the packet trip statistics, time-to-live,
sequence identifier, send and receive counts.

Parameters
hClient

A handle to the client session.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
ICMP_ERROR. To get extended error information, call IcmpGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib

See Also
IcmpSetHostAddress, IcmpSetHostName, IcmpSetSequenceId, IcmpSetTimeToLive

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IcmpResolveAddress Function

INT WINAPI IcmpResolveAddress(
 DWORD dwAddress,
 LPTSTR lpszHostName,
 INT nMaxLength
);

The IcmpResolveAddress function resolves a numeric IP address into a fully qualified domain
name.

Parameters
dwAddress

The IP address to be resolved, specified as an unsigned 32-bit integer in network byte order.

lpszHostName

A pointer to a buffer that will contain a null-terminated string that specifies the fully qualified
domain name for the host. It is recommended that this buffer be at least 64 characters in length.

nMaxLength

The maximum number of characters that can be copied into the string buffer, including the
terminating null character.

Return Value
If the function succeeds, the return value is the length of the host name. If the function fails, the
return value is ICMP_ERROR. To get extended error information, call IcmpGetLastError.

Remarks
The IcmpResolveAddress function is used to perform a reverse DNS lookup, converting a
numeric IP address into a fully qualified domain name. This is useful for functions like
IcmpTraceRoute, which return host addresses as numeric values in network byte order. If the
reverse DNS lookup fails because there is no PTR record for the given IP address, a printable form
of the address in dotted notation will be returned in the string buffer.

Calling this function will cause the thread to block until the IP address is resolved, or until the DNS
query times out because there is no reverse record for the address. In some cases, a reverse
lookup can take several seconds.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib

See Also
IcmpGetHostAddress, IcmpGetHostName, IcmpSetHostAddress, IcmpSetHostName,
IcmpTraceRoute

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IcmpSendEcho Function

INT WINAPI IcmpSendEcho(
 HCLIENT hClient
);

The IcmpSendEcho function sends an ICMP echo datagram to the remote host.

Parameters
hClient

A handle to the client session.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
ICMP_ERROR. To get extended error information, call IcmpGetLastError.

Remarks
For asynchronous client sessions, this function returns immediately. Otherwise, the client enters a
blocking state and waits for a reply from the remote host. The function returns when a reply has
been received, or the operation times-out.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
IcmpEcho, IcmpGetSendCount, IcmpRecvEcho, IcmpSetSequenceId, IcmpSetTimeToLive,
IcmpTraceRoute

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IcmpSetHostAddress Function

INT WINAPI IcmpSetHostAddress(
 HCLIENT hClient,
 DWORD dwAddress
);

The IcmpSetHostAddress function specifies the IP address of the host to receive an ICMP echo
datagram. If the address specifies a new host, the current client statistics are reset.

Parameters
hClient

A handle to the client session.

dwAddress

The IP address of the remote host as a 32-bit integer value, specified in network byte order.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
ICMP_ERROR. To get extended error information, call IcmpGetLastError.

Remarks
To specify a remote host name or an IP address as a string in dot notation, use the
IcmpSetHostName function instead.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib

See Also
IcmpGetHostAddress, IcmpGetHostName, IcmpSetHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IcmpSetHostName Function

INT WINAPI IcmpSetHostName(
 HCLIENT hClient,
 LPCTSTR lpszHostName
);

The IcmpSetHostName function specifies the name of the host to receive an ICMP echo
datagram. If the name specifies a new host, the current client statistics are reset.

Parameters
hClient

A handle to the client session.

lpszHostName

A pointer to a string which specifies the name, or IP address in dot-notation, of the remote host.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
ICMP_ERROR. To get extended error information, call IcmpGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
IcmpGetHostAddress, IcmpGetHostName, IcmpSetHostAddress

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IcmpSetLastError Function

VOID WINAPI IcmpSetLastError(
 DWORD dwErrorCode
);

The IcmpSetLastError function sets the error code for the current thread. This function is typically
used to clear the last error by passing a value of zero as the parameter.

Parameters
dwErrorCode

Specifies the error code for the current thread.

Return Value
None.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. Most functions will
set the last error code value when they fail; a few functions set it when they succeed. Function
failure is typically indicated by a return value such as FALSE, NULL, INVALID_CLIENT or
ICMP_ERROR. Those functions which call IcmpSetLastError when they succeed are noted on the
function reference page.

Applications can retrieve the value saved by this function by using the IcmpGetLastError function.
The use of IcmpGetLastError is optional; an application can call the function to determine the
specific reason for a function failure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib

See Also
IcmpGetErrorString, IcmpGetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IcmpSetPacketSize Function

UINT WINAPI IcmpSetPacketSize(
 HCLIENT hClient,
 UINT nPacketSize
);

The IcmpSetPacketSize function sets the size of the ICMP datagram packet that is sent to the
remote host.

Parameters
hClient

Handle to the client session.

nPacketSize

Size of the ICMP datagram packet in bytes. The minimum packet size is 1 byte and the
maximum packet size is 65,535 bytes.

Return Value
If the function succeeds, the return value is the previous ICMP datagram packet size. If the
function fails, the return value is zero. To get extended error information, call IcmpGetLastError.

Remarks
Note that packet sizes over 512 bytes may not be supported by your networking software or
configuration. It is recommended that most applications use the minimum packet size of 32 bytes.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib

See Also
IcmpGetPacketSize, IcmpSetSequenceId, IcmpSetTimeToLive

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IcmpSetSequenceId Function

INT WINAPI IcmpSetSequenceId(
 HCLIENT hClient,
 INT nSequenceId
);

The IcmpSetSequenceId function sets the sequence identifier for the next ICMP echo datagram
sent by the client. The default sequence identifier for the first datagram is one.

Parameters
hClient

A handle to the client session.

nSequenceId

The sequence identifier for the next datagram sent by the client.

Return Value
If the function succeeds, the return value is the previous sequence identifier. If the function fails,
the return value is ICMP_ERROR. To get extended error information, call IcmpGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib

See Also
IcmpGetPacketSize, IcmpGetRecvCount, IcmpGetSendCount, IcmpGetSequenceId,
IcmpGetTimeToLive, IcmpGetTripTime, IcmpSetPacketSize, IcmpSetTimeToLive

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IcmpSetTimeout Function

DWORD WINAPI IcmpSetTimeout(
 HCLIENT hClient,
 DWORD dwTimeout
);

The IcmpSetTimeout function sets the number of milliseconds the client will wait for a response
from the remote host. Once the specified number of milliseconds has elapsed, the function will fail
and return to the caller.

Parameters
hClient

Handle to the client session.

dwTimeout

The number of milliseconds until a blocking operation fails.

Return Value
If the function succeeds, the return value is the value of the timeout before the function was called.
If the function fails, the return value is ICMP_ERROR. To get extended error information, call
IcmpGetLastError.

Remarks
The timeout value is only used with blocking client connections.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib

See Also
IcmpCreateHandle, IcmpGetTimeout

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IcmpSetTimeToLive Function

INT WINAPI IcmpSetTimeToLive(
 HCLIENT hClient,
 INT nTimeToLive
);

The IcmpSetTimeToLive function sets the maximum time-to-live for the next ICMP datagram
sent by the client.

Parameters
hClient

A handle to the client session.

nTimeToLive

The time-to-live value for the next ICMP echo datagram.

Return Value
If the function succeeds, the return value is the previous time-to-live value. If the function fails, the
return value is ICMP_ERROR. To get extended error information, call IcmpGetLastError.

Remarks
The time-to-live (TTL) value is specified in the IP header of a datagram, and is used to control the
number of routers that the datagram is passed through. Each router that handles the datagram
decrements the TTL value by one. When it drops to zero, a datagram is returned to the sender,
specifying that the TTL has been exceeded.

Calling this function changes the default TTL value for all subsequent ICMP datagrams sent by the
library, with the default value being 255. Note that not all Windows Sockets implementations
support setting the time-to-live value.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib

See Also
IcmpGetPacketSize, IcmpGetRecvCount, IcmpGetSendCount, IcmpGetSequenceId,
IcmpGetTimeToLive, IcmpGetTripTime, IcmpSetPacketSize, IcmpSetSequenceId

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IcmpTraceRoute Function

INT WINAPI IcmpTraceRoute(
 LPCTSTR lpszHostName,
 UINT nMaxHops,
 DWORD dwTimeout,
 DWORD dwReserved,
 LPICMPTRACE lpTrace,
 LPDWORD lpdwSize
);

The IcmpTraceRoute function sends a series of ICMP echo datagrams to trace the route taken
from the local system to the remote host.

Parameters
lpszHostName

A pointer to a string which specifies the fully qualified domain name of the remote host, or the
IP address in dotted notation.

nMaxHops

An unsigned integer which specifies the maximum number of routers the datagram will be
forwarded through (the number of hops) to the remote host. The minimum value is 1 and the
maximum value is 255. It is recommended that most applications specify a value of at least 30.

dwTimeout

An unsigned integer which specifies the number of milliseconds the function will wait for a
response to an echo datagram.

dwReserved

A reserved parameter. This value should always be zero.

lpTrace

A pointer to an array of ICMPTRACE structures which will contain information about each
intermediate host between the local and remote system. The number of structures must be at
least the same as the maximum number of hops specified by the nMaxHops parameter. To
determine the total number of bytes that must be allocated for the structure array, this
parameter can be passed as NULL and the total size will be returned in the lpdwSize parameter.

lpdwSize

A pointer to an unsigned integer which should be initialized to the size of the ICMPTRACE array
passed to the function. If the lpTrace parameter is NULL, the function will calculate the size of
the array buffer that must be allocated and return that value. If both the lpTrace and lpdwSize
parameters are NULL, no statistical information about the intermediate hosts will be collected.

Return Value
If the function succeeds, the return value is the number of intermediate hosts between the local
and remote system. If the function fails, the return value is ICMP_ERROR. To get extended error
information, call IcmpGetLastError.

Remarks
The IcmpTraceRoute function sends a series of ICMP echo datagrams to the specified host,
adjusting the time-to-live value to determine the intermediate hosts that route the packet. The
function returns the number of hops to the remote host.

It is important to note that the failure of an intermediate host to respond to an ICMP echo
datagram may not indicate a problem with the remote system. Systems can be configured to
specifically ignore ICMP echo datagrams and not respond to them; this is often a security measure
to prevent certain kinds of Denial of Service attacks.

The ability to send ICMP datagrams may be restricted to users with administrative privileges,
depending on the policies and configuration of the local system. If you are unable to send or
receive any ICMP datagrams, it is recommended that you check the firewall settings and any third-
party security software that could impact the normal operation of this component.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib

See Also
IcmpCreateHandle, IcmpEcho, IcmpRecvEcho, IcmpResolveAddress, IcmpSendEcho,
IcmpSetTimeToLive

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IcmpUninitialize Function

VOID WINAPI IcmpUninitialize();

The IcmpUninitialize function terminates the use of the library.

Parameters
There are no parameters.

Return Value
None.

Remarks
An application is required to perform a successful IcmpInitialize call before it can call any of the
other the library functions. When it has completed the use of library, the application must call
IcmpUninitialize to allow the library to free any resources allocated on behalf of the process. Any
pending blocking or asynchronous calls in this process are canceled without posting any
notification messages, and all sockets that were opened by the process are closed.

There must be a call to IcmpUninitialize for every successful call to IcmpInitialize made by a
process. In a multithreaded environment, operations for all threads in the client are terminated.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csicmv11.lib

See Also
IcmpCloseHandle, IcmpCreateHandle, IcmpInitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Internet Control Message Protocol Data Structures

ICMPTIME
ICMPTRACE
INITDATA
INTERNET_ADDRESS
SYSTEMTIME

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ICMPTIME Structure

This structure is used by the IcmpGetTripTime function to return the round-trip times of an ICMP
datagram.

typedef struct _ICMPTIME {
 DWORD dwTripAverage;
 DWORD dwTripMaximum;
 DWORD dwTripMinimum;
 DWORD dwTripTime;
} ICMPTIME, *LPICMPTIME;

Members
dwTripAverage

The average round-trip time in milliseconds for all datagrams sent to the current host.

dwTripMaximum

The maximum round-trip time in milliseconds for all datagrams sent to current host.

dwTripMinimum

The minimum round-trip time in milliseconds for all datagrams sent to the current host.

dwTripTime

The current round-trip time in milliseconds for the last datagram sent to the current host.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ICMPTRACE Structure

This structure is used by the IcmpTraceRoute function to return the route of an ICMP datagram.

typedef struct _ICMPTRACE
{
 UINT nDistance;
 DWORD dwHostAddress;
 DWORD dwTripAverage;
 DWORD dwTripMaximum;
 DWORD dwTripMinimum;
} ICMPTRACE, *LPICMPTRACE;

Members
nDistance

The distance from the local host to the remote host for this route.

dwHostAddress

An unsigned integer which specifies the IP address of the remote host in network byte order.

dwTripAverage

The average round-trip time in milliseconds for all datagrams sent to the specified host.

dwTripMaximum

The maximum round-trip time in milliseconds for all datagrams sent to specified host.

dwTripMinimum

The minimum round-trip time in milliseconds for all datagrams sent to the specified host.

dwTripTime

The current round-trip time in milliseconds for the last datagram sent to the specified host.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 INITDATA Structure

This structure contains information about the SocketTools library when the initialization function
returns.

typedef struct _INITDATA
{
 DWORD dwSize;
 DWORD dwVersionMajor;
 DWORD dwVersionMinor;
 DWORD dwVersionBuild;
 DWORD dwOptions;
 DWORD_PTR dwReserved1;
 DWORD_PTR dwReserved2;
 TCHAR szDescription[128];
} INITDATA, *LPINITDATA;

Members
dwSize

Size of this structure. This structure member must be set to the size of the structure prior to
calling the initialization function. Failure to do so will cause the function to fail.

dwVersionMajor

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the major version number for the library.

dwVersionMinor

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the minor version number for the library.

dwVersionBuild

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the build number for the library.

dwOptions

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

dwReserved1

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

dwReserved2

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

szDescription

A null terminated string which describes the library.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 INTERNET_ADDRESS Structure

This structure represents a numeric IPv4 or IPv6 address in network byte order.

typedef struct _INTERNET_ADDRESS
{
 INT ipFamily;
 BYTE ipNumber[16];
} INTERNET_ADDRESS, *LPINTERNET_ADDRESS;

Members
ipFamily

An integer which identifies the type of IP address. It will be one of the following values:

Constant Description

INET_ADDRESS_UNKNOWN The address has not been specified or the bytes in the
ipNumber array does not represent a valid address.
Functions which populate this structure will use this value
to indicate that the address cannot be determined.

INET_ADDRESS_IPV4 Specifies that the address is in IPv4 format. The first four
bytes of the ipNumber array are significant and contains
the IP address. The remaining bytes are not significant
and an application should not depend on them having
any particular value, including zero.

INET_ADDRESS_IPV6 Specifies that the address is in IPv6 format. All bytes in
the ipNumber array are significant. Note that it is
possible for an IPv6 address to actually represent an IPv4
address. This is indicated by the first 10 bytes of the
address being zero.

ipNumber

A byte array which contains the numeric form of the IP address. This array is large enough to
store both IPv4 (32 bit) and IPv6 (128 bit) addresses. The values are stored in network byte
order.

Remarks
The INTERNET_ADDRESS structure is used by some functions to represent an Internet address in
a binary format that is compatible with both IPv4 and IPv6 addresses. Applications that use this
structure should consider it to be opaque, and should not modify the contents of the structure
directly.

For compatibility with legacy applications that expect an IP address to be 32 bits and stored in an
unsigned integer, you can copy the first four bytes of the ipNumber array using the
CopyMemory function or equivalent. Note that if this is done, your application should always
check the ipFamily member first to make sure that it is actually an IPv4 address.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SYSTEMTIME Structure

The SYSTEMTIME structure represents a date and time using individual members for the month,
day, year, weekday, hour, minute, second, and millisecond.

typedef struct _SYSTEMTIME
{
 WORD wYear;
 WORD wMonth;
 WORD wDayOfWeek;
 WORD wDay;
 WORD wHour;
 WORD wMinute;
 WORD wSecond;
 WORD wMilliseconds;
} SYSTEMTIME, *LPSYSTEMTIME;

Members
wYear

Specifies the current year. The year value must be greater than 1601.

wMonth

Specifies the current month. January is 1, February is 2 and so on.

wDayOfWeek

Specifies the current day of the week. Sunday is 0, Monday is 1 and so on.

wDay

Specifies the current day of the month

wHour

Specifies the current hour.

wMinute

Specifies the current minute

wSecond

Specifies the current second.

wMilliseconds

Specifies the current millisecond.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include windows.h.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Internet Message Access Protocol Library

Manage email messages and mailboxes on a mail server.

Reference

Functions
Data Structures
Error Codes

Library Information

File Name CSMAPV11.DLL

Version 11.0.2180.1635

LibID FFDFB6F8-6CBE-49EF-8C0F-093254490868

Import Library CSMAPV11.LIB

Dependencies None

Standards RFC 3501

Overview
The Internet Message Access Protocol (IMAP) is an application protocol which is used to access a
user's email messages which are stored on a mail server. However, unlike the Post Office Protocol
(POP) where messages are downloaded and processed on the local system, the messages on an
IMAP server are retained on the server and processed remotely. This is ideal for users who need
access to a centralized store of messages or have limited bandwidth. For example, traveling
salesmen who have notebook computers or mobile users on a wireless network would be ideal
candidates for using IMAP.

The SocketTools IMAP library implements the current standard for this protocol, and provides
functions to retrieve messages, or just certain parts of a message, create and manage mailboxes,
search for specific messages based on certain criteria and so on. The API is designed as a superset
of the Post Office Protocol API, so developers who are used to working with the POP3 library will
find the IMAP library very easy to integrate into an existing application.

This library supports secure connections using the standard SSL and TLS protocols.

Requirements
The SocketTools Library Edition libraries are compatible with any programming language which
supports calling functions exported from a standard dynamic link library (DLL). If you are using
Visual C++ 6.0 it is required that you have Service Pack 6 (SP6) installed. You should install all
updates for your development tools and have the current Windows SDK installed. The minimum
recommended version of Visual Studio is Visual Studio 2010.

This library is supported on Windows 7, Windows Server 2008 R2 and later versions of the desktop
and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1) installed as
a minimum requirement. It is recommended that you install the current service pack and all critical
updates available for your version of the operating system.

This product includes both 32-bit and 64-bit libraries. Native 64-bit CPU support requires the 64-
bit version of Windows 7 or later versions of the Windows operating system.

Distribution
When you distribute your application that uses this library, it is recommended that you install the
file in the same folder as your application executable. If you install the library into a shared location
on the system, it is important that you distribute the correct version for the target platform and it
should be registered as a shared DLL. This is a standard Windows dynamic link library, not an
ActiveX component, and does not require COM registration.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Internet Message Access Protocol Functions

Function Description

ImapAsyncConnect Connect asynchronously to the specified server

ImapAttachThread Attach the specified client handle to another thread

ImapCancel Cancel the current blocking operation

ImapCheckMailbox Check the current mailbox for new messages

ImapCloseMessage Close the current message

ImapCommand Send a command to the server

ImapConnect Connect to the specified server

ImapCopyMessage Copy a message from the current mailbox to another mailbox

ImapCreateMailbox Create a new mailbox on the server

ImapCreateMessage Create a new message in the specified mailbox

ImapCreateSecurityCredentials Allocate a structure to establish client security credentials

ImapDecodeMailboxName Decode a UTF-7 encoded mailbox name using the specified code page

ImapDeleteMailbox Delete the specified mailbox from the server

ImapDeleteMessage Delete the specified message from the mailbox

ImapDeleteSecurityCredentials Delete the specified client security credentials

ImapDisableEvents Disable the event notification mechanism

ImapDisableTrace Disable logging of network function calls to the trace log

ImapDisconnect Disconnect from the current server

ImapEnableEvents Enable the client event notification mechanism

ImapEnableTrace Enable logging of network function calls to a file

ImapEncodeMailboxName Encode a mailbox name using modified UTF-7 encoding

ImapEnumMessages Enumerate the messages in the current mailbox

ImapEventProc Callback function that processes events generated by the client

ImapExamineMailbox Select the specified mailbox in read-only mode

ImapExpungeMailbox Remove messages that have been marked for deletion from the current mailbox

ImapFreezeEvents Suspend and resume event handling by the client

ImapGetCapability Return a string which identifies the capabilities of the server

ImapGetCurrentMailbox Return the name of the currently selected mailbox

ImapGetDeletedMessages Return the messages that have been marked for deletion

ImapGetErrorString Return a description for the specified error code

ImapGetFirstMailbox Return the first mailbox according to specified criteria

ImapGetHeaderValue Return the value of the specified header field

ImapGetHeaderValueEx Return the value of a header field in the specified message part

ImapGetIdleThreadId Return the ID of the thread created to monitor the client session

ImapGetLastError Return the last error code

ImapGetMailboxDelimiter Get the path delimiter for the specified mailbox hierarchy

ImapGetMailboxSize Return the size of the specified mailbox

ImapGetMailboxStatus Return the status of the specified mailbox

ImapGetMailboxUid Return the unique identifier for the specified mailbox

ImapGetMessage Retrieve the specified message from the server

ImapGetMessageCount Return the number of messages available in the mailbox

ImapGetMessageCountEx Return the number of messages available in the mailbox

ImapGetMessageFlags Return the status flags for the specified message

ImapGetMessageHeaders Retrieve the specified message header from the server

ImapGetMessageHeadersEx Retrieve the specified message header, UID and flags from the server

ImapGetMessageId Return the message ID string for the specified message

ImapGetMessageParts Return the number of MIME message parts in the specified message

ImapGetMessageSender Return the address of the message sender

ImapGetMessageSize Return the size of the specified message

ImapGetMessageUid Return the unique identifier for the specified message

ImapGetNewMessages Return a list of the new messages in the current mailbox

ImapGetNextMailbox Return the next mailbox name on the server

ImapGetResultCode Return the result code from the previous command

ImapGetResultString Return the result string from the previous command

ImapGetSecurityInformation Return security information about the current client connection

ImapGetStatus Return the current status of the client

ImapGetTimeout Return the number of seconds until an operation times out

ImapGetTransferStatus Return data transfer statistics

ImapGetUnseenMessages Return a list of messages from the current mailbox that have not been read

ImapIdle Enables mailbox status monitoring for the client session

ImapIdleProc Callback function that receives update notifications from the server

ImapInitialize Initialize the library and validate the specified license key at runtime

ImapIsBlocking Determine if the client is blocked, waiting for information

ImapIsConnected Determine if the client is connected to the server

ImapIsReadable Determine if data can be read from the server

ImapIsWritable Determine if data can be written to the server

ImapLogin Login to the server

ImapOpenMessage Open the specified message for reading on the server

ImapOpenMessageEx Open the specified message for reading on the server, with additional options

ImapRead Read data returned by the server

ImapRegisterEvent Register an event handler for the specified event

ImapRenameMailbox Rename the specified mailbox

ImapReselectMailbox Reselect the current mailbox and return updated status information

ImapSearchMailbox Search the mailbox according to specified criteria

ImapSelectMailbox Select the specified mailbox in read-write mode

ImapSetLastError Set the last error code for the current thread

ImapSetMessageFlags Set one or more status flags for the specified message

ImapSetTimeout Set the number of seconds until an operation times out

ImapStoreMessage Store the contents of a message to the specified file

ImapSubscribeMailbox Subscribe to the specified mailbox

ImapUndeleteMessage Undelete the specified message from the current mailbox

ImapUninitialize Terminate use of the library by the application

ImapUnselectMailbox Unselect the current mailbox and expunge any deleted messages

ImapUnsubscribeMailbox Unsubscribe from the specified mailbox

ImapWrite Write data to the server

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapAsyncConnect Function

HCLIENT WINAPI ImapAsyncConnect(
 LPCTSTR lpszRemoteHost,
 UINT nRemotePort,
 UINT nTimeout,
 DWORD dwOptions,
 LPSECURITYCREDENTIALS lpCredentials,
 HWND hEventWnd,
 UINT uEventMsg
);

The ImapAsyncConnect function is used to establish a connection with the server.

This function has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

The application should create a background worker thread and establish a connection by calling
ImapConnect within that thread. If the application requires multiple simultaneous connections, it
is recommended you create a worker thread for each client session.

Parameters
lpszHostName

A pointer to a null terminated string which specifies the host name or IP address of the IMAP
server.

nRemotePort

The port number the client should use to establish the connection. A value of zero specifies that
default port 143 should be used, which is the standard port number assigned to the IMAP
service. If the secure port number is specified, an implicit SSL/TLS connection will be established
by default.

nTimeout

The number of seconds that the client will wait for a response from the server before failing the
current operation

dwOptions

An unsigned integer value which specifies one or more options. This parameter is constructed
by using a bitwise operator with any of the following values:

Constant Description

IMAP_OPTION_NONE No connection options specified. A standard
connection to the server will be established using
the specified host name and port number.

IMAP_OPTION_IDENTIFY This option specifies the client should identify itself
to the server. If enabled, the client will send the ID
command to the server as defined in RFC 2971.
This option has no effect if the server does not
support the ID command.

IMAP_OPTION_TUNNEL This option specifies that a tunneled TCP

connection and/or port-forwarding is being used
to establish the connection to the server. This
changes the behavior of the client with regards to
internal checks of the destination IP address and
remote port number, default capability selection
and how the connection is established.

IMAP_OPTION_TRUSTEDSITE This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option
only affects connections using either the SSL or
TLS protocols.

IMAP_OPTION_SECURE This option specifies that a secure connection
should be established with the server and requires
that the server support either the SSL or TLS
protocol. This option is the same as specifying
IMAP_OPTION_SECURE_EXPLICIT, which initiates
the secure session using the STARTTLS command.

IMAP_OPTION_SECURE_EXPLICIT This option specifies the client should attempt to
establish a secure connection with the server. The
server must support secure connections using
either the SSL or TLS protocol and the STARTTLS
command.

IMAP_OPTION_SECURE_IMPLICIT This option specifies the client should attempt to
establish a secure connection with the server. The
server must support secure connections using
either the SSL or TLS protocol, and the secure
session must be negotiated immediately after the
connection has been established.

IMAP_OPTION_SECURE_FALLBACK This option specifies the client should permit the
use of less secure cipher suites for compatibility
with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

HTTP_OPTION_PREFER_IPV6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be resolved
to both an IPv6 and IPv4 address. This option is
ignored if the local system does not have IPv6
enabled, or when the hostname can only be
resolved to an IPv4 address. If the server
hostname can only be resolved to an IPv6
address, the client will attempt to establish a
connection using IPv6 regardless if this option has
been specified.

IMAP_OPTION_FREETHREAD This option specifies the handle returned by this
function may be used by any thread, and is not
limited to the thread which created it. The
application is responsible for ensuring that access

to the handle is synchronized across multiple
threads.

lpCredentials

A pointer to a SECURITYCREDENTIALS structure which is used to establish the client credentials
for a secure connection to the server. The function ImapCreateSecurityCredentials can be
used to create this structure if necessary. If a standard non-secure connection is being
established, or client credentials are not required by the server, this parameter can be NULL.

hEventWnd

The handle to the asynchronous notification window. This window receives messages which
notify the client of various asynchronous client events that occur. Specifying this parameter and
a message identifier causes the connection to be non-blocking. If this parameter is NULL, then a
blocking connection is established.

uEventMsg

The message identifier that is used when an asynchronous client event occurs. This value should
be greater than WM_USER as defined in the Windows header files. If the hEventWnd parameter
is NULL, this parameter should be specified as WM_NULL.

Return Value
If the function succeeds, the return value is a handle to a client session. If the function fails, the
return value is INVALID_CLIENT. To get extended error information, call ImapGetLastError.

Remarks
When a message is posted to the notification window, the low word of the lParam parameter
contains the event identifier. The high word of lParam contains the low word of the error code, if
an error has occurred. The wParam parameter contains the client handle. One or more of the
following event identifiers may be sent:

Constant Description

IMAP_EVENT_CONNECT The connection to the server has completed. The high word of
the lParam parameter should be checked, since this notification
message will be posted if an error has occurred.

IMAP_EVENT_DISCONNECT The server has closed the connection to the client. The client
should read any remaining data and disconnect.

IMAP_EVENT_READ Data is available to read by the client. No additional messages will
be posted until the client has read at least some of the data. This
event is only generated if the calling process is in asynchronous
mode.

IMAP_EVENT_WRITE The client can now write data. This notification is sent after a
connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking
operation. This event is only generated if the client is in
asynchronous mode.

IMAP_EVENT_TIMEOUT The client has timed out while waiting for a response from the
server. Note that under some circumstances this event can be
generated for a non-blocking connection, such as when the client
is establishing a secure connection.

IMAP_EVENT_CANCEL The client has canceled the current operation.

IMAP_EVENT_COMMAND The client has processed a command that was sent to the server.
The result code and result string can be used to determine if the
response to the command. The high word of the lParam
parameter should be checked, since this notification message will
also be posed if the command cannot be executed.

IMAP_EVENT_PROGRESS This event notification is sent periodically during lengthy blocking
operations, such as retrieving a complete message from the
server.

To cancel asynchronous notification and return the client to a blocking mode, use the
ImapDisableEvents function.

The dwOptions argument can be used to specify the threading model that is used by the library
when a connection is established. By default, the handle is initially attached to the thread that
created it. From that point on, until the it is released, only the owner may call functions using that
handle. The ownership of the handle may be transferred from one thread to another using the
ImapAttachThread function.

Specifying the IMAP_OPTION_FREETHREAD option enables any thread to call any function using
the handle, regardless of which thread created it. It is important to note that this option disables
certain internal safety checks which are performed by the library and may result in unexpected
behavior unless access to the handle is synchronized. If one thread calls a function in the library, it
must ensure that no other thread will call another function at the same time using the same
handle.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ImapConnect, ImapDisableEvents, ImapDisconnect, ImapEnableEvents, ImapInitialize,
ImapUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapAttachThread Function

DWORD WINAPI ImapAttachThread(
 HCLIENT hClient
 DWORD dwThreadId
);

The ImapAttachThread function attaches the specified client handle to another thread.

Parameters
hClient

Handle to the client session.

dwThreadId

The ID of the thread that will become the new owner of the handle. A value of zero specifies
that the current thread should become the owner of the client handle.

Return Value
If the function succeeds, the return value is the thread ID of the previous owner. If the function
fails, the return value is IMAP_ERROR. To get extended error information, call ImapGetLastError.

Remarks
When a client handle is created, it is associated with the current thread that created it. Normally, if
another thread attempts to perform an operation using that handle, an error is returned since it
does not own the handle. This is used to ensure that other threads cannot interfere with an
operation being performed by the owner thread. In some cases, it may be desirable for one
thread in a client application to create the client handle, and then pass that handle to another
worker thread. The ImapAttachThread function can be used to change the ownership of the
handle to the new worker thread. By preserving the return value from the function, the original
owner of the handle can be restored before the worker thread terminates.

This function should be called by the new thread immediately after it has been created, and if the
new thread does not release the handle itself, the ownership of the handle should be restored to
the parent thread before it terminates. Under no circumstances should ImapAttachThread be
used to forcibly release a handle allocated by another thread while a blocking operation is in
progress. To cancel an operation, use the ImapCancel function and then release the handle after
the blocking function exits and control is returned to the current thread.

Note that the dwThreadId parameter is presumed to be a valid thread ID and no checks are
performed to ensure that the thread actually exists. Specifying an invalid thread ID will orphan the
handle until the ImapUninitialize function is called.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
ImapConnect, ImapDisconnect, ImapUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapCancel Function

INT WINAPI ImapCancel(
 HCLIENT hClient
);

The ImapCancel function cancels any outstanding blocking operation in the client, causing the
blocking function to fail. The application may then retry the operation or terminate the client
session.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
IMAP_ERROR. To get extended error information, call ImapGetLastError.

Remarks
When the ImapCancel function is called, the blocking function will not immediately fail. An
internal flag is set which causes the blocking operation to exit with an error. This means that the
application cannot cancel an operation and immediately perform some other operation. Instead it
must allow the calling stack to unwind, returning back to the blocking operation before making
any further function calls.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
ImapIsBlocking

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapCheckMailbox Function

INT WINAPI ImapCheckMailbox(
 HCLIENT hClient,
 UINT *lpnMessages,
 UINT *lpnUnseen
);

The ImapCheckMailbox function requests that the server create a checkpoint of the currently
selected mailbox, and returns the current number of messages and unseen messages.

Parameters
hClient

Handle to the client session.

lpnMessages

A pointer to an unsigned integer value which will contain the number of messages in the
currently selected mailbox when the function returns.

lpnUnseen

A pointer to an unsigned integer value which will contain the number of unseen messages in
the currently selected mailbox.

Return Value
If the function succeeds, it returns zero. If an error occurs, the function returns IMAP_ERROR. To
get extended error information, call ImapGetLastError.

Remarks
When the client requests a checkpoint, the server may perform implementation-dependent
housekeeping for that mailbox, such updating the mailbox on disk with the current state of the
mailbox in memory. On some systems this command has no effect other than to update the client
with the current number of messages in the mailbox.

This function actually sends two IMAP commands. The first is the CHECK command, followed by
the NOOP command to poll for any new messages that have arrived. In addition to polling the
server for new messages, this command can also be used to ensure the idle timer on the server
does not expire and force a disconnect from the client.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
ImapCreateMailbox, ImapGetFirstMailbox, ImapGetMailboxStatus, ImapGetNextMailbox,
ImapRenameMailbox

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapCloseMessage Function

INT WINAPI ImapCloseMessage(
 HCLIENT hClient
);

The ImapCloseMessage function closes the current message.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
IMAP_ERROR. To get extended error information, call ImapGetLastError.

Remarks
The ImapCloseMessage function closes the current message. If there is any remaining data left to
be read from the message, it will be read and discarded.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
ImapCreateMessage, ImapOpenMessage, ImapOpenMessageEx

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapCommand Function

INT WINAPI ImapCommand(
 HCLIENT hClient,
 LPCTSTR lpszCommand,
 LPCTSTR lpszParameter
);

The ImapCommand function sends a command to the server. This function is typically used for
site-specific commands not directly supported by the API.

Parameters
hClient

Handle to the client session.

lpszCommand

The command which will be executed by the server.

lpszParameter

An optional command parameter. If the command requires more than one parameter, then
they should be combined into a single string, with a space separating each parameter. If the
command does not accept any parameters, this value may be NULL.

Return Value
If the function succeeds, it returns an IMAP result code. If the command was successful, it returns
IMAP_RESULT_OK. A return value of IMAP_RESULT_CONTINUE indicates the command was
accepted and the caller should proceed with the next command. If an error occurs, the function
returns IMAP_ERROR. To get extended error information, call ImapGetLastError.

Remarks
A list of valid commands can be found in the technical specification for the protocol. The current
version of the protocol which is supported by this library is version 4rev1 as defined in RFC 3501.

Use the ImapGetResultCode function to determine the result of the command that was sent to
the server.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ImapGetResultCode, ImapGetResultString

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapConnect Function

HCLIENT WINAPI ImapConnect(
 LPCTSTR lpszHostName,
 UINT nRemotePort,
 UINT nTimeout,
 DWORD dwOptions,
 LPSECURITYCREDENTIALS lpCredentials
);

The ImapConnect function is used to establish a connection with the server.

Parameters
lpszHostName

A pointer to a null terminated string which specifies the host name or IP address of the IMAP
server.

nRemotePort

The port number the client should use to establish the connection. A value of zero specifies that
default port 143 should be used, which is the standard port number assigned to the IMAP
service. If the secure port number is specified, an implicit SSL/TLS connection will be established
by default.

nTimeout

The number of seconds that the client will wait for a response from the server before failing the
current operation.

dwOptions

An unsigned integer value which specifies one or more options. This parameter is constructed
by using a bitwise operator with any of the following values:

Constant Description

IMAP_OPTION_NONE No connection options specified. A standard
connection to the server will be established using
the specified host name and port number.

IMAP_OPTION_IDENTIFY This option specifies the client should identify itself
to the server. If enabled, the client will send the ID
command to the server as defined in RFC 2971.
This option has no effect if the server does not
support the ID command.

IMAP_OPTION_TUNNEL This option specifies that a tunneled TCP
connection and/or port-forwarding is being used
to establish the connection to the server. This
changes the behavior of the client with regards to
internal checks of the destination IP address and
remote port number, default capability selection
and how the connection is established.

IMAP_OPTION_TRUSTEDSITE This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option

only affects connections using either the SSL or
TLS protocols.

IMAP_OPTION_SECURE This option specifies that a secure connection
should be established with the server and requires
that the server support either the SSL or TLS
protocol. This option is the same as specifying
IMAP_OPTION_SECURE_EXPLICIT, which initiates
the secure session using the STARTTLS command.

IMAP_OPTION_SECURE_EXPLICIT This option specifies the client should attempt to
establish a secure connection with the server.
Note that the server must support secure
connections using either the SSL or TLS protocol.

IMAP_OPTION_SECURE_IMPLICIT This option specifies the client should attempt to
establish a secure connection with the server. The
server must support secure connections using
either the SSL or TLS protocol, and the secure
session must be negotiated immediately after the
connection has been established.

IMAP_OPTION_SECURE_FALLBACK This option specifies the client should permit the
use of less secure cipher suites for compatibility
with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

IMAP_OPTION_PREFER_IPV6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be resolved
to both an IPv6 and IPv4 address. This option is
ignored if the local system does not have IPv6
enabled, or when the hostname can only be
resolved to an IPv4 address. If the server
hostname can only be resolved to an IPv6
address, the client will attempt to establish a
connection using IPv6 regardless if this option has
been specified.

IMAP_OPTION_FREETHREAD This option specifies the handle returned by this
function may be used by any thread, and is not
limited to the thread which created it. The
application is responsible for ensuring that access
to the handle is synchronized across multiple
threads.

lpCredentials

A pointer to a SECURITYCREDENTIALS structure which is used to establish the client credentials
for a secure connection to the server. The function ImapCreateSecurityCredentials can be
used to create this structure if necessary. If a standard non-secure connection is being
established, or client credentials are not required by the server, this parameter can be NULL.

Return Value
If the function succeeds, the return value is a handle to a client session. If the function fails, the

return value is INVALID_CLIENT. To get extended error information, call ImapGetLastError.

Remarks
This function will block the current thread until a connection has been established or the timeout
period has elapsed. To prevent it from blocking the main user interface thread, the application
should create a background worker thread and establish a connection by calling ImapConnect in
that thread. If the application requires multiple simultaneous connections, it is recommended you
create a worker thread for each connection.

The dwOptions argument can be used to specify the threading model that is used by the library
when a connection is established. By default, the handle is initially attached to the thread that
created it. From that point on, until the it is released, only the owner may call functions using that
handle. The ownership of the handle may be transferred from one thread to another using the
ImapAttachThread function.

Specifying the IMAP_OPTION_FREETHREAD option enables any thread to call any function using
the handle, regardless of which thread created it. It is important to note that this option disables
certain internal safety checks which are performed by the library and may result in unexpected
behavior unless access to the handle is synchronized. If one thread calls a function in the library, it
must ensure that no other thread will call another function at the same time using the same
handle.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ImapDisconnect, ImapInitialize, ImapLogin

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapCopyMessage Function

INT WINAPI ImapCopyMessage(
 HCLIENT hClient,
 UINT nMessageId,
 LPCTSTR lpszMailbox
);

The ImapCopyMessage function copies a message from the current mailbox to the specified
mailbox. The message is appended to the mailbox, and the message flags and internal date are
preserved.

Parameters
hClient

Handle to the client session.

nMessageId

The message identifier which specifies which message is to be copied to the mailbox. This value
must be greater than zero and specify a valid message number.

lpszMailbox

A pointer to a string which specifies the name of the mailbox that the message will be copied to.
The mailbox must already exist, and the client must have the appropriate access rights to
modify the mailbox.

Return Value
If the function succeeds, it returns a value of zero. If an error occurs, the function returns
IMAP_ERROR. To get extended error information, call ImapGetLastError.

Remarks
If the mailbox does not exist, the function will fail. To create a new mailbox, use the
ImapCreateMailbox function. A message can be copied within the same mailbox, in which case
the server may flag it as a new message.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ImapCreateMailbox, ImapGetResultCode, ImapGetResultString

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapCreateMailbox Function

INT WINAPI ImapCreateMailbox(
 HCLIENT hClient,
 LPCTSTR lpszMailbox
);

The ImapCreateMailbox function creates a new mailbox on the server.

Parameters
hClient

Handle to the client session.

lpszMailbox

A pointer to a null terminated string which specifies the new mailbox to be created.

Return Value
If the function succeeds, it returns a value of zero. If an error occurs, the function returns
IMAP_ERROR. To get extended error information, call ImapGetLastError.

Remarks
If the mailbox name is suffixed with the server's hierarchy delimiter, this indicates to the server that
the client intends to create mailbox names under the specified name in the hierarchy. If superior
hierarchical names are specified in the mailbox name, then the server may automatically create
them as needed. For example, if the mailbox name "Mail/Office/Projects" is specified and
"Mail/Office" does not exist, it may be automatically created by the server.

The special mailbox name INBOX is reserved, and cannot be created. It is recommended that
mailbox names only consist of printable ASCII characters, and the special characters "*" and "%"
should be avoided.

If you need to create a mailbox which contains Unicode characters or symbols, it is recommended
you always use the Unicode version of this function. The mailbox name will automatically be
converted to modified UTF-7 encoding as defined by the IMAP4 standard. The ANSI version of
this function will only accept mailbox names using either modified UTF-7 encoding or UTF-8
encoding.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ImapDecodeMailboxName, ImapDeleteMailbox, ImapEncodeMailboxName, ImapGetFirstMailbox,
ImapGetNextMailbox, ImapRenameMailbox

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapCreateMessage Function

INT WINAPI ImapCreateMessage(
 HCLIENT hClient,
 LPCTSTR lpszMailbox,
 DWORD dwReserved,
 LPVOID lpMessage,
 DWORD dwMessageSize,
 DWORD dwFlags
);

The ImapCreateMessage function creates a message, appending it to the contents of the
specified mailbox.

Parameters
hClient

Handle to the client session.

lpszMailbox

A pointer to a string which specifies the name of the mailbox that the message will be created
in. The mailbox must already exist, and the client must have the appropriate access rights to
modify the mailbox.

dwReserved

A reserved parameter. This value should always be zero.

lpMessage

A pointer to the buffer which contains the message to be created.

dwMessageSize

An unsigned integer value which specifies the size of the message in bytes. If this value is zero,
then it is assumed that the lpMessage parameter points to a string.

dwFlags

An unsigned integer that specifies one or more message flags. This parameter is constructed by
using a bitwise operator with any of the following values:

Constant Description
IMAP_FLAG_NONE No value.
IMAP_FLAG_ANSWERED The message has been answered.

IMAP_FLAG_DRAFT
The message is not completed and is marked as a draft
copy.

IMAP_FLAG_URGENT The message is flagged for urgent or special attention.
IMAP_FLAG_SEEN The message has been read.

Return Value
If the function succeeds, it returns zero. If an error occurs, the function returns IMAP_ERROR. To
get extended error information, call ImapGetLastError.

Remarks
If the mailbox does not exist, the function will fail. To create a new mailbox, use the
ImapCreateMailbox function. If the message is created in the mailbox that is currently selected,
the server may flag it as recent.

This function is typically used by applications to store messages which have already been sent to a
user. After a message has been delivered using the SMTP protocol, that same message may be
created in a mailbox on the IMAP server so that the user has access to those messages.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ImapCopyMessage, ImapDeleteMessage, ImapGetMessageFlags, ImapSetMessageFlags

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapCreateSecurityCredentials Function

BOOL WINAPI ImapCreateSecurityCredentials(
 DWORD dwProtocol,
 DWORD dwOptions,
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword,
 LPCTSTR lpszCertStore,
 LPCTSTR lpszCertName,
 LPVOID lpvReserved,
 LPSECURITYCREDENTIALS* lppCredentials
);

The ImapCreateSecurityCredentials function creates a SECURITYCREDENTIALS structure.

Parameters
dwProtocol

A bitmask of supported security protocols. This parameter is constructed by using a bitwise
operator with any of the following values:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The
correct protocol is automatically selected, based on
what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.
This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is

supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

dwOptions

A value which specifies one or options. This member is constructed by using a bitwise operator
with any of the following values:

Constant Description

CREDENTIAL_STORE_CURRENT_USER The library will attempt to open a store for
the current user using the certificate store
name provided in this structure. If no options
are specified, then this is the default
behavior.

CREDENTIAL_STORE_LOCAL_MACHINE The library will attempt to open a local
machine store using the certificate store
name provided in this structure. If this option
is specified, the library will always search for a
local machine store before searching for the
store by that name for the current user.

CREDENTIAL_STORE_FILENAME The certificate store name is a file that
contains the certificate and private key that
will be used.

lpszUserName

A pointer to a string which specifies the certificate owner's username. A value of NULL specifies
that no username is required. Currently this parameter is not used and any value specified will
be ignored.

lpszPassword

A pointer to a string which specifies the certificate owner's password. A value of NULL specifies
that no password is required. This parameter is only used if a PKCS #12 (PFX) certificate file is
specified and that certificate has been secured with a password. This value will be ignored the
current user or local machine certificate store is specified.

lpszCertStore

A pointer to a string which specifies the name of the certificate store to open. A certificate store
is a collection of certificates and their private keys, typically organized by how they are used. If
this value is NULL or points to an empty string, the default certificate store "MY" will be used.

Store Name Description

CA Certification authority certificates. These are certificates that are issued by
entities which are entrusted to issue certificates to other individuals or
organizations. Companies such as VeriSign and Thawte act as
certification authorities.

MY Personal certificates and their associated private keys for the current user.
This store typically holds the client certificates used to establish a user's
credentials. This corresponds to the "Personal" store that is displayed by
the certificate manager utility and is the default store used by the library.

ROOT Certificates that have been self-signed by a certificate authority. Root
certificates for a number of different certification authorities such as
VeriSign and Thawte are installed as part of the operating system and
periodically updated by Microsoft.

lpszCertName

A pointer to a null terminated string which specifies the name of the certificate to use. The
function will first search the certificate store for a certificate with a matching "friendly name"; this
is a name for the certificate that is assigned by the user. Note that the name must match
completely, but the comparison is not case sensitive. If no matching certificate is found, the
function will then attempt to find a certificate that has a matching common name (also called
the certificate subject). This comparison is less stringent, and the first partial match will be
returned. If this second search fails, the function will return an error indicating that the certificate
could not be found.

lpvReserved

Pointer reserved for future use. Set it to NULL when using this function.

lppCredentials

Pointer to an LPSECURITYCREDENTIALS pointer. The memory for the credentials structure will
be allocated by this function and must be released by calling the
ImapDeleteSecurityCredentials function when it is no longer needed. The pointer value must
be set to NULL before the function is called. It is important to note that this is a pointer to a
pointer variable, not a pointer to the SECURITYCREDENTIALS structure itself.

Return Value

If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call ImapGetLastError.

Remarks
The structure that is created by this function may be used as client credentials when establishing a
secure connection. This is particularly useful for programming languages other than C/C++ which
may not support C structures or pointers. The pointer to the SECURITYCREDENTIALS structure can
be declared as an unsigned integer variable which is passed by reference to this function, and
then passed by value to the ImapAsyncConnect or ImapConnect functions.

Example
LPSECURITYCREDENTIALS lpSecCred = NULL;
ImapCreateSecurityCredentials(SECURITY_PROTOCOL_DEFAULT,
 0,
 NULL,
 NULL,
 lpszCertStore,
 lpszCertName,
 NULL,
 &lpSecCred);

hClient = ImapConnect(lpszHostName,
 IMAP_PORT_SECURE,
 IMAP_TIMEOUT,
 IMAP_OPTION_SECURE,
 lpSecCred);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ImapConnect, ImapDeleteSecurityCredentials, ImapGetSecurityInformation,
SECURITYCREDENTIALS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapDecodeMailboxName Function

INT WINAPI ImapDecodeMailboxName(
 INT nCodePage,
 LPCSTR lpszMailboxName,
 LPTSTR lpszDecodedName,
 INT nMaxLength
);

The ImapDecodeMailboxName function decodes a UTF-7 encoded mailbox name using the
specified code page.

Parameters
nCodePage

An integer value which specifies the code page which should be used when decoding the
mailbox name. If the ANSI version of this function is called, this parameter can be any valid code
page, or the constant CP_ACP which specifies the current active code page for the locale. If the
Unicode version of this function is called, this parameter should always be zero.

lpszMailboxName

A pointer to a null terminated string which contains the UTF-7 encoded name of the mailbox.
The encoded string must use the modified UTF-7 format defined in the IMAP4 protocol
standard. This parameter cannot be a NULL pointer or an empty string.

lpszDecodedName

A pointer to a string buffer which will contain the decoded mailbox name. This parameter
cannot be NULL and must be large enough to contain the entire name.

nMaxLength

An integer value which specifies the maximum number of characters which can be copied into
the lpszDecodedName string buffer. This value must be greater than zero and the buffer must
be large enough to store the entire name.

Return Value
If the function succeeds, it returns the number of characters in the decoded mailbox name. If an
error occurs, the function returns zero. To get extended error information, call ImapGetLastError.

Remarks
Mailbox names which contain non-ASCII characters must be converted to a modified version of
UTF-7 encoding as defined by the IMAP4 protocol. This encoding allows applications to reference
mailbox names which contain Unicode characters and provides support for languages other than
English. This function is used to convert a UTF-7 encoded mailbox name using the current locale,
primarily for display purposes.

For example, if the lpszMailboxName parameter specifies the string "&A5QDvwO6A7kDvAOu-",
this function will convert it to the Greek word "Δοκιμή" and return that value in the
lpszDecodedName buffer. It is recommended you use the Unicode version of this function
whenever possible to ensure the mailbox name is decoded correctly.

The ANSI version of this function should only be used with legacy applications which do not
support Unicode. The decoded mailbox name will be converted using the code page specified by
the nCodePage parameter. If the code page does not support the characters used in the mailbox
name, this can result in an incorrect conversion. Using the previous example, the mailbox name

will always decode correctly if the Unicode version of the function is used, but the ANSI version of
the function will only decode it correctly if the code page is specified as 1253 (Greek).

This function should not be used to convert strings between Unicode and UTF-7. The encoding
format is specifically intended for use with the IMAP4 protocol and should never be used for
general purpose encoding or decoding. If you need to convert a UTF-7 encoded string to
Unicode, use the Win32 API function MultiByteToWideChar.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ImapCreateMailbox, ImapEncodeMailboxName, ImapGetFirstMailbox, ImapGetNextMailbox,
ImapRenameMailbox

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapDeleteMailbox Function

INT WINAPI ImapDeleteMailbox(
 HCLIENT hClient,
 LPCTSTR lpszMailbox
);

The ImapDeleteMailbox function deletes a mailbox on the server.

Parameters
hClient

Handle to the client session.

lpszMailbox

A pointer to a null terminated string which specifies the mailbox to be deleted.

Return Value
If the function succeeds, it returns value of zero. If an error occurs, the function returns
IMAP_ERROR. To get extended error information, call ImapGetLastError.

Remarks
A mailbox cannot be deleted if it contains inferior hierarchical names and has the
IMAP_FLAG_NOSELECT attribute. On most systems this is the case when the mailbox name
references a directory on the server, and that directory contains other subdirectories or mailboxes.
To remove the mailbox, you must first delete any child mailboxes that exist.

If the mailbox that is deleted is the currently selected mailbox, it will be automatically unselected
and any messages marked for deletion will be expunged before the mailbox is removed. If the
delete operation fails, the client will remain in an unselected state until either the
ImapExamineMailbox or ImapSelectMailbox function is called.

The special mailbox name INBOX is reserved, and cannot be deleted.

If you need to delete a mailbox which contains Unicode characters or symbols, it is recommended
you always use the Unicode version of this function. The mailbox name will automatically be
converted to modified UTF-7 encoding as defined by the IMAP4 standard. The ANSI version of
this function will accept mailbox names using either modified UTF-7 encoding or UTF-8 encoding.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ImapCreateMailbox, ImapGetFirstMailbox, ImapGetNextMailbox, ImapRenameMailbox

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapDeleteMessage Function

INT WINAPI ImapDeleteMessage(
 HCLIENT hClient,
 UINT nMessageId
);

The ImapDeleteMessage function marks the specified message for deletion from the current
mailbox.

Parameters
hClient

Handle to the client session.

nMessage

Number of message to delete from the server. This value must be greater than zero. The first
message in the mailbox is message number one.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
IMAP_ERROR. To get extended error information, call ImapGetLastError.

Remarks
This function only marks the message for deletion. The message is not actually deleted until the
mailbox is expunged or another mailbox is selected. This function will return an error if the current
mailbox is in read-only mode, such as if it was selected using the ImapExamineMailbox function.

It is important to note that unlike the POP3 protocol, a message that is marked for deletion is still
accessible on the IMAP server until the mailbox is expunged. This means, for example, that a
deleted message can still be retrieved using the ImapGetMessage function.

To determine if a message has been marked for deletion, use the ImapGetMessageFlags
function and check if the IMAP_FLAG_DELETED bit flag has been set. To list all of the deleted
messages in the current mailbox, use the ImapGetDeletedMessages function.

To remove the deletion flag from the message, use the ImapUndeleteMessage function. To
prevent all messages in the current mailbox from being expunged, use the ImapReselectMailbox
function to reset the current mailbox state.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
ImapGetDeletedMessages, ImapGetMessage, ImapGetMessageCount, ImapGetMessageFlags,
ImapReselectMailbox, ImapUndeleteMessage, ImapUnselectMailbox

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapDeleteSecurityCredentials Function

VOID WINAPI ImapDeleteSecurityCredentials(
 LPSECURITYCREDENTIALS* lppCredentials
);

The ImapDeleteSecurityCredentials function deletes an existing SECURITYCREDENTIALS
structure.

Parameters
lppCredentials

Pointer to an LPSECURITYCREDENTIALS pointer. On exit from the function, the pointer will be
NULL.

Return Value
None.

Example
if (lpSecCred)
 ImapDeleteSecurityCredentials(&lpSecCred);

ImapUninitialize();

Remarks
This function can be used to release the memory allocated to the client or server credentials after
a secure connection has been terminated.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ImapCreateSecurityCredentials, ImapUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapDisableEvents Function

INT WINAPI ImapDisableEvents(
 HCLIENT hClient
);

The ImapDisableEvents function disables the event notification mechanism, preventing
subsequent event notification messages from being posted to the application's message queue.

This function has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
IMAP_ERROR. To get extended error information, call ImapGetLastError.

Remarks
The ImapDisableEvents function is used to disable event message posting for the specified client
session. Although this will immediately prevent any new events from being generated, it is possible
that messages could be waiting in the message queue. Therefore, an application must be
prepared to handle client event messages after this function has been called.

This function is automatically called if the client has event notification enabled, and the
ImapDisconnect function is called. The same issues regarding outstanding event messages also
applies in this situation, requiring that the application handle event messages that may reference a
client handle that is no longer valid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
ImapEnableEvents, ImapRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapDisableTrace Function

BOOL WINAPI ImapDisableTrace();

The ImapDisableTrace function disables the logging of socket function calls to the trace log.

Parameters
None.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call ImapGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
ImapEnableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapDisconnect Function

INT WINAPI ImapDisconnect(
 HCLIENT hClient
);

The ImapDisconnect function terminates the connection with the server, releasing the memory
allocated for the client session.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
IMAP_ERROR. To get extended error information, call ImapGetLastError.

Remarks
If a mailbox is selected at the time that ImapDisconnect is called, the current mailbox will be
unselected and any messages that are marked for deletion will be expunged. To prevent any
deleted messages from being removed from the mailbox, use the ImapUnselectMailbox function
to unselect the current mailbox prior to disconnecting from the server.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
ImapConnect, ImapUninitialize, ImapUnselectMailbox

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapEnableEvents Function

INT WINAPI ImapEnableEvents(
 HCLIENT hClient,
 HWND hEventWnd,
 UINT uEventMsg
);

The ImapEnableEvents function enables event notifications using Windows messages.

This function has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Applications should use the ImapRegisterEvent function to register an event handler which is
invoked when an event occurs.

Parameters
hClient

Handle to the client session.

hEventWnd

Handle to the window which will receive the client notification messages. This parameter must
specify a valid window handle. If a NULL handle is specified, event notification will be disabled.

uEventMsg

The message that is received when a client event occurs. To avoid conflict with standard
Windows messages, this value must be greater than WM_USER (1024) or an error will be
returned. If the hEventWnd parameter is NULL, this value should be WM_NULL.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
IMAP_ERROR. To get extended error information, call ImapGetLastError.

Remarks
The ImapEnableEvents function is used to request that notification messages be posted to the
specified window whenever a client event occurs. This allows an application to monitor the status
of different client operations, such as a file transfer. The client must create a window message
handler, which processes the various events. The wParam argument will contain the client handle,
the low word of the lParam argument will contain the event identifier, and the high word will
contain any error code. If no error has occurred, the high word will have a value of zero. The
following events may be generated:

Constant Description

IMAP_EVENT_CONNECT The connection to the server has completed. The high word of
the lParam parameter should be checked, since this notification
message will be posted if an error has occurred.

IMAP_EVENT_DISCONNECT The server has closed the connection to the client. The client
should read any remaining data and disconnect.

IMAP_EVENT_READ Data is available to read by the client. No additional messages will
be posted until the client has read at least some of the data. This

event is only generated if the calling process is in asynchronous
mode.

IMAP_EVENT_WRITE The client can now write data. This notification is sent after a
connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking
operation. This event is only generated if the client is in
asynchronous mode.

IMAP_EVENT_TIMEOUT The client has timed out while waiting for a response from the
server. Note that under some circumstances this event can be
generated for a non-blocking connection, such as when the client
is establishing a secure connection.

IMAP_EVENT_CANCEL The client has canceled the current operation.

IMAP_EVENT_COMMAND The client has processed a command that was sent to the server.
The result code and result string can be used to determine if the
response to the command. The high word of the lParam
parameter should be checked, since this notification message will
also be posed if the command cannot be executed.

IMAP_EVENT_PROGRESS This event notification is sent periodically during lengthy blocking
operations, such as retrieving a complete message from the
server.

It is not required that the client be placed in asynchronous (non-blocking) mode in order to
receive event notifications, except for the connect, disconnect, read and write events. To disable
event notification, call the ImapDisableEvents function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
ImapDisableEvents, ImapRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapEnableTrace Function

BOOL WINAPI ImapEnableTrace(
 LPCTSTR lpszTraceFile,
 DWORD dwTraceFlags
);

The ImapEnableTrace function enables the logging of socket function calls to a file.

Parameters
lpszTraceFile

Name of the trace log file. If this parameter is NULL or empty,the file CSTRACE.LOG is used. The
directory for CSTRACE.LOG is given by the TEMP environment variable, if it is defined;
otherwise, the directory given by the TMP environment variable is used, if it is defined;
otherwise, the current working directory is used.

dwTraceFlags

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Value Constant Description

0 TRACE_DEFAULT All function calls and return values are written to the trace
file. The actual data being sent or received will not be
logged. This is the default value.

1 TRACE_ERROR Only those function calls which fail are recorded in the
trace file. Those errors which are not fatal and only indicate
a warning will not be logged.

2 TRACE_WARNING Only those function calls which fail, or return values which
indicate a warning, are recorded in the trace file.

4 TRACE_HEXDUMP All functions calls are written to the trace file, plus all the
data that is sent or received is displayed, in both ASCII and
hexadecimal format.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call ImapGetLastError.

Remarks
When trace logging is enabled, the logfile is opened, appended to and closed for each socket
function call. Using the same logfile name, you can do the same in your application to add
additional information to the logfile if needed. This can provide an application-level context for the
entries made by the library. Make sure that the logfile is closed after the data has been written.

The TRACE_HEXDUMP option can produce very large logfiles, since all data that is being sent and
received by the application is logged. To reduce the size of the file, you can enable and disable
logging around limited sections of code that you wish to analyze.

All of the SocketTools networking components that use the Windows Sockets API support logging.
If you are using multiple components, you only need to enable tracing once in your application or
once per thread in a multithreaded application.

To redistribute an application that includes logging functionality, the cstrcv11.dll library must be
included as part of the installation package. This library provides the trace logging features, and if
it is not available the ImapEnableTrace function will fail. Note that the trace logging library is a
standard Windows DLL and does not need to be registered, it only needs to be redistributed with
your application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ImapDisableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapEncodeMailboxName Function

INT WINAPI ImapEncodeMailboxName(
 INT nCodePage,
 LPCTSTR lpszMailboxName,
 LPTSTR lpszEncodedName,
 INT nMaxLength
);

The ImapEncodeMailboxName function encodes a mailbox name using modified UTF-7
encoding.

Parameters
nCodePage

An integer value which specifies the code page which should be used when converting the
mailbox name to Unicode. If the ANSI version of this function is called, this parameter can be
any valid code page or a value of zero, which specifies the current active code page for the
locale. If the Unicode version of this function is called, no conversion is required and this
parameter should always be zero.

lpszMailboxName

A pointer to a null terminated string which contains the name of the mailbox. If the ANSI version
of this function is called, this string is automatically converted to Unicode using the code page
specified by the nCodePage parameter. This paramter cannot be a NULL pointer or an empty
string.

lpszEncodedName

A pointer to a string buffer which will contain the UTF-7 encoded mailbox name. This parameter
cannot be NULL and must be large enough to contain the entire name. The string will be null
terminated and will only contain printable ASCII characters.

nMaxLength

An integer value which specifies the maximum number of characters which can be copied into
the lpszEncodedName string buffer. This value must be greater than zero and the buffer must
be large enough to store the entire name.

Return Value
If the function succeeds, it returns the number of characters in the encoded mailbox name. If an
error occurs, the function returns zero. To get extended error information, call ImapGetLastError.

Remarks
Mailbox names which contain non-ASCII characters must be converted to a modified version of
UTF-7 encoding as defined by the IMAP4 protocol. This encoding allows applications to reference
mailbox names which contain Unicode characters and provides support for languages other than
English. This function is used to convert a mailbox name which contains non-ASCII characters to
the UTF-7 encoded format required by IMAP servers.

For example, if the lpszMailboxName parameter specifies the string "Δοκιμή", this function will
encode it as "&A5QDvwO6A7kDvAOu-" and return that value in the lpszEncodedName buffer. It is
recommended you use the Unicode version of this function whenever possible to ensure the
mailbox name is encoded correctly.

The ANSI version of this function should only be used with legacy applications which do not

support Unicode. The mailbox name will be converted to Unicode using the code page specified
by the nCodePage parameter. If the code page does not support the characters used in the
mailbox name, this can result in an incorrect conversion. Using the previous example, the mailbox
name will always encode correctly if the Unicode version of the function is used, but the ANSI
version of the function will only encode it correctly if the code page is specified as 1253 (Greek).

If the ANSI version of this function is used and the nCodePage parameter is zero, this function will
attempt to determine if the lpszMailboxName parameter specifies UTF-8 text as the mailbox
name. If it does, the name will be converted from UTF-8 to modified UTF-7; otherwise, the name
will be encoded as modified UTF-7 using the current active code page for the process.

This function should not be used to convert strings between Unicode and UTF-7. The encoding
format is specifically intended for use with the IMAP4 protocol and should never be used for
general purpose encoding or decoding. If you need to convert a Unicode string to UTF-7, use the
Win32 API function WideCharToMultiByte.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ImapCreateMailbox, ImapDecodeMailboxName, ImapGetFirstMailbox, ImapGetNextMailbox,
ImapRenameMailbox

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapEnumMessages Function

INT WINAPI ImapEnumMessages(
 HCLIENT hClient,
 UINT nFirstMessageId,
 UINT nLastMessageId,
 DWORD dwMessageFlags,
 DWORD dwReserved,
 LPIMAPMESSAGE lpMessageList,
 INT nMaxMessages
);

The ImapEnumMessages function enumerates the messages in the current mailbox, populating
an array of IMAPMESSAGE structures which contain information about each message.

Parameters
hClient

Handle to the client session.

nFirstMessageId

An unsigned integer value which specifies the first message to enumerate. This value must be
greater than zero and specify a valid message identifier. The first message in the mailbox has a
value of one.

nLastMessageId

An unsigned integer value which specifies the last message to enumerate. This value must be
greater than or equal to the value of the nFirstMessageId parameter. A special value of
0xFFFFFFFF can be used to specify the last message in the mailbox.

dwMessageFlags

This parameter is used to determine which messages are enumerated. If the value is zero, then
all applicable messages will be enumerated. If the value is non-zero, only those messages which
have at least one of the specified flags will be returned. More than one flag can be specified by
using a bitwise operator. Valid message flags are:

Constant Description

IMAP_FLAG_ANSWERED Return only those messages which have been answered.

IMAP_FLAG_DELETED Return only those messages which have been marked for
deletion.

IMAP_FLAG_DRAFT Return only those messages which have been marked as
draft copies.

IMAP_FLAG_URGENT Return only those messages which have been flagged for
urgent or special attention.

IMAP_FLAG_RECENT Return only those messages which have been recently
added to the mailbox.

IMAP_FLAG_SEEN Return only those messages which have been read.

dwReserved

A reserved parameter. This value should always be set to zero.

lpMessageList

A pointer to an array of IMAPMESSAGE structures which will contain information about each of
the messages returned by the server. This parameter cannot be NULL.

nMaxMessages

An integer value which specifies the maximum size of the IMAPMESSAGE array that was passed
to the function. This value must be at least one.

Return Value
If the function succeeds, the return value is the number of messages that were enumerated. If no
messages match the specified criteria, the function will return a value of zero. If an error is
encountered, the function returns IMAP_ERROR. To get extended error information, call
ImapGetLastError.

Remarks
If the message UID is being stored locally by the client to identify the message over multiple
sessions, it must also store the mailbox UID. Only the combination of the mailbox name, mailbox
UID and message UID can be used to uniquely identify a given message on the server. Although
IMAP server implementations are encouraged to maintain persistent message UIDs, they are not
required to do so and those values may change if the mailbox UID changes.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
ImapGetMessage, ImapGetMessageCount, ImapGetMessageFlags, ImapGetMessageHeaders,
ImapGetMessageSize, ImapGetMessageUid

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapEventProc Function

VOID CALLBACK ImapEventProc(
 HCLIENT hClient,
 UINT nEvent,
 DWORD dwError,
 DWORD_PTR dwParam
);

The ImapEventProc function is an application-defined callback function that processes events
generated by the client.

Parameters
hClient

Handle to the client session.

nEvent

An unsigned integer which specifies which event occurred. For a complete list of events, refer to
the ImapRegisterEvent function.

dwError

An unsigned integer which specifies any error that occurred. If no error occurred, then this
parameter will be zero.

dwParam

A user-defined integer value which was specified when the event callback was registered.

Return Value
None.

Remarks
An application must register this callback function by passing its address to the
ImapRegisterEvent function. The ImapEventProc function is a placeholder for the application-
defined function name.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
ImapDisableEvents, ImapEnableEvents, ImapFreezeEvents, ImapRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapExamineMailbox Function

INT WINAPI ImapExamineMailbox(
 HCLIENT hClient,
 LPCTSTR lpszMailbox,
 LPIMAPMAILBOX lpMailboxInfo
);

The ImapExamineMailbox function selects the specified mailbox for read-only access.

Parameters
hClient

Handle to the client session.

lpszMailbox

A pointer to a string which specifies the new mailbox to be examined.

lpMailboxInfo

A pointer to an IMAPMAILBOX structure which contains information about the mailbox when
the function returns. This parameter may be NULL if the caller does not require any information
about the mailbox.

Return Value
If the function succeeds, it returns zero. If an error occurs, the function returns IMAP_ERROR. To
get extended error information, call ImapGetLastError.

Remarks
The ImapExamineMailbox function is used to select a mailbox in read-only mode. Messages can
be read, but they cannot be modified or deleted from the mailbox and new messages will not lose
their status as new messages if they are accessed.

If the client has a different mailbox currently selected, that mailbox will be closed and any
messages marked for deletion will be expunged. To prevent deleted messages from being
removed from the previous mailbox, use the ImapUnselectMailbox function prior to examining
the new mailbox.

If an application wishes to update the information returned in the IMAPMAILBOX structure for the
current mailbox, simply call ImapExamineMailbox again with the same mailbox name.

The special case-insensitive mailbox name INBOX is used for new messages. Other mailbox names
may or may not be case-sensitive depending on the IMAP server's operating system and
implementation.

To access a mailbox in read-write mode, use the ImapSelectMailbox function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ImapDeleteMailbox, ImapGetFirstMailbox, ImapGetMailboxStatus, ImapGetNextMailbox,

ImapRenameMailbox, ImapReselectMailbox, ImapSelectMailbox, ImapUnselectMailbox

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapExpungeMailbox Function

INT WINAPI ImapExpungeMailbox(
 HCLIENT hClient,
 LPIMAPMAILBOX lpMailboxInfo
);

The ImapExpungeMailbox function removes all messages marked for deletion from the current
mailbox.

Parameters
hClient

Handle to the client session.

lpMailboxInfo

A pointer to an IMAPMAILBOX structure which contains information about the mailbox when
the function returns. This parameter may be NULL if the caller does not require any information
about the mailbox.

Return Value
If the function succeeds, it returns zero. If an error occurs, the function returns IMAP_ERROR. To
get extended error information, call ImapGetLastError.

Remarks
The ImapExpungeMailbox function causes all messages marked for deletion to be removed
from the mailbox. Note that this can cause the mailbox's UID to change, and potentially invalidate
the current message UIDs. It is recommended that applications use the information returned in the
IMAPMAILBOX structure to update any internal state information stored on the local system.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ImapCreateMailbox, ImapExamineMailbox, ImapGetFirstMailbox, ImapGetNextMailbox,
ImapRenameMailbox, ImapSelectMailbox

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapFreezeEvents Function

INT WINAPI ImapFreezeEvents(
 HCLIENT hClient,
 BOOL bFreeze
);

The ImapFreezeEvents function is used to suspend and resume event handling by the client.

Parameters
hClient

Handle to the client session.

bFreeze

A non-zero value specifies that event handling should be suspended by the client. A zero value
specifies that event handling should be resumed.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
IMAP_ERROR. To get extended error information, call ImapGetLastError.

Remarks
This function should be used when the application does not want to process events, such as when
a modal dialog is being displayed. When events are suspended, all client events are queued. If
events are re-enabled at a later point, those queued events will be sent to the application for
processing. Note that only one of each event will be generated. For example, if the client has
suspended event handling, and four events of the same type occur, once event handling is
resumed only one of those events will be posted to the client. This prevents the application from
being flooded by a potentially large number of queued events.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
ImapDisableEvents, ImapEnableEvents, ImapRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapGetCapability Function

INT WINAPI ImapGetCapability(
 HCLIENT hClient,
 LPTSTR lpszCapability,
 INT nMaxLength
);

The ImapGetCapability function returns a string which identifies the capabilities of the IMAP
server.

Parameters
hClient

Handle to the client session.

lpszCapability

A pointer to a null terminated string buffer that will contain one or more tokens separated by
spaces which identify the capabilities of the IMAP server.

nMaxLength

The maximum length of the capability string, including the terminating null character.

Return Value
If the function succeeds, it returns the length of the capability string, not including the terminating
null character. If an error occurs, the function returns IMAP_ERROR. To get extended error
information, call ImapGetLastError.

Remarks
This function returns a string that contains one or more tokens separated by whitespace. Each
token identifies a capability of the server. The following table lists some of the common
capabilities:

Capability Description

ACL The RFC 2086 ACL extension

BINARY The RFC 3516 binary content extension

CHILDREN The RFC 3348 child mailbox extension

ID The RFC 2971 ID extension

IDLE The RFC 2177 IDLE extension

LOGINDISABLED The RFC 2595 TLS/SSL extension

LOGINREFERRALS The RFC 2221 login referrals extension

MAILBOXREFERRALS The RFC 2193 mailbox referrals extension

MULTIAPPEND The RFC 3501 MULTIAPPEND extension

NAMESPACE The RFC 2342 namespace Extension

QUOTA The RFC 2087 QUOTA extension

STARTTLS The RFC 2595 TLS/SSL extension

UNSELECT The RFC 3691 UNSELECT extension

Additional capabilities may be supported by your server. Note that experimental or custom
capabilities are always prefixed with the letter X. A list of standard IMAP capabilities is maintained
by the Internet Assigned Numbers Authority (IANA) at www.iana.org.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ImapConnect, ImapDisconnect

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapGetCurrentMailbox Function

INT WINAPI ImapGetCurrentMailbox(
 HCLIENT hClient,
 LPTSTR lpszMailbox,
 INT nMaxLength
);

The ImapGetCurrentMailbox function returns the name of the current mailbox that has been
selected.

Parameters
hClient

Handle to the client session.

lpszMailbox

A pointer to a null terminated string buffer that will contain the current mailbox name. If the
Unicode version of this function is called, the mailbox name will automatically be converted
from modified UTF-7 encoding to Unicode. If the ANSI version of this function is called, the
name will be returned using modified UTF-7 encoding. This parameter cannot be NULL and the
buffer must be large enough to store the complete mailbox name.

nMaxLength

The maximum length of the mailbox string, including the terminating null character.

Return Value
If the function succeeds, it returns the length of the current mailbox name, not including the
terminating null character. If an error occurs, the function returns IMAP_ERROR. To get extended
error information, call ImapGetLastError.

Remarks
It is recommended you use the Unicode version of this function, particularly if it is possible that
mailbox names will contain Unicode characters or symbols. If the ANSI version of this function is
called and a mailbox name contains Unicode characters, the name will be returned using a
modified UTF-7 encoding format as defined by the IMAP4 standard. The mailbox name will not be
returned as UTF-8 Unicode or as ANSI text converted to the current locale. If the Unicode version
of this function is called, mailbox names will be automatically converted from modified UTF-7 to
UTF-16 Unicode.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ImapExamineMailbox, ImapGetFirstMailbox, ImapGetNextMailbox, ImapSelectMailbox,
ImapUnselectMailbox

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapGetDeletedMessages Function

INT WINAPI ImapGetDeletedMessages(
 HCLIENT hClient,
 UINT* lpnMessageIds,
 INT nMaxMessages
);

The ImapGetDeletedMessages function returns the message identifiers for those messages that
have been marked for deletion in the current mailbox.

Parameters
hClient

Handle to the client session.

lpnMessageIds

A pointer to an array of unsigned integers that will contain the message identifiers of those
messages which have been marked for deletion in the current mailbox. This parameter may be
NULL, in which case the function will return the number of deleted messages but will not return
their identifiers.

nMaxMessages

The maximum number of message identifiers that may be stored in the lpnMessageIds array. If
the lpnMessageIds parameter is NULL, this value should be zero.

Return Value
If the function succeeds, the return value is the number of messages marked for deletion in the
current mailbox. If the function fails, the return value is IMAP_ERROR. To get extended error
information, call ImapGetLastError.

Remarks
The message identifiers returned by this function are only valid until the mailbox is expunged or
another mailbox is selected.

To remove the deleted flag from a message, use the ImapUndeleteMessage function. To
prevent all messages in the current mailbox from being expunged, use the ImapReselectMailbox
function to reset the current mailbox state.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
ImapGetMessageCount, ImapGetMessageFlags, ImapGetNewMessages,
ImapGetUnseenMessages, ImapSearchMailbox

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapGetErrorString Function

INT WINAPI ImapGetErrorString(
 DWORD dwErrorCode,
 LPTSTR lpszDescription,
 INT nMaxLength
);

The ImapGetErrorString function is used to return a description of a specific error code. Typically
this is used in conjunction with the ImapGetLastError function for use with warning dialogs or as
diagnostic messages.

Parameters
dwErrorCode

The error code for which a description should be returned. If this value is zero, then the
description of the last error will be returned. If the last error code is zero, indicating no error,
then this function will return zero.

lpszDescription

A pointer to the buffer that will contain a description of the specified error code. It is
recommended that this buffer be at least 128 characters in length. If a NULL pointer is specified,
then no message will be returned but the function will return the length of the error string, not
including the terminating null byte.

nMaxLength

The maximum number of characters that may be copied into the description buffer.

Return Value
If the function succeeds, the return value is the length of the description string. If the function fails,
the return value is 0, meaning that no description exists for the specified error code. Typically this
indicates that the error code passed to the function is invalid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ImapGetLastError, ImapGetResultCode, ImapGetResultString, ImapSetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapGetFirstMailbox Function

INT WINAPI ImapGetFirstMailbox(
 HCLIENT hClient,
 LPCTSTR lpszReference,
 LPCTSTR lpszWildcard,
 DWORD dwOptions,
 LPVOID lpvReserved,
 LPTSTR lpszMailbox,
 INT nMaxLength
 LPDWORD lpdwFlags
);

The ImapGetFirstMailbox function returns the name of the first matching mailbox.

Parameters
hClient

Handle to the client session.

lpszReference

A pointer to a string which specifies the reference name. An empty string or NULL pointer
specifies that the default mailbox hierarchy for the current user is returned. If the reference
name is provided, this must be the name of a mailbox or a level of the mailbox hierarchy which
provides the context in which the mailbox name is interpreted.

lpszWildcard

A pointer to a null terminated string which specifies the mailbox name to match. The wildcard
character "*" may be used to match any portion of the mailbox hierarchy, including the
delimiter. The wildcard character "%" matches any portion of the mailbox name, but does not
match the mailbox delimiter. An empty string or NULL pointer specifies that all mailboxes in the
context of the lpszReference parameter should be returned.

dwOptions

Specifies one or more options which controls how mailboxes are returned by the function. The
options are bit flags which may be combined using a bitwise operator. One or more of the
following values may be used:

Constant Description

IMAP_LIST_DEFAULT This option specifies that all regular, selectable mailboxes
should be returned.

IMAP_LIST_SUBSCRIBED This option specifies that only subscribed mailboxes should
be returned.

IMAP_LIST_FOLDERS This option specifies that non-selectable mailbox folders
should also be returned.

IMAP_LIST_HIDDEN This option specifies that hidden mailboxes should be
returned.

IMAP_LIST_INFERIOR This option specifies that inferior mailboxes should be
returned if an explicit wildcard mask is not specified.

lpvReserved

A reserved parameter. This value should always be set to NULL.

lpszMailbox

A pointer to a string buffer which will contain the first matching mailbox. This parameter cannot
be NULL. A minimum buffer size of at least 128 character is recommended. If the Unicode
version of this function is called, the mailbox name will automatically be converted from
modified UTF-7 encoding to Unicode. If the ANSI version of this function is called, the mailbox
name will be returned using modified UTF-7 encoding.

nMaxLength

Specifies the maximum length of the string buffer. The maximum length of the buffer should be
large enough to accommodate most path names on the IMAP server.

lpdwFlags

A pointer to an unsigned integer which will contain the mailbox flags for the first matching
mailbox. This parameter may be NULL, in which case the mailbox flags are not returned.
Otherwise, one or more of the following bit flags may be returned:

Constant Description

IMAP_FLAG_NOINFERIORS The mailbox does not contain any sub-mailboxes. In the
IMAP protocol, these are referred to as inferior
hierarchical mailbox names.

IMAP_FLAG_NOSELECT The mailbox cannot be selected or examined. This flag is
typically used by servers to indicate that the mailbox name
refers to a directory on the server, not a mailbox file.

IMAP_FLAG_MARKED The mailbox is marked as being of interest to a client. If
this flag is used, it typically means that the mailbox
contains messages. An application should not depend on
this flag being present for any given mailbox. Some IMAP
servers do not support marked or unmarked flags for
mailboxes.

IMAP_FLAG_UNMARKED The mailbox is marked as not being of interest to a client.
If this flag is used, it typically means that the mailbox does
not contain any messages. An application should not
depend on this flag being present for any given mailbox.
Some IMAP servers do not support marked or unmarked
flags for mailboxes.

Return Value
If the function succeeds, it returns the length of the mailbox name. If an error occurs, the function
returns IMAP_ERROR. To get extended error information, call ImapGetLastError.

Remarks
The ImapGetFirstMailbox function is used to begin enumerating the available mailboxes for the
current user on the IMAP server. Subsequent mailbox names are returned by calling
ImapGetNextMailbox until the function returns IMAP_ERROR with an error code of
ST_ERROR_NO_MORE_MAILBOXES.

It is recommended you use the Unicode version of this function, particularly if it is possible that
mailbox names will contain Unicode characters or symbols. If the ANSI version of this function is
called and a mailbox name contains Unicode characters, the name will be returned using a

modified UTF-7 encoding format as defined by the IMAP4 standard. The mailbox name will not be
returned as UTF-8 Unicode or as ANSI text converted to the current locale. If the Unicode version
of this function is called, mailbox names will be automatically converted from modified UTF-7 to
UTF-16 Unicode.

The function of the lpszReference and lpszWildcard parameters are implementation dependent
and generally are tied to the underlying operating system. On a UNIX based system, it can be
helpful to think of the reference name as the directory where mailbox folders are stored, and the
mailbox name as the name to search for in that directory and any subdirectories, if applicable. If
the reference name is an empty string or NULL pointer, this typically refers to the current user's
home directory.

Generally speaking, a reference name should only be specified if you or the user of the application
knows the directory structure on the IMAP server. Incorrectly using a reference name can have
serious negative side-effects. For example, specifying a reference name of "/" on a UNIX based
system could cause the IMAP server to return search every directory on the system for a matching
mailbox name. Similarly, the IMAP server may be unable to distinguish between regular files in the
user's home directory and mailboxes. For this reason, most IMAP clients require that the user
specify the directory on the server where their mailboxes are stored. Typically this is subdirectory
named "mail" or "Mail" under the user's home directory. For non-UNIX servers, the mailbox
hierarchy may represented differently, including a flat hierarchy.

Hidden mailboxes are those mailboxes which use the UNIX convention of the name beginning
with a period. Therefore, a mailbox named ".secrets" would not normally be returned by the
ImapGetFirstMailbox and ImapGetNextMailbox functions. The IMAP_LIST_HIDDEN option
causes all mailboxes to be returned.

The IMAP_LIST_INFERIOR option will return inferior mailboxes (mailboxes located in folders or
subdirectories) if a wildcard mask is not specified. If a wildcard mask is specified, this option has no
effect and only those mailboxes which match the wildcard will be returned.

Subscribed mailboxes are those which were specified using the ImapSubscribeMailbox function.
Marked mailboxes are typically those which have some special importance to the user.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ImapDeleteMailbox, ImapGetCurrentMailbox, ImapGetMailboxStatus, ImapGetNextMailbox,
ImapRenameMailbox, ImapSelectMailbox

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapGetHeaderValue Function

INT WINAPI ImapGetHeaderValue(
 HCLIENT hClient,
 UINT nMessageId,
 LPCTSTR lpszHeader,
 LPTSTR lpszValue,
 INT nMaxLength
);

The ImapGetHeaderValue function returns the value of a header field in the specified message.

Parameters
hClient

Handle to the client session.

nMessageId

Number of message to retrieve header value from. This value must be greater than zero. The
first message in the mailbox is message number one.

lpszHeader

Pointer to a string which specifies the message header to retrieve. The colon should not be
included in this string.

lpszValue

Pointer to a string buffer that will contain the value of the specified message header.

nMaxLength

The maximum number of characters that may be copied into the buffer, including the
terminating null character.

Return Value
If the function succeeds, it returns the length of the header field value. If the header field is not
present in the message, the function will return a value of zero. If the function fails, the return
value is IMAP_ERROR. To get extended error information, call ImapGetLastError.

Remarks
The ImapGetHeaderValue function returns the value of header field from the specified message.
This allows an application to be able to easily determine the value of a header such as the sender,
or the subject of the message. Any header field, including non-standard extensions, may be
returned by this function.

To return the value of a header field from a specific part of a multipart MIME message, use the
ImapGetHeaderValueEx function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ImapGetHeaderValueEx, ImapGetMessageHeaders, ImapGetMessageId, ImapGetMessageSender

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapGetHeaderValueEx Function

INT WINAPI ImapGetHeaderValueEx(
 HCLIENT hClient,
 UINT nMessageId,
 UINT nMessagePart,
 LPVOID lpvReserved,
 LPCTSTR lpszHeader,
 LPTSTR lpszValue,
 INT nMaxLength
);

The ImapGetHeaderValueEx function returns the value of a header field from the specified
message part.

Parameters
hClient

Handle to the client session.

nMessageId

Number of message to retrieve header value from. This value must be greater than zero. The
first message in the mailbox is message number one.

nMessagePart

The message part that the header value will be be retrieved from. Message parts start with a
value of one. A value of zero specifies that the RFC822 header field for the message will be
used.

lpvReserved

A reserved parameter. This value should always be NULL.

lpszHeader

Pointer to a string which specifies the message header to retrieve. The colon should not be
included in this string.

lpszValue

Pointer to a string buffer that will contain the value of the specified message header.

nMaxLength

The maximum number of characters that may be copied into the buffer, including the
terminating null character.

Return Value
If the function succeeds, it returns the length of the header field value. If the header field is not
present in the message, the function will return a value of zero. If the function fails, the return
value is IMAP_ERROR. To get extended error information, call ImapGetLastError.

Remarks
The ImapGetHeaderValueEx function returns the value of a header field from the specified
message part. This allows an application to be able to easily determine the value of a header such
as the sender, or the subject of the message. Any header field, including non-standard extensions,
may be returned by this function.

To determine if a message is a multipart MIME message, use the ImapGetMessageParts
function. The return value specifies the number of parts in the message, with a value greater than

one indicating that it is a multipart message.

Note that unlike the SocketTools MIME API which considers the first message part to be zero, the
IMAP protocol defines the first message part to be one.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ImapGetHeaderValue, ImapGetMessageHeaders, ImapGetMessageId, ImapGetMessageSender

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapGetIdleThreadId Function

DWORD WINAPI ImapGetIdleThreadId(
 HCLIENT hClient
);

The ImapGetIdleThreadId function returns ID of the thread that is monitoring the client session.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, it returns the ID of the thread that is checking for update notifications
from the server. If there is no active thread monitoring the client session, the function will return
zero.

Remarks
The worker thread that monitors the client connection in the background can terminate if an IMAP
command is sent to the server, if the ImapCancel function is called or if the client disconnects
from the server. The ImapGetIdleThreadId function enables the application to determine if this
background thread is still active or not.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ImapIdle, ImapIdleProc

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapGetLastError Function

DWORD WINAPI ImapGetLastError();

Parameters
None.

Return Value
The return value is the calling thread's last error code value. Functions set this value by calling the
ImapSetLastError function. The return value section of each reference page notes the conditions
under which the function sets the last error code.

Remarks
You should call the ImapGetLastError function immediately when a function's return value
indicates that an error has occurred. That is because some functions call ImapSetLastError(0)
when they succeed, clearing the error code set by the most recently failed function.

Most functions will set the last error code value when they fail; a few functions set it when they
succeed. Function failure is typically indicated by a return value error code such as FALSE, NULL,
INVALID_CLIENT or IMAP_ERROR. Those functions which call ImapSetLastError when they
succeed are noted on the function reference page.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
ImapGetErrorString, ImapSetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapGetMailboxDelimiter Function

INT WINAPI ImapGetMailboxDelimiter(
 HCLIENT hClient,
 LPCTSTR lpszMailbox,
 LPTSTR lpszDelimiter,
 INT nMaxLength
);

The ImapGetMailboxDelimiter function returns the hierarchical path delimiter used for the
specified mailbox.

Parameters
hClient

Handle to the client session.

lpszMailbox

A pointer to a null terminated string which specifies the mailbox name. This parameter may be
NULL or an empty string, in which case the default delimiter will be returned.

lpszDelimiter

A pointer to a null terminated string buffer that will contain the mailbox delimiter.

nMaxLength

The maximum length of the delimiter string, including the terminating null character.

Return Value
If the function succeeds, it returns the length of the delimiter for the specified mailbox, not
including the terminating null character. If an error occurs, the function returns IMAP_ERROR. To
get extended error information, call ImapGetLastError.

Remarks
If the IMAP server supports multiple levels of mailboxes, then a special character or sequence of
characters are used as delimiters between different levels of the mailbox hierarchy. On most
systems, including most UNIX and Windows platforms, the delimiter is the forward slash "/"
character.

It is possible that an IMAP server may only support a flat namespace, in which case this function
will return a value of zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ImapExamineMailbox, ImapSelectMailbox, ImapUnselectMailbox

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapGetMailboxSize Function

DWORD WINAPI ImapGetMailboxSize(
 HCLIENT hClient,
 LPCTSTR lpszMailbox
);

The ImapGetMailboxSize function returns the size of the specified mailbox.

Parameters
hClient

Handle to the client session.

lpszMailbox

A pointer to a string which specifies the mailbox name.

Return Value
If the function succeeds, it returns the size of the mailbox. If an error occurs, the function returns
IMAP_ERROR. To get extended error information, call ImapGetLastError.

Remarks
The ImapGetMailboxSize function may require a significant amount of time to calculate the
mailbox size if there are a large number of messages in the mailbox. If the specified mailbox is not
currently selected, then the current mailbox is unselected, the new mailbox is selected and the size
calculated, and then the original mailbox is re-selected. This will have the side-effect of causing
any messages marked for deletion to be expunged from the mailbox.

Because it can potentially result in long delays, it is not recommended that an application calculate
the mailbox size unless it is absolutely necessary.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ImapCreateMailbox, ImapGetFirstMailbox, ImapGetNextMailbox, ImapRenameMailbox

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapGetMailboxStatus Function

INT WINAPI ImapGetMailboxStatus(
 HCLIENT hClient,
 LPCTSTR lpszMailbox,
 LPIMAPMAILBOXSTATUS lpMailboxStatus
);

The ImapGetMailboxStatus function returns status information about the specified mailbox.

Parameters
hClient

Handle to the client session.

lpszMailbox

A pointer to a null terminated string that specifies the mailbox to return information about.

lpMailboxStatus

A pointer to an IMAPMAILBOXSTATUS structure which contains status information about the
specified mailbox.

Return Value
If the function succeeds, it returns zero. If an error occurs, the function function returns
IMAP_ERROR. To get extended error information, call ImapGetLastError.

Remarks
The ImapGetMailboxStatus function enables an application to obtain status information about a
mailbox without having to select another mailbox or open a second connection to the IMAP server
to examine the mailbox. The information returned is a subset of the information returned when a
mailbox is selected.

If you need to check the status of a mailbox which contains Unicode characters or symbols, it is
recommended you use the Unicode version of this function. The mailbox name will automatically
be converted to modified UTF-7 encoding as defined by the IMAP4 standard. The ANSI version of
this function will only accept mailbox names using modified UTF-7 encoding or UTF-8 encoding.

Requesting information for a mailbox may be a slow operation, requiring the server to open the
mailbox in read-only mode internally in order to obtain some of the status information. For this
reason, this function should not be used to check for new messages; use the ImapCheckMailbox
function instead.

Some IMAP servers may return an error if you attempt to obtain status information about the
currently selected mailbox. The protocol standard states that clients should not use this method on
the currently selected mailbox, and should instead use the information returned by the
ImapSelectMailbox or ImapExamineMailbox functions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also

ImapCheckMailbox, ImapCreateMailbox, ImapExamineMailbox, ImapSelectMailbox

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapGetMailboxUid Function

DWORD WINAPI ImapGetMailboxUid(
 HCLIENT hClient,
 LPCTSTR lpszMailbox
);

The ImapGetMailboxUid function returns the unique identifier for the specified mailbox.

Parameters
hClient

Handle to the client session.

lpszMailbox

A pointer to a null terminated string that specifies the mailbox name.

Return Value
If the function succeeds, it returns a non-zero value. If no unique identifier is assigned to the
mailbox, the function will return zero. If an error occurs, the function returns IMAP_ERROR. To get
extended error information, call ImapGetLastError.

Remarks
The ImapGetMailboxUid function returns an unsigned 32-bit value which uniquely identifies the
mailbox and corresponds to the UIDVALIDITY value returned by the IMAP server. The actual value
is determined by the server and should be considered opaque. The protocol specification requires
that a mailbox's UID must not change unless the mailbox contents are modified or existing
messages in the mailbox have been assigned new UIDs.

An application can use the mailbox UID value in combination with the message UID in order to
uniquely identify a message on the server. However, the application must take into consideration
that the IMAP server can reassign new message UIDs when the mailbox is modified. If the mailbox
and message UIDs are being stored on the local system to track what messages have been
retrieved from the server, the application must check the UID of the mailbox whenever it is
selected. If the mailbox UID has changed, this means that the UIDs for the messages in that
mailbox may have changed. The client should resynchronize with the server, and update it's local
copy of that mailbox.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ImapGetCurrentMailbox, ImapGetMailboxStatus, ImapGetMessageUid

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapGetMessage Function

INT WINAPI ImapGetMessage(
 HCLIENT hClient,
 UINT nMessageId,
 UINT nMessagePart,
 LPVOID lpvMessage,
 LPDWORD lpdwLength,
 DWORD dwOptions
);

The ImapGetMessage function retrieves a message from the server.

Parameters
hClient

Handle to the client session.

nMessageId

Number of message to retrieve from the server. This value must be greater than zero. The first
message in the mailbox is message number one.

nMessagePart

The message part that will be retrieved. A value of zero specifies that the complete message
should be returned. If the message is a multipart MIME message, message parts start with a
value of one.

lpvMessage

A pointer to a byte buffer which will contain the data transferred from the server, or a pointer to
a global memory handle which will reference the data when the function returns.

lpdwLength

A pointer to an unsigned integer which should be initialized to the maximum number of bytes
that can be copied to the buffer specified by the lpvMessage parameter. If the lpvMessage
parameter points to a global memory handle, the length value should be initialized to zero.
When the function returns, this value will be updated with the actual length of the message that
was downloaded.

dwOptions

An unsigned integer value which specifies one or more options. This parameter is constructed
by using a bitwise operator with any of the following values:

Constant Description

IMAP_SECTION_DEFAULT All headers and the complete body of the specified
message or message part are to be retrieved. The
client application is responsible for parsing the header
block. If the message is a MIME multipart message
and the complete message is returned, the application
is responsible for parsing the individual message parts
if necessary.

IMAP_SECTION_HEADER All headers for the specified message or message part
are to be retrieved. The client application is
responsible for parsing the header block.

IMAP_SECTION_MIMEHEADER The MIME headers for the specified message or
message are to be retrieved. Only those header fields
which are used in MIME messages, such as Content-
Type will be returned to the client. This is typically
useful when processing the header for a multipart
message which contains file attachments. The client
application is responsible for parsing the header block.

IMAP_SECTION_BODY The body of the specified message or message part is
to be retrieved. For a MIME formatted message, this
may include data that is uuencoded or base64
encoded. The application is responsible for decoding
this data.

IMAP_SECTION_PREVIEW The message header or body is being previewed and
should not be marked as read by the server. This
prevents the message from having the
IMAP_FLAG_SEEN flag from being automatically set
when the message data is retrieved.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
IMAP_ERROR. To get extended error information, call ImapGetLastError.

Remarks
The ImapGetMessage function is used to retrieve a message from the server and copy it into a
local buffer. The function may be used in one of two ways, depending on the needs of the
application. The first method is to pre-allocate a buffer large enough to store the contents of the
message. In this case, the lpvMessage parameter will point to the buffer that was allocated, the
value that the lpdwLength parameter points to should be initialized to the size of that buffer.

The second method that can be used is have the lpvMessage parameter point to a global
memory handle which will contain the message data when the function returns. In this case, the
value that the lpdwLength parameter points to must be initialized to zero. It is important to note
that the memory handle returned by the function must be freed by the application, otherwise a
memory leak will occur.

This function will cause the current thread to block until the transfer completes, a timeout occurs
or the transfer is canceled. During the transfer, the IMAP_EVENT_PROGRESS event will be
periodically fired, enabling the application to update any user interface controls. Event notification
must be enabled, either by calling ImapEnableEvents, or by registering a callback function using
the ImapRegisterEvent function.

To determine if a message is a multipart MIME message, use the ImapGetMessageParts
function. The return value specifies the number of parts in the message, with a value greater than
one indicating that it is a multipart message. Combining the IMAP_SECTION_HEADER and
IMAP_SECTION_BODY options will only return the header and body for the specified message if
the nMessagePart parameter is zero. Due to a limitation of the IMAP FETCH command, if a
message part is specified then only the body of that message part will be returned.

Note that unlike the SocketTools MIME API which considers the first message part to be zero, the
IMAP protocol defines the first message part to be one.

Requirements

Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
ImapGetMessageCount, ImapGetMessageHeaders, ImapGetMessageParts, ImapStoreMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapGetMessageCount Function

INT WINAPI ImapGetMessageCount(
 HCLIENT hClient
);

The ImapGetMessageCount function returns the number of messages that are available in the
currently selected mailbox.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, it returns the number of messages in the currently selected mailbox. If no
messages are available, this function will return zero. If the function fails, the return value is
IMAP_ERROR. To get extended error information, call ImapGetLastError.

Remarks
The ImapGetMessageCount function does not distinguish between messages that are marked
for deletion and those which are not. This is because messages that are marked for deletion on an
IMAP server can still be accessed until the mailbox is expunged or unselected. This differs from the
POP3 protocol, where messages cannot be accessed once they have been marked for deletion.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
ImapDeleteMessage, ImapGetHeaderValue, ImapGetMessage, ImapGetMessageCountEx,
ImapGetMessageHeaders, ImapStoreMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapGetMessageCountEx Function

INT WINAPI ImapGetMessageCountEx(
 HCLIENT hClient,
 UINT *lpnLastMessage,
 DWORD *lpdwMailboxSize
);

The ImapGetMessageCountEx function returns the number of messages that are available in the
currently selected mailbox, and optionally the size of the mailbox in bytes.

Parameters
hClient

Handle to the client session.

lpnLastMessage

Address of a variable that receives the number of the last valid message in the mailbox. If a
NULL value is specified, this argument is ignored.

lpdwMailboxSize

Address of a variable that receives the current size of the mailbox. If a NULL value is specified,
this argument is ignored.

Return Value
If the function succeeds, it returns the number of messages that are currently available. If no
messages are available, this function will return zero. If the function fails, the return value is
IMAP_ERROR. To get extended error information, call ImapGetLastError.

Remarks
The ImapGetMessageCountEx function is provided for compatibility with the POP3 API. The
lpnLastMessage parameter will always contain the same value returned by the function since there
is no distinction between the message count and the last available message. This is because
messages that are marked for deletion on an IMAP server can still be accessed until the mailbox is
expunged or unselected. This differs from the POP3 protocol, where messages cannot be
accessed once they have been marked for deletion.

If the lpdwMailboxSize parameter is specified, this function will call ImapGetMailboxSize to
determine the size of the currently selected mailbox. Unlike the POP3 protocol, calculating the
mailbox size may require a significant amount of time if there are a large number of messages in
the mailbox. It is not recommended that an application request the mailbox size unless it is
absolutely necessary.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ImapDeleteMessage, ImapGetHeaderValue, ImapGetMailboxSize, ImapGetMessage,
ImapGetMessageHeaders, ImapStoreMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapGetMessageFlags Function

BOOL WINAPI ImapGetMessageFlags(
 HCLIENT hClient,
 UINT nMessageId,
 LPDWORD lpdwMessageFlags
);

The ImapGetMessageFlags function returns the message flags for the specified message.

Parameters
hClient

Handle to the client session.

nMessageId

Number of message to obtain the message flags for. This value must be greater than zero. The
first message in the mailbox is message number one.

lpdwMessageFlags

Pointer to an unsigned integer that will contain the message flags for the specified message.
The value may be zero, or one or more of the following values:

Constant Description

IMAP_FLAG_ANSWERED The message has been answered.

IMAP_FLAG_DELETED The message has been marked for deletion.

IMAP_FLAG_DRAFT The message has not been completed and is marked as a
draft copy.

IMAP_FLAG_URGENT The message has been flagged for urgent or special
attention.

IMAP_FLAG_RECENT The message has been added to the mailbox recently.

IMAP_FLAG_SEEN The message has been read.

Return Value
If the function succeeds, the return value is non-zero and the lpdwMessageFlags parameter
contains the status flags for the specified message. If the function fails, the return value is zero. To
get extended error information, call ImapGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
ImapDeleteMessage, ImapGetMessageCount, ImapSetMessageFlags

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapGetMessageHeaders Function

INT WINAPI ImapGetMessageHeaders(
 HCLIENT hClient,
 UINT nMessageId,
 LPVOID lpvHeaders,
 LPDWORD lpdwLength
);

The ImapGetMessageHeaders function retrieves the headers for the specified message from the
server.

Parameters
hClient

Handle to the client session.

nMessageId

Number of message to retrieve from the server. This value must be greater than zero. The first
message in the mailbox is message number one.

lpvHeaders

A pointer to a byte buffer which will contain the data transferred from the server, or a pointer to
a global memory handle which will reference the data when the function returns.

lpdwLength

A pointer to an unsigned integer which should be initialized to the maximum number of bytes
that can be copied to the buffer specified by the lpvHeaders parameter. If the lpvHeaders
parameter points to a global memory handle, the length value should be initialized to zero.
When the function returns, this value will be updated with the actual length of the message that
was downloaded.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
IMAP_ERROR. To get extended error information, call ImapGetLastError.

Remarks
The ImapGetMessagHeaders function is used to retrieve a message header block from the
server and copy it into a local buffer. The function may be used in one of two ways, depending on
the needs of the application. The first method is to pre-allocate a buffer large enough to store the
contents of the file. In this case, the lpvHeaders parameter will point to the buffer that was
allocated, the value that the lpdwLength parameter points to should be initialized to the size of
that buffer.

The second method that can be used is have the lpvHeaders parameter point to a global memory
handle which will contain the file data when the function returns. In this case, the value that the
lpdwLength parameter points to must be initialized to zero. It is important to note that the
memory handle returned by the function must be freed by the application, otherwise a memory
leak will occur.

This function will cause the current thread to block until the file transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the IMAP_EVENT_PROGRESS event will be
periodically fired, enabling the application to update any user interface controls. Event notification
must be enabled, either by calling ImapEnableEvents, or by registering a callback function using

the ImapRegisterEvent function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
ImapGetMessage, ImapGetMessageCount, ImapGetMessageParts, ImapStoreMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapGetMessageHeadersEx Function

INT WINAPI ImapGetMessageHeadersEx(
 HCLIENT hClient,
 UINT nMessageId,
 DWORD dwReserved,
 LPDWORD lpdwMessageUID,
 LPDWORD lpdwMessageFlags,
 LPVOID lpvHeaders,
 LPDWORD lpdwLength
);

The ImapGetMessageHeadersEx function retrieves the headers, unique ID and flags for the
specified message.

Parameters
hClient

Handle to the client session.

nMessageId

Number of message to retrieve from the server. This value must be greater than zero. The first
message in the mailbox is message number one.

dwReserved

A reserved parameter, this value should always be zero.

lpdwMessageUID

A pointer to an unsigned integer which will contain the unique ID assigned to the message by
the server when the function returns. This parameter may be NULL if this information is not
required.

lpdwMessageFlags

A pointer to an unsigned integer which will contain the message flags when the function
returns. This parameter may be NULL if this information is not required, otherwise the value may
be zero or one or more of the following bitflags:

Constant Description

IMAP_FLAG_ANSWERED The message has been answered.

IMAP_FLAG_DELETED The message has been marked for deletion.

IMAP_FLAG_DRAFT The message has not been completed and is marked as a
draft copy.

IMAP_FLAG_URGENT The message has been flagged for urgent or special
attention.

IMAP_FLAG_RECENT The message has been added to the mailbox recently.

IMAP_FLAG_SEEN The message has been read.

lpvHeaders

A pointer to a byte buffer which will contain the data transferred from the server, or a pointer to
a global memory handle which will reference the data when the function returns.

lpdwLength

A pointer to an unsigned integer which should be initialized to the maximum number of bytes
that can be copied to the buffer specified by the lpvHeaders parameter. If the lpvHeaders
parameter points to a global memory handle, the length value should be initialized to zero.
When the function returns, this value will be updated with the actual length of the message that
was downloaded.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
IMAP_ERROR. To get extended error information, call ImapGetLastError.

Remarks
The ImapGetMessagHeadersEx function is used to retrieve a message header block from the
server and copy it into a local buffer. The function may be used in one of two ways, depending on
the needs of the application. The first method is to pre-allocate a buffer large enough to store the
contents of the file. In this case, the lpvHeaders parameter will point to the buffer that was
allocated, the value that the lpdwLength parameter points to should be initialized to the size of
that buffer.

The second method that can be used is have the lpvHeaders parameter point to a global memory
handle which will contain the file data when the function returns. In this case, the value that the
lpdwLength parameter points to must be initialized to zero. It is important to note that the
memory handle returned by the function must be freed by the application, otherwise a memory
leak will occur.

If the lpdwMessageUID and/or lpdwMessageFlags parameters are NULL, they will be ignored.
Otherwise, the function will always initialize the values to zero and only sets them if the header
block for the message can be retrieved.

This function will cause the current thread to block until the file transfer completes, a timeout
occurs or the transfer is canceled. During the transfer, the IMAP_EVENT_PROGRESS event will be
periodically fired, enabling the application to update any user interface controls. Event notification
must be enabled, either by calling ImapEnableEvents, or by registering a callback function using
the ImapRegisterEvent function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
ImapGetMessage, ImapGetMessageCount, ImapGetMessageFlags, ImapGetMessageParts,
ImapStoreMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapGetMessageId Function

INT WINAPI ImapGetMessageId(
 HCLIENT hClient,
 UINT nMessageId,
 LPTSTR lpszMessageId,
 INT nMaxLength
);

The ImapGetMessageId function returns the message identifier string for the specified message.

Parameters
hClient

Handle to the client session.

nMessageId

Number of message to retrieve the unique identifier for. This value must be greater than zero.
The first message in the mailbox is message number one.

lpszMessageId

Address of a string buffer to receive the message identifier. This should be at least 64 bytes in
length.

nMaxLength

The maximum length of the string buffer.

Return Value
If the function succeeds, the return value is the length of the unique identifier string. If the function
fails, the return value is IMAP_ERROR. To get extended error information, call ImapGetLastError.

Remarks
The ImapGetMessageId function returns the message identifier from the Message-ID header of
the specified message. The returned value is a string which can be used to identify a specific
message, regardless if the message is moved to a different mailbox.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ImapGetHeaderValue, ImapGetMessage, ImapGetMessageHeaders, ImapGetMessageSender

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapGetMessageParts Function

INT WINAPI ImapGetMessageParts(
 HCLIENT hClient,
 UINT nMessageId
);

The ImapGetMessageParts function returns the number of parts in a MIME multipart message
on the server.

Parameters
hClient

Handle to the client session.

nMessageId

Number of message to retrieve the part count for. This value must be greater than zero. The
first message in the mailbox is message number one.

Return Value
If the function succeeds, the return value is the number of parts in the specified message. If the
function fails, the return value is IMAP_ERROR. To get extended error information, call
ImapGetLastError.

Remarks
The ImapGetMessageParts function can be used to determine if a message on the server
contains multiple parts. A multipart MIME message typically contains file attachments or multiple
representations of the message, such as a version of the message in plain text and another using
HTML markup.

If the function returns a value of one, then the message does not contain multiple parts and is a
standard RFC822 formatted message. A value greater than one indicates that the message does
have multiple parts. The ImapGetMessageEx function may be used to retrieve the data for a
specific part of the message.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
ImapGetHeaderValue, ImapGetMessage, ImapGetMessageHeaders, ImapGetMessageId,
ImapGetMessageSender

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapGetMessageSender Function

INT WINAPI ImapGetMessageSender(
 HCLIENT hClient,
 UINT nMessageId,
 LPTSTR lpszAddress,
 INT nMaxLength
);

The ImapGetMessageSender function returns the sender's address for the specified message.

Parameters
hClient

Handle to the client session.

nMessageId

Number of message to retrieve header value from. This value must be greater than zero. The
first message in the mailbox is message number one.

lpszAddress

Pointer to a string buffer that will contain the address of the message sender.

nMaxLength

The maximum number of characters that may be copied into the buffer, including the
terminating null character.

Return Value
If the function succeeds, it returns the length of the address. If the sender cannot be determined,
the function will return a value of zero. If the function fails, the return value is IMAP_ERROR. To get
extended error information, call ImapGetLastError.

Remarks
The ImapGetMessageSender function returns the email address specified in the Return-Path
header field. This allows an application to be able to easily determine the sender, without parsing
the header or downloading the contents of the message.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ImapGetHeaderValue, ImapGetMessageHeaders, ImapGetMessageId

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapGetMessageSize Function

DWORD WINAPI ImapGetMessageSize(
 HCLIENT hClient,
 UINT nMessageId
);

The ImapGetMessageSize function returns the size of the specified message.

Parameters
hClient

Handle to the client session.

nMessageId

Number of message to retrieve size of. This value must be greater than zero. The first message
in the mailbox is message number one.

Return Value
If the function succeeds, the return value is the size of the specified message in bytes. If the
function fails, the return value is IMAP_ERROR. To get extended error information, call
ImapGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
ImapGetHeaderValue, ImapGetMessageHeaders, ImapGetMessageId, ImapGetMessageSender

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapGetMessageUid Function

DWORD WINAPI ImapGetMessageUid(
 HCLIENT hClient,
 UINT nMessageId
);

The ImapGetMessageUid function returns the unique identifier (UID) for the specified message in
the current mailbox.

Parameters
hClient

Handle to the client session.

nMessageId

Number of message to obtain the unique identifier for. This value must be greater than zero.
The first message in the mailbox is message number one.

Return Value
If the function succeeds, it returns a non-zero value. If no unique identifier is assigned to the
message, the function will return zero. If an error occurs, the function returns IMAP_ERROR. To get
extended error information, call ImapGetLastError.

Remarks
The ImapGetMessageUid function returns an unsigned integer value which specifies a unique
identifier for this message. The actual value is determined by the server and should be considered
opaque.

An application can use the message UID value in combination with the mailbox UID in order to
uniquely identify a message on the server. However, the application must take into consideration
that the IMAP server can reassign new message UIDs when the mailbox is modified. If the mailbox
and message UIDs are being stored on the local system to track what messages have been
retrieved from the server, the application must check the UID of the mailbox whenever it is
selected. If the mailbox UID has changed, this means that the UIDs for the messages in that
mailbox may have changed. The client should resynchronize with the server, and update it's local
copy of that mailbox.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
ImapGetCurrentMailbox, ImapGetMailboxStatus, ImapGetMailboxUid

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapGetNewMessages Function

INT WINAPI ImapGetNewMessages(
 HCLIENT hClient,
 UINT* lpnMessageIds,
 INT nMaxMessages
);

The ImapGetNewMessages function returns the message identifiers for those messages that
have recently been added to the mailbox and have not been read.

Parameters
hClient

Handle to the client session.

lpnMessageIds

A pointer to an array of unsigned integers that will contain the message identifiers of those
messages that have recently been added to the mailbox and have not been read. This
parameter may be NULL, in which case the function will return the number of new messages
but will not return their identifiers.

nMaxMessages

The maximum number of message identifiers that may be stored in the lpnMessageIds array. If
the lpnMessageIds parameter is NULL, this value should be zero.

Return Value
If the function succeeds, the return value is the number of new messages in the current mailbox. If
the function fails, the return value is IMAP_ERROR. To get extended error information, call
ImapGetLastError.

Remarks
The message identifiers returned by this function are only valid until the mailbox is expunged or
another mailbox is selected. Once a message has been read using ImapGetMessage or
ImapStoreMessage, it is no longer considered to be a new message.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
ImapGetDeletedMessages, ImapGetMessageCount, ImapGetMessageFlags,
ImapGetUnseenMessages, ImapSearchMailbox

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapGetNextMailbox Function

INT WINAPI ImapGetNextMailbox(
 HCLIENT hClient,
 LPTSTR lpszMailbox,
 INT nMaxLength
 LPDWORD lpdwFlags
);

The ImapGetNextMailbox function returns the name of the next matching mailbox.

Parameters
hClient

Handle to the client session.

lpszMailbox

A pointer to a string buffer which will contain the next matching mailbox. This parameter cannot
be NULL. A minimum buffer size of at least 128 character is recommended. If the Unicode
version of this function is called, the mailbox name will automatically be converted from
modified UTF-7 encoding to Unicode. If the ANSI version of this function is called, the mailbox
name will be returned using modified UTF-7 encoding.

nMaxLength

Specifies the maximum length of the string buffer. The maximum length of the buffer should be
large enough to accommodate most path names on the IMAP server.

lpdwFlags

A pointer to an unsigned integer which will contain the mailbox flags for the next matching
mailbox. This parameter may be NULL, in which case the mailbox flags are not returned.
Otherwise, one or more of the following bit flags may be returned:

Constant Description

IMAP_FLAG_NOINFERIORS The mailbox does not contain any sub-mailboxes. In the
IMAP protocol, these are referred to as inferior
hierarchical mailbox names.

IMAP_FLAG_NOSELECT The mailbox cannot be selected or examined. This flag is
typically used by servers to indicate that the mailbox name
refers to a directory on the server, not a mailbox file.

IMAP_FLAG_MARKED The mailbox is marked as being of interest to a client. If
this flag is used, it typically means that the mailbox
contains messages. An application should not depend on
this flag being present for any given mailbox. Some IMAP
servers do not support marked or unmarked flags for
mailboxes.

IMAP_FLAG_UNMARKED The mailbox is marked as not being of interest to a client.
If this flag is used, it typically means that the mailbox does
not contain any messages. An application should not
depend on this flag being present for any given mailbox.
Some IMAP servers do not support marked or unmarked
flags for mailboxes.

Return Value
If the function succeeds, it returns the length of the mailbox name. If an error occurs, the function
returns IMAP_ERROR. To get extended error information, call ImapGetLastError.

Remarks
The ImapGetNextMailbox function returns the next matching mailbox name. When the last
mailbox has been returned, the next call to this function will result in an error, with the last error
code set to ST_ERROR_NO_MORE_MAILBOXES.

It is recommended you use the Unicode version of this function, particularly if it is possible that
mailbox names will contain Unicode characters or symbols. If the ANSI version of this function is
called and a mailbox name contains Unicode characters, the name will be returned using a
modified UTF-7 encoding format as defined by the IMAP4 standard. The mailbox name will not be
returned as UTF-8 Unicode or as ANSI text converted to the current locale. If the Unicode version
of this function is called, mailbox names will be automatically converted from modified UTF-7 to
UTF-16 Unicode.

Subscribed mailboxes are those which were specified using the ImapSubscribeMailbox function.
Marked mailboxes are typically those which have some special importance to the user.

For more information about enumerating the available mailboxes on the IMAP server, refer to the
ImapGetFirstMailbox function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ImapDeleteMailbox, ImapGetCurrentMailbox, ImapGetFirstMailbox, ImapGetMailboxStatus,
ImapRenameMailbox, ImapSelectMailbox

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapGetResultCode Function

INT WINAPI ImapGetResultCode(
 HCLIENT hClient
);

The ImapGetResultCode function reads the result code returned by the server in response to a
command. The result code is an integer value, and indicates if the operation succeeded or failed.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is the result code. If the function fails, it returns
IMAP_ERROR. To get extended error information, call ImapGetLastError.

Remarks
The following result codes may be returned by the IMAP server:

Constant Description

IMAP_RESULT_UNKNOWN An unknown result code was returned by the server.

IMAP_RESULT_OK The previous command completed successfully. The result
string contains information about the results of the
command.

IMAP_RESULT_NO The previous command could not be completed. The
result string contains information about why the command
failed.

IMAP_RESULT_BAD The previous command could not be completed, the
command may be invalid or not supported on the server.
The result string contains information about why the
command failed.

IMAP_RESULT_CONTINUE The command has executed and is waiting for additional
data from the client.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
ImapCommand, ImapGetResultString

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapGetResultString Function

INT WINAPI ImapGetResultString(
 HCLIENT hClient,
 LPTSTR lpszResult,
 INT nMaxLength
);

The ImapGetResultString function returns the last message sent by the server along with the
result code.

Parameters
hClient

Handle to the client session.

lpszResult

A pointer to the buffer that will contain the result string returned by the server.

nMaxLength

The maximum number of characters that may be copied into the result string buffer, including
the terminating null character.

Return Value
If the function succeeds, the return value is the length of the result string. If a value of zero is
returned, this means that no result string was sent by the server. If the function fails, the return
value is IMAP_ERROR. To get extended error information, call ImapGetLastError.

Remarks
The ImapGetResultString function is most useful when an error occurs because the server will
typically include a brief description of the cause of the error. This can then be parsed by the
application or displayed to the user. The result string is updated each time the client sends a
command to the server and then calls ImapGetResultCode to obtain the result code for the
operation.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ImapCommand, ImapGetResultCode

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapGetSecurityInformation Function

BOOL WINAPI ImapGetSecurityInformation(
 HCLIENT hClient,
 LPSECURITYINFO lpSecurityInfo
);

The ImapGetSecurityInformation function returns security protocol, encryption and certificate
information about the current client connection.

Parameters
hClient

Handle to the client session.

lpSecurityInfo

A pointer to a SECURITYINFO structure which contains information about the current client
connection. The dwSize member of this structure must be initialized to the size of the structure
before passing the address of the structure to this function.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call ImapGetLastError.

Remarks
This function is used to obtain security related information about the current client connection to
the server. It can be used to determine if a secure connection has been established, what security
protocol was selected, and information about the server certificate. Note that a secure connection
has not been established, the dwProtocol structure member will contain the value
SECURITY_PROTOCOL_NONE.

Example
The following example notifies the user if the connection is secure or not:

SECURITYINFO securityInfo;

securityInfo.dwSize = sizeof(SECURITYINFO);
if (ImapGetSecurityInformation(hClient, &securityInfo))
{
 if (securityInfo.dwProtocol == SECURITY_PROTOCOL_NONE)
 {
 MessageBox(NULL, _T("The connection is not secure"),
 _T("Connection"), MB_OK);
 }
 else
 {
 if (securityInfo.dwCertStatus == SECURITY_CERTIFICATE_VALID)
 {
 MessageBox(NULL, _T("The connection is secure"),
 _T("Connection"), MB_OK);
 }
 else
 {
 MessageBox(NULL, _T("The server certificate not valid"),
 _T("Connection"), MB_OK);
 }

 }
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ImapConnect, ImapCreateSecurityCredentials, ImapDeleteSecurityCredentials

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapGetStatus Function

INT WINAPI ImapGetStatus(
 HCLIENT hClient
);

The ImapGetStatus function returns the current status of the client session.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is the client status code. If the function fails, the return
value is IMAP_ERROR. To get extended error information, call ImapGetLastError.

Remarks
The ImapGetStatus function returns a numeric code which identifies the current state of the client
session. The following values may be returned:

Value Constant Description

1 IMAP_STATUS_IDLE The client is current idle and not sending or
receiving data.

2 IMAP_STATUS_CONNECT The client is establishing a connection with the
server.

3 IMAP_STATUS_READ The client is reading data from the server.

4 IMAP_STATUS_WRITE The client is writing data to the server.

5 IMAP_STATUS_DISCONNECT The client is disconnecting from the server.

In a multithreaded application, any thread in the current process may call this function to obtain
status information for the specified client session.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
ImapIsBlocking, ImapIsConnected, ImapIsReadable, ImapIsWritable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapGetTimeout Function

INT WINAPI ImapGetTimeout(
 HCLIENT hClient
);

The ImapGetTimeout function returns the number of seconds the client will wait for a response
from the server. Once the specified number of seconds has elapsed, the function will fail and
return to the caller.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is the timeout period in seconds. If the function fails, the
return value is IMAP_ERROR. To get extended error information, call ImapGetLastError.

Remarks
The timeout value is only used with blocking client connections. A value of zero indicates that the
default timeout period of 20 seconds should be used.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
ImapConnect, ImapIsReadable, ImapIsWritable, ImapRead, ImapSetTimeout, ImapWrite

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapGetTransferStatus Function

INT WINAPI ImapGetTransferStatus(
 HCLIENT hClient,
 LPIMAPTRANSFERSTATUS lpStatus
);

The ImapGetTransferStatus function returns information about the current file transfer in
progress.

Parameters
hClient

Handle to the client session.

lpStatus

A pointer to an IMAPTRANSFERSTATUS structure which contains information about the status of
the current file transfer.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
IMAP_ERROR. To get extended error information, call ImapGetLastError.

Remarks
The ImapGetTransferStatus function returns information about the current file transfer, including
the average number of bytes transferred per second and the estimated amount of time until the
transfer completes. If there is no file currently being transferred, this function will return the status
of the last successful transfer made by the client.

In a multithreaded application, any thread in the current process may call this function to obtain
status information for the specified client session.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ImapEnableEvents, ImapGetStatus, ImapRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapGetUnseenMessages Function

INT WINAPI ImapGetUnseenMessages(
 HCLIENT hClient,
 UINT * lpnMessageIds,
 INT nMaxMessages
);

The ImapGetUnseenMessages function returns the message identifiers for those messages that
have not been read.

Parameters
hClient

Handle to the client session.

lpnMessageIds

A pointer to an array of unsigned integers that will contain the message identifiers of those
messages that have not been read. This parameter may be NULL, in which case the function will
return the number of unseen messages but will not return their identifiers.

nMaxMessages

The maximum number of message identifiers that may be stored in the lpnMessageIds array. If
the lpnMessageIds parameter is NULL, this value should be zero.

Return Value
If the function succeeds, the return value is the number of unseen messages in the current
mailbox. If the function fails, the return value is IMAP_ERROR. To get extended error information,
call ImapGetLastError.

Remarks
The message identifiers returned by this function are only valid until the mailbox is expunged or
another mailbox is selected. Once a message has been read using ImapGetMessage or
ImapStoreMessage, it is no longer considered to be an unseen message.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
ImapGetDeletedMessages, ImapGetMessageCount, ImapGetMessageFlags,
ImapGetNewMessages, ImapSearchMailbox

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapIdle Function

INT WINAPI ImapIdle(
 HCLIENT hClient,
 UINT nTimeout,
 DWORD dwOptions,
 IMAPIDLEPROC lpfnIdleProc,
 DWORD_PTR dwParam
);

The ImapIdle function enables mailbox status monitoring for the client session, allowing the client
to receive notifications from the server whenever a new message arrives or a message is
expunged from the currently selected mailbox. This is typically used as an alternative to the client
periodically polling the server for status information.

Parameters
hClient

Handle to the client session.

nTimeout

Specifies the timeout period in seconds to wait for a notification from the server. This parameter
is only used when the IMAP_IDLE_WAIT option has been specified.

dwOptions

Specifies the options which should be used when enabling idle monitoring. The following
options are supported:

Constant Description

IMAP_IDLE_NOWAIT The function should return immediately after idle processing has
been enabled. When this option is used, the application may
continue to perform other functions while the client session is
monitored for status updates sent by the server. The client will
continue to monitor status changes until an IMAP command
issued or the client disconnects from the server.

IMAP_IDLE_WAIT The function should wait until the server sends a status update,
or until the timeout period is reached. The client will stop
monitoring status changes when the function returns. If this
option is used in a single-threaded application, normal message
processing can be impeded, causing the application to appear
non-responsive until the timeout period is reached. It is strongly
recommended that single-threaded applications with a user
interface specify the IMAP_IDLE_NOWAIT option instead.

lpfnIdleProc

A pointer to an IMAPIDLEPROC callback function that will be invoked whenever the server sends
an update notification to the client. This parameter must specify a valid function address and
cannot be a NULL pointer.

dwParam

A user-defined value that is passed back to the caller whenever the callback function is invoked.
This can be used to provide additional state information to the client. If it is not needed, the

caller should use a value of zero.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
IMAP_ERROR. To get extended error information, call ImapGetLastError.

Remarks
Many IMAP servers support the ability to asynchronously send status updates to the client, rather
than have the client periodically poll the server. The client enables this feature by calling ImapIdle
and providing the address of a callback function that will be invoked whenever the server sends an
update notification to the client. Typically these updates inform the client that a new message has
arrived or that a message has been expunged from the mailbox.

The ImapIdle function can operate in two modes, based on the options specified by the caller. If
the option IMAP_IDLE_NOWAIT is specified, the function begins monitoring the client session and
returns control immediately to the caller. If the server sends a update notification, the callback
function will be invoked with information about the status change. If the option IMAP_IDLE_WAIT
is specified, the function will block waiting for the server to send a notification message to the
client. The function will return when either a message is received or the timeout period is
exceeded.

Sending an IMAP command to the server will cause the client to stop monitoring the session for
status changes. To explicitly stop monitoring the session, use the ImapCancel function. To
determine if the current client session is being monitored, use the ImapGetIdleThreadId function.
A non-zero return value indicates that the client session is idle and being monitored.

This function works by sending the IDLE command to the server and starting a worker thread
which monitors the connection and looks for untagged responses issued by the server. Callbacks
will be invoked for EXISTS, EXPUNGE and RECENT messages. Note that some servers may
periodically send untagged OK messages to the client, indicating that the connection is still active;
these messages are explicitly ignored. Because the monitoring is performed in a different thread,
the callback function is invoked in the context of that thread. Client event notifications are disabled
while inside the callback function, and the ImapIdle function cannot be used to restart monitoring
from within a callback function.

Applications should not perform any operation that takes a significant amount of time or updates
the user interface from within the callback function. Instead, use flags or send application defined
messages to indicate a change in state. For example, if the server sends a notification that a new
email message has arrived, the application should not attempt to read the new message and
update the user interface from within the callback function. Instead, it could use the PostMessage
function to send an application-defined message to the UI thread indicating the change in state.
The application would have a message handler for that Windows message and update the user
interface, indicating that a new message has arrived.

An application should never make an assumption about how a particular server may send update
notifications to the client. Servers can be configured to use different intervals at which notifications
are sent. For example, a server may send new message notifications immediately, but may
periodically notify the client when a message has been expunged. Alternatively, a server may only
send notifications at fixed intervals, in which case the client would not be notified of any new
messages until the interval period is reached. It is not possible for a client to know what a
particular server's update interval is. Applications that require that degree of control should not
use ImapIdle and should poll the server instead.

Example

// Begin monitoring the client session for status changes; when a new
// message arrives or a message is expunged, the UpdateHandler callback
// function will be invoked.

BOOL MonitorUpdates(HWND hwndNotify)
{
 INT nResult;

 nResult = ImapIdle(hClient, 0, IMAP_IDLE_NOWAIT, UpdateHandler, hwndNotify);

 if (nResult == IMAP_ERROR)
 {
 ShowError(ImapGetLastError());
 return FALSE;
 }

 return TRUE;
}

// This function is called whenever the server notifies the client
// that a new message has arrived or a message has been expunged from
// the current mailbox

#define WM_APP_NEWMESSAGE (WM_APP+1)
#define WM_APP_EXPUNGED (WM_APP+2)

VOID CALLBACK UpdateHandler(HCLIENT hClient, UINT nUpdateId, UINT nMessageId,
DWORD_PTR dwParam)
{
 switch (nUpdateId)
 {
 case IMAP_UPDATE_MESSAGE:
 {
 // Send a message indicating that a new message has arrived
 PostMessage((HWND)dwParam, WM_APP_NEWMESSAGE, nMessageId, 0);
 }
 break;

 case IMAP_UPDATE_EXPUNGE:
 {
 // Send a message indicating that a message has been expunged
 PostMessage((HWND)dwParam, WM_APP_EXPUNGED, nMessageId, 0);
 }
 break;
 }
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ImapGetIdleThreadId, ImapIdleProc

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapIdleProc Function

VOID CALLBACK ImapIdleProc(
 HCLIENT hClient,
 UINT nUpdateId,
 UINT nMessageId,
 DWORD_PTR dwParam
);

The ImapIdleProc function is an application-defined callback function that is invoked whenever
the server sends a status update to the client. For more information about status monitoring, refer
to the ImapIdle function.

Parameters
hClient

Handle to the client session.

nUpdateId

An unsigned integer which specifies the type of update notification that has been sent by the
server. It may be one of the following values:

Constant Description

IMAP_UPDATE_UNKNOWN The server has sent an unrecognized notification
message. The value of the nMessageId argument is
undefined for this type of notification. This does not
necessarily reflect an error condition, as some servers
may send additional notification messages beyond the
standard EXISTS, EXPUNGE and RECENT messages. Most
applications should ignore this type of notification.

IMAP_UPDATE_MESSAGE The server has sent notification message to the client
indicating that a new message has arrived. The
nMessageId argument will contain the message number
for the new message. Typically this update notification
occurs shortly after the new message has been stored in
the current mailbox.

IMAP_UPDATE_EXPUNGE The server has sent a notification message to the client
indicating that a message has been removed from the
current mailbox. The nMessageId argument will contain
the message number for the message that has been
removed. It is recommended that the application re-
examine the mailbox when this notification is received.
Typically this notification is only sent periodically by the
server, and may not be sent immediately after a message
has been expunged from the mailbox.

IMAP_UPDATE_MAILBOX The server has sent notification message to the client
indicating that the state of the mailbox has changed. The
nMessageId argument is not used with this notification.
This message is sent periodically by the server and may
not be sent immediately after a new message arrives or a

message is flagged as unread. It is recommended that
the application re-examine the mailbox when this
notification is received.

nMessageId

An unsigned integer which specifies the message number associated with the status change.
Note that this argument is not used with the IMAP_UPDATE_MAILBOX notification and will
contain a value of zero.

dwParam

A user-defined integer value which was specified when the ImapIdle function was called.

Return Value
None.

Remarks
An application must enable this callback function by passing its address to the ImapIdle function.
The ImapIdleProc function is a placeholder for the application-defined function name.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
ImapGetIdleThreadId, ImapIdle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapInitialize Function

BOOL WINAPI ImapInitialize(
 LPCTSTR lpszLicenseKey,
 LPINITDATA lpData
);

The ImapInitialize function initializes the library and validates the specified license key at runtime.

Parameters
lpszLicenseKey

Pointer to a string that specifies the runtime license key to be validated. If this parameter is
NULL, the library will validate the development license installed on the local system.

lpData

Pointer to an INITDATA data structure. This parameter may be NULL if the initialization data for
the library is not required.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call ImapGetLastError. All other client functions will fail until a
license key has been successfully validated.

Remarks
This must be the first function that an application calls before using any of the other functions in
the library. When a NULL license key is specified, the library will only function on the development
system. Before redistributing the application to an end-user, you must insure that this function is
called with a valid license key.

If the lpData argument is specified, it must point to an INITDATA structure which has been
initialized by setting the dwSize member to the size of the structure. All other structure members
should be set to zero. If the function is successful, then the INITDATA structure will be filled with
identifying information about the library.

Although it is only required that ImapInitialize be called once for the current process, it may be
called multiple times; however, each call must be matched by a corresponding call to
ImapUninitialize.

This function dynamically loads other system libraries and allocates thread local storage. If you are
calling the functions in this library from within another DLL, it is important that you do not call the
ImapInitialize or ImapUninitialize functions from the DllMain function because it can result in
deadlocks or access violation errors. If the DLL is linked with the C runtime library (CRT), it will
automatically call the constructors and destructors for static and global C++ objects and has the
same restrictions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also

ImapConnect, ImapDisconnect, ImapUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapIsBlocking Function

BOOL WINAPI ImapIsBlocking(
 HCLIENT hClient
);

The ImapIsBlocking function is used to determine if the client is currently performing a blocking
operation.

Parameters
hClient

Handle to the client session.

Return Value
If the client is performing a blocking operation, the function returns a non-zero value. If the client
is not performing a blocking operation, or the client handle is invalid, the function function returns
zero.

Remarks
Because a blocking operation can allow the application to be re-entered (for example, by pressing
a button while the operation is being performed), it is possible that another blocking function may
be called while it is in progress. Since only one thread of execution may perform a blocking
operation at any one time, an error would occur. The ImapIsBlocking function can be used to
determine if the client is already blocked, and if so, take some other action such as warning the
user that they must wait for the operation to complete.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
ImapCancel, ImapIsConnected, ImapIsReadable, ImapIsWritable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapIsConnected Function

BOOL WINAPI ImapIsConnected(
 HCLIENT hClient
);

The ImapIsConnected function is used to determine if the client is currently connected to a
server.

Parameters
hClient

Handle to the client session.

Return Value
If the client is connected to a server, the function returns a non-zero value. If the client is not
connected, or the client handle is invalid, the function returns zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ImapIsBlocking, ImapIsReadable, ImapIsWritable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapIsReadable Function

BOOL WINAPI ImapIsReadable(
 HCLIENT hClient,
 INT nTimeout,
 LPDWORD lpdwAvail
);

The ImapIsReadable function is used to determine if data is available to be read from the server.

Parameters
hClient

Handle to the client session.

nTimeout

Timeout for server response, in seconds. A value of zero specifies that the connection should be
polled without blocking the current thread.

lpdwAvail

A pointer to an unsigned integer which will contain the number of bytes available to read. This
parameter may be NULL if this information is not required.

Return Value
If the client can read data from the server within the specified timeout period, the function returns
a non-zero value. If the client cannot read any data, the function returns zero.

Remarks
On some platforms, this value will not exceed the size of the receive buffer (typically 64K bytes).
Because of differences between TCP/IP stack implementations, it is not recommended that your
application exclusively depend on this value to determine the exact number of bytes available.
Instead, it should be used as a general indicator that there is data available to be read.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
ImapGetStatus, ImapIsBlocking, ImapIsConnected, ImapIsWritable, ImapRead

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapIsWritable Function

BOOL WINAPI ImapIsWritable(
 HCLIENT hClient,
 INT nTimeout
);

The ImapIsWritable function is used to determine if data can be written to the server.

Parameters
hClient

Handle to the client session.

nTimeout

Timeout for server response, in seconds. A value of zero specifies that the connection should be
polled without blocking the current thread.

Return Value
If the client can write data to the server within the specified timeout period, the function returns a
non-zero value. If the client cannot write any data, the function returns zero.

Remarks
Although this function can be used to determine if some amount of data can be sent to the
remote process it does not indicate the amount of data that can be written without blocking the
client. In most cases, it is recommended that large amounts of data be broken into smaller logical
blocks, typically some multiple of 512 bytes in length.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
ImapGetStatus, ImapIsBlocking, ImapIsConnected, ImapIsReadable, ImapWrite

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapLogin Function

INT WINAPI ImapLogin(
 HCLIENT hClient,
 UINT nAuthType,
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword
);

The ImapLogin function authenticates the specified user in on the server. This function must be
called after the connection has been established, and before attempting to retrieve messages or
perform any other function on the server.

Parameters
hClient

Handle to the client session.

nAuthType

Identifies the type of authentication that should be used when the client logs in to the mail
server. The following authentication methods are supported:

Constant Description

IMAP_AUTH_LOGIN Standard cleartext username and password is sent to the
server. This authentication method is supported by all
servers. Note that some servers may only support LOGIN
authentication if a secure connection has been
established.

IMAP_AUTH_PLAIN Login using the PLAIN authentication mechanism as
defined in RFC 4959. This authentication method is
supported by most servers, although some may require
that client establish a secure connection.

IMAP_AUTH_XOAUTH2 This authentication type will use the XOAUTH2 method
to authenticate the client session. This authentication
method does not require the user password, instead the
lpszPassword parameter must specify the OAuth 2.0
bearer token issued by the service provider. The
application must provide a valid access token which has
not expired, or this function will fail.

IMAP_AUTH_BEARER This authentication type will use the OAUTHBEARER
method to authenticate the client session as defined in
RFC 7628. This authentication method does not require
the user password, instead the lpszPassword parameter
must specify the OAuth 2.0 bearer token issued by the
service provider. The application must provide a valid
access token which has not expired, or this function will
fail.

IMAP_AUTH_ANONYMOUS Login using the anonymous Simple Authentication and
Security Layer (SASL) mechanism as defined in RFC 4505.
If this authentication method is specified, the

lpszUserName parameter should specify a name or
email address acceptable to the mail server. The
lpszPassword parameter is ignored and may be NULL.

lpszUserName

A null terminated string which specifies the user name to be used to authenticate the current
client session.

lpszPassword

A null terminated string which specifies the password to be used when authenticating the
current client session. If you are using the IMAP_AUTH_XOAUTH2 or IMAP_AUTH_BEARER
authentication methods, this parameter is not a password, instead it specifies the OAuth 2.0
bearer token provided by the mail service.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
IMAP_ERROR. To get extended error information, call ImapGetLastError.

Remarks
In some cases, the user may be pre-authenticated by the server. In this case, the function will fail
with the last error set to ST_ERROR_ALREADY_AUTHENTICATED. If a particular authentication
method is not supported by the server, the last error will be set to
ST_ERROR_INVALID_AUTHENTICATION_TYPE. For compatibility with the greatest number of
servers, it is recommended that you use IMAP_AUTH_LOGIN as the authentication method.

You should only use an OAuth 2.0 authentication method if you understand the process of how to
request the access token. Obtaining an access token requires registering your application with the
mail service provider (e.g.: Microsoft or Google), getting a unique client ID associated with your
application and then requesting the access token using the appropriate scope for the service.
Obtaining the initial token will typically involve interactive confirmation on the part of the user,
requiring they grant permission to your application to access their mail account.

The IMAP_AUTH_XOAUTH2 and IMAP_AUTH_BEARER authentication methods are similar, but
they are not interchangeable. Both use an OAuth 2.0 bearer token to authenticate the client
session, but they differ in how the token is presented to the server. It is currently preferable to use
the XOAUTH2 method because it is more widely available and some service providers do not yet
support the OAUTHBEARER method.

Your application should not store an OAuth 2.0 bearer token for later use. They have a relatively
short lifespan, typically about an hour, and are designed to be used with that session. You should
specify offline access as part of the OAuth 2.0 scope if necessary and store the refresh token
provided by the service. The refresh token has a much longer validity period and can be used to
obtain a new bearer token when needed.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ImapConnect, ImapDisconnect, ImapInitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapOpenMessage Function

INT WINAPI ImapOpenMessage(
 HCLIENT hClient,
 UINT nMessageId,
 DWORD dwReserved
);

The ImapOpenMessage function opens the specified message on the server.

Parameters
hClient

Handle to the client session.

nMessageId

Number of message to retrieve. This value must be greater than zero. The first message in the
mailbox is message number one.

dwReserved

A reserved parameter. This value should always be zero.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
IMAP_ERROR. To get extended error information, call ImapGetLastError.

Remarks
The ImapOpenMessage function uses the FETCH command to access the specified message on
the server. The client can then use the the ImapRead function to read the contents of the
message.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ImapCloseMessage, ImapGetMessage, ImapGetMessageHeaders, ImapOpenMessageEx,
ImapRead, ImapStoreMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapOpenMessageEx Function

INT WINAPI ImapOpenMessageEx(
 HCLIENT hClient,
 UINT nMessageId,
 UINT nMessagePart,
 DWORD dwOffset,
 LPDWORD lpdwLength,
 DWORD dwOptions
);

The ImapOpenMessageEx function opens a message or a specific part of a multipart message in
the current mailbox. The message data may also be limited a specific byte offset and length, which
can be useful for previewing the contents.

Parameters
hClient

Handle to the client session.

nMessageId

Number of message to retrieve. This value must be greater than zero. The first message in the
mailbox is message number one.

nMessagePart

The message part that will be retrieved. A value of zero specifies that the complete message
should be returned. If the message is a multipart MIME message, message parts start with a
value of one.

dwOffset

The byte offset into the message. This parameter can be used in conjunction with the
lpdwLength parameter to return a specific part of a message. A value of zero specifies the
beginning of the message.

lpdwLength

A pointer to an unsigned integer value which should be initialized to the maximum number of
bytes to be read, and will contain the size of the message when the function returns. To specify
the entire message, from the offset specified by the dwOffset parameter to the end of the
message, initialize the lpdwLength parameter to a value of -1. This parameter may be NULL if
the message size is not needed.

dwOptions

The low order word of this parameter specifies how the message data will be returned. It may
be one of the following values:

Constant Description

IMAP_SECTION_DEFAULT All headers and the complete body of the
specified message or message part are to be
retrieved. The client application is responsible
for parsing the header block. If the message
is a MIME multipart message and the
complete message is returned, the
application is responsible for parsing the
individual message parts if necessary.

IMAP_SECTION_HEADER All headers for the specified message or
message part are to be retrieved. The client
application is responsible for parsing the
header block.

IMAP_SECTION_MIMEHEADER The MIME headers for the specified message
or message are to be retrieved. Only those
header fields which are used in MIME
messages, such as Content-Type will be
returned to the client. This is typically useful
when processing the header for a multipart
message which contains file attachments. The
client application is responsible for parsing
the header block.

IMAP_SECTION_BODY The body of the specified message or
message part is to be retrieved. For a MIME
formatted message, this may include data
that is uuencoded or base64 encoded. The
application is responsible for decoding this
data.

IMAP_SECTION_PREVIEW The message header or body is being
previewed and should not be marked as read
by the server. This prevents the message
from having the IMAP_FLAG_SEEN flag from
being automatically set when the message
data is retrieved.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value
is zero. To get extended error information, call ImapGetLastError.

Remarks
The ImapOpenMessageEx function uses the FETCH command to access the specified
message on the server. The client can then use the ImapRead function to read the
contents of the message.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ImapCloseMessage, ImapGetMessage, ImapGetMessageHeaders, ImapOpenMessage,
ImapRead, ImapStoreMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapRead Function

INT WINAPI ImapRead(
 HCLIENT hClient,
 LPBYTE lpBuffer,
 INT cbBuffer
);

The ImapRead function reads the specified number of bytes from the client socket and copies
them into the buffer. The data may be of any type, and is not terminated with a null character.

Parameters
hClient

Handle to the client session.

lpBuffer

Pointer to the buffer in which the data will be copied.

cbBuffer

The maximum number of bytes to read and copy into the specified buffer. This value must be
greater than zero.

Return Value
If the function succeeds, the return value is the number of bytes actually read. A return value of
zero indicates that there is no more data available to be read. If the function fails, the return value
is IMAP_ERROR. To get extended error information, call ImapGetLastError.

Remarks
When ImapRead is called and the client is in non-blocking mode, it is possible that the function
will fail because there is no available data to read at that time. This should not be considered a
fatal error. Instead, the application should simply wait to receive the next asynchronous notification
that data is available.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
ImapGetMessage, ImapGetMessageHeaders, ImapIsBlocking

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapRegisterEvent Function

INT WINAPI ImapRegisterEvent(
 HCLIENT hClient,
 UINT nEvent,
 IMAPEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

The ImapRegisterEvent function registers a callback function for the specified event.

Parameters
hClient

Handle to the client session.

nEvent

An unsigned integer which specifies which event should be registered with the specified callback
function. One of the following values may be used:

Constant Description

IMAP_EVENT_CONNECT The connection to the server has completed.

IMAP_EVENT_DISCONNECT The server has closed the connection to the client. The
client should read any remaining data and disconnect.

IMAP_EVENT_READ Data is available to read by the client. No additional
messages will be posted until the client has read at least
some of the data. This event is only generated if the
calling process is in asynchronous mode.

IMAP_EVENT_WRITE The client can now write data. This notification is sent
after a connection has been established, or after a
previous attempt to write data has failed because it
would result in a blocking operation. This event is only
generated if the client is in asynchronous mode.

IMAP_EVENT_TIMEOUT The client has timed out while waiting for a response
from the server. Note that under some circumstances
this event can be generated for a non-blocking
connection, such as when the client is establishing a
secure connection.

IMAP_EVENT_CANCEL The client has canceled the current operation.

IMAP_EVENT_COMMAND The client has processed a command that was sent to
the server. The result code and result string can be used
to determine if the response to the command.

IMAP_EVENT_PROGRESS This event notification is sent periodically during lengthy
blocking operations, such as retrieving a complete
message from the server.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the ImapEventProc callback

function. If this parameter is NULL, the callback for the specified event is disabled.

dwParam

A user-defined integer value that is passed to the callback function. If the application targets the
x86 (32-bit) platform, this parameter must be a 32-bit unsigned integer. If the application
targets the x64 (64-bit) platform, this parameter must be a 64-bit unsigned integer.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
IMAP_ERROR. To get extended error information, call ImapGetLastError.

Remarks
The ImapRegisterEvent function associates a callback function with a specific event. The event
handler is an ImapEventProc function that is invoked when the event occurs. Arguments are
passed to the function to identify the client session, the event type and the user-defined value
specified when the event handler is registered. If the event occurs because of an error condition,
the error code will be provided to the handler.

This function is typically used to register an event handler that is invoked while a message is being
retrieved. The IMAP_EVENT_PROGRESS event will only be generated periodically during the
transfer to ensure the application is not flooded with event notifications. It is guaranteed that at
least one IMAP_EVENT_PROGRESS notification will occur at the beginning of the transfer, and one
at the end of the transfer when it has completed.

The callback function specified by the lpEventProc parameter must be declared using the
__stdcall calling convention. This ensures the arguments passed to the event handler are pushed
on to the stack in the correct order. Failure to use the correct calling convention will corrupt the
stack and cause the application to terminate abnormally.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
ImapDisableEvents, ImapEnableEvents, ImapEventProc, ImapFreezeEvents

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapRenameMailbox Function

INT WINAPI ImapRenameMailbox(
 HCLIENT hClient,
 LPCTSTR lpszOldMailbox,
 LPCTSTR lpszNewMailbox
);

The ImapRenameMailbox function renames an existing mailbox.

Parameters
hClient

Handle to the client session.

lpszOldMailbox

A pointer to a string which specifies the mailbox to be renamed.

lpszNewMailbox

A pointer to a string which specifies the new mailbox name.

Return Value
If the function succeeds, it returns zero. If an error occurs, the function returns IMAP_ERROR. To
get extended error information, call ImapGetLastError.

Remarks
The ImapRenameMailbox function renames an existing mailbox on the server. The new mailbox
name cannot exist on the server, or the function will fail.

If the existing mailbox name contains inferior hierarchical names (mailboxes under the specified
mailbox) then those mailboxes will also be renamed. For example, if the mailbox "Mail/Pictures"
contains two mailboxes, "Personal" and "Work" and it is renamed to "Mail/Images" then the two
mailboxes under it would be automatically renamed to "Mail/Images/Personal" and
"Mail/Images/Work".

If the mailbox being renamed is the currently selected mailbox, the current mailbox will be
unselected and any messages marked for deletion will be expunged. The new mailbox name will
then automatically be re-selected. To prevent deleted messages from being removed from the
mailbox prior to being renamed, use the ImapUnselectMailbox function to unselect the current
mailbox before calling ImapRenameMailbox. Note that if the rename operation fails, the client
may be left in an unselected state.

It is permitted to rename the special mailbox INBOX. In this case, the messages will be moved
from the INBOX mailbox to the new mailbox. If the INBOX mailbox is currently selected, the new
mailbox will not automatically be selected. INBOX will remain the selected mailbox.

If you need to delete a mailbox which contains Unicode characters or symbols, it is recommended
you always use the Unicode version of this function. The mailbox name will automatically be
converted to modified UTF-7 encoding as defined by the IMAP4 standard. The ANSI version of
this function will accept mailbox names using either modified UTF-7 encoding or UTF-8 encoding.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ImapCreateMailbox, ImapDeleteMailbox, ImapGetFirstMailbox, ImapGetNextMailbox

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapReselectMailbox Function

BOOL WINAPI ImapReselectMailbox(
 HCLIENT hClient,
 LPIMAPMAILBOX lpMailboxInfo
);

The ImapReselectMailbox function reselects the current mailbox and returns updated
information about the status of the mailbox.

Parameters
hClient

Handle to the client session.

lpMailboxInfo

A pointer to an IMAPMAILBOX structure which contains updated information about the mailbox
when the function returns. This parameter may be NULL if the caller does not require any
information about the mailbox.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
IMAP_ERROR. To get extended error information, call ImapGetLastError.

Remarks
The ImapReselectMailbox function forces the current mailbox to be reselected and returns
updated information about the status of the mailbox. Deleted messages are not expunged from
the mailbox and remain marked for deletion.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
ImapExamineMailbox, ImapSelectMailbox, ImapUnselectMailbox

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapSearchMailbox Function

LONG WINAPI ImapSearchMailbox(
 HCLIENT hClient,
 LPCTSTR lpszCriteria,
 LPCTSTR lpszCharacterSet,
 DWORD dwReserved,
 UINT* lpnMessageIds,
 LONG nMaxMessages
);

The ImapSearchMailbox function searches the current mailbox for messages that match the
specified criteria, returning matching message identifiers.

Parameters
hClient

Handle to the client session.

lpszCriteria

A pointer to a string which specifies the search criteria.

lpszCharacterSet

A pointer to a string which specifies the character set to use when searching the mailbox. If this
parameter is NULL or an empty string, the default UTF-8 character set will be used.

dwReserved

A reserved parameter which should be set to the value 0.

lpnMessageIds

A pointer to an array of unsigned integers that will contain the message identifiers of those
messages which match the search criteria in the current mailbox. This parameter may be NULL,
in which case the function will return the number of matching messages but will not return their
identifiers.

nMaxMessages

The maximum number of message identifiers that may be stored in the lpnMessageIds array. If
the lpnMessageIds parameter is NULL, this value should be zero.

Return Value
If the function succeeds, the return value is the number of messages that meet the search criteria
in the current mailbox. If the function fails, the return value is IMAP_ERROR. To get extended error
information, call ImapGetLastError.

Remarks
The ImapSearchMailbox function is used to search a mailbox for messages which match a given
criteria and return a list of the matching message identifiers. The search criteria is composed of
one or more search keywords and and optional value to match against. String searches are not
case sensitive and partial matches in the message are returned.

The following search keywords are recognized:

Keyword Description

ANSWERED Match those messages which have the IMAP_FLAG_ANSWERED flag
set.

BCC address Match those messages which contain the specified address in the BCC
header field.

BEFORE date Match those messages which were added to the mailbox prior to the
specified date.

BODY string Match those messages where the body contains the specified string.

CC address Match those messages which contain the specified address in the CC
header field.

DELETED Match those messages which have the IMAP_FLAG_DELETED flag set.

DRAFT Match those messages which have the IMAP_FLAG_DRAFT flag set.

FLAGGED Match those messages which have the IMAP_FLAG_URGENT flag set.

FROM address Match those messages which contain the specified address in the
FROM header field.

HEADER field
string

Match those messages which contain the string in the specified
header field. If no string is specified, then all messages which contain
the header will be matched.

LARGER size Match those messages which are larger than the specified size in
bytes.

NEW Match those messages which have the IMAP_FLAG_RECENT flag set,
but not the IMAP_FLAG_SEEN flag.

OLD Match those messages which do not have the IMAP_FLAG_RECENT
flag set.

ON date Match those messages which were added on the specified date.

RECENT Match those messages which have the IMAP_FLAG_RECENT flag set.

SEEN Match those messages which have the IMAP_FLAG_SEEN flag set.

SENTBEFORE
date

Match those messages whose Date header value is earlier than the
specified date.

SENTON date Match those messages whose Date header value is the same as the
specified date.

SENTSINCE
date

Match those messages whose Date header value is later than the
specified date.

SINCE date Match those messages added to the mailbox after the specified date.

SMALLER size Match those messages which are smaller than the specified size in
bytes.

SUBJECT
string

Match those messages whose Subject header contains the specified
string.

TEXT string Match those messages whose headers or body contains the specified
string.

TO address Match those messages which contain the specified address in the TO
header field.

UID sequence Match those messages with unique identifiers in the sequence set.

UNANSWERED Match those messages which do not have the
IMAP_FLAG_ANSWERED flag set.

UNDELETED Match those messages which do not have the IMAP_FLAG_DELETED
flag set.

UNDRAFT Match those messages which do not have the IMAP_FLAG_DRAFT flag
set.

UNFLAGGED Match those messages which do not have the IMAP_FLAG_URGENT
flag set.

UNSEEN Match those messages which do not have the IMAP_FLAG_SEEN flag
set.

In addition to the listed keywords, the keyword NOT may prefix a keyword to return those
messages which do not match the search criteria. For example, "NOT TO user@domain.com"
would return those messages which were not addressed to user@domain.com.

If multiple search keywords are specified, the result is the intersection of all those messages which
meet the search criteria. For example, a search criteria of "DELETED SINCE 1-Jan-2003" would
return all those messages which are marked for deletion and were added to the mailbox after 1
January 2003.

Those search keywords which expect dates must be specified in format dd-mmm-yyyy where the
month is the three letter abbreviation for the month name. Note that the internal date the
message was added to the mailbox is not the same as the value of the Date header field in the
message.

The UID keyword expects a one or more unique message identifiers. These values may provided
as comma separated list, or a range delimited by a colon. For example, "UID 23000:24000" would
return all those messages who have UIDs ranging from 23000 through to 24000.

The message identifiers returned by this function are only valid until the mailbox is expunged or
another mailbox is selected.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ImapGetDeletedMessages, ImapGetMessageCount, ImapGetMessageFlags,
ImapGetNewMessages, ImapGetUnseenMessages

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapSelectMailbox Function

INT WINAPI ImapSelectMailbox(
 HCLIENT hClient,
 LPCTSTR lpszMailbox,
 LPIMAPMAILBOX lpMailboxInfo
);

The ImapSelectMailbox function selects the specified mailbox for read-write access.

Parameters
hClient

Handle to the client session.

lpszMailbox

A pointer to a null terminated string which specifies the new mailbox to be selected. If this
parameter is NULL or an empty string, the default INBOX mailbox will be selected.

lpMailboxInfo

A pointer to an IMAPMAILBOX structure which contains information about the mailbox when
the function returns. This parameter may be NULL if the caller does not require any information
about the mailbox.

Return Value
If the function succeeds, it returns zero. If an error occurs, the function returns IMAP_ERROR. To
get extended error information, call ImapGetLastError.

Remarks
The ImapSelectMailbox function is used to select a mailbox in read-write mode. If the client has
a different mailbox currently selected, that mailbox will be closed and any messages marked for
deletion will be expunged. To prevent deleted messages from being removed from the previous
mailbox, use the ImapUnselectMailbox function prior to selecting the new mailbox.

If you need to select a mailbox which contains Unicode characters or symbols, it is recommended
you use the Unicode version of this function. The mailbox name will automatically be converted to
modified UTF-7 encoding as defined by the IMAP4 standard. The ANSI version of this function will
only accept mailbox names using modified UTF-7 encoding or UTF-8 encoding.

If an application wishes to update the information returned in the IMAPMAILBOX structure for the
current mailbox, simply call ImapSelectMailbox again with the same mailbox name. Note that
this will not cause any messages marked for deletion to be expunged.

The special case-insensitive mailbox name INBOX is used for new messages. Other mailbox names
may or may not be case-sensitive depending on the IMAP server's operating system and
implementation.

To access a mailbox in read-only mode, use the ImapExamineMailbox function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ImapDeleteMailbox, ImapExamineMailbox, ImapGetFirstMailbox, ImapGetMailboxStatus,
ImapGetNextMailbox, ImapRenameMailbox, ImapReselectMailbox, ImapUnselectMailbox

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapSetLastError Function

VOID WINAPI ImapSetLastError(
 DWORD dwErrorCode
);

The ImapSetLastError function sets the last error code for the current thread.

Parameters
dwErrorCode

Specifies the last error code for the caller. A value of zero clears the last error code.

Return Value
None.

Remarks
Most functions will set the last error code value when they fail; a few functions set it when they
succeed. Function failure is typically indicated by a return value error code such as FALSE, NULL,
INVALID_CLIENT or IMAP_ERROR. Those functions which call ImapSetLastError when they
succeed are noted on the function reference page.

Applications can retrieve the value saved by this function by using the ImapGetLastError function.
The use of ImapGetLastError is optional. An application can call it to find out the specific reason
for a function failure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
ImapGetErrorString, ImapGetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapSetMessageFlags Function

INT WINAPI ImapSetMessageFlags(
 HCLIENT hClient,
 UINT nMessageId,
 UINT nMode
 DWORD dwMessageFlags
);

The ImapSetMessageFlags function returns the message flags for the specified message.

Parameters
hClient

Handle to the client session.

nMessageId

Number of message to obtain the message flags for. This value must be greater than zero. The
first message in the mailbox is message number one.

nMode

An unsigned integer value which specifies one of the following modes which determines how
the message flags are set:

Constant Description

IMAP_FLAGS_REPLACE All message flags are replaced with the flags specified by the
dwMessageFlags parameter.

IMAP_FLAGS_ADD The message flags specified by the dwMessageFlags
parameter will be set for the message. Message flags that
have been previously set will remain unmodified.

IMAP_FLAGS_REMOVE The message flags specified by the dwMessageFlags
parameter will be removed from the message. Message flags
that are not specified will remain unmodified.

dwMessageFlags

An unsigned integer value which specifies one or more message flags. This parameter is
constructed by using a bitwise operator with any of the following values:

Constant Description

IMAP_FLAG_ANSWERED The message has been answered.

IMAP_FLAG_DELETED The message has been marked for deletion.

IMAP_FLAG_DRAFT The message has not been completed and is marked as a
draft copy.

IMAP_FLAG_URGENT The message has been flagged for urgent or special
attention.

IMAP_FLAG_RECENT The message has been added to the mailbox recently.

IMAP_FLAG_SEEN The message has been read.

Return Value

If the function succeeds, it returns IMAP_RESULT_OK. If an error occurs, the function returns
IMAP_ERROR. To get extended error information, call ImapGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
ImapDeleteMessage, ImapGetMessageCount, ImapGetMessageFlags

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapSetTimeout Function

INT WINAPI ImapSetTimeout(
 HCLIENT hClient,
 INT nTimeout
);

The ImapSetTimeout function sets the number of seconds the client will wait for a response from
the server. Once the specified number of seconds has elapsed, the function will fail and return to
the caller.

Parameters
hClient

Handle to the client session.

nTimeout

The number of seconds to wait for a blocking operation to complete.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
IMAP_ERROR. To get extended error information, call ImapGetLastError.

Remarks
The timeout value is only used with blocking network operations.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
ImapConnect, ImapGetTimeout, ImapRead

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapStoreMessage Function

INT WINAPI ImapStoreMessage(
 HCLIENT hClient,
 UINT nMessageId,
 LPCTSTR lpszFileName
);

The ImapStoreMessage function retrieves a message from the current mailbox and stores it in a
local file or the system clipboard.

Parameters
hClient

Handle to the client session.

nMessageId

Number of the message to retrieve. This value must be greater than zero. The first message in
the mailbox is message number one.

lpszFileName

Pointer to a string which specifies the file that the message will be stored in. If an empty string
or NULL pointer is passed as an argument, the message is copied to the system clipboard.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
IMAP_ERROR. To get extended error information, call ImapGetLastError.

Remarks
The ImapStoreMessage function provides a method of retrieving and storing a message on the
local system. The contents of the message is stored as a text file, using the specified file name. This
function always causes the caller to block until the entire message has been retrieved, even if the
client has been put in asynchronous mode.

If event handling is enabled, the IMAP_EVENT_PROGRESS event will fire periodically during the
transfer of the message to the local system. An application can determine how much of the
message has been retrieved by calling the ImapGetTransferStatus function.

To retrieve the message into a global memory buffer so that it can be passed to the MIME or
SMTP libraries, use the ImapGetMessage function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ImapGetMessage, ImapGetMessageHeaders, ImapGetTransferStatus

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapSubscribeMailbox Function

INT WINAPI ImapSubscribeMailbox(
 HCLIENT hClient,
 LPCTSTR lpszMailbox
);

The ImapSubscribeMailbox function subscribes the user to the specified mailbox.

Parameters
hClient

Handle to the client session.

lpszMailbox

A pointer to a string which specifies the mailbox to subscribe to.

Return Value
If the function succeeds, it returns zero. If an error occurs, the function returns IMAP_ERROR. To
get extended error information, call ImapGetLastError.

Remarks
The ImapSubscribeMailbox function adds the specified mailbox to the current user's list of active
or subscribed mailboxes. The user will remain subscribed to the mailbox across multiple sessions,
until the ImapUnsubscribeMailbox function is called to remove the mailbox from the
subscription list.

To list those mailboxes which the user has subscribed to, use the ImapGetFirstMailbox function
and specify the IMAP_LIST_SUBSCRIBED option.

Note that if a user subscribes to a mailbox and that mailbox is later renamed or deleted, the
mailbox will not be automatically removed from the user's subscription list. An application must
not assume that because a mailbox name is included in the list of subscribed mailboxes, it exists
and can be selected. To check if the mailbox exists, use the ImapGetMailboxStatus function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ImapExamineMailbox, ImapGetFirstMailbox, ImapGetNextMailbox, ImapSelectMailbox,
ImapUnselectMailbox, ImapUnsubscribeMailbox

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapUndeleteMessage Function

INT WINAPI ImapUndeleteMessage(
 HCLIENT hClient,
 UINT nMessageId
);

The ImapUndeleteMessage function removes the deletion flag for the specified message.

Parameters
hClient

Handle to the client session.

nMessage

Number of message to undelete from the server. This value must be greater than zero. The first
message in the mailbox is message number one.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
IMAP_ERROR. To get extended error information, call ImapGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
ImapDeleteMessage, ImapGetDeletedMessages, ImapGetMessage, ImapGetMessageCount,
ImapGetMessageFlags, ImapReselectMailbox, ImapUnselectMailbox

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapUninitialize Function

VOID WINAPI ImapUninitialize();

The ImapUninitialize function terminates the use of the library.

Parameters
There are no parameters.

Return Value
None.

Remarks
An application is required to perform a successful ImapInitialize call before it can call any of the
other library functions. When it has completed the use of library, the application must call
ImapUninitialize to allow the library to free any resources allocated on behalf of the process. Any
pending blocking or asynchronous calls in this process are canceled without posting any
notification messages, and all sockets that were opened by the process are closed.

There must be a call to ImapUninitialize for every successful call to ImapInitialize made by a
process. In a multithreaded environment, operations for all threads in the client are terminated.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
ImapConnect, ImapDisconnect, ImapInitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapUnselectMailbox Function

INT WINAPI ImapUnselectMailbox(
 HCLIENT hClient,
 BOOL bExpunge
);

The ImapUnselectMailbox function unselects the current mailbox.

Parameters
hClient

Handle to the client session.

bExpunge

A boolean flag which determines if deleted messages will be expunged from the mailbox. A
non-zero value specifies that messages that have been marked for deletion will be removed
from the mailbox. A zero value specifies that no messages will be removed from the mailbox.

Return Value
If the function succeeds, it returns zero. If an error occurs, the function returns IMAP_ERROR. To
get extended error information, call ImapGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
ImapDeleteMailbox, ImapExamineMailbox, ImapGetFirstMailbox, ImapGetMailboxStatus,
ImapGetNextMailbox, ImapRenameMailbox, ImapReselectMailbox, ImapSelectMailbox

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapUnsubscribeMailbox Function

INT WINAPI ImapUnsubscribeMailbox(
 HCLIENT hClient,
 LPCTSTR lpszMailbox
);

The ImapUnsubscribeMailbox function unsubscribes the user from the specified mailbox.

Parameters
hClient

Handle to the client session.

lpszMailbox

A pointer to a string which specifies the mailbox to unsubscribe from.

Return Value
If the function succeeds, it returns zero. If an error occurs, the function returns IMAP_ERROR. To
get extended error information, call ImapGetLastError.

Remarks
The ImapUnsubscribeMailbox function removes the specified mailbox from the current user's list
of active or subscribed mailboxes.

To list those mailboxes which the user has subscribed to, use the ImapGetFirstMailbox function
and specify the IMAP_LIST_SUBSCRIBED option.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ImapExamineMailbox, ImapGetFirstMailbox, ImapGetNextMailbox, ImapSelectMailbox,
ImapSubscribeMailbox, ImapUnselectMailbox

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ImapWrite Function

INT WINAPI ImapWrite(
 HCLIENT hClient,
 LPBYTE lpBuffer,
 INT cbBuffer
);

The ImapWrite function sends the specified number of bytes to the server.

Parameters
hClient

Handle to the client session.

lpBuffer

The pointer to the buffer which contains the data that is to be sent to the server.

cbBuffer

The number of bytes to send from the specified buffer.

Return Value
If the function succeeds, the return value is the number of bytes actually written. If the function
fails, the return value is IMAP_ERROR. To get extended error information, call ImapGetLastError.

Remarks
The return value may be less than the number of bytes specified by the cbBuffer parameter. In this
case, the data has been partially written and it is the responsibility of the client application to send
the remaining data at some later point. For non-blocking clients, the client must wait for the
IMAP_EVENT_WRITE asynchronous notification message before it resumes sending data.

The ImapWrite function should not be used to send commands to the IMAP server. Use the
ImapCommand function instead.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

See Also
ImapCommand, ImapIsBlocking, ImapIsWritable, ImapRead

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Internet Message Access Protocol Data Structures

IMAPMAILBOX
IMAPMAILBOXSTATUS
IMAPMESSAGE
IMAPTRANSFERSTATUS
INITDATA
SECURITYCREDENTIALS
SECURITYINFO
SYSTEMTIME

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/imap/library/systemtime.html

 IMAPMAILBOX Structure

This structure contains information about a selected mailbox.

typedef struct _IMAPMAILBOX
{
 UINT nMessages;
 UINT nRecentMessages;
 UINT nUnseenMessageId;
 DWORD dwMailboxUID;
 DWORD dwNextMessageUID;
 DWORD dwFlags;
 DWORD dwPermanentFlags;
 DWORD dwAccessMode;
 DWORD dwReserved1;
 DWORD dwReserved2;
} IMAPMAILBOX, *LPIMAPMAILBOX;

Members
nMessages

A value specifies the total number of messages in the mailbox.

nRecentMessages

A value which specifies the number of new messages that have recently arrived in the mailbox.

nUnseenMessageId

A value which specifies the message ID of the first unseen message in the mailbox.

dwMailboxUID

A value which specifies a unique identifier for this mailbox which corresponds to the
UIDVALIDITY value returned by the IMAP server. The actual value is determined by the server
and should be considered opaque. The protocol specification requires that a mailbox's UID
must not change unless the mailbox contents are modified or existing messages in the mailbox
have been assigned new UIDs.

dwNextMessageUID

A value which specifies the predicted unique identifier that will be assigned to a new message in
the mailbox. This corresponds to the UIDNEXT value returned by the IMAP server. The protocol
specification requires that as long as the mailbox UID is unchanged, messages that are added to
the mailbox will be assigned a UID greater than or equal to the next UID value.

dwFlags

A value which specifies one or more mailbox flags. One or more of the following values may be
specified:

Constant Description

IMAP_FLAG_NOINFERIORS The mailbox does not contain any child mailboxes. In the
IMAP protocol, these are referred to as inferior
hierarchical mailbox names.

IMAP_FLAG_NOSELECT The mailbox cannot be selected or examined. This flag is
typically used by servers to indicate that the mailbox name
refers to a directory on the server, not a mailbox file.

IMAP_FLAG_MARKED The mailbox is marked as being of interest to a client. If

this flag is used, it typically means that the mailbox
contains messages. An application should not depend on
this flag being present for any given mailbox. Some IMAP
servers do not support marked or unmarked flags for
mailboxes.

IMAP_FLAG_UNMARKED The mailbox is marked as not being of interest to a client.
If this flag is used, it typically means that the mailbox does
not contain any messages. An application should not
depend on this flag being present for any given mailbox.
Some IMAP servers do not support marked or unmarked
flags for mailboxes.

dwPermanentFlags

A value which specifies the message flags that a client can change permanently. If this value is
zero, then no permanent flags are defined for the mailbox and the client may assume that all
message flags may be set permanently. Otherwise, one or more of the following values may be
specified:

Constant Description

IMAP_FLAG_ANSWERED The message has been answered.

IMAP_FLAG_DRAFT The message has not been completed and is marked as a
draft copy.

IMAP_FLAG_URGENT The message has been flagged for urgent or special
attention.

IMAP_FLAG_SEEN The message has been read.

dwAccessMode

A value which specifies the access mode for the mailbox. It may be one of the following values:

Constant Description

IMAP_ACCESS_READONLY The mailbox has been selected in read-only mode.
Messages may not be created in the mailbox, nor can
message flags be modified.

IMAP_ACCESS_READWRITE The mailbox has been selected in read-write mode.
Messages may be modified by the client, and messages
marked for deletion can be expunged.

dwReserved1

A reserved value that is undefined.

dwReserved2

A reserved value that is undefined.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IMAPMAILBOXSTATUS Structure

This structure contains information about a mailbox.

typedef struct _IMAPMAILBOXSTATUS
{
 UINT nMessages;
 UINT nRecentMessages;
 UINT nUnseenMessages;
 DWORD dwMailboxUID;
 DWORD dwNextMessageUID;
 DWORD dwReserved;
} IMAPMAILBOXSTATUS, *LPIMAPMAILBOXSTATUS;

Members
nMessages

A value specifies the total number of messages in the mailbox.

nRecentMessages

A value which specifies the number of new messages that have recently arrived in the mailbox.

nUnseenMessages

A value which specifies the number of unread messages in the mailbox.

dwMailboxUID

A value which specifies a unique identifier for this mailbox which corresponds to the
UIDVALIDITY value returned by the IMAP server. The actual value is determined by the server
and should be considered opaque. The protocol specification requires that a mailbox's UID
must not change unless the mailbox contents are modified or existing messages in the mailbox
have been assigned new UIDs.

dwNextMessageUID

A value which specifies the predicted unique identifier that will be assigned to a new message in
the mailbox. This corresponds to the UIDNEXT value returned by the IMAP server. The protocol
specification requires that as long as the mailbox UID is unchanged, messages that are added to
the mailbox will be assigned a UID greater than or equal to the next UID value.

dwReserved

A reserved value that is undefined.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IMAPMESSAGE Structure

This structure contains information about a message.

typedef struct _IMAPMESSAGE
{
 UINT nMessageId;
 DWORD dwMessageUID;
 DWORD dwSize;
 DWORD dwFlags;
 DWORD dwTimestamp;
 DWORD dwReserved;
} IMAPMESSAGE, *LPIMAPMESSAGE;

Members
nMessageId

An integer value which identifies the message. The message identifier is only valid while the
mailbox is selected and no messages marked for deletion have been expunged. To maintain a
persistent identifier for the message, use a combination of the mailbox UID and message UID.

dwMessageUID

An integer value which specifies a unique identifier for this message. The actual value is
determined by the server and should be considered opaque. If the client application stores the
message UID on the local system, it should also store the UID for the mailbox that contains the
message. If the mailbox UID changes, the message UID may no longer be valid.

dwSize

Specifies the size of the message in bytes.

dwFlags

A value which specifies one or more message flags. One or more of the following values may
be specified:

Constant Description

IMAP_FLAG_NONE No value.

IMAP_FLAG_ANSWERED The message has been answered.

IMAP_FLAG_DELETED The message has been marked for deletion.

IMAP_FLAG_DRAFT The message has not been completed and is marked as a
draft copy.

IMAP_FLAG_URGENT The message has been flagged for urgent or special
attention.

IMAP_FLAG_RECENT The message has been added to the mailbox recently.

IMAP_FLAG_SEEN The message has been read.

dwTimestamp

An integer value which specifies the date and time that the message was created in the mailbox.
The value is expressed as the number of seconds since midnight, 1 January 1970 and is the
same value that is used for the standard C runtime library time functions. Note that the date
and time used is the message's internal date from the mail server, not the value of the Date
header field.

dwReserved

A reserved value that is undefined.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmapv11.lib

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IMAPTRANSFERSTATUS Structure

This structure is used by the ImapGetTransferStatus function to return information about a file
transfer in progress.

typedef struct _IMAPTRANSFERSTATUS
{
 UINT nMessageId;
 DWORD dwBytesTotal;
 DWORD dwBytesCopied;
 DWORD dwBytesPerSecond;
 DWORD dwTimeElapsed;
 DWORD dwTimeEstimated;
} IMAPTRANSFERSTATUS, *LPIMAPTRANSFERSTATUS;

Members
nMessageId

The message ID of the current message that is being transferred.

dwBytesTotal

The total number of bytes that will be transferred. If the file is being copied from the server to
the local host, this is the size of the remote file. If the file is being copied from the local host to
the server, it is the size of the local file. If the file size cannot be determined, this value will be
zero.

dwBytesCopied

The total number of bytes that have been copied.

dwBytesPerSecond

The average number of bytes that have been copied per second.

dwTimeElapsed

The number of seconds that have elapsed since the file transfer started.

dwTimeEstimated

The estimated number of seconds until the file transfer is completed. This is based on the
average number of bytes transferred per second.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 INITDATA Structure

This structure contains information about the SocketTools library when the initialization function
returns.

typedef struct _INITDATA
{
 DWORD dwSize;
 DWORD dwVersionMajor;
 DWORD dwVersionMinor;
 DWORD dwVersionBuild;
 DWORD dwOptions;
 DWORD_PTR dwReserved1;
 DWORD_PTR dwReserved2;
 TCHAR szDescription[128];
} INITDATA, *LPINITDATA;

Members
dwSize

Size of this structure. This structure member must be set to the size of the structure prior to
calling the initialization function. Failure to do so will cause the function to fail.

dwVersionMajor

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the major version number for the library.

dwVersionMinor

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the minor version number for the library.

dwVersionBuild

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the build number for the library.

dwOptions

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

dwReserved1

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

dwReserved2

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

szDescription

A null terminated string which describes the library.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SECURITYCREDENTIALS Structure

The SECURITYCREDENTIALS structure specifies the information needed by the library to specify
additional security credentials, such as a client certificate or private key, when establishing a secure
connection.

typedef struct _SECURITYCREDENTIALS
{
 DWORD dwSize;
 DWORD dwProtocol;
 DWORD dwOptions;
 DWORD dwReserved;
 LPCTSTR lpszHostName;
 LPCTSTR lpszUserName;
 LPCTSTR lpszPassword;
 LPCTSTR lpszCertStore;
 LPCTSTR lpszCertName;
 LPCTSTR lpszKeyFile;
} SECURITYCREDENTIALS, *LPSECURITYCREDENTIALS;

Members
dwSize

Size of this structure. If the structure is being allocated dynamically, this member must be set to
the size of the structure and all other unused structure members must be initialized to a value of
zero or NULL.

dwProtocol

A bitmask of supported security protocols. The value of this structure member is constructed by
using a bitwise operator with any of the following values:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The
correct protocol is automatically selected, based on

what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.
This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is
supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

dwOptions

A value which specifies one or options. This member is constructed by using a bitwise operator
with any of the following values:

Constant Description

CREDENTIAL_STORE_CURRENT_USER The library will attempt to open a store for
the current user using the certificate store
name provided in this structure. If no options
are specified, then this is the default
behavior.

CREDENTIAL_STORE_LOCAL_MACHINE The library will attempt to open a local
machine store using the certificate store

name provided in this structure. If this option
is specified, the library will always search for a
local machine store before searching for the
store by that name for the current user.

CREDENTIAL_STORE_FILENAME The certificate store name is a file that
contains the certificate and private key that
will be used.

dwReserved

This structure member is reserved for future use and should always be initialized to zero.

lpszHostName

A pointer to a null terminated string which specifies the hostname that will be used when
validating the server certificate. If this member is NULL, then the server certificate will be
validated against the hostname used to establish the connection.

lpszUserName

A pointer to a null terminated string which identifies the owner of client certificate. Currently this
member is not used by the library and should always be initialized as a NULL pointer.

lpszPassword

A pointer to a null terminated string which specifies the password needed to access the
certificate. Currently this member is only used if the CREDENTIAL_STORE_FILENAME option has
been specified. If there is no password associated with the certificate, then this member should
be initialized as a NULL pointer.

lpszCertStore

A pointer to a null terminated string which specifies the name of the certificate store to open. A
certificate store is a collection of certificates and their private keys, typically organized by how
they are used. If this value is NULL or points to an empty string, the default certificate store "MY"
will be used.

Store
Name

Description

CA
Certification authority certificates. These are certificates that are issued by entities
which are entrusted to issue certificates to other individuals or organizations.
Companies such as VeriSign and Thawte act as certification authorities.

MY

Personal certificates and their associated private keys for the current user. This
store typically holds the client certificates used to establish a user's credentials.
This corresponds to the "Personal" store that is displayed by the certificate
manager utility and is the default store used by the library.

ROOT
Certificates that have been self-signed by a certificate authority. Root certificates
for a number of different certification authorities such as VeriSign and Thawte are
installed as part of the operating system and periodically updated by Microsoft.

lpszCertName

A pointer to a null terminated string which specifies the name of the certificate to use. The
library will first search the certificate store for a certificate with a matching "friendly name"; this is
a name for the certificate that is assigned by the user. Note that the name must match
completely, but the comparison is not case sensitive. If no matching certificate is found, the
library will then attempt to find a certificate that has a matching common name (also called the
certificate subject). This comparison is less stringent, and the first partial match will be returned.

If this second search fails, the library will return an error indicating that the certificate could not
be found. If the SECURITY_PROTOCOL_SSH protocol has been specified, this member should
be NULL.

lpszKeyFile

A pointer to a null terminated string which specifies the name of the file which contains the
private key required to establish the connection. This member is only used for SSH connections
and should always be NULL when establishing a secure connection using SSL or TLS.

Remarks
A client application only needs to create this structure if the server requires that the client provide
a certificate as part of the process of negotiating the secure session. If a certificate is required,
note that it must have a private key associated with it. Attempting to use a certificate that does not
have a private key will result in an error during the connection process indicating that the client
credentials could not be established.

If you are using a local certificate store, with the certificate and private key stored in the registry,
you can explicitly specify whether the certificate store for the current user or the local machine (all
users) should be used. This is done by prefixing the certificate store name with "HKCU:" for the
current user, or "HKLM:" for the local machine. For example, a certificate store name of
"HKLM:MY" would specify the personal certificate store for the local machine, rather than the
current user. If neither prefix is specified, then it will default to the certificate store for the current
user. You can manage these certificates using the CertMgr.msc Microsoft Management Console
(MMC) snap-in.

It is possible to load the certificate from a file rather than from current user's certificate store. The
dwOptions member should be set to CREDENTIAL_STORE_FILENAME and the lpszCertStore
member should specify the name of the file that contains the certificate and its private key. The file
must be in Private Information Exchange (PFX) format, also known as PKCS #12. These certificate
files typically have an extension of .pfx or .p12. Note that if a password was specified when the
certificate file was created, it must be provided in the lpszPassword member or the library will be
unable to access the certificate.

Note that the lpszUserName and lpszPassword members are values which are used to access the
certificate store or private key file. They are not the credentials which are used when establishing
the connection with the remote host or authenticating the client session.

The TLS 1.1 and TLS 1.2 protocols are only supported on Windows 7, Windows Server 2008 R2
and later versions of the platform. If these options are specified and the application is running on
Windows XP or Windows Vista, the protocol version will be downgraded to TLS 1.0 for backwards
compatibility with those platforms.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SECURITYINFO Structure

This structure contains information about a secure connection that has been established.

typedef struct _SECURITYINFO
{
 DWORD dwSize;
 DWORD dwProtocol;
 DWORD dwCipher;
 DWORD dwCipherStrength;
 DWORD dwHash;
 DWORD dwHashStrength;
 DWORD dwKeyExchange;
 DWORD dwCertStatus;
 SYSTEMTIME stCertIssued;
 SYSTEMTIME stCertExpires;
 LPCTSTR lpszCertIssuer;
 LPCTSTR lpszCertSubject;
 LPCTSTR lpszFingerprint;
} SECURITYINFO, *LPSECURITYINFO;

Members
dwSize

Specifies the size of the data structure. This member must always be initialized to
sizeof(SECURITYINFO) prior to passing the address of this structure to the function. Note that
if this member is not initialized, an error will be returned indicating that an invalid parameter has
been passed to the function.

dwProtocol

A numeric value which specifies the protocol that was selected to establish the secure
connection. One of the following values will be returned:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The

correct protocol is automatically selected, based on
what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.
This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is
supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

dwCipher

A numeric value which specifies the cipher that was selected when establishing the secure
connection. One of the following values will be returned:

Constant Description

SECURITY_CIPHER_RC2 The RC2 block cipher was selected. This is a variable
key length cipher which supports keys between 40 and
128 bits, in 8-bit increments.

SECURITY_CIPHER_RC4 The RC4 stream cipher was selected. This is a variable
key length cipher which supports keys between 40 and
128 bits, in 8-bit increments.

SECURITY_CIPHER_RC5 The RC5 block cipher was selected. This is a variable
key length cipher which supports keys up to 2040 bits,
in 8-bit increments.

SECURITY_CIPHER_DES The DES (Data Encryption Standard) block cipher was
selected. This is a fixed key length cipher, using 56-bit
keys.

SECURITY_CIPHER_DES3 The Triple DES block cipher was selected. This cipher
encrypts the data three times using different keys,
effectively providing a 168-bit length key.

SECURITY_CIPHER_DESX A variant of the DES block cipher which XORs an extra
64-bits of the key before and after the plaintext has
been encrypted, increasing the key size to 184 bits.

SECURITY_CIPHER_AES The Advanced Encryption Standard cipher (also known
as the Rijndael cipher) is a fixed block size cipher which
use a key size of 128, 192 or 256 bits. This cipher is
supported on Windows XP SP3 and later versions of
the operating system.

SECURITY_CIPHER_SKIPJACK The Skipjack block cipher was selected. This is a fixed
key length cipher, using 80-bit keys.

SECURITY_CIPHER_BLOWFISH The Blowfish block cipher was selected. This is a
variable key length cipher up to 448 bits, using a 64-bit
block size.

dwCipherStrength

A numeric value which specifies the strength (the length of the cipher key in bits) of the cipher
that was selected. Typically this value will be 128 or 256. 40-bit and 56-bit key lengths are
considered weak encryption, and subject to brute force attacks. 128-bit and 256-bit key lengths
are considered to be secure, and are the recommended key length for secure communications.

dwHash

A numeric value which specifies the hash algorithm which was selected. One of the following
values will be returned:

Constant Description

SECURITY_HASH_MD5 The MD5 algorithm was selected. Its use has been
deprecated and is no longer considered to be
cryptographically secure.

SECURITY_HASH_SHA1 The SHA-1 algorithm was selected. Its use has been
deprecated and is no longer considered to be
cryptographically secure.

SECURITY_HASH_SHA256 The SHA-256 algorithm was selected.

SECURITY_HASH_SHA384 The SHA-384 algorithm was selected.

SECURITY_HASH_SHA512 The SHA-512 algorithm was selected.

dwHashStrength

A numeric value which specifies the strength (the length in bits) of the message digest that was

selected.

dwKeyExchange

A numeric value which specifies the key exchange algorithm which was selected. One of the
following values will be returned:

Constant Description

SECURITY_KEYEX_RSA The RSA public key algorithm was selected.

SECURITY_KEYEX_KEA The Key Exchange Algorithm (KEA) was selected. This is an
improved version of the Diffie-Hellman public key algorithm.

SECURITY_KEYEX_DH The Diffie-Hellman key exchange algorithm was selected.

SECURITY_KEYEX_ECDH The Elliptic Curve Diffie-Hellman key exchange algorithm was
selected. This is a variant of the Diffie-Hellman algorithm
which uses elliptic curve cryptography. This key exchange
algorithm is only supported on Windows XP SP3 and later
versions of the operating system.

dwCertStatus

A numeric value which specifies the status of the certificate returned by the secure server. This
member only has meaning for connections using the SSL or TLS protocols. One of the following
values will be returned:

Constant Description

SECURITY_CERTIFICATE_VALID The certificate is valid.

SECURITY_CERTIFICATE_NOMATCH The certificate is valid, but the domain name
does not match the common name in the
certificate.

SECURITY_CERTIFICATE_EXPIRED The certificate is valid, but has expired.

SECURITY_CERTIFICATE_REVOKED The certificate has been revoked and is no
longer valid.

SECURITY_CERTIFICATE_UNTRUSTED The certificate or certificate authority is not
trusted on the local system.

SECURITY_CERTIFICATE_INVALID The certificate is invalid. This typically indicates
that the internal structure of the certificate has
been damaged.

stCertIssued

A structure which contains the date and time that the certificate was issued by the certificate
authority. If the issue date cannot be determined for the certificate, the SYSTEMTIME structure
members will have zero values. This member only has meaning for connections using the SSL or
TLS protocols.

stCertExpires

A structure which contains the date and time that the certificate expires. If the expiration date
cannot be determined for the certificate, the SYSTEMTIME structure members will have zero
values. This member only has meaning for connections using the SSL or TLS protocols.

lpszCertIssuer

A pointer to a string which contains information about the organization that issued the
certificate. This string consists of one or more comma-separated tokens. Each token consists of
an identifier, followed by an equal sign and a value. If the certificate issuer could not be
determined, this member may be NULL. This member only has meaning for connections using
the SSL or TLS protocols.

lpszCertSubject

A pointer to a string which contains information about the organization that the certificate was
issued to. This string consists of one or more comma-separated tokens. Each token consists of
an identifier, followed by an equal sign and a value. If the certificate subject could not be
determined, this member may be NULL. This member only has meaning for connections using
the SSL or TLS protocols.

lpszFingerprint

A pointer to a string which contains a sequence of hexadecimal values that uniquely identify the
server. This member is only used when a connection has been established using the Secure
Shell (SSH) protocol.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Mail Message Library

Compose and parse standard MIME formatted email messages.

Reference

Functions
Data Structures
Error Codes

Library Information

File Name CSMSGV11.DLL

Version 11.0.2180.1635

LibID 8BD70337-A653-4E11-A378-65CE51792984

Import Library CSMSGV11.LIB

Dependencies None

Standards RFC 822, RFC 2045, RFC 2046, RFC 2047, RFC 2048

Overview
The Mail Message library provides an interface for composing and processing email messages and
newsgroup articles which are structured according to the Multipurpose Internet Mail Extensions
(MIME) standard. Using this library, an application can easily create complex messages which
include multiple alternative content types, such as plain text and styled HTML text, file attachments
and customized headers.

It is not required that the developer understand the complex MIME standard; a single function call
can be used to create multipart message, complete with a styled HTML text body and support for
international character sets. The Mail Message library can be easily integrated with the other mail
related protocol libraries, making it extremely easy to create and process MIME formatted
messages.

The library also includes an interface for managing a local message storage file that can be used
to store and retrieve multiple messages. Functions are provided to open and create storage files,
add, remove and extract messages from storage, and search the stored messages for specific
header field values.

Requirements
The SocketTools Library Edition libraries are compatible with any programming language which
supports calling functions exported from a standard dynamic link library (DLL). If you are using
Visual C++ 6.0 it is required that you have Service Pack 6 (SP6) installed. You should install all
updates for your development tools and have the current Windows SDK installed. The minimum
recommended version of Visual Studio is Visual Studio 2010.

This library is supported on Windows 7, Windows Server 2008 R2 and later versions of the desktop
and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1) installed as
a minimum requirement. It is recommended that you install the current service pack and all critical
updates available for your version of the operating system.

This product includes both 32-bit and 64-bit libraries. Native 64-bit CPU support requires the 64-

bit version of Windows 7 or later versions of the Windows operating system.

Distribution
When you distribute your application that uses this library, it is recommended that you install the
file in the same folder as your application executable. If you install the library into a shared location
on the system, it is important that you distribute the correct version for the target platform and it
should be registered as a shared DLL. This is a standard Windows dynamic link library, not an
ActiveX component, and does not require COM registration.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Mail Message Functions

Function Description

MimeAddMessageHeaders Add one or more header values to the specified message

MimeAppendMessageText Append text to the body of the current message part

MimeAttachData Attach the contents of a buffer to the specified message

MimeAttachFile Attach a file to the specified message

MimeAttachImage Attach an inline image to the specified message

MimeClearMessageText Clear the body of the current message part

MimeCloseMessageStore Close the specified message storage file

MimeCompareMessageText Compare text in the body of the current message part

MimeComposeMessage Compose a new message using the specified parameters

MimeCopyMessageStore Duplicate the contents of the specified message store in a new file

MimeCreateMessage Create a new empty message

MimeCreateMessageEx Create a new message from the contents of a file or a message in memory

MimeCreateMessagePart Create a new message part for the specified message

MimeCreateMessagePartEx Create a new message part for the specified message

MimeDecodeText Decode a base64 or quoted-printable encoded string

MimeDecodeTextEx Decode a base64 or quoted-printable encoded string using a specified character set

MimeDeleteMessage Delete the specified message

MimeDeleteMessageHeader Delete the specified header field from the message

MimeDeleteMessagePart Delete the specified message part

MimeDeleteStoredMessage Remove the specified message from the message store

MimeEncodeText Encode a string using base64 or quoted-printable encoding

MimeEncodeTextEx Encode a string using base64 or quoted-printable encoding using a specified character set

MimeEnumAttachments Enumerate all file attachments in the specified message

MimeEnumMessageHeaders Enumerate all header fields in the current message part

MimeEnumMessageRecipients Enumerate addresses of all message recipients

MimeExportMessage Export the current message to a text file

MimeExportMessageEx Export the current message to a file, clipboard or memory buffer

MimeExtractAllFiles Extract all file attachments in the message and store them in the specified directory

MimeExtractFile Extract the file attachment from the current message part

MimeExtractFileEx Extract a file attachment from the message with additional options

MimeFindAttachment Search for a file attachment in the specified message

MimeFindStoredMessage Search for a message in the specified message store

MimeFormatDate Return a standard RFC 822 formatted date string

MimeGetAllHeaders Return the complete RFC 822 header values in a string buffer

MimeGetAllRecipients Return a comma-separated list of recipient addresses in a string buffer

MimeGetAttachedFileName Return the name of the file attachment for the current part

MimeGetContentDigest Return encoded digest of message's content

MimeGetContentLength Return the length of the current message part content

MimeGetErrorString Return a description for the specified error code

MimeGetExportOptions Return a bitmask that describes current message export options

MimeGetFileContentType Return the content type for a specified file

MimeGetFirstMessageHeader Return the first header field and value in the current message part

MimeGetLastError Return the last error code

MimeGetMessageBoundary Return the multipart message boundary string

MimeGetMessageDate Return the date and time from the message header

MimeGetMessageHeader Return the value of a specified header from the message

MimeGetMessageHeaderEx Copy the value of specified header to a string buffer

MimeGetMessagePart Return the current message part index

MimeGetMessagePartCount Return the total number of message parts

MimeGetMessageSender Return the email address of the message sender

MimeGetMessageSize Return the size of the complete message in bytes

MimeGetMessageText Return the text of the current message part

MimeGetMessageVersion Return the MIME version from the message header

MimeGetNextMessageHeader Return the next header field and value in the current message part

MimeGetStoredMessage Retrieve a message from the specified message store

MimeGetStoredMessageCount Return the number of messages in a message store

MimeImportMessage Import a message from the specified text file

MimeImportMessageEx Import a message from a file, clipboard or memory buffer

MimeInitialize Initialize the library for use by the client

MimeLocalizeText Localize Unicode text to ANSI using a specific character set

MimeOpenMessageStore Open the specified message storage file

MimeParseAddress Parse the specified email address

MimeParseBuffer Parse the specified text and add to the current message

MimeParseDate Parse the specified RFC 822 formatted date string

MimeParseHeader Parse the specified text and add to message header

MimePurgeMessageStore Purge all deleted messages from the specified message store

MimeReplaceStoredMessage Replace the specified message in the message store

MimeResetMessage Clear the specified message, deleting all message parts

MimeSetExportOptions Specify a bitmask that describes current message export options

MimeSetFileContentType Set the content type for a specific file name extension

MimeSetLastError Set the last error code

MimeSetMessageDate Set the current date in the header for the specified message

MimeSetMessageHeader Create or update a header field in the specified message

MimeSetMessageHeaderEx Create or update a header field, with additional options

MimeSetMessagePart Set the current message part index for the specified message

MimeSetMessageText Create or update the specified message body

MimeSetMessageVersion Set the MIME version for the specified message

MimeStoreMessage Store the specified message in a message store

MimeUninitialize Terminate use of the library by the application

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeAddMessageHeaders Function

BOOL WINAPI MimeAddMessageHeaders(
 HMESSAGE hMessage,
 LPCTSTR lpszHeaderList
);

The MimeAddMessageHeaders function adds one or more headers to the specified message.

Parameters
hMessage

Handle to the message.

lpszHeaderList

Points to a null-terminated string which specifies one or more header values which should be
set for the specified message. This parameter cannot be NULL.

Return Value
If the function succeeds, the return value is non-zero. If the client handle is invalid, the function
returns a value of zero. To get extended error information, call MimeGetLastError.

Remarks
The MimeAddMessageHeaders function enables your application to set one or more header
values by providing a list of name/value pairs separated by a colon. Multiple header values may be
provided by separating them with a newline character. This function is similar to calling the
MimeSetMessageHeader function for each value. When the list of header values is parsed,
extraneous whitespace is ignored; however, if the header list contains invalid text (for example, a
missing colon separating a header name from its value) the function will fail and an error will be
returned.

This function will only add or update header values in the main header block for the message. It
cannot be used to update header values in a specific section of a multipart message. If you need
to add or change a header value in a specific part of the message, use the
MimeSetMessageHeaderEx function.

When adding custom, application-specific header values you should always prefix them with "X-"
to avoid conflicting with standard headers.

Example
// Define a list of header values which should be included with the
// main header block for the message
LPCTSTR lpszHeaderList = _T("X-App-Sender: someuser@domain.tld\n") \
 _T("X-App-Version: 1.5\n") \
 _T("X-App-Mailer: AppMail (Win64)\n")

if (!MimeAddMessageHeaders(hMessage, lpszHeaderList))
{
 // Unable to add headers for this message
 return;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)

Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeEnumMessageHeaders, MimeGetMessageHeader, MimeSetMessageHeader,
MimeSetMessageHeaderEx

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeAppendMessageText Function

LONG WINAPI MimeAppendMessageText(
 HMESSAGE hMessage,
 LPCTSTR lpszText
);

The MimeAppendMessageText function appends the specified text to the body of the current
message part.

Parameters
hMessage

Handle to the message.

lpszText

A pointer to a string which specifies the text to be appended to the current message part.

Return Value
If the function succeeds, the return value is the number of bytes copied into the message. A return
value of zero indicates that no text could be appended to the current message part. To get
extended error information, call MimeGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeClearMessageText, MimeCompareMessageText, MimeGetMessageText,
MimeSetMessageText

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeAttachData Function

BOOL WINAPI MimeAttachData(
 HMESSAGE hMessage,
 LPBYTE lpBuffer,
 LONG cbBuffer,
 LPCTSTR lpszContentName,
 LPCTSTR lpszContentType,
 DWORD dwOptions
);

The MimeAttachData function attaches the contents of the buffer to the message.

Parameters
hMessage

Handle to the message.

lpBuffer

Pointer to a byte buffer which contains the data to be attached to the message. This parameter
may be NULL, in which case no data is attached, but an additional empty message part will be
created.

cbBuffer

An unsigned integer which specifies the number of bytes of data in the buffer pointed to by the
lpBuffer parameter. If the lpBuffer parameter is NULL, this value must be zero.

lpszContentName

Pointer to a string which specifies a name for the data being attached to the message. This
typically is used as a file name by the mail client to store the data in. If this parameter is NULL or
an empty string then no name is defined and the data is attached as inline content. Note that if
a file name is specified with a path, only the base name will be used.

lpszContentType

Pointer to a string which specifies the type of data being attached. The value must be a valid
MIME content type. If this parameter is NULL or an empty string, then the buffer will be
examined to determine what kind of data it contains. If there is only text characters, then the
content type will be specified as "text/plain". If the buffer contains binary data, then the content
type will be specified as "application/octet-stream", which is appropriate for any type of data.

dwOptions

A value which specifies one or more options. This parameter is constructed by using a bitwise
operator with any of the following values:

Constant Description

MIME_ATTACH_DEFAULT The data encoding is based on the content type. Text data
is not encoded, and binary data is encoded using the
standard base64 encoding algorithm.

MIME_ATTACH_BASE64 The data is always encoded using the standard base64
algorithm, even if the buffer only contains printable text
characters.

MIME_ATTACH_UUCODE The data is always encoded using the uuencode algorithm,
even if the buffer only contains printable text characters.

MIME_ATTACH_QUOTED The data is always encoded using the quoted-printable
algorithm. This encoding should only be used if the data
contains 8-bit text characters.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call MimeGetLastError.

Remarks
The MimeAttachData function allows an application to attach data to the message as either a file
attachment or as inline content. The recipient of the message will see the attached data in the
same way that they would see a file attached to the message using the MimeAttachFile function.

If the specified message is not a multipart message, it is marked as multipart and the attached file
is appended to the message. If the message is already a multipart message, an additional part is
created and the attachment is added to the message.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeAttachFile, MimeExportMessage, MimeExtractFile, MimeGetAttachedFileName,
MimeGetFileContentType, MimeImportMessage, MimeSetFileContentType

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeAttachFile Function

BOOL WINAPI MimeAttachFile(
 HMESSAGE hMessage,
 LPCTSTR lpszFileName,
 DWORD dwOptions
);

The MimeAttachFile function attaches the specified file to the message.

Parameters
hMessage

Handle to the message.

lpszFileName

Pointer to a string which specifies the name of the file to be attached to the message.

dwOptions

A value which specifies one or more options. This parameter is constructed by using a bitwise
operator with any of the following values:

Constant Description

MIME_ATTACH_DEFAULT The file attachment encoding is based on the file content
type. Text files are not encoded, and binary files are
encoded using the standard base64 encoding algorithm.
This is the default option for file attachments.

MIME_ATTACH_BASE64 The file attachment is always encoded using the standard
base64 algorithm, even if the attached file is a plain text file.

MIME_ATTACH_UUCODE The file attachment is always encoded using the uuencode
algorithm, even if the attached file is a plain text file.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call MimeGetLastError.

Remarks
If the specified message is not a multipart message, it is marked as multipart and the attached file
is appended to the message. If the message is already a multipart message, an additional part is
created and the attachment is added to the message.

To attach data that is stored in a memory buffer rather than a file, use the MimeAttachData
function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also

MimeAttachData, MimeExportMessage, MimeExtractFile, MimeGetAttachedFileName,
MimeGetFileContentType, MimeImportMessage, MimeSetFileContentType

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeAttachImage Function

BOOL WINAPI MimeAttachImage(
 HMESSAGE hMessage,
 LPCTSTR lpszImageFile,
 LPCTSTR lpszContentId
);

The MimeAttachImage function attaches the specified file to the message as an inline image.

Parameters
hMessage

Handle to the message.

lpszFileName

Pointer to a string which specifies the name of the image file to be attached to the message.
This parameter cannot be NULL and must specify the name of an existing file.

lpszContentId

Pointer to a string which specifies the content ID that is associated with the inline image. If this
parameter is NULL, a random content ID string will be automatically generated.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call MimeGetLastError.

Remarks
The MimeAttachImage function enables an application to attach an inline image to the message.
Unlike a normal file attachment, this function is designed to be used with HTML formatted email
messages that display images attached to the message. The lpszContentId parameter specifies the
content ID string that is used with the HTML image tag to reference that image.

If the specified message is not a multipart message, it is marked as multipart and the attached
image file is appended to the message. If the message is already a multipart message, an
additional part is created and the attachment is added to the message.

To attach regular files to the message, use the MimeAttachFile function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeAttachData, MimeAttachFile, MimeComposeMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeClearMessageText Function

BOOL WINAPI MimeClearMessageText(
 HMESSAGE hMessage
);

The MimeClearMessageText function deletes the text from the body of the current message
part.

Parameters
hMessage

Handle to the message.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call MimeGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeAppendMessageText, MimeCompareMessageText, MimeGetMessageText,
MimeSetMessageText

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeCloseMessageStore Function

BOOL WINAPI MimeCloseMessageStore(
 HMESSAGESTORE hStorage,
 BOOL bPurgeMessages
);

The MimeCloseMessageStore function closes the specified message store.

Parameters
hStorage

Handle to the message store.

bPurgeMessages

An integer value which specifies if deleted messages are purged from the message store. A
non-zero value specifies that all messages marked for deletion will be removed from the
message store. A value of zero specifies that deleted messages will not be removed from the
store.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call MimeGetLastError.

Remarks
The MimeCloseMessageStore function closes the storage file that was previously opened,
releasing all of the memory allocated for the message store and optionally purging all deleted
messages. This function must be called when the application has finished accessing the messages
in the message store. Failure to call this function will leave the storage file open and potentially
locked by the process.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib

See Also
MimeCopyMessageStore, MimeOpenMessageStore, MimePurgeMessageStore

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeCompareMessageText Function

BOOL WINAPI MimeCompareMessageText(
 HMESSAGE hMessage,
 LONG*lpnOffset,
 LPCTSTR lpszBuffer,
 LONG cchBuffer,
 BOOL bCaseSensitive
);

The MimeCompareMessageText function compares a text string against the contents of the
current message part.

Parameters
hMessage

Handle to the message.

lpnOffset

Pointer to a long integer which specifies the offset in the message at which to begin the
comparison. This value will be updated when the function returns to indicate the offset position
in the message where the comparison ended.

lpszBuffer

Pointer to a string buffer which contains the text that is to be compared against the body of the
message.

cchBuffer

The number of characters in the buffer that should be compared against the body of the
message.

bCaseSensitive

Boolean flag which specifies that the comparison should be case sensitive.

Return Value
If the text buffer matches the contents of the current message body, the function will return a non-
zero value, and the lpnOffset argument will be set to position in the buffer where the match
terminated. If the text buffer does not match, the function will return a value of zero, and the
lpnOffset argument will be set to the position of the first non-matching character. The function will
also return zero if one of the arguments is invalid. To get extended error information, call
MimeGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeAppendMessageText, MimeClearMessageText, MimeGetMessageText, MimeSetMessageText

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeComposeMessage Function

HMESSAGE WINAPI MimeComposeMessage(
 LPCTSTR lpszFrom,
 LPCTSTR lpszTo,
 LPCTSTR lpszCc,
 LPCTSTR lpszSubject,
 LPCTSTR lpszMessageText,
 LPCTSTR lpszMessageHTML,
 UINT nCharacterSet,
 UINT nEncodingType
);

The MimeComposeMessage function creates a new message using the specified parameters.

Parameters
lpszFrom

A pointer to a string which specifies the sender's email address. This parameter may be NULL, in
which case no sender address will be included in the message header.

lpszTo

A pointer to a string which specifies one or more recipient addresses. If multiple addresses are
specified, each address must be separated by a comma. This parameter may be NULL, in which
case no recipient addresses will be included in the message header.

lpszCc

A pointer to a string which specifies one or more addresses that will receive a copy of the
message in addition to the listed recipients. If multiple addresses are specified, each address
must be separated by a comma. This parameter may be NULL, in which case no carbon-copy
addresses will be included in the message header.

lpszSubject

A pointer to a string which specifies the subject of the message. This parameter may be NULL,
in which case no subject will be included in the message.

lpszMessageText

A pointer to a string which contains the body of the message as plain text. Each line of text
contained in the string should be terminated with a carriage-return and linefeed (CRLF) pair,
which is recognized as the end-of-line. If this parameter is NULL or points to an empty string,
then the message will have an empty body unless the lpszMessageHTML parameter is not
NULL.

lpszMessageHTML

A pointer to a string which contains the message using HTML formatting. If the
lpszMessageText parameter is not NULL, then a multipart message will be created with both
plain text and HTML text as the alternative. This allows mail clients to select which message body
they wish to display. If the lpszMessageText argument is NULL or points to an empty string,
then the message will only contain HTML. Although this is supported, it is not recommended
because older mail clients may be unable to display the message correctly.

nCharacterSet

A numeric identifier which specifies the character set to use when composing the message. A
value of zero specifies that the default UTF-8 character set should be used. It is recommended
that you always use UTF-8 when composing a new message or creating a new message part.

nEncodingType

A numeric identifier which specifies the encoding type to use when composing the message. A
value of zero specifies that default 7bit encoding should be used. The following values may also
be used:

Constant Description

MIME_ENCODING_7BIT Each character is encoded in one or more bytes, with
each byte being 8 bits long, with the most significant bit
cleared. This encoding is most commonly used with
plain text using the US-ASCII character set, where each
character is represented by a single byte in the range of
20h to 7Eh.

MIME_ENCODING_8BIT Each character is encoded in one or more bytes, with
each byte being 8 bits long and all bits are used. 8-bit
encoding is typically used with multibyte character sets
and is the default encoding used with Unicode text.

MIME_ENCODING_QUOTED Quoted-printable encoding is designed for textual
messages where most of the characters are represented
by the ASCII character set and is generally human-
readable. Non-printable characters or 8-bit characters
with the high bit set are encoded as hexadecimal values
and represented as 7-bit text. Quoted-printable
encoding is typically used for messages which use
character sets such as ISO-8859-1, as well as those
which use HTML.

MIME_ENCODING_BASE64 Base64 encoding converts binary or text data to ASCII
by translating it so each base64 digit represents 6 bits of
data. This encoding method is commonly used with
messages that contain binary data (such as binary file
attachments), or when text uses extended characters
that cannot be represented by 7-bit ASCII. It is
recommended that you use base64 encoding with
Unicode text.

Return Value
If the function succeeds, the return value is a handle to the message. If the function fails, the return
value is INVALID_MESSAGE. To get extended error information, call MimeGetLastError.

Remarks
The MimeComposeMessage function composes a new message and returns a handle which can
be used to further modify or export the message. To create an empty message without any
predefined header values, call the MimeCreateMessage function.

email addresses may be specified as simple addresses, or as commented addresses that include
the sender's name or other information. For example, any one of these address formats are
acceptable:

user@domain.tld
User Name <user@domain.tld>
user@domain.tld (User Name)

To specify multiple addresses, you should separate each address by a comma or semi-colon. Note
that the lpszFrom parameter cannot specify multiple addresses, however it is permitted with the
lpszTo, lpszCc and lpszBcc parameters.

To send a message that contains HTML, it is recommended that you provide both a plain text
version of the message body and an HTML formatted version. While it is permitted to send a
message that only contains HTML, some older mail clients may not be capable of displaying the
message correctly. In some cases, anti-spam software will increase the spam score of messages
that do not contain a plain text message body. This can result in your message being rejected or
quarantined by the mail server.

Call the MimeDeleteMessage function to free the memory allocated for this message when it is
no longer needed.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeCreateMessage, MimeCreateMessagePart, MimeDeleteMessage, MimeExportMessage,
MimeImportMessage, MimeInitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeCopyMessageStore Function

BOOL WINAPI MimeCopyMessageStore(
 HMESSAGESTORE hStorage,
 LPCTSTR lpszFileName
);

The MimeCopyMessageStore function duplicates the contents of the specified message store in
a new file.

Parameters
hStorage

Handle to the message store.

lpszFileName

A pointer to a string which specifies the name of the file that the messages will be copied to.
This parameter cannot be NULL and must specify a valid file path and name.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call MimeGetLastError.

Remarks
The MimeCopyMessageStore function is used to create a copy of the specified message store in
a new file. If the file does not exist, it will be created. If the file already exists, then the contents will
be overwritten with the contents of the message store.

Messages that have been marked for deletion are not copied to the new message store file.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeCloseMessageStore, MimeOpenMessageStore, MimePurgeMessageStore

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeCreateMessage Function

HMESSAGE MimeCreateMessage();

The MimeCreateMessage function creates a new empty message.

Parameters
There are no parameters.

Return Value
If the function succeeds, the return value is a handle to the message. If the function fails, the return
value is INVALID_MESSAGE. To get extended error information, call MimeGetLastError.

Remarks
To create a message with defined values for the sender, recipient, subject and body it is
recommended that you use the MimeComposeMessage function.

Call the MimeDeleteMessage function to free the memory allocated for this message when it is
no longer needed.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib

See Also
MimeComposeMessage, MimeCreateMessageEx, MimeCreateMessagePart, MimeDeleteMessage,
MimeExportMessage, MimeImportMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeCreateMessageEx Function

HMESSAGE WINAPI MimeCreateMessageEx(
 DWORD dwImportMode,
 DWORD dwImportOptions,
 LPVOID lpvMessage,
 DWORD dwMessageSize
);

The MimeCreateMessageEx function creates a new message and imports the contents from a
file or memory.

Parameters
dwImportMode

An unsigned integer which specifies how the message contents will be imported. It may be one
of the following values:

Constant Description

MIME_IMPORT_DEFAULT The default import mode. If the lpvMessage parameter is
NULL, the function will return a handle to an empty
message. Otherwise, the lpvMessage parameter is a
pointer to a string which specifies the name of a file that
contains the message. The dwMessageSize parameter is
ignored.

MIME_IMPORT_FILE The lpvMessage parameter is a pointer to a string which
specifies the name of a file that contains the message. If
the file does not exist, or is not a regular text file, an error
will occur. The dwMessageSize parameter is ignored.

MIME_IMPORT_CLIPBOARD The contents of the message is imported from the
system clipboard. The lpvMessage parameter is ignored.
The dwMessageSize parameter is ignored.

MIME_IMPORT_MEMORY The contents of the message is imported from a local
buffer. The lpvMessage parameter must point to a byte
array which contains the message to be imported. The
dwMessageSize parameter specifies the number of bytes
to copy from the buffer. If this value is zero, it is assumed
that the end of the message data in the buffer is
terminated with a null character and the length is
calculated automatically.

MIME_IMPORT_HGLOBAL The contents of the message is imported from a global
memory buffer. The lpvMessage parameter must be a
global memory handle which contains the message. The
dwMessageSize parameter specifies the number of bytes
to copy from the buffer. If this value is zero, it is assumed
that the end of the message data in the buffer is
terminated with a null character and the length is
calculated automatically.

dwImportOptions

 An unsigned integer which specifies how the message will be imported:

Constant Description

MIME_OPTION_DEFAULT The default import options. Currently this is the only valid
value for this parameter and applications should always
specify this constant.

lpvMessage

A pointer to a string, a byte buffer or a global memory handle. The dwImportMode parameter
determines how this pointer is used by the function.

dwMessageSize

An unsigned integer value which specifies the size of the message to import. This parameter is
only used when importing a message from a memory buffer. The message size is determined
automatically when the message is imported from a file or the system clipboard.

Return Value
If the function succeeds, the return value is a handle to the message. If the function fails, the return
value is INVALID_MESSAGE. To get extended error information, call MimeGetLastError.

Remarks
The MimeCreateMessageEx function creates a new message from the contents of a file or
memory, and returns a handle to the parsed message. When the message is no longer needed by
the application, it should call MimeDeleteMessage to free the memory allocated for the message
and release the handle.

To create a new message with predefined header values and content, use the
MimeComposeMessage function.

Example
The following example creates a message using an HGLOBAL handle that references a block of
memory that contains an email message:

hMessage = MimeCreateMessageEx(MIME_IMPORT_HGLOBAL,
 MIME_OPTION_DEFAULT,
 (LPVOID)hgblMessage,
 0);

if (hMessage != INVALID_MESSAGE)
{
 // The message has been successfully created
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeComposeMessage, MimeCreateMessage, MimeDeleteMessage, MimeExportMessage,
MimeImportMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeCreateMessagePart Function

INT WINAPI MimeCreateMessagePart(
 HMESSAGE hMessage
);

The MimeCreateMessagePart function creates a new part for the specified message. If this the
first part created for a message that does not have the multipart content type specified, the
message is marked as multipart and the header fields are updated.

Parameters
hMessage

Handle to the message.

Return Value
If the function succeeds, the return value is the new message part number. If the function fails, the
return value is MIME_ERROR. To get extended error information, call MimeGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib

See Also
MimeAttachFile, MimeCreateMessage, MimeDeleteMessagePart, MimeGetMessagePart,
MimeGetMessagePartCount, MimeSetMessagePart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeCreateMessagePartEx Function

INT WINAPI MimeCreateMessagePartEx(
 HMESSAGE hMessage,
 UINT nCharacterSet,
 UINT nEncodingType,
 LPCTSTR lpszText
);

The MimeCreateMessagePartEx function creates a new part for the specified message. If this the
first part created for a message that does not have the multipart content type specified, the
message is marked as multipart and the header fields are updated.

Parameters
hMessage

Handle to the message.

nCharacterSet

A numeric identifier which specifies the character set to use when composing the message. A
value of zero specifies the character set should be the same character set used to initially
compose the message. It is recommended that you always use UTF-8 when composing a new
message or creating a new message part.

nEncodingType

A numeric identifier which specifies the encoding type to use when composing the message. A
value of zero specifies that default 7bit encoding should be used. The following values may also
be used:

Constant Description

MIME_ENCODING_7BIT Each character is encoded in one or more bytes, with
each byte being 8 bits long, with the most significant bit
cleared. This encoding is most commonly used with
plain text using the US-ASCII character set, where each
character is represented by a single byte in the range of
20h to 7Eh.

MIME_ENCODING_8BIT Each character is encoded in one or more bytes, with
each byte being 8 bits long and all bits are used. 8-bit
encoding is typically used with multibyte character sets
and is the default encoding used with Unicode text.

MIME_ENCODING_QUOTED Quoted-printable encoding is designed for textual
messages where most of the characters are represented
by the ASCII character set and is generally human-
readable. Non-printable characters or 8-bit characters
with the high bit set are encoded as hexadecimal values
and represented as 7-bit text. Quoted-printable
encoding is typically used for messages which use Latin
character sets such as ISO-8859-1, as well as those
which use HTML.

MIME_ENCODING_BASE64 Base64 encoding converts binary or text data to ASCII
by translating it so each base64 digit represents 6 bits of

data. This encoding method is commonly used with
messages that contain binary data (such as binary file
attachments), or when text uses extended characters
that cannot be represented by 7-bit ASCII. It is
recommended that you use base64 encoding with
Unicode text.

lpszText

A pointer to a string which specifies the text to be included in the body of the new message
part. If this parameter is NULL or points to an empty string, no text is added to the message
part.

Return Value
If the function succeeds, the return value is the new message part number. If the function fails, the
return value is MIME_ERROR. To get extended error information, call MimeGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeAttachFile, MimeComposeMessage, MimeCreateMessage, MimeCreateMessagePart,
MimeDeleteMessagePart, MimeGetMessagePart, MimeGetMessagePartCount,
MimeSetMessagePart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeDecodeText Function

LONG WINAPI MimeDecodeText(
 UINT nEncodingType,
 LPCTSTR lpszInput,
 LONG cchInput,
 LPTSTR lpszOutput,
 LONG cchOutput
);

The MimeDecodeText function decodes a string which was previously encoded using base64 or
quoted-printable encoding.

Parameters
nEncodingType

An integer value that specifies the encoding method used. It may be zero or one of the
following values:

Constant Description

MIME_ENCODING_QUOTED Quoted-printable encoding is designed for textual
messages where most of the characters are represented
by the ASCII character set and is generally human-
readable. Non-printable characters or 8-bit characters
with the high bit set are encoded as hexadecimal values
and represented as 7-bit text. Quoted-printable
encoding is typically used for messages which use
character sets such as ISO-8859-1, as well as those
which use HTML.

MIME_ENCODING_BASE64 Base64 encoding converts binary or text data to ASCII
by translating it so each base64 digit represents 6 bits of
data. This encoding method is commonly used with
messages that contain binary data (such as binary file
attachments), or when text uses extended characters
that cannot be represented by 7-bit ASCII. It is
recommended that you use base64 encoding with
Unicode text. This is the default encoding type used by
this function.

lpszInput

A pointer to a null terminated string which contains the encoded text. This parameter cannot be
a NULL pointer.

cchInput

An integer value which specifies the number of characters of text in the input string which
should be decoded. If this value is -1, the entire length of the string up to the terminating null
will be decoded.

lpszOutput

A pointer to a string buffer that will contain the decoded text. This buffer must be large enough
to store all of the characters in the decoded text, including the terminating null character. This
parameter cannot be NULL.

cchOutput

An integer value which specifies the maximum number of characters which can be copied into
the output string buffer. The buffer must be large enough to store all of the decoded text and
terminating null character. This value must be greater than zero.

Return Value
If the input buffer can be successfully decoded, the return value is the length of the decoded
output string. If the function returns zero, then no text was decoded and the output string buffer
will be empty. If the function fails, the return value is MIME_ERROR. To get extended error
information, call MimeGetLastError.

Remarks
This function provides a means to decode text that was previously encoded using either base64 or
quoted-printable encoding. In most cases, it is not necessary to use this function because the
message parser will automatically decode the message text if necessary.

This function and the MimeEncodeText function use the UTF-8 character set. If the Unicode
version of this function is called, the output text will be decoded as UTF-8, then converted to UTF-
16 and returned to the caller. If the ANSI version of this function is used, the decoded output will
always be returned to the caller using the UTF-8 character set.

If an unsupported encoding type is specified, this function will return MIME_ERROR and the output
text string will be empty. In most cases, it is preferable to use MIME_ENCODING_BASE64 as the
encoding method, with quoted-printable encoding only used for legacy support.

If the original text was encoded using a different character set, use the MimeDecodeTextEx
function, which enables you to specify an alternate character set.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeDecodeTextEx, MimeEncodeText, MimeEncodeTextEx, MimeGetMessageText,
MimeLocalizeText, MimeSetMessageText

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeDecodeTextEx Function

LONG WINAPI MimeDecodeTextEx(
 UINT nCharacterSet,
 UINT nEncodingType,
 DWORD dwReserved,
 LPCTSTR lpszInput,
 LONG cchInput,
 LPTSTR lpszOutput,
 LONG cchOutput
);

The MimeDecodeTextEx function decodes a string which was previously encoded using base64
or quoted-printable encoding. This extended version of the function enables the caller to specify
the character set for the original text.

Parameters
nCharacterSet

A numeric identifier which specifies the character set to use when decoding the input text. A
value of zero specifies the character set is undefined and no Unicode text conversion is
performed when the input string is decoded. If this value does not match the character set used
when the text was originally encoded, the resulting output text may be invalid.

nEncodingType

An integer value that specifies the encoding method used. It may be zero or one of the
following values:

Constant Description

MIME_ENCODING_QUOTED Quoted-printable encoding is designed for textual
messages where most of the characters are represented
by the ASCII character set and is generally human-
readable. Non-printable characters or 8-bit characters
with the high bit set are encoded as hexadecimal values
and represented as 7-bit text. Quoted-printable
encoding is typically used for messages which use
character sets such as ISO-8859-1, as well as those
which use HTML.

MIME_ENCODING_BASE64 Base64 encoding converts binary or text data to ASCII
by translating it so each base64 digit represents 6 bits of
data. This encoding method is commonly used with
messages that contain binary data (such as binary file
attachments), or when text uses extended characters
that cannot be represented by 7-bit ASCII. It is
recommended that you use base64 encoding with
Unicode text. This is the default encoding type used by
this function.

dwReserved

An integer value reserved for internal use. This value must always be zero.

lpszInput

 A pointer to a null terminated string which contains the encoded text. This parameter cannot be
a NULL pointer.

cchInput

An integer value which specifies the number of characters of text in the input string which
should be decoded. If this value is -1, the entire length of the string up to the terminating null
will be decoded.

lpszOutput

A pointer to a string buffer that will contain the decoded text. This buffer must be large enough
to store all of the characters in the decoded text, including the terminating null character. This
parameter cannot be NULL.

cchOutput

An integer value which specifies the maximum number of characters which can be copied into
the output string buffer. The buffer must be large enough to store all of the decoded text and
terminating null character. This value must be greater than zero.

Return Value
If the input buffer can be successfully decoded, the return value is the length of the decoded
output string. If the function returns zero, then no text was decoded and the output string buffer
will be empty. If the function fails, the return value is MIME_ERROR. To get extended error
information, call MimeGetLastError.

Remarks
This function provides a means to decode text that was previously encoded using either base64 or
quoted-printable encoding. In most cases, it is not necessary to use this function because the
message parser will detect which character set and encoding was used, then automatically decode
the message text if necessary.

The value of the nCharacterSet parameter does not affect the resulting output text, it is only used
when decoding the input text. If the Unicode version of this function is called, the output text will
be converted to UTF-16 and returned to the caller. If the ANSI version of this function is used, the
decoded output will always be returned to the caller using the UTF-8 character set.

If the nCharacterSet parameter is specified as MIME_CHARSET_UTF16, the encoding type must be
MIME_ENCODING_BASE64. Other encoding methods are not supported for Unicode strings and
will cause the function to fail. In most cases, it is preferable to use MIME_ENCODING_BASE64 as
the encoding method, with quoted-printable encoding only used for legacy support.

If an unsupported encoding type is specified, this function will return MIME_ERROR and the output
text string will be empty. This function cannot be used to decode uuencoded text.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeDecodeText, MimeEncodeText, MimeEncodeTextEx, MimeGetMessageText,
MimeLocalizeText, MimeSetMessageText

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeDeleteMessage Function

BOOL WINAPI MimeDeleteMessage(
 HMESSAGE hMessage
);

The MimeDeleteMessage function deletes the specified message and releases the memory
allocated for the header and body.

Parameters
hMessage

Handle to the message.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call MimeGetLastError.

Remarks
Once the message has been deleted, the handle is invalid and should not be referenced.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib

See Also
MimeCreateMessage, MimeDeleteMessagePart, MimeResetMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeDeleteMessageHeader Function

BOOL WINAPI MimeDeleteMessageHeader(
 HMESSAGE hMessage,
 LPCTSTR lpszHeader
);

The MimeDeleteMessageHeader function deletes the specified header field from the message.

Parameters
hMessage

Handle to the message.

lpszHeader

Pointer to a string which specifies the header field that will be deleted.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call MimeGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeGetMessageHeader, MimeSetMessageHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeDeleteMessagePart Function

BOOL WINAPI MimeDeleteMessagePart(
 HMESSAGE hMessage,
 INT nMessagePart
);

The MimeDeleteMessagePart function deletes the specified message part from the multipart
message. The memory allocated for the message part is released.

Parameters
hMessage

Handle to the message.

nMessagePart

The message part index to delete.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call MimeGetLastError.

Remarks
This function cannot be used to delete part zero, which is the main body of the message. Instead
use the MimeResetMessage function to clear the entire message.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeCreateMessagePart, MimeCreateMessagePartEx, MimeGetMessagePart,
MimeGetMessagePartCount, MimeResetMessage, MimeSetMessagePart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeDeleteStoredMessage Function

BOOL WINAPI MimeDeleteStoredMessage(
 HMESSAGESTORE hStorage,
 LONG nMessageId
);

The MimeDeleteStoredMessage function removes the specified message from the message
store.

Parameters
hStorage

Handle to the message store.

nMessageId

An integer value which identifies the message that is to be removed from the message store.
Message numbers begin at one and increment for each message in the store.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call MimeGetLastError.

Remarks
The MimeDeleteStoredMessage function marks the specified message for deletion from the
storage file. When the message store is closed or purged, the message is removed from the file.
Once a message has been marked for deletion, it may no longer be referenced by the application.
For example, you cannot access the contents of a message that has been deleted.

The message store must be opened with write access. This function will fail if you attempt to delete
a message from a storage file that has been opened for read-only access. If the application needs
to delete messages in the message store, it is recommended that the file be opened for exclusive
access using the MIME_STORAGE_LOCK option.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib

See Also
MimeCloseMessageStore, MimeFindStoredMessage, MimeGetStoredMessage,
MimeGetStoredMessageCount, MimePurgeMessageStore

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeEncodeText Function

LONG WINAPI MimeEncodeText(
 UINT nEncodingType,
 LPCTSTR lpszInput,
 LONG cchInput,
 LPTSTR lpszOutput,
 LONG cchOutput
);

The MimeEncodeText function encodes a string using base64 or quoted-printable encoding.

Parameters
nEncodingType

An integer value that specifies the encoding method used. It may be zero or one of the
following values:

Constant Description

MIME_ENCODING_QUOTED Quoted-printable encoding is designed for textual
messages where most of the characters are represented
by the ASCII character set and is generally human-
readable. Non-printable characters or 8-bit characters
with the high bit set are encoded as hexadecimal values
and represented as 7-bit text. Quoted-printable
encoding is typically used for messages which use
character sets such as ISO-8859-1, as well as those
which use HTML.

MIME_ENCODING_BASE64 Base64 encoding converts binary or text data to ASCII
by translating it so each base64 digit represents 6 bits of
data. This encoding method is commonly used with
messages that contain binary data (such as binary file
attachments), or when text uses extended characters
that cannot be represented by 7-bit ASCII. It is
recommended that you use base64 encoding with
Unicode text. This is the default encoding type used by
this function.

lpszInput

A pointer to a null terminated string which contains the encoded text. This parameter cannot be
a NULL pointer.

cchInput

An integer value which specifies the number of characters of text in the input string which
should be encoded. If this value is -1, the entire length of the string up to the terminating null
will be encoded.

lpszOutput

A pointer to a string buffer that will contain the encoded text. This buffer must be large enough
to store all of the characters in the encoded text, including the terminating null character. This
parameter cannot be NULL.

cchOutput

An integer value which specifies the maximum number of characters which can be copied into
the output string buffer. The buffer must be large enough to store all of the encoded text and
terminating null character. This value must be greater than zero.

Return Value
If the input buffer can be successfully encoded, the return value is the length of the encoded
output string. If the function returns zero, then no text was encoded and the output string buffer
will be empty. If the function fails, the return value is MIME_ERROR. To get extended error
information, call MimeGetLastError.

Remarks
This function provides a means to encode text using either base64 or quoted-printable encoding.
It is not necessary to use this function to encode text when using the MimeSetMessageText
function. The library will automatically encode message text which contains non-ASCII characters
using the character set specified when the message is created.

This function and the MimeDecodeText function use the UTF-8 character set. If the Unicode
version of this function is called, the input text will be converted to UTF-8 and then encoded. If the
ANSI version of this function is used, the input text is expected to be UTF-8 or ASCII text. If you are
encoding text which uses non-ASCII characters, it is recommended that you use the Unicode
version of this function.

If an unsupported encoding type is specified, this function will return MIME_ERROR and the output
text string will be empty. This function cannot be used to create uuencoded text. In most cases, it
is preferable to use MIME_ENCODING_BASE64 as the encoding method, with quoted-printable
encoding only used for legacy support.

If you want the text to be encoded using a different character set, you can use the
MimeEncodeTextEx function. In most cases, your application should use the default UTF-8
character set when encoding and decoding text which contains non-ASCII characters, rather than
using specific character sets.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeDecodeText, MimeDecodeTextEx, MimeEncodeTextEx, MimeGetMessageText,
MimeSetMessageText

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeEncodeTextEx Function

LONG WINAPI MimeEncodeTextEx(
 UINT nCharacterSet,
 UINT nEncodingType,
 DWORD dwReserved,
 LPCTSTR lpszInput,
 LONG cchInput,
 LPTSTR lpszOutput,
 LONG cchOutput
);

The MimeEncodeTextEx function encodes a string using base64 or quoted-printable encoding.
This extended version of the function enables the caller to specify the character set for the input
text.

Parameters
nCharacterSet

A numeric identifier which specifies the character set to use when encoding the input text. A
value of zero specifies the character set is undefined and no Unicode text conversion is
performed when the input string is encoded.

nEncodingType

An integer value that specifies the encoding method used. It may be one of the following
values:

Constant Description

MIME_ENCODING_QUOTED Quoted-printable encoding is designed for textual
messages where most of the characters are represented
by the ASCII character set and is generally human-
readable. Non-printable characters or 8-bit characters
with the high bit set are encoded as hexadecimal values
and represented as 7-bit text. Quoted-printable
encoding is typically used for messages which use
character sets such as ISO-8859-1, as well as those
which use HTML.

MIME_ENCODING_BASE64 Base64 encoding converts binary or text data to ASCII
by translating it so each base64 digit represents 6 bits of
data. This encoding method is commonly used with
messages that contain binary data (such as binary file
attachments), or when text uses extended characters
that cannot be represented by 7-bit ASCII. It is
recommended that you use base64 encoding with
Unicode text.

dwReserved

An integer value reserved for internal use. This value must always be zero.

lpszInput

A pointer to a null terminated string which contains the encoded text. This parameter cannot be
a NULL pointer.

cchInput

An integer value which specifies the number of characters of text in the input string which
should be encoded. If this value is -1, the entire length of the string up to the terminating null
will be encoded.

lpszOutput

A pointer to a string buffer that will contain the encoded text. This buffer must be large enough
to store all of the characters in the encoded text, including the terminating null character. This
parameter cannot be NULL.

cchOutput

An integer value which specifies the maximum number of characters which can be copied into
the output string buffer. The buffer must be large enough to store all of the encoded text and
terminating null character. This value must be greater than zero.

Return Value
If the input buffer can be successfully encoded, the return value is the length of the encoded
output string. If the function returns zero, then no text was encoded and the output string buffer
will be empty. If the function fails, the return value is MIME_ERROR. To get extended error
information, call MimeGetLastError.

Remarks
This function provides a means to encode text using either base64 or quoted-printable encoding.
It is not necessary to use this function to encode text when using the MimeSetMessageText
function. The library will automatically encode message text which contains non-ASCII characters
using the character set specified when the message is created.

If the nCharacterSet parameter parameter is non-zero, the function will encode the text using the
specified character set. If the Unicode version of this function is called, the input text is converted
to ANSI using the code page associated with the character set. If the ANSI version of this function
is called, the input text is converted to Unicode using the system default code page, and then back
to ANSI using the specified character set.

If the nCharacterSet parameter specifies the MIME_CHARSET_UTF16 character set, you must
specify MIME_ENCODING_BASE64 as the encoding method. Other encoding methods are not
supported for Unicode strings and will cause the function to fail. It is not recommended you
encode text as UTF-16 unless there is a specific requirement to use that character set.

It is recommended that you use the MIME_CHARSET_UTF8 character set whenever possible. It is
capable of encoding all Unicode code points, and is a standard for virtually all modern Internet
applications. In most cases, it is preferable to use MIME_ENCODING_BASE64 as the encoding
method, with quoted-printable encoding only used for legacy support.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeDecodeText, MimeEncodeText, MimeEncodeTextEx, MimeGetMessageText,
MimeSetMessageText

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeEnumAttachments Function

INT WINAPI MimeEnumAttachments(
 HMESSAGE hMessage,
 LPCTSTR* lpFileNames,
 INT nMaxFiles
);

The MimeEnumAttachments function enumerates all of the file attachments in the specified
message.

Parameters
hMessage

Handle to the message.

lpFileNames

A pointer to a an array of null-terminated strings that contain the names of the files attached to
the message. If this parameter is NULL, the function will only return the number of files attached
to the message.

nMaxFiles

An integer value that specifies the maximum size of the array of string pointers specified by the
lpFileNames parameter. If this value is zero, the lpFileNames parameter is ignored and the
function will only return the number of files attached to the message.

Return Value
If the function succeeds, the return value is the number of files attached to the message. If the
message does not contain any file attachments, this function will return a value of zero. If the
function fails, the return value is MIME_ERROR. To get extended error information, call
MimeGetLastError.

Remarks
This function can be used to obtain the names of the files attached to the message. If this function
is used with languages other than C/C++, it is important to note that the lpFileNames parameter
is not a pointer to a string, but rather a pointer to an array of pointers to null-terminated strings. It
is not recommended that you use this function with languages that do not support C-style arrays.
For example, Visual Basic represents arrays as SAFEARRAY structures and is not compatible with
this function.

Example
LPCTSTR lpszFiles[MAXFILES];

INT nFiles = MimeEnumAttachments(hMessage, lpszFiles, MAXFILES);
if (nFiles == MIME_ERROR)
{
 DWORD dwError = MimeGetLastError();
 _tprintf(_T("Unable to enumerate attachments, error 0x%08lx\n"), dwError);
 return;
}

_tprintf(_T("There are %d files attached to the message\n"), nFiles);
for (INT nIndex = 0; nIndex < nFiles; nIndex++)
{
 BOOL bResult = MimeExtractFileEx(hMessage, -1, lpszFiles[nIndex], NULL, 0);

 if (bResult)
 _tprintf(_T("%d: extracted attachment \"%s\"\n"), nIndex,
lpszFiles[nIndex]);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeAttachFile, MimeExportMessage, MimeExtractAllFiles, MimeExtractFileEx,
MimeGetAttachedFileName, MimeImportMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeEnumMessageHeaders Function

INT WINAPI MimeEnumMessageHeaders(
 HMESSAGE hMessage,
 LPCTSTR* lpHeaderList,
 INT nMaxHeaders
);

The MimeEnumMessageHeaders function returns a list of pointers to all header field names in
the current message part. This can be used in conjunction with the MimeGetMessageHeader
function to retrieve the values for every header in the message.

Parameters
hMessage

Handle to the message.

lpHeaderList

Pointer to an array of pointers to null terminated header field names. If this parameter is NULL,
the function only returns the number of headers in the current message part.

nMaxHeaders

The maximum number of header fields which may be returned in the lpHeaderList parameter.

Return Value
If the function succeeds, the return value is the total number of headers that are defined in the
current message part. If the function fails, the return value is MIME_ERROR. To get extended error
information, call MimeGetLastError.

Remarks
The values returned in the header list array must not be directly modified by the application. There
is no specific order in which the header fields are enumerated by this function. The header fields
from an imported message may not be returned in the same order as which they appear in the
message. An application should never make an assumption about the order in which one or more
header fields are defined.

Example
// Determine the total number of headers in the current
// message part

nHeaders = MimeEnumMessageHeaders(hMessage, NULL, 0);
if (nHeaders > 0)
{

 // Allocate memory for the list of headers

 lpHeaderList = (LPCTSTR *)LocalAlloc(LPTR, nHeaders * sizeof(LPCTSTR));
 assert(lpHeaderList != NULL);

 // Retrieve the list of headers in the current
 // message part, and get their values

 MimeEnumMessageHeaders(hMessage, lpHeaderList, nHeaders);
 for (nIndex = 0; nIndex < nHeaders; nIndex++)
 {

 LPCTSTR lpszValue;
 lpszValue = MimeGetMessageHeader(hMessage, lpHeaderList[nIndex]);
 assert(lpszValue != NULL);

 printf("%s: %s\n", lpHeaderList[nIndex], lpszValue);

 }
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeGetFirstMessageHeader, MimeGetMessageHeader, MimeGetNextMessageHeader,
MimeSetMessageHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeEnumMessageRecipients Function

INT WINAPI MimeEnumMessageRecipients(
 HMESSAGE hMessage,
 LPCTSTR lpszExtraAddress,
 LPTSTR lpBuffer,
 LPDWORD lpcchBuffer
);

The MimeEnumMessageRecipients function returns a null-terminated list of strings which
contain the email address of each recipient for the specified message.

Parameters
hMessage

Handle to the message.

lpszExtraAddress

A pointer to a string which contains one or more additional email addresses that should be
included in the list, in addition to those found in the message. If more than one address is
specified, each address should be separated by a comma. This parameter may be NULL if there
are no extra addresses to include in the recipient list.

lpBuffer

Pointer to buffer which will contain zero or more null-terminated strings. The end of the string
list is indicated by an additional terminating null. If this parameter is NULL, the function will
calculate the minimum number of bytes required to store the addresses and return the value in
the lpcbBuffer parameter.

lpcchBuffer

A pointer to an unsigned integer which should be initialized to the maximum number of
characters that can be copied into the buffer specified by the lpBuffer parameter. When the
function returns, it will be updated to contain the actual number of characters copied into the
buffer. If the lpBuffer parameter is NULL, then this value will contain the minimum number of
characters required to store all of the recipient addresses in the current message.

Return Value
If the function succeeds, the return value is the total number of recipients for the current message.
If the function fails, the return value is MIME_ERROR. To get extended error information, call
MimeGetLastError.

Remarks
The MimeEnumMessageRecipients function returns a list of recipient email addresses for the
specified message, with each address being terminated by a null character. The end of the list is
indicated by an additional null character. To determine the size of the buffer you should pass to
this function, you can specify the lpBuffer parameter as NULL and initialize the value of the
lpcchBuffer parameter to zero.

This function is primarily designed for use with C/C++ and languages that can easily use C-style
strings and pointers to string values. In many cases, it may be preferable to use the
MimeGetAllRecipients function which returns a comma-separated list of recipient addresses in a
string buffer.

If you are using the Unicode version of this function, keep in mind that the lpcchBuffer parameter

returns the number of characters in the output buffer, not the number of bytes. If you are
dynamically allocating the buffer, make sure you allocate enough memory to store Unicode
strings, which are two bytes per character.

Example
LPTSTR lpRecipients = NULL;
DWORD cchRecipients = 0;
INT nRecipients = 0;

// Determine the number of characters that should be allocated to store
// all of the recipient addresses in the current message

nRecipients = MimeEnumMessageRecipients(hMessage,
 NULL,
 NULL,
 &cchRecipients);

// Allocate the memory for the string buffer that will contain all
// of the recipient addresses and call MimeEnumMessageRecipients
// again to store those addresses in the buffer

if (nRecipients > 0 && cchRecipients > 0)
{
 lpRecipients = (LPTSTR)LocalAlloc(LPTR, cchRecipients * sizeof(TCHAR));
 if (lpRecipients == NULL)
 return; // Virtual memory exhausted

 nRecipients = MimeEnumMessageRecipients(hMessage,
 NULL,
 lpRecipients,
 &cchRecipients);
}

// Move through the buffer, processing each recipient address
// that was returned

if (nRecipients > 0)
{
 LPTSTR lpszAddress = lpRecipients;
 INT cchAddress;

 while (lpszAddress != NULL)
 {
 if ((cchAddress = lstrlen(lpszAddress)) == 0)
 break;

 // lpszAddress specifies a recipient address
 // Advance to the next address string in the buffer
 lpszAddress += cchAddress + 1;
 }
}

if (lpRecipients)
{
 LocalFree((HLOCAL)lpRecipients);
 lpRecipients = NULL;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeGetAllRecipients, MimeGetFirstMessageHeader, MimeGetMessageHeader,
MimeGetNextMessageHeader, MimeSetMessageHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeExportMessage Function

BOOL WINAPI MimeExportMessage(
 HMESSAGE hMessage,
 LPCTSTR lpszFileName
);

The MimeExportMessage function writes the specified message to a file. If the file does not exist,
it will be created. If it does exist, it will be overwritten with the contents of the message.

Parameters
hMessage

Handle to the message.

lpszFileName

Pointer to a string which specifies the name of the file to be created from the message. If this
parameter is NULL, the contents of the message will be copied to the system clipboard.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call MimeGetLastError.

Remarks
This function is provided for backwards compatibilty with previous versions of the API. To export
the contents of the message to a buffer in memory, use the MimeExportMessageEx function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeCreateMessage, MimeExportMessageEx, MimeImportMessage, MimeImportMessageEx,
MimeSetExportOptions

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeExportMessageEx Function

BOOL WINAPI MimeExportMessageEx(
 HMESSAGE hMessage,
 DWORD dwExportMode,
 DWORD dwExportOptions,
 LPVOID lpvMessage,
 LPDWORD lpdwMessageSize
);

The MimeExportMessageEx function exports the message to a file, the system clipboard or
global memory buffer.

Parameters
hMessage

Handle to the message.

dwExportMode

An unsigned integer which specifies how the message contents will be exported. It may be one
of the following values:

Constant Description

MIME_EXPORT_DEFAULT The default export mode. If the lpvMessage parameter is
NULL, then the contents of the message will be copied to
the system clipboard. Otherwise, the lpvMessage
parameter is a pointer to a string which specifies the
name of a file to store the message in.

MIME_EXPORT_FILE The lpvMessage parameter is a pointer to a null-
terminated string which specifies the name of a file to
store the message in. If the file does not exist, it will be
created. Otherwise the file will be overwritten with the
contents of the message.

MIME_EXPORT_CLIPBOARD The contents of the message is copied to the system
clipboard. The lpvMessage parameter is ignored.

MIME_EXPORT_MEMORY The contents of the message is copied to a local buffer.
The lpvMessage parameter must point to a byte array
which will contain the message contents when the
function returns. The lpdwMessageSize parameter must
be initialized to the maximum size of the buffer and will
contain the number of bytes copied to the buffer when
the function returns.

MIME_EXPORT_HGLOBAL The contents of the message is stored in a global
memory buffer. The lpvMessage parameter must point
to a global memory handle which will reference the
message buffer when the function returns. The
lpdwMessageSize parameter will contain the number of
bytes allocated for the message. The client application is
responsible for releasing the memory handle when the
message contents are no longer needed.

dwExportOptions

An unsigned integer which specifies how the message will be exported. The following values
may be combined using a bitwise Or operator:

Constant Description

MIME_OPTION_DEFAULT The default export options. The headers for the
message are written out in a specific consistent order,
with custom headers written to the end of the header
block regardless of the order in which they were set or
imported from another message. If the message
contains Bcc, Received, Return-Path, Status or X400-
Received header fields, they will not be exported.

MIME_OPTION_KEEPORDER The original order in which the message header fields
were set or imported are preserved when the message
is exported.

MIME_OPTION_ALLHEADERS All headers, including the Received, Return-Path, Status
and X400-Received header fields will be exported.
Normally these headers are not exported because they
are only used by the mail transport system. This option
can be useful when exporting a message to be stored
on the local system, but should not be used when
exporting a message to be delivered to another user.

MIME_OPTION_NOHEADERS When exporting a message, the main header block will
not be included. This can be useful when creating a
multipart message for services which expect MIME
formatted data, such as HTTP POST requests. This
option should never be used for email messages being
submitted using SMTP.

lpvMessage

A pointer to a string, a byte buffer or a global memory handle. The dwExportMode parameter
determines how this pointer is used by the function.

lpdwMessageSize

A pointer to an unsigned integer value which will contain the size of the message when the
function exits. This parameter may be NULL if you do not require this information, except if the
dwExportMode parameter is MIME_EXPORT_MEMORY. In this case, the parameter must point
to a value initialized with the maximum size of the byte buffer that has been passed to the
function.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call MimeGetLastError.

Remarks
If the MIME_EXPORT_MEMORY mode is used to export the message to a pre-allocated buffer, the
lpdwMessageSize parameter must be initialized to the size of the buffer before being passed to
the function by reference. If this value is not properly initialized by the application, it can result in
an error or a general protection exception. If the function succeeds, the message will be copied to

the buffer. If the function fails, the previous contents of the buffer will not be preserved. It is not
guaranteed that the buffer will be terminated with a null byte. If the buffer is not large enough to
store the entire message, the function will fail. The MimeGetMessageSize function can be used
to determine the minimum size of the buffer required to store the message.

If the MIME_EXPORT_HGLOBAL mode is used, a global memory handle will be returned to the
caller which contains the message contents. This handle must be dereferenced using the
GlobalLock function. No changes should be made to this copy of the message. If you wish to
modify the contents of the message, allocate a local buffer and copy the message contents, or use
the MIME_EXPORT_MEMORY option instead. Your application is responsible for calling
GlobalUnlock and GlobalFree to unlock and free the handle when it is no longer needed.

Example
The following example exports the contents of a message to a global memory buffer:

HGLOBAL hgblMessage = NULL;
DWORD dwMessageSize = 0;

bResult = MimeExportMessageEx(hMessage,
 MIME_EXPORT_HGLOBAL,
 MIME_OPTION_DEFAULT,
 &hgblMessage,
 &dwMessageSize);

if (bResult)
{
 LPBYTE lpMessage = (LPBYTE)GlobalLock(hgblMessage);

 if (lpMessage)
 {
 // Process the contents of the message
 }

 GlobalUnlock(hgblMessage);
 GlobalFree(hgblMessage);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeCreateMessage, MimeExportMessage, MimeGetMessageSize, MimeImportMessage,
MimeImportMessageEx, MimeSetExportOptions

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeExtractAllFiles Function

INT WINAPI MimeExtractAllFiles(
 HMESSAGE hMessage,
 LPCTSTR lpszDirectory,
 DWORD dwReserved
);

The MimeExtractAllFiles function extracts all of the file attachments in a message and stores
them in the specified directory.

Parameters
hMessage

Handle to the message.

lpszDirectory

A pointer to a string which specifies the name of the directory where the file attachments should
be stored. If this parameter is NULL or points to an empty string, the attached files will be stored
in the current working directory on the local system.

dwReserved

An unsigned integer value that is reserved for future use. This parameter must always have a
value of zero.

Return Value
If the function succeeds, the return value is the number of file attachments which were extracted
from the message. If the message does not contain any file attachments, this function will return a
value of zero. If the function fails, the return value is MIME_ERROR. To get extended error
information, call MimeGetLastError.

Remarks
This function will extract all of the files that are attached to the message and store them in the
specified directory. The directory must exist and the current user must have the appropriate
permissions to create files there. If a file with the same name as the attachment already exists, it
will be overwritten with the contents of the attachment. If the file attachment was encoded using
base64 or uuencode, this function will automatically decode the contents of the attachment.

To determine the file names for each of the attachments in a message, use the
MimeEnumAttachments function. To store a file attachment on the local system using a name
that is different than the file name of the attachment, use the MimeExtractFile function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeAttachFile, MimeEnumAttachments, MimeExportMessage, MimeExtractFileEx,
MimeGetAttachedFileName, MimeImportMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeExtractFile Function

BOOL WINAPI MimeExtractFile(
 HMESSAGE hMessage,
 LPCTSTR lpszFileName
);

The MimeExtractFile function extracts a file attachment from the current message part and stores
it on the local system.

Parameters
hMessage

Handle to the message.

lpszFileName

A pointer to a string which specifies the name of a file on the local system.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call MimeGetLastError.

Remarks
This function will store the contents of a file attachment in the current message part to the
specified file on the local system. If a path is specified as part of the file name, it must exist and the
current user must have the appropriate permissions to create the file. If a file with the same name
already exists, it will be overwritten with the contents of the attachment. If the file attachment was
encoded using base64 or uuencode, this function will automatically decode the contents of the
attachment.

To determine if the current message part contains a file attachment, use the
MimeGetAttachedFileName function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeAttachFile, MimeExportMessage, MimeExtractFileEx, MimeGetAttachedFileName,
MimeImportMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeExtractFileEx Function

BOOL WINAPI MimeExtractFileEx(
 HMESSAGE hMessage,
 INT nMessagePart,
 LPCTSTR lpszAttachment,
 LPCTSTR lpszFileName,
 DWORD dwReserved
);

The MimeExtractFileEx function extracts a file attachment from the message and stores it on the
local system.

Parameters
hMessage

Handle to the message.

nMessagePart

An integer value that specifies the message part that contains the file attachment. This value
may be -1, in which case the current message part will be used, or the function will search for
an attachment with a file name that matches the value of the lpszAttachment parameter.

lpszAttachment

A pointer to a string that specifies the file name for the attachment in the message. If the file
name of the attachment is not known, this parameter can be NULL or point to an empty string.
This parameter is ignored if the nMessagePart parameter has a value greater than -1.

lpszFileName

A pointer to a string that specifies the name of a file on the local system. If this parameter is
NULL or points to an empty string, the value of the lpszAttachment parameter will specify the
name of the file in the current working directory. If both the lpszAttachment and lpszFileName
parameters are NULL, the function will fail.

dwReserved

An unsigned integer value that is reserved for future use. This parameter must always have a
value of zero.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call MimeGetLastError.

Remarks
This function will store the contents of a file attachment in the current message part to the
specified file on the local system. If a path is specified as part of the file name, it must exist and the
current user must have the appropriate permissions to create the file. If a file with the same name
already exists, it will be overwritten with the contents of the attachment. If the file attachment was
encoded using base64 or uuencode, this function will automatically decode the contents of the
attachment.

If the nMessagePart parameter has a value of -1 and the lpszAttachment parameter specifies a
file name, this function will search the entire message for an attachment with the same file name.
The search is not case-sensitive, however it must match the attachment file name completely. This
function will not match partial file names or names that include wildcard characters. If a match is

found, the contents of that attachment will be stored in the file specified by the lpszFileName
parameter.

If the nMessagePart parameter has a value of -1 and the lpszAttachment parameter is NULL or
points to an empty string, then the attachment in the current message part will be stored in the
specified file. If the current message part does not contain a file attachment, this function will fail.
Calling this function in this manner is effectively the same as calling the MimeExtractFile function.

To extract all of the files attached to a message in a single function call, use the
MimeExtractAllFiles function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeAttachFile, MimeEnumAttachments, MimeExportMessage, MimeExtractAllFiles,
MimeExtractFile, MimeFindAttachment, MimeImportMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeFindAttachment Function

INT WINAPI MimeFindAttachment(
 HMESSAGE hMessage,
 LPCTSTR lpszFileName
);

The MimeFindAttachment function searches the message for an attachment with the specified
file name.

Parameters
hMessage

Handle to the message.

lpszFileName

Pointer to a string that specifies the name of the file attachment to search for. This parameter
should only specify a base file name; it should not include a file path and cannot be NULL.

Return Value
If the function succeeds, the return value is the message part number that contains an attachment
that matches the specified file name. If the message does not contain an attachment with the
specified file name, the function will return MIME_ERROR. To get extended error information, call
MimeGetLastError.

Remarks
This function will search the message for a attachment that matches the specified file name. The
search is not case-sensitive, however it must match the attachment file name completely. This
function will not match partial file names or names that include wildcard characters. To obtain a list
of all of the files attached to a message, use the MimeEnumAttachments function.

Example
// The name of the file attachment to search for
LPCTSTR lpszFileName = _T("MyProject.docx");

// Search for the attached file and store it on the local system
INT nMessagePart = MimeFindAttachment(hMessage, lpszFileName);
if (nMessagePart != MIME_ERROR)
{
 MimeSetMessagePart(hMessage, nMessagePart);

 if (MimeExtractFile(hMessage, lpszFileName) != MIME_ERROR)
 _tprintf(_T("Saved file attachment %s\n"), lpszFileName);
 else
 {
 _tprintf(_T("Unable to save file attachment %s\n"), lpszFileName);
 return;
 }
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib

Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeAttachFile, MimeExtractAllFiles, MimeExtractFile, MimeExtractFileEx,
MimeGetAttachedFileName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeFindStoredMessage Function

LONG WINAPI MimeFindStoredMessage(
 HMESSAGESTORE hStorage,
 LONG nMessageId,
 LPCTSTR lpszHeaderName,
 LPCTSTR lpszHeaderValue,
 DWORD dwOptions
);

The MimeFindStoredMessage function searches for a message in the specified message store.

Parameters
hStorage

Handle to the message store.

nMessageId

An integer value which specifies the message number that should be used when starting the
search. The first message in the message store has a value of one.

lpszHeaderField

A pointer to the string which specifies the name of the header field that should be searched.
The header field name is not case sensitive. This parameter cannot be NULL.

lpszHeaderValue

A pointer to the string which specifies the header value that should be searched for. The search
options can be used to specify if the search is case-sensitive, and whether the search should
return partial matches to the string. This parameter cannot be NULL.

dwOptions

A value which specifies one or more options. This parameter is constructed by using a bitwise
operator with any of the following values:

Constant Description

MIME_SEARCH_DEFAULT Perform a complete match against the specified
header value. The comparison is not case-
sensitive.

MIME_SEARCH_CASE_SENSITIVE The header field value comparison will be case-
sensitive. Note that this does not affect header
field names. Matches for header names are
always case-insensitive.

MIME_SEARCH_PARTIAL_MATCH Perform a partial match against the specified
header value. It recommended that this option
be used when searching for matches to email
addresses.

MIME_SEARCH_DECODE_HEADERS Decode any encoded message headers before
comparing them to the specified value. This
option can increase the amount of time required
to search the message store and should only be
used when necessary.

Return Value
If the function succeeds, the return value is the number for the message which matches the search
criteria. If the function fails, the return value is MIME_ERROR. To get extended error information,
call MimeGetLastError.

Remarks
The MimeFindStoredMessage function is used to search the message store for a message which
matches a specific header field value. For example, it can be used to find every message which is
addressed to a specific recipient or has a subject which matches a particular string value.

Example
HMESSAGE hMessage = INVALID_MESSAGE;
LPCTSTR lpszHeader = _T("From");
LPCTSTR lpszAddress = _T("jsmith@example.com");
LONG nMessageId = 1;

// Begin searching for messages from the specified sender
while (nMessageId != MIME_ERROR)
{
 nMessageId = MimeFindStoredMessage(hStorage,
 nMessageId,
 lpszHeader,
 lpszAddress,
 MIME_SEARCH_PARTIAL_MATCH);

 if (nMessageId != MIME_ERROR)
 {
 // Get a handle to the message that was found
 hMessage = MimeGetStoredMessage(hStorage, nMessageId, 0);

 if (hMessage != INVALID_MESSAGE)
 {
 // Store the message in a file
 TCHAR szFileName[MAX_PATH];
 BOOL bExported;

 // Create a filename based on the message number
 wsprintf(szFileName, _T("msg%05ld.tmp"), nMessageId);

 // Export the message to a file
 bExported = MimeExportMessage(hMessage, szFileName);
 }

 // Increase the message ID to resume the search at the next message
 nMessageId++;
 }
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also

MimeGetStoredMessage, MimeGetStoredMessageCount, MimeDeleteStoredMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeFormatDate Function

LPTSTR WINAPI MimeFormatDate(
 LONG nSeconds,
 LONG nTimezone,
 LPTSTR lpszDate,
 INT cchMaxDate
);

The MimeFormatDate converts the specified date, expressed as the number of seconds since 1
January 1970, into a string compatible with the RFC 822 standard format for email messages.

Parameters
nSeconds

A long integer which specifies the number of seconds since 1 January 1970 00:00:00 UTC. This
date is commonly called the epoch, and is the base date used by the standard C time functions.
If the value of this parameter is zero, the current date and time is used.

nTimezone

A pointer to a long integer which is set to the difference in seconds between the specified date's
timezone and Coordinated Universal Time. A value of zero specifies Coordinated Universal Time
(UTC), while a positive value specifies a timezone west of UTC and a negative value specifies a
timezone east of UTC. For example, Eastern Standard Time would be specified as 18000 and
Pacific Standard Time would be 28800.

lpszDate

A pointer to a string buffer which will contain the formatted date. This parameter cannot be a
NULL pointer.

cchMaxDate

The maximum number of characters, including the terminating null character, which may be
copied into the date string buffer.

Return Value
If the function succeeds, a pointer to the date string buffer is returned. If the function fails, a NULL
pointer is returned. To get extended error information, call MimeGetLastError.

Remarks
The date string is returned in a standard format as outlined in RFC 822, the document which
describes the basic structure of Internet email messages. This format is as follows:

www, dd mmm yyyy hh:mm:ss [-]zzzz

Each part of the date string is defined as follows:

Format Description

www Weekday

dd Day

mmm Month

yyyy Year

hh Hour (24-hour clock)

mm Minutes

ss Seconds

zzzz Timezone

The weekday and month are displayed using standard three-character English abbreviations. The
timezone is displayed as the difference (in hours and minutes) between the specified timezone
and Coordinated Universal Time. For example, if the timezone is eight hours west of Coordinated
Universal Time, the nTimezone value would be 28800. This would be displayed as -0800 in the
formatted date string.

Note that the format of the date string is defined by the RFC 822 standard, and is not affected by
localization settings on the host system.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeParseDate, MimeGetMessageDate, MimeSetMessageDate

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeGetAllHeaders Function

INT WINAPI MimeGetAllHeaders(
 HMESSAGE hMessage,
 LPTSTR lpszHeaders,
 INT nMaxLength
);

The MimeGetAllHeaders function returns the complete RFC 822 header values in a string buffer.

Parameters
hMessage

Handle to the message.

lpszHeaders

Pointer to string buffer which will contain the header values for the specified message. This
parameter may be NULL, in which case the function will calculate the number of characters
needed to store the complete header block.

nMaxLength

An integer value which specifies the maximum number of characters that can be stored in the
lpszHeaders string. If the lpszHeaders parameter is NULL, this value must be zero. If the
lpszHeaders parameter is not NULL, this value must be large enough to store the entire list of
addresses.

Return Value
If the function succeeds and the lpszHeaders parameter is NULL, the return value is the minimum
number of characters that should be allocated to store all of the header values, including the
terminating null character. If the lpszHeaders parameter is not NULL, then the return value is the
number of characters copied into the string, not including the terminating null character. If the
function fails, the return value is MIME_ERROR. To get extended error information, call
MimeGetLastError.

Remarks
The MimeGetAllHeaders function will return all of the RFC 822 header values in a string buffer.
This includes the message headers that are most commonly referred to, such as the To, From and
Subject headers. Each header and its value are separated by a colon, and terminated with a
carriage return and linefeed (CRLF) pair.

The headers and their values returned by this function will not be identical to the header block in
the original message. If a header value is split across multiple lines, this function will fold the text,
returning the complete header value on a single line of text and removing any extraneous
whitespace. If the header value has been encoded by the mail client, this function will return the
decoded value, not the original encoded value.

Example
LPTSTR lpszHeaders = NULL;
INT nLength;

// Determine the number of characters that should be allocated to store
// the RFC822 headers

nLength = MimeGetAllHeaders(hMessage, NULL, 0);

// Allocate the memory for the string buffer that is large enough and
// call MimeGetAllHeaders again

if (nLength > 0)
{
 lpszHeaders = (LPTSTR)LocalAlloc(LPTR, nLength * sizeof(TCHAR));
 if (lpszHeaders == NULL)
 return; // Virtual memory exhausted

 nLength = MimeGetAllHeaders(hMessage, lpszHeaders, nLength);
}

// The lpszHeaders string now contains all of the RFC822 headers for the
// message, with each header terminated by a CRLF sequence

if (lpszHeaders != NULL)
{
 LocalFree((HLOCAL)lpszHeaders);
 lpszHeaders = NULL;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeGetFirstMessageHeader, MimeGetMessageHeader, MimeGetNextMessageHeader,
MimeSetMessageHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeGetAllRecipients Function

INT WINAPI MimeGetAllRecipients(
 HMESSAGE hMessage,
 LPCTSTR lpszExtraAddress,
 LPTSTR lpszRecipients,
 INT nMaxLength
);

The MimeGetAllRecipients function returns a comma-separated list of recipient addresses in a
string buffer.

Parameters
hMessage

Handle to the message.

lpszExtraAddress

A pointer to a string which contains one or more additional email addresses that should be
included in the list, in addition to those found in the message. If more than one address is
specified, each address should be separated by a comma. This parameter may be NULL if there
are no extra addresses to include in the recipient list.

lpszRecipients

Pointer to string buffer which will contain a comma-separated list of email addresses when the
function returns. This parameter may be NULL, in which case the function will calculate the
number of characters needed to store the complete list.

nMaxLength

An integer value which specifies the maximum number of characters that can be stored in the
lpszRecipients string. If the lpszRecipients parameter is NULL, this value must be zero. If the
lpszRecipients parameter is not NULL, this value must be large enough to store the entire list of
addresses.

Return Value
If the function succeeds and the lpszRecipients parameter is NULL, the return value is the
minimum number of characters that should be allocated to store the list recipient addresses,
including the terminating null character. If the lpszRecipients parameter is not NULL, then the
return value is the number of characters copied into the buffer, not including the terminating null
character. If the function returns a value of zero, then the specified message has no recipients. If
the function fails, the return value is MIME_ERROR. To get extended error information, call
MimeGetLastError.

Remarks
The MimeGetAllRecipients function is useful for creating a list of message recipients that can be
passed to functions like SmtpSendMessage. If you wish to dynamically allocate the string buffer
that will contain the list of recipients, then the lpszRecipients parameter should be NULL and the
nMaxLength parameter should have a value of zero. The function will then return the
recommended size of the buffer that should be allocated. This value is guaranteed to be large
enough to store the entire list of message recipients, including the terminating null character.

Example
LPTSTR lpszRecipients = NULL;

INT nLength;

// Determine the number of characters that should be allocated to store
// a list of the recipient addresses in the message

nLength = MimeGetAllRecipients(hMessage, NULL, NULL, 0);

// Allocate the memory for the string buffer that is large enough and
// call MimeGetAllRecipients again

if (nLength > 0)
{
 lpszRecipients = (LPTSTR)LocalAlloc(LPTR, nLength * sizeof(TCHAR));
 if (lpRecipients == NULL)
 return; // Virtual memory exhausted

 nLength = MimeGetAllRecipients(hMessage, NULL, lpszRecipients, nLength);
}

// The lpszRecipients string now contains a comma-separated list of
// each recipient address in the message

if (lpszRecipients != NULL)
{
 LocalFree((HLOCAL)lpszRecipients);
 lpszRecipients = NULL;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeEnumMessageRecipients, MimeGetFirstMessageHeader, MimeGetMessageHeader,
MimeGetNextMessageHeader, MimeSetMessageHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeGetAttachedFileName Function

BOOL WINAPI MimeGetAttachedFileName(
 HMESSAGE hMessage,
 LPTSTR lpszFileName,
 INT cchFileName
);

The MimeGetAttachedFileName function returns the file name for the attachment to the current
message part.

Parameters
hMessage

Handle to the message.

lpszFileName

Pointer to a buffer that will contain the current attachment file name as a string.

cchFileName

The maximum number of characters that may be copied into the buffer, including the
terminating null character.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call MimeGetLastError.

Remarks
The function will first try to get the filename from the Content-Disposition header field. If this field
does not exist, it then attempts to get the name from the Content-Type header field. If neither
field exists, the function will fail.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeAttachFile, MimeEnumAttachments, MimeExtractFile, MimeFindAttachment

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeGetContentDigest Function

INT WINAPI MimeGetContentDigest(
 HMESSAGE hMessage,
 LPTSTR lpszDigest,
 INT cchDigest
);

The MimeGetContentDigest function returns an encoded digest of the message.

Parameters
hMessage

Message handle.

lpszDigest

Pointer to a string buffer to contain the MD5 digest for the specified message.

cchDigest

Maximum length of the digest string, in bytes.

Return Value
If the function succeeds, the return value is the length of the message digest string. A value of
zero specifies that there is no MD5 digest for the current message. If the function fails, the return
value is MIME_ERROR. To get extended error information, call MimeGetLastError.

Remarks
This function returns the value of the Content-MD5 header field in the main body of the message.
If the header exists, it contains the MD5 digest for the message as defined in RFC 1864.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeGetContentLength Function

LONG WINAPI MimeGetContentLength(
 HMESSAGE hMessage
);

The MimeGetContentLength function returns the size of the current message part content in
bytes.

Parameters
hMessage

Handle to the message.

Return Value
If the function succeeds, the return value is the content length. If the function fails, the return value
is MIME_ERROR. To get extended error information, call MimeGetLastError.

Remarks
This function will return the size of the content in the current message part as the number of bytes
and does not account for any Unicode conversion of text. Exercise caution when using this
function to determine the size of the buffer that should be allocated for a function like
MimeGetMessageText. You should always allocate enough memory to accommodate any
potential text conversion and decoding which may occur.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeGetMessageHeader, MimeGetMessagePart, MimeGetMessageText, MimeSetMessagePart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeGetErrorString Function

INT WINAPI MimeGetErrorString(
 DWORD dwErrorCode,
 LPTSTR lpszDescription,
 INT cbDescription
);

The MimeGetErrorString function is used to return a description of a specific error code.
Typically this is used in conjunction with the MimeGetLastError function for use with warning
dialogs or as diagnostic messages.

Parameters
dwErrorCode

The error code for which a description is returned.

lpszDescription

A pointer to the buffer that will contain a description of the specified error code. This buffer
should be at least 128 characters in length.

cbDescription

The maximum number of characters that may be copied into the description buffer.

Return Value
If the function succeeds, the return value is the length of the description string. If the function fails,
the return value is zero, meaning that no description exists for the specified error code. Typically
this indicates that the error code passed to the function is invalid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeGetLastError, MimeSetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeGetExportOptions Function

BOOL WINAPI MimeGetExportOptions(
 HMESSAGE hMessage
 LPDWORD lpdwOptions
);

The MimeGetExportOptions function returns a bitmask that describes current message export
options.

Parameters
hMessage

Handle to the message.

lpdwOptions

Pointer to mask of attribute options. The mask is a combination of the following values:

Constant Description

MIME_OPTION_DEFAULT The default export options. The headers for the
message are written out in a specific consistent order,
with custom headers written to the end of the header
block regardless of the order in which they were set or
imported from another message. If the message
contains Bcc, Received, Return-Path, Status or X400-
Received header fields, they will not be exported.

MIME_OPTION_KEEPORDER The original order in which the message header fields
were set or imported are preserved when the message
is exported.

MIME_OPTION_ALLHEADERS All headers, including the Bcc, Received, Return-Path,
Status and X400-Received header fields will be
exported. Normally these headers are not exported
because they are only used by the mail transport
system. This option can be useful when exporting a
message to be stored on the local system, but should
not be used when exporting a message to be delivered
to another user.

MIME_OPTION_NOHEADERS When exporting a message, the main header block will
not be included. This can be useful when creating a
multipart message for services which expect MIME
formatted data, such as HTTP POST requests. This
option should never be used for email messages being
submitted using SMTP.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is 0. To
get extended error information, call MimeGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)

Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeExportMessage, MimeImportMessage, MimeSetExportOptions

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeGetFileContentType Function

UINT WINAPI MimeGetFileContentType(
 HMESSAGE hMessage,
 LPCTSTR lpszFileName,
 LPTSTR lpszContentType,
 INT cchContentType
);

The MimeGetFileContentType function returns the content type for the specified file.

Parameters
hMessage

Handle to the message.

lpszFileName

Pointer to a string which specifies the name of the file for which content type information is
returned.

lpszContentType

Pointer to a string buffer that will contain the MIME type for the specified file. This may be a
NULL pointer, in which case this parameter is ignored. If a buffer is provided, it is recommended
that it be at least 64 characters in length.

cchContentType

An integer which specifies the maximum number of characters, including the terminating null
character, which may be copied into the string buffer.

Return Value
If the function succeeds, the return value is the content type of the specified file. If the function
fails, the return value is MIME_CONTENT_UNKNOWN. To get extended error information, call
MimeGetLastError.

The following values may be returned by this function:

Constant Description

MIME_CONTENT_UNKNOWN The file content type is unknown. This value may be returned
if the message handle is invalid, or if the file extension is
unknown and the file could not be opened for read access.

MIME_CONTENT_APPLICATION The file content is application specific. Examples of this type
of file would be a Microsoft Word document or an executable
program. This is also the default type for files which have an
unrecognized file name extension and contain binary data.

MIME_CONTENT_AUDIO The file is an audio file in one of several standard formats.
Examples of this type of file would be a Windows (.wav) file or
MPEG3 (.mp3) file.

MIME_CONTENT_IMAGE The file is an image file in one of several standard formats.
Examples of this type of file would be a GIF or JPEG image
file.

MIME_CONTENT_TEXT The file is a text file. This is also the default type for files which
have an unrecognized file name extension and contain only

printable text data.

MIME_CONTENT_VIDEO The file is a video file in one of several standard formats.
Examples of this type of file would be a Windows (.avi) or
Quicktime (.mov) video file.

Remarks
The content type for a given file is determined based on the file name extension, or if the
extension is not recognized, the actual contents of the file. On 32-bit platforms, the system registry
is used to determine the default content type values for a given extension. In all cases, file types
that are explicitly set using the MimeSetFileContentType function will override the default system
values.

The content type string which is copied to the string buffer is the standard MIME content type
description, which specifies a primary type and a subtype, separated by a slash. For example, a
plain text file would have a content type of text/plain, while an HTML document would have a
content type of text/html. Binary files may be associated with a specific application. For example,
the content type for a Microsoft Word document is application/msword. Those binary files which
are not associated with a specific application, or have an unrecognized file name extension, have a
content type of application/octet-stream.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeAttachData, MimeAttachFile, MimeSetFileContentType

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeGetFirstMessageHeader Function

BOOL WINAPI MimeGetFirstMessageHeader(
 HMESSAGE hMessage,
 LPTSTR lpszHeader,
 INT cchMaxHeader,
 LPTSTR lpszValue,
 INT cchMaxValue
);

The MimeGetFirstMessageHeader function returns the header field name and value for the first
header in the current message part. This function is typically used in conjunction with
MimeGetNextMessageHeader to enumerate all of the message header fields and their values in
the current message part.

Parameters
hMessage

Handle to the message.

lpszHeader

A pointer to a string buffer that will contain the name of the first header in the current message
part. This parameter cannot be a NULL pointer.

cchMaxHeader

An integer which specifies the maximum number of characters which may be copied into the
buffer, including the terminating null character. This parameter must have a value greater than
zero.

lpszValue

A pointer to a string buffer that will contain the value of the first header in the current message
part. This parameter may be a NULL pointer, in which case the value of the header field is
ignored.

cchMaxValue

An integer which specifies the maximum number of characters which may be copied into the
buffer, including the terminating null character. If the lpszValue parameter is NULL, this
parameter should have a value of zero.

Return Value
If the function succeeds, the return value is non-zero. If no headers exist for the current message
part, or the handle to the message is invalid, the function will return zero. To get extended error
information, call MimeGetLastError.

Remarks
Each part in a multipart message has one or more header fields. To obtain header values for the
main message, rather than the message attachments, the current part number must be set to zero
using the MimeSetMessagePart function.

The header fields from an imported message may not be returned in the same order as which
they appear in the message. An application should never make an assumption about the order in
which one or more header fields are defined.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)

Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeEnumMessageHeaders, MimeGetMessagePart, MimeGetNextMessageHeader,
MimeParseHeader, MimeSetMessageHeader, MimeSetMessagePart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeGetLastError Function

DWORD WINAPI MimeGetLastError();

Parameters
None.

Return Value
The return value is the calling thread's last error code value. Functions set this value by calling the
MimeSetLastError function. The Return Value section of each reference page notes the
conditions under which the function sets the last-error code.

Remarks
You should call the MimeGetLastError function immediately when a function's return value
indicates that an error has occurred. That is because some functions call MimeSetLastError(0)
when they succeed, clearing the error code set by the most recently failed function.

Most functions will set the last error code value when they fail; a few functions set it when they
succeed. Function failure is typically indicated by a return value such as FALSE, NULL,
INVALID_MESSAGE or MIME_ERROR. Those functions which call MimeSetLastError when they
succeed are noted on the function reference page.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib

See Also
MimeGetErrorString, MimeSetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeGetMessageBoundary Function

LPCTSTR WINAPI MimeGetMessageBoundary(
 HMESSAGE hMessage
);

The MimeGetMessageBoundary function returns a pointer to the boundary string used to
separate the parts of a multipart message.

Parameters
hMessage

Handle to the message.

Return Value
If the function succeeds, the return value is a pointer to the boundary string. If the function fails, a
NULL pointer is returned. To get extended error information, call MimeGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeCreateMessagePart, MimeGetMessageHeader, MimeGetMessagePart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeGetMessageDate Function

LPCTSTR WINAPI MimeGetMessageDate(
 HMESSAGE hMessage,
 BOOL bLocalize
);

The MimeGetMessageDate function returns a pointer to a string that contains the message date
and time.

Parameters
hMessage

Handle to the message.

bLocalize

Boolean flag which specifies if the date and time should be localized for the current timezone.

Return Value
If the function succeeds, the return value is a pointer to the date and time string. If the function
fails, it will return a NULL pointer. To get extended error information, call MimeGetLastError.

Remarks
If no date has been specified in the message, the Date header field will be set to the current date
and time, and that value will be returned. The date string returned by this function should never
be directly modified by the application. Each call to this function will invalidate the previous value
that was returned, so if you wish to save or modify the value, you should first make a private copy
of the string.

To convert this date string to a long integer value that can be used with the standard C time
functions, use the MimeParseDate function. Refer to the MimeFormatDate function for
information on the format of the date string.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeFormatDate, MimeGetMessageHeader, MimeParseDate, MimeSetMessageDate

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeGetMessageHeader Function

LPCTSTR WINAPI MimeGetMessageHeader(
 HMESSAGE hMessage,
 LPCTSTR lpszHeader
);

The MimeGetMessageHeader function returns a pointer to the value associated with the
specified header field in the current message part.

Parameters
hMessage

Handle to the message.

lpszHeader

A pointer to a string which specifies the message header. This parameter cannot be a NULL
pointer.

Return Value
If the function succeeds, the return value is a pointer to the header value. If the header field does
not exist, a NULL pointer is returned. To get extended error information, call MimeGetLastError.

Remarks
Each part in a multipart message has one or more header fields. To obtain header values for the
main message, rather than the message attachments, the current part number must be set to zero
using the MimeSetMessagePart function.

For languages other than C/C++, it may be preferable to use the MimeGetMessageHeaderEx
function which copies the header value into a string buffer rather than returning a pointer to the
header value itself.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeEnumMessageHeaders, MimeGetFirstMessageHeader, MimeGetMessageHeaderEx,
MimeGetMessagePart, MimeGetNextMessageHeader, MimeParseHeader,
MimeSetMessageHeader, MimeSetMessagePart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeGetMessageHeaderEx Function

INT WINAPI MimeGetMessageHeaderEx(
 HMESSAGE hMessage,
 INT nMessagePart,
 LPCTSTR lpszHeader,
 LPTSTR lpszValue,
 INT nMaxValue,
 DWORD dwReserved
);

The MimeGetMessageHeaderEx copies the value of the specified header into a string buffer.

Parameters
hMessage

Handle to the message.

nMessagePart

An integer value which specifies which part of the message to return the header value from. A
value of zero returns a header value from the main message header, while a value greater than
zero returns the header value from that specific part of a multipart message. A value of -1
specifies that the header value should be returned from the current message part.

lpszHeader

A pointer to a string which specifies the message header. This parameter cannot be a NULL
pointer.

lpszValue

A pointer to a string buffer which will contain the value of the specified header when the
function returns. If this parameter is NULL, the function will return the length of the header value
without copying the data. This is useful for determining the length of a header value so that a
string buffer can be allocated and passed to a subsequent call to the function.

nMaxValue

An integer value which specifies the maximum number of characters that can be copied to the
string buffer, including the terminating null character. If the lpszValue parameter is NULL, this
value should be zero.

dwReserved

A reserved parameter. This value should always be zero.

Return Value
If the function succeeds, the return value is the number of bytes copied into the string buffer, not
including the terminating null byte. If the lpszValue parameter is NULL, the return value is the
length of the header value. If the header field does not exist, a value of zero is returned. If an
invalid pointer or message part is specified, a value of MIME_ERROR is returned. To get extended
error information, call MimeGetLastError.

Example
LPTSTR lpszValue = NULL;
INT cchValue = 0;

// Determine the length of the To header field
cchValue = MimeGetMessageHeaderEx(hMessage, 0, _T("To"), NULL, 0);

// If the header field exists, allocate a string buffer
// and copy the value into the buffer
if (cchValue > 0)
{
 lpszValue = (LPTSTR)LocalAlloc(LPTR, cchValue + 1);
 MimeGetMessageHeaderEx(hMessage,
 0,
 _T("To"),
 lpszValue,
 cchValue + 1);
}

// After the string buffer has been used, release the
// memory that was allocated for it
if (lpszValue)
{
 LocalFree((HLOCAL)lpszValue);
 lpszValue = NULL;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeEnumMessageHeaders, MimeGetFirstMessageHeader, MimeGetMessageHeader,
MimeGetMessagePart, MimeGetNextMessageHeader, MimeParseHeader,
MimeSetMessageHeader, MimeSetMessagePart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeGetMessagePart Function

INT WINAPI MimeGetMessagePart(
 HMESSAGE hMessage
);

The MimeGetMessagePart function returns the current message part index for the specified
message.

Parameters
hMessage

Handle to the message.

Return Value
If the function succeeds, the return value is the message part index. If the function fails, the return
value is MIME_ERROR. To get extended error information, call MimeGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib

See Also
MimeCreateMessagePart, MimeDeleteMessagePart, MimeGetMessagePartCount,
MimeSetMessagePart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeGetMessagePartCount Function

INT WINAPI MimeGetMessagePartCount(
 HMESSAGE hMessage
);

The MimeGetMessagePartCount function returns the total number of message parts for the
specified message. Each message consists of at least one part.

Parameters
hMessage

Handle to the message.

Return Value
If the function succeeds, the return value is the number of message parts. If the function fails, the
return value is MIME_ERROR. To get extended error information, call MimeGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib

See Also
MimeCreateMessagePart, MimeGetMessagePart, MimeSetMessagePart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeGetMessageSender Function

INT WINAPI MimeGetMessageSender(
 HMESSAGE hMessage,
 LPCTSTR lpszSender,
 INT nMaxLength
);

The MimeGetMessageSender function returns the email address of the message sender in the
specified string buffer.

Parameters
hMessage

Handle to the message.

lpszSender

A pointer to a string buffer that will contain the email address of the message sender when the
function returns.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied to the
string buffer, including the terminating null character. It is recommended that the maximum
length be at least 64 characters.

Return Value
If the function succeeds, the return value is the number of bytes copied to the string buffer. If an
error occurs, the function will return MIME_ERROR. To get extended error information, call
MimeGetLastError.

Remarks
This function attempts to determine the email address of the sender that originated the message.
It will first check for the presence of a Sender or X-Sender header value. If these headers are not
defined, it will use the value of the From header field. It will only return successfully if a valid email
address can be found.

If the function succeeds, the string buffer that is provided will only contain an email address. It will
not contain the display name of the user associated with the address or any extraneous comments
that are included in quotes or parenthesis.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeEnumMessageHeaders, MimeGetFirstMessageHeader, MimeGetMessageHeaderEx,
MimeGetMessagePart, MimeGetNextMessageHeader, MimeParseHeader,
MimeSetMessageHeader, MimeSetMessagePart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeGetMessageSize Function

BOOL WINAPI MimeGetMessageSize(
 HMESSAGE hMessage,
 DWORD dwOptions,
 LPDWORD lpdwMessageSize
);

The MimeGetMessageSize function returns the size of the complete message in bytes.

Parameters
hMessage

Handle to the message.

dwOptions

An unsigned integer which specifies how the size of the message should be calculated, based
on what header fields should be included. These are the same options used when exporting a
message to a file or memory buffer. The following values may be combined using a bitwise Or
operator:

Constant Description

MIME_OPTION_DEFAULT The default export options. The headers for the
message are written out in a specific consistent order,
with custom headers written to the end of the header
block regardless of the order in which they were set or
imported from another message. If the message
contains Bcc, Received, Return-Path, Status or X400-
Received header fields, they will not be exported.

MIME_OPTION_ALLHEADERS All headers, including the Received, Return-Path, Status
and X400-Received header fields will be exported.
Normally these headers are not exported because they
are only used by the mail transport system. This option
can be useful when exporting a message to be stored
on the local system, but should not be used when
exporting a message to be delivered to another user.

lpdwMessageSize

A pointer to an unsigned integer value which will contain the size of the message if the function
succeeds, or a value of zero if the function fails. This parameter cannot be NULL.

Return Value
If the function succeeds, the return value is non-zero. If an error occurs, the function will return
zero. To get extended error information, call MimeGetLastError.

Remarks
This function returns the size of the complete message, including all headers, the message body
and any attachments. It can be used to determinine the minimum amount of memory that should
be allocated to export the message to a memory buffer using the MimeExportMessageEx
function.

Requirements

Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib

See Also
MimeExportMessage, MimeExportMessageEx, MimeGetMessageText, MimeImportMessage,
MimeImportMessageEx

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeGetMessageText Function

LONG WINAPI MimeGetMessageText(
 HMESSAGE hMessage,
 LONG nOffset,
 LPTSTR lpszBuffer,
 LONG nMaxLength
);

The MimeGetMessageText function copies the text of the current message part to the specified
buffer.

Parameters
hMessage

Handle to the message.

nOffset

The byte offset from the beginning of the message. A value of zero specifies the first character
in the body of the message part.

lpszBuffer

A pointer to the string buffer that will contain a copy of the message text when the function
returns. Note that the buffer will typically contain multiple lines of text.

nMaxLength

The maximum number of bytes to copy into the buffer. The size of the buffer provided must be
larger than the content length for the current message part.

Return Value
If the function succeeds, the return value is number of bytes copied into the buffer. If the function
fails, the return value is MIME_ERROR. To get extended error information, call MimeGetLastError.

Remarks
If your project targets a multi-byte character set, this function will always return the message
contents as UTF-8 text, regardless of the original character set specified in the message itself. This
ensures that characters in the original text are preserved, regardless of the default ANSI code page
on the local system. It is recommended you build your project to use Unicode whenever possible.
If your application must use ANSI, you can use the MimeLocalizeText method to convert the
Unicode text to a specific character set.

You should not determine the maximum size of the output buffer using the
MimeGetContentLength function. That function returns the content size in bytes as it is stored in
the message, and does not account for any character encoding or Unicode conversion which may
be required. The content length can be used to estimate the amount of text stored in the message
part, but you should always allocate a buffer which is larger than the length specified in the
message.

If the nMaxLength parameter does not specify a buffer size large enough to store the contents of
the current message part, this function will fail and the last error code will be set to
ST_ERROR_BUFFER_TOO_SMALL. Your application must ensure the buffer is large enough to
contain the complete message text and a terminating NUL character.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)

Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeAppendMessageText, MimeClearMessageText, MimeCompareMessageText,
MimeExportMessage, MimeGetContentLength, MimeImportMessage, MimeLocalizeText,
MimeSetMessageText

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeGetMessageVersion Function

LPCTSTR WINAPI MimeGetMessageVersion(
 HMESSAGE hMessage
);

The MimeGetMessageVersion function returns a pointer to a string which contains the MIME
version header value for the specified message.

Parameters
hMessage

Handle to the message.

Return Value
If the function succeeds, the return value is a pointer to the MIME version. If the version is not
specified in the current message, the function will return NULL. To get extended error information,
call MimeGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeGetMessageHeader, MimeSetMessageVersion

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeGetNextMessageHeader Function

BOOL WINAPI MimeGetNextMessageHeader(
 HMESSAGE hMessage,
 LPTSTR lpszHeader,
 INT cchMaxHeader,
 LPTSTR lpszValue,
 INT cchMaxValue
);

The MimeGetNextMessageHeader function returns the header field name and value for the
next header in the current message part. This function is typically used in conjunction with
MimeGetFirstMessageHeader to enumerate all of the message header fields and their values in
the current message part.

Parameters
hMessage

Handle to the message.

lpszHeader

A pointer to the string buffer that will contain the name of the next header in the current
message part when the function returns. This parameter cannot be a NULL pointer.

cchMaxHeader

An integer which specifies the maximum number of characters which may be copied into the
buffer, including the terminating null character. This parameter must have a value greater than
zero.

lpszValue

A pointer to the string buffer that will contain the value of the next header in the current
message part when the function returns. This parameter may be a NULL pointer, in which case
the value of the header field is ignored.

cchMaxValue

An integer which specifies the maximum number of characters which may be copied into the
buffer, including the terminating null character. If the lpszValue parameter is NULL, this
parameter should have a value of zero.

Return Value
If the function succeeds, the return value is non-zero. If no more headers exist for the current
message part, or the handle to the message is invalid, the function will return zero. To get
extended error information, call MimeGetLastError.

Remarks
Each part in a multipart message has one or more header fields. To obtain header values for the
main message, rather than the message attachments, the current part number must be set to zero
using the MimeSetMessagePart function.

The header fields from an imported message may not be returned in the same order as which
they appear in the message. An application should never make an assumption about the order in
which one or more header fields are defined, with the following exception:

If an imported message has multiple Received headers, then those headers will be returned by
MimeGetNextMessageHeader in the order in which they appeared in the original message.

Note that if MimeGetMessageHeader is used to retrieve the Received header, the first Received
header in the message will be returned.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeEnumMessageHeaders, MimeGetFirstMessageHeader, MimeGetMessagePart,
MimeParseHeader, MimeSetMessageHeader, MimeSetMessagePart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeGetStoredMessage Function

HMESSAGE WINAPI MimeGetStoredMessage(
 HMESSAGESTORE hStorage,
 LONG nMessageId,
 DWORD dwOptions
);

The MimeGetStoredMessage function retrieves a message from the specified message store.

Parameters
hStorage

Handle to the message store.

nMessageId

An integer value which specifies the message number that should be retrieved. The first
message in the message store has a value of one.

dwOptions

A value which specifies one or more options. This parameter is constructed by using a bitwise
operator with any of the following values:

Constant Description

0 A shared message handle returned by the function.
The contents of this message will be overwritten
each time this function is called.

MIME_COPY_STORED_MESSAGE A message handle is allocated for a copy of the
message that is retrieved from the message store.

Return Value
If the function succeeds, the return value is a handle to the message. If the function fails, the return
value is INVALID_MESSAGE. To get extended error information, call MimeGetLastError.

Remarks
The MimeGetStoredMessage function returns a message handle for the specified message in
the message store. If no options are specified, a temporary message handle is returned that is only
valid until the next message is retrieved. The application can use message handle with any
function except for the MimeDeleteMessage function because it does not own the message
handle. If a multithreaded application changes the contents of the temporary message, it will
change for all other threads that have obtained a message handle using this function.

If the application must have a unique copy of the message, the MIME_COPY_STORED_MESSAGE
option should be specified. Instead of returning a handle to a shared message, the message is
duplicated and a handle to that copy of the message is returned. If this option is used, the
application must call MimeDeleteMessage to release the memory allocated for the message.

Example
HMESSAGE hMessage = INVALID_MESSAGE;
LPCTSTR lpszHeader = _T("From");
LPCTSTR lpszAddress = _T("jsmith@example.com");
LONG nMessageId = 1;

// Begin searching for messages from the specified sender
while (nMessageId != MIME_ERROR)
{
 nMessageId = MimeFindStoredMessage(hStorage,
 nMessageId,
 lpszHeader,
 lpszAddress,
 MIME_SEARCH_PARTIAL_MATCH);

 if (nMessageId != MIME_ERROR)
 {
 // Get a handle to the message that was found
 hMessage = MimeGetStoredMessage(hStorage, nMessageId, 0);

 if (hMessage != INVALID_MESSAGE)
 {
 // Store the message in a file
 TCHAR szFileName[MAX_PATH];
 BOOL bExported;

 // Create a filename based on the message number
 wsprintf(szFileName, _T("msg%05ld.tmp"), nMessageId);

 // Export the message to a file
 bExported = MimeExportMessage(hMessage, szFileName);
 }

 // Increase the message ID to resume the search at the next message
 nMessageId++;
 }
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib

See Also
MimeFindStoredMessage, MimeGetStoredMessageCount, MimeDeleteStoredMessage,
MimeStoreMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeGetStoredMessageCount Function

LONG WINAPI MimeGetStoredMessageCount(
 HMESSAGESTORE hStorage,
 LPLONG lpnMessages
);

The MimeGetStoredMessageCount function returns the number of messages in the specified
message store.

Parameters
hStorage

Handle to the message store.

lpnLastMessage

A pointer to an integer which will contain the message number for the last message in the
storage file. If this information is not required, a NULL pointer may be specified.

Return Value
If the function succeeds, the return value is the number of messages in the message store. If the
function fails, the return value is MIME_ERROR. To get extended error information, call
MimeGetLastError.

Remarks
The MimeGetStoredMessageCount function returns the number of messages in the message
store. It is important to note that does not count those messages which have been marked for
deletion. This means that the value returned by this function will decrease as messages are
deleted.

The message number returned in the lpnLastMessage parameter will specify the total number of
messages in the message store, including deleted messages.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeFindStoredMessage, MimeGetStoredMessage, MimeDeleteStoredMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeImportMessage Function

BOOL WINAPI MimeImportMessage(
 HMESSAGE hMessage,
 LPCTSTR lpszFileName
);

The MimeImportMessage function reads the specified file and replaces the current message with
its contents.

Parameters
hMessage

Handle to the message.

lpszFileName

Pointer to a string which specifies the name of the text file to import.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call MimeGetLastError.

Remarks
This function will delete the contents of the current message before importing the new message
from the specified file.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeAttachFile, MimeExportMessage, MimeExportMessageEx, MimeExtractFile,
MimeImportMessageEx, MimeInitialize, MimeParseBuffer

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeImportMessageEx Function

BOOL WINAPI MimeImportMessageEx(
 HMESSAGE hMessage,
 DWORD dwImportMode,
 DWORD dwImportOptions,
 LPVOID lpvMessage,
 DWORD dwMessageSize
);

The MimeImportMessageEx function imports the contents of a message from a file, string or
memory handle.

Parameters
hMessage

Handle to the message.

dwImportMode

An unsigned integer which specifies how the message contents will be imported. It may be one
of the following values:

Constant Description

MIME_IMPORT_DEFAULT The default import mode. If the lpvMessage parameter is
NULL, then the contents of the message will be imported
from the system clipboard. Otherwise, the lpvMessage
parameter is a pointer to a string which specifies the
name of a file that contains the message. The
dwMessageSize parameter is ignored.

MIME_IMPORT_FILE The lpvMessage parameter is a pointer to a string which
specifies the name of the file that contains the message.
If the file does not exist, or is not a regular text file, an
error will occur. The dwMessageSize parameter is
ignored.

MIME_IMPORT_CLIPBOARD The contents of the message is imported from the
system clipboard. The lpvMessage parameter is ignored.
The dwMessageSize parameter is ignored.

MIME_IMPORT_MEMORY The contents of the message is imported from a local
buffer. The lpvMessage parameter must point to a byte
array which contains the message to be imported. The
dwMessageSize parameter specifies the number of bytes
to copy from the buffer. If this value is zero, it is assumed
that the end of the message data in the buffer is
terminated with a null character and the length is
calculated automatically.

MIME_IMPORT_HGLOBAL The contents of the message is imported from a global
memory buffer. The lpvMessage parameter must be a
global memory handle which contains the message. The
dwMessageSize parameter specifies the number of bytes
to copy from the buffer. If this value is zero, it is assumed

that the end of the message data in the buffer is
terminated with a null character and the length is
calculated automatically.

dwImportOptions

An unsigned integer which specifies how the message will be imported:

Constant Description

MIME_OPTION_DEFAULT The default import options. Currently this is the only valid
value for this parameter and applications should always
specify this constant.

lpvMessage

A pointer to a string, a byte buffer or a global memory handle. The dwImportMode parameter
determines how this pointer is used by the function.

dwMessageSize

An unsigned integer value which specifies the size of the message to import. This parameter is
only used when importing a message from a memory buffer. The message size is determined
automatically when the message is imported from a file or the system clipboard.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call MimeGetLastError.

Example
The following example imports a message using an HGLOBAL handle that references a block of
memory that contains an email message:

bResult = MimeImportMessageEx(hMessage,
 MIME_IMPORT_HGLOBAL,
 MIME_OPTION_DEFAULT,
 (LPVOID)hgblMessage,
 0);

if (bResult)
{
 // The message has been successfully imported
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeCreateMessage, MimeExportMessage, MimeExportMessageEx, MimeImportMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeInitialize Function

BOOL WINAPI MimeInitialize(
 LPCTSTR lpszLicenseKey,
 LPINITDATA lpData
);

The MimeInitialize function initializes the library and validates the specified license key at runtime.

Parameters
lpszLicenseKey

Pointer to a string that specifies the runtime license key to be validated. If this parameter is
NULL, the library will validate the development license installed on the local system.

lpData

Pointer to an INITDATA data structure. This parameter may be NULL if the initialization data for
the library is not required.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call MimeGetLastError. All other client functions will fail until a
license key has been successfully validated.

Remarks
This must be the first function that an application calls before using any of the other functions in
the library. When a NULL license key is specified, the library will only function on the development
system. Before redistributing the application to an end-user, you must insure that this function is
called with a valid license key.

If the lpData argument is specified, it must point to an INITDATA structure which has been
initialized by setting the dwSize member to the size of the structure. All other structure members
should be set to zero. If the function is successful, then the INITDATA structure will be filled with
identifying information about the library.

Although it is only required that MimeInitialize be called once for the current process, it may be
called multiple times; however, each call must be matched by a corresponding call to
MimeUninitialize.

This function dynamically loads other system libraries and allocates thread local storage. If you are
calling the functions in this library from within another DLL, it is important that you do not call the
MimeInitialize or MimeUninitialize functions from the DllMain function because it can result in
deadlocks or access violation errors. If the DLL is linked with the C runtime library (CRT), it will
automatically call the constructors and destructors for static and global C++ objects and has the
same restrictions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also

MimeComposeMessage, MimeCreateMessage, MimeDeleteMessage, MimeUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeLocalizeText Function

LONG WINAPI MimeLocalizeText(
 UINT nCharacterSet,
 LPCTSTR lpszInput,
 LONG cchInput,
 LPBYTE lpOutput,
 LONG cbOutput
);

The MimeLocalizeText function converts a Unicode string to its ANSI equivalent using the
specified character set.

Parameters
nCharacterSet

A numeric identifier which specifies the character set to use when localizing the text. A value of
zero specifies the locale for the current thread should be used when localizing the text.

lpszInput

A pointer to a null terminated string which contains the Unicode text which should be localized.
If the ANSI version of this function is called, the input text must be in UTF-8 format or the
function will fail. This parameter cannot be a NULL pointer.

cchInput

An integer value which specifies the number of characters of text in the input string which
should be localized. If this value is -1, the entire length of the string up to the terminating null
will be decoded.

lpOutput

A pointer to a byte buffer which will contain the localized ANSI version of the input text. This
parameter cannot be a NULL pointer.

cbOutput

An integer value which specifies the maximum number of bytes which can be copied into the
output buffer. The buffer must be large enough to store all of the localized text. This value must
be greater than zero.

Return Value
If the input text can be successfully localized, the return value is the number of bytes copied into
the output buffer. If the function returns zero, then no text was localized. If the function fails, the
return value is MIME_ERROR. To get extended error information, call MimeGetLastError.

Remarks
The MimeLocalizeText function enables the application to localize a Unicode string, returning the
ANSI version of that text using the specified character set. Because library handles all text as
Unicode internally, the ANSI functions in this library will always return UTF-8 encoded text. This
function allows you to easily convert that UTF-8 text to another supported character set.

If the ANSI version of this function is called, the input text must use UTF-8 character encoding or
the function will fail with the last error set to ST_ERROR_INVALID_CHARACTER_SET.

If the nCharacterSet parameter is MIME_CHARSET_DEFAULT or MIME_CHARSET_UNKNOWN the
input text will be converted to the default ANSI code page for the current thread locale. If there
are characters in the Unicode input text which cannot be converted to an ANSI equivalent using

the specified character set, those characters will be replaced by the default character for your
locale, typically a question mark symbol. You cannot specify MIME_CHARSET_UTF16 as the
character set.

This function will always attempt to ensure that the output buffer is terminated with an extra null
byte so it is easier to work with as a standard C-style null terminated string. However, if the output
buffer is not large enough to accommodate the extra null byte, it will not be copied. It is always
recommended that your output buffer be somewhat larger than the length of the original input
text to account for multi-byte character sequences. If the output buffer is not large enough to
contain the entire localized text, no bytes will be copied to the output buffer and the function will
fail with the last error set to ST_ERROR_BUFFER_TOO_SMALL.

This function is only required if your application needs to localize the UTF-8 text returned by
another function and convert it to a specific 8-bit ANSI character set. For example, if you have an
application which calls the ANSI version of MimeGetMessageText, it will return the message
contents as UTF-8 text. If you need to display that text as localized ANSI, you can call this function
to convert the UTF-8 text to your current locale or a specific character set.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeDecodeTextEx, MimeEncodeText, MimeEncodeTextEx, MimeGetMessageText,
MimeSetMessageText

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeOpenMessageStore Function

HMESSAGESTORE WINAPI MimeOpenMessageStore(
 LPCTSTR lpszFileName,
 DWORD dwOpenMode
);

The MimeOpenMessageStore function opens the specified message storage file.

Parameters
lpszFileName

A pointer to a string which specifies the name of the storage file.

dwOpenMode

A value which specifies one or more options. This parameter is constructed by using a bitwise
operator with any of the following values:

Constant Description

MIME_STORAGE_READ The message store will be opened for read access. The
contents of the message store can be accessed, but
cannot be modified by the process unless it has also
been opened for writing.

MIME_STORAGE_WRITE The message store will be opened for writing. This
mode also implies read access and must be specified if
the application needs to modify the contents of the
message store.

MIME_STORAGE_CREATE The message store will be created if the storage file
does not exist. If the file exists, it will be truncated. This
mode implies read and write access.

MIME_STORAGE_LOCK The message store will be opened so that it may only
be accessed and modified by the current process.

MIME_STORAGE_COMPRESS The contents of the message store are compressed.
This option is automatically enabled if a compressed
message store is opened for reading or writing.

MIME_STORAGE_MAILBOX The message store should use the UNIX mbox format
when reading and storing messages. This option is
provided for backwards compatibility and is not
recommended for general use.

Return Value
If the function succeeds, the return value is a handle to the message store. If the function fails, the
return value is INVALID_MESSAGESTORE. To get extended error information, call
MimeGetLastError.

Remarks
The MimeOpenMessageStore function opens a message storage file which contains one or
more messages. If the storage file is opened for read access, the application can search the
message store and extract messages but it cannot add or delete messages. To add new messages

or delete existing messages from the store, it must be opened with write access.

The message store is designed to be a simple, effective way to store multiple messages together
in a single file. When the message store is opened, the contents are indexed in memory. Although
there is no specific limit to the number of messages that can be stored, there must be sufficient
memory available to build an index of each message and its headers. If the application must store
and manage a very large number of messages, it is recommended that you use a database rather
than a flat-file message store.

Message Store Format
Each message is prefixed by a control sequence of five ASCII 01 characters followed by an ASCII
10 and ASCII 13 character. The messages themselves are stored unmodified in their original text
format. The length of each message is calculated based on the location of the control sequence
that delimits each message, and explicit message lengths are not stored in the file. This means that
it is safe to manually change the message contents, as long as the message delimiters are
preserved.

If the message store is compressed, the contents of the storage file are expanded when the file is
opened and then re-compressed when the storage file is closed. Using the
MIME_STORAGE_COMPRESS option reduces the size of the storage file and prevents the contents
of the message store from being read using a text file editor. However, enabling compression will
increase the amount of memory allocated by the library and can increase the amount of time that
it takes to open and close the storage file.

The library also has a backwards compatibility mode where it will recognize storage files that use
the UNIX mbox format. While this format is supported for accessing existing files, it is not
recommended that you use it when creating new message stores or adding messages to an
existing store. There are a number of different variants on the mbox format that have been used
by different Mail Transfer Agents (MTAs) on the UNIX platform. For example, the mboxrd variant
looks identical to the mboxcl2 variant, and they are programmatically indistinguishable from one
another, but they are not compatible. For this reason, the use of the mbox format is strongly
discouraged.

Example
HMESSAGE hMessage;

// Compose a new message
hMessage = MimeComposeMessage(lpszSender,
 lpszRecipient,
 NULL,
 lpszSubject,
 lpszMessage,
 NULL,
 MIME_CHARSET_DEFAULT,
 MIME_ENCODING_DEFAULT);

if (hMessage != INVALID_MESSAGE)
{
 HMESSAGESTORE hStorage;

 // Open the message storage file
 hStorage = MimeOpenMessageStore(lpszFileName, MIME_STORAGE_WRITE);

 if (hStorage == INVALID_MESSAGESTORE)
 {
 // Delete the message and return if we are unable to

 // open the storage file
 MimeDeleteMessage(hMessage);
 return;
 }

 // Store a copy of the message in the message store
 nMessageId = MimeStoreMessage(hStorage, hMessage, 0);

 if (nMessageId == MIME_ERROR)
 {
 // We were unable to store the message
 }

 // Close the message store
 MimeCloseMessageStore(hStorage);

 // Destroy the message that was created
 MimeDeleteMessage(hMessage);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeCloseMessageStore, MimeFindStoredMessage, MimeGetStoredMessage,
MimeGetStoredMessageCount, MimePurgeMessageStore

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeParseAddress Function

INT WINAPI MimeParseAddress(
 LPCTSTR lpszString,
 LPCTSTR lpszDomain,
 LPTSTR lpszAddress,
 INT nMaxLength
);

The MimeParseAddress function parses a string for an email address, copying the address to the
specified buffer.

Parameters
lpszString

A pointer to a string which contains the email address to parse.

lpszDomain

A pointer to a string which specifies a default domain for the address. This parameter may be
NULL or point to an empty string if no default domain is required.

lpszAddress

A pointer to a string buffer which will contain the parsed email address when the function
returns. It is recommended that this buffer be at least 128 characters in length.

nMaxLength

The maximum number of characters which can be copied into the string buffer, including the
terminating null character.

Return Value
If the function succeeds, the return value is the length of the address. If the function fails, the
return value is MIME_ERROR. To get extended error information, call MimeGetLastError.

Remarks
The MimeParseAddress function is useful for parsing the email addresses that may be specified
in various header fields in the message. In many cases, the addresses have additional comment
characters which are not part of the address itself. For example, one common format used is as
follows:

"User Name" <user@domain.com>

In this case, the email address is enclosed in angle brackets and the name outside of the brackets
is considered to be a comment which is not part of the address itself. Another common format is:

user@domain.com (User Name)

In this case, there is the address followed by a comment which is enclosed in parenthesis. The
MimeParseAddress function recognizes both formats, and when passed either string, would
return the following address:

user@domain.com

If there was no domain specified in the address, that is just a user name was specified, then the
value the lpszDomain parameter is added to the address.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)

Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeExportMessage, MimeExtractFile, MimeImportMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeParseBuffer Function

BOOL WINAPI MimeParseBuffer(
 HMESSAGE hMessage,
 LPCTSTR lpszBuffer,
 INT cbBuffer
);

The MimeParseBuffer function parses the contents of the specified buffer and adds the contents
to the message.

Parameters
hMessage

Handle to the message.

lpszBuffer

Pointer to a buffer that contains the text to be added to the message contents.

cbBuffer

The length of the specified buffer.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call MimeGetLastError.

Remarks
This function is useful when the application needs to parse an arbitrary block of text and add it to
the specified message. If the buffer contains header fields, the values will be added to the message
header. Once the end of the header block is detected, all subsequent text is added to the body of
the message.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeImportMessage, MimeImportMessageEx, MimeParseHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeParseDate Function

BOOL WINAPI MimeParseDate(
 LPCTSTR lpszDate,
 BOOL bLocalize,
 LPLONG lpnSeconds,
 LPLONG lpnTimezone
);

The MimeParseDate function parses a message date string, returning the number of seconds
since 1 January 1970 and the difference in seconds between the specified timezone and
Coordinated Universal Time.

Parameters
lpszDate

A pointer to a string which specifies the date to be parsed. The date string must be in the
standard format defined by RFC 822.

bLocalize

A boolean flag which determines if the date should be localized to the current timezone,
regardless of the timezone specified in the date string. A non-zero value specifies the timezone
for the local system will be used, adjusted for daylight savings time if applicable.

lpnSeconds

A pointer to a long integer which is set to the number of seconds since 1 January 1970 00:00:00
UTC. This date is commonly called the epoch, and is the base date used by the standard C time
functions. This pointer may be NULL, in which case the parameter is ignored.

lpnTimezone

A pointer to a long integer which is set to the difference in seconds between the specified date's
timezone and coordinated universal time (also known as Greenwich Mean Time). This pointer
may be NULL, in which case the parameter is ignored.

Return Value
If the date could be successfully parsed, the return value is non-zero. If the function fails, the
return value is zero. To get extended error information, call MimeGetLastError.

Remarks
This is not a general purpose date parsing function, and it may not be capable of parsing dates for
a specific locale. The date and time should be in a standard format as outlined in RFC 822, which
describes the basic structure of Internet email messages. For a description of the date string
format, refer to the MimeFormatDate function.

If the date and time does not include any timezone information, Coordinated Universal Time
(UTC) will be used by default. This is an important consideration if you use this function to parse
input from a user, because in most cases they will not provide a timezone and will assume the
date and time they enter is for their current timezone.

The value of the bLocalize parameter will only change the number of seconds offset by the
current timezone and does not affect the value returned in the lpnSeconds parameter. If the date
and time is localized, the timezone offset will be adjusted for daylight savings if it was in effect at
the time.

Requirements

Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeFormatDate, MimeGetMessageDate, MimeSetMessageDate

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeParseHeader Function

BOOL WINAPI MimeParseHeader(
 HMESSAGE hMessage,
 LPCTSTR lpszBuffer
);

The MimeParseHeader function parses a line of text and adds the header and value to the
current message.

Parameters
hMessage

Handle to the message.

lpszBuffer

Pointer to a string which contains the header and value to be added to the message.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call MimeGetLastError.

Remarks
This function is used to parse a line of text that is part of a message header. The string must
consist of a header name, followed by a colon, followed by the header value. The header name
may only consist of printable characters, and may not contain whitespace (space, tab, carriage
return or linefeed characters).

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeImportMessage, MimeParseBuffer

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimePurgeMessageStore Function

BOOL WINAPI MimePurgeMessageStore(
 HMESSAGESTORE hStorage
);

The MimePurgeMessageStore function purges all deleted messages from the specified message
store.

Parameters
hStorage

Handle to the message store.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call MimeGetLastError.

Remarks
The MimePurgeMessageStore function purges all deleted messages from the message store. If
the storage file has been opened in read-only mode or there are no messages marked for
deletion, this function will take no action.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib

See Also
MimeCopyMessageStore, MimeFindStoredMessage, MimeGetStoredMessage,
MimeDeleteStoredMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeReplaceStoredMessage Function

BOOL WINAPI MimeReplaceStoredMessage(
 HMESSAGESTORE hStorage,
 LONG nMessageId,
 HMESSAGE hMessage,
 DWORD dwReserved
);

The MimeReplaceStoredMessage function replaces the specified message in a message store.

Parameters
hStorage

Handle to the message store.

nMessageId

An integer value which specifies the message number that should be replaced.

hMessage

Handle to the message that will be stored.

dwReserved

A reserved parameter. This value must always be zero.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call MimeGetLastError.

Remarks
The MimeReplaceStoredMessage function replaces the specified message with a new message.
The message number may be a message that has been previously marked for deletion. It is
important to note that the change will not be reflected in the physical storage file until it has been
closed. If the application needs to replace messages in the message store, it is recommended that
the file be opened for exclusive access using the MIME_STORAGE_LOCK option.

Example
HMESSAGE hMessage;

// Compose a new message
hMessage = MimeComposeMessage(lpszSender,
 lpszRecipient,
 NULL,
 lpszSubject,
 lpszMessage,
 NULL,
 MIME_CHARSET_DEFAULT,
 MIME_ENCODING_DEFAULT);

if (hMessage != INVALID_MESSAGE)
{
 HMESSAGESTORE hStorage;
 LONG nLastMessage;
 BOOL bResult;

 // Open the message storage file

 hStorage = MimeOpenMessageStore(lpszFileName, MIME_STORAGE_WRITE);

 if (hStorage == INVALID_MESSAGESTORE)
 {
 // Delete the message and return if we are unable to
 // open the storage file
 MimeDeleteMessage(hMessage);
 return;
 }

 if (MimeGetStoredMessageCount(hStorage, &nLastMessage) < 1)
 {
 // No messages are stored in the file
 MimeCloseMessageStore(hStorage);
 MimeDeleteMessage(hMessage);
 return;
 }

 // Replace the last message in the message store
 bResult = MimeReplaceStoredMessage(hStorage, nLastMessage, hMessage, 0);

 if (bResult == FALSE)
 {
 // We were unable to replace the message
 }

 // Close the message store
 MimeCloseMessageStore(hStorage);

 // Destroy the message that was created
 MimeDeleteMessage(hMessage);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib

See Also
MimeFindStoredMessage, MimeGetStoredMessage, MimeDeleteStoredMessage,
MimeStoreMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeResetMessage Function

BOOL WINAPI MimeResetMessage(
 HMESSAGE hMessage
);

The MimeResetMessage function clears the header and body of the specified message, and
deletes all message parts.

Parameters
hMessage

Handle to the message.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call MimeGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib

See Also
MimeCreateMessage, MimeDeleteMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeSetExportOptions Function

BOOL WINAPI MimeSetExportOptions(
 HMESSAGE hMessage,
 DWORD dwOptions
);

The MimeSetExportOptions function specifies a bitmask that describes current message export
options.

Parameters
hMessage

Handle to the message.

dwOptions

Mask of attribute options. The mask is a combination of the following values:

Constant Description

MIME_OPTION_DEFAULT The default export options. The headers for the
message are written out in a specific consistent order,
with custom headers written to the end of the header
block regardless of the order in which they were set or
imported from another message. If the message
contains Bcc, Received, Return-Path, Status or X400-
Received header fields, they will not be exported.

MIME_OPTION_KEEPORDER The original order in which the message header fields
were set or imported are preserved when the message
is exported.

MIME_OPTION_ALLHEADERS All headers, including the Bcc, Received, Return-Path,
Status and X400-Received header fields will be
exported. Normally these headers are not exported
because they are only used by the mail transport
system. This option can be useful when exporting a
message to be stored on the local system, but should
not be used when exporting a message to be delivered
to another user.

MIME_OPTION_NOHEADERS When exporting a message, the main header block will
not be included. This can be useful when creating a
multipart message for services which expect MIME
formatted data, such as HTTP POST requests. This
option should never be used for email messages being
submitted using SMTP.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call MimeGetLastError.

Remarks
By default, the Received and Return-Path headers are not exported. In addition, the order of the

headers in an exported message is undefined. This is reasonable behavior for most mail clients,
but may not be appropriate for applications which need access to all of the header fields.

Example
MimeSetExportOptions(hMessage, MIME_EXPORT_OPTIONS_ALL |
 MIME_EXPORT_OPTIONS_KEEP_ORDER);

if (MimeImportMessage(hMessage, lpszFileName))
{
 // Process the message and make any modifications
 // then write the message back out, preserving all
 // of the headers in their original order
 bResult = MimeExportMessage(hMessage, lpszFileName);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeExportMessage, MimeExportMessageEx, MimeImportMessage, MimeImportMessageEx,
MimeGetExportOptions

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeSetFileContentType Function

BOOL WINAPI MimeSetFileContentType(
 HMESSAGE hMessage,
 UINT nContentType,
 LPCTSTR lpszSubtype,
 LPCTSTR lpszExtension
);

The MimeSetFileContentType function associates a per-message content type with a given file
name extension. This association is specific to the message, and is not shared by an other
messages that may be opened by the process.

Parameters
hMessage

Handle to the message.

nContentType

An identifier which specifies the primary content type. It may be one of the following values:

Constant Description

MIME_CONTENT_UNKNOWN The default content type for the specified extension
should be used. This value should only be used to
delete a previously defined content type.

MIME_CONTENT_APPLICATION The file content is application specific. Examples of
this type of file would be a Microsoft Word
document or an executable program. This is also the
default type for files which have an unrecognized file
name extension and contain binary data.

MIME_CONTENT_AUDIO The file is an audio file in one of several standard
formats. Examples of this type of file would be a
Windows (.wav) file or MPEG3 (.mp3) file.

MIME_CONTENT_IMAGE The file is an image file in one of several standard
formats. Examples of this type of file would be a GIF
or JPEG image file.

MIME_CONTENT_TEXT The file is a text file. This is also the default type for
files which have an unrecognized file name extension
and contain only printable text data.

MIME_CONTENT_VIDEO The file is a video file in one of several standard
formats. Examples of this type of file would be a
Windows (.avi) or Quicktime (.mov) video file.

lpszSubtype

A pointer to a string which specifies the MIME subtype. This parameter may be NULL if the
content type association is being deleted.

lpszExtension

A pointer to a string which specifies the file name extension that will be associated with the
MIME content type.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call MimeGetLastError.

Remarks
The MimeSetFileContentType function allows an application to specify a content type for a
given file extension, and is typically used to define custom content types for file attachments. The
content type will override any default content types associated with the extension, as well as allow
new content types to be defined for application-specific files.

Example
In the following example, the file extension ".dat" is associated with a custom content type, a file is
attached to the message and then the custom content type is deleted. Note that because the
primary content type designates the file as an application specific (non-text) file, it will be
automatically encoded when attached to a message:

if (MimeSetFileContentType(hMessage, MIME_CONTENT_APPLICATION, "octet-stream",
"dat"))
{
 bResult = MimeAttachFile(hMessage, lpszFileName, MIME_ATTACH_DEFAULT);
 MimeSetFileContentType(hMessage, MIME_CONTENT_UNKNOWN, NULL, "dat");
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeAttachData, MimeAttachFile, MimeGetFileContentType

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeSetLastError Function

VOID WINAPI MimeSetLastError(
 DWORD dwErrorCode
);

The MimeSetLastError function sets the last error code for the current thread.

Parameters
dwErrorCode

Specifies the last error code for the caller. A value of zero clears the last error code.

Return Value
None.

Remarks
Most functions will set the last error code value when they fail; a few functions set it when they
succeed. Function failure is typically indicated by a return value error code such as FALSE, NULL,
INVALID_MESSAGE or MIME_ERROR. Those functions which call MimeSetLastError when they
succeed are noted on the function reference page.

Applications can retrieve the value saved by this function by using the MimeGetLastError
function. The use of MimeGetLastError is optional. An application can call it to find out the
specific reason for a function failure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib

See Also
MimeGetErrorString, MimeGetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeSetMessageDate Function

BOOL WINAPI MimeSetMessageDate(
 HMESSAGE hMessage,
 LPCTSTR lpszDate,
 BOOL bLocalize
);

The MimeSetMessageDate function sets the date and time in the header for the specified
message.

Parameters
hMessage

Handle to the message.

lpszDate

Pointer to a string which specifies the date and time. If this parameter specifies a zero-length
string or a NULL pointer, the current date and time will be used.

bLocalize

Boolean flag that specifies the date and time should be localized for the current timezone.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call MimeGetLastError.

Remarks
The date string should be in a standard format as outlined in RFC 822, the document which
describes the basic structure of Internet email messages. For a description of the date string
format, refer to the MimeFormatDate function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeFormatDate, MimeGetMessageDate, MimeGetMessageHeader, MimeParseDate,
MimeSetMessageHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeSetMessageHeader Function

BOOL WINAPI MimeSetMessageHeader(
 HMESSAGE hMessage,
 LPCTSTR lpszHeader,
 LPCTSTR lpszValue
);

The MimeSetMessageHeader function adds or updates a header field in the specified message.

Parameters
hMessage

Handle to the message.

lpszHeader

Pointer to a string which specifies the header field that will be added or updated.

lpszValue

Pointer to a string which specifies the value for the header field. This pointer may be NULL,
which causes the header field to be removed from the message.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call MimeGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeAddMessageHeaders, MimeEnumMessageHeaders, MimeGetFirstMessageHeader,
MimeGetMessageHeader, MimeGetMessagePart, MimeGetNextMessageHeader,
MimeSetMessageHeaderEx

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeSetMessageHeaderEx Function

BOOL WINAPI MimeSetMessageHeaderEx(
 HMESSAGE hMessage,
 INT nMessagePart,
 LPCTSTR lpszHeader,
 LPCTSTR lpszValue,
 DWORD dwReserved
);

The MimeSetMessageHeaderEx function adds or updates a header field in the specified
message.

Parameters
hMessage

Handle to the message.

nMessagePart

An integer value which specifies which part of the message the header should be set or
modified in. A value of zero sets a header value in the main message header block, while a
value greater than zero sets the header value in that specific part of a multipart message. A
value of -1 specifies that the header value should be set in the current message part.

lpszHeader

Pointer to a string which specifies the header field that will be added or updated.

lpszValue

Pointer to a string which specifies the value for the header field. This pointer may be NULL,
which causes the header field to be removed from the message.

dwReserved

A reserved parameter. This value should always be zero.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call MimeGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeAddMessageHeaders, MimeEnumMessageHeaders, MimeGetFirstMessageHeader,
MimeGetMessageHeader, MimeGetMessagePart, MimeGetNextMessageHeader,
MimeSetMessagePart, MimeSetMessageText

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeSetMessagePart Function

INT WINAPI MimeSetMessagePart(
 HMESSAGE hMessage,
 INT nNewPart
);

The MimeSetMessagePart function sets the current message part index for the specified
message.

Parameters
hMessage

Handle to the message.

nNewPart

The new message part index. A value of zero specifies the main message part.

Return Value
If the function succeeds, the return value is the previous message part index. If the function fails,
the return value is MIME_ERROR. To get extended error information, call MimeGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeGetMessagePart, MimeGetMessagePartCount, MimeSetMessageHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeSetMessageText Function

LONG WINAPI MimeSetMessageText(
 HMESSAGE hMessage,
 LONG nOffset,
 LPCTSTR lpszText
);

The MimeSetMessageText function copies the specified text into the body of the current
message part.

Parameters
hMessage

Handle to the message.

nOffset

The offset into the body of the message part. A value of -1 specifies that the text will be
appended to the message body.

lpszText

A pointer to a string which specifies the text to be copied to the current message part at the
given offset.

Return Value
If the function succeeds, the return value is the number of bytes copied into the message. A return
value of zero indicates that no text could be copied into the current message part. To get
extended error information, call MimeGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeAppendMessageText, MimeClearMessageText, MimeCompareMessageText,
MimeGetMessageText, MimeResetMessage, MimeSetMessageHeader, MimeSetMessagePart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeSetMessageVersion Function

BOOL WINAPI MimeSetMessageVersion(
 HMESSAGE hMessage,
 LPCTSTR lpszVersion
);

Parameters
hMessage

Handle to the message.

lpszVersion

Pointer to a string which specifies the MIME version. A value of NULL sets the version to the
default value of 1.0.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call MimeGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
MimeGetMessageVersion, MimeSetMessageHeader

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeStoreMessage Function

LONG WINAPI MimeStoreMessage(
 HMESSAGESTORE hStorage,
 HMESSAGE hMessage,
 DWORD dwReserved
);

The MimeStoreMessage function stores the specified message in a message store.

Parameters
hStorage

Handle to the message store.

hMessage

Handle to the message that will be stored.

dwReserved

A reserved parameter. This value must always be zero.

Return Value
If the function succeeds, the return value is the message number for the message that was just
stored. If the function fails, the return value is MIME_ERROR. To get extended error information,
call MimeGetLastError.

Remarks
The MimeStoreMessage function will always append the specified message to the storage file. If
you want to replace a message in the message store, you should use the
MimeReplaceStoredMessage function.

Example
HMESSAGE hMessage;

// Compose a new message
hMessage = MimeComposeMessage(lpszSender,
 lpszRecipient,
 NULL,
 lpszSubject,
 lpszMessage,
 NULL,
 MIME_CHARSET_DEFAULT,
 MIME_ENCODING_DEFAULT);

if (hMessage != INVALID_MESSAGE)
{
 HMESSAGESTORE hStorage;

 // Open the message storage file
 hStorage = MimeOpenMessageStore(lpszFileName, MIME_STORAGE_WRITE);

 if (hStorage == INVALID_MESSAGESTORE)
 {
 // Delete the message and return if we are unable to
 // open the storage file
 MimeDeleteMessage(hMessage);

 return;
 }

 // Store a copy of the message in the message store
 nMessageId = MimeStoreMessage(hStorage, hMessage, 0);

 if (nMessageId == MIME_ERROR)
 {
 // We were unable to store the message
 }

 // Close the message store
 MimeCloseMessageStore(hStorage);

 // Destroy the message that was created
 MimeDeleteMessage(hMessage);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib

See Also
MimeDeleteStoredMessage, MimeFindStoredMessage, MimeGetStoredMessage,
MimeReplaceStoredMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MimeUninitialize Function

VOID WINAPI MimeUninitialize();

The MimeUninitialize function terminates the use of the library.

Parameters
There are no parameters.

Return Value
None.

Remarks
An application is required to perform a successful MimeInitialize call before it can call any of the
other the library functions. When it has completed the use of library, the application must call
MimeUninitialize to allow the library to free any resources allocated on behalf of the process.
Any pending blocking or asynchronous calls in this process are canceled without posting any
notification messages, and all sockets that were opened by the process are closed.

There must be a call to MimeUninitialize for every successful call to MimeInitialize made by a
process. In a multithreaded environment, operations for all threads in the client are terminated.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmsgv11.lib

See Also
MimeInitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Mail Message Data Structures

 INITDATA

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 INITDATA Structure

This structure contains information about the SocketTools library when the initialization function
returns.

typedef struct _INITDATA
{
 DWORD dwSize;
 DWORD dwVersionMajor;
 DWORD dwVersionMinor;
 DWORD dwVersionBuild;
 DWORD dwOptions;
 DWORD_PTR dwReserved1;
 DWORD_PTR dwReserved2;
 TCHAR szDescription[128];
} INITDATA, *LPINITDATA;

Members
dwSize

Size of this structure. This structure member must be set to the size of the structure prior to
calling the initialization function. Failure to do so will cause the function to fail.

dwVersionMajor

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the major version number for the library.

dwVersionMinor

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the minor version number for the library.

dwVersionBuild

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the build number for the library.

dwOptions

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

dwReserved1

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

dwReserved2

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

szDescription

A null terminated string which describes the library.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Message Character Sets

Constant Value Name Code Page Description

MIME_CHARSET_USASCII 1 us-ascii 20127 A character set which
defines 7-bit printable
characters with values
ranging from 20h to 7Eh. An
application that uses this
character set has the
broadest compatibility with
most mail servers (MTAs)
because it does not require
the server to handle 8-bit
characters correctly when
the message is delivered.

MIME_CHARSET_ISO8859_1 2 iso-8859-1 28591 A character set for most
western European
languages such as English,
French, Spanish and
German. This character set is
also commonly referred to
as Latin-1. This character set
is similar to Windows code
page 1252 (Windows-1252),
however there are
differences such as the Euro
symbol.

MIME_CHARSET_ISO8859_2 3 iso-8859-2 28592 A character set for most
central and eastern
European languages such as
Czech, Hungarian, Polish
and Romanian. This
character set is also
commonly referred to as
Latin-2. This character set is
similar to Windows code
page 1250, however the
characters are arranged
differently.

MIME_CHARSET_ISO8859_3 12 iso-8859-3 28593 A character set for southern
European languages such as
Maltese and Esperanto. This
character set was also used
with the Turkish language,
but it was superseded by
ISO 8859-9 which is the
preferred character set for

Turkish. This character set is
not widely used in mail
messages and it is
recommended that you use
UTF-8 instead.

MIME_CHARSET_ISO8859_4 13 iso-8859-4 28594 A character set for northern
European languages such as
Latvian, Lithuanian and
Greenlandic. This character
set is not widely used in mail
messages and it is
recommended that you use
UTF-8 instead.

MIME_CHARSET_ISO8859_5 4 iso-8859-5 28595 A character set for Cyrillic
languages such as Russian,
Bulgarian and Serbian. This
character set was never
widely adopted and most
mail messages use either
KOI8 or UTF-8 encoding.

MIME_CHARSET_ISO8859_6 5 iso-8859-6 28596 A character set for Arabic
languages. Note that the
application is responsible for
displaying text that uses this
character set. In particular,
any display engine needs to
be able to handle the
reverse writing direction and
analyze the context of the
message to correctly
combine the glyphs.

MIME_CHARSET_ISO8859_7 6 iso-8859-7 28597 A character set for the Greek
language. This character set
is also commonly referred to
as Latin/Greek. This
character set is no longer
widely used and has largely
been replaced with UTF-8
which provides more
complete coverage of the
Greek alphabet.

MIME_CHARSET_ISO8859_8 7 iso-8859-8 28598 A character set for the
Hebrew language. Note that
similar to Arabic, Hebrew
uses a reverse writing
direction. An application
which displays this character
should be capable of

processing bi-directional text
where a single message may
include both right-to-left
and left-to-right languages,
such as Hebrew and English.
In most cases it is
recommended that you use
UTF-8 instead of this
character set.

MIME_CHARSET_ISO8859_9 8 iso-8859-9 28599 A character set for the
Turkish language. This
character set is also
commonly referred to as
Latin-5. This character set is
nearly identical to ISO 8859-
1, except that it replaces
certain Icelandic characters
with Turkish characters.

MIME_CHARSET_ISO8859_10 14 iso-8859-10 28600 A character set for the
Danish, Icelandic, Norwegian
and Swedish languages. This
character set is also
commonly referred to as
Latin-6 and is similar to ISO
8859-4.

MIME_CHARSET_ISO8859_13 15 iso-8859-13 28603 A character set for Baltic
languages. This character set
is also commonly referred to
as Latin-7. This character set
is similar to ISO 8859-4,
except it adds certain Polish
characters and does not
support Nordic languages.

MIME_CHARSET_ISO8859_14 16 iso-8859-14 28604 A character set for Gaelic
languages such as Irish,
Manx and Scottish Gaelic.
This character set is also
commonly referred to as
Latin-8. This character set
replaced ISO 8859-12 which
was never fully
implemented.

MIME_CHARSET_ISO8859_15 17 iso-8859-15 28605 A character set for western
European languages. This
character set is also
commonly referred to as
Latin-9 and is nearly
identical to ISO8859-1

except that it replaces
lesser-used symbols with the
Euro sign and some letters.

MIME_CHARSET_ISO2022_JP 18 iso-2022-jp 50222 A multi-byte character
encoding for Japanese that
is widely used with mail
messages. This is a 7-bit
encoding where all
characters start with ASCII
and uses escape sequences
to switch to the double-byte
character sets.

MIME_CHARSET_ISO2022_KR 19 iso-2022-kr 50225 A multi-byte character
encoding for Korean which
encodes both ASCII and
Korean double-byte
characters. This is a 7-bit
encoding which uses the
shift in and shift out control
characters to switch to the
double-byte character set.

MIME_CHARSET_ISO2022_CN 20 x-cp50227 50227 A multi-byte character
encoding for Simplified
Chinese which encodes both
ASCII and Chinese double-
byte characters. This is a 7-
bit encoding which uses the
shift in and shift out control
characters to switch to the
double-byte character set.

MIME_CHARSET_KOI8R 21 koi8-r 20866 A character set for Russian
using the Cyrillic alphabet.
This character set also
covers the Bulgarian
language. Most mail
messages in the Russian
language use this character
set or UTF-8 instead of ISO
8859-5, which was never
widely adopted.

MIME_CHARSET_KOI8U 22 koi8-u 21866 A character set for Ukrainian
using the Cyrillic alphabet.
This character set is similar
to the KOI8-R character set,
but replaces certain symbols
with Ukrainian letters. Most
mail messages in the
Ukrainian language use this

character set or UTF-8
instead of ISO 8859-5, which
was never widely adopted.

MIME_CHARSET_GB2312 23 x-cp20936 20936 A multi-byte character
encoding which can
represent ASCII and
simplified Chinese
characters. It has been
superseded by GB18030,
however it remains widely
used in China.

MIME_CHARSET_GB18030 24 gb18030 54936 A Unicode transformation
format which can represent
all Unicode code points and
supports both simplified and
traditional Chinese
characters. It is backwards
compatible with GB2312 and
supersedes that character
set.

MIME_CHARSET_BIG5 25 big5 950 A multi-byte character set
that supports both ASCII
characters and traditional
Chinese characters. It is
widely used in Taiwan, Hong
Kong and Macau. It is no
longer commonly used in
China, which has developed
GB18030 as a standard
encoding. Microsoft's
implementation of Big5 on
Windows does not support
all of the extensions and is
missing certain code points.

MIME_CHARSET_UTF7 9 utf-7 65000 A Unicode transformation
format that uses variable-
length character encoding
to represent Unicode text as
a stream of ASCII characters
that are safe to transport
between mail servers that
only support 7-bit printable
characters. It is primarily
used as an alternative to
UTF-8 when quoted-
printable or base64
encoding is not desired.

MIME_CHARSET_UTF8 10 utf-8 65001 A Unicode transformation

format that uses multi-byte
character sequences to
represent Unicode text. It is
backwards compatible with
the ASCII character set,
however because it uses 8-
bit text, it is recommended
that you use either quoted-
printable or base64
encoding to ensure
compatibility with mail
servers that do not support
8-bit characters.

MIME_CHARSET_UTF16 11 utf-16le N/A A 16-bit Unicode format
that represents each
character as a 16-bit value in
little endian byte order. This
character set is not widely
used in mail messages and it
is recommended that you
use UTF-8 instead. UTF-16
characters in big endian
byte order are not
supported.

Remarks
When composing a new message, it is recommended that you always use UTF-8 as the character
set encoding which ensures broad compatibility with most applications. The other character sets
are primarily used when parsing messages generated by other applications. Internally, all message
headers and text are processed as UTF-8. If you use the ANSI version of the these functions,
header values and message text will always be returned to your application as UTF-8 encoded
Unicode, regardless of the original character set used in the message.

In addition to the character sets listed above, the library will recognize additional character sets
which correspond to specific Windows code pages, as well several variants. These additional
character sets are included for compatibility with other applications; they are not defined because
they should not be used when composing new messages.

It is important to note that while certain Windows character sets are similar to standard ISO
character sets, they are not identical. For example, although the Windows-1252 character set is
nearly identical to ISO 8859-1, they are not interchangeable. Some legacy applications make the
error of representing Windows ANSI character sets as 8-bit ISO character sets, which can result in
errors when converting them to Unicode. This is something to be aware of when encoding and
decoding text generated by older applications. Before the widespread adoption of UTF-8, it was
particularly common for legacy Windows mail clients to default to using Windows-1252 for text
and label it as using ISO 8859-1.

Although the library supports UTF-16, it is recommended you use UTF-8 instead. Text which uses
UTF-16 will always be base64 encoded, and some mail clients may not recognize it as a valid
character set. If the message does not specify if big endian or little endian byte order is used, the
library will default to little endian. When UTF-16 is used when composing a new message, it will

always use little endian byte order.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

See Also
MimeComposeMessage, MimeCreateMessagePartEx, MimeDecodeTextEx, MimeEncodeTextEx

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Network News Transfer Protocol Library

Download and submit articles to a news server.

Reference

Functions
Data Structures
Error Codes

Library Information

File Name CSNWSV11.DLL

Version 11.0.2180.1635

LibID C3BE060A-451B-4830-A754-CC7B4288C413

Import Library CSNWSV11.LIB

Dependencies None

Standards RFC 977, RFC 2980

Overview
The Network News Transfer Protocol (NNTP) is used with servers that provide news services. This
is similar in functionality to bulletin boards or message boards, where topics are organized
hierarchically into groups, called newsgroups. Users can browse and search for messages, called
news articles, which have been posted by other users. On many servers, they can also post their
own articles which can be read by others. The largest collection of public newsgroups available is
called USENET, a world-wide distributed discussion system. In addition, there are a large number
of smaller news servers. For example, Catalyst Development operates a news server which
functions as a forum for technical questions and announcements.

The SocketTools library provides a comprehensive interface for accessing newsgroups, retrieving
articles and posting new articles. In combination with the Mail Message library to process the news
articles, SocketTools can be used to integrate newsgroup access with an existing email application,
or you can implement your own full-featured newsgroup client.

This library supports secure connections using the standard SSL and TLS protocols.

Requirements
The SocketTools Library Edition libraries are compatible with any programming language which
supports calling functions exported from a standard dynamic link library (DLL). If you are using
Visual C++ 6.0 it is required that you have Service Pack 6 (SP6) installed. You should install all
updates for your development tools and have the current Windows SDK installed. The minimum
recommended version of Visual Studio is Visual Studio 2010.

This library is supported on Windows 7, Windows Server 2008 R2 and later versions of the desktop
and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1) installed as
a minimum requirement. It is recommended that you install the current service pack and all critical
updates available for your version of the operating system.

This product includes both 32-bit and 64-bit libraries. Native 64-bit CPU support requires the 64-
bit version of Windows 7 or later versions of the Windows operating system.

Distribution
When you distribute your application that uses this library, it is recommended that you install the
file in the same folder as your application executable. If you install the library into a shared location
on the system, it is important that you distribute the correct version for the target platform and it
should be registered as a shared DLL. This is a standard Windows dynamic link library, not an
ActiveX component, and does not require COM registration.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Network News Transfer Protocol Functions

Function Description

NntpAsyncConnect Establish an asynchronous connection to the specified server

NntpAttachThread Attach the specified client handle to another thread

NntpAuthenticate Authenticate the specified user on the news server

NntpCancel Cancel the current blocking operation

NntpCloseArticle Close the article being posted to the current newsgroup

NntpCommand Send a command to the server

NntpConnect Connect to the specified server

NntpCreateArticle Create a new article in the current newsgroup

NntpCreateSecurityCredentials Create a new security credentials structure

NntpDeleteSecurityCredentials Delete a previously created security credentials structure

NntpDisableEvents Disable asynchronous event notification

NntpDisableTrace Disable logging of network function calls to the trace log

NntpDisconnect Disconnect from the current server

NntpEnableEvents Enable asynchronous event notification

NntpEnableTrace Enable logging of network function calls to a file

NntpEventProc Callback function that processes events generated by the client

NntpFreezeEvents Suspend asynchronous event processing

NntpGetArticle Retrieve an article from the server and store the contents in a local buffer

NntpGetArticleEx Retrieve an article from the server with support for large article IDs

NntpGetArticleByMessageId Retrieve an article from the server using a message ID and store the contents in a local buffer

NntpGetArticleHeaders Return the contents of the specified article header

NntpGetArticleHeadersEx Return the contents of the specified article header with support for large article IDs

NntpGetArticleMessageId Return the message identifier for the specified article

NntpGetArticleMessageIdEx Return the message identifier for the specified article with support for large article IDs

NntpGetArticleRange Return the first and last article number for the current group

NntpGetArticleRangeEx Return the first and last article number for the current group with support for large article IDs

NntpGetArticleSize Return the size of the specified news article in bytes

NntpGetArticleSizeEx Return the size of the specified article with support for large article IDs

NntpGetCurrentArticle Return the current article number for the selected group

NntpGetCurrentArticleEx Return the current article number for the selected group with support for large article IDs

NntpGetCurrentDate Return the current date and time

NntpGetErrorString Return a description for the specified error code

NntpGetFirstArticle Return the first available article in the currently selected newsgroup

NntpGetFirstArticleEx Return the first available article in the currently selected newsgroup with support for large article IDs

NntpGetFirstGroup Return the first available newsgroup from the server

NntpGetFirstGroupEx Return the first available newsgroup from the server with support for large article IDs

NntpGetGroupName Return the name of the currently selected newsgroup

NntpGetGroupTitle Return a description of the currently selected newsgroup

NntpGetLastError Return the last error code

NntpGetMessageIdArticle Return the article number for the specified message identifier

file:///C|/Projects/cstools11/pdf/nntp/library/nntpgetarticleex.html

NntpGetMessageIdArticleEx Return the article number for the specified message with support for large article IDs

NntpGetMultiLine Return the client multi-line output flag

NntpGetNextArticle Return the next available article from the current newsgroup

NntpGetNextArticleEx Return the next available article from the current newsgroup with support for large article IDs

NntpGetNextGroup Return the next available newsgroup from the server

NntpGetNextGroupEx Return the next available newsgroup from the server with support for large article IDs

NntpGetResultCode Return the result code from the previous command

NntpGetResultString Return the result string from the previous command

NntpGetSecurityInformation Return security information about the current client connection

NntpGetStatus Return the current client status

NntpGetTimeout Return the number of seconds until an operation times out

NntpGetTransferStatus Return data transfer statistics

NntpGetTransferStatusEx Return data transfer statistics with support for large article IDs

NntpInitialize Initialize the library and validate the specified license key at runtime

NntpIsBlocking Determine if the client is blocked, waiting for information

NntpIsConnected Determine if the client is connected to the server

NntpIsReadable Determine if data can be read from the server

NntpIsWritable Determine if data can be written to the server

NntpListArticles Return a list of articles in the currently selected newsgroup

NntpListArticlesEx Return a list of articles in the currently selected newsgroup with support for large article IDs

NntpListGroups Return a list of newsgroups maintained by the server

NntpListNewGroups Return a list of newsgroups created since a specified date

NntpOpenArticle Open the specified article in the current newsgroup

NntpOpenArticleEx Open the specified article in the current newsgroup with support for large article IDs

NntpOpenArticleByMessageId Open the specified article by message ID in the current newsgroup

NntpOpenNextArticle Open the next available article

NntpOpenPreviousArticle Open the previous article

NntpPostArticle Post a new article to the news server

NntpRead Read data returned by the news server

NntpRegisterEvent Register an event callback function

NntpReset Reset the client

NntpSelectGroup Select the specified newsgroup to retrieve articles from

NntpSetLastError Set the last error code

NntpSetMultiLine Set the client multi-line output flag

NntpSetTimeout Set the number of seconds until an operation times out

NntpStoreArticle Retrieve an article and store the contents in a local file

NntpStoreArticleEx Retrieve an article and store the contents in a local file with support for large article IDs

NntpUninitialize Terminate use of the library by the application

NntpWrite Write data to the news server

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/nntp/library/nntplistarticlesex.html

 NntpAsyncConnect Function

HCLIENT WINAPI NntpAsyncConnect(
 LPCTSTR lpszRemoteHost,
 UINT nRemotePort,
 UINT nTimeout,
 DWORD dwOptions,
 LPSECURITYCREDENTIALS lpCredentials,
 HWND hEventWnd,
 UINT uEventMsg
);

The NntpAsyncConnect function is used to establish a connection with the server.

This function has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

The application should create a background worker thread and establish a connection by calling
NntpConnect within that thread. If the application requires multiple simultaneous connections, it
is recommended you create a worker thread for each client session.

Parameters
lpszRemoteHost

A pointer to the name of the server to connect to; this may be a fully-qualified domain name or
an IP address.

nRemotePort

The port number the server is listening on; a value of zero specifies that the default port
number should be used.

nTimeout

The number of seconds that the client will wait for a response from the server before failing the
current operation.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

NNTP_OPTION_NONE No connection options specified. A standard
connection to the server will be established using
the specified host name and port number.

NNTP_OPTION_TUNNEL This option specifies that a tunneled TCP
connection and/or port-forwarding is being used
to establish the connection to the server. This
changes the behavior of the client with regards
to internal checks of the destination IP address
and remote port number, default capability
selection and how the connection is established.

NNTP_OPTION_TRUSTEDSITE This option specifies the server is trusted. The

server certificate will not be validated and the
connection will always be permitted. This option
only affects connections using either the SSL or
TLS protocols.

NNTP_OPTION_SECURE This option specifies the client should attempt to
establish a secure connection with the server.
Note that the server must support secure
connections using either the SSL or TLS protocol.

NNTP_OPTION_SECURE_FALLBACK This option specifies the client should permit the
use of less secure cipher suites for compatibility
with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

NNTP_OPTION_PREFER_IPV6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be
resolved to both an IPv6 and IPv4 address. This
option is ignored if the local system does not
have IPv6 enabled, or when the hostname can
only be resolved to an IPv4 address. If the server
hostname can only be resolved to an IPv6
address, the client will attempt to establish a
connection using IPv6 regardless if this option
has been specified.

NNTP_OPTION_FREETHREAD This option specifies the handle returned by this
function may be used by any thread, and is not
limited to the thread which created it. The
application is responsible for ensuring that access
to the handle is synchronized across multiple
threads.

lpCredentials

Pointer to credentials structure SECURITYCREDENTIALS. This parameter is only used if the
NNTP_OPTION_SECURE option is specified for the connection. This parameter may be NULL, in
which case no client credentials will be provided to the server. If client credentials are required,
the fields dwSize, lpszCertStore, and lpszCertName must be defined, while other fields may be
left undefined. Set dwSize to the size of the SECURITYCREDENTIALS structure.

hEventWnd

The handle to the event notification window. This window receives messages which notify the
client of various asynchronous socket events that occur.

uEventMsg

The message identifier that is used when an asynchronous socket event occurs. This value
should be greater than WM_USER as defined in the Windows header files.

Return Value
If the function succeeds, the return value is a handle to a client session. If the function fails, the
return value is INVALID_CLIENT. To get extended error information, call NntpGetLastError.

Remarks

The dwOptions argument can be used to specify the threading model that is used by the library
when a connection is established. By default, the handle is initially attached to the thread that
created it. From that point on, until the it is released, only the owner may call functions using that
handle. The ownership of the handle may be transferred from one thread to another using the
NntpAttachThread function.

Specifying the NNTP_OPTION_FREETHREAD option enables any thread to call any function using
the handle, regardless of which thread created it. It is important to note that this option disables
certain internal safety checks which are performed by the library and may result in unexpected
behavior unless access to the handle is synchronized. If one thread calls a function in the library, it
must ensure that no other thread will call another function at the same time using the same
handle.

When a message is posted to the notification window, the low word of the lParam parameter
contains the event identifier. The high word of lParam contains the low word of the error code, if
an error has occurred. The wParam parameter contains the client handle. One or more of the
following event identifiers may be sent:

Constant Description

NNTP_EVENT_CONNECT The connection to the server has completed. The high word of
the lParam parameter should be checked, since this notification
message will be posted if an error has occurred.

NNTP_EVENT_DISCONNECT The server has closed the connection to the client. The client
should read any remaining data and disconnect.

NNTP_EVENT_READ Data is available to read by the calling process. No additional
messages will be posted until the client has read at least some of
the data. This event is only generated if the client is in
asynchronous mode.

NNTP_EVENT_WRITE The client can now write data. This notification is sent after a
connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking
operation. This event is only generated if the client is in
asynchronous mode.

NNTP_EVENT_TIMEOUT The network operation has exceeded the specified timeout
period. The client application may attempt to retry the operation,
or may disconnect from the server and report an error to the
user.

NNTP_EVENT_CANCEL The current operation has been canceled. Under most
circumstances the client should disconnect from the server and
re-connect if needed. After an operation has been canceled, the
server may abort the connection or refuse to accept further
commands from the client.

NNTP_EVENT_COMMAND A command has been issued by the client and the server
response has been received and processed. This event can be
used to log the result codes and messages returned by the
server in response to actions taken by the client.

NNTP_EVENT_LISTARTICLE The client is retrieving a list of articles from the server and
information about another article has been processed. The client

should use this event to retrieve the next available article from
the server.

NNTP_EVENT_LASTARTICLE The client is retrieving a list of articles from the server and all of
the available articles have been processed. This event is
generated when there are no further articles.

NNTP_EVENT_LISTGROUP The client is retrieving a list of newsgroups from the server and
information about another group has been processed. The client
should use this event to retrieve the next available newsgroup
from the server.

NNTP_EVENT_LASTGROUP The client is retrieving a list of newsgroups from the server and
all of the available groups have been processed. This event is
generated when there are no further newsgroups.

NNTP_EVENT_PROGRESS The client is in the process of sending or receiving data from the
server. This event is called periodically during a transfer so that
the client can update any user interface components such as a
status control or progress bar.

To cancel asynchronous notification and return the client to a blocking mode, use the
NntpDisableEvents function.

It is recommended that you only establish an asynchronous connection if you understand the
implications of doing so. In most cases, it is preferable to create a synchronous connection and
create threads for each additional session if more than one active client session is required.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NntpAuthenticate, NntpConnect, NntpCreateSecurityCredentials, NntpDeleteSecurityCredentials,
NntpDisconnect, NntpInitialize, NntpUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpAttachThread Function

DWORD WINAPI NntpAttachThread(
 HCLIENT hClient
 DWORD dwThreadId
);

The NntpAttachThread function attaches the specified client handle to another thread.

Parameters
hClient

Handle to the client session.

dwThreadId

The ID of the thread that will become the new owner of the handle. A value of zero specifies
that the current thread should become the owner of the client handle.

Return Value
If the function succeeds, the return value is the thread ID of the previous owner. If the function
fails, the return value is NNTP_ERROR. To get extended error information, call NntpGetLastError.

Remarks
When a client handle is created, it is associated with the current thread that created it. Normally, if
another thread attempts to perform an operation using that handle, an error is returned since it
does not own the handle. This is used to ensure that other threads cannot interfere with an
operation being performed by the owner thread. In some cases, it may be desirable for one
thread in a client application to create the client handle, and then pass that handle to another
worker thread. The NntpAttachThread function can be used to change the ownership of the
handle to the new worker thread. By preserving the return value from the function, the original
owner of the handle can be restored before the worker thread terminates.

This function should be called by the new thread immediately after it has been created, and if the
new thread does not release the handle itself, the ownership of the handle should be restored to
the parent thread before it terminates. Under no circumstances should NntpAttachThread be
used to forcibly release a handle allocated by another thread while a blocking operation is in
progress. To cancel an operation, use the NntpCancel function and then release the handle after
the blocking function exits and control is returned to the current thread.

Note that the dwThreadId parameter is presumed to be a valid thread ID and no checks are
performed to ensure that the thread actually exists. Specifying an invalid thread ID will orphan the
handle until the NntpUninitialize function is called.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
NntpConnect, NntpDisconnect, NntpUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpAuthenticate Function

INT WINAPI NntpAuthenticate(
 HCLIENT hClient,
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword
);

The NntpAuthenticate function is used to authenticate access to the news server. Not all news
servers require authentication by the client.

Parameters
hClient

Handle to the client session.

lpszUserName

Pointer to a string which specifies the user name required for authentication on the news server.

lpszPassword

Pointer to a string which specifies the password required for authentication on the news server.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is NNTP_ERROR. To get extended error information, call NntpGetLastError.

Remarks
This function should only be called if the server requires authentication. Two authentication
methods, "original" and "simple" authentication, are recognized by the library.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NntpConnect, NntpListArticles, NntpListGroups

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpCancel Function

INT WINAPI NntpCancel(
 HCLIENT hClient
);

The NntpCancel function cancels any outstanding blocking operation in the client, causing the
blocking function to fail. The application may then retry the operation or terminate the client
session.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
NNTP_ERROR. To get extended error information, call NntpGetLastError.

Remarks
When the NntpCancel function is called, the blocking function will not immediately fail. An
internal flag is set which causes the blocking operation to exit with an error. This means that the
application cannot cancel an operation and immediately perform some other operation. Instead it
must allow the calling stack to unwind, returning back to the blocking operation before making
any further function calls.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
NntpIsBlocking, NntpRead, NntpReset, NntpWrite

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpCloseArticle Function

INT WINAPI NntpCloseArticle(
 HCLIENT hClient
);

The NntpCloseArticle function closes the current article that has been opened or created.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is NNTP_ERROR. To get extended error information, call NntpGetLastError.

Remarks
If an article is being created, this function actually submits the article to the server. Note that the
client application is responsible for generating the message headers as well as the body of the
message. News articles conform to the same general characteristics of an email message.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
NntpCreateArticle, NntpOpenArticle, NntpOpenArticleByMessageId, NntpWrite

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpCommand Function

INT WINAPI NntpCommand(
 HCLIENT hClient,
 LPCTSTR lpszCommand,
 LPCTSTR lpszParameter
);

The NntpCommand function sends a command to the server and returns the result code back to
the caller. This function is typically used for site-specific commands not directly supported by the
API.

Parameters
hClient

Handle to the client session.

lpszCommand

The command which will be executed by the server.

lpszParameter

An optional command parameter. If the command requires more than one parameter, then
they should be combined into a single string, with a space separating each parameter. If the
command does not accept any parameters, this value may be NULL.

Return Value
If the function succeeds, the return value is the result code returned by the server. If the function
fails, the return value is NNTP_ERROR. To get extended error information, call NntpGetLastError.

Remarks
A list of valid commands can be found in the technical specification for the protocol. Many servers
will list supported commands when the HELP command is used.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NntpGetMultiLine, NntpGetResultCode, NntpGetResultString, NntpSetMultiLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpConnect Function

HCLIENT WINAPI NntpConnect(
 LPCTSTR lpszRemoteHost,
 UINT nRemotePort,
 UINT nTimeout,
 DWORD dwOptions,
 LPSECURITYCREDENTIALS lpCredentials
);

The NntpConnect function is used to establish a connection with the server.

Parameters
lpszRemoteHost

A pointer to the name of the server to connect to; this may be a fully-qualified domain name or
an IP address.

nRemotePort

The port number the server is listening on; a value of zero specifies that the default port
number should be used.

nTimeout

The number of seconds that the client will wait for a response from the server before failing the
current operation.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

NNTP_OPTION_NONE No connection options specified. A standard
connection to the server will be established using
the specified host name and port number.

NNTP_OPTION_TUNNEL This option specifies that a tunneled TCP
connection and/or port-forwarding is being used
to establish the connection to the server. This
changes the behavior of the client with regards
to internal checks of the destination IP address
and remote port number, default capability
selection and how the connection is established.

NNTP_OPTION_TRUSTEDSITE This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option
only affects connections using either the SSL or
TLS protocols.

NNTP_OPTION_SECURE This option specifies the client should attempt to
establish a secure connection with the server.
Note that the server must support secure
connections using either the SSL or TLS protocol.

NNTP_OPTION_SECURE_FALLBACK This option specifies the client should permit the

use of less secure cipher suites for compatibility
with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

NNTP_OPTION_PREFER_IPV6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be
resolved to both an IPv6 and IPv4 address. This
option is ignored if the local system does not
have IPv6 enabled, or when the hostname can
only be resolved to an IPv4 address. If the server
hostname can only be resolved to an IPv6
address, the client will attempt to establish a
connection using IPv6 regardless if this option
has been specified.

NNTP_OPTION_FREETHREAD This option specifies the handle returned by this
function may be used by any thread, and is not
limited to the thread which created it. The
application is responsible for ensuring that access
to the handle is synchronized across multiple
threads.

lpCredentials

Pointer to credentials structure SECURITYCREDENTIALS. This parameter is only used if the
NNTP_OPTION_SECURE option is specified for the connection. This parameter may be NULL, in
which case no client credentials will be provided to the server. If client credentials are required,
the fields dwSize, lpszCertStore, and lpszCertName must be defined, while other fields may be
left undefined. Set dwSize to the size of the SECURITYCREDENTIALS structure.

Return Value
If the function succeeds, the return value is a handle to a client session. If the function fails, the
return value is INVALID_CLIENT. To get extended error information, call NntpGetLastError.

Remarks
This function will block the current thread until a connection has been established or the timeout
period has elapsed. To prevent it from blocking the main user interface thread, the application
should create a background worker thread and establish a connection by calling NntpConnect in
that thread. If the application requires multiple simultaneous connections, it is recommended you
create a worker thread for each connection.

The dwOptions argument can be used to specify the threading model that is used by the library
when a connection is established. By default, the handle is initially attached to the thread that
created it. From that point on, until the it is released, only the owner may call functions using that
handle. The ownership of the handle may be transferred from one thread to another using the
NntpAttachThread function.

Specifying the NNTP_OPTION_FREETHREAD option enables any thread to call any function using
the handle, regardless of which thread created it. It is important to note that this option disables
certain internal safety checks which are performed by the library and may result in unexpected
behavior unless access to the handle is synchronized. If one thread calls a function in the library, it
must ensure that no other thread will call another function at the same time using the same
handle.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NntpAuthenticate, NntpCreateSecurityCredentials, NntpDeleteSecurityCredentials,
NntpDisconnect, NntpInitialize, NntpUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpCreateArticle Function

INT WINAPI NntpCreateArticle(
 HCLIENT hClient
);

The NntpCreateArticle function creates a new article in the current newsgroup.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is NNTP_ERROR. To get extended error information, call NntpGetLastError.

Remarks
This function sends the POST command to the news server. Not all servers permit clients to post
articles. The client application is responsible for generating the message headers as well as the
body of the message. News articles conform to the same general characteristics of an email
message.

The NntpCloseArticle function must be called once the contents of the article has been written to
the server.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
NntpCloseArticle, NntpGetCurrentDate, NntpListArticles, NntpOpenArticle,
NntpOpenArticleByMessageId, NntpOpenNextArticle, NntpOpenPreviousArticle, NntpWrite

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpCreateSecurityCredentials Function

BOOL WINAPI NntpCreateSecurityCredentials(
 DWORD dwProtocol,
 DWORD dwOptions,
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword,
 LPCTSTR lpszCertStore,
 LPCTSTR lpszCertName,
 LPVOID lpvReserved,
 LPSECURITYCREDENTIALS* lppCredentials
);

The NntpCreateSecurityCredentials function creates a SECURITYCREDENTIALS structure.

Parameters
dwProtocol

A bitmask of supported security protocols. This parameter is constructed by using a bitwise
operator with any of the following values:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The
correct protocol is automatically selected, based on
what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.
This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is

supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

dwOptions

A value which specifies one or options. This member is constructed by using a bitwise operator
with any of the following values:

Constant Description

CREDENTIAL_STORE_CURRENT_USER The library will attempt to open a store for
the current user using the certificate store
name provided in this structure. If no options
are specified, then this is the default
behavior.

CREDENTIAL_STORE_LOCAL_MACHINE The library will attempt to open a local
machine store using the certificate store
name provided in this structure. If this option
is specified, the library will always search for a
local machine store before searching for the
store by that name for the current user.

CREDENTIAL_STORE_FILENAME The certificate store name is a file that
contains the certificate and private key that
will be used.

lpszUserName

A pointer to a string which specifies the certificate owner's username. A value of NULL specifies
that no username is required. Currently this parameter is not used and any value specified will
be ignored.

lpszPassword

A pointer to a string which specifies the certificate owner's password. A value of NULL specifies
that no password is required. This parameter is only used if a PKCS #12 (PFX) certificate file is
specified and that certificate has been secured with a password. This value will be ignored the
current user or local machine certificate store is specified.

lpszCertStore

A pointer to a string which specifies the name of the certificate store to open. A certificate store
is a collection of certificates and their private keys, typically organized by how they are used. If
this value is NULL or points to an empty string, the default certificate store "MY" will be used.

Store Name Description

CA Certification authority certificates. These are certificates that are issued by
entities which are entrusted to issue certificates to other individuals or
organizations. Companies such as VeriSign and Thawte act as
certification authorities.

MY Personal certificates and their associated private keys for the current user.
This store typically holds the client certificates used to establish a user's
credentials. This corresponds to the "Personal" store that is displayed by
the certificate manager utility and is the default store used by the library.

ROOT Certificates that have been self-signed by a certificate authority. Root
certificates for a number of different certification authorities such as
VeriSign and Thawte are installed as part of the operating system and
periodically updated by Microsoft.

lpszCertName

A pointer to a null terminated string which specifies the name of the certificate to use. The
function will first search the certificate store for a certificate with a matching "friendly name"; this
is a name for the certificate that is assigned by the user. Note that the name must match
completely, but the comparison is not case sensitive. If no matching certificate is found, the
function will then attempt to find a certificate that has a matching common name (also called
the certificate subject). This comparison is less stringent, and the first partial match will be
returned. If this second search fails, the function will return an error indicating that the certificate
could not be found.

lpvReserved

Pointer reserved for future use. Set it to NULL when using this function.

lppCredentials

Pointer to an LPSECURITYCREDENTIALS pointer. The memory for the credentials structure will
be allocated by this function and must be released by calling the
NntpDeleteSecurityCredentials function when it is no longer needed. The pointer value must
be set to NULL before the function is called. It is important to note that this is a pointer to a
pointer variable, not a pointer to the SECURITYCREDENTIALS structure itself.

Return Value

If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call NntpGetLastError.

Remarks
The structure that is created by this function may be used as client credentials when establishing a
secure connection. This is particularly useful for programming languages other than C/C++ which
may not support C structures or pointers. The pointer to the SECURITYCREDENTIALS structure can
be declared as an unsigned integer variable which is passed by reference to this function, and
then passed by value to the NntpAsyncConnect or NntpConnect functions.

Example
LPSECURITYCREDENTIALS lpSecCred = NULL;
NntpCreateSecurityCredentials(SECURITY_PROTOCOL_DEFAULT,
 0,
 NULL,
 NULL,
 lpszCertStore,
 lpszCertName,
 NULL,
 &lpSecCred);

hClient = NntpConnect(lpszHostName,
 NNTP_PORT_SECURE,
 NNTP_TIMEOUT,
 NNTP_OPTION_SECURE,
 lpSecCred);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NntpConnect, NntpDeleteSecurityCredentials, NntpGetSecurityInformation,
SECURITYCREDENTIALS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpDeleteSecurityCredentials Function

VOID WINAPI NntpDeleteSecurityCredentials(
 LPSECURITYCREDENTIALS* lppCredentials
);

The NntpDeleteSecurityCredentials function deletes an existing SECURITYCREDENTIALS
structure.

Parameters
lppCredentials

Pointer to an LPSECURITYCREDENTIALS pointer. On exit from the function, the pointer will be
NULL.

Return Value
None.

Example
if (lpSecCred)
 NntpDeleteSecurityCredentials(&lpSecCred);

NntpUninitialize();

Remarks
This function can be used to release the memory allocated to the client or server credentials after
a secure connection has been terminated.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NntpCreateSecurityCredentials, NntpUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpDisableEvents Function

INT WINAPI NntpDisableEvents(
 HCLIENT hClient
);

The NntpDisableEvents function disables the event notification mechanism, preventing
subsequent event notification messages from being posted to the application's message queue.

This function has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
NNTP_ERROR. To get extended error information, call NntpGetLastError.

Remarks
This function affects both event notification and event callbacks. Any outstanding events in the
message queue should be ignored by the client application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
NntpEnableEvents, NntpFreezeEvents, NntpRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpDisableTrace Function

BOOL WINAPI NntpDisableTrace();

The NntpDisableTrace function disables the logging of socket function calls to the trace log.

Parameters
None.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
NntpEnableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpDisconnect Function

INT WINAPI NntpDisconnect(
 HCLIENT hClient
);

The NntpDisconnect function terminates the connection with the server, closing the socket and
releasing the memory allocated for the client session.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
NNTP_ERROR. To get extended error information, call NntpGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
NntpConnect, NntpUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpEnableEvents Function

INT WINAPI NntpEnableEvents(
 HCLIENT hClient,
 HWND hEventWnd,
 UINT uEventMsg
);

The NntpEnableEvents function enables event notifications using Windows messages.

This function has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Applications should use the NntpRegisterEvent function to register an event handler which is
invoked when an event occurs.

Parameters
hClient

Handle to the client session.

hEventWnd

Handle to the event notification window. This window receives a user-defined message which
specifies the event that has occurred. If this value is NULL, event notification is disabled.

uEventMsg

An unsigned integer which specifies the user-defined message that is sent when an event
occurs. This parameter's value must be greater than the value of WM_USER. If the hEventWnd
parameter is NULL, this value must be specified as WM_NULL.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
NNTP_ERROR. To get extended error information, call NntpGetLastError.

Remarks
When a message is posted to the notification window, the low word of the lParam parameter
contains the event identifier. The high word of lParam contains the low word of the error code, if
an error has occurred. The wParam parameter contains the client handle. One or more of the
following event identifiers may be sent:

Constant Description

NNTP_EVENT_CONNECT The connection to the server has completed. The high word of
the lParam parameter should be checked, since this notification
message will be posted if an error has occurred.

NNTP_EVENT_DISCONNECT The server has closed the connection to the client. The client
should read any remaining data and disconnect.

NNTP_EVENT_READ Data is available to read by the calling process. No additional
messages will be posted until the client has read at least some of
the data. This event is only generated if the client is in
asynchronous mode.

NNTP_EVENT_WRITE The client can now write data. This notification is sent after a
connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking
operation. This event is only generated if the client is in
asynchronous mode.

NNTP_EVENT_TIMEOUT The network operation has exceeded the specified timeout
period. The client application may attempt to retry the operation,
or may disconnect from the server and report an error to the
user.

NNTP_EVENT_CANCEL The current operation has been canceled. Under most
circumstances the client should disconnect from the server and
re-connect if needed. After an operation has been canceled, the
server may abort the connection or refuse to accept further
commands from the client.

NNTP_EVENT_COMMAND A command has been issued by the client and the server
response has been received and processed. This event can be
used to log the result codes and messages returned by the
server in response to actions taken by the client.

NNTP_EVENT_LISTARTICLE The client is retrieving a list of articles from the server and
information about another article has been processed. The client
should use this event to retrieve the next available article from
the server.

NNTP_EVENT_LASTARTICLE The client is retrieving a list of articles from the server and all of
the available articles have been processed. This event is
generated when there are no further articles.

NNTP_EVENT_LISTGROUP The client is retrieving a list of newsgroups from the server and
information about another group has been processed. The client
should use this event to retrieve the next available newsgroup
from the server.

NNTP_EVENT_LASTGROUP The client is retrieving a list of newsgroups from the server and
all of the available groups have been processed. This event is
generated when there are no further newsgroups.

NNTP_EVENT_PROGRESS The client is in the process of sending or receiving data from the
server. This event is called periodically during a transfer so that
the client can update any user interface components such as a
status control or progress bar.

As noted, some events are only generated when the client is asynchronous mode. These events
depend on the Windows Sockets asynchronous notification mechanism.

If event notification is disabled by specifying a NULL window handle, there may still be outstanding
events in the message queue that must be processed. Since event handling has been disabled,
these events should be ignored by the client application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

Import Library: csnwsv11.lib

See Also
NntpDisableEvents, NntpFreezeEvents, NntpRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpEnableTrace Function

BOOL WINAPI NntpEnableTrace(
 LPCTSTR lpszTraceFile,
 DWORD dwTraceFlags
);

The NntpEnableTrace function enables the logging of Windows Sockets function calls to a file.

Parameters
lpszTraceFile

A pointer to a string which specifies the name of the trace log file. If this parameter is NULL or
an empty string, the default file name cstrace.log is used. The file is stored in the directory
specified by the TEMP environment variable, if it is defined; otherwise, the current working
directory is used.

dwTraceFlags

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

TRACE_INFO All function calls are written to the trace file. This is the default
value.

TRACE_ERROR Only those function calls which fail are recorded in the trace file.

TRACE_WARNING Only those function calls which fail or return values which indicate
a warning are recorded in the trace file.

TRACE_HEXDUMP All functions calls are written to the trace file, plus all the data that
is sent or received is displayed, in both ASCII and hexadecimal
format.

TRACE_PROCESS All function calls in the current process are logged, rather than
only those functions in the current thread. This option is useful for
multithreaded applications that are using worker threads.

Return Value
If the function succeeds, the return value is non-zero. A return value of zero indicates an error.
Failure typically indicates that the tracing library cstrcv11.dll cannot be loaded on the local
system.

Remarks
When trace logging is enabled, the file is opened, appended to and closed for each socket
function call. This makes it possible for an application to append its own logging information,
however care should be taken to ensure that the file is closed before the next network operation is
performed. To limit the size of the log files, enable and disable logging only around those sections
of code that you wish to trace.

Note that the TRACE_HEXDUMP trace level generates very large log files since it includes all of the
data exchanged between your application and the server.

Trace function logging is managed on a per-thread basis, not for each client handle. This means
that all SocketTools libraries and components share the same settings in the current thread. If you

are using multiple SocketTools libraries or components in your application, you only need to
enable logging once.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NntpDisableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpEventProc Function

VOID CALLBACK NntpEventProc(
 HCLIENT hClient,
 UINT nEvent,
 DWORD dwError,
 DWORD_PTR dwParam
);

The NntpEventProc function is an application-defined callback function that processes events
generated by the client.

Parameters
hClient

Handle to the client session.

nEvent

An unsigned integer which specifies which event occurred. For a complete list of events, refer to
the NntpRegisterEvent function.

dwError

An unsigned integer which specifies any error that occurred. If no error occurred, then this
parameter will be zero.

dwParam

A user-defined integer value which was specified when the event callback was registered.

Return Value
None.

Remarks
An application must register this callback function by passing its address to the
NntpRegisterEvent function. The NntpEventProc function is a placeholder for the application-
defined function name.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NntpDisableEvents, NntpEnableEvents, NntpFreezeEvents, NntpRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpFreezeEvents Function

INT WINAPI NntpFreezeEvents(
 HCLIENT hClient,
 BOOL bFreeze
);

The NntpFreezeEvents function is used to suspend and resume event handling by the client.

Parameters
hClient

Handle to the client session.

bFreeze

A non-zero value specifies that event handling should be suspended by the client. A zero value
specifies that event handling should be resumed.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
NNTP_ERROR. To get extended error information, call NntpGetLastError.

Remarks
This function should be used when the application does not want to process events, such as when
a modal dialog is being displayed. When events are suspended, all client events are queued. If
events are re-enabled at a later point, those queued events will be sent to the application for
processing. Note that only one of each event will be generated. For example, if the client has
suspended event handling, and four read events occur, once event handling is resumed only one
of those read events will be posted to the client. This prevents the application from being flooded
by a potentially large number of queued events.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
NntpDisableEvents, NntpEnableEvents, NntpRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpGetArticle Function

INT WINAPI NntpGetArticle(
 HCLIENT hClient,
 LONG nArticleId,
 LPVOID lpvBuffer,
 LPDWORD lpdwLength,
 DWORD dwReserved
);

The NntpGetArticle function retrieves the specified article and copies the contents to a local
buffer.

Parameters
hClient

Handle to the client session.

nArticleId

Number of article to retrieve from the server. This value must be greater than zero.

lpvBuffer

A pointer to a byte buffer which will contain the data transferred from the server, or a pointer to
a global memory handle which will reference the data when the function returns.

lpdwLength

A pointer to an unsigned integer which should be initialized to the maximum number of bytes
that can be copied to the buffer specified by the lpvBuffer parameter. If the lpvBuffer
parameter points to a global memory handle, the length value should be initialized to zero.
When the function returns, this value will be updated with the actual length of the file that was
downloaded.

dwReserved

A reserved parameter. This value should always be zero.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is NNTP_ERROR. To get extended error information, call NntpGetLastError.

Remarks
The NntpGetArticle function is used to retrieve an article from the server and copy it into a local
buffer. The function may be used in one of two ways, depending on the needs of the application.
The first method is to pre-allocate a buffer large enough to store the contents of the article. In this
case, the lpvBuffer parameter will point to the buffer that was allocated, the value that the
lpdwLength parameter points to should be initialized to the size of that buffer.

The second method that can be used is have the lpvBuffer parameter point to a global memory
handle which will contain the article data when the function returns. In this case, the value that the
lpdwLength parameter points to must be initialized to zero. It is important to note that the
memory handle returned by the function must be freed by the application, otherwise a memory
leak will occur. See the example code below.

This function will cause the current thread to block until the complete article has been retrieved, a
timeout occurs or the operation is canceled. During the transfer, the NNTP_EVENT_PROGRESS
event will be periodically fired, enabling the application to update any user interface controls.

Event notification must be enabled, either by calling NntpEnableEvents, or by registering a
callback function using the NntpRegisterEvent function.

To determine the current status of a transfer while it is in progress, use the
NntpGetTransferStatus function. If you need to retrieve an article based on its message ID rather
than the article number, use the NntpGetArticleByMessageId function.

Your application should use the NntpGetArticleEx function if the server uses 64-bit article IDs.

Example
HGLOBAL hgblBuffer = (HGLOBAL)NULL;
LPBYTE lpBuffer = (LPBYTE)NULL;
DWORD cbBuffer = 0;

// Return the article into block of global memory allocated by
// the GlobalAlloc function; the handle to this memory will be
// returned in the hgblBuffer parameter
nResult = NntpGetArticle(hClient,
 nArticleId,
 &hgblBuffer,
 &cbBuffer,
 0);

if (nResult != NNTP_ERROR)
{
 // Lock the global memory handle, returning a pointer to the
 // article text
 lpBuffer = (LPBYTE)GlobalLock(hgblBuffer);

 // After the data has been used, the handle must be unlocked
 // and freed, otherwise a memory leak will occur
 GlobalUnlock(hgblBuffer);
 GlobalFree(hgblBuffer);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
NntpCreateArticle, NntpEnableEvents, NntpGetArticleEx, NntpGetArticleByMessageId,
NntpGetArticleHeaders, NntpGetTransferStatus, NntpRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/nntp/library/nntpgetarticleex.html

 NntpGetArticleByMessageId Function

INT WINAPI NntpGetArticleByMessageId(
 HCLIENT hClient,
 LPCTSTR lpszMessageId,
 LPVOID lpvBuffer,
 LPDWORD lpdwLength,
 DWORD dwReserved
);

The NntpGetArticleByMessageId function retrieves an article using the specified message ID
and copies the contents to a local buffer.

Parameters
hClient

Handle to the client session.

lpszMessageId

A pointer to a string which specifies the message ID of the article that you want to retrieve. If
this parameter is a NULL pointer or specifies a zero-length string, an error will be returned.

lpvBuffer

A pointer to a byte buffer which will contain the data transferred from the server, or a pointer to
a global memory handle which will reference the data when the function returns.

lpdwLength

A pointer to an unsigned integer which should be initialized to the maximum number of bytes
that can be copied to the buffer specified by the lpvBuffer parameter. If the lpvBuffer
parameter points to a global memory handle, the length value should be initialized to zero.
When the function returns, this value will be updated with the actual length of the file that was
downloaded.

dwReserved

A reserved parameter. This value should always be zero.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is NNTP_ERROR. To get extended error information, call NntpGetLastError.

Remarks
The NntpGetArticleByMessageId function is used to retrieve an article from the server and copy
it into a local buffer. This function is identical to the NntpGetArticle function except that a
message ID string is used to identify the article, rather than an article number. The function may
be used in one of two ways, depending on the needs of the application. The first method is to
pre-allocate a buffer large enough to store the contents of the article. In this case, the lpvBuffer
parameter will point to the buffer that was allocated, the value that the lpdwLength parameter
points to should be initialized to the size of that buffer.

The second method that can be used is have the lpvBuffer parameter point to a global memory
handle which will contain the article data when the function returns. In this case, the value that the
lpdwLength parameter points to must be initialized to zero. It is important to note that the
memory handle returned by the function must be freed by the application, otherwise a memory
leak will occur. See the example code below.

This function will cause the current thread to block until the complete article has been retrieved, a
timeout occurs or the operation is canceled. During the transfer, the NNTP_EVENT_PROGRESS
event will be periodically fired, enabling the application to update any user interface controls.
Event notification must be enabled, either by calling NntpEnableEvents, or by registering a
callback function using the NntpRegisterEvent function.

To determine the current status of a transfer while it is in progress, use the
NntpGetTransferStatus function.

Example
HGLOBAL hgblBuffer = (HGLOBAL)NULL;
LPBYTE lpBuffer = (LPBYTE)NULL;
DWORD cbBuffer = 0;

// Return the article into block of global memory allocated by
// the GlobalAlloc function; the handle to this memory will be
// returned in the hgblBuffer parameter
nResult = NntpGetArticleByMessageId(hClient,
 lpszMessageId,
 &hgblBuffer,
 &cbBuffer,
 0);

if (nResult != NNTP_ERROR)
{
 // Lock the global memory handle, returning a pointer to the
 // article text
 lpBuffer = (LPBYTE)GlobalLock(hgblBuffer);

 // After the data has been used, the handle must be unlocked
 // and freed, otherwise a memory leak will occur
 GlobalUnlock(hgblBuffer);
 GlobalFree(hgblBuffer);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NntpCreateArticle, NntpEnableEvents, NntpGetArticle, NntpGetArticleHeaders,
NntpGetTransferStatus, NntpRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpGetArticleHeaders Function

INT WINAPI NntpGetArticleHeaders(
 HCLIENT hClient,
 LONG nArticleId,
 LPVOID lpvHeaders,
 LPDWORD lpdwLength
);

The NntpGetArticleHeaders function retrieves the headers for the specified article from the
server.

Parameters
hClient

Handle to the client session.

nArticleId

Number of article to retrieve from the server. This value must be greater than zero.

lpvHeaders

A pointer to a byte buffer which will contain the data transferred from the server, or a pointer to
a global memory handle which will reference the data when the function returns.

lpdwLength

A pointer to an unsigned integer which should be initialized to the maximum number of bytes
that can be copied to the buffer specified by the lpvHeaders parameter. If the lpvHeaders
parameter points to a global memory handle, the length value should be initialized to zero.
When the function returns, this value will be updated with the actual length of the message that
was downloaded.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
NNTP_ERROR. To get extended error information, call NntpGetLastError.

Remarks
The NntpGetArticleHeaders function is used to retrieve an article header block from the server
and copy it into a local buffer. The function may be used in one of two ways, depending on the
needs of the application. The first method is to pre-allocate a buffer large enough to store the
contents of the file. In this case, the lpvHeaders parameter will point to the buffer that was
allocated, the value that the lpdwLength parameter points to should be initialized to the size of
that buffer.

The second method that can be used is have the lpvHeaders parameter point to a global memory
handle which will contain the message headers when the function returns. In this case, the value
that the lpdwLength parameter points to must be initialized to zero. It is important to note that
the memory handle returned by the function must be freed by the application, otherwise a
memory leak will occur.

This function will cause the current thread to block until the transfer completes, a timeout occurs
or the transfer is canceled. During the transfer, the NNTP_EVENT_PROGRESS event will be
periodically fired, enabling the application to update any user interface controls. Event notification
must be enabled, either by calling NntpEnableEvents, or by registering a callback function using
the NntpRegisterEvent function.

Your application should use the NntpGetArticleHeadersEx function if the server uses 64-bit
article IDs.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
NntpGetArticle, NntpGetArticleHeadersEx, NntpGetArticleRange, NntpListArticles, NntpPostArticle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpGetArticleHeadersEx Function

INT WINAPI NntpGetArticleHeadersEx(
 HCLIENT hClient,
 ULONGLONG nArticleId,
 LPVOID lpvHeaders,
 LPDWORD lpdwLength
);

The NntpGetArticleHeadersEx function retrieves the headers for the specified article from the
server.

Parameters
hClient

Handle to the client session.

nArticleId

Number of article to retrieve from the server.

lpvHeaders

A pointer to a byte buffer which will contain the data transferred from the server, or a pointer to
a global memory handle which will reference the data when the function returns.

lpdwLength

A pointer to an unsigned integer which should be initialized to the maximum number of bytes
that can be copied to the buffer specified by the lpvHeaders parameter. If the lpvHeaders
parameter points to a global memory handle, the length value should be initialized to zero.
When the function returns, this value will be updated with the actual length of the message that
was downloaded.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
NNTP_ERROR. To get extended error information, call NntpGetLastError.

Remarks
The NntpGetArticleHeadersEx function is used to retrieve an article header block from the server
and copy it into a local buffer. This function provides support for servers which use 64-bit article
IDs. The function may be used in one of two ways, depending on the needs of the application. The
first method is to pre-allocate a buffer large enough to store the contents of the file. In this case,
the lpvHeaders parameter will point to the buffer that was allocated, the value that the
lpdwLength parameter points to should be initialized to the size of that buffer.

The second method that can be used is have the lpvHeaders parameter point to a global memory
handle which will contain the message headers when the function returns. In this case, the value
that the lpdwLength parameter points to must be initialized to zero. It is important to note that
the memory handle returned by the function must be freed by the application, otherwise a
memory leak will occur.

This function will cause the current thread to block until the transfer completes, a timeout occurs
or the transfer is canceled. During the transfer, the NNTP_EVENT_PROGRESS event will be
periodically fired, enabling the application to update any user interface controls. Event notification
must be enabled, either by calling NntpEnableEvents, or by registering a callback function using
the NntpRegisterEvent function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
NntpGetArticle, NntpGetArticleRangeEx, NntpListArticlesEx, NntpPostArticle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/nntp/library/nntplistarticlesex.html

 NntpGetArticleMessageId Function

INT WINAPI NntpGetArticleMessageId(
 HCLIENT hClient,
 LONG nArticleId,
 LPTSTR lpszMessageId,
 INT cbMessageId
);

The NntpGetArticleMessageId function returns the message identifier for the specified article in
the current newsgroup.

Parameters
hClient

Handle to the client session.

nArticleId

Article number to retrieve the message identifier for. The value may be zero, in which case the
current article number is used.

lpszMessageId

Pointer to a string buffer which will contain the message identifier for the specified article.

cbMessageId

Maximum number of characters that may be copied into the buffer, including the terminating
null character.

Return Value
If the function succeeds, the return value is the length of the message identifier string. If the
function fails, the return value is NNTP_ERROR. To get extended error information, call
NntpGetLastError.

Remarks
The message identifier is a string which can uniquely identify the message on the news server. This
value may be used to retrieve the contents of the article. Your application should use the
NntpGetArticleMessageIdEx function if the server uses 64-bit article IDs.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NntpGetArticleMessageIdEx, NntpGetMessageIdArticle, NntpListArticles

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpGetArticleMessageIdEx Function

INT WINAPI NntpGetArticleMessageIdEx(
 HCLIENT hClient,
 ULONGLONG nArticleId,
 LPTSTR lpszMessageId,
 INT cbMessageId
);

The NntpGetArticleMessageIdEx function returns the message identifier for the specified article
in the current newsgroup.

Parameters
hClient

Handle to the client session.

nArticleId

Article number to retrieve the message identifier for. The value may be zero, in which case the
current article number is used.

lpszMessageId

Pointer to a string buffer which will contain the message identifier for the specified article.

cbMessageId

Maximum number of characters that may be copied into the buffer, including the terminating
null character.

Return Value
If the function succeeds, the return value is the length of the message identifier string. If the
function fails, the return value is NNTP_ERROR. To get extended error information, call
NntpGetLastError.

Remarks
The message identifier is a string which can uniquely identify the message on the news server. This
value may be used to retrieve the contents of the article. This function provides support for servers
which use 64-bit article IDs.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NntpGetMessageIdArticleEx, NntpListArticlesEx

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/nntp/library/nntplistarticlesex.html

 NntpGetArticleRange Function

LONG WINAPI NntpGetArticleRange(
 HCLIENT hClient,
 LPLONG lpnFirstArticle,
 LPLONG lpnLastArticle
);

The NntpGetArticleRange function returns the first and last article numbers for the currently
selected newsgroup.

Parameters
hClient

Handle to the client session.

lpnFirstArticle

Pointer to a long integer that will contain the first article number in the currently selected
newsgroup. If this parameter is NULL, it will be ignored.

lpnLastArticle

Pointer to a long integer that will contain the last article number in the currently selected
newsgroup. If this parameter is NULL, it will be ignored.

Return Value
If the function succeeds, the return value is number of articles in the selected newsgroup. If the
function fails, the return value is NNTP_ERROR. To get extended error information, call
NntpGetLastError.

Remarks
It is possible that there will be gaps in the articles within the range of the first and last articles in
the newsgroup. This may be due to a message being canceled or expired. If the server uses 64-bit
article IDs, your application should use the NntpGetArticleRangeEx function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
NntpGetArticleRangeEx, NntpOpenArticle, NntpOpenArticleByMessageId, NntpListArticles

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpGetArticleRangeEx Function

BOOL WINAPI NntpGetArticleRangeEx(
 HCLIENT hClient,
 ULONGLONG * lpnFirstArticle,
 ULONGLONG * lpnLastArticle,
 ULONGLONG * lpnArticleCount
);

The NntpGetArticleRangeEx function returns the first and last article numbers for the currently
selected newsgroup.

Parameters
hClient

Handle to the client session.

lpnFirstArticle

Pointer to an unsigned 64-bit integer that will contain the first article number in the currently
selected newsgroup. If this parameter is NULL, it will be ignored.

lpnLastArticle

Pointer to an unsigned 64-bit integer that will contain the last article number in the currently
selected newsgroup. If this parameter is NULL, it will be ignored.

lpnArticleCount

Pointer to an unsigned 64-bit integer that will contain the total number of articles in the
selected newsgroup. If this parameter is NULL, it will be ignored.

Return Value
If the function succeeds, the return value will be non-zero. If the function fails, the return value is
zero. To get extended error information, call NntpGetLastError.

Remarks
It is possible that there will be gaps in the articles within the range of the first and last articles in
the newsgroup. This may be due to a message being canceled or expired. This function provides
support for servers which use 64-bit article IDs.

The NntpGetArticleRangeEx function returns a BOOL (a signed 32-bit integer) to indicate
success or failure, and the article count is returned in a variable that is passed by reference to the
function. If you are updating your code to use this function, make sure you also change how you
check the return value.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
NntpOpenArticleEx, NntpOpenArticleByMessageId, NntpListArticlesEx

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/nntp/library/nntplistarticlesex.html

 NntpGetArticleSize Function

DWORD WINAPI NntpGetArticleSize(
 HCLIENT hClient,
 LONG nArticleId
);

The NntpGetArticleSize function returns the size of the specified article.

Parameters
hClient

Handle to the client session.

nArticleId

An integer value that identifies the article. The value may be zero, in which case the current
article number is used.

Return Value
If the function succeeds, the return value is the size of the article in bytes. If the function fails, the
return value is NNTP_ERROR. To get extended error information, call NntpGetLastError.

Remarks
The NntpGetArticleSize function sends the XOVER command to the server to request the size of
the specified article. If the server uses 64-bit article IDs, your application should use the
NntpGetArticleSizeEx function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
NntpGetArticleSizeEx, NntpOpenArticle, NntpOpenArticleByMessageId, NntpListArticles

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpGetArticleSizeEx Function

DWORD WINAPI NntpGetArticleSizeEx(
 HCLIENT hClient,
 ULONGLONG nArticleId
);

The NntpGetArticleSize function returns the size of the specified article.

Parameters
hClient

Handle to the client session.

nArticleId

An unsigned 64-bit integer value that identifies the article. The value may be zero, in which case
the current article number is used.

Return Value
If the function succeeds, the return value is the size of the article in bytes. If the function fails, the
return value is NNTP_ERROR. To get extended error information, call NntpGetLastError.

Remarks
The NntpGetArticleSizeEx function sends the XOVER command to the server to request the size
of the specified article. This function provides support for servers which use 64-bit article IDs.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
NntpOpenArticleEx, NntpOpenArticleByMessageId, NntpListArticlesEx

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/nntp/library/nntplistarticlesex.html

 NntpGetCurrentArticle Function

LONG WINAPI NntpGetCurrentArticle(
 HCLIENT hClient
);

The NntpGetCurrentArticle function returns the current article number for the currently selected
newsgroup.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is the current article number. If the function fails, the
return value is NNTP_ERROR. To get extended error information, call NntpGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NntpOpenArticle, NntpOpenArticleByMessageId, NntpGetArticleRange, NntpGetFirstArticle,
NntpGetNextArticle, NntpListArticles

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpGetCurrentArticleEx Function

BOOL WINAPI NntpGetCurrentArticleEx(
 HCLIENT hClient,
 ULONGLONG * lpnArticleId
);

The NntpGetCurrentArticle function returns the current article number for the currently selected
newsgroup.

Parameters
hClient

Handle to the client session.

lpnArticleId

Pointer to an unsigned 64-bit integer that will contain the current article number in the selected
newsgroup. This parameter cannot be NULL.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call NntpGetLastError.

Remarks
The NntpGetCurrentArticleEx function returns a BOOL (a signed 32-bit integer) to indicate
success or failure, and the article ID is returned in a variable that is passed by reference to the
function. This function provides support for servers which use 64-bit article IDs. If you are updating
your code to use this function, make sure you also change how you check the return value.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NntpOpenArticleEx, NntpOpenArticleByMessageId, NntpGetArticleRangeEx, NntpGetFirstArticleEx,
NntpGetNextArticleEx, NntpListArticlesEx

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/nntp/library/nntplistarticlesex.html

 NntpGetCurrentDate Function

INT WINAPI NntpGetCurrentDate(
 LPTSTR lpszDate,
 INT nMaxLength
);

The NntpGetCurrentDate function copies the current date and time to the specified buffer in a
format that is commonly used in news articles. This date format should be used in all date-related
fields in the message header.

Parameters
lpszDate

Pointer to a string buffer that will contain the current date and time when the function returns.

nMaxLength

The maximum number of characters that can be copied into the string buffer.

Return Values

If the function succeeds, the return value is the number of characters copied into the buffer, not
including the null-terminator. If the function fails, the return value is NNTP_ERROR. To get
extended error information, call NntpGetLastError.

Remarks
The date value that is returned is adjusted for the local timezone.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NntpCreateArticle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpGetErrorString Function

INT WINAPI NntpGetErrorString(
 DWORD dwErrorCode,
 LPTSTR lpszDescription,
 INT cbDescription
);

The NntpGetErrorString function is used to return a description of a specific error code. Typically
this is used in conjunction with the NntpGetLastError function for use with warning dialogs or as
diagnostic messages.

Parameters
dwErrorCode

The error code for which a description is returned.

lpszDescription

A pointer to the buffer that will contain a description of the specified error code. This buffer
should be at least 128 characters in length.

cbDescription

The maximum number of characters that may be copied into the description buffer.

Return Value
If the function succeeds, the return value is the length of the description string. If the function fails,
the return value is zero, meaning that no description exists for the specified error code. Typically
this indicates that the error code passed to the function is invalid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NntpGetLastError, NntpSetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpGetFirstArticle Function

BOOL WINAPI NntpGetFirstArticle(
 HCLIENT hClient,
 LPNEWSARTICLE lpArticle
);

The NntpGetFirstArticle function returns information about the first article in the currently
selected newsgroup.

Parameters
hClient

Handle to the client session.

lpArticle

A pointer to a NEWSARTICLE structure which will contain information about the first article in
the currently selected directory.

Return Value
If the function succeeds, the return value is non-zero. If there are no articles in the current
newsgroup, or the function fails, the return value is zero. To get extended error information, call
NntpGetLastError.

Remarks
The NntpGetFirstArticle function returns information about the first article in the currently
selected newsgroup. This function is used in conjunction with the NntpGetNextArticle function to
enumerate all of the articles in the newsgroup. Typically this is used to provide the user with a list
of articles to access.

While the articles in the newsgroup are being listed, the client cannot retrieve the contents of a
specific article. For example, the NntpGetArticle function cannot be called while inside a loop
calling NntpGetNextArticle. The client should store those articles which it wants to retrieve in an
array, and then once all of the articles have been listed, it can begin calling NttpGetArticle for
each article number to retrieve the article text.

The date and time that the article was posted is returned in the stPosted member of the
NEWSARTICLE structure. This value is returned in Universal Coordinated Time (UTC) and can be
converted to local time using the SystemTimeToTzSpecificLocalTime function.

If the server uses 64-bit article IDs, your application should use the NntpGetFirstArticleEx and
NntpGetNextArticleEx functions.

Example
NEWSARTICLE newsArticle;
BOOL bResult;
INT nResult;

// List all articles in the current group
nResult = NntpListArticles(hClient, -1L, -1L);

if (nResult == NNTP_ERROR)
{
 TCHAR szError[ASTRING];
 DWORD dwError = NntpGetLastError();

 NntpGetErrorString(dwError, szError, ASTRING);
 _ftprintf(stderr, _T("Error %08x: %s\n"), dwError, szError);
 return;
}

// Get each article in the current newsgroup, printing the article
// number and the subject of the article
bResult = NntpGetFirstArticle(hClient, &newsArticle);

while (bResult)
{
 _tprintf(_T("%ld %s\n"), newsArticle.nArticleId, newsArticle.szSubject);
 bResult = NntpGetNextArticle(hClient, &newsArticle);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NntpGetArticle, NntpGetFirstArticleEx, NntpGetFirstGroup, NntpGetNextArticle,
NntpGetNextGroup, NntpGetNextGroupEx, NntpListArticles, NntpListGroups, NntpListNewGroups,
NntpSelectGroup, NEWSARTICLE, NEWSGROUP

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpGetFirstArticleEx Function

BOOL WINAPI NntpGetFirstArticleEx(
 HCLIENT hClient,
 LPNEWSARTICLEEX lpArticleEx
);

The NntpGetFirstArticleEx function returns information about the first article in the currently
selected newsgroup.

Parameters
hClient

Handle to the client session.

lpArticleEx

A pointer to a NEWSARTICLEEX structure which will contain information about the first article in
the currently selected directory.

Return Value
If the function succeeds, the return value is non-zero. If there are no articles in the current
newsgroup, or the function fails, the return value is zero. To get extended error information, call
NntpGetLastError.

Remarks
The NntpGetFirstArticleEx function returns information about the first article in the currently
selected newsgroup. This function is used in conjunction with the NntpGetNextArticleEx function
to enumerate all of the articles in the newsgroup. Typically this is used to provide the user with a
list of articles to access. This function provides support for servers which use 64-bit article IDs.

While the articles in the newsgroup are being listed, the client cannot retrieve the contents of a
specific article. For example, the NntpGetArticleEx function cannot be called while inside a loop
calling NntpGetNextArticleEx. The client should store those articles which it wants to retrieve in
an array, and then once all of the articles have been listed, it can begin calling NttpGetArticleEx
for each article number to retrieve the article text.

The date and time that the article was posted is returned in the stPosted member of the
NEWSARTICLE structure. This value is returned in Universal Coordinated Time (UTC) and can be
converted to local time using the SystemTimeToTzSpecificLocalTime function.

Example
NEWSARTICLEEX newsArticle;
BOOL bResult;
INT nResult;

// List all articles in the current group
nResult = NntpListArticlesEx(hClient, (ULONGLONG)-1, (ULONGLONG)-1);

if (nResult == NNTP_ERROR)
{
 TCHAR szError[ASTRING];
 DWORD dwError = NntpGetLastError();

 NntpGetErrorString(dwError, szError, ASTRING);
 _ftprintf(stderr, _T("Error %08x: %s\n"), dwError, szError);

 return;
}

// Get each article in the current newsgroup, printing the article
// number and the subject of the article
bResult = NntpGetFirstArticleEx(hClient, &newsArticle);

while (bResult)
{
 _tprintf(_T("%I64u %s\n"), newsArticle.nArticleId, newsArticle.szSubject);
 bResult = NntpGetNextArticleEx(hClient, &newsArticle);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NntpGetArticleEx, NntpGetFirstGroupEx, NntpGetNextArticleEx, NntpGetNextGroupEx,
NntpListArticlesEx, NntpListGroupsEx, NntpListNewGroups, NntpSelectGroup, NEWSARTICLEEX,
NEWSGROUPEX

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/nntp/library/nntpgetarticleex.html
file:///C|/Projects/cstools11/pdf/nntp/library/nntplistarticlesex.html
file:///C|/Projects/cstools11/pdf/nntp/library/nntplistgroupsex.html

 NntpGetFirstGroup Function

BOOL WINAPI NntpGetFirstGroup(
 HCLIENT hClient,
 LPNEWSGROUP lpGroup
);

The NntpGetFirstGroup function returns information about the first available newsgroup.

Parameters
hClient

Handle to the client session.

lpGroup

A pointer to a NEWSGROUP structure which will contain information about the first available
newsgroup.

Return Value
If the function succeeds, the return value is non-zero. If there are no newsgroups available, or the
function fails, the return value is zero. To get extended error information, call NntpGetLastError.

Remarks
The NntpGetFirstGroup function returns information about the first newsgroup on the server.
This function is used in conjunction with the NntpGetNextGroup function to enumerate all of the
available newsgroups. Typically this is used to provide the user with a list of newsgroups to select.

While the the newsgroups are being listed, the client cannot select a newsgroup or retrieve the
contents of a specific article. The client should store those newsgroups which it wants to retrieve
articles from, and then once all of the newsgroups have been listed, it can then select each
newsgroup and retrieve the available articles from that group.

Note that if no newsgroups are returned by the server, it may indicate that it requires the client to
authenticate itself prior to requesting a list of groups or articles.

If the server uses 64-bit article IDs, your application should use the NntpGetFirstGroupEx and
NntpGetNextGroupEx functions.

Example
NEWSGROUP newsGroup;
BOOL bResult;
INT nResult;

// List all available newsgroups
nResult = NntpListGroups(hClient);

if (nResult == NNTP_ERROR)
{
 TCHAR szError[ASTRING];
 DWORD dwError = NntpGetLastError();

 NntpGetErrorString(dwError, szError, ASTRING);
 _ftprintf(stderr, _T("Error %08x: %s\n"), dwError, szError);
 return;
}

// Get each newsgroup, printing the article range and
// the name of the group
bResult = NntpGetFirstGroup(hClient, &newsGroup);

while (bResult)
{
 _tprintf(_T("%ld %ld %s\n"), newsGroup.nFirstArticle,
 newsGroup.nLastArticle,
 newsGroup.szName);

 bResult = NntpGetNextGroup(hClient, &newsGroup);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NntpGetFirstArticle, NntpGetFirstGroupEx, NntpGetNextArticle, NntpGetNextGroup,
NntpGetNextGroupEx, NntpListArticles, NntpListGroups, NntpListNewGroups, NntpSelectGroup,
NEWSARTICLE, NEWSGROUP

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpGetFirstGroupEx Function

BOOL WINAPI NntpGetFirstGroupEx(
 HCLIENT hClient,
 LPNEWSGROUPEX lpGroupEx
);

The NntpGetFirstGroupEx function returns information about the first available newsgroup.

Parameters
hClient

Handle to the client session.

lpGroupEx

A pointer to a NEWSGROUPEX structure which will contain information about the first available
newsgroup.

Return Value
If the function succeeds, the return value is non-zero. If there are no newsgroups available, or the
function fails, the return value is zero. To get extended error information, call NntpGetLastError.

Remarks
The NntpGetFirstGroupEx function returns information about the first newsgroup on the server.
This function is used in conjunction with the NntpGetNextGroupEx function to enumerate all of
the available newsgroups. Typically this is used to provide the user with a list of newsgroups to
select. This function provides support for servers which use 64-bit article IDs.

While the the newsgroups are being listed, the client cannot select a newsgroup or retrieve the
contents of a specific article. The client should store those newsgroups which it wants to retrieve
articles from, and then once all of the newsgroups have been listed, it can then select each
newsgroup and retrieve the available articles from that group.

Note that if no newsgroups are returned by the server, it may indicate that it requires the client to
authenticate itself prior to requesting a list of groups or articles.

Example
NEWSGROUPEX newsGroup;
BOOL bResult;
INT nResult;

// List all available newsgroups
nResult = NntpListGroups(hClient);

if (nResult == NNTP_ERROR)
{
 TCHAR szError[ASTRING];
 DWORD dwError = NntpGetLastError();
 NntpGetErrorString(dwError, szError, ASTRING);
 fprintf(stderr, "Error %08x: %s\n", dwError, szError);
 return;
}

// Get each newsgroup, printing the article range and
// the name of the group
bResult = NntpGetFirstGroupEx(hClient, &newsGroup);

while (bResult)
{
 printf("%I64u %I64u %s\n", newsGroup.nFirstArticle,
 newsGroup.nLastArticle,
 newsGroup.szName);

 bResult = NntpGetNextGroupEx(hClient, &newsGroup);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NntpGetFirstArticleEx, NntpGetNextArticleEx, NntpGetNextGroupEx, NntpListArticlesEx,
NntpListGroups, NntpListNewGroups, NntpSelectGroup, NEWSARTICLEEX, NEWSGROUPEX

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/nntp/library/nntplistarticlesex.html

 NntpGetGroupName Function

INT WINAPI NntpGetGroupName(
 HCLIENT hClient,
 LPTSTR lpszGroupName,
 INT nMaxLength
);

The NntpGetGroupName function returns the name of the currently selected newsgroup.

Parameters
hClient

Handle to the client session.

lpszGroupName

Pointer to a string buffer that will contain the name of the currently selected newsgroup.

nMaxLength

The maximum number of characters that may be copied into the buffer, including the
terminating null character.

Return Value
If the function succeeds, the return value is the length of the newsgroup name. If no newsgroup
has been selected, the function will return a value of zero. If the function fails, the return value is
NNTP_ERROR. To get extended error information, call NntpGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NntpGetGroupTitle, NntpListGroups, NntpListNewGroups, NntpSelectGroup

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpGetGroupTitle Function

INT WINAPI NntpGetGroupTitle(
 HCLIENT hClient,
 LPTSTR lpszGroupTitle,
 INT nMaxLength
);

The NntpGetGroupTitle function returns a description of the currently selected newsgroup.

Parameters
hClient

Handle to the client session.

lpszGroupTitle

Pointer to a string buffer that will contain a description of the currently selected newsgroup.

nMaxLength

The maximum number of characters that may be copied into the buffer, including the
terminating null character.

Return Value
If the function succeeds, the return value is the length of the description. If no newsgroup has
been selected, the function will return a value of zero. If the function fails, the return value is
NNTP_ERROR. To get extended error information, call NntpGetLastError.

Remarks
The news server must support the XGTITLE command so that the group description can be
obtained when the newsgroup is selected. If this command is not recognized, then no description
will be returned.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NntpGetGroupName, NntpListGroups, NntpListNewGroups, NntpSelectGroup

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpGetLastError Function

DWORD WINAPI NntpGetLastError();

Parameters
None.

Return Value
The return value is the last error code value for the current thread. Functions set this value by
calling the NntpSetLastError function. The Return Value section of each reference page notes the
conditions under which the function sets the last error code.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. You should call
the NntpGetLastError function immediately when a function's return value indicates that an error
has occurred. That is because some functions call NntpSetLastError(0) when they succeed,
clearing the error code set by the most recently failed function.

Most functions will set the last error code value when they fail; a few functions set it when they
succeed. Function failure is typically indicated by a return value such as FALSE, NULL,
INVALID_CLIENT or NNTP_ERROR. Those functions which call NntpSetLastError when they
succeed are noted on the function reference page.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
NntpGetErrorString, NntpSetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpGetMessageIdArticle Function

LONG WINAPI NntpGetMessageIdArticle(
 HCLIENT hClient,
 LPCTSTR lpszMessageId
);

The NntpGetMessageIdArticle function returns the article number associated with a message
identifier in the current newsgroup.

Parameters
hClient

Handle to the client session.

lpszMessageId

A pointer to a message identifier string.

Return Value
If the function succeeds, the return value is the article number. If the function fails, the return value
is NNTP_ERROR. To get extended error information, call NntpGetLastError.

Remarks
If the server uses 64-bit article IDs, your application should use the NntpGetMessageIdArticleEx
function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NntpGetMessageIdArticleEx, NntpGetArticleMessageId, NntpListArticles

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpGetMessageIdArticleEx Function

BOOL WINAPI NntpGetMessageIdArticleEx(
 HCLIENT hClient,
 LPCTSTR lpszMessageId
 ULONGLONG * lpnArticleId
);

The NntpGetMessageIdArticleEx function returns the article number associated with a message
identifier in the current newsgroup.

Parameters
hClient

Handle to the client session.

lpszMessageId

A pointer to a message identifier string.

lpnArticleId

A pointer to an unsigned 64-bit integer which will contain the article ID. This parameter cannot
be NULL.

Return Value
If the function succeeds, the return value non-zero. If the function fails, the return value is zero. To
get extended error information, call NntpGetLastError.

Remarks
The NntpGetMessageIdArticleEx function returns a BOOL (a signed 32-bit integer) to indicate
success or failure, and the article count is returned in a variable that is passed by reference to the
function. If you are updating your code to use this function, make sure you also change how you
check the return value.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NntpGetArticleMessageIdEx, NntpListArticlesEx

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/nntp/library/nntplistarticlesex.html

 NntpGetMultiLine Function

INT WINAPI NntpGetMultiLine(
 HCLIENT hClient,
 LPBOOL lpbMultiLine
);

The NntpGetMultiLine function returns the value of the client multi-line flag in the specified
boolean parameter.

Parameters
hClient

Handle to the client session.

lpbMultiLine

A pointer to a boolean variable. This variable will be set to the current value of the client's
internal multi-line flag.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
NNTP_ERROR. To get extended error information, call NntpGetLastError.

Remarks
The multi-line flag is used by the library to determine if multiple lines of data will be returned by
the server as the result of a command. Unlike a single line response, which consists of a result
code and result string, a multi-line response consists of one or more lines of text, terminated by a
special end-of-data marker.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
NntpCommand, NntpGetResultCode, NntpGetResultString, NntpSetMultiLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpGetNextArticle Function

BOOL WINAPI NntpGetNextArticle(
 HCLIENT hClient,
 LPNEWSARTICLE lpArticle
);

The NntpGetNextArticle function returns information about the next article in the currently
selected newsgroup.

Parameters
hClient

Handle to the client session.

lpArticle

A pointer to a NEWSARTICLE structure which will contain information about the next available
article in the currently selected directory.

Return Value
If the function succeeds, the return value is non-zero. If there are no more articles in the current
newsgroup, or the function fails, the return value is zero. To get extended error information, call
NntpGetLastError.

Remarks
The NntpGetNextArticle function returns information about the next available article in the
currently selected newsgroup. This function is used in conjunction with the NntpGetFirstArticle
function to enumerate all of the articles in the newsgroup. Typically this is used to provide the user
with a list of articles to access.

While the articles in the newsgroup are being listed, the client cannot retrieve the contents of a
specific article. For example, the NntpGetArticle function cannot be called while inside a loop
calling NntpGetNextArticle. The client should store those articles which it wants to retrieve in an
array, and then once all of the articles have been listed, it can begin calling NttpGetArticle for
each article number to retrieve the article text.

If the server uses 64-bit article IDs, your application should use the NntpGetFirstArticleEx and
NntpGetNextArticleEx functions.

Example
NEWSARTICLE newsArticle;
BOOL bResult;
INT nResult;

// List all articles in the current group
nResult = NntpListArticles(hClient, -1L, -1L);

if (nResult == NNTP_ERROR)
{
 TCHAR szError[ASTRING];
 DWORD dwError = NntpGetLastError();

 NntpGetErrorString(dwError, szError, ASTRING);
 _ftprintf(stderr, _T("Error %08x: %s\n"), dwError, szError);
 return;
}

// Get each article in the current newsgroup, printing the article
// number and the subject of the article
bResult = NntpGetNextArticle(hClient, &newsArticle);

while (bResult)
{
 _tprintf(_T("%ld %s\n"), newsArticle.nArticleId, newsArticle.szSubject);
 bResult = NntpGetNextArticle(hClient, &newsArticle);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NntpGetArticle, NntpGetFirstArticle, NntpGetFirstArticleEx, NntpGetFirstGroup,
NntpGetNextArticleEx, NntpGetNextGroup, NntpListArticles, NntpListGroups, NntpListNewGroups,
NntpSelectGroup, NEWSARTICLE, NEWSGROUP

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpGetNextArticleEx Function

BOOL WINAPI NntpGetNextArticleEx(
 HCLIENT hClient,
 LPNEWSARTICLEEX lpArticleEx
);

The NntpGetNextArticleEx function returns information about the next article in the currently
selected newsgroup.

Parameters
hClient

Handle to the client session.

lpArticle

A pointer to a NEWSARTICLEEX structure which will contain information about the next available
article in the currently selected directory.

Return Value
If the function succeeds, the return value is non-zero. If there are no more articles in the current
newsgroup, or the function fails, the return value is zero. To get extended error information, call
NntpGetLastError.

Remarks
The NntpGetNextArticleEx function returns information about the next available article in the
currently selected newsgroup. This function is used in conjunction with the NntpGetFirstArticleEx
function to enumerate all of the articles in the newsgroup. Typically this is used to provide the user
with a list of articles to access. This function provides support for servers which use 64-bit article
IDs.

While the articles in the newsgroup are being listed, the client cannot retrieve the contents of a
specific article. For example, the NntpGetArticleEx function cannot be called while inside a loop
calling NntpGetNextArticleEx. The client should store those articles which it wants to retrieve in
an array, and then once all of the articles have been listed, it can begin calling NttpGetArticleEx
for each article number to retrieve the article text.

Example
NEWSARTICLEEX newsArticle;
BOOL bResult;
INT nResult;

// List all articles in the current group
nResult = NntpListArticlesEx(hClient, (ULONGLONG)-1, (ULONGLONG)-1);

if (nResult == NNTP_ERROR)
{
 TCHAR szError[ASTRING];
 DWORD dwError = NntpGetLastError();

 NntpGetErrorString(dwError, szError, ASTRING);
 _ftprintf(stderr, _T("Error %08x: %s\n"), dwError, szError);
 return;
}

// Get each article in the current newsgroup, printing the article
// number and the subject of the article
bResult = NntpGetNextArticleEx(hClient, &newsArticle);

while (bResult)
{
 _tprintf(_T("%I64u %s\n"), newsArticle.nArticleId, newsArticle.szSubject);
 bResult = NntpGetNextArticleEx(hClient, &newsArticle);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NntpGetArticleEx, NntpGetFirstArticleEx, NntpGetFirstGroupEx, NntpGetNextGroupEx,
NntpListArticlesEx, NntpListGroups, NntpListNewGroups, NntpSelectGroup, NEWSARTICLEEX,
NEWSGROUPEX

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/nntp/library/nntpgetarticleex.html
file:///C|/Projects/cstools11/pdf/nntp/library/nntplistarticlesex.html

 NntpGetNextGroup Function

BOOL WINAPI NntpGetNextGroup(
 HCLIENT hClient,
 LPNEWSGROUP lpGroup
);

The NntpGetNextGroup function returns information about the next available newsgroup.

Parameters
hClient

Handle to the client session.

lpGroup

A pointer to a NEWSGROUP structure which will contain information about the next available
newsgroup.

Return Value
If the function succeeds, the return value is non-zero. If there are no more newsgroups available,
or the function fails, the return value is zero. To get extended error information, call
NntpGetLastError.

Remarks
The NntpGetNextGroup function returns information about the next newsgroup on the server.
This function is used in conjunction with the NntpGetFirstGroup function to enumerate all of the
available newsgroups. Typically this is used to provide the user with a list of newsgroups to select.

While the the newsgroups are being listed, the client cannot select a newsgroup or retrieve the
contents of a specific article. The client should store those newsgroups which it wants to retrieve
articles from, and then once all of the newsgroups have been listed, it can then select each
newsgroup and retrieve the available articles from that group.

If the server uses 64-bit article IDs, your application should use the NntpGetFirstGroupEx and
NntpGetNextGroupEx functions.

Example
NEWSGROUP newsGroup;
BOOL bResult;
INT nResult;

// List all available newsgroups
nResult = NntpListGroups(hClient);

if (nResult == NNTP_ERROR)
{
 TCHAR szError[ASTRING];
 DWORD dwError = NntpGetLastError();

 NntpGetErrorString(dwError, szError, ASTRING);
 _ftprintf(stderr, _T("Error %08x: %s\n"), dwError, szError);
 return;
}

// Get each newsgroup, printing the article range and
// the name of the group

bResult = NntpGetFirstGroup(hClient, &newsGroup);

while (bResult)
{
 _tprintf(_T("%ld %ld %s\n"), newsGroup.nFirstArticle,
 newsGroup.nLastArticle,
 newsGroup.szName);

 bResult = NntpGetNextGroup(hClient, &newsGroup);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NntpGetFirstArticle, NntpGetFirstGroup, NntpGetFirstGroupEx, NntpGetNextArticle,
NntpGetNextGroupEx, NntpListArticles, NntpListGroups, NntpListNewGroups, NntpSelectGroup,
NEWSARTICLE, NEWSGROUP

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpGetNextGroupEx Function

BOOL WINAPI NntpGetNextGroupEx(
 HCLIENT hClient,
 LPNEWSGROUPEX lpGroupEx
);

The NntpGetNextGroupEx function returns information about the next available newsgroup.

Parameters
hClient

Handle to the client session.

lpGroup

A pointer to a NEWSGROUPEX structure which will contain information about the next available
newsgroup.

Return Value
If the function succeeds, the return value is non-zero. If there are no more newsgroups available,
or the function fails, the return value is zero. To get extended error information, call
NntpGetLastError.

Remarks
The NntpGetNextGroupEx function returns information about the next newsgroup on the server.
This function is used in conjunction with the NntpGetFirstGroupEx function to enumerate all of
the available newsgroups. Typically this is used to provide the user with a list of newsgroups to
select. This function provides support for servers which use 64-bit article IDs.

While the the newsgroups are being listed, the client cannot select a newsgroup or retrieve the
contents of a specific article. The client should store those newsgroups which it wants to retrieve
articles from, and then once all of the newsgroups have been listed, it can then select each
newsgroup and retrieve the available articles from that group.

Example
NEWSGROUPEX newsGroup;
BOOL bResult;
INT nResult;

// List all available newsgroups
nResult = NntpListGroups(hClient);

if (nResult == NNTP_ERROR)
{
 TCHAR szError[ASTRING];
 DWORD dwError = NntpGetLastError();

 NntpGetErrorString(dwError, szError, ASTRING);
 _ftprintf(stderr, _T("Error %08x: %s\n"), dwError, szError);
 return;
}

// Get each newsgroup, printing the article range and
// the name of the group
bResult = NntpGetFirstGroupEx(hClient, &newsGroup);

while (bResult)
{
 _tprintf(_T("%I64u %I64u %s\n"), newsGroup.nFirstArticle,
 newsGroup.nLastArticle,
 newsGroup.szName);

 bResult = NntpGetNextGroup(hClient, &newsGroup);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NntpGetFirstArticle, NntpGetFirstGroup, NntpGetNextArticle, NntpListArticles, NntpListGroups,
NntpListNewGroups, NntpSelectGroup, NEWSARTICLE, NEWSGROUP

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpGetResultCode Function

INT WINAPI NntpGetResultCode(
 HCLIENT hClient
);

The NntpGetResultCode function reads the result code returned by the server in response to a
command. The result code is a three-digit numeric code, and indicates if the operation succeeded,
failed or requires additional action by the client.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is the result code. If the function fails, the return value is
NNTP_ERROR. To get extended error information, call NntpGetLastError.

Remarks
Result codes are three-digit numeric values returned by the server. They may be broken down into
the following ranges:

Value Description

100-
199

Positive preliminary result. This indicates that the requested action is being initiated, and
the client should expect another reply from the server before proceeding.

200-
299

Positive completion result. This indicates that the server has successfully completed the
requested action.

300-
399

Positive intermediate result. This indicates that the requested action cannot complete
until additional information is provided to the server.

400-
499

Transient negative completion result. This indicates that the requested action did not
take place, but the error condition is temporary and may be attempted again.

500-
599

Permanent negative completion result. This indicates that the requested action did not
take place.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NntpCommand, NntpGetMultiLine, NntpGetResultString, NntpSetMultiLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpGetResultString Function

INT WINAPI NntpGetResultString(
 HCLIENT hClient,
 LPTSTR lpszResult,
 INT nMaxLength
);

The NntpGetResultString function returns the last message sent by the server along with the
result code.

Parameters
hClient

Handle to the client session.

lpszResult

A pointer to the buffer that will contain the result string returned by the server.

nMaxLength

The maximum number of characters that may be copied into the result string buffer, including
the terminating null character.

Return Value
If the function succeeds, the return value is the length of the result string. If a value of zero is
returned, this means that no result string was sent by the server. If the function fails, the return
value is NNTP_ERROR. To get extended error information, call NntpGetLastError.

Remarks
The NntpGetResultString function is most useful when an error occurs because the server will
typically include a brief description of the cause of the error. This can then be parsed by the
application or displayed to the user. The result string is updated each time the client sends a
command to the server and then calls NntpGetResultCode to obtain the result code for the
operation.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NntpCommand, NntpGetMultiLine, NntpGetResultCode, NntpSetMultiLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpGetSecurityInformation Function

BOOL WINAPI NntpGetSecurityInformation(
 HCLIENT hClient,
 LPSECURITYINFO lpSecurityInfo
);

The NntpGetSecurityInformation function returns security protocol, encryption and certificate
information about the current client connection.

Parameters
hClient

Handle to the client session.

lpSecurityInfo

A pointer to a SECURITYINFO structure which contains information about the current client
connection. The dwSize member of this structure must be initialized to the size of the structure
before passing the address of the structure to this function.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call NntpGetLastError.

Remarks
This function is used to obtain security related information about the current client connection to
the server. It can be used to determine if a secure connection has been established, what security
protocol was selected, and information about the server certificate. Note that a secure connection
has not been established, the dwProtocol structure member will contain the value
SECURITY_PROTOCOL_NONE.

Example
The following example notifies the user if the connection is secure or not:

SECURITYINFO securityInfo;

securityInfo.dwSize = sizeof(SECURITYINFO);
if (NntpGetSecurityInformation(hClient, &securityInfo))
{
 if (securityInfo.dwProtocol == SECURITY_PROTOCOL_NONE)
 {
 MessageBox(NULL, _T("The connection is not secure"),
 _T("Connection"), MB_OK);
 }
 else
 {
 if (securityInfo.dwCertStatus == SECURITY_CERTIFICATE_VALID)
 {
 MessageBox(NULL, _T("The connection is secure"),
 _T("Connection"), MB_OK);
 }
 else
 {
 MessageBox(NULL, _T("The server certificate not valid"),
 _T("Connection"), MB_OK);
 }

 }
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NntpConnect, NntpDisconnect, SECURITYINFO

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpGetStatus Function

INT WINAPI NntpGetStatus(
 HCLIENT hClient
);

The NntpGetStatus function returns the current status of the client session.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is the client status code. If the function fails, the return
value is NNTP_ERROR. To get extended error information, call NntpGetLastError.

Remarks
The NntpGetStatus function returns a numeric code which identifies the current state of the client
session. The following values may be returned:

Value Constant Description

1 NNTP_STATUS_IDLE The client is current idle and not sending or
receiving data.

2 NNTP_STATUS_CONNECT The client is establishing a connection with the
server.

3 NNTP_STATUS_READ The client is reading data from the server.

4 NNTP_STATUS_WRITE The client is writing data to the server.

5 NNTP_STATUS_DISCONNECT The client is disconnecting from the server.

In a multithreaded application, any thread in the current process may call this function to obtain
status information for the specified client session.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
NntpIsBlocking, NntpIsConnected, NntpIsReadable, NntpIsWritable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpGetTimeout Function

INT WINAPI NntpGetTimeout(
 HCLIENT hClient
);

The NntpGetTimeout function returns the number of seconds the client will wait for a response
from the server. Once the specified number of seconds has elapsed, the function will fail and
return to the caller.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is the timeout period in seconds. If the function fails, the
return value is NNTP_ERROR. To get extended error information, call NntpGetLastError.

Remarks
The timeout value is only used with blocking client connections. A value of zero indicates that the
default timeout period of 20 seconds should be used.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
NntpSetTimeout

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpGetTransferStatus Function

INT WINAPI NntpGetTransferStatus(
 HCLIENT hClient,
 LPNNTPTRANSFERSTATUS lpStatus
);

The NntpGetTransferStatus function returns information about the current news article transfer
in progress.

Parameters
hClient

Handle to the client session.

lpStatus

A pointer to an NNTPTRANSFERSTATUS structure which contains information about the status
of the current article transfer.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
NNTP_ERROR. To get extended error information, call NntpGetLastError.

Remarks
The NntpGetTransferStatus function returns information about the current data transfer,
including the average number of bytes transferred per second and the estimated amount of time
until the transfer completes. If no article is currently being retrieved or submitted to the server, this
function will return the status of the last successful data transfer made by the client.

In a multithreaded application, any thread in the current process may call this function to obtain
status information for the specified client session.

If the server uses 64-bit article IDs, your application should use the NntpGetTransferStatusEx
function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NntpEnableEvents, NntpGetTransferStatusEx, NntpRegisterEvent, NNTPTRANSFERSTATUS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpGetTransferStatusEx Function

INT WINAPI NntpGetTransferStatusEx(
 HCLIENT hClient,
 LPNNTPTRANSFERSTATUSEX lpStatusEx
);

The NntpGetTransferStatusEx function returns information about the current news article
transfer in progress.

Parameters
hClient

Handle to the client session.

lpStatus

A pointer to an NNTPTRANSFERSTATUSEX structure which contains information about the
status of the current article transfer.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
NNTP_ERROR. To get extended error information, call NntpGetLastError.

Remarks
The NntpGetTransferStatusEx function returns information about the current data transfer,
including the average number of bytes transferred per second and the estimated amount of time
until the transfer completes. This function provides support for servers which use 64-bit article IDs.
If no article is currently being retrieved or submitted to the server, this function will return the
status of the last successful data transfer made by the client.

In a multithreaded application, any thread in the current process may call this function to obtain
status information for the specified client session.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NntpEnableEvents, NntpRegisterEvent, NNTPTRANSFERSTATUSEX

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpInitialize Function

BOOL WINAPI NntpInitialize(
 LPCTSTR lpszLicenseKey,
 LPINITDATA lpData
);

The NntpInitialize function initializes the library and validates the specified license key at runtime.

Parameters
lpszLicenseKey

Pointer to a string that specifies the runtime license key to be validated. If this parameter is
NULL, the library will validate the development license installed on the local system.

lpData

Pointer to an INITDATA data structure. This parameter may be NULL if the initialization data for
the library is not required.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call NntpGetLastError. All other client functions will fail until a
license key has been successfully validated.

Remarks
This must be the first function that an application calls before using any of the other functions in
the library. When a NULL license key is specified, the library will only function on the development
system. Before redistributing the application to an end-user, you must insure that this function is
called with a valid license key.

If the lpData argument is specified, it must point to an INITDATA structure which has been
initialized by setting the dwSize member to the size of the structure. All other structure members
should be set to zero. If the function is successful, then the INITDATA structure will be filled with
identifying information about the library.

Although it is only required that NntpInitialize be called once for the current process, it may be
called multiple times; however, each call must be matched by a corresponding call to
NntpUninitialize.

This function dynamically loads other system libraries and allocates thread local storage. If you are
calling the functions in this library from within another DLL, it is important that you do not call the
NntpInitialize or NntpUninitialize functions from the DllMain function because it can result in
deadlocks or access violation errors. If the DLL is linked with the C runtime library (CRT), it will
automatically call the constructors and destructors for static and global C++ objects and has the
same restrictions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also

NntpConnect, NntpDisconnect, NntpUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpIsBlocking Function

BOOL WINAPI NntpIsBlocking(
 HCLIENT hClient
);

The NntpIsBlocking function is used to determine if the client is currently performing a blocking
operation.

Parameters
hClient

Handle to the client session.

Return Value
If the client is performing a blocking operation, the function returns a non-zero value. If the client
is not performing a blocking operation, or the client handle is invalid, the function returns zero.

Remarks
Because a blocking operation can allow the application to be re-entered (for example, by pressing
a button while the operation is being performed), it is possible that another blocking function may
be called while it is in progress. Since only one thread of execution may perform a blocking
operation at any one time, an error would occur. The NntpIsBlocking function can be used to
determine if the client is already blocked, and if so, take some other action (such as warning the
user that they must wait for the operation to complete).

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
NntpCancel, NntpCommand, NntpIsConnected, NntpIsReadable, NntpIsWritable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpIsConnected Function

BOOL WINAPI NntpIsConnected(
 HCLIENT hClient
);

The NntpIsConnected function is used to determine if the client is currently connected to a
server.

Parameters
hClient

Handle to the client session.

Return Value
If the client is connected to a server, the function returns a non-zero value. If the client is not
connected, or the client handle is invalid, the function returns zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NntpIsBlocking, NntpIsReadable, NntpIsWritable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpIsReadable Function

BOOL WINAPI NntpIsReadable(
 HCLIENT hClient,
 INT nTimeout,
 LPDWORD lpdwAvail
);

The NntpIsReadable function is used to determine if data is available to be read from the server.

Parameters
hClient

Handle to the client session.

nTimeout

Timeout for server response, in seconds. A value of zero specifies that the connection should be
polled without blocking the current thread.

lpdwAvail

A pointer to an unsigned integer which will contain the number of bytes available to read. This
parameter may be NULL if this information is not required.

Return Value
If the client can read data from the server within the specified timeout period, the function returns
a non-zero value. If the client cannot read any data, the function returns zero.

Remarks
On some platforms, this value will not exceed the size of the receive buffer (typically 64K bytes).
Because of differences between TCP/IP stack implementations, it is not recommended that your
application exclusively depend on this value to determine the exact number of bytes available.
Instead, it should be used as a general indicator that there is data available to be read.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
NntpGetStatus, NntpIsBlocking, NntpIsConnected, NntpIsWritable, NntpRead

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpIsWritable Function

BOOL WINAPI NntpIsWritable(
 HCLIENT hClient,
 INT nTimeout
);

The NntpIsWritable function is used to determine if data can be written to the server.

Parameters
hClient

Handle to the client session.

nTimeout

Timeout for server response, in seconds. A value of zero specifies that the connection should be
polled without blocking the current thread.

Return Value
If the client can write data to the server within the specified timeout period, the function returns a
non-zero value. If the client cannot write any data, the function returns zero.

Remarks
Although this function can be used to determine if some amount of data can be sent to the
remote process it does not indicate the amount of data that can be written without blocking the
client. In most cases, it is recommended that large amounts of data be broken into smaller logical
blocks, typically some multiple of 512 bytes in length.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
NntpGetStatus, NntpIsBlocking, NntpIsConnected, NntpIsReadable, NntpWrite

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpListArticles Function

INT WINAPI NntpListArticles(
 HCLIENT hClient,
 LONG nFirstArticle,
 LONG nLastArticle
);

The NntpListArticles function returns a list of articles in the currently selected newsgroup, within
the specified article range.

Parameters
hClient

Handle to the client session.

nFirstArticle

The first newsgroup article to be returned in the list. If this value is -1, the list will begin with the
first available article in the newsgroup.

nLastArticle

The last newsgroup article to be returned in the list. If the value is -1, the list will end with the
last available article in the newsgroup.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is NNTP_ERROR. To get extended error information, call NntpGetLastError.

Remarks
It is possible that there will be gaps in the articles within the range of the first and last articles in
the newsgroup. This may be due to a message being canceled or expired. Use the
NntpGetFirstArticle and NntpGetNextArticle functions to read the list of articles returned by
the server.

If the server uses 64-bit article IDs, your application should use the NntpListArticlesEx function.

Example
NEWSARTICLE newsArticle;
BOOL bResult;
INT nResult;

// List all articles in the current group
nResult = NntpListArticles(hClient, -1L, -1L);

if (nResult == NNTP_ERROR)
{
 TCHAR szError[ASTRING];
 DWORD dwError = NntpGetLastError();

 NntpGetErrorString(dwError, szError, ASTRING);
 _ftprintf(stderr, _T("Error %08x: %s\n"), dwError, szError);
 return;
}

// Get each article in the current newsgroup, printing the article
// number and the subject of the article

bResult = NntpGetNextArticle(hClient, &newsArticle);
while (bResult)
{
 _tprintf(_T("%ld %s\n"), newsArticle.nArticleId, newsArticle.szSubject);
 bResult = NntpGetNextArticle(hClient, &newsArticle);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NntpGetArticleRange, NntpGetCurrentArticle, NntpGetFirstArticle, NntpGetNextArticle,
NntpListGroups, NntpListArticlesEx, NntpListNewGroups

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/nntp/library/nntplistarticlesex.html

 NntpListGroups Function

INT WINAPI NntpListGroups(
 HCLIENT hClient
);

The NntpListGroups function instructs the server to begin sending a list of newsgroups back to
the client.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is NNTP_ERROR. To get extended error information, call NntpGetLastError.

Remarks
The NntpListGroups function is used in conjunction with the NntpGetFirstGroup and
NntpGetNextGroup functions to enumerate all of the available newsgroups. Typically this is used
to provide the user with a list of newsgroups to select. To list only those newsgroups which have
been added since a certain date, use the NntpListNewGroups function.

While the newsgroups are being listed, the client cannot select a newsgroup or retrieve the
contents of a specific article. The client should store those newsgroups which it wants to retrieve
articles from, and then once all of the newsgroups have been listed, it can then select each
newsgroup and retrieve the available articles from that group.

Example
NEWSGROUP newsGroup;
BOOL bResult;
INT nResult;

// List all available newsgroups
nResult = NntpListGroups(hClient);

if (nResult == NNTP_ERROR)
{
 TCHAR szError[ASTRING];
 DWORD dwError = NntpGetLastError();
 NntpGetErrorString(dwError, szError, ASTRING);
 fprintf(stderr, "Error %08x: %s\n", dwError, szError);
 return;
}

// Get each newsgroup, printing the article range and
// the name of the group
bResult = NntpGetFirstGroup(hClient, &newsGroup);
while (bResult)
{
 printf("%ld %ld %s\n", newsGroup.nFirstArticle,
 newsGroup.nLastArticle,
 newsGroup.szName);
 bResult = NntpGetNextGroup(hClient, &newsGroup);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NntpGetArticleRange, NntpGetFirstGroup, NntpGetNextGroup, NntpListNewGroups,
NntpSelectGroup

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpListNewGroups Function

INT WINAPI NntpListNewGroups(
 HCLIENT hClient,
 LPCTSTR lpszLastUpdated,
 BOOL bLocalTime
);

The NntpListNewGroups function instructs the server to begin sending a list of newsgroups that
were created since the specified date.

Parameters
hClient

Handle to the client session.

lpszLastUpdated

Pointer to a string which specifies the date and time that the list of newsgroups were last
retrieved from the server. This parameter may be NULL or an empty string, in which case all
available newsgroups will be listed by the server.

bLocalTime

A boolean value which indicates if the time specified in the lpszLastUpdated parameter is for
the current timezone. If the value is non-zero, the time is assumed to be in the local timezone. If
the value is zero, the time is assumed to be in Coordinated Universal Time (UTC).

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is NNTP_ERROR. To get extended error information, call NntpGetLastError.

Remarks
The NntpListNewGroups function is used in conjunction with the NntpGetFirstGroup and
NntpGetNextGroup functions to enumerate all of the newsgroups that were added to the server
since a specific date and time. Typically this is used to provide the user with a list of updated
newsgroups to select. To list all of the newsgroups available on the server, use the
NntpListGroups function.

While the newsgroups are being listed, the client cannot select a newsgroup or retrieve the
contents of a specific article. The client should store those newsgroups which it wants to retrieve
articles from, and then once all of the newsgroups have been listed, it can then select each
newsgroup and retrieve the available articles from that group.

Example
NEWSGROUP newsGroup;
LPCTSTR lpszUpdated = _T("1/1/2004 12:00 AM");
BOOL bResult;
INT nResult;

// List all newsgroups that were added after a
// specific date
nResult = NntpListNewGroups(hClient, lpszUpdated, TRUE);

if (nResult == NNTP_ERROR)
{
 TCHAR szError[ASTRING];

 DWORD dwError = NntpGetLastError();
 NntpGetErrorString(dwError, szError, ASTRING);
 fprintf(stderr, "Error %08x: %s\n", dwError, szError);
 return;
}

// Get each newsgroup, printing the article range and
// the name of the group
bResult = NntpGetFirstGroup(hClient, &newsGroup);
while (bResult)
{
 printf("%ld %ld %s\n", newsGroup.nFirstArticle,
 newsGroup.nLastArticle,
 newsGroup.szName);
 bResult = NntpGetNextGroup(hClient, &newsGroup);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NntpGetArticleRange, NntpGetFirstGroup, NntpGetNextGroup, NntpListGroups, NntpSelectGroup

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpOpenArticle Function

INT WINAPI NntpOpenArticle(
 HCLIENT hClient,
 LONG nArticleId
);

The NntpOpenArticle function opens the specified article in the currently selected newsgroup.

Parameters
hClient

Handle to the client session.

nArticleId

An integer value that specifies which article in the current newsgroup to retrieve. This value may
be zero, which specifies that the current article should be opened.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
NNTP_ERROR. To get extended error information, call NntpGetLastError.

Remarks
The NntpOpenArticle function sends a request to begin returning the contents of the specified
article. The NntpRead function is used to read the article contents after it has been opened.
When the complete article has been read, the NntpCloseArticle function must be called to close
the article and complete the request.

It is recommended most applications use the NntpGetArticle function, which will retrieve the
complete article in a single function call. This function is typically only used if the application needs
to modify the contents of the article as it is being read. If you wish to download an article and
store it in a file on the local system, use the NntpStoreArticle function.

If the server uses 64-bit article IDs, your application should use the NntpOpenArticleEx function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
NntpCloseArticle, NntpGetArticle, NntpGetArticleRange, NntpGetCurrentArticle, NntpListArticles,
NntpOpenArticleByMessageId, NntpOpenNextArticle, NntpOpenPreviousArticle, NntpRead,
NntpStoreArticle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpOpenArticleEx Function

INT WINAPI NntpOpenArticleEx(
 HCLIENT hClient,
 ULONGLONG nArticleId
);

The NntpOpenArticle function opens the specified article in the currently selected newsgroup.

Parameters
hClient

Handle to the client session.

nArticleId

An unsigned 64-bit integer that specifies which article in the current newsgroup to retrieve. This
value may be zero, which specifies that the current article should be opened.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
NNTP_ERROR. To get extended error information, call NntpGetLastError.

Remarks
The NntpOpenArticleEx function sends a request to begin returning the contents of the specified
article. This function provides support for servers which use 64-bit article IDs. The NntpRead
function is used to read the article contents after it has been opened. When the complete article
has been read, the NntpCloseArticle function must be called to close the article and complete
the request.

It is recommended most applications use the NntpGetArticleEx function, which will retrieve the
complete article in a single function call. This function is typically only used if the application needs
to modify the contents of the article as it is being read. If you wish to download an article and
store it in a file on the local system, use the NntpStoreArticleEx function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
NntpCloseArticle, NntpGetArticle, NntpGetArticleRangeEx, NntpGetCurrentArticleEx,
NntpListArticlesEx, NntpOpenArticleByMessageId, NntpOpenNextArticle,
NntpOpenPreviousArticle, NntpRead, NntpStoreArticleEx

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/nntp/library/nntpgetarticleex.html
file:///C|/Projects/cstools11/pdf/nntp/library/nntpgetarticleex.html
file:///C|/Projects/cstools11/pdf/nntp/library/nntplistarticlesex.html

 NntpOpenArticleByMessageId Function

INT WINAPI NntpOpenArticleByMessageId(
 HCLIENT hClient,
 LPCTSTR lpszMessageId
);

The NntpOpenArticleByMessageId function opens the article specified by the message identifier
string.

Parameters
hClient

Handle to the client session.

lpszMessageId

Pointer to a string which contains the message identifier for the article in the current
newsgroup.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is NNTP_ERROR. To get extended error information, call NntpGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NntpCloseArticle, NntpGetArticle, NntpGetArticleRange, NntpGetCurrentArticle, NntpListArticles,
NntpOpenArticle, NntpOpenNextArticle, NntpOpenPreviousArticle, NntpRead

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpOpenNextArticle Function

INT WINAPI NntpOpenNextArticle(
 HCLIENT hClient
);

The NntpOpenNextArticle function opens the next available article in the current newsgroup.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is NNTP_ERROR. To get extended error information, call NntpGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
NntpCloseArticle, NntpGetArticle, NntpGetArticleRange, NntpGetCurrentArticle, NntpListArticles,
NntpOpenArticleByMessageId, NntpOpenPreviousArticle, NntpRead

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpOpenPreviousArticle Function

INT WINAPI NntpOpenPreviousArticle(
 HCLIENT hClient
);

The NntpOpenPreviousArticle function opens the previous article in the current newsgroup.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is NNTP_ERROR. To get extended error information, call NntpGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
NntpCloseArticle, NntpGetArticle, NntpGetArticleRange, NntpGetCurrentArticle, NntpListArticles,
NntpOpenArticleByMessageId, NntpOpenNextArticle, NntpRead

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpPostArticle Function

INT WINAPI NntpPostArticle(
 HCLIENT hClient,
 LPCTSTR lpBuffer,
 DWORD dwLength,
 DWORD dwReserved
);

The NntpPostArticle function post the contents of the specified buffer to the server as a new
article in the current newsgroup.

Parameters
hClient

Handle to the client session.

lpBuffer

A pointer to a character buffer which contains the article to be posted to the currently selected
newsgroup.

dwLength

Specifies the length of the string which contains the article. If this parameter is -1, the actual
length of the string is calculated by searching the buffer for a terminating null byte.

dwReserved

Reserved parameter. This value should always be zero.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
NNTP_ERROR. To get extended error information, call NntpGetLastError.

Remarks
The NntpPostArticle function is used to post the contents of the specified buffer to the server as
a new article in the current newsgroup. Not all newsgroups permit new articles to be posted, and
some newsgroups may require that you email the article to a moderator for approval instead of
posting directly to the group. It may be required that the client authenticate itself using the
NntpAuthenticate function prior to posting the article.

A news article is similar to an email message in that it contains one or more header fields, followed
by an empty line, followed by the body of the article. Each line of text should be terminated by a
carriage return/linefeed sequence of characters. The Mail Message library can be used to
compose a message if needed. Note that the article header must contain a header field named
"Newsgroups" with a value that specifies the newsgroup or newsgroups the article is being posted
to. If this header field is missing, the news server will reject the article.

This function will cause the current thread to block until the transfer has completed, a timeout
occurs or the transfer is canceled. During the transfer, the HTTP_EVENT_PROGRESS event will be
periodically fired, enabling the application to update any user interface controls. Event notification
must be enabled, either by calling NntpEnableEvents, or by registering a callback function using
the NntpRegisterEvent function.

To determine the current status of a transfer while it is in progress, use the
NntpGetTransferStatus function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
NntpGetTransferStatus, NntpIsBlocking, NntpIsWritable, NntpRead, NntpReset, NntpWrite

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpRead Function

INT WINAPI NntpRead(
 HCLIENT hClient,
 LPBYTE lpBuffer,
 INT cbBuffer
);

The NntpRead function reads the specified number of bytes from the client socket and copies
them into the buffer. The data may be of any type, and is not terminated with a null character.

Parameters
hClient

Handle to the client session.

lpBuffer

Pointer to the buffer in which the data will be copied.

cbBuffer

The maximum number of bytes to read and copy into the specified buffer. This value must be
greater than zero.

Return Value
If the function succeeds, the return value is the number of bytes actually read. A return value of
zero indicates that the server has closed the connection and there is no more data available to be
read. If the function fails, the return value is NNTP_ERROR. To get extended error information, call
NntpGetLastError.

Remarks
When NntpRead is called and the client is in non-blocking mode, it is possible that the function
will fail because there is no available data to read at that time. This should not be considered a
fatal error. Instead, the application should simply wait to receive the next asynchronous notification
that data is available.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
NntpCloseArticle, NntpIsBlocking, NntpIsConnected, NntpIsReadable, NntpOpenArticle, NntpWrite

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpRegisterEvent Function

INT WINAPI NntpRegisterEvent(
 HCLIENT hClient,
 UINT nEvent,
 NNTPEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

The NntpRegisterEvent function registers an event handler for the specified event.

Parameters
hClient

Handle to the client session.

nEvent

An unsigned integer which specifies which event should be registered with the specified callback
function. One of the following values may be used:

Constant Description

NNTP_EVENT_CONNECT The connection to the server has completed.

NNTP_EVENT_DISCONNECT The server has closed the connection to the client. The
client should read any remaining data and disconnect.

NNTP_EVENT_READ Data is available to read by the calling process. No
additional messages will be posted until the client has
read at least some of the data. This event is only
generated if the client is in asynchronous mode.

NNTP_EVENT_WRITE The client can now write data. This notification is sent
after a connection has been established, or after a
previous attempt to write data has failed because it
would result in a blocking operation. This event is only
generated if the client is in asynchronous mode.

NNTP_EVENT_TIMEOUT The network operation has exceeded the specified
timeout period. The client application may attempt to
retry the operation, or may disconnect from the server
and report an error to the user.

NNTP_EVENT_CANCEL The current operation has been canceled. Under most
circumstances the client should disconnect from the
server and re-connect if needed. After an operation has
been canceled, the server may abort the connection or
refuse to accept further commands from the client.

NNTP_EVENT_COMMAND A command has been issued by the client and the
server response has been received and processed. This
event can be used to log the result codes and messages
returned by the server in response to actions taken by
the client.

NNTP_EVENT_LISTARTICLE The client is retrieving a list of articles from the server
and information about another article has been

processed. The client should use this event to retrieve
the next available article from the server.

NNTP_EVENT_LASTARTICLE The client is retrieving a list of articles from the server
and all of the available articles have been processed.
This event is generated when there are no further
articles.

NNTP_EVENT_LISTGROUP The client is retrieving a list of newsgroups from the
server and information about another group has been
processed. The client should use this event to retrieve
the next available newsgroup from the server.

NNTP_EVENT_LASTGROUP The client is retrieving a list of newsgroups from the
server and all of the available groups have been
processed. This event is generated when there are no
further newsgroups.

NNTP_EVENT_PROGRESS The client is in the process of sending or receiving data
from the server. This event is called periodically during a
transfer so that the client can update any user interface
components such as a status control or progress bar.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the NntpEventProc callback
function. If this parameter is NULL, the callback for the specified event is disabled.

dwParam

A user-defined integer value that is passed to the callback function. If the application targets the
x86 (32-bit) platform, this parameter must be a 32-bit unsigned integer. If the application
targets the x64 (64-bit) platform, this parameter must be a 64-bit unsigned integer.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
NNTP_ERROR. To get extended error information, call NntpGetLastError.

Remarks
The NntpRegisterEvent function associates a callback function with a specific event. The event
handler is an NntpEventProc function that is invoked when the event occurs. Arguments are
passed to the function to identify the client session, the event type and the user-defined value
specified when the event handler is registered. If the event occurs because of an error condition,
the error code will be provided to the handler.

This function is typically used to register an event handler that is invoked while a news article is
being uploaded or downloaded. The NNTP_EVENT_PROGRESS event will only be generated
periodically during the transfer to ensure the application is not flooded with event notifications. It
is guaranteed that at least one NNTP_EVENT_PROGRESS notification will occur at the beginning of
the transfer, and one at the end of the transfer when it has completed.

The callback function specified by the lpEventProc parameter must be declared using the
__stdcall calling convention. This ensures the arguments passed to the event handler are pushed
on to the stack in the correct order. Failure to use the correct calling convention will corrupt the
stack and cause the application to terminate abnormally.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
NntpDisableEvents, NntpEnableEvents, NntpEventProc, NntpFreezeEvents

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpReset Function

INT WINAPI NntpReset(
 HCLIENT hClient
);

The NntpReset function resets the client state and resynchronizes with the server. This function is
typically called after an unexpected error has occurred, or an operation has been canceled.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
NNTP_ERROR. To get extended error information, call NntpGetLastError.

Remarks
The client cannot be reset while it is in a blocked state.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
NntpCancel, NntpIsBlocking

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpSelectGroup Function

INT WINAPI NntpSelectGroup(
 HCLIENT hClient,
 LPCTSTR lpszGroupName
);

The NntpSelectGroup function selects the specified newsgroup from which articles will be
retrieved.

Parameters
hClient

Handle to the client session.

lpszGroupName

Pointer to a string which specifies the newsgroup to be selected. This value may be NULL, in
which case the current newsgroup is unchanged, but the article count is updated.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is NNTP_ERROR. To get extended error information, call NntpGetLastError.

Remarks
This function selects the newsgroup and obtains a description and the first and last article numbers
for that group.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NntpGetGroupName, NntpGetGroupTitle, NntpListGroups, NntpListNewGroups

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpSetLastError Function

VOID WINAPI NntpSetLastError(
 DWORD dwErrorCode
);

The NntpSetLastError function sets the last error code for the current thread. This function is
typically used to clear the last error by specifying a value of zero as the parameter.

Parameters
dwErrorCode

Specifies the last error code for the current thread.

Return Value
None.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. Most functions will
set the last error code value when they fail; a few functions set it when they succeed. Function
failure is typically indicated by a return value such as FALSE, NULL, INVALID_CLIENT or
NNTP_ERROR. Those functions which call NntpSetLastError when they succeed are noted on the
function reference page.

Applications can retrieve the value saved by this function by using the NntpGetLastError function.
The use of NntpGetLastError is optional; an application can call the function to determine the
specific reason for a function failure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
NntpGetErrorString, NntpGetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpSetMultiLine Function

INT WINAPI NntpSetMultiLine(
 HCLIENT hClient,
 BOOL bMultiLine
);

The NntpSetMultiLine function sets the client multi-line flag into the specified value.

Parameters
hClient

Handle to the client session.

bMultiLine

A boolean flag which determines if the client is processing multiple lines of data as the result of
a command.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
NNTP_ERROR. To get extended error information, call NntpGetLastError.

Remarks
The multi-line flag is used by the library to determine if multiple lines of data will be returned by
the server as the result of a command. Unlike a single line response, which consists of a result
code and result string, a multi-line response consists of one or more lines of text, terminated by a
special end-of-data marker.

The NntpSetMultiLine function should only be used in conjunction with the NntpCommand
function. If a command is issued which would result in multiple lines of output, the multi-line flag
must be set TRUE. The multi-line flag must be set after each command, since it is reset to FALSE
with each command that is sent to the server.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NntpCommand, NntpGetMultiLine, NntpGetResultCode, NntpGetResultString

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpSetTimeout Function

INT WINAPI NntpSetTimeout(
 HCLIENT hClient,
 INT nTimeout
);

The NntpSetTimeout function sets the number of seconds the client will wait for a response from
the server. Once the specified number of seconds has elapsed, the function will fail and return to
the caller.

Parameters
hClient

Handle to the client session.

nTimeout

The number of seconds to wait for a blocking operation to complete.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
NNTP_ERROR. To get extended error information, call NntpGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib

See Also
NntpConnect, NntpGetTimeout

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpStoreArticle Function

INT WINAPI NntpStoreArticle(
 HCLIENT hClient,
 LONG nArticleId,
 LPCTSTR lpszFileName
);

The NntpStoreMessage function retrieves an article from the current newsgroup and stores it in
a local file.

Parameters
hClient

Handle to the client session.

nArticleId

An integer value that specifies the article to be downloaded.

lpszFileName

Pointer to a string which specifies the file that the article will be stored in. If the file does not
exist, it will be created. If the file does exist, it will be overwritten with the contents of the article.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
NNTP_ERROR. To get extended error information, call NntpGetLastError.

Remarks
The NntpStoreArticle function provides a method of retrieving and storing an article on the local
system. The contents of the article is stored as a text file, using the specified file name. This
function always causes the caller to block until the entire message has been retrieved, even if the
client has been put in asynchronous mode. If you wish to download the article to memory rather
than a file, use the NntpGetArticle function.

If event handling is enabled, the NNTP_EVENT_PROGRESS event will fire periodically during the
transfer of the article to the local system. An application can determine how much of the article
has been retrieved by calling the NntpGetTransferStatus function.

If the server uses 64-bit article IDs, your application should use the NntpStoreArticleEx function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NntpGetArticle, NntpGetArticleHeaders, NntpGetTransferStatus, NntpStoreArticleEx

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpStoreArticleEx Function

INT WINAPI NntpStoreArticleEx(
 HCLIENT hClient,
 ULONGLONG nArticleId,
 LPCTSTR lpszFileName,
 DWORD dwReserved
);

The NntpStoreMessageEx function retrieves an article from the current newsgroup and stores it
in a local file.

Parameters
hClient

Handle to the client session.

nArticleId

An unsigned 64-integer value which specifies the article to be downloaded.

lpszFileName

Pointer to a string which specifies the file that the article will be stored in. If the file does not
exist, it will be created. If the file does exist, it will be overwritten with the contents of the article.

dwReserved

Number of the article to retrieve. This value must be greater than zero.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
NNTP_ERROR. To get extended error information, call NntpGetLastError.

Remarks
The NntpStoreArticleEx function provides a method of retrieving and storing an article on the
local system. This function provides support for servers which use 64-bit article IDs.

The contents of the article is stored as a text file, using the specified file name. This function always
causes the caller to block until the entire message has been retrieved, even if the client has been
put in asynchronous mode. If you wish to download the article to memory rather than a file, use
the NntpGetArticle function.

If event handling is enabled, the NNTP_EVENT_PROGRESS event will fire periodically during the
transfer of the article to the local system. An application can determine how much of the article
has been retrieved by calling the NntpGetTransferStatusEx function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NntpGetArticleEx, NntpGetArticleHeadersEx, NntpGetTransferStatusEx

file:///C|/Projects/cstools11/pdf/nntp/library/nntpgetarticleex.html

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpUninitialize Function

VOID WINAPI NntpUninitialize();

The NntpUninitialize function terminates the use of the library.

Parameters
There are no parameters.

Return Value
None.

Remarks
An application is required to perform a successful NntpInitialize call before it can call any of the
other library functions. When it has completed the use of library, the application must call
NntpUninitialize to allow the library to free any resources allocated on behalf of the process. Any
pending blocking or asynchronous calls in this process are canceled without posting any
notification messages, and all sockets that were opened by the process are closed.

There must be a call to NntpUninitialize for every successful call to NntpInitialize made by a
process. In a multithreaded environment, operations for all threads in the client are terminated.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NntpDisconnect, NntpInitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NntpWrite Function

INT WINAPI NntpWrite(
 HCLIENT hClient,
 LPBYTE lpBuffer,
 INT cbBuffer
);

The NntpWrite function sends the specified number of bytes to the server.

Parameters
hClient

Handle to the client session.

lpBuffer

The pointer to the buffer which contains the data that is to be sent to the server.

cbBuffer

The number of bytes to send from the specified buffer.

Return Value
If the function succeeds, the return value is the number of bytes actually written. If the function
fails, the return value is NNTP_ERROR. To get extended error information, call NntpGetLastError.

Remarks
The return value may be less than the number of bytes specified by the cbBuffer parameter. In this
case, the data has been partially written and it is the responsibility of the client application to send
the remaining data at some later point. For non-blocking clients, the client must wait for the
NNTP_EVENT_WRITE asynchronous notification message before it resumes sending data.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NntpCreateArticle, NntpIsBlocking, NntpRead

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Network News Transfer Protocol Data Structures

INITDATA
NEWSARTICLE
NEWSARTICLEX
NEWSGROUP
NEWSGROUPEX
NNTPTRANSFERSTATUS
NNTPTRANSFERSTATUSEX
SECURITYCREDENTIALS
SECURITYINFO
SYSTEMTIME

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 INITDATA Structure

This structure contains information about the SocketTools library when the initialization function
returns.

typedef struct _INITDATA
{
 DWORD dwSize;
 DWORD dwVersionMajor;
 DWORD dwVersionMinor;
 DWORD dwVersionBuild;
 DWORD dwOptions;
 DWORD_PTR dwReserved1;
 DWORD_PTR dwReserved2;
 TCHAR szDescription[128];
} INITDATA, *LPINITDATA;

Members
dwSize

Size of this structure. This structure member must be set to the size of the structure prior to
calling the initialization function. Failure to do so will cause the function to fail.

dwVersionMajor

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the major version number for the library.

dwVersionMinor

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the minor version number for the library.

dwVersionBuild

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the build number for the library.

dwOptions

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

dwReserved1

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

dwReserved2

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

szDescription

A null terminated string which describes the library.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NEWSARTICLE Structure

This structure is used by the NntpGetFirstArticle and NntpGetNextArticle functions to return
information about articles in the currently selected directory. If the server uses 64-bit article IDs
your application should use the NEWSARTICLEEX structure and related functions.

typedef struct _NEWSARTICLE
{
 LONG nArticleId;
 LONG nBytes;
 LONG nLines;
 TCHAR szSubject[NNTP_MAXSUBJLEN];
 TCHAR szAuthor[NNTP_MAXAUTHLEN];
 TCHAR szMessageId[NNTP_MAXMSGIDLEN];
 TCHAR szReferences[NNTP_MAXREFLEN];
 SYSTEMTIME stPosted;
} NEWSARTICLE, *LPNEWSARTICLE;

Members
nArticleId

A long integer which specifies the article number.

nBytes

The length of the news article in bytes.

nLines

The length of the news article specified as the number of lines of text.

szSubject

A pointer to a string which specifies the subject of the article.

szAuthor

A pointer to a string which specifies the email address of the user who posted the article.

szMessageId

A pointer to a string which specifies the message ID for the article.

szReferences

A pointer to a string which specifies references to the article.

stPosted

A SYSTEMTIME structure which specifies when the article was posted in Universal Coodinated
Time (UTC).

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NntpGetFirstArticle, NntpGetNextArticle, NntpListArticles, NEWSARTICLE, NEWSGROUP

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NEWSARTICLEEX Structure

This structure is used by the NntpGetFirstArticleEx and NntpGetNextArticleEx functions to
return information about articles in the currently selected directory. This structure is intended for
use with servers that return 64-bit article IDs.

typedef struct _NEWSARTICLEEX
{
 ULONGLONG nArticleId;
 ULONG nBytes;
 ULONG nLines;
 TCHAR szSubject[NNTP_MAXSUBJLEN];
 TCHAR szAuthor[NNTP_MAXAUTHLEN];
 TCHAR szMessageId[NNTP_MAXMSGIDLEN];
 TCHAR szReferences[NNTP_MAXREFLEN];
 SYSTEMTIME stPosted;
} NEWSARTICLEEX, *LPNEWSARTICLEEX;

Members
nArticleId

An unsigned 64-bit integer which specifies the article number.

nBytes

The length of the news article in bytes.

nLines

The length of the news article specified as the number of lines of text.

szSubject

A pointer to a string which specifies the subject of the article.

szAuthor

A pointer to a string which specifies the email address of the user who posted the article.

szMessageId

A pointer to a string which specifies the message ID for the article.

szReferences

A pointer to a string which specifies references to the article.

stPosted

A SYSTEMTIME structure which specifies when the article was posted in Universal Coodinated
Time (UTC).

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NntpGetFirstArticleEx, NntpGetNextArticleEx, NntpListArticlesEx, NEWSARTICLEEX,
NEWSGROUPEX

file:///C|/Projects/cstools11/pdf/nntp/library/nntplistarticlesex.html

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NEWSGROUP Structure

This structure is used by the NntpGetFirstGroup and NntpGetNextGroup functions to return
information about available newsgroups. If the server uses 64-bit article IDs your application
should use the NEWSGROUPEX structure and related functions.

typedef struct _NEWSGROUP
{
 LONG nFirstArticle;
 LONG nLastArticle;
 DWORD dwAccess;
 TCHAR szName[NNTP_MAXGRPNAMLEN];
} NEWSGROUP, *LPNEWSGROUP;

Members
nFirstArticle

A long integer which specifies the article number of the first available article in the newsgroup.

nLastArticle

A long integer which specifies the article number of the last available article in the newsgroup.
Note that posted articles may not be contiguous in the range between the first and last article
numbers. Some servers may assign numbers in a different order than the articles were posted,
or there may be gaps where articles have been removed.

dwAccess

An unsigned integer which specifies the access mode for the group. It may be one of the
following values:

Constant Description

NNTP_GROUP_READONLY The group is read-only and cannot be modified.
Attempts to post articles to the newsgroup will result in
an error.

NNTP_GROUP_READWRITE Articles can be posted to the newsgroup. Even though a
newsgroup is read-write, it may require that the client
authenticate before being given permission to post
articles to the server.

NNTP_GROUP_MODERATED The newsgroup is moderated and articles can only be
posted by the group moderator. To request that an
article be posted to the newsgroup, you must email the
message to the moderator.

szName

A pointer to a string which specifies the name of the newsgroup.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NntpGetFirstGroup, NntpGetNextGroup, NEWSARTICLE, NEWSGROUP

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NEWSGROUPEX Structure

This structure is used by the NntpGetFirstGroupEx and NntpGetNextGroupEx functions to
return information about available newsgroups. This structure is intended for use with servers that
return 64-bit article IDs.

typedef struct _NEWSGROUPEX
{
 ULONGLONG nFirstArticle;
 ULONGLONG nLastArticle;
 DWORD dwAccess;
 TCHAR szName[NNTP_MAXGRPNAMLEN];
} NEWSGROUP, *LPNEWSGROUP;

Members
nFirstArticle

An unsigned 64-bit integer which specifies the article number of the first available article in the
newsgroup.

nLastArticle

An unsigned 64-bit integer which specifies the article number of the last available article in the
newsgroup. Note that posted articles may not be contiguous in the range between the first and
last article numbers. Some servers may assign numbers in a different order than the articles
were posted, or there may be gaps where articles have been removed.

dwAccess

An unsigned integer which specifies the access mode for the group. It may be one of the
following values:

Constant Description

NNTP_GROUP_READONLY The group is read-only and cannot be modified.
Attempts to post articles to the newsgroup will result in
an error.

NNTP_GROUP_READWRITE Articles can be posted to the newsgroup. Even though a
newsgroup is read-write, it may require that the client
authenticate before being given permission to post
articles to the server.

NNTP_GROUP_MODERATED The newsgroup is moderated and articles can only be
posted by the group moderator. To request that an
article be posted to the newsgroup, you must email the
message to the moderator.

szName

A pointer to a string which specifies the name of the newsgroup.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnwsv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NntpGetFirstGroupEx, NntpGetNextGroupEx, NEWSARTICLEEX, NEWSGROUPEX

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NNTPTRANSFERSTATUS Structure

This structure is used by the NntpGetTransferStatus function to return information about an
article transfer in progress. If the server uses 64-bit article IDs your application should use the
NNTPTRANSFERSTATUSEX structure and related functions.

typedef struct _NNTPTRANSFERSTATUS
{
 LONG nArticleId;
 DWORD dwBytesTotal;
 DWORD dwBytesCopied;
 DWORD dwBytesPerSecond;
 DWORD dwTimeElapsed;
 DWORD dwTimeEstimated;
} NNTPTRANSFERSTATUS, *LPNNTPTRANSFERSTATUS;

Members
nArticleId

A signed integer that specifies the article ID of the current article that is being transferred. If an
article is being posted, this value will be zero.

dwBytesTotal

An unsigned integer that specifies the total number of bytes that will be transferred. If the article
is being copied from the server to the local host, this is the size of the article on the server. If the
article is being posted to the server, it is the size of article on the local system. If the article size
cannot be determined, this value will be zero.

dwBytesCopied

An unsigned integer that specifies the total number of bytes that have been copied.

dwBytesPerSecond

An unsigned integer that specifies the average number of bytes that have been copied per
second.

dwTimeElapsed

An unsigned integer that specifies the number of seconds that have elapsed since the transfer
started.

dwTimeEstimated

An unsigned integer that specifies the estimated number of seconds until the transfer is
completed. This is based on the average number of bytes transferred per second.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

See Also
NntpEnableEvents, NntpGetTransferStatus, NntpRegisterEvent, NNTPTRANSFERSTATUS,
NNTPTRANSFERSTATUSEX

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NNTPTRANSFERSTATUSEX Structure

This structure is used by the NntpGetTransferStatusEx function to return information about an
article transfer in progress. This structure is intended for use with servers that return 64-bit article
IDs.

typedef struct _NNTPTRANSFERSTATUSEX
{
 ULONGLONG nArticleId;
 DWORD dwBytesTotal;
 DWORD dwBytesCopied;
 DWORD dwBytesPerSecond;
 DWORD dwTimeElapsed;
 DWORD dwTimeEstimated;
} NNTPTRANSFERSTATUSEX, *LPNNTPTRANSFERSTATUSEX;

Members
nArticleId

An unsigned 64-bit integer that specifies the article ID of the current article that is being
transferred. If an article is being posted, this value will be zero.

dwBytesTotal

An unsigned integer that specifies the total number of bytes that will be transferred. If the article
is being copied from the server to the local host, this is the size of the article on the server. If the
article is being posted to the server, it is the size of article on the local system. If the article size
cannot be determined, this value will be zero.

dwBytesCopied

An unsigned integer that specifies the total number of bytes that have been copied.

dwBytesPerSecond

An unsigned integer that specifies the average number of bytes that have been copied per
second.

dwTimeElapsed

An unsigned integer that specifies the number of seconds that have elapsed since the transfer
started.

dwTimeEstimated

An unsigned integer that specifies the estimated number of seconds until the transfer is
completed. This is based on the average number of bytes transferred per second.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

See Also
NntpEnableEvents, NntpGetTransferStatusEx, NntpRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SECURITYCREDENTIALS Structure

The SECURITYCREDENTIALS structure specifies the information needed by the library to specify
additional security credentials, such as a client certificate or private key, when establishing a secure
connection.

typedef struct _SECURITYCREDENTIALS
{
 DWORD dwSize;
 DWORD dwProtocol;
 DWORD dwOptions;
 DWORD dwReserved;
 LPCTSTR lpszHostName;
 LPCTSTR lpszUserName;
 LPCTSTR lpszPassword;
 LPCTSTR lpszCertStore;
 LPCTSTR lpszCertName;
 LPCTSTR lpszKeyFile;
} SECURITYCREDENTIALS, *LPSECURITYCREDENTIALS;

Members
dwSize

Size of this structure. If the structure is being allocated dynamically, this member must be set to
the size of the structure and all other unused structure members must be initialized to a value of
zero or NULL.

dwProtocol

A bitmask of supported security protocols. The value of this structure member is constructed by
using a bitwise operator with any of the following values:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The
correct protocol is automatically selected, based on

what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.
This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is
supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

dwOptions

A value which specifies one or options. This member is constructed by using a bitwise operator
with any of the following values:

Constant Description

CREDENTIAL_STORE_CURRENT_USER The library will attempt to open a store for
the current user using the certificate store
name provided in this structure. If no options
are specified, then this is the default
behavior.

CREDENTIAL_STORE_LOCAL_MACHINE The library will attempt to open a local
machine store using the certificate store

name provided in this structure. If this option
is specified, the library will always search for a
local machine store before searching for the
store by that name for the current user.

CREDENTIAL_STORE_FILENAME The certificate store name is a file that
contains the certificate and private key that
will be used.

dwReserved

This structure member is reserved for future use and should always be initialized to zero.

lpszHostName

A pointer to a null terminated string which specifies the hostname that will be used when
validating the server certificate. If this member is NULL, then the server certificate will be
validated against the hostname used to establish the connection.

lpszUserName

A pointer to a null terminated string which identifies the owner of client certificate. Currently this
member is not used by the library and should always be initialized as a NULL pointer.

lpszPassword

A pointer to a null terminated string which specifies the password needed to access the
certificate. Currently this member is only used if the CREDENTIAL_STORE_FILENAME option has
been specified. If there is no password associated with the certificate, then this member should
be initialized as a NULL pointer.

lpszCertStore

A pointer to a null terminated string which specifies the name of the certificate store to open. A
certificate store is a collection of certificates and their private keys, typically organized by how
they are used. If this value is NULL or points to an empty string, the default certificate store "MY"
will be used.

Store
Name

Description

CA
Certification authority certificates. These are certificates that are issued by entities
which are entrusted to issue certificates to other individuals or organizations.
Companies such as VeriSign and Thawte act as certification authorities.

MY

Personal certificates and their associated private keys for the current user. This
store typically holds the client certificates used to establish a user's credentials.
This corresponds to the "Personal" store that is displayed by the certificate
manager utility and is the default store used by the library.

ROOT
Certificates that have been self-signed by a certificate authority. Root certificates
for a number of different certification authorities such as VeriSign and Thawte are
installed as part of the operating system and periodically updated by Microsoft.

lpszCertName

A pointer to a null terminated string which specifies the name of the certificate to use. The
library will first search the certificate store for a certificate with a matching "friendly name"; this is
a name for the certificate that is assigned by the user. Note that the name must match
completely, but the comparison is not case sensitive. If no matching certificate is found, the
library will then attempt to find a certificate that has a matching common name (also called the
certificate subject). This comparison is less stringent, and the first partial match will be returned.

If this second search fails, the library will return an error indicating that the certificate could not
be found. If the SECURITY_PROTOCOL_SSH protocol has been specified, this member should
be NULL.

lpszKeyFile

A pointer to a null terminated string which specifies the name of the file which contains the
private key required to establish the connection. This member is only used for SSH connections
and should always be NULL when establishing a secure connection using SSL or TLS.

Remarks
A client application only needs to create this structure if the server requires that the client provide
a certificate as part of the process of negotiating the secure session. If a certificate is required,
note that it must have a private key associated with it. Attempting to use a certificate that does not
have a private key will result in an error during the connection process indicating that the client
credentials could not be established.

If you are using a local certificate store, with the certificate and private key stored in the registry,
you can explicitly specify whether the certificate store for the current user or the local machine (all
users) should be used. This is done by prefixing the certificate store name with "HKCU:" for the
current user, or "HKLM:" for the local machine. For example, a certificate store name of
"HKLM:MY" would specify the personal certificate store for the local machine, rather than the
current user. If neither prefix is specified, then it will default to the certificate store for the current
user. You can manage these certificates using the CertMgr.msc Microsoft Management Console
(MMC) snap-in.

It is possible to load the certificate from a file rather than from current user's certificate store. The
dwOptions member should be set to CREDENTIAL_STORE_FILENAME and the lpszCertStore
member should specify the name of the file that contains the certificate and its private key. The file
must be in Private Information Exchange (PFX) format, also known as PKCS #12. These certificate
files typically have an extension of .pfx or .p12. Note that if a password was specified when the
certificate file was created, it must be provided in the lpszPassword member or the library will be
unable to access the certificate.

Note that the lpszUserName and lpszPassword members are values which are used to access the
certificate store or private key file. They are not the credentials which are used when establishing
the connection with the remote host or authenticating the client session.

The TLS 1.1 and TLS 1.2 protocols are only supported on Windows 7, Windows Server 2008 R2
and later versions of the platform. If these options are specified and the application is running on
Windows XP or Windows Vista, the protocol version will be downgraded to TLS 1.0 for backwards
compatibility with those platforms.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SECURITYINFO Structure

This structure contains information about a secure connection that has been established.

typedef struct _SECURITYINFO
{
 DWORD dwSize;
 DWORD dwProtocol;
 DWORD dwCipher;
 DWORD dwCipherStrength;
 DWORD dwHash;
 DWORD dwHashStrength;
 DWORD dwKeyExchange;
 DWORD dwCertStatus;
 SYSTEMTIME stCertIssued;
 SYSTEMTIME stCertExpires;
 LPCTSTR lpszCertIssuer;
 LPCTSTR lpszCertSubject;
 LPCTSTR lpszFingerprint;
} SECURITYINFO, *LPSECURITYINFO;

Members
dwSize

Specifies the size of the data structure. This member must always be initialized to
sizeof(SECURITYINFO) prior to passing the address of this structure to the function. Note that
if this member is not initialized, an error will be returned indicating that an invalid parameter has
been passed to the function.

dwProtocol

A numeric value which specifies the protocol that was selected to establish the secure
connection. One of the following values will be returned:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The

correct protocol is automatically selected, based on
what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.
This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is
supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

dwCipher

A numeric value which specifies the cipher that was selected when establishing the secure
connection. One of the following values will be returned:

Constant Description

SECURITY_CIPHER_RC2 The RC2 block cipher was selected. This is a variable
key length cipher which supports keys between 40 and
128 bits, in 8-bit increments.

SECURITY_CIPHER_RC4 The RC4 stream cipher was selected. This is a variable
key length cipher which supports keys between 40 and
128 bits, in 8-bit increments.

SECURITY_CIPHER_RC5 The RC5 block cipher was selected. This is a variable
key length cipher which supports keys up to 2040 bits,
in 8-bit increments.

SECURITY_CIPHER_DES The DES (Data Encryption Standard) block cipher was
selected. This is a fixed key length cipher, using 56-bit
keys.

SECURITY_CIPHER_DES3 The Triple DES block cipher was selected. This cipher
encrypts the data three times using different keys,
effectively providing a 168-bit length key.

SECURITY_CIPHER_DESX A variant of the DES block cipher which XORs an extra
64-bits of the key before and after the plaintext has
been encrypted, increasing the key size to 184 bits.

SECURITY_CIPHER_AES The Advanced Encryption Standard cipher (also known
as the Rijndael cipher) is a fixed block size cipher which
use a key size of 128, 192 or 256 bits. This cipher is
supported on Windows XP SP3 and later versions of
the operating system.

SECURITY_CIPHER_SKIPJACK The Skipjack block cipher was selected. This is a fixed
key length cipher, using 80-bit keys.

SECURITY_CIPHER_BLOWFISH The Blowfish block cipher was selected. This is a
variable key length cipher up to 448 bits, using a 64-bit
block size.

dwCipherStrength

A numeric value which specifies the strength (the length of the cipher key in bits) of the cipher
that was selected. Typically this value will be 128 or 256. 40-bit and 56-bit key lengths are
considered weak encryption, and subject to brute force attacks. 128-bit and 256-bit key lengths
are considered to be secure, and are the recommended key length for secure communications.

dwHash

A numeric value which specifies the hash algorithm which was selected. One of the following
values will be returned:

Constant Description

SECURITY_HASH_MD5 The MD5 algorithm was selected. Its use has been
deprecated and is no longer considered to be
cryptographically secure.

SECURITY_HASH_SHA1 The SHA-1 algorithm was selected. Its use has been
deprecated and is no longer considered to be
cryptographically secure.

SECURITY_HASH_SHA256 The SHA-256 algorithm was selected.

SECURITY_HASH_SHA384 The SHA-384 algorithm was selected.

SECURITY_HASH_SHA512 The SHA-512 algorithm was selected.

dwHashStrength

A numeric value which specifies the strength (the length in bits) of the message digest that was

selected.

dwKeyExchange

A numeric value which specifies the key exchange algorithm which was selected. One of the
following values will be returned:

Constant Description

SECURITY_KEYEX_RSA The RSA public key algorithm was selected.

SECURITY_KEYEX_KEA The Key Exchange Algorithm (KEA) was selected. This is an
improved version of the Diffie-Hellman public key algorithm.

SECURITY_KEYEX_DH The Diffie-Hellman key exchange algorithm was selected.

SECURITY_KEYEX_ECDH The Elliptic Curve Diffie-Hellman key exchange algorithm was
selected. This is a variant of the Diffie-Hellman algorithm
which uses elliptic curve cryptography. This key exchange
algorithm is only supported on Windows XP SP3 and later
versions of the operating system.

dwCertStatus

A numeric value which specifies the status of the certificate returned by the secure server. This
member only has meaning for connections using the SSL or TLS protocols. One of the following
values will be returned:

Constant Description

SECURITY_CERTIFICATE_VALID The certificate is valid.

SECURITY_CERTIFICATE_NOMATCH The certificate is valid, but the domain name
does not match the common name in the
certificate.

SECURITY_CERTIFICATE_EXPIRED The certificate is valid, but has expired.

SECURITY_CERTIFICATE_REVOKED The certificate has been revoked and is no
longer valid.

SECURITY_CERTIFICATE_UNTRUSTED The certificate or certificate authority is not
trusted on the local system.

SECURITY_CERTIFICATE_INVALID The certificate is invalid. This typically indicates
that the internal structure of the certificate has
been damaged.

stCertIssued

A structure which contains the date and time that the certificate was issued by the certificate
authority. If the issue date cannot be determined for the certificate, the SYSTEMTIME structure
members will have zero values. This member only has meaning for connections using the SSL or
TLS protocols.

stCertExpires

A structure which contains the date and time that the certificate expires. If the expiration date
cannot be determined for the certificate, the SYSTEMTIME structure members will have zero
values. This member only has meaning for connections using the SSL or TLS protocols.

lpszCertIssuer

A pointer to a string which contains information about the organization that issued the
certificate. This string consists of one or more comma-separated tokens. Each token consists of
an identifier, followed by an equal sign and a value. If the certificate issuer could not be
determined, this member may be NULL. This member only has meaning for connections using
the SSL or TLS protocols.

lpszCertSubject

A pointer to a string which contains information about the organization that the certificate was
issued to. This string consists of one or more comma-separated tokens. Each token consists of
an identifier, followed by an equal sign and a value. If the certificate subject could not be
determined, this member may be NULL. This member only has meaning for connections using
the SSL or TLS protocols.

lpszFingerprint

A pointer to a string which contains a sequence of hexadecimal values that uniquely identify the
server. This member is only used when a connection has been established using the Secure
Shell (SSH) protocol.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SYSTEMTIME Structure

The SYSTEMTIME structure represents a date and time using individual members for the month,
day, year, weekday, hour, minute, second, and millisecond.

typedef struct _SYSTEMTIME
{
 WORD wYear;
 WORD wMonth;
 WORD wDayOfWeek;
 WORD wDay;
 WORD wHour;
 WORD wMinute;
 WORD wSecond;
 WORD wMilliseconds;
} SYSTEMTIME, *LPSYSTEMTIME;

Members
wYear

Specifies the current year. The year value must be greater than 1601.

wMonth

Specifies the current month. January is 1, February is 2 and so on.

wDayOfWeek

Specifies the current day of the week. Sunday is 0, Monday is 1 and so on.

wDay

Specifies the current day of the month

wHour

Specifies the current hour.

wMinute

Specifies the current minute

wSecond

Specifies the current second.

wMilliseconds

Specifies the current millisecond.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include windows.h.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

News Feed Library

Retrieve and process the contents of a syndicated news feed.

Reference

Functions
Data Structures
Error Codes

Library Information

File Name CSRSSV11.DLL

Version 11.0.2180.1635

LibID D282B848-5BCB-4ACC-B2A0-D141527A87EA

Import Library CSRSSV11.LIB

Dependencies None

Overview
Really Simple Syndication (RSS) is a collection of standardized formats that are used to publish
information about content that is frequently changed. A news feed is published in XML format,
which contains one or more items that includes summary text, hyperlinks to source content and
additional metadata that is used to describe the item. News feeds can be used for a variety of
purposes, including providing updates for weblogs, news headlines, video and audio content. RSS
can also be used for other purposes, such as a software updates, where new updates are listed as
items in the feed.

News feeds can be accessed remotely from a web server, or locally as an XML formatted text file.
The source of the feed is determined by the URI scheme that is specified. If the http or https
scheme is specified, then the feed is retrieved from a web server. If the file scheme is used, the
feed is considered to be local and is accessed from the disk or local network. The News Feed
library provides an API that enables you to open a feed by URL and iterate through each of the
items in the feed or search for a specific feed item. The API also provides a function that can be
used to parse a string that contains XML data in RSS format, where the feed may have been
retrieved from other sources such as a database.

Requirements
The SocketTools Library Edition libraries are compatible with any programming language which
supports calling functions exported from a standard dynamic link library (DLL). If you are using
Visual C++ 6.0 it is required that you have Service Pack 6 (SP6) installed. You should install all
updates for your development tools and have the current Windows SDK installed. The minimum
recommended version of Visual Studio is Visual Studio 2010.

This library is supported on Windows 7, Windows Server 2008 R2 and later versions of the desktop
and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1) installed as
a minimum requirement. It is recommended that you install the current service pack and all critical
updates available for your version of the operating system.

This product includes both 32-bit and 64-bit libraries. Native 64-bit CPU support requires the 64-
bit version of Windows 7 or later versions of the Windows operating system.

Distribution
When you distribute your application that uses this library, it is recommended that you install the
file in the same folder as your application executable. If you install the library into a shared location
on the system, it is important that you distribute the correct version for the target platform and it
should be registered as a shared DLL. This is a standard Windows dynamic link library, not an
ActiveX component, and does not require COM registration.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 News Feed Functions

Function Description

RssCloseFeed Close the specified news feed and release memory allocated for the channel

RssDisableTrace Disable logging of network function calls

RssEnableTrace Enable logging of network function calls to a text file

RssFindItem Find a specific news feed item using its unique identifier (GUID) property

RssGetErrorString Return a description for the specified error code

RssGetFirstItem Return information about the first item in the news feed channel

RssGetItem Return information about the specified news feed item

RssGetItemCount Return the number of news feed items in the channel

RssGetItemProperty Return the value of the specified news feed item property or attribute

RssGetItemText Return the text description of the specified news feed item

RssGetLastError Return the last error code

RssGetNextItem Return information about the next item in the news feed channel

RssInitialize Initialize the library and validate the specified license key at runtime

RssOpenFeed Open the specified news feed and return information about the channel

RssParseFeed Parse the contents of a string and return information about the channel

RssRefreshFeed Refresh the specified news feed, updating the items in the channel

RssSetLastError Set the last error code

RssStoreFeed Store the contents of the specified news feed in an XML formatted text file

RssUninitialize Terminate use of the library by the application

RssValidateFeed Validate the contents of the specified news feed, returning the number of items in
the feed

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RssCloseFeed Function

INT WINAPI RssCloseFeed(
 HCHANNEL hChannel
);

The RssCloseFeed function closes the specified news feed and releases memory allocated for the
channel.

Parameters
hChannel

Handle to the news feed channel.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
RSS_ERROR. To get extended error information, call RssGetLastError.

Remarks
The RssCloseFeed function must be called whenever the application has completed processing
the news feed. It is important to note that the memory allocated for the channel will be released
when this function is called, which means that any data referenced in the RSSCHANNEL and
RSSCHANNELITEM structures will no longer be valid and must not be used by the application after
the feed has been closed.

This function can fail if the feed is currently being updated, such as when the RssRefreshFeed
function is called. In this case, the channel handle will not be released and the application must
attempt to close the feed at a later time.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrssv11.lib

See Also
RssOpenFeed RssParseFeed RssStoreFeed

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RssDisableTrace Function

BOOL WINAPI RssDisableTrace();

The RssDisableTrace function disables the logging of network function calls.

Parameters
None.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrssv11.lib

See Also
RssEnableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RssEnableTrace Function

BOOL WINAPI RssEnableTrace(
 LPCTSTR lpszTraceFile,
 DWORD dwTraceFlags
);

The RssEnableTrace function enables the logging of network function calls to a text file.

Parameters
lpszTraceFile

A pointer to a string which specifies the name of the trace log file. If this parameter is NULL or
an empty string, the default file name cstrace.log is used. The file is stored in the directory
specified by the TEMP environment variable, if it is defined; otherwise, the current working
directory is used.

dwTraceFlags

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

TRACE_INFO All function calls are written to the trace file. This is the default
value.

TRACE_ERROR Only those function calls which fail are recorded in the trace file.

TRACE_WARNING Only those function calls which fail or return values which indicate
a warning are recorded in the trace file.

TRACE_HEXDUMP All functions calls are written to the trace file, plus all the data that
is sent or received is displayed, in both ASCII and hexadecimal
format.

TRACE_PROCESS All function calls in the current process are logged, rather than
only those functions in the current thread. This option is useful for
multithreaded applications that are using worker threads.

Return Value
If the function succeeds, the return value is non-zero. A return value of zero indicates an error.
Failure typically indicates that the tracing library cstrcv11.dll cannot be loaded on the local
system.

Remarks
When trace logging is enabled, the file is opened, appended to and closed for each socket
function call. This makes it possible for an application to append its own logging information,
however care should be taken to ensure that the file is closed before the next network operation is
performed. To limit the size of the log files, enable and disable logging only around those sections
of code that you wish to trace.

Note that the TRACE_HEXDUMP trace level generates very large log files since it includes all of the
data exchanged between your application and the server.

Trace function logging is managed on a per-thread basis, not for each client handle. This means
that all SocketTools libraries and components share the same settings in the current thread. If you

are using multiple SocketTools libraries or components in your application, you only need to
enable logging once.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrssv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
RssDisableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RssFindItem Function

INT WINAPI RssFindItem(
 HCHANNEL hChannel,
 LPCTSTR lpszValue,
 DWORD dwOptions,
 LPRSSCHANNELITEM lpItem
);

The RssFindItem function searches for an item in the news feed channel which matches the
unique identifier (GUID) value and returns information about that item.

Parameters
hChannel

Handle to the news feed channel.

lpszValue

A pointer to a string which specifies the value of the item being searched for. This value should
uniquely identify the item in the feed, and this parameter cannot be an empty string or NULL
pointer.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

RSS_FIND_GUID Search the feed for items with a matching GUID property value.
This is the default option, and is the only item property that is
guaranteed to be unique in the feed. The search is case-
sensitive, requiring that the lpszValue parameter match the
property value exactly.

RSS_FIND_LINK Search the feed for items with a matching link property value.
For feeds that do not specify a GUID property, this is the
recommended option for searching for an item. The search is
not case-sensitive.

RSS_FIND_TITLE Search the feed for items with a matching title. This option
should not be used if you must ensure that the item returned is
unique in the feed because there may be multiple items with the
same title in the feed. The search is not case-sensitive.

RSS_FIND_PUBDATE Search the feed for items with a matching publishing date. This
option should not be used if you must ensure that the item
returned is unique in the feed because more than one item may
have the same publishing date. The format of the date string
must match the standard format used with the RSS protocol and
the match is not case-sensitive.

lpItem

A pointer to a RSSCHANNELITEM structure which contains information about the specified
item in the news feed. This structure is initialized by the function and the parameter can never
be specified as a NULL pointer.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
RSS_ERROR. To get extended error information, call RssGetLastError.

Remarks
It is recommended that you use the RSS_FIND_GUID option with news feeds that are using version
2.0 or later of the RSS specification. If the feed uses an earlier version, items may not include a
GUID property. It is also possible that a feed may omit the GUID property even though it is
considered a requirement for the current RSS specification. For the broadest compatibility with all
news feeds, an application should not depend on being able to search for a specific news feed
item by its GUID.

Only the GUID property is guaranteed to be unique in the feed. If the feed does not specify GUIDs
for the news items, the application must use an alternate criteria such as the item hyperlink or
publishing date. If there are multiple items that match the lpszValue value, the first matching item
will be returned.

The data referenced in the RSSCHANNELITEM structure should be considered read-only and
never modified by the application. Not all members of the structure may contain valid values, in
which case those members will either have a value of zero or will specify NULL pointers. When the
feed is closed, the members of this structure will no longer be valid, and therefore should never be
stored by the application. If the application needs to store or modify this information, it should
create its own private copy of the data.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrssv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
RssGetFirstItem, RssGetItem, RssGetItemProperty, RssGetItemText, RssGetNextItem,
RSSCHANNELITEM

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RssGetErrorString Function

INT WINAPI RssGetErrorString(
 DWORD dwErrorCode,
 LPTSTR lpszDescription,
 INT cbDescription
);

The RssGetErrorString function is used to return a description of a specific error code. Typically
this is used in conjunction with the RssGetLastError function for use with warning dialogs or as
diagnostic messages.

Parameters
dwErrorCode

The last-error code for which a description is returned.

lpszDescription

A pointer to the buffer that will contain a description of the specified error code. This buffer
should be at least 128 characters in length.

cbDescription

The maximum number of characters that may be copied into the description buffer.

Return Value
If the function succeeds, the return value is the length of the description string. If the function fails,
the return value is zero, meaning that no description exists for the specified error code. Typically
this indicates that the error code passed to the function is invalid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrssv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
RssGetLastError, RssSetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RssGetFirstItem Function

BOOL WINAPI RssGetFirstItem(
 HCHANNEL hChannel,
 LPRSSCHANNELITEM lpItem
);

The RssGetFirstItem function returns information about the first item in the specified news feed
channel.

Parameters
hChannel

Handle to the news feed channel.

lpItem

A pointer to a RSSCHANNELITEM structure which contains information about the first item in
the news feed. This structure is initialized by the function and the parameter can never be
specified as a NULL pointer.

Return Value
If the function succeeds, it returns a non-zero value. If the function fails, the return value is zero.
To get extended error information, call RssGetLastError.

Remarks
The RssGetFirstItem function is used in conjunction with the RssGetNextItem function to
enumerate the available items in the specified news feed channel. If this function fails, it typically
indicates that the channel does not contain any valid news items or that the format of the news
feed is invalid.

The data referenced in the RSSCHANNELITEM structure should be considered read-only and
never modified by the application. Not all members of the structure may contain valid values, in
which case those members will either have a value of zero or will specify NULL pointers. When the
feed is closed, the members of this structure will no longer be valid, and therefore should never be
stored by the application. If the application needs to store or modify this information, it should
create its own private copy of the data.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrssv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
RssFindItem, RssGetItem, RssGetItemProperty, RssGetItemText, RssGetNextItem,
RSSCHANNELITEM

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RssGetItem Function

BOOL WINAPI RssGetItem(
 HCHANNEL hChannel,
 UINT nItemId,
 LPRSSCHANNELITEM lpItem
);

The RssGetItem function returns information about the specified item in the news feed channel.

Parameters
hChannel

Handle to the news feed channel.

nItemId

An integer value which identifies the news feed item. The first item identifier in the news feed
has a value of one, and that value is incremented for each additional item in the feed. If this
parameter is zero or specifies a value larger than the number of items in the feed, this function
will fail.

lpItem

A pointer to a RSSCHANNELITEM structure which contains information about the specified
item in the news feed. This structure is initialized by the function and the parameter can never
be specified as a NULL pointer.

Return Value
If the function succeeds, it returns a value of zero. If the function fails, the return value is
RSS_ERROR. To get extended error information, call RssGetLastError.

Remarks
The RssGetItem function is used to return information about a specific item in the news feed. If
this function fails, it typically indicates that the item ID is invalid or that the feed does not contain
any valid news items. The RssGetItemCount function can be used to determine the number of
items contained in the feed channel.

The data referenced in the RSSCHANNELITEM structure should be considered read-only and
never modified by the application. Not all members of the structure may contain valid values, in
which case those members will either have a value of zero or will specify NULL pointers. When the
feed is closed, the members of this structure will no longer be valid, and therefore should never be
stored by the application. If the application needs to store or modify this information, it should
create its own private copy of the data.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrssv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
RssFindItem, RssGetFirstItem, RssGetItemCount, RssGetItemProperty, RssGetItemText,
RssGetNextItem, RSSCHANNELITEM

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RssGetItemCount Function

INT WINAPI RssGetItemCount(
 HCHANNEL hChannel
);

The RssGetItemCount function returns the number of items in the news feed channel.

Parameters
hChannel

Handle to the news feed channel.

Return Value
If the function succeeds, the return value is the number of items in the news feed. A value of zero
indicates that the feed channel is empty. If the function fails, the return value is RSS_ERROR. To get
extended error information, call RssGetLastError.

Remarks
The RssGetItemCount function is used to determine the number of items that are contained in
the news feed channel, and therefore determine the maximum value of the item identifier which
can be used to reference a specific item in the feed. This value is the same as the value specified
by the nItemCount member of the RSSCHANNEL structure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrssv11.lib

See Also
RssFindItem, RssGetItem, RssGetItemProperty, RssGetItemText, RSSCHANNEL

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RssGetItemProperty Function

INT WINAPI RssGetItemProperty(
 HCHANNEL hChannel,
 UINT nItemId,
 DWORD dwReserved,
 LPCTSTR lpszProperty,
 LPCTSTR lpszAttribute,
 LPTSTR lpszValue,
 INT nMaxLength
);

The RssGetItemProperty function is used to return the value of a property for the specified item
in the news feed channel.

Parameters
hChannel

Handle to the news feed channel.

nItemId

An integer value which identifies the news feed item. The first item identifier in the news feed
has a value of one, and that value is incremented for each additional item in the feed. If this
parameter is zero or specifies a value larger than the number of items in the feed, this function
will fail.

dwReserved

A parameter reserved for future use. This value should always be zero.

lpszProperty

A pointer to a string which specifies the name of the item property. This parameter cannot point
to an empty string or specify a NULL pointer.

lpszAttribute

A pointer to a string which specifies the name of an attribute for the property. If this parameter
is an empty string or NULL pointer, the function will return the value of the property, rather than
an attribute of the specified property.

lpszValue

A pointer to a string buffer which will contain the value of the specified item property or
attribute. This string should be large enough to contain the property value. If this parameter is a
NULL pointer, it will be ignored and the function will only return the length of value for the
specified property.

nMaxLength

The maximum number of characters that may be copied into the property value buffer. If the
value of this parameter is zero, then the lpszValue parameter is ignored and the function will
only return the length of the value for the specified property.

Return Value
If the function succeeds, the return value is the length of the property value string. A return value
of zero indicates that the property does not contain any value. If the function fails, the return value
is RSS_ERROR. To get extended error information, call RssGetLastError.

Remarks

The RssGetItemProperty function is primarily used with custom item properties that may be used
with extensions to the news feed. The standard properties for an item such as the title, link and
description can be obtained using RssGetItem and related functions. However, if items in the feed
contain custom properties that are not part of the standard RSS format, this function can be used
to obtain those values.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrssv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
RssFindItem, RssGetItem, RssGetItemText, RSSCHANNELITEM

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RssGetItemText Function

INT WINAPI RssGetItemText(
 HCHANNEL hChannel,
 UINT nItemId,
 LPTSTR lpszBuffer,
 INT nMaxLength
);

The RssGetItemText function is used to return a copy of an item's description.

Parameters
hChannel

Handle to the news feed channel.

nItemId

An integer value which identifies the news feed item. The first item identifier in the news feed
has a value of one, and that value is incremented for each additional item in the feed. If this
parameter is zero or specifies a value larger than the number of items in the feed, this function
will fail.

lpszBuffer

A pointer to a string buffer which will contain the value of the item description. If this parameter
is a NULL pointer, it will be ignored and the function will only return the length of the item
description.

nMaxLength

The maximum number of characters that may be copied into the description buffer. If the value
of this parameter is zero, then the lpszValue parameter is ignored and the function will only
return the length of the item description.

Return Value
If the function succeeds, the return value is the length of the item description. A return value of
zero indicates that the item does not have a description. If the function fails, the return value is
RSS_ERROR. To get extended error information, call RssGetLastError.

RRemarks

The RssGetItemText function is used to obtain a copy of the string that describes the specified
item. Typically this is text that provides a summary of the news feed item and is used in
conjunction with the item's title and hyperlink to additional content.

The content of an item description is typically either plain text or HTML formatted text. It is the
responsibility of the application to display the content in a format is appropriate for the end-user.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrssv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
RssFindItem RssGetItem, RssGetItemProperty, RSSCHANNELITEM

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RssGetLastError Function

DWORD WINAPI RssGetLastError();

Parameters
None.

Return Value
The return value is the last error code value for the current thread. Functions set this value by
calling the RssSetLastError function. The Return Value section of each reference page notes the
conditions under which the function sets the last error code.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. You should call
the RssGetLastError function immediately when a function's return value indicates that an error
has occurred. That is because some functions call RssSetLastError(0) when they succeed, clearing
the error code set by the most recently failed function.

Most functions will set the last error code value when they fail; a few functions set it when they
succeed. Function failure is typically indicated by a return value such as FALSE, NULL,
INVALID_CHANNEL or RSS_ERROR. Those functions which call RssSetLastError when they
succeed are noted on the function reference page.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrssv11.lib

See Also
RssGetErrorString, RssSetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RssGetNextItem Function

BOOL WINAPI RssGetNextItem(
 HCHANNEL hChannel,
 LPRSSCHANNELITEM lpItem
);

The RssGetNextItem function returns information about the next item in the specified news feed
channel.

Parameters
hChannel

Handle to the news feed channel.

lpItem

A pointer to a RSSCHANNELITEM structure which contains information about the next item in
the news feed. This structure is initialized by the function and the parameter can never be
specified as a NULL pointer.

Return Value
If the function succeeds, it returns a non-zero value. If the function fails, the return value is zero.
To get extended error information, call RssGetLastError.

Remarks
The RssGetNextItem function is used in conjunction with the RssGetFirstItem function to
enumerate the available items in the specified news feed channel. If this function fails, it typically
indicates that there are no more items in the news feed channel.

The data referenced in the RSSCHANNELITEM structure should be considered read-only and
never modified by the application. Not all members of the structure may contain valid values, in
which case those members will either have a value of zero or will specify NULL pointers. When the
feed is closed, the members of this structure will no longer be valid, and therefore should never be
stored by the application. If the application needs to store or modify this information, it should
create its own private copy of the data.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrssv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
RssFindItem, RssGetFirstItem, RssGetItem, RssGetItemProperty, RssGetItemText, RSSCHANNELITEM

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RssInitialize Function

BOOL WINAPI RssInitialize(
 LPCTSTR lpszLicenseKey,
 LPINITDATA lpData
);

The RssInitialize function initializes the library and validates the specified license key at runtime.

Parameters
lpszLicenseKey

Pointer to a string that specifies the runtime license key to be validated. If this parameter is
NULL, the library will validate the development license installed on the local system.

lpData

Pointer to an INITDATA data structure. This parameter may be NULL if the initialization data for
the library is not required.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call RssGetLastError. All other client functions will fail until a
license key has been successfully validated.

Remarks
This must be the first function that an application calls before using any of the other functions in
the library. When a NULL license key is specified, the library will only function on the development
system. Before redistributing the application to an end-user, you must insure that this function is
called with a valid license key.

If the lpData argument is specified, it must point to an INITDATA structure which has been
initialized by setting the dwSize member to the size of the structure. All other structure members
should be set to zero. If the function is successful, then the INITDATA structure will be filled with
identifying information about the library.

Although it is only required that RssInitialize be called once for the current process, it may be
called multiple times; however, each call must be matched by a corresponding call to
RssUninitialize.

This function dynamically loads other system libraries and allocates thread local storage. If you are
calling the functions in this library from within another DLL, it is important that you do not call the
RssInitialize or RssUninitialize functions from the DllMain function because it can result in
deadlocks or access violation errors. If the DLL is linked with the C runtime library (CRT), it will
automatically call the constructors and destructors for static and global C++ objects and has the
same restrictions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrssv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also

RssCloseFeed, RssOpenFeed, RssParseFeed, RssUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RssOpenFeed Function

HCHANNEL WINAPI RssOpenFeed(
 LPCTSTR lpszFeedUrl,
 UINT nTimeout,
 DWORD dwOptions,
 LPRSSCHANNEL lpChannel
);

The RssOpenFeed function is used to open a news feed and return a handle which can be used
to access the individual news items in the feed.

Parameters
lpszFeedUrl

A pointer to a string which specifies the URL for the news feed. To access a news feed on a web
server, a standard http or https URL may be specified. To access a file on the local system or
network share, a file name or file URL may be specified.

nTimeout

The number of seconds that the client will wait for a response from the server before failing the
current operation. This parameter is ignored if the lpszFeedUrl parameter specifies a local file
name or URL.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

RSS_OPTION_NONE No additional options are specified and the news feed is
processed using relaxed rules when checking the validity of the
feed. The library will attempt to automatically compensate for a
feed that is malformed or does not strictly conform to the RSS
standard.

RSS_OPTION_STRICT The news feed content should be processed using strict rules to
ensure that the feed meets the appropriate RSS standard
specification and all feed property values are case-sensitive. By
default, relaxed rules are used which allows the application to
open a feed that may not strictly conform to the standard
specification.

lpChannel

A pointer to an RSSCHANNEL structure which contains information about the news feed
channel such as the feed title, hyperlink and description. If the parameter is not NULL, the
structure is initialized by the function. If the parameter is NULL, it is ignored and no information
is returned.

Return Value
If the function succeeds, the return value is a handle to the news feed channel. If the function fails,
the return value is INVALID_CHANNEL. To get extended error information, call RssGetLastError.

Remarks

A news feed may be local or remote, depending on the URL that is specified. If a local file name or
file URL is specified for the feed, then it is opened locally and no network access is required. If an
http or https URL is specified, then RssOpenFeed will attempt to download the feed from the
server and store it temporarily on the local system. Accessing a remote feed requires that the
application has permission to establish a connection with the server and will cause the application
to block until the feed has been downloaded, the operation times out or an error occurs.

Although the RssOpenFeed function will meet the needs of most applications, if you require more
complex functionality such as retrieving the feed asynchronously in the background or event
notifications for large transfers, you can use the SocketTools Hypertext Transfer Protocol API to
download the news feed and then use the RssParseFeed function to parse the contents.

The data referenced in the RSSCHANNEL structure should be considered read-only and never
modified by the application. Not all members of the structure may contain valid values, in which
case those members will either have a value of zero or will specify NULL pointers. When the feed
is closed, the members of this structure will no longer be valid, and therefore should never be
stored by the application. If the application needs to store or modify this information, it should
create its own private copy of the data.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrssv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
RssCloseFeed, RssInitialize, RssParseFeed, RssRefreshFeed, RssStoreFeed, RssUninitialize,
RssValidateFeed, RSSCHANNEL

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RssParseFeed Function

HCHANNEL WINAPI RssParseFeed(
 LPCTSTR lpszFeedXml,
 DWORD dwOptions,
 LPRSSCHANNEL lpChannel
);

The RssParseFeed function is used to parse the contents of a news feed, returning a handle which
can be used to access the individual news items in the feed.

Parameters
lpszFeedXml

A pointer to a string which contains the contents of the news feed. The string must contain XML
formatted data that conforms to the RSS standard specification. This parameter cannot specify
an empty string or a NULL pointer.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

RSS_OPTION_NONE No additional options are specified.

RSS_OPTION_STRICT The news feed content should be processed using strict rules to
ensure that the feed meets the appropriate RSS standard
specification and all feed property values are case-sensitive. By
default, relaxed rules are used which allows the application to
open a feed that may not strictly conform to the standard
specification.

lpChannel

A pointer to an RSSCHANNEL structure which contains information about the news feed
channel such as the feed title, hyperlink and description. If the parameter is not NULL, the
structure is initialized by the function. If the parameter is NULL, it is ignored and no information
is returned.

Return Value
If the function succeeds, the return value is a handle to the news feed channel. If the function fails,
the return value is INVALID_CHANNEL. To get extended error information, call RssGetLastError.

Remarks
The RssParseFeed function is an alternative to the RssOpenFeed function, enabling the
application to process a news feed from alternative sources such as a database or compressed file.
It is important to note that the string which contains the news feed XML must be properly
formatted and conform to the RSS standard specification.

The data referenced in the RSSCHANNEL structure should be considered read-only and never
modified by the application. Not all members of the structure may contain valid values, in which
case those members will either have a value of zero or will specify NULL pointers. When the feed
is closed, the members of this structure will no longer be valid, and therefore should never be
stored by the application. If the application needs to store or modify this information, it should

create its own private copy of the data.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrssv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
RssCloseFeed, RssInitialize, RssOpenFeed, RssRefreshFeed, RssStoreFeed, RssUninitialize,
RSSCHANNEL

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RssRefreshFeed Function

INT WINAPI RssRefreshFeed(
 HCHANNEL hChannel,
 LPRSSCHANNEL lpChannel
);

The RssRefreshFeed function reloads the news feed and updates the items in the channel.

Parameters
hChannel

Handle to the news feed channel.

lpChannel

A pointer to an RSSCHANNEL structure which contains information about the news feed
channel such as the feed title, hyperlink and description. If the parameter is not NULL, the
structure is initialized by the function. If the parameter is NULL, it is ignored and no information
is returned.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
RSS_ERROR. To get extended error information, call RssGetLastError.

Remarks
When the RssRefreshFeed function is called, the news feed is reloaded from the original source
and the items in the channel are updated. For news feeds that are frequently updated, the
nTimeToLive member of the RSSCHANNEL structure can provide a hint to the application as to
how frequently the feed should be refreshed.

If the news feed was originally opened using an http or https URL, this function will download the
updated feed from the server and store it temporarily on the local system. Accessing a remote
feed requires that the application has permission to establish a connection with the server and will
cause the application to block until the feed has been downloaded, the operation times out or an
error occurs. The same timeout period and options will be used as when the feed was originally
opened.

The RssRefreshFeed function should only be used if the feed was opened using the
RssOpenFeed function, otherwise the function will fail with an error indicating that the operation
is not supported.

The data referenced in the RSSCHANNEL structure should be considered read-only and never
modified by the application. The members of this structure returned by previous calls to either the
RssOpenFeed or RssRefreshFeed functions will no longer be valid and should not be referenced.
Likewise, the members of an RSSCHANNELITEM structure will no longer be valid after this
function returns.

It is important that the application does not make any assumptions about the number of news
items in the channel, or the content associated with those items after the RssRefreshFeed
function has been called. For example, never assume that the number of items in the channel
remains the same, or that the item IDs for each item remains the same. If you need to find a
specific item in the news feed, use the RssFindItem function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)

Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrssv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
RssCloseFeed, RssFindItem, RssGetItem, RssOpenFeed, RssStoreFeed, RSSCHANNEL

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RssSetLastError Function

VOID WINAPI RssSetLastError(
 DWORD dwErrorCode
);

The RssSetLastError function sets the error code for the current thread. This function is typically
used to clear the last error by passing a value of zero as the parameter.

Parameters
dwErrorCode

Specifies the error code for the current thread.

Return Value
None.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. Most functions will
set the last error code value when they fail; a few functions set it when they succeed. Function
failure is typically indicated by a return value such as FALSE, NULL, INVALID_CLIENT or
RSS_ERROR. Those functions which call RssSetLastError when they succeed are noted on the
function reference page.

Applications can retrieve the value saved by this function by using the RssGetLastError function.
The use of RssGetLastError is optional; an application can call the function to determine the
specific reason for a function failure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrssv11.lib

See Also
RssGetErrorString, RssGetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RssStoreFeed Function

INT WINAPI RssStoreFeed(
 HCHANNEL hChannel,
 LPCTSTR lpszFileName,
 DWORD dwReserved
);

The RssStoreFeed function stores the contents of the news feed in an XML formatted text file.

Parameters
hChannel

Handle to the news feed channel.

lpszFileName

A pointer to a string which specifies the name of the file on the local system. The contents of the
news feed will be stored in this file. If the file does not exist, it will be created; otherwise it will
overwrite the contents of the file.

dwReserved

A reserved parameter for future use. This value should always be zero.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
RSS_ERROR. To get extended error information, call RssGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrssv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
RssOpenFeed, RssParseFeed

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RssUninitialize Function

VOID WINAPI RssUninitialize();

The RssUninitialize function terminates the use of the library.

Parameters
There are no parameters.

Return Value
None.

Remarks
An application is required to perform a successful RssInitialize call before it can call any of the
other the library functions. When it has completed the use of library, the application must call
RssUninitialize to allow the library to free any resources allocated on behalf of the process. Any
pending blocking or asynchronous calls in this process are canceled without posting any
notification messages, and all sockets that were opened by the process are closed.

There must be a call to RssUninitialize for every successful call to RssInitialize made by a
process. In a multithreaded environment, operations for all threads in the client are terminated.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrssv11.lib

See Also
RssCloseFeed, RssInitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RssValidateFeed Function

INT WINAPI RssValidateFeed(
 LPCTSTR lpszFeedUrl,
 UINT nTimeout,
 DWORD dwOptions,
 LPSYSTEMTIME lpstModified
);

The RssValidateFeed function is used to validate a news feed, returning the number of items in
the feed and the date it was last modified.

Parameters
lpszFeedUrl

A pointer to a string which specifies the URL for the news feed. To access a news feed on a web
server, a standard http or https URL may be specified. To access a file on the local system or
network share, a file name or file URL may be specified.

nTimeout

The number of seconds that the client will wait for a response from the server before failing the
current operation. This parameter is ignored if the lpszFeedUrl parameter specifies a local file
name or URL.

dwOptions

An unsigned integer that specifies one or more options. This parameter is reserved for future
use an should always have a value of zero.

lpstModified

A pointer to a SYSTEMTIME structure which will specify the date that the feed was last modified
when the function returns. If the parameter is NULL, it is ignored and no information is returned.

Return Value
If the function succeeds, the return value is the number of items in the news feed channel. If the
function fails, the return value is RSS_ERROR. To get extended error information, call
RssGetLastError.

Remarks
The RssValidateFeed function can be used to check that a news feed exists and is properly
formatted. If the contents of the feed are valid, the function will return the number of items in the
feed and the date that it was last modified. This can be useful for applications that want to
periodically check a news feed and determine if the contents have changed.

The SYSTEMTIME structure that is populated by the function specifies the date when the feed
was last modified. The function first checks the value of the lastBuildDate property of the feed
channel. If that property is not defined, then it will use the value of the pubDate property. If
neither are defined, then the structure members will have a value of zero.

The validation process imposes strict checks on the structure of the news feed and requires that it
conform to the RSS specification. For example, the feed must have a title, link and description.
Each item in the feed must have either a title or description, and the hyperlinks specified in the
feed must be valid. If the feed XML is malformed, or a required property of the feed is invalid or
missing, this function will fail.

If a news feed cannot be validated, it still may be possible to open the feed using the

RssOpenFeed function. By default, relaxed rules are used when parsing the contents of the feed
and it does not check to ensure all required properties are defined and have valid values.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrssv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
RssOpenFeed, RssParseFeed, RssRefreshFeed, RssStoreFeed, SYSTEMTIME

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 News Feed Data Structures

INITDATA
RSSCHANNEL
RSSCHANNELITEM
SYSTEMTIME

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 INITDATA Structure

This structure contains information about the SocketTools library when the initialization function
returns.

typedef struct _INITDATA
{
 DWORD dwSize;
 DWORD dwVersionMajor;
 DWORD dwVersionMinor;
 DWORD dwVersionBuild;
 DWORD dwOptions;
 DWORD_PTR dwReserved1;
 DWORD_PTR dwReserved2;
 TCHAR szDescription[128];
} INITDATA, *LPINITDATA;

Members
dwSize

Size of this structure. This structure member must be set to the size of the structure prior to
calling the initialization function. Failure to do so will cause the function to fail.

dwVersionMajor

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the major version number for the library.

dwVersionMinor

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the minor version number for the library.

dwVersionBuild

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the build number for the library.

dwOptions

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

dwReserved1

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

dwReserved2

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

szDescription

A null terminated string which describes the library.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RSSCHANNEL Structure

This structure contains information about the properties of the news feed channel.

typedef struct _RSSCHANNEL
{
 UINT nItemCount;
 UINT nTimeToLive;
 WORD wVersionMajor;
 WORD wVersionMinor;
 DWORD dwFlags;
 DWORD dwReserved;
 LPCTSTR lpszTitle;
 LPCTSTR lpszLink;
 LPCTSTR lpszDescription;
 LPCTSTR lpszCategory;
 LPCTSTR lpszLanguage;
 LPCTSTR lpszCopyright;
 LPCTSTR lpszEditor;
 LPCTSTR lpszWebmaster;
 LPCTSTR lpszGenerator;
 LPCTSTR lpszImageLink;
 LPCTSTR lpszImageTitle;
 LPCTSTR lpszImageUrl;
 SYSTEMTIME stPublished;
 SYSTEMTIME stLastBuild;
} RSSCHANNEL, *LPRSSCHANNEL;

Members
nItemCount

An integer value which specifies number of news items in the channel.

nTimeToLive

An integer value which specifies the frequency in seconds at which the feed should be refreshed
to obtain updated information. Not all feeds specify a time-to-live, in which case this member
will have a value of zero.

wVersionMajor

A word value which specifies the major version number for the news feed.

wVersionMinor

A word value which specifies the minor version number for the news feed.

dwFlags

A value which specifies one or more option flags for the news feed channel. Currently there are
no option flags defined and this member is reserved for future expansion.

dwReserved

A value reserved for future expansion.

lpszTitle

A pointer to a string which specifies the name of the channel. If the content of the news feed
corresponds to a website, this is typically the same as the title of the website. If a title has not
been specified, this member will be NULL. Note that a strictly conforming news feed requires a
title.

lpszLink

A pointer to a string which specifies a URL to the website corresponding to the channel. Note
that this is not the URL of the news feed itself. Typically it is a link to the home page of the site
which owns the news feed. If a link has not been specified, this member will be NULL. Note that
a strictly conforming news feed requires a valid link URL.

lpszDescription

A pointer to a string which describes the channel. This provides an overview of the news feed
and the type of information that is provided. If a description of the feed has not been specified,
this member will be NULL. Note that a strictly conforming news feed requires a description.

lpszCategory

A pointer to a string which defines the category or categories that the channel belongs to. This
property is optional and the category names themselves are user-defined. If a category has not
been specified, this member will be NULL.

lpszLanguage

A pointer to a string which defines the language the channel is written in, using the standard
language codes. This property is optional and if this member is NULL, the English language is
typically presumed to be the default.

lpszCopyright

A pointer to a string which specifies a copyright notice for the content. If a copyright has not
been specified, this member will be NULL.

lpszEditor

A pointer to a string which identifies the person responsible for managing the content of the
news feed. If this property is defined, it is typically the name and email address of the feed
editor. If an editor has not been specified, this member will be NULL.

lpszWebmaster

A pointer to a string which identifies the person responsible for technical issues related to the
news feed. If this property is defined, it is typically the name and email address of a system
administrator. If a webmaster has not been specified, this member will be NULL.

lpszGenerator

A pointer to a string which identifies the application that was used to create the news feed. If
the application that generated the feed has not been specified, this member will be NULL.

lpszImageLink

A pointer to a string which specifies a URL to the website corresponding to the channel. In most
cases, this is the same URL that is specified by the lpszLink member. If an image link has not
been specified, this member will be NULL.

lpszImageTitle

A pointer to a string which identifies the image associated with the channel. This is usually a
brief description of the image, and may be the same as the value specified by the lpszTitle
member. If an image title has not been specified, this member will be NULL.

lpszImageUrl

A pointer to a string which specifies a URL for the image associated with the channel. An
application can download this image and display it with the contents of the news feed. If an
image URL has not been specified, this member will be NULL.

stPublished

The date that the news feed was published. For example, a feed that is associated with a weekly
print publication may update this value once per week. Note that this is not necessarily the date

that the feed was last modified. If the channel does not specify the publish date, this structure
will contain all zeroes.

stLastBuild

The date that the content of the channel was last modified. If the channel does not specify the
build date, this structure will contain all zeroes.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RSSCHANNELITEM Structure

This structure contains information about the properties of an item in a news feed channel.

typedef struct _RSSCHANNELITEM
{
 UINT nItemId;
 DWORD dwFlags;
 DWORD dwReserved;
 LPCTSTR lpszTitle;
 LPCTSTR lpszLink;
 LPCTSTR lpszText;
 LPCTSTR lpszGuid;
 LPCTSTR lpszAuthor;
 LPCTSTR lpszSource;
 LPCTSTR lpszComments;
 LPCTSTR lpszEnclosure;
 SYSTEMTIME stPublished;
} RSSCHANNELITEM, *LPRSSCHANNELITEM;

Members
nItemId

An integer which identifies this item in the channel.

dwFlags

A value which specifies one or more option flags for the item. Currently there are no option
flags defined and this member is reserved for future expansion.

dwReserved

A value reserved for future expansion.

lpszTitle

A pointer to a string which specifies the title of the item. If a title for the item has not been
specified, this member will be NULL.

lpszLink

A pointer to a string which specifies a URL that typically links to additional information related to
the item. If a link for the item has not been specified, this member will be NULL.

lpszText

A pointer to a string which specifies a summary or description of the item. This may contain
either plain text or HTML formatted text, and there is no fixed limit to the length of the text. If no
text has been specified for the item, this member will be NULL.

lpszGuid

A pointer to a string which uniquely identifies the item in the channel. If this property is defined,
it is guaranteed to be a unique, persistent value. It is important to note that this string does not
have to be a standard GUID reference number, it can be any unique string. In many cases it is
the same value as the item hyperlink specified by the lpszLink member, although an application
should never depend on this behavior. If there is no unique identifier associated with the item,
this member will be NULL.

lpszAuthor

A pointer to a string which identifies the author of the item. If this property is defined, it is
typically the name and email address of the person who created the content that the item links
to. If the author is not specified, this member will be NULL.

lpszSource

A pointer to a string which identifies the source of the item, specified as a URL for the original
news feed that contained it. This typically used to propagate credit for items that are
aggregated by a third-party and re-published in their own channel. If the source is not
specified, this member will be NULL.

lpszComments

A pointer to a string which specifies a URL that links to further discussion about the item.
Typically this is a link to the comment area of a weblog or a forum topic specific to the item. If a
comment link is not specified, this member will be NULL.

lpszEnclosure

A pointer to a string which specifies a URL that links to a file related to the item. This is similar to
an attachment in an email message, however instead of the item containing the contents of the
attached file, it only specifies a link to the file. Enclosures are most commonly used with
podcasting where an item is linked to an audio or video file, however the link may reference any
type of file. If there is no enclosure specified for the item, this member will be NULL.

stPublished

The date that the item was published. If the item does not specify the publish date, this structure
will contain all zeroes.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SYSTEMTIME Structure

The SYSTEMTIME structure represents a date and time using individual members for the month,
day, year, weekday, hour, minute, second, and millisecond.

typedef struct _SYSTEMTIME
{
 WORD wYear;
 WORD wMonth;
 WORD wDayOfWeek;
 WORD wDay;
 WORD wHour;
 WORD wMinute;
 WORD wSecond;
 WORD wMilliseconds;
} SYSTEMTIME, *LPSYSTEMTIME;

Members
wYear

Specifies the current year. The year value must be greater than 1601.

wMonth

Specifies the current month. January is 1, February is 2 and so on.

wDayOfWeek

Specifies the current day of the week. Sunday is 0, Monday is 1 and so on.

wDay

Specifies the current day of the month

wHour

Specifies the current hour.

wMinute

Specifies the current minute

wSecond

Specifies the current second.

wMilliseconds

Specifies the current millisecond.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include windows.h.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Post Office Protocol Library

List and retrieve email messages from a mail server.

Reference

Functions
Data Structures
Error Codes

Library Information

File Name CSPOPV11.DLL

Version 11.0.2180.1635

LibID 445B1DC1-914F-473D-9648-82748F785587

Import Library CSPOPV11.LIB

Dependencies None

Standards RFC 1939

Overview
The Post Office Protocol (POP3) provides access to a user's new email messages on a mail server.
Functions are provided for listing available messages and then retrieving those messages, storing
them either in files or in memory. Once a user's messages have been downloaded to the local
system, they are typically removed from the server. This is the most popular email protocol used
by Internet Service Providers (ISPs) and the library provides a complete interface for managing a
user's mailbox. This library is typically used in conjunction with the Mail Message library, which is
used to process the messages that are retrieved from the server.

This library supports secure connections using the standard SSL and TLS protocols. Both implicit
and explicit SSL connections can be established, enabling the library to work with a wide variety of
servers.

Requirements
The SocketTools Library Edition libraries are compatible with any programming language which
supports calling functions exported from a standard dynamic link library (DLL). If you are using
Visual C++ 6.0 it is required that you have Service Pack 6 (SP6) installed. You should install all
updates for your development tools and have the current Windows SDK installed. The minimum
recommended version of Visual Studio is Visual Studio 2010.

This library is supported on Windows 7, Windows Server 2008 R2 and later versions of the desktop
and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1) installed as
a minimum requirement. It is recommended that you install the current service pack and all critical
updates available for your version of the operating system.

This product includes both 32-bit and 64-bit libraries. Native 64-bit CPU support requires the 64-
bit version of Windows 7 or later versions of the Windows operating system.

Distribution
When you distribute your application that uses this library, it is recommended that you install the
file in the same folder as your application executable. If you install the library into a shared location

on the system, it is important that you distribute the correct version for the target platform and it
should be registered as a shared DLL. This is a standard Windows dynamic link library, not an
ActiveX component, and does not require COM registration.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Post Office Protocol Functions

Function Description

PopAsyncConnect Connect asynchronously to the specified server

PopAttachThread Attach the specified client handle to another thread

PopCancel Cancel the current blocking operation

PopChangePassword Change the specified mail account password

PopCommand Send a command to the server

PopConnect Connect to the specified server

PopCreateSecurityCredentials Allocate a structure to establish client security credentials

PopDeleteMessage Delete the specified message from the mailbox

PopDeleteSecurityCredentials Delete the specified client security credentials

PopDisableEvents Disable the event notification mechanism

PopDisableTrace Disable logging of network function calls to the trace log

PopDisconnect Disconnect from the current server

PopEnableEvents Enable the client event notification mechanism

PopEnableTrace Enable logging of network function calls to a file

PopEventProc Callback function that processes events generated by the client

PopFreezeEvents Suspend and resume event handling by the client

PopGetErrorString Return a description for the specified error code

PopGetHeaderValue Return the value of the specified header field

PopGetLastError Return the last error code

PopGetMessage Retrieve the specified message from the server

PopGetMessageCount Return the number of messages available in the mailbox

PopGetMessageCountEx Return the number of messages available in the mailbox

PopGetMessageHeaders Retrieve the specified message header from the server

PopGetMessageId Return the message ID string for the specified message

PopGetMessageSender Return the address of the message sender

PopGetMessageSize Return the size of the specified message

PopGetMessageUid Return the unique identifier for the specified message

PopGetMultiLine Return the client multi-line output flag

PopGetResultCode Return the result code from the previous command

PopGetResultString Return the result string from the previous command

PopGetSecurityInformation Return security information about the current client connection

PopGetStatus Return the current status of the client

PopGetTimeout Return the number of seconds until an operation times out

PopGetTransferStatus Return data transfer statistics

PopInitialize Initialize the library and validate the specified license key at runtime

PopIsBlocking Determine if the client is blocked, waiting for information

PopIsConnected Determine if the client is connected to the server

PopIsReadable Determine if data can be read from the server

PopIsWritable Determine if data can be written to the server

PopLogin Login to the server

PopOpenMessage Open the specified message for reading on the server

PopRead Read data returned by the server

PopRegisterEvent Register an event handler for the specified event

PopReset Reset the client and return to a command state

PopSendMessage Send a message through the mail server

PopSetLastError Set the last error code

PopSetMultiLine Set the client multi-line output flag

PopSetTimeout Set the number of seconds until an operation times out

PopStoreMessage Store the contents of a message in the specified file

PopUninitialize Terminate use of the library by the application

PopWrite Write data to the server

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PopAsyncConnect Function

HCLIENT WINAPI PopAsyncConnect(
 LPCTSTR lpszRemoteHost,
 UINT nRemotePort,
 UINT nTimeout,
 DWORD dwOptions,
 LPSECURITYCREDENTIALS lpCredentials,
 HWND hEventWnd,
 UINT uEventMsg
);

The PopAsyncConnect function is used to establish a connection with the server.

This function has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

The application should create a background worker thread and establish a connection by calling
PopConnect within that thread. If the application requires multiple simultaneous connections, it is
recommended you create a worker thread for each client session.

Parameters
lpszRemoteHost

A pointer to the name of the server to connect to; this may be a fully-qualified domain name or
an IP address.

nRemotePort

The port number the server is listening on. A value of zero specifies that the default port
number should be used. For standard connections, the default port number is 110. For secure
connections, the default port number is 995. If the secure port number is specified, an implicit
SSL/TLS connection will be established by default.

nTimeout

The number of seconds that the client will wait for a response from the server before failing the
current operation.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

POP_OPTION_NONE No connection options specified. A standard
connection to the server will be established using
the specified host name and port number.

POP_OPTION_LINEBREAK Message data that is received from the server is
read as individual lines of text terminated by a
carriage return and linefeed control sequence. This
option can be useful for applications that need to
use the lower level network I/O functions and must
process the message text on a line-by-line basis.
This option is not recommended for most

applications because it can have a negative impact
on performance when retrieving large messages
from the server.

POP_OPTION_TUNNEL This option specifies that a tunneled TCP
connection and/or port-forwarding is being used
to establish the connection to the server. This
changes the behavior of the client with regards to
internal checks of the destination IP address and
remote port number, default capability selection
and how the connection is established.

POP_OPTION_TRUSTEDSITE This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option
only affects connections using either the SSL or TLS
protocols.

POP_OPTION_SECURE This option specifies that a secure connection
should be established with the server and requires
that the server support either the SSL or TLS
protocol. This option is the same as specifying
POP_OPTION_SECURE_EXPLICIT, which initiates
the secure session using the STLS command.

POP_OPTION_SECURE_EXPLICIT This option specifies the client should attempt to
establish a secure connection with the server. The
server must support secure connections using
either the SSL or TLS protocol and the STLS
command.

POP_OPTION_SECURE_IMPLICIT This option specifies the client should attempt to
establish a secure connection with the server. It
should only be used when the server expects an
implicit SSL connection or does not implement RFC
2595 where the STLS command is used to
negotiate a secure connection with the server.

POP_OPTION_SECURE_FALLBACK This option specifies the client should permit the
use of less secure cipher suites for compatibility
with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

POP_OPTION_PREFER_IPV6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be resolved
to both an IPv6 and IPv4 address. This option is
ignored if the local system does not have IPv6
enabled, or when the hostname can only be
resolved to an IPv4 address. If the server hostname
can only be resolved to an IPv6 address, the client
will attempt to establish a connection using IPv6
regardless if this option has been specified.

POP_OPTION_FREETHREAD This option specifies the handle returned by this
function may be used by any thread, and is not
limited to the thread which created it. The
application is responsible for ensuring that access
to the handle is synchronized across multiple
threads.

lpCredentials

A pointer to a SECURITYCREDENTIALS structure which is used to establish the client credentials
for a secure connection to the server. The function PopCreateSecurityCredentials can be used
to create this structure if necessary. If a standard non-secure connection is being established, or
client credentials are not required by the server, this parameter can be NULL.

hEventWnd

The handle to the event notification window. This window receives messages which notify the
client of various asynchronous socket events that occur. If this parameter is NULL, a blocking
connection is established with the server.

uEventMsg

The message identifier that is used when an asynchronous socket event occurs. This value
should be greater than WM_USER as defined in the Windows header files. If the hEventWnd
parameter is NULL, this parameter must be specified as WM_NULL.

Return Value
If the function succeeds, the return value is a handle to a client session. If the function fails, the
return value is INVALID_CLIENT. To get extended error information, call PopGetLastError.

Remarks
When a message is posted to the notification window, the low word of the lParam parameter
contains the event identifier. The high word of lParam contains the low word of the error code, if
an error has occurred. The wParam parameter contains the client handle. One or more of the
following event identifiers may be sent:

Constant Description

POP_EVENT_CONNECT The connection to the server has completed. The high word of the
lParam parameter should be checked, since this notification
message will be posted if an error has occurred.

POP_EVENT_DISCONNECT The server has closed the connection to the client. The client
should read any remaining data and disconnect.

POP_EVENT_READ Data is available to read by the client. No additional messages will
be posted until the client has read at least some of the data. This
event is only generated if the calling process is in asynchronous
mode.

POP_EVENT_WRITE The client can now write data. This notification is sent after a
connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking
operation. This event is only generated if the client is in
asynchronous mode.

POP_EVENT_TIMEOUT The client has timed out while waiting for a response from the
server. Note that under some circumstances this event can be

generated for a non-blocking connection, such as when the client
is establishing a secure connection.

POP_EVENT_CANCEL The client has canceled the current operation.

POP_EVENT_COMMAND The client has processed a command that was sent to the server.
The result code and result string can be used to determine if the
response to the command. The high word of the lParam
parameter should be checked, since this notification message will
also be posed if the command cannot be executed.

POP_EVENT_PROGRESS This event notification is sent periodically during lengthy blocking
operations, such as retrieving a complete message from the server.

To cancel asynchronous notification and return the client to a blocking mode, use the
PopDisableEvents function.

It is recommended that you only establish an asynchronous connection if you understand the
implications of doing so. In most cases, it is preferable to create a synchronous connection and
create threads for each additional session if more than one active client session is required.

The dwOptions argument can be used to specify the threading model that is used by the library
when a connection is established. By default, the handle is initially attached to the thread that
created it. From that point on, until the it is released, only the owner may call functions using that
handle. The ownership of the handle may be transferred from one thread to another using the
PopAttachThread function.

Specifying the POP_OPTION_FREETHREAD option enables any thread to call any function using
the handle, regardless of which thread created it. It is important to note that this option disables
certain internal safety checks which are performed by the library and may result in unexpected
behavior unless access to the handle is synchronized. If one thread calls a function in the library, it
must ensure that no other thread will call another function at the same time using the same
handle.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
PopConnect, PopDisconnect, PopInitialize, PopLogin, PopUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PopAttachThread Function

DWORD WINAPI PopAttachThread(
 HCLIENT hClient
 DWORD dwThreadId
);

The PopAttachThread function attaches the specified client handle to another thread.

Parameters
hClient

Handle to the client session.

dwThreadId

The ID of the thread that will become the new owner of the handle. A value of zero specifies
that the current thread should become the owner of the client handle.

Return Value
If the function succeeds, the return value is the thread ID of the previous owner. If the function
fails, the return value is POP_ERROR. To get extended error information, call PopGetLastError.

Remarks
When a client handle is created, it is associated with the current thread that created it. Normally, if
another thread attempts to perform an operation using that handle, an error is returned since it
does not own the handle. This is used to ensure that other threads cannot interfere with an
operation being performed by the owner thread. In some cases, it may be desirable for one
thread in a client application to create the client handle, and then pass that handle to another
worker thread. The PopAttachThread function can be used to change the ownership of the
handle to the new worker thread. By preserving the return value from the function, the original
owner of the handle can be restored before the worker thread terminates.

This function should be called by the new thread immediately after it has been created, and if the
new thread does not release the handle itself, the ownership of the handle should be restored to
the parent thread before it terminates. Under no circumstances should PopAttachThread be
used to forcibly release a handle allocated by another thread while a blocking operation is in
progress. To cancel an operation, use the PopCancel function and then release the handle after
the blocking function exits and control is returned to the current thread.

Note that the dwThreadId parameter is presumed to be a valid thread ID and no checks are
performed to ensure that the thread actually exists. Specifying an invalid thread ID will orphan the
handle until the PopUninitialize function is called.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
PopConnect, PopDisconnect, PopUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PopCancel Function

INT WINAPI PopCancel(
 HCLIENT hClient
);

The PopCancel function cancels any outstanding blocking operation in the client, causing the
blocking function to fail. The application may then retry the operation or terminate the client
session.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
POP_ERROR. To get extended error information, call PopGetLastError.

Remarks
When the PopCancel function is called, the blocking function will not immediately fail. An internal
flag is set which causes the blocking operation to exit with an error. This means that the
application cannot cancel an operation and immediately perform some other operation. Instead it
must allow the calling stack to unwind, returning back to the blocking operation before making
any further function calls.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
PopIsBlocking, PopReset

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PopChangePassword Function

BOOL WINAPI PopChangePassword(
 HCLIENT hClient,
 LPCTSTR lpszUserName,
 LPCTSTR lpszOldPassword,
 LPCTSTR lpszNewPassword
);

The PopChangePassword function changes the account password for the specified user.

Parameters
hClient

Handle to the client session.

lpszUserName

Pointer to a string which specifies the user name of the account who's password will be
changed. It is not required that this be the same user name that was used to login to the mail
server.

lpszOldPassword

Pointer to a string which specifies the current account password.

lpszNewPassword

Pointer to a string which specifies the new account password. When the function returns, the
user's mailbox password will be set to this value.

Return Value
If the function succeeds, it will return a non-zero value. If the function fails, it will return zero. To
get extended error information, call PopGetLastError.

Remarks
The PopChangePassword function is used to change the password associated with the specified
account on the server. The function establishes a connection to a separate service running on the
server, and does not use the POP3 protocol. For this function to succeed, the server must be
configured to allow password changes using the "poppass" service, running on port 106.

Because passwords are sent over the network as clear text, this service is considered to be
insecure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
PopConnect, PopLogin

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PopCloseMessage Function

INT WINAPI PopCloseMessage(
 HCLIENT hClient
);

The PopCloseMessage function closes the current message that has been opened or created.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is POP_ERROR. To get extended error information, call PopGetLastError.

Remarks
If an message is being created, this function actually submits the message to the server. Note that
the client application is responsible for generating the message headers as well as the body of the
message. News messages conform to the same general characteristics of an email message.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
PopOpenMessage, PopRead

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PopCommand Function

BOOL WINAPI PopCommand(
 HCLIENT hClient,
 LPCTSTR lpszCommand,
 LPCTSTR lpszParameter
);

The PopCommand function sends a command to the server and returns the result code back to
the caller. This function is typically used for site-specific commands not directly supported by the
API.

Parameters
hClient

Handle to the client session.

lpszCommand

The command which will be executed by the server.

lpszParameter

An optional command parameter. If the command requires more than one parameter, then
they should be combined into a single string, with a space separating each parameter. If the
command does not accept any parameters, this value may be NULL.

Return Value
If the command was successful, the function returns a non-zero value. If the command failed, the
function returns zero. To get extended error information, call PopGetLastError.

Remarks
A list of valid commands can be found in the technical specification for the protocol. Many servers
will list supported commands when the HELP command is used.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
PopGetMultiLine, PopGetResultCode, PopGetResultString, PopSetMultiLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PopConnect Function

HCLIENT WINAPI PopConnect(
 LPCTSTR lpszRemoteHost,
 UINT nRemotePort,
 UINT nTimeout,
 DWORD dwOptions,
 LPSECURITYCREDENTIALS lpCredentials
);

The PopConnect function is used to establish a connection with the server.

Parameters
lpszRemoteHost

A pointer to the name of the server to connect to; this may be a fully-qualified domain name or
an IP address.

nRemotePort

The port number the server is listening on. A value of zero specifies that the default port
number should be used. For standard connections, the default port number is 110. For secure
connections, the default port number is 995. If the secure port number is specified, an implicit
SSL/TLS connection will be established by default.

nTimeout

The number of seconds that the client will wait for a response from the server before failing the
current operation.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

POP_OPTION_NONE No connection options specified. A standard
connection to the server will be established using
the specified host name and port number.

POP_OPTION_LINEBREAK Message data that is received from the server is
read as individual lines of text terminated by a
carriage return and linefeed control sequence. This
option can be useful for applications that need to
use the lower level network I/O functions and must
process the message text on a line-by-line basis.
This option is not recommended for most
applications because it can have a negative impact
on performance when retrieving large messages
from the server.

POP_OPTION_TUNNEL This option specifies that a tunneled TCP
connection and/or port-forwarding is being used
to establish the connection to the server. This
changes the behavior of the client with regards to
internal checks of the destination IP address and
remote port number, default capability selection

and how the connection is established.

POP_OPTION_TRUSTEDSITE This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option
only affects connections using either the SSL or TLS
protocols.

POP_OPTION_SECURE This option specifies that a secure connection
should be established with the server and requires
that the server support either the SSL or TLS
protocol. This option is the same as specifying
POP_OPTION_SECURE_EXPLICIT, which initiates
the secure session using the STLS command.

POP_OPTION_SECURE_EXPLICIT This option specifies the client should attempt to
establish a secure connection with the server. The
server must support secure connections using
either the SSL or TLS protocol and the STLS
command.

POP_OPTION_SECURE_IMPLICIT This option specifies the client should attempt to
establish a secure connection with the server. It
should only be used when the server expects an
implicit SSL connection or does not implement RFC
2595 where the STLS command is used to
negotiate a secure connection with the server.

POP_OPTION_SECURE_FALLBACK This option specifies the client should permit the
use of less secure cipher suites for compatibility
with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

POP_OPTION_PREFER_IPV6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be resolved
to both an IPv6 and IPv4 address. This option is
ignored if the local system does not have IPv6
enabled, or when the hostname can only be
resolved to an IPv4 address. If the server hostname
can only be resolved to an IPv6 address, the client
will attempt to establish a connection using IPv6
regardless if this option has been specified.

POP_OPTION_FREETHREAD This option specifies the handle returned by this
function may be used by any thread, and is not
limited to the thread which created it. The
application is responsible for ensuring that access
to the handle is synchronized across multiple
threads.

lpCredentials

A pointer to a SECURITYCREDENTIALS structure which is used to establish the client credentials
for a secure connection to the server. The function PopCreateSecurityCredentials can be used

to create this structure if necessary. If a standard non-secure connection is being established, or
client credentials are not required by the server, this parameter can be NULL.

Return Value
If the function succeeds, the return value is a handle to a client session. If the function fails, the
return value is INVALID_CLIENT. To get extended error information, call PopGetLastError.

Remarks
This function will block the current thread until a connection has been established or the timeout
period has elapsed. To prevent it from blocking the main user interface thread, the application
should create a background worker thread and establish a connection by calling PopConnect in
that thread. If the application requires multiple simultaneous connections, it is recommended you
create a worker thread for each connection.

The dwOptions argument can be used to specify the threading model that is used by the library
when a connection is established. By default, the handle is initially attached to the thread that
created it. From that point on, until the it is released, only the owner may call functions using that
handle. The ownership of the handle may be transferred from one thread to another using the
PopAttachThread function.

Specifying the POP_OPTION_FREETHREAD option enables any thread to call any function using
the handle, regardless of which thread created it. It is important to note that this option disables
certain internal safety checks which are performed by the library and may result in unexpected
behavior unless access to the handle is synchronized. If one thread calls a function in the library, it
must ensure that no other thread will call another function at the same time using the same
handle.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
PopDisconnect, PopInitialize, PopLogin, PopUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PopCreateSecurityCredentials Function

BOOL WINAPI PopCreateSecurityCredentials(
 DWORD dwProtocol,
 DWORD dwOptions,
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword,
 LPCTSTR lpszCertStore,
 LPCTSTR lpszCertName,
 LPVOID lpvReserved,
 LPSECURITYCREDENTIALS* lppCredentials
);

The PopCreateSecurityCredentials function creates a SECURITYCREDENTIALS structure.

Parameters
dwProtocol

A bitmask of supported security protocols. This parameter is constructed by using a bitwise
operator with any of the following values:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The
correct protocol is automatically selected, based on
what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.
This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is

supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

dwOptions

A value which specifies one or options. This member is constructed by using a bitwise operator
with any of the following values:

Constant Description

CREDENTIAL_STORE_CURRENT_USER The library will attempt to open a store for
the current user using the certificate store
name provided in this structure. If no options
are specified, then this is the default
behavior.

CREDENTIAL_STORE_LOCAL_MACHINE The library will attempt to open a local
machine store using the certificate store
name provided in this structure. If this option
is specified, the library will always search for a
local machine store before searching for the
store by that name for the current user.

CREDENTIAL_STORE_FILENAME The certificate store name is a file that
contains the certificate and private key that
will be used.

lpszUserName

A pointer to a string which specifies the certificate owner's username. A value of NULL specifies
that no username is required. Currently this parameter is not used and any value specified will
be ignored.

lpszPassword

A pointer to a string which specifies the certificate owner's password. A value of NULL specifies
that no password is required. This parameter is only used if a PKCS #12 (PFX) certificate file is
specified and that certificate has been secured with a password. This value will be ignored the
current user or local machine certificate store is specified.

lpszCertStore

A pointer to a string which specifies the name of the certificate store to open. A certificate store
is a collection of certificates and their private keys, typically organized by how they are used. If
this value is NULL or points to an empty string, the default certificate store "MY" will be used.

Store Name Description

CA Certification authority certificates. These are certificates that are issued by
entities which are entrusted to issue certificates to other individuals or
organizations. Companies such as VeriSign and Thawte act as
certification authorities.

MY Personal certificates and their associated private keys for the current user.
This store typically holds the client certificates used to establish a user's
credentials. This corresponds to the "Personal" store that is displayed by
the certificate manager utility and is the default store used by the library.

ROOT Certificates that have been self-signed by a certificate authority. Root
certificates for a number of different certification authorities such as
VeriSign and Thawte are installed as part of the operating system and
periodically updated by Microsoft.

lpszCertName

A pointer to a null terminated string which specifies the name of the certificate to use. The
function will first search the certificate store for a certificate with a matching "friendly name"; this
is a name for the certificate that is assigned by the user. Note that the name must match
completely, but the comparison is not case sensitive. If no matching certificate is found, the
function will then attempt to find a certificate that has a matching common name (also called
the certificate subject). This comparison is less stringent, and the first partial match will be
returned. If this second search fails, the function will return an error indicating that the certificate
could not be found.

lpvReserved

Pointer reserved for future use. Set it to NULL when using this function.

lppCredentials

Pointer to an LPSECURITYCREDENTIALS pointer. The memory for the credentials structure will
be allocated by this function and must be released by calling the
PopDeleteSecurityCredentials function when it is no longer needed. The pointer value must
be set to NULL before the function is called. It is important to note that this is a pointer to a
pointer variable, not a pointer to the SECURITYCREDENTIALS structure itself.

Return Value

If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call PopGetLastError.

Remarks
The structure that is created by this function may be used as client credentials when establishing a
secure connection. This is particularly useful for programming languages other than C/C++ which
may not support C structures or pointers. The pointer to the SECURITYCREDENTIALS structure can
be declared as an unsigned integer variable which is passed by reference to this function, and
then passed by value to the PopAsyncConnect or PopConnect functions.

Example
LPSECURITYCREDENTIALS lpSecCred = NULL;
PopCreateSecurityCredentials(SECURITY_PROTOCOL_DEFAULT,
 0,
 NULL,
 NULL,
 lpszCertStore,
 lpszCertName,
 NULL,
 &lpSecCred);

hClient = PopConnect(lpszHostName,
 POP_PORT_SECURE,
 POP_TIMEOUT,
 POP_OPTION_SECURE,
 lpSecCred);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
PopConnect, PopDeleteSecurityCredentials, PopGetSecurityInformation, SECURITYCREDENTIALS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PopDeleteMessage Function

INT WINAPI PopDeleteMessage(
 HCLIENT hClient,
 UINT nMessage
);

The PopDeleteMessage function marks the specified message for deletion from the mailbox.

Parameters
hClient

Handle to the client session.

nMessage

Number of message to delete from the server. This value must be greater than zero. The first
message in the mailbox is message number one.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
POP_ERROR. To get extended error information, call PopGetLastError.

Remarks
This function only marks the message for deletion. The message is not actually deleted until the
user disconnects from the server. To prevent one or more marked messages from actually being
deleted from the mailbox, call the PopReset function to reset the client session.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
PopGetMessage, PopGetMessageCount, PopReset

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PopDeleteSecurityCredentials Function

VOID WINAPI PopDeleteSecurityCredentials(
 LPSECURITYCREDENTIALS* lppCredentials
);

The PopDeleteSecurityCredentials function deletes an existing SECURITYCREDENTIALS
structure.

Parameters
lppCredentials

Pointer to an LPSECURITYCREDENTIALS pointer. On exit from the function, the pointer will be
NULL.

Return Value
None.

Example
if (lpSecCred)
 PopDeleteSecurityCredentials(&lpSecCred);

PopUninitialize();

Remarks
This function can be used to release the memory allocated to the client or server credentials after
a secure connection has been terminated.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
PopCreateSecurityCredentials, PopUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PopDisableEvents Function

INT WINAPI PopDisableEvents(
 HCLIENT hClient
);

The PopDisableEvents function disables the event notification mechanism, preventing
subsequent event notification messages from being posted to the application's message queue.

This function has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
POP_ERROR. To get extended error information, call PopGetLastError.

Remarks
This function affects both event notification and event callbacks. Any outstanding events in the
message queue should be ignored by the client application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
PopEnableEvents, PopFreezeEvents, PopRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PopDisableTrace Function

BOOL WINAPI PopDisableTrace();

The PopDisableTrace function disables the logging of socket function calls to the trace log.

Parameters
None.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
PopEnableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PopDisconnect Function

INT WINAPI PopDisconnect(
 HCLIENT hClient
);

The PopDisconnect function terminates the connection with the server, closing the socket and
releasing the memory allocated for the client session.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
POP_ERROR. To get extended error information, call PopGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
PopConnect, PopUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PopEnableEvents Function

INT WINAPI PopEnableEvents(
 HCLIENT hClient,
 HWND hEventWnd,
 UINT uEventMsg
);

The PopEnableEvents function enables event notifications using Windows messages.

This function has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Applications should use the PopRegisterEvent function to register an event handler which is
invoked when an event occurs.

Parameters
hClient

Handle to the client session.

hEventWnd

Handle to the event notification window. This window receives a user-defined message which
specifies the event that has occurred. If this value is NULL, event notification is disabled.

uEventMsg

An unsigned integer which specifies the user-defined message that is sent when an event
occurs. This parameter's value must be greater than the value of WM_USER. If the hEventWnd
parameter is NULL, this value must be specified as WM_NULL.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
POP_ERROR. To get extended error information, call PopGetLastError.

Remarks
When a message is posted to the notification window, the low word of the lParam parameter
contains the event identifier. The high word of lParam contains the low word of the error code, if
an error has occurred. The wParam parameter contains the client handle. One or more of the
following event identifiers may be sent:

Constant Description

POP_EVENT_CONNECT The connection to the server has completed. The high word of the
lParam parameter should be checked, since this notification
message will be posted if an error has occurred.

POP_EVENT_DISCONNECT The server has closed the connection to the client. The client
should read any remaining data and disconnect.

POP_EVENT_READ Data is available to read by the calling process. No additional
messages will be posted until the client has read at least some of
the data. This event is only generated if the client is in
asynchronous mode.

POP_EVENT_WRITE The client can now write data. This notification is sent after a
connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking
operation. This event is only generated if the client is in
asynchronous mode.

POP_EVENT_TIMEOUT The network operation has exceeded the specified timeout period.
The client application may attempt to retry the operation, or may
disconnect from the server and report an error to the user.

POP_EVENT_CANCEL The current operation has been canceled. Under most
circumstances the client should disconnect from the server and re-
connect if needed. After an operation has been canceled, the
server may abort the connection or refuse to accept further
commands from the client.

POP_EVENT_COMMAND A command has been issued by the client and the server response
has been received and processed. This event can be used to log
the result codes and messages returned by the server in response
to actions taken by the client.

POP_EVENT_PROGRESS The client is in the process of sending or receiving data from the
server. This event is called periodically during a transfer so that the
client can update any user interface components such as a status
control or progress bar.

As noted, some events are only generated when the client is asynchronous mode. These events
depend on the Windows Sockets asynchronous notification mechanism.

If event notification is disabled by specifying a NULL window handle, there may still be outstanding
events in the message queue that must be processed. Since event handling has been disabled,
these events should be ignored by the client application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
PopDisableEvents, PopFreezeEvents, PopRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PopEnableTrace Function

BOOL WINAPI PopEnableTrace(
 LPCTSTR lpszTraceFile,
 DWORD dwTraceFlags
);

The PopEnableTrace function enables the logging of Windows Sockets function calls to a file.

Parameters
lpszTraceFile

A pointer to a string which specifies the name of the trace log file. If this parameter is NULL or
an empty string, the default file name cstrace.log is used. The file is stored in the directory
specified by the TEMP environment variable, if it is defined; otherwise, the current working
directory is used.

dwTraceFlags

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

TRACE_INFO All function calls are written to the trace file. This is the default
value.

TRACE_ERROR Only those function calls which fail are recorded in the trace file.

TRACE_WARNING Only those function calls which fail or return values which indicate
a warning are recorded in the trace file.

TRACE_HEXDUMP All functions calls are written to the trace file, plus all the data that
is sent or received is displayed, in both ASCII and hexadecimal
format.

TRACE_PROCESS All function calls in the current process are logged, rather than
only those functions in the current thread. This option is useful for
multithreaded applications that are using worker threads.

Return Value
If the function succeeds, the return value is non-zero. A return value of zero indicates an error.
Failure typically indicates that the tracing library cstrcv11.dll cannot be loaded on the local
system.

Remarks
When trace logging is enabled, the file is opened, appended to and closed for each socket
function call. This makes it possible for an application to append its own logging information,
however care should be taken to ensure that the file is closed before the next network operation is
performed. To limit the size of the log files, enable and disable logging only around those sections
of code that you wish to trace.

Note that the TRACE_HEXDUMP trace level generates very large log files since it includes all of the
data exchanged between your application and the server.

Trace function logging is managed on a per-thread basis, not for each client handle. This means
that all SocketTools libraries and components share the same settings in the current thread. If you

are using multiple SocketTools libraries or components in your application, you only need to
enable logging once.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
PopDisableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PopEventProc Function

VOID CALLBACK PopEventProc(
 HCLIENT hClient,
 UINT nEvent,
 DWORD dwError,
 DWORD_PTR dwParam
);

The PopEventProc function is an application-defined callback function that processes events
generated by the client.

Parameters
hClient

Handle to the client session.

nEvent

An unsigned integer which specifies which event occurred. For a complete list of events, refer to
the PopRegisterEvent function.

dwError

An unsigned integer which specifies any error that occurred. If no error occurred, then this
parameter will be zero.

dwParam

A user-defined integer value which was specified when the event callback was registered.

Return Value
None.

Remarks
An application must register this callback function by passing its address to the PopRegisterEvent
function. The PopEventProc function is a placeholder for the application-defined function name.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
PopDisableEvents, PopEnableEvents, PopFreezeEvents, PopRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PopFreezeEvents Function

INT WINAPI PopFreezeEvents(
 HCLIENT hClient,
 BOOL bFreeze
);

The PopFreezeEvents function is used to suspend and resume event handling by the client.

Parameters
hClient

Handle to the client session.

bFreeze

A non-zero value specifies that event handling should be suspended by the client. A zero value
specifies that event handling should be resumed.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
POP_ERROR. To get extended error information, call PopGetLastError.

Remarks
This function should be used when the application does not want to process events, such as when
a modal dialog is being displayed. When events are suspended, all client events are queued. If
events are re-enabled at a later point, those queued events will be sent to the application for
processing. Note that only one of each event will be generated. For example, if the client has
suspended event handling, and four read events occur, once event handling is resumed only one
of those read events will be posted to the client. This prevents the application from being flooded
by a potentially large number of queued events.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
PopDisableEvents, PopEnableEvents, PopRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PopGetErrorString Function

INT WINAPI PopGetErrorString(
 DWORD dwErrorCode,
 LPTSTR lpszDescription,
 INT cbDescription
);

The PopGetErrorString function is used to return a description of a specific error code. Typically
this is used in conjunction with the PopGetLastError function for use with warning dialogs or as
diagnostic messages.

Parameters
dwErrorCode

The error code for which a description is returned.

lpszDescription

A pointer to the buffer that will contain a description of the specified error code. This buffer
should be at least 128 characters in length.

cbDescription

The maximum number of characters that may be copied into the description buffer.

Return Value
If the function succeeds, the return value is the length of the description string. If the function fails,
the return value is zero, meaning that no description exists for the specified error code. Typically
this indicates that the error code passed to the function is invalid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
PopGetLastError, PopSetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PopGetHeaderValue Function

INT WINAPI PopGetHeaderValue(
 HCLIENT hClient,
 UINT nMessageId,
 LPCTSTR lpszHeader,
 LPTSTR lpszValue,
 INT nMaxLength
);

The PopGetHeaderValue function returns the value of a header field in the specified message.

Parameters
hClient

Handle to the client session.

nMessageId

Number of message to retrieve header value from. This value must be greater than zero. The
first message in the mailbox is message number one.

lpszHeader

Pointer to a string which specifies the message header to retrieve. The colon should not be
included in this string.

lpszValue

Pointer to a string buffer that will contain the value of the specified message header.

nMaxLength

The maximum number of characters that may be copied into the buffer, including the
terminating null character.

Return Value
If the function succeeds, the function returns the length of the header field value. If the header
field is not present in the message, the function will return a value of zero. If the function fails, the
return value is POP_ERROR. To get extended error information, call PopGetLastError.

Remarks
The PopGetHeaderValue function returns the value of a header field from the specified message.
This allows an application to be able to easily determine the value of a header (such as the sender,
or the subject of the message) without downloading the entire header block or contents of the
message.

This function uses the XTND XLST command, which is an extension to the POP3 protocol. Not all
servers support the use of this command. If this command is not supported by the server, the
function will attempt to retrieve the entire message header and return the value for the specified
header field. This enables an application to use this function even if the server does not support
command extensions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
PopGetMessageHeaders, PopGetMessageId, PopGetMessageSender

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PopGetLastError Function

DWORD WINAPI PopGetLastError();

Parameters
None.

Return Value
The return value is the last error code value for the current thread. Functions set this value by
calling the PopSetLastError function. The Return Value section of each reference page notes the
conditions under which the function sets the last error code.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. You should call
the PopGetLastError function immediately when a function's return value indicates that an error
has occurred. That is because some functions call PopSetLastError(0) when they succeed,
clearing the error code set by the most recently failed function.

Most functions will set the last error code value when they fail; a few functions set it when they
succeed. Function failure is typically indicated by a return value such as FALSE, NULL,
INVALID_CLIENT or POP_ERROR. Those functions which call PopSetLastError when they succeed
are noted on the function reference page.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
PopGetErrorString, PopSetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PopGetMessage Function

INT WINAPI PopGetMessage(
 HCLIENT hClient,
 LONG nMessageId,
 LPVOID lpvBuffer,
 LPDWORD lpdwLength,
 DWORD dwReserved
);

The PopGetMessage function retrieves the specified message and copies the contents to a local
buffer.

Parameters
hClient

Handle to the client session.

nMessageId

Number of message to retrieve from the server. This value must be greater than zero.

lpvBuffer

A pointer to a byte buffer which will contain the data transferred from the server, or a pointer to
a global memory handle which will reference the data when the function returns.

lpdwLength

A pointer to an unsigned integer which should be initialized to the maximum number of bytes
that can be copied to the buffer specified by the lpvBuffer parameter. If the lpvBuffer
parameter points to a global memory handle, the length value should be initialized to zero.
When the function returns, this value will be updated with the actual length of the file that was
downloaded.

dwReserved

A reserved parameter. This value should always be zero.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is POP_ERROR. To get extended error information, call PopGetLastError.

Remarks
The PopGetMessage function is used to retrieve an message from the server and copy it into a
local buffer. The function may be used in one of two ways, depending on the needs of the
application. The first method is to pre-allocate a buffer large enough to store the contents of the
message. In this case, the lpvBuffer parameter will point to the buffer that was allocated, the value
that the lpdwLength parameter points to should be initialized to the size of that buffer.

The second method that can be used is have the lpvBuffer parameter point to a global memory
handle which will contain the message data when the function returns. In this case, the value that
the lpdwLength parameter points to must be initialized to zero. It is important to note that the
memory handle returned by the function must be freed by the application, otherwise a memory
leak will occur. See the example code below.

This function will cause the current thread to block until the complete message has been retrieved,
a timeout occurs or the operation is canceled. During the transfer, the POP_EVENT_PROGRESS
event will be periodically fired, enabling the application to update any user interface controls.

Event notification must be enabled, either by calling PopEnableEvents, or by registering a
callback function using the PopRegisterEvent function.

To determine the current status of a transfer while it is in progress, use the PopGetTransferStatus
function.

Example
HGLOBAL hgblBuffer = (HGLOBAL)NULL;
LPBYTE lpBuffer = (LPBYTE)NULL;
DWORD cbBuffer = 0;

// Return the message into block of global memory allocated by
// the GlobalAlloc function; the handle to this memory will be
// returned in the hgblBuffer parameter
nResult = PopGetMessage(hClient,
 nMessageId,
 &hgblBuffer,
 &cbBuffer,
 0);

if (nResult != POP_ERROR)
{
 // Lock the global memory handle, returning a pointer to the
 // message text
 lpBuffer = (LPBYTE)GlobalLock(hgblBuffer);

 // After the data has been used, the handle must be unlocked
 // and freed, otherwise a memory leak will occur
 GlobalUnlock(hgblBuffer);
 GlobalFree(hgblBuffer);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
PopEnableEvents, PopGetMessageHeaders, PopGetTransferStatus, PopRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PopGetMessageCount Function

INT WINAPI PopGetMessageCount(
 HCLIENT hClient
);

The PopGetMessageCount function returns the number of mail messages that are currently
available in the mailbox.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, it returns the number of messages that are currently available. If no
messages are available, either because the mailbox is empty or all of the messages have been
deleted, this function will return zero. If the function fails, the return value is POP_ERROR. To get
extended error information, call PopGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
PopDeleteMessage, PopGetHeaderValue, PopGetMessage, PopGetMessageCountEx,
PopGetMessageHeaders, PopStoreMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PopGetMessageCountEx Function

INT WINAPI PopGetMessageCountEx(
 HCLIENT hClient,
 UINT *lpnLastMessage,
 DWORD *lpdwMailboxSize
);

The PopGetMessageCountEx function returns the number of mail messages that are currently
available in the mailbox.

Parameters
hClient

Handle to the client session.

lpnLastMessage

Address of a variable that receives the number of the last valid message in the mailbox. If a
NULL value is specified, this argument is ignored.

lpdwMailboxSize

Address of a variable that receives the current size of the mailbox. This value will decrease as
messages are deleted. If a NULL value is specified, this argument is ignored.

Return Value
If the function succeeds, it returns the number of messages that are currently available. If no
messages are available, either because the mailbox is empty or all of the messages have been
deleted, this function will return zero. If the function fails, the return value is POP_ERROR. To get
extended error information, call PopGetLastError.

Remarks
The PopGetMessageCountEx function returns the number of messages available in the mailbox,
the last valid message number in the mailbox and the current size of the mailbox in bytes.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
PopDeleteMessage, PopGetHeaderValue, PopGetMessage, PopGetMessageHeaders,
PopStoreMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PopGetMessageHeaders Function

INT WINAPI PopGetMessageHeaders(
 HCLIENT hClient,
 LONG nMessageId,
 LPVOID lpvHeaders,
 LPDWORD lpdwLength
);

The PopGetMessageHeaders function retrieves the headers for the specified message from the
server.

Parameters
hClient

Handle to the client session.

nMessageId

Number of message to retrieve from the server. This value must be greater than zero.

lpvHeaders

A pointer to a byte buffer which will contain the data transferred from the server, or a pointer to
a global memory handle which will reference the data when the function returns.

lpdwLength

A pointer to an unsigned integer which should be initialized to the maximum number of bytes
that can be copied to the buffer specified by the lpvHeaders parameter. If the lpvHeaders
parameter points to a global memory handle, the length value should be initialized to zero.
When the function returns, this value will be updated with the actual length of the message that
was downloaded.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
POP_ERROR. To get extended error information, call PopGetLastError.

Remarks
The PopGetMessageHeaders function is used to retrieve an message header block from the
server and copy it into a local buffer. The function may be used in one of two ways, depending on
the needs of the application. The first method is to pre-allocate a buffer large enough to store the
contents of the file. In this case, the lpvHeaders parameter will point to the buffer that was
allocated, the value that the lpdwLength parameter points to should be initialized to the size of
that buffer.

The second method that can be used is have the lpvHeaders parameter point to a global memory
handle which will contain the message headers when the function returns. In this case, the value
that the lpdwLength parameter points to must be initialized to zero. It is important to note that
the memory handle returned by the function must be freed by the application, otherwise a
memory leak will occur.

This function will cause the current thread to block until the transfer completes, a timeout occurs
or the transfer is canceled. During the transfer, the POP_EVENT_PROGRESS event will be
periodically fired, enabling the application to update any user interface controls. Event notification
must be enabled, either by calling PopEnableEvents, or by registering a callback function using
the PopRegisterEvent function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
PopGetHeaderValue, PopGetMessage, PopGetMessageId, PopOpenMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PopGetMessageId Function

INT WINAPI PopGetMessageId(
 HCLIENT hClient,
 UINT nMessageId,
 LPTSTR lpszMessageId,
 INT nMaxLength
);

The PopGetMessageId function returns the message identifier for the specified message.

Parameters
hClient

Handle to the client session.

nMessageId

Number of message to retrieve the unique identifier for. This value must be greater than zero.
The first message in the mailbox is message number one.

lpszMessageId

Address of a string buffer to receive the message identifier. This should be at least 64 bytes in
length.

nMaxLength

The maximum length of the string buffer.

Return Value
If the function succeeds, the return value is the length of the unique identifier string. If the function
fails, the return value is POP_ERROR. To get extended error information, call PopGetLastError.

Remarks
The PopGetMessageId function returns the message identifier from the Message-ID header of
the specified message. The returned value is a typically a string which specifies the domain, date
and timestamp for the message that is created when the message is submitted to the mail server
for delivery. To obtain a unique identifier for the message in the mailbox, it is recommended that
you use the PopGetMessageUid function instead.

This function uses the XTND XLST command to obtain the value of the "Message-ID" header field.
If this command is not supported by the server, the function will attempt to retrieve the entire
message header and return the value for the specified header field. This enables an application to
use this function even if the server does not support command extensions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
PopGetHeaderValue, PopGetMessage, PopGetMessageHeaders, PopGetMessageSender,
PopGetMessageUid

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PopGetMessageSender Function

INT WINAPI PopGetMessageSender(
 HCLIENT hClient,
 UINT nMessageId,
 LPTSTR lpszAddress,
 INT nMaxLength
);

The PopGetMessageSender function returns the sender's address for the specified message.

Parameters
hClient

Handle to the client session.

nMessageId

Number of message to retrieve header value from. This value must be greater than zero. The
first message in the mailbox is message number one.

lpszAddress

Pointer to a string buffer that will contain the address of the message sender.

nMaxLength

The maximum number of characters that may be copied into the buffer, including the
terminating null character.

Return Value
If the function succeeds, the function returns the length of the address. If the sender cannot be
determined, the function will return a value of zero. If the function fails, the return value is
POP_ERROR. To get extended error information, call PopGetLastError.

Remarks
The PopGetMessageSender function returns the email address of the user who sent the
specified message. This allows an application to be able to easily determine the sender, without
downloading the entire header block or contents of the message.

This function uses the XSENDER command, which is an extension to the POP3 protocol, to
determine the address of the authenticated sender of the message. If the command is not
supported, or the server was unable to authenticate the sender, the function will use the XTND
XLST command to obtain the value of the "From" header field. If this command is not supported
by the server, the function will attempt to retrieve the entire message header and return the value
for the specified header field. This enables an application to use this function even if the server
does not support command extensions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
PopGetHeaderValue, PopGetMessageHeaders, PopGetMessageId, PopGetMessageUid

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PopGetMessageSize Function

DWORD WINAPI PopGetMessageSize(
 HCLIENT hClient,
 UINT nMessageId
);

The PopGetMessageSize function returns the size of the specified message.

Parameters
hClient

Handle to the client session.

nMessageId

Number of message to retrieve size of. This value must be greater than zero. The first message
in the mailbox is message number one.

Return Value
If the function succeeds, the return value is the size of the specified message in bytes. If the
function fails, the return value is POP_ERROR. To get extended error information, call
PopGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
PopGetHeaderValue, PopGetMessageHeaders, PopGetMessageId, PopGetMessageSender,
PopGetTransferStatus

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PopGetMessageUid Function

INT WINAPI PopGetMessageUid(
 HCLIENT hClient,
 UINT nMessageId,
 LPTSTR lpszMessageUID,
 INT nMaxLength
);

The PopGetMessageUid function returns the unique identifier (UID) for the specified message in
the current mailbox.

Parameters
hClient

Handle to the client session.

nMessageId

Number of message to retrieve the unique identifier for. This value must be greater than zero.
The first message in the mailbox is message number one.

lpszMessageUID

Address of a string buffer to receive the unique identifier for the specified message. This should
be at least 64 bytes in length.

nMaxLength

The maximum length of the string buffer for the message UID.

Return Value
If the function succeeds, it returns a non-zero value. If no unique identifier is assigned to the
message, the function will return zero. If an error occurs, the function returns POP_ERROR. To get
extended error information, call PopGetLastError.

Remarks
The PopGetMessageUid function returns the unique message identifier for the specified
message. The returned value is a string which can be used to uniquely identify a specific message
in the mailbox across multiple client sessions. This is commonly used by mail clients to determine if
they have already retrieved a message from the server in a previous session. The UID can also be
used as a key or component of the file name to reference the message after it has been stored on
the local system.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
PopGetHeaderValue, PopGetMessage, PopGetMessageHeaders, PopGetMessageId,
PopGetMessageSender

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PopGetMultiLine Function

INT WINAPI PopGetMultiLine(
 HCLIENT hClient,
 LPBOOL lpbMultiLine
);

The PopGetMultiLine function returns the value of the client multi-line flag in the specified
boolean parameter.

Parameters
hClient

Handle to the client session.

lpbMultiLine

A pointer to a boolean variable. This variable will be set to the current value of the client's
internal multi-line flag.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
POP_ERROR. To get extended error information, call PopGetLastError.

Remarks
The multi-line flag is used by the library to determine if multiple lines of data will be returned by
the server as the result of a command. Unlike a single line response, which consists of a result
code and result string, a multi-line response consists of one or more lines of text, terminated by a
special end-of-data marker.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
PopCommand, PopGetResultCode, PopGetResultString, PopSetMultiLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PopGetResultCode Function

BOOL WINAPI PopGetResultCode(
 HCLIENT hClient
);

The PopGetResultCode function reads the result code returned by the server in response to a
command. The result code is a Boolean value, and indicates if the operation succeeded or failed.

Parameters
hClient

Handle to the client session.

Return Value
If the previous command was successful, the function returns a non-zero value. If the previous
command failed, the function returns zero. To get extended error information, call
PopGetLastError.

Remarks
Unlike most other Internet application protocols, the Post Office Protocol does not return numeric
result codes to indicate success or failure. If a command is successful, the server will respond with
the string "+OK" and this is indicated by the PopGetResultCode function returning a non-zero
value. If the command fails, the server will respond with the string "-ERR" along with a description
of the error, and this is indicated by the function returning a value of zero. The description of the
error returned by the server can be obtained by calling the PopGetResultString function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
PopCommand, PopGetResultString

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PopGetResultString Function

INT WINAPI PopGetResultString(
 HCLIENT hClient,
 LPTSTR lpszResult,
 INT nMaxLength
);

The PopGetResultString function returns the last message sent by the server along with the
result code.

Parameters
hClient

Handle to the client session.

lpszResult

A pointer to the buffer that will contain the result string returned by the server.

nMaxLength

The maximum number of characters that may be copied into the result string buffer, including
the terminating null character.

Return Value
If the function succeeds, the return value is the length of the result string. If a value of zero is
returned, this means that no result string was sent by the server. If the function fails, the return
value is POP_ERROR. To get extended error information, call PopGetLastError.

Remarks
The PopGetResultString function is most useful when an error occurs because the server will
typically include a brief description of the cause of the error. This can then be parsed by the
application or displayed to the user. The result string is updated each time the client sends a
command to the server and then calls PopGetResultCode to obtain the result code for the
operation.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
PopCommand, PopGetResultCode

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PopGetSecurityInformation Function

BOOL WINAPI PopGetSecurityInformation(
 HCLIENT hClient,
 LPSECURITYINFO lpSecurityInfo
);

The PopGetSecurityInformation function returns security protocol, encryption and certificate
information about the current client connection.

Parameters
hClient

Handle to the client session.

lpSecurityInfo

A pointer to a SECURITYINFO structure which contains information about the current client
connection. The dwSize member of this structure must be initialized to the size of the structure
before passing the address of the structure to this function.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call PopGetLastError.

Remarks
This function is used to obtain security related information about the current client connection to
the server. It can be used to determine if a secure connection has been established, what security
protocol was selected, and information about the server certificate. Note that a secure connection
has not been established, the dwProtocol structure member will contain the value
SECURITY_PROTOCOL_NONE.

Example
The following example notifies the user if the connection is secure or not:

SECURITYINFO securityInfo;

securityInfo.dwSize = sizeof(SECURITYINFO);
if (PopGetSecurityInformation(hClient, &securityInfo))
{
 if (securityInfo.dwProtocol == SECURITY_PROTOCOL_NONE)
 {
 MessageBox(NULL, _T("The connection is not secure"),
 _T("Connection"), MB_OK);
 }
 else
 {
 if (securityInfo.dwCertStatus == SECURITY_CERTIFICATE_VALID)
 {
 MessageBox(NULL, _T("The connection is secure"),
 _T("Connection"), MB_OK);
 }
 else
 {
 MessageBox(NULL, _T("The server certificate not valid"),
 _T("Connection"), MB_OK);
 }

 }
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
PopConnect, PopDisconnect, SECURITYINFO

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PopGetStatus Function

INT WINAPI PopGetStatus(
 HCLIENT hClient
);

The PopGetStatus function returns the current status of the client session.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is the client status code. If the function fails, the return
value is POP_ERROR. To get extended error information, call PopGetLastError.

Remarks
The PopGetStatus function returns a numeric code which identifies the current state of the client
session. The following values may be returned:

Value Constant Description

1 POP_STATUS_IDLE The client is current idle and not sending or
receiving data.

2 POP_STATUS_CONNECT The client is establishing a connection with the
server.

3 POP_STATUS_READ The client is reading data from the server.

4 POP_STATUS_WRITE The client is writing data to the server.

5 POP_STATUS_DISCONNECT The client is disconnecting from the server.

In a multithreaded application, any thread in the current process may call this function to obtain
status information for the specified client session.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
PopIsBlocking, PopIsConnected, PopIsReadable, PopIsWritable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PopGetTimeout Function

INT WINAPI PopGetTimeout(
 HCLIENT hClient
);

The PopGetTimeout function returns the number of seconds the client will wait for a response
from the server. Once the specified number of seconds has elapsed, the function will fail and
return to the caller.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is the timeout period in seconds. If the function fails, the
return value is POP_ERROR. To get extended error information, call PopGetLastError.

Remarks
The timeout value is only used with blocking client connections. A value of zero indicates that the
default timeout period of 20 seconds should be used.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
PopConnect, PopIsReadable, PopIsWritable, PopRead, PopSetTimeout

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PopGetTransferStatus Function

INT WINAPI PopGetTransferStatus(
 HCLIENT hClient,
 LPPOPTRANSFERSTATUS lpStatus
);

The PopGetTransferStatus function returns information about the current file transfer in
progress.

Parameters
hClient

Handle to the client session.

lpStatus

A pointer to an POPTRANSFERSTATUS structure which contains information about the status of
the current file transfer.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
POP_ERROR. To get extended error information, call PopGetLastError.

Remarks
The PopGetTransferStatus function returns information about the current file transfer, including
the average number of bytes transferred per second and the estimated amount of time until the
transfer completes. If there is no file currently being transferred, this function will return the status
of the last successful transfer made by the client.

In a multithreaded application, any thread in the current process may call this function to obtain
status information for the specified client session.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
PopEnableEvents, PopGetStatus, PopRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PopInitialize Function

BOOL WINAPI PopInitialize(
 LPCTSTR lpszLicenseKey,
 LPINITDATA lpData
);

The PopInitialize function initializes the library and validates the specified license key at runtime.

Parameters
lpszLicenseKey

Pointer to a string that specifies the runtime license key to be validated. If this parameter is
NULL, the library will validate the development license installed on the local system.

lpData

Pointer to an INITDATA data structure. This parameter may be NULL if the initialization data for
the library is not required.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call PopGetLastError. All other client functions will fail until a
license key has been successfully validated.

Remarks
This must be the first function that an application calls before using any of the other functions in
the library. When a NULL license key is specified, the library will only function on the development
system. Before redistributing the application to an end-user, you must insure that this function is
called with a valid license key.

If the lpData argument is specified, it must point to an INITDATA structure which has been
initialized by setting the dwSize member to the size of the structure. All other structure members
should be set to zero. If the function is successful, then the INITDATA structure will be filled with
identifying information about the library.

Although it is only required that PopInitialize be called once for the current process, it may be
called multiple times; however, each call must be matched by a corresponding call to
PopUninitialize.

This function dynamically loads other system libraries and allocates thread local storage. If you are
calling the functions in this library from within another DLL, it is important that you do not call the
PopInitialize or PopUninitialize functions from the DllMain function because it can result in
deadlocks or access violation errors. If the DLL is linked with the C runtime library (CRT), it will
automatically call the constructors and destructors for static and global C++ objects and has the
same restrictions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also

PopConnect, PopDisconnect, PopUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PopIsBlocking Function

BOOL WINAPI PopIsBlocking(
 HCLIENT hClient
);

The PopIsBlocking function is used to determine if the client is currently performing a blocking
operation.

Parameters
hClient

Handle to the client session.

Return Value
If the client is performing a blocking operation, the function returns a non-zero value. If the client
is not performing a blocking operation, or the client handle is invalid, the function returns zero.

Remarks
Because a blocking operation can allow the application to be re-entered (for example, by pressing
a button while the operation is being performed), it is possible that another blocking function may
be called while it is in progress. Since only one thread of execution may perform a blocking
operation at any one time, an error would occur. The PopIsBlocking function can be used to
determine if the client is already blocked, and if so, take some other action (such as warning the
user that they must wait for the operation to complete).

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
PopCancel

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PopIsConnected Function

BOOL WINAPI PopIsConnected(
 HCLIENT hClient
);

The PopIsConnected function is used to determine if the client is currently connected to a server.

Parameters
hClient

Handle to the client session.

Return Value
If the client is connected to a server, the function returns a non-zero value. If the client is not
connected, or the client handle is invalid, the function returns zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
PopIsBlocking, PopIsReadable, PopIsWritable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PopIsReadable Function

BOOL WINAPI PopIsReadable(
 HCLIENT hClient,
 INT nTimeout,
 LPDWORD lpdwAvail
);

The PopIsReadable function is used to determine if data is available to be read from the server.

Parameters
hClient

Handle to the client session.

nTimeout

Timeout for server response, in seconds. A value of zero specifies that the connection should be
polled without blocking the current thread.

lpdwAvail

A pointer to an unsigned integer which will contain the number of bytes available to read. This
parameter may be NULL if this information is not required.

Return Value
If the client can read data from the server within the specified timeout period, the function returns
a non-zero value. If the client cannot read any data, the function returns zero.

Remarks
On some platforms, this value will not exceed the size of the receive buffer (typically 64K bytes).
Because of differences between TCP/IP stack implementations, it is not recommended that your
application exclusively depend on this value to determine the exact number of bytes available.
Instead, it should be used as a general indicator that there is data available to be read.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
PopGetStatus, PopIsBlocking, PopIsConnected, PopIsWritable, PopRead

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PopIsWritable Function

BOOL WINAPI PopIsWritable(
 HCLIENT hClient,
 INT nTimeout
);

The PopIsWritable function is used to determine if data can be written to the server.

Parameters
hClient

Handle to the client session.

nTimeout

Timeout for server response, in seconds. A value of zero specifies that the connection should be
polled without blocking the current thread.

Return Value
If the client can write data to the server within the specified timeout period, the function returns a
non-zero value. If the client cannot write any data, the function returns zero.

Remarks
Although this function can be used to determine if some amount of data can be sent to the
remote process it does not indicate the amount of data that can be written without blocking the
client. In most cases, it is recommended that large amounts of data be broken into smaller logical
blocks, typically some multiple of 512 bytes in length.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
PopGetStatus, PopIsBlocking, PopIsConnected, PopIsReadable, PopWrite

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PopLogin Function

INT WINAPI PopLogin(
 HCLIENT hClient,
 UINT nAuthType,
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword
);

The PopLogin function authenticates the specified user in on the server. This function must be
called after the connection has been established, and before attempting to retrieve messages or
perform any other function on the server.

Parameters
hClient

Handle to the client session.

nAuthType

Identifies the type of authentication that should be used when the client logs in to the mail
server. The following authentication methods are supported:

Constant Description

POP_AUTH_DEFAULT The default authentication scheme which sends the username
and password as cleartext to the server. Because the user
credentials are not encrypted, this method should only be
used over a secure connection. This is the same as specifying
POP_AUTH_PASS as the authentication method.

POP_AUTH_PASS The username and password is sent to the server using the
USER and PASS commands. This authentication method is
supported by most servers and is the default authentication
type. The credentials are not encrypted and this method
should only be used over secure connections.

POP_AUTH_APOP The APOP authentication method which uses an MD5 digest
of the password. This method has been deprecated is not
supported by all servers. It should only be used if required by
legacy mail servers which do not support the SASL
authentication methods.

POP_AUTH_LOGIN This authentication type will use the LOGIN method to
authenticate the client session. This encodes the username
and password in a specific format, but the credentials are not
encrypted and should only be used over a secure connection.
The server must support the Simple Authentication and
Security Layer (SASL) mechanism as defined in RFC 4422.

POP_AUTH_PLAIN This authentication type will use the PLAIN method to
authenticate the client session. This encodes the username
and password in a specific format, but the credentials are not
encrypted and should only be used over a secure connection.
The server must support the PLAIN Simple Authentication and
Security Layer (SASL) mechanism as defined in RFC 4616.

POP_AUTH_XOAUTH2 This authentication type will use the XOAUTH2 method to
authenticate the client session. This authentication method
does not require the user password, instead the lpszPassword
parameter must specify the OAuth 2.0 bearer token issued by
the service provider. The application must provide a valid
access token which has not expired, or this function will fail.

POP_AUTH_BEARER This authentication type will use the OAUTHBEARER method
to authenticate the client session as defined in RFC 7628. This
authentication method does not require the user password,
instead the lpszPassword parameter must specify the OAuth
2.0 bearer token issued by the service provider. The
application must provide a valid access token which has not
expired, or this function will fail.

lpszUserName

A null terminated string which specifies the user name to be used to authenticate the current
client session. For many service providers, the user name is the full email address of the user
which owns the mailbox. In some cases, this may only be the portion of their email address
before the domain name.

lpszPassword

A null terminated string which specifies the password to be used when authenticating the
current client session. If you are using the POP_AUTH_XOAUTH2 or POP_AUTH_BEARER
authentication methods, this parameter is not a password, instead it specifies the OAuth 2.0
bearer token provided by the mail service.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
POP_ERROR. To get extended error information, call PopGetLastError.

Remarks
The POP_AUTH_LOGIN and POP_AUTH_PLAIN authentication methods require the mail server
support the Simple Authentication and Security Layer (SASL) AUTH command as defined in RFC
5034. Most modern mail servers do support one or both of these methods, and they are generally
preferred over the POP_AUTH_PASS method when possible. However, for backwards compatibility
with legacy servers, the API will default to using POP_AUTH_PASS for client authentication.

You should only use an OAuth 2.0 authentication method if you understand the process of how to
request the access token. Obtaining an access token requires registering your application with the
mail service provider (e.g.: Microsoft or Google), getting a unique client ID associated with your
application and then requesting the access token using the appropriate scope for the service.
Obtaining the initial token will typically involve interactive confirmation on the part of the user,
requiring they grant permission to your application to access their mail account.

The POP_AUTH_XOAUTH2 and POP_AUTH_BEARER authentication methods are similar, but they
are not interchangeable. Both use an OAuth 2.0 bearer token to authenticate the client session,
but they differ in how the token is presented to the server. It is currently preferable to use the
XOAUTH2 method because it is more widely available and some service providers do not yet
support the OAUTHBEARER method.

Your application should not store an OAuth 2.0 bearer token for later use. They have a relatively
short lifespan, typically about an hour, and are designed to be used with that session. You should

specify offline access as part of the OAuth 2.0 scope if necessary and store the refresh token
provided by the service. The refresh token has a much longer validity period and can be used to
obtain a new bearer token when needed.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
PopConnect, PopGetMessage, PopGetMessageCountEx, PopInitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PopOpenMessage Function

INT WINAPI PopOpenMessage(
 HCLIENT hClient,
 UINT nMessageId,
 DWORD dwReserved
);

The PopOpenMessage function opens the specified message for reading.

Parameters
hClient

Handle to the client session.

nMessageId

Number that specifies which message to open. This value must be greater than zero. The first
message in the mailbox is message one.

dwReserved

A reserved parameter. This value must be zero.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
POP_ERROR. To get extended error information, call PopGetLastError.

Remarks
The PopOpenMessage function is used to begin the process of reading the contents of a
message from the from the server. Similar to how a file is opened and read, this method is
followed by one or more calls to the PopRead method. When the entire contents of the message
has been read, the PopCloseMessage method is used to close the message, completing the
transaction on the server.

This is a lower-level function which enables the application to process the message as the contents
are being returned by the server. In general, it is recommended that most applications use the
PopGetMessage method instead, which provides a simpler method for retrieving the contents of
a message.

It is important to note that you cannot use this function to read the partial contents of a message.
Opening a message on the server begins a process where the entire message contents must be
read and the message closed before the next command can be issued to the server. If you only
want to obtain the headers for a message, use the PopGetMessageHeaders function instead.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
PopCloseMessage, PopGetMessage, PopGetMessageHeaders, PopIsReadable, PopRead

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PopRead Function

INT WINAPI PopRead(
 HCLIENT hClient,
 LPBYTE lpBuffer,
 INT cbBuffer
);

The PopRead function reads the specified number of bytes from the client socket and copies
them into the buffer. The data may be of any type, and is not terminated with a null character.

Parameters
hClient

Handle to the client session.

lpBuffer

Pointer to the buffer in which the data will be copied.

cbBuffer

The maximum number of bytes to read and copy into the specified buffer. This value must be
greater than zero.

Return Value
If the function succeeds, the return value is the number of bytes actually read. A return value of
zero indicates that there is no more data available to be read. If the function fails, the return value
is POP_ERROR. To get extended error information, call PopGetLastError.

Remarks
When PopRead is called and the client is in non-blocking mode, it is possible that the function will
fail because there is no available data to read at that time. This should not be considered a fatal
error. Instead, the application should simply wait to receive the next asynchronous notification that
data is available.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
PopGetMessage, PopGetMessageHeaders, PopIsBlocking, PopIsReadable, PopOpenMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PopRegisterEvent Function

INT WINAPI PopRegisterEvent(
 HCLIENT hClient,
 UINT nEvent,
 POPEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

The PopRegisterEvent function registers an event handler for the specified event.

Parameters
hClient

Handle to the client session.

nEvent

An unsigned integer which specifies which event should be registered with the specified callback
function. One of the following values may be used:

Constant Description

POP_EVENT_CONNECT The connection to the server has completed.

POP_EVENT_DISCONNECT The server has closed the connection to the client. The
client should read any remaining data and disconnect.

POP_EVENT_READ Data is available to read by the calling process. No
additional messages will be posted until the client has
read at least some of the data. This event is only
generated if the client is in asynchronous mode.

POP_EVENT_WRITE The client can now write data. This notification is sent after
a connection has been established, or after a previous
attempt to write data has failed because it would result in
a blocking operation. This event is only generated if the
client is in asynchronous mode.

POP_EVENT_TIMEOUT The network operation has exceeded the specified
timeout period. The client application may attempt to
retry the operation, or may disconnect from the server
and report an error to the user.

POP_EVENT_CANCEL The current operation has been canceled. Under most
circumstances the client should disconnect from the
server and re-connect if needed. After an operation has
been canceled, the server may abort the connection or
refuse to accept further commands from the client.

POP_EVENT_COMMAND A command has been issued by the client and the server
response has been received and processed. This event
can be used to log the result codes and messages
returned by the server in response to actions taken by the
client.

POP_EVENT_PROGRESS The client is in the process of sending or receiving data
from the server. This event is called periodically during a

transfer so that the client can update any user interface
components such as a status control or progress bar.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the PopEventProc callback
function. If this parameter is NULL, the callback for the specified event is disabled.

dwParam

A user-defined integer value that is passed to the callback function. If the application targets the
x86 (32-bit) platform, this parameter must be a 32-bit unsigned integer. If the application
targets the x64 (64-bit) platform, this parameter must be a 64-bit unsigned integer.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
POP_ERROR. To get extended error information, call PopGetLastError.

Remarks
The PopRegisterEvent function associates a callback function with a specific event. The event
handler is an PopEventProc function that is invoked when the event occurs. Arguments are
passed to the function to identify the client session, the event type and the user-defined value
specified when the event handler is registered. If the event occurs because of an error condition,
the error code will be provided to the handler.

This function is typically used to register an event handler that is invoked while a message is being
retrieved. The POP_EVENT_PROGRESS event will only be generated periodically during the
transfer to ensure the application is not flooded with event notifications. It is guaranteed that at
least one POP_EVENT_PROGRESS notification will occur at the beginning of the transfer, and one
at the end of the transfer when it has completed.

The callback function specified by the lpEventProc parameter must be declared using the
__stdcall calling convention. This ensures the arguments passed to the event handler are pushed
on to the stack in the correct order. Failure to use the correct calling convention will corrupt the
stack and cause the application to terminate abnormally.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
PopDisableEvents, PopEnableEvents, PopEventProc, PopFreezeEvents

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PopReset Function

BOOL WINAPI PopReset(
 HCLIENT hClient
);

The PopReset function resets the client state and resynchronizes with the server. This function is
typically called after an unexpected error has occurred, or an operation has been canceled.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call PopGetLastError.

Remarks
This function will prevent any messages marked for deletion from actually being deleted from the
mailbox. The client cannot be reset while the client is in a blocked state.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
PopCancel, PopDeleteMessage, PopIsBlocking

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PopSendMessage Function

INT WINAPI PopSendMessage(
 HCLIENT hClient,
 LPVOID lpMessage,
 DWORD dwMessageSize,
 DWORD dwReserved
);

The PopSendMessage function sends a message to the specified recipients.

Parameters
hClient

Handle to the client session.

lpMessage

Pointer to a buffer which contains the message to be submitted to the mail server for delivery.

dwMessageSize

The length of the buffer in bytes. This specifies the number of bytes to be written to the mail
server. This value must be greater than zero.

dwReserved

A reserved parameter. This value must be zero.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
POP_ERROR. To get extended error information, call PopGetLastError.

Remarks
The PopSendMessage function sends a message through the POP3 server using the XTND XMIT
command. The specified file must be in the standard format as described in RFC 822, with the
recipient addresses specified in the To: and Cc: header fields. Some servers may support blind
carbon copies by using addresses specified in a Bcc: header field, and then removing those
addresses from the header before delivering the message.

Note that not all POP3 servers support this command, and it is recommended that you use the
Simple Mail Transfer Protocol (SMTP) for general mail delivery purposes.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
PopGetMessage, PopStoreMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PopSetLastError Function

VOID WINAPI PopSetLastError(
 DWORD dwErrorCode
);

The PopSetLastError function sets the last error code for the current thread. This function is
typically used to clear the last error by specifying a value of zero as the parameter.

Parameters
dwErrorCode

Specifies the last error code for the current thread.

Return Value
None.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. Most functions will
set the last error code value when they fail; a few functions set it when they succeed. Function
failure is typically indicated by a return value such as FALSE, NULL, INVALID_CLIENT or
POP_ERROR. Those functions which call PopSetLastError when they succeed are noted on the
function reference page.

Applications can retrieve the value saved by this function by using the PopGetLastError function.
The use of PopGetLastError is optional; an application can call the function to determine the
specific reason for a function failure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
PopGetErrorString, PopGetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PopSetMultiLine Function

INT WINAPI PopSetMultiLine(
 HCLIENT hClient,
 BOOL bMultiLine
);

The PopSetMultiLine function sets the client multi-line flag into the specified value.

Parameters
hClient

Handle to the client session.

bMultiLine

A boolean flag which determines if the client is processing multiple lines of data as the result of
a command.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
POP_ERROR. To get extended error information, call PopGetLastError.

Remarks
The multi-line flag is used by the library to determine if multiple lines of data will be returned by
the server as the result of a command. Unlike a single line response, which consists of a result
code and result string, a multi-line response consists of one or more lines of text, terminated by a
special end-of-data marker.

The PopSetMultiLine function should only be used in conjunction with the PopCommand
function. If a command is issued which would result in multiple lines of output, the multi-line flag
must be set TRUE. The multi-line flag must be set after each command, since it is reset to FALSE
with each command that is sent to the server.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
PopCommand, PopGetMultiLine, PopGetResultCode, PopGetResultString

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PopSetTimeout Function

INT WINAPI PopSetTimeout(
 HCLIENT hClient,
 INT nTimeout
);

The PopSetTimeout function sets the number of seconds the client will wait for a response from
the server. Once the specified number of seconds has elapsed, the function will fail and return to
the caller.

Parameters
hClient

Handle to the client session.

nTimeout

The number of seconds to wait for a blocking operation to complete.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
POP_ERROR. To get extended error information, call PopGetLastError.

Remarks
The timeout value is only used with blocking client connections.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
PopConnect, PopGetTimeout, PopRead

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PopStoreMessage Function

INT WINAPI PopStoreMessage(
 HCLIENT hClient,
 UINT nMessageId,
 LPCTSTR lpszFileName
);

The PopStoreMessage function stores a message in the specified file.

Parameters
hClient

Handle to the client session.

nMessageId

Number of the message to retrieve. This value must be greater than zero. The first message in
the mailbox is message number one.

lpszFileName

Pointer to a string which specifies the file that the message will be stored in. If an empty string
or NULL pointer is passed as an argument, the message is copied to the system clipboard.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
POP_ERROR. To get extended error information, call PopGetLastError.

Remarks
The PopStoreMessage function provides a method of retrieving and storing a message on the
local system. The contents of the message is stored as a text file, using the specified file name. This
function always causes the caller to block until the entire message has been retrieved, even if the
client has been put in asynchronous mode.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
PopGetMessage, PopGetMessageHeaders, PopGetTransferStatus, PopSendMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PopUninitialize Function

VOID WINAPI PopUninitialize();

The PopUninitialize function terminates the use of the library.

Parameters
There are no parameters.

Return Value
None.

Remarks
An application is required to perform a successful PopInitialize call before it can call any of the
other library functions. When it has completed the use of library, the application must call
PopUninitialize to allow the library to free any resources allocated on behalf of the process. Any
pending blocking or asynchronous calls in this process are canceled without posting any
notification messages, and all sockets that were opened by the process are closed.

There must be a call to PopUninitialize for every successful call to PopInitialize made by a
process. In a multithreaded environment, operations for all threads in the client are terminated.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib

See Also
PopDisconnect, PopInitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PopWrite Function

INT WINAPI PopWrite(
 HCLIENT hClient,
 LPBYTE lpBuffer,
 INT cbBuffer
);

The PopWrite function sends the specified number of bytes to the server.

Parameters
hClient

Handle to the client session.

lpBuffer

The pointer to the buffer which contains the data that is to be sent to the server.

cbBuffer

The number of bytes to send from the specified buffer.

Return Value
If the function succeeds, the return value is the number of bytes actually written. If the function
fails, the return value is POP_ERROR. To get extended error information, call PopGetLastError.

Remarks
The return value may be less than the number of bytes specified by the cbBuffer parameter. In this
case, the data has been partially written and it is the responsibility of the client application to send
the remaining data at some later point. For non-blocking clients, the client must wait for the
POP_EVENT_WRITE asynchronous notification message before it resumes sending data.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cspopv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
PopIsBlocking, PopIsWritable, PopRead, PopSendMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Post Office Protocol Data Structures

INITDATA
POPTRANSFERSTATUS
SECURITYCREDENTIALS
SECURITYINFO
SYSTEMTIME

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 INITDATA Structure

This structure contains information about the SocketTools library when the initialization function
returns.

typedef struct _INITDATA
{
 DWORD dwSize;
 DWORD dwVersionMajor;
 DWORD dwVersionMinor;
 DWORD dwVersionBuild;
 DWORD dwOptions;
 DWORD_PTR dwReserved1;
 DWORD_PTR dwReserved2;
 TCHAR szDescription[128];
} INITDATA, *LPINITDATA;

Members
dwSize

Size of this structure. This structure member must be set to the size of the structure prior to
calling the initialization function. Failure to do so will cause the function to fail.

dwVersionMajor

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the major version number for the library.

dwVersionMinor

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the minor version number for the library.

dwVersionBuild

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the build number for the library.

dwOptions

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

dwReserved1

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

dwReserved2

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

szDescription

A null terminated string which describes the library.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 POPTRANSFERSTATUS Structure

This structure is used by the PopGetTransferStatus function to return information about a message
transfer in progress.

typedef struct _POPTRANSFERSTATUS
{
 UINT nMessageId;
 DWORD dwBytesTotal;
 DWORD dwBytesCopied;
 DWORD dwBytesPerSecond;
 DWORD dwTimeElapsed;
 DWORD dwTimeEstimated;
} POPTRANSFERSTATUS, *LPPOPTRANSFERSTATUS;

Members
nMessageId

The message ID of the current message that is being transferred.

dwBytesTotal

The total number of bytes that will be transferred. If the message is being copied from the
server to the local host, this is the size of the message on the server. If the message is being
posted to the server, it is the size of message on the local system. If the message size cannot be
determined, this value will be zero.

dwBytesCopied

The total number of bytes that have been copied.

dwBytesPerSecond

The average number of bytes that have been copied per second.

dwTimeElapsed

The number of seconds that have elapsed since the transfer started.

dwTimeEstimated

The estimated number of seconds until the transfer is completed. This is based on the average
number of bytes transferred per second.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SECURITYCREDENTIALS Structure

The SECURITYCREDENTIALS structure specifies the information needed by the library to specify
additional security credentials, such as a client certificate or private key, when establishing a secure
connection.

typedef struct _SECURITYCREDENTIALS
{
 DWORD dwSize;
 DWORD dwProtocol;
 DWORD dwOptions;
 DWORD dwReserved;
 LPCTSTR lpszHostName;
 LPCTSTR lpszUserName;
 LPCTSTR lpszPassword;
 LPCTSTR lpszCertStore;
 LPCTSTR lpszCertName;
 LPCTSTR lpszKeyFile;
} SECURITYCREDENTIALS, *LPSECURITYCREDENTIALS;

Members
dwSize

Size of this structure. If the structure is being allocated dynamically, this member must be set to
the size of the structure and all other unused structure members must be initialized to a value of
zero or NULL.

dwProtocol

A bitmask of supported security protocols. The value of this structure member is constructed by
using a bitwise operator with any of the following values:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The
correct protocol is automatically selected, based on

what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.
This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is
supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

dwOptions

A value which specifies one or options. This member is constructed by using a bitwise operator
with any of the following values:

Constant Description

CREDENTIAL_STORE_CURRENT_USER The library will attempt to open a store for
the current user using the certificate store
name provided in this structure. If no options
are specified, then this is the default
behavior.

CREDENTIAL_STORE_LOCAL_MACHINE The library will attempt to open a local
machine store using the certificate store

name provided in this structure. If this option
is specified, the library will always search for a
local machine store before searching for the
store by that name for the current user.

CREDENTIAL_STORE_FILENAME The certificate store name is a file that
contains the certificate and private key that
will be used.

dwReserved

This structure member is reserved for future use and should always be initialized to zero.

lpszHostName

A pointer to a null terminated string which specifies the hostname that will be used when
validating the server certificate. If this member is NULL, then the server certificate will be
validated against the hostname used to establish the connection.

lpszUserName

A pointer to a null terminated string which identifies the owner of client certificate. Currently this
member is not used by the library and should always be initialized as a NULL pointer.

lpszPassword

A pointer to a null terminated string which specifies the password needed to access the
certificate. Currently this member is only used if the CREDENTIAL_STORE_FILENAME option has
been specified. If there is no password associated with the certificate, then this member should
be initialized as a NULL pointer.

lpszCertStore

A pointer to a null terminated string which specifies the name of the certificate store to open. A
certificate store is a collection of certificates and their private keys, typically organized by how
they are used. If this value is NULL or points to an empty string, the default certificate store "MY"
will be used.

Store
Name

Description

CA
Certification authority certificates. These are certificates that are issued by entities
which are entrusted to issue certificates to other individuals or organizations.
Companies such as VeriSign and Thawte act as certification authorities.

MY

Personal certificates and their associated private keys for the current user. This
store typically holds the client certificates used to establish a user's credentials.
This corresponds to the "Personal" store that is displayed by the certificate
manager utility and is the default store used by the library.

ROOT
Certificates that have been self-signed by a certificate authority. Root certificates
for a number of different certification authorities such as VeriSign and Thawte are
installed as part of the operating system and periodically updated by Microsoft.

lpszCertName

A pointer to a null terminated string which specifies the name of the certificate to use. The
library will first search the certificate store for a certificate with a matching "friendly name"; this is
a name for the certificate that is assigned by the user. Note that the name must match
completely, but the comparison is not case sensitive. If no matching certificate is found, the
library will then attempt to find a certificate that has a matching common name (also called the
certificate subject). This comparison is less stringent, and the first partial match will be returned.

If this second search fails, the library will return an error indicating that the certificate could not
be found. If the SECURITY_PROTOCOL_SSH protocol has been specified, this member should
be NULL.

lpszKeyFile

A pointer to a null terminated string which specifies the name of the file which contains the
private key required to establish the connection. This member is only used for SSH connections
and should always be NULL when establishing a secure connection using SSL or TLS.

Remarks
A client application only needs to create this structure if the server requires that the client provide
a certificate as part of the process of negotiating the secure session. If a certificate is required,
note that it must have a private key associated with it. Attempting to use a certificate that does not
have a private key will result in an error during the connection process indicating that the client
credentials could not be established.

If you are using a local certificate store, with the certificate and private key stored in the registry,
you can explicitly specify whether the certificate store for the current user or the local machine (all
users) should be used. This is done by prefixing the certificate store name with "HKCU:" for the
current user, or "HKLM:" for the local machine. For example, a certificate store name of
"HKLM:MY" would specify the personal certificate store for the local machine, rather than the
current user. If neither prefix is specified, then it will default to the certificate store for the current
user. You can manage these certificates using the CertMgr.msc Microsoft Management Console
(MMC) snap-in.

It is possible to load the certificate from a file rather than from current user's certificate store. The
dwOptions member should be set to CREDENTIAL_STORE_FILENAME and the lpszCertStore
member should specify the name of the file that contains the certificate and its private key. The file
must be in Private Information Exchange (PFX) format, also known as PKCS #12. These certificate
files typically have an extension of .pfx or .p12. Note that if a password was specified when the
certificate file was created, it must be provided in the lpszPassword member or the library will be
unable to access the certificate.

Note that the lpszUserName and lpszPassword members are values which are used to access the
certificate store or private key file. They are not the credentials which are used when establishing
the connection with the remote host or authenticating the client session.

The TLS 1.1 and TLS 1.2 protocols are only supported on Windows 7, Windows Server 2008 R2
and later versions of the platform. If these options are specified and the application is running on
Windows XP or Windows Vista, the protocol version will be downgraded to TLS 1.0 for backwards
compatibility with those platforms.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SECURITYINFO Structure

This structure contains information about a secure connection that has been established.

typedef struct _SECURITYINFO
{
 DWORD dwSize;
 DWORD dwProtocol;
 DWORD dwCipher;
 DWORD dwCipherStrength;
 DWORD dwHash;
 DWORD dwHashStrength;
 DWORD dwKeyExchange;
 DWORD dwCertStatus;
 SYSTEMTIME stCertIssued;
 SYSTEMTIME stCertExpires;
 LPCTSTR lpszCertIssuer;
 LPCTSTR lpszCertSubject;
 LPCTSTR lpszFingerprint;
} SECURITYINFO, *LPSECURITYINFO;

Members
dwSize

Specifies the size of the data structure. This member must always be initialized to
sizeof(SECURITYINFO) prior to passing the address of this structure to the function. Note that
if this member is not initialized, an error will be returned indicating that an invalid parameter has
been passed to the function.

dwProtocol

A numeric value which specifies the protocol that was selected to establish the secure
connection. One of the following values will be returned:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The

correct protocol is automatically selected, based on
what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.
This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is
supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

dwCipher

A numeric value which specifies the cipher that was selected when establishing the secure
connection. One of the following values will be returned:

Constant Description

SECURITY_CIPHER_RC2 The RC2 block cipher was selected. This is a variable
key length cipher which supports keys between 40 and
128 bits, in 8-bit increments.

SECURITY_CIPHER_RC4 The RC4 stream cipher was selected. This is a variable
key length cipher which supports keys between 40 and
128 bits, in 8-bit increments.

SECURITY_CIPHER_RC5 The RC5 block cipher was selected. This is a variable
key length cipher which supports keys up to 2040 bits,
in 8-bit increments.

SECURITY_CIPHER_DES The DES (Data Encryption Standard) block cipher was
selected. This is a fixed key length cipher, using 56-bit
keys.

SECURITY_CIPHER_DES3 The Triple DES block cipher was selected. This cipher
encrypts the data three times using different keys,
effectively providing a 168-bit length key.

SECURITY_CIPHER_DESX A variant of the DES block cipher which XORs an extra
64-bits of the key before and after the plaintext has
been encrypted, increasing the key size to 184 bits.

SECURITY_CIPHER_AES The Advanced Encryption Standard cipher (also known
as the Rijndael cipher) is a fixed block size cipher which
use a key size of 128, 192 or 256 bits. This cipher is
supported on Windows XP SP3 and later versions of
the operating system.

SECURITY_CIPHER_SKIPJACK The Skipjack block cipher was selected. This is a fixed
key length cipher, using 80-bit keys.

SECURITY_CIPHER_BLOWFISH The Blowfish block cipher was selected. This is a
variable key length cipher up to 448 bits, using a 64-bit
block size.

dwCipherStrength

A numeric value which specifies the strength (the length of the cipher key in bits) of the cipher
that was selected. Typically this value will be 128 or 256. 40-bit and 56-bit key lengths are
considered weak encryption, and subject to brute force attacks. 128-bit and 256-bit key lengths
are considered to be secure, and are the recommended key length for secure communications.

dwHash

A numeric value which specifies the hash algorithm which was selected. One of the following
values will be returned:

Constant Description

SECURITY_HASH_MD5 The MD5 algorithm was selected. Its use has been
deprecated and is no longer considered to be
cryptographically secure.

SECURITY_HASH_SHA1 The SHA-1 algorithm was selected. Its use has been
deprecated and is no longer considered to be
cryptographically secure.

SECURITY_HASH_SHA256 The SHA-256 algorithm was selected.

SECURITY_HASH_SHA384 The SHA-384 algorithm was selected.

SECURITY_HASH_SHA512 The SHA-512 algorithm was selected.

dwHashStrength

A numeric value which specifies the strength (the length in bits) of the message digest that was

selected.

dwKeyExchange

A numeric value which specifies the key exchange algorithm which was selected. One of the
following values will be returned:

Constant Description

SECURITY_KEYEX_RSA The RSA public key algorithm was selected.

SECURITY_KEYEX_KEA The Key Exchange Algorithm (KEA) was selected. This is an
improved version of the Diffie-Hellman public key algorithm.

SECURITY_KEYEX_DH The Diffie-Hellman key exchange algorithm was selected.

SECURITY_KEYEX_ECDH The Elliptic Curve Diffie-Hellman key exchange algorithm was
selected. This is a variant of the Diffie-Hellman algorithm
which uses elliptic curve cryptography. This key exchange
algorithm is only supported on Windows XP SP3 and later
versions of the operating system.

dwCertStatus

A numeric value which specifies the status of the certificate returned by the secure server. This
member only has meaning for connections using the SSL or TLS protocols. One of the following
values will be returned:

Constant Description

SECURITY_CERTIFICATE_VALID The certificate is valid.

SECURITY_CERTIFICATE_NOMATCH The certificate is valid, but the domain name
does not match the common name in the
certificate.

SECURITY_CERTIFICATE_EXPIRED The certificate is valid, but has expired.

SECURITY_CERTIFICATE_REVOKED The certificate has been revoked and is no
longer valid.

SECURITY_CERTIFICATE_UNTRUSTED The certificate or certificate authority is not
trusted on the local system.

SECURITY_CERTIFICATE_INVALID The certificate is invalid. This typically indicates
that the internal structure of the certificate has
been damaged.

stCertIssued

A structure which contains the date and time that the certificate was issued by the certificate
authority. If the issue date cannot be determined for the certificate, the SYSTEMTIME structure
members will have zero values. This member only has meaning for connections using the SSL or
TLS protocols.

stCertExpires

A structure which contains the date and time that the certificate expires. If the expiration date
cannot be determined for the certificate, the SYSTEMTIME structure members will have zero
values. This member only has meaning for connections using the SSL or TLS protocols.

lpszCertIssuer

A pointer to a string which contains information about the organization that issued the
certificate. This string consists of one or more comma-separated tokens. Each token consists of
an identifier, followed by an equal sign and a value. If the certificate issuer could not be
determined, this member may be NULL. This member only has meaning for connections using
the SSL or TLS protocols.

lpszCertSubject

A pointer to a string which contains information about the organization that the certificate was
issued to. This string consists of one or more comma-separated tokens. Each token consists of
an identifier, followed by an equal sign and a value. If the certificate subject could not be
determined, this member may be NULL. This member only has meaning for connections using
the SSL or TLS protocols.

lpszFingerprint

A pointer to a string which contains a sequence of hexadecimal values that uniquely identify the
server. This member is only used when a connection has been established using the Secure
Shell (SSH) protocol.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SYSTEMTIME Structure

The SYSTEMTIME structure represents a date and time using individual members for the month,
day, year, weekday, hour, minute, second, and millisecond.

typedef struct _SYSTEMTIME
{
 WORD wYear;
 WORD wMonth;
 WORD wDayOfWeek;
 WORD wDay;
 WORD wHour;
 WORD wMinute;
 WORD wSecond;
 WORD wMilliseconds;
} SYSTEMTIME, *LPSYSTEMTIME;

Members
wYear

Specifies the current year. The year value must be greater than 1601.

wMonth

Specifies the current month. January is 1, February is 2 and so on.

wDayOfWeek

Specifies the current day of the week. Sunday is 0, Monday is 1 and so on.

wDay

Specifies the current day of the month

wHour

Specifies the current hour.

wMinute

Specifies the current minute

wSecond

Specifies the current second.

wMilliseconds

Specifies the current millisecond.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include windows.h.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Remote Command Protocol Library

Execute commands on a server or establish an interactive terminal session.

Reference

Functions
Data Structures
Error Codes

Library Information

File Name CSRSHV11.DLL

Version 11.0.2180.1635

LibID DE4D501A-D5F2-4FDF-8762-79955F246A1B

Import Library CSRSHV11.LIB

Dependencies None

Standards RFC 1282

Overview
The Remote Command protocol is used to execute a command on a server and return the output
of that command to the client. This is most commonly used with UNIX based servers, although
there are implementations of remote command servers for the Windows operating system. The
library supports both the rcmd and rshell remote execution protocols and provides methods which
can be used to search the data stream for specific sequences of characters. This makes it
extremely easy to write Windows applications which serve as light-weight client interfaces to
commands being executed on a UNIX server or another Windows system. The library can also be
used to establish a remote terminal session using the rlogin protocol, which is similar to the Telnet
protocol.

This protocol should not be used when connecting to a server on a public network because the
user credentials are sent as unencrypted text. For secure remote command execution and
interactive terminal sessions, it is recommended that you use the Secure Shell (SSH) library.

Requirements
The SocketTools Library Edition libraries are compatible with any programming language which
supports calling functions exported from a standard dynamic link library (DLL). If you are using
Visual C++ 6.0 it is required that you have Service Pack 6 (SP6) installed. You should install all
updates for your development tools and have the current Windows SDK installed. The minimum
recommended version of Visual Studio is Visual Studio 2010.

This library is supported on Windows 7, Windows Server 2008 R2 and later versions of the desktop
and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1) installed as
a minimum requirement. It is recommended that you install the current service pack and all critical
updates available for your version of the operating system.

This product includes both 32-bit and 64-bit libraries. Native 64-bit CPU support requires the 64-
bit version of Windows 7 or later versions of the Windows operating system.

Distribution

When you distribute your application that uses this library, it is recommended that you install the
file in the same folder as your application executable. If you install the library into a shared location
on the system, it is important that you distribute the correct version for the target platform and it
should be registered as a shared DLL. This is a standard Windows dynamic link library, not an
ActiveX component, and does not require COM registration.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Remote Command Protocol Functions

Function Description

RshAsyncExecute Execute a command on the specified server

RshAsyncLogin Establish an asynchronous login session with the specified server

RshAttachThread Attach the specified client handle to another thread

RshCancel Cancel the current blocking operation

RshDisableEvents Disable asynchronous event notification

RshDisableTrace Disable logging of network function calls to the trace log

RshDisconnect Disconnect from the current server

RshEnableEvents Enable asynchronous event notification

RshEnableTrace Enable logging of network function calls to a file

RshEventProc Callback function that processes events generated by the client

RshExecute Execute a command on the server

RshFreezeEvents Suspend asynchronous event processing

RshGetErrorString Return a description for the specified error code

RshGetLastError Return the last error code

RshGetStatus Return the current client status

RshGetTimeout Return the number of seconds until an operation times out

RshInitialize Initialize the library and validate the specified license key at runtime

RshIsBlocking Determine if the client is blocked, waiting for information

RshIsConnected Determine if the client is connected to the server

RshIsReadable Determine if data can be read from the server

RshIsWritable Determine if data can be written to the server

RshLogin Establish a login session with the specified server

RshRead Read data returned by the server

RshRegisterEvent Register an event callback function

RshSearch Search for a specific character sequence in the data stream

RshSetLastError Set the last error code

RshSetTimeout Set the number of seconds until an operation times out

RshUninitialize Terminate use of the library by the application

RshWrite Write data to the server

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RshAsyncExecute Function

HCLIENT WINAPI RshAsyncExecute(
 LPCTSTR lpszRemoteHost,
 UINT nRemotePort,
 UINT nTimeout,
 DWORD dwOptions,
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword,
 LPCTSTR lpszCommand,
 HWND hEventWnd,
 UINT uEventMsg
);

The RshAsyncExecute function is used to establish a connection with the server and execute the
specified command.

This function has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

The application should create a background worker thread and establish a connection by calling
RshExecute within that thread. If the application requires multiple simultaneous connections, it is
recommended you create a worker thread for each client session.

Parameters
lpszRemoteHost

A pointer to the name of the server to connect to; this may be a fully-qualified domain name or
an IP address.

nRemotePort

The port number the server is listening on. One of the following values should be used:

Constant Description

RSH_PORT_REXEC A connection is established with the server using port 512, the
rexec service. This service requires that the client provide a
username and password to execute the specified command.

RSH_PORT_RSHELL A connection is established with the server using port 514, the
rshell service. This service uses host equivalence to authenticate
the user. With host equivalence, the server considers the client to
be equivalent to itself, and as long as the specified user exists on
the server, the client is permitted to execute commands on behalf
of the user without requiring a password. Host equivalence is
configured by the server administrator.

nTimeout

The number of seconds that the client will wait for a response from the server before failing the
current operation.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

RSH_OPTION_RESERVEDPORT This option specifies that a reserved port should be
used to establish the connection. Reserved ports are
those port numbers which are less than 1024. This
option should be specified when connecting on the
RSH_PORT_RSHELL port.

RSH_OPTION_PREFER_IPV6 This option specifies the client should prefer the use of
IPv6 if the server hostname can be resolved to both
an IPv6 and IPv4 address. This option is ignored if the
local system does not have IPv6 enabled, or when the
hostname can only be resolved to an IPv4 address. If
the server hostname can only be resolved to an IPv6
address, the client will attempt to establish a
connection using IPv6 regardless if this option has
been specified.

RSH_OPTION_FREETHREAD This option specifies the handle returned by this
function may be used by any thread, and is not limited
to the thread which created it. The application is
responsible for ensuring that access to the handle is
synchronized across multiple threads.

lpszUserName

A pointer to a string which specifies the username used to authenticate the client session.

lpszPassword

A pointer to a string which specifies the password used to authenticate the client session. This
parameter is only used when connecting to the RSH_PORT_REXEC port. If the password is not
required, this parameter may be NULL.

lpszCommand

A pointer to a string which specifies the command to execute on the server.

hEventWnd

The handle to the event notification window. This window receives messages which notify the
client of various asynchronous network events that occur. If this parameter is NULL, then a
synchronous (blocking) connection will be established with the server.

uEventMsg

The message identifier that is used when an asynchronous network event occurs. This value
should be greater than WM_USER as defined in the Windows header files. If the hEventWnd
parameter is NULL, this parameter should be specified as WM_NULL.

Return Value
If the function succeeds, the return value is a handle to a client session. If the function fails, the
return value is INVALID_CLIENT. To get extended error information, call RshGetLastError.

Remarks
This protocol should not be used when connecting to a server on a public network because the
user credentials are sent as unencrypted text. For secure remote command execution and
interactive terminal sessions, it is recommended you use the Secure Shell (SSH) library.

When a message is posted to the notification window, the low word of the lParam parameter
contains the event identifier. The high word of lParam contains the low word of the error code, if
an error has occurred. The wParam parameter contains the client handle. One or more of the
following event identifiers may be sent:

Constant Description

RSH_EVENT_CONNECT The connection to the server has completed. The high word of the
lParam parameter should be checked, since this notification
message will be posted if an error has occurred.

RSH_EVENT_DISCONNECT The server has closed the connection to the client. The client
should read any remaining data and disconnect.

RSH_EVENT_READ Data is available to read by the calling process. No additional
messages will be posted until the client has read at least some of
the data. This event is only generated if the client is in
asynchronous mode.

RSH_EVENT_WRITE The client can now write data. This notification is sent after a
connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking
operation. This event is only generated if the client is in
asynchronous mode.

RSH_EVENT_TIMEOUT The network operation has exceeded the specified timeout period.
The client application may attempt to retry the operation, or may
disconnect from the server and report an error to the user.

RSH_EVENT_CANCEL The current operation has been canceled. Under most
circumstances the client should disconnect from the server and re-
connect if needed. After an operation has been canceled, the
server may abort the connection or refuse to accept further
commands from the client.

To cancel asynchronous notification and return the client to a blocking mode, use the
RshDisableEvents function.

It is recommended that you only establish an asynchronous connection if you understand the
implications of doing so. In most cases, it is preferable to create a synchronous connection and
create threads for each additional session if more than one active client session is required.

The dwOptions argument can be used to specify the threading model that is used by the library
when a connection is established. By default, the handle is initially attached to the thread that
created it. From that point on, until the it is released, only the owner may call functions using that
handle. The ownership of the handle may be transferred from one thread to another using the
RshAttachThread function.

Specifying the RSH_OPTION_FREETHREAD option enables any thread to call any function using
the handle, regardless of which thread created it. It is important to note that this option disables
certain internal safety checks which are performed by the library and may result in unexpected
behavior unless access to the handle is synchronized. If one thread calls a function in the library, it
must ensure that no other thread will call another function at the same time using the same
handle.

Requirements

Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
RshAsyncLogin, RshDisconnect, RshExecute, RshInitialize, RshLogin, RshUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RshAsyncLogin Function

HCLIENT WINAPI RshAsyncLogin(
 LPCTSTR lpszRemoteHost,
 UINT nRemotePort,
 UINT nTimeout,
 DWORD dwReserved,
 LPCTSTR lpszUserName,
 LPCTSTR lpszTerminal,
 HWND hEventWnd,
 UINT uEventMsg
);

The RshAsyncLogin function is used to establish a connection with the server.

This function has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

The application should create a background worker thread and establish a connection by calling
RshLogin within that thread. If the application requires multiple simultaneous connections, it is
recommended you create a worker thread for each client session.

Parameters
lpszRemoteHost

A pointer to the name of the server to connect to; this may be a fully-qualified domain name or
an IP address.

nRemotePort

The port number the server is listening on. A value of zero specifies that the default port should
be used.

nTimeout

The number of seconds that the client will wait for a response from the server before failing the
current operation.

dwReserved

A reserved parameter. This value should always be zero.

lpszUserName

A pointer to a string which specifies the username used to authenticate the client session.

lpszTerminal

A pointer to a string which specifies the terminal type which the client will be identified as using
during the session. If no particular terminal emulation is required, this parameter may be NULL.

hEventWnd

The handle to the event notification window. This window receives messages which notify the
client of various asynchronous network events that occur. If this parameter is NULL, then a
synchronous (blocking) connection will be established with the server.

uEventMsg

The message identifier that is used when an asynchronous network event occurs. This value
should be greater than WM_USER as defined in the Windows header files. If the hEventWnd

parameter is NULL, this parameter should be specified as WM_NULL.

Return Value
If the function succeeds, the return value is a handle to a client session. If the function fails, the
return value is INVALID_CLIENT. To get extended error information, call RshGetLastError.

Remarks
The RshAsyncLogin function uses host equivalence, where the client is permitted to login without
requiring a password. Host equivalence must be configured by the server administrator and it is
typically restricted to specific users. Note that if configured improperly, host equivalence can
introduce a significant security loophole. Refer to your UNIX system documentation for more
information about host equivalence and the various remote command services.

This protocol should not be used when connecting to a server on a public network because the
user credentials are sent as unencrypted text. For secure remote command execution and
interactive terminal sessions, it is recommended you use the Secure Shell (SSH) library.

On UNIX based systems, the terminal name specified by the lpszTerminal parameter corresponds
to a termcap or terminfo entry as set in the TERM environment variable. On Windows based
systems which implement the rlogin service, this parameter may be ignored and the server will
assume that the client is capable of displaying ANSI escape sequences. On VMS systems, the
terminal name should correspond to the terminal type used with the SET TERMINAL/DEVICE
command.

If this parameter is passed as NULL pointer or an empty string, a default terminal type named
"unknown" will be used. On most UNIX and VMS systems this defines a terminal which is not
capable of cursor positioning using control or escape sequences. This terminal type may not be
recognized and an error may be displayed when the user logs in indicating that the terminal type
is invalid.

Refer to the documentation for the server system to determine what terminal type names are
available to you. Remember that on UNIX systems, the terminal type is case-sensitive. Some of the
more common terminal types are:

Terminal Type Description

ansi This terminal type is usually available on UNIX based servers. This
specifies that the client is capable of displaying standard ANSI escape
sequences for cursor control.

dumb This terminal type typically specifies a terminal display which does not
support control or escape sequences for cursor positioning. If you do
not want escape sequences embedded in the data stream and the
server returns an error if the terminal type is not specified, try using this
terminal type.

pcansi This terminal type is usually available on UNIX based servers. This
specifies that the client is a using a PC terminal emulator that supports
basic ANSI escape sequences for cursor control. This may also enable
escape sequences which can set the display colors.

vt100 This terminal type is usually available on UNIX and VMS based servers.
On some VMS systems this string may need to be specified as DEC-
VT100. This specifies that the client is capable of emulating a DEC
VT100 terminal. The VT100 supports many of the same cursor control

sequences as an ANSI terminal.

vt220 This terminal type is usually available on UNIX and VMS based servers.
On some VMS systems this string may need to be specified as DEC-
VT220. This specifies that the client is capable of emulating a DEC
VT220 terminal, which is a later version of the VT100.

vt320 This terminal type is usually available on UNIX and VMS based servers.
On some VMS systems this string may need to be specified as DEC-
VT320. This specifies that the client is capable of emulating a DEC
VT320 terminal, which is similar to the VT100 and VT220 and provides
advanced features such as the ability to set display colors.

xterm This terminal type is may be available on UNIX based servers which
have X Windows installed. This specifies that the client is a using the X
Windows xterm emulator which supports standard ANSI escape
sequences for cursor control.

When a message is posted to the notification window, the low word of the lParam parameter
contains the event identifier. The high word of lParam contains the low word of the error code, if
an error has occurred. The wParam parameter contains the client handle. One or more of the
following event identifiers may be sent:

Constant Description

RSH_EVENT_CONNECT The connection to the server has completed. The high
word of the lParam parameter should be checked, since
this notification message will be posted if an error has
occurred.

RSH_EVENT_DISCONNECT The server has closed the connection to the client. The
client should read any remaining data and disconnect.

RSH_EVENT_READ Data is available to read by the calling process. No
additional messages will be posted until the client has
read at least some of the data. This event is only
generated if the client is in asynchronous mode.

RSH_EVENT_WRITE The client can now write data. This notification is sent after
a connection has been established, or after a previous
attempt to write data has failed because it would result in
a blocking operation. This event is only generated if the
client is in asynchronous mode.

RSH_EVENT_TIMEOUT The network operation has exceeded the specified
timeout period. The client application may attempt to
retry the operation, or may disconnect from the server
and report an error to the user.

RSH_EVENT_CANCEL The current operation has been canceled. Under most
circumstances the client should disconnect from the server
and re-connect if needed. After an operation has been
canceled, the server may abort the connection or refuse
to accept further commands from the client.

To cancel asynchronous notification and return the client to a blocking mode, use the

RshDisableEvents function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
RshAsyncExecute, RshDisconnect, RshExecute, RshInitialize, RshLogin, RshUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RshAttachThread Function

DWORD WINAPI RshAttachThread(
 HCLIENT hClient
 DWORD dwThreadId
);

The RshAttachThread function attaches the specified client handle to another thread.

Parameters
hClient

Handle to the client session.

dwThreadId

The ID of the thread that will become the new owner of the handle. A value of zero specifies
that the current thread should become the owner of the client handle.

Return Value
If the function succeeds, the return value is the thread ID of the previous owner. If the function
fails, the return value is RSH_ERROR. To get extended error information, call RshGetLastError.

Remarks
When a client handle is created, it is associated with the current thread that created it. Normally, if
another thread attempts to perform an operation using that handle, an error is returned since it
does not own the handle. This is used to ensure that other threads cannot interfere with an
operation being performed by the owner thread. In some cases, it may be desirable for one
thread in a client application to create the client handle, and then pass that handle to another
worker thread. The RshAttachThread function can be used to change the ownership of the
handle to the new worker thread. By preserving the return value from the function, the original
owner of the handle can be restored before the worker thread terminates.

This function should be called by the new thread immediately after it has been created, and if the
new thread does not release the handle itself, the ownership of the handle should be restored to
the parent thread before it terminates. Under no circumstances should RshAttachThread be used
to forcibly release a handle allocated by another thread while a blocking operation is in progress.
To cancel an operation, use the RshCancel function and then release the handle after the
blocking function exits and control is returned to the current thread.

Note that the dwThreadId parameter is presumed to be a valid thread ID and no checks are
performed to ensure that the thread actually exists. Specifying an invalid thread ID will orphan the
handle until the RshUninitialize function is called.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib

See Also
RshCancel, RshAsyncExecute, RshAsyncLogin, RshDisconnect, RshExecute, RshInitialize, RshLogin,
RshUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RshCancel Function

INT WINAPI RshCancel(
 HCLIENT hClient
);

The RshCancel function cancels any outstanding blocking operation in the client, causing the
blocking function to fail. The application may then retry the operation or terminate the client
session.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is zero.

If the function fails, the return value is RSH_ERROR. To get extended error information, call
RshGetLastError.

Remarks
When the RshCancel function is called, the blocking function will not immediately fail. An internal
flag is set which causes the blocking operation to exit with an error. This means that the
application cannot cancel an operation and immediately perform some other operation. Instead it
must allow the calling stack to unwind, returning back to the blocking operation before making
any further function calls.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
RshIsBlocking

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RshDisableEvents Function

INT WINAPI RshDisableEvents(
 HCLIENT hClient
);

The RshDisableEvents function disables the event notification mechanism, preventing subsequent
event notification messages from being posted to the application's message queue.

This function has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
RSH_ERROR. To get extended error information, call RshGetLastError.

Remarks
This function affects both event notification and event callbacks. Any outstanding events in the
message queue should be ignored by the client application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib

See Also
RshEnableEvents, RshFreezeEvents, RshRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RshDisableTrace Function

BOOL WINAPI RshDisableTrace();

The RshDisableTrace function disables the logging of socket function calls to the trace log file.

Parameters
None.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib

See Also
RshEnableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RshDisconnect Function

INT WINAPI RshDisconnect(
 HCLIENT hClient
);

The RshDisconnect function terminates the connection with the server, closing the socket and
releasing the memory allocated for the client session.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
RSH_ERROR. To get extended error information, call RshGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib

See Also
RshAsyncExecute, RshAsyncLogin, RshExecute, RshInitialize, RshLogin, RshUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RshEnableEvents Function

INT WINAPI RshEnableEvents(
 HCLIENT hClient,
 HWND hEventWnd,
 UINT uEventMsg
);

The RshEnableEvents function enables event notifications using Windows messages.

This function has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Applications should use the RshRegisterEvent function to register an event handler which is
invoked when an event occurs.

Parameters
hClient

Handle to the client session.

hEventWnd

Handle to the event notification window. This window receives a user-defined message which
specifies the event that has occurred. If this value is NULL, event notification is disabled.

uEventMsg

An unsigned integer which specifies the user-defined message that is sent when an event
occurs. This parameter's value must be greater than the value of WM_USER.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
RSH_ERROR. To get extended error information, call RshGetLastError.

Remarks
When a message is posted to the notification window, the low word of the lParam parameter
contains the event identifier. The high word of lParam contains the low word of the error code, if
an error has occurred. The wParam parameter contains the client handle. One or more of the
following event identifiers may be sent:

Constant Description

RSH_EVENT_CONNECT The connection to the server has completed. The high word of the
lParam parameter should be checked, since this notification
message will be posted if an error has occurred.

RSH_EVENT_DISCONNECT The server has closed the connection to the client. The client
should read any remaining data and disconnect.

RSH_EVENT_READ Data is available to read by the calling process. No additional
messages will be posted until the client has read at least some of
the data. This event is only generated if the client is in
asynchronous mode.

RSH_EVENT_WRITE The client can now write data. This notification is sent after a

connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking
operation. This event is only generated if the client is in
asynchronous mode.

RSH_EVENT_TIMEOUT The network operation has exceeded the specified timeout period.
The client application may attempt to retry the operation, or may
disconnect from the server and report an error to the user.

RSH_EVENT_CANCEL The current operation has been canceled. Under most
circumstances the client should disconnect from the server and re-
connect if needed. After an operation has been canceled, the
server may abort the connection or refuse to accept further
commands from the client.

To cancel asynchronous notification and return the client to a blocking mode, use the
RshDisableEvents function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib

See Also
RshDisableEvents, RshFreezeEvents, RshRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RshEnableTrace Function

BOOL WINAPI RshEnableTrace(
 LPCTSTR lpszTraceFile,
 DWORD dwTraceFlags
);

The RshEnableTrace function enables the logging of socket function calls to a file.

Parameters
lpszTraceFile

A pointer to a string which specifies the name of the trace log file. If this parameter is NULL or
an empty string, the default file name cstrace.log is used. The file is stored in the directory
specified by the TEMP environment variable, if it is defined; otherwise, the current working
directory is used.

dwTraceFlags

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

TRACE_INFO All function calls are written to the trace file. This is the default
value.

TRACE_ERROR Only those function calls which fail are recorded in the trace file.

TRACE_WARNING Only those function calls which fail or return values which indicate
a warning are recorded in the trace file.

TRACE_HEXDUMP All functions calls are written to the trace file, plus all the data that
is sent or received is displayed, in both ASCII and hexadecimal
format.

TRACE_PROCESS All function calls in the current process are logged, rather than
only those functions in the current thread. This option is useful for
multithreaded applications that are using worker threads.

Return Value
If the function succeeds, the return value is non-zero. A return value of zero indicates an error.
Failure typically indicates that the tracing library cstrcv11.dll cannot be loaded on the local
system.

Remarks
When trace logging is enabled, the file is opened, appended to and closed for each socket
function call. This makes it possible for an application to append its own logging information,
however care should be taken to ensure that the file is closed before the next network operation is
performed. To limit the size of the log files, enable and disable logging only around those sections
of code that you wish to trace.

Note that the TRACE_HEXDUMP trace level generates very large log files since it includes all of the
data exchanged between your application and the server.

Trace function logging is managed on a per-thread basis, not for each client handle. This means
that all SocketTools libraries and components share the same settings in the current thread. If you

are using multiple SocketTools libraries or components in your application, you only need to
enable logging once.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
RshDisableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RshEventProc Function

VOID CALLBACK RshEventProc(
 HCLIENT hClient,
 UINT nEventId,
 DWORD dwError,
 DWORD_PTR dwParam
);

The RshEventProc function is an application-defined callback function that processes events
generated by the calling process.

Parameters
hClient

The handle to the client session.

nEvent

An unsigned integer which specifies which event occurred. For a complete list of events, refer to
the RshRegisterEvent function.

dwError

An unsigned integer which specifies any error that occurred. If no error occurred, then this
parameter will be zero.

dwParam

A user-defined integer value which was specified when the event callback was registered.

Return Value
None.

Remarks
An application must register this callback function by passing its address to the RshRegisterEvent
function. The RshEventProc function is a placeholder for the application-defined function name.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib

See Also
RshDisableEvents, RshEnableEvents, RshFreezeEvents, RshRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RshExecute Function

HCLIENT WINAPI RshExecute(
 LPCTSTR lpszRemoteHost,
 UINT nRemotePort,
 UINT nTimeout,
 DWORD dwOptions,
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword,
 LPCTSTR lpszCommand
);

The RshExecute function is used to establish a connection with the server and execute the
specified command.

Parameters
lpszRemoteHost

A pointer to the name of the server to connect to; this may be a fully-qualified domain name or
an IP address.

nRemotePort

The port number the server is listening on. One of the following values should be used:

Constant Description

RSH_PORT_REXEC A connection is established with the server using port 512, the
rexec service. This service requires that the client provide a
username and password to execute the specified command.

RSH_PORT_RSHELL A connection is established with the server using port 514, the
rshell service. This service uses host equivalence to authenticate
the user. With host equivalence, the server considers the client to
be equivalent to itself, and as long as the specified user exists on
the server, the client is permitted to execute commands on behalf
of the user without requiring a password. Host equivalence is
configured by the server administrator.

nTimeout

The number of seconds that the client will wait for a response from the server before failing the
current operation.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

RSH_OPTION_RESERVEDPORT This option specifies that a reserved port should be
used to establish the connection. Reserved ports are
those port numbers which are less than 1024. This
option should be specified when connecting on the
RSH_PORT_RSHELL port.

RSH_OPTION_PREFER_IPV6 This option specifies the client should prefer the use of
IPv6 if the server hostname can be resolved to both

an IPv6 and IPv4 address. This option is ignored if the
local system does not have IPv6 enabled, or when the
hostname can only be resolved to an IPv4 address. If
the server hostname can only be resolved to an IPv6
address, the client will attempt to establish a
connection using IPv6 regardless if this option has
been specified.

RSH_OPTION_FREETHREAD This option specifies the handle returned by this
function may be used by any thread, and is not limited
to the thread which created it. The application is
responsible for ensuring that access to the handle is
synchronized across multiple threads.

lpszUserName

A pointer to a string which specifies the username used to authenticate the client session.

lpszPassword

A pointer to a string which specifies the password used to authenticate the client session. This
parameter is only used when connecting to the RSH_PORT_REXEC port. If the password is not
required, this parameter may be NULL.

lpszCommand

A pointer to a string which specifies the command to execute on the server.

Return Value
If the function succeeds, the return value is a handle to a client session. If the function fails, the
return value is INVALID_CLIENT. To get extended error information, call RshGetLastError.

Remarks
This protocol should not be used when connecting to a server on a public network because the
user credentials are sent as unencrypted text. For secure remote command execution and
interactive terminal sessions, it is recommended you use the Secure Shell (SSH) library.

The dwOptions argument can be used to specify the threading model that is used by the library
when a connection is established. By default, the handle is initially attached to the thread that
created it. From that point on, until the it is released, only the owner may call functions using that
handle. The ownership of the handle may be transferred from one thread to another using the
RshAttachThread function.

Specifying the RSH_OPTION_FREETHREAD option enables any thread to call any function using
the handle, regardless of which thread created it. It is important to note that this option disables
certain internal safety checks which are performed by the library and may result in unexpected
behavior unless access to the handle is synchronized. If one thread calls a function in the library, it
must ensure that no other thread will call another function at the same time using the same
handle.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
RshAsyncExecute, RshAsyncLogin, RshDisconnect, RshInitialize, RshLogin, RshSearch,
RshUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RshFreezeEvents Function

INT WINAPI RshFreezeEvents(
 HCLIENT hClient,
 BOOL bFreeze
);

The RshFreezeEvents function is used to suspend and resume event handling by the client.

Parameters
hClient

Handle to the client session.

bFreeze

A non-zero value specifies that event handling should be suspended by the client. A zero value
specifies that event handling should be resumed.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
RSH_ERROR. To get extended error information, call RshGetLastError.

Remarks
This function should be used when the application does not want to process events, such as when
a modal dialog is being displayed. When events are suspended, all client events are queued. If
events are re-enabled at a later point, those queued events will be sent to the application for
processing. Note that only one of each event will be generated. For example, if the client has
suspended event handling, and four read events occur, once event handling is resumed only one
of those read events will be posted to the client. This prevents the application from being flooded
by a potentially large number of queued events.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib

See Also
RshDisableEvents, RshEnableEvents, RshRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RshGetErrorString Function

INT WINAPI RshGetErrorString(
 DWORD dwErrorCode,
 LPTSTR lpszDescription,
 INT cbDescription
);

The RshGetErrorString function is used to return a description of a specific error code. Typically
this is used in conjunction with the RshGetLastError function for use with warning dialogs or as
diagnostic messages.

Parameters
dwErrorCode

The last-error code for which a description is returned.

lpszDescription

A pointer to the buffer that will contain a description of the specified error code. This buffer
should be at least 128 characters in length.

cbDescription

The maximum number of characters that may be copied into the description buffer.

Return Value
If the function succeeds, the return value is the length of the description string. If the function fails,
the return value is zero, meaning that no description exists for the specified error code. Typically
this indicates that the error code passed to the function is invalid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
RshGetLastError, RshSetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RshGetLastError Function

DWORD WINAPI RshGetLastError();

Parameters
None.

Return Value
The return value is the last error code value for the current thread. Functions set this value by
calling the RshSetLastError function. The Return Value section of each reference page notes the
conditions under which the function sets the last error code.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. You should call
the RshGetLastError function immediately when a function's return value indicates that an error
has occurred. That is because some functions call RshSetLastError(0) when they succeed, clearing
the error code set by the most recently failed function.

Most functions will set the last error code value when they fail; a few functions set it when they
succeed. Function failure is typically indicated by a return value such as FALSE, NULL,
INVALID_CLIENT or RSH_ERROR. Those functions which call RshSetLastError when they succeed
are noted on the function reference page.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib

See Also
RshGetErrorString, RshSetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RshGetStatus Function

INT WINAPI RshGetStatus(
 HCLIENT hClient
);

The RshGetStatus function returns the current status of the client session.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is the client status code. If the function fails, the return
value is RSH_ERROR. To get extended error information, call RshGetLastError.

Remarks
The RshGetStatus function returns a numeric code which identifies the current state of the client
session. The following values may be returned:

Value Constant Description

1 RSH_STATUS_IDLE The client is current idle and not sending or
receiving data.

2 RSH_STATUS_CONNECT The client is establishing a connection with the
server.

3 RSH_STATUS_READ The client is reading data from the server.

4 RSH_STATUS_WRITE The client is writing data to the server.

5 RSH_STATUS_DISCONNECT The client is disconnecting from the server.

In a multithreaded application, any thread in the current process may call this function to obtain
status information for the specified client session.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib

See Also
RshIsBlocking, RshIsConnected, RshIsReadable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RshGetTimeout Function

INT WINAPI RshGetTimeout(
 HCLIENT hClient
);

The RshGetTimeout function returns the number of seconds the client will wait for a response
from the server. Once the specified number of seconds has elapsed, the function will fail and
return to the caller.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is the timeout period in seconds. If the function fails, the
return value is RSH_ERROR. To get extended error information, call RshGetLastError.

Remarks
The timeout value is only used with blocking client connections. A value of zero indicates that the
default timeout period of 20 seconds should be used.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib

See Also
RshSetTimeout

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RshInitialize Function

BOOL WINAPI RshInitialize(
 LPCTSTR lpszLicenseKey,
 LPINITDATA lpData
);

The RshInitialize function initializes the library and validates the specified license key at runtime.

Parameters
lpszLicenseKey

Pointer to a string that specifies the runtime license key to be validated. If this parameter is
NULL, the library will validate the development license installed on the local system.

lpData

Pointer to an INITDATA data structure. This parameter may be NULL if the initialization data for
the library is not required.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call RshGetLastError. All other client functions will fail until a
license key has been successfully validated.

Remarks
This must be the first function that an application calls before using any of the other functions in
the library. When a NULL license key is specified, the library will only function on the development
system. Before redistributing the application to an end-user, you must insure that this function is
called with a valid license key.

If the lpData argument is specified, it must point to an INITDATA structure which has been
initialized by setting the dwSize member to the size of the structure. All other structure members
should be set to zero. If the function is successful, then the INITDATA structure will be filled with
identifying information about the library.

Although it is only required that RshInitialize be called once for the current process, it may be
called multiple times; however, each call must be matched by a corresponding call to
RshUninitialize.

This function dynamically loads other system libraries and allocates thread local storage. If you are
calling the functions in this library from within another DLL, it is important that you do not call the
RshInitialize or RshUninitialize functions from the DllMain function because it can result in
deadlocks or access violation errors. If the DLL is linked with the C runtime library (CRT), it will
automatically call the constructors and destructors for static and global C++ objects and has the
same restrictions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also

RshAsyncExecute, RshAsyncLogin, RshDisconnect, RshExecute, RshLogin, RshUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RshIsBlocking Function

BOOL WINAPI RshIsBlocking(
 HCLIENT hClient
);

The RshIsBlocking function is used to determine if the client is currently performing a blocking
operation.

Parameters
hClient

Handle to the client session.

Return Value
If the client is performing a blocking operation, the function returns TRUE. If the client is not
performing a blocking operation, or the client handle is invalid, the function returns FALSE.

Remarks
Because a blocking operation can allow the application to be re-entered (for example, by pressing
a button while the operation is being performed), it is possible that another blocking function may
be called while it is in progress. Since only one thread of execution may perform a blocking
operation at any one time, an error would occur. The RshIsBlocking function can be used to
determine if the client is already blocked, and if so, take some other action (such as warning the
user that they must wait for the operation to complete).

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib

See Also
RshCancel, RshGetStatus, RshIsConnected, RshIsReadable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RshIsConnected Function

BOOL WINAPI RshIsConnected(
 HCLIENT hClient
);

The RshIsConnected function is used to determine if the client is currently connected to a server.

Parameters
hClient

Handle to the client session.

Return Value
If the client is connected to a server, the function returns a non-zero value. If the client is not
connected, or the client handle is invalid, the function returns zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib

See Also
RshGetStatus, RshIsBlocking, RshIsReadable, RshIsWritable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RshIsReadable Function

BOOL WINAPI RshIsReadable(
 HCLIENT hClient,
 INT nTimeout,
 LPDWORD lpdwAvail
);

The RshIsReadable function is used to determine if data is available to be read from the server.

Parameters
hClient

Handle to the client session.

nTimeout

Timeout for server response, in seconds. A value of zero specifies that the connection should be
polled without blocking the current thread.

lpdwAvail

A pointer to an unsigned integer which will contain the number of bytes available to read. This
parameter may be NULL if this information is not required.

Return Value
If the client can read data from the server within the timeout period, the function returns a non-
zero value. If the client cannot read any data, the function returns zero.

Remarks
On some platforms, this value will not exceed the size of the receive buffer (typically 64K bytes).
Because of differences between TCP/IP stack implementations, it is not recommended that your
application exclusively depend on this value to determine the exact number of bytes available.
Instead, it should be used as a general indicator that there is data available to be read.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib

See Also
RshGetStatus, RshIsBlocking, RshIsConnected, RshIsWritable, RshRead

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RshIsWritable Function

BOOL WINAPI RshIsWritable(
 HCLIENT hClient,
 INT nTimeout
);

The RshIsWritable function is used to determine if data can be written to the server.

Parameters
hClient

Handle to the client session.

nTimeout

Timeout for server response, in seconds. A value of zero specifies that the connection should be
polled without blocking the current thread.

Return Value
If the client can write data to the server within the specified timeout period, the function returns a
non-zero value. If the client cannot write any data, the function returns zero.

Remarks
Although this function can be used to determine if some amount of data can be sent to the
remote process it does not indicate the amount of data that can be written without blocking the
client. In most cases, it is recommended that large amounts of data be broken into smaller logical
blocks, typically some multiple of 512 bytes in length.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib

See Also
RshGetStatus, RshIsBlocking, RshIsConnected, RshIsReadable, RshWrite

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RshLogin Function

HCLIENT WINAPI RshLogin(
 LPCTSTR lpszRemoteHost,
 UINT nRemotePort,
 UINT nTimeout,
 DWORD dwReserved,
 LPCTSTR lpszUserName,
 LPCTSTR lpszTerminal
);

The RshLogin function is used to establish a connection with the server.

Parameters
lpszRemoteHost

A pointer to the name of the server to connect to; this may be a fully-qualified domain name or
an IP address.

nRemotePort

The port number the server is listening on. A value of zero specifies that the default port should
be used.

nTimeout

The number of seconds that the client will wait for a response from the server before failing the
current operation.

dwReserved

A reserved parameter. This value should always be zero.

lpszUserName

A pointer to a string which specifies the username used to authenticate the client session.

lpszTerminal

A pointer to a string which specifies the terminal type which the client will be identified as using
during the session. If no particular terminal emulation is required, this parameter may be NULL.

Return Value
If the function succeeds, the return value is a handle to a client session. If the function fails, the
return value is INVALID_CLIENT. To get extended error information, call RshGetLastError.

Remarks
The RshLogin function uses host equivalence, where the client is permitted to login without
requiring a password. Host equivalence must be configured by the server administrator and it is
typically restricted to specific users. Note that if configured improperly, host equivalence can
introduce a significant security loophole. Refer to your UNIX system documentation for more
information about host equivalence and the various remote command services. Note that if there
is no host equivalence for the local host and the user account requires a password, the system will
prompt for a password.

This protocol should not be used when connecting to a server on a public network because the
user credentials are sent as unencrypted text. For secure remote command execution and
interactive terminal sessions, it is recommended you use the Secure Shell (SSH) library.

On UNIX based systems, the terminal name specified by the lpszTerminal parameter corresponds
to a termcap or terminfo entry as set in the TERM environment variable. On Windows based

systems which implement the rlogin service, this parameter may be ignored and the server will
assume that the client is capable of displaying ANSI escape sequences. On VMS systems, the
terminal name should correspond to the terminal type used with the SET TERMINAL/DEVICE
command.

If this parameter is passed as NULL pointer or an empty string, a default terminal type named
"unknown" will be used. On most UNIX and VMS systems this defines a terminal which is not
capable of cursor positioning using control or escape sequences. This terminal type may not be
recognized and an error may be displayed when the user logs in indicating that the terminal type
is invalid.

Refer to the documentation for the server system to determine what terminal type names are
available to you. Remember that on UNIX systems, the terminal type is case-sensitive. Some of the
more common terminal types are:

Terminal Type Description

ansi This terminal type is usually available on UNIX based servers. This
specifies that the client is capable of displaying standard ANSI escape
sequences for cursor control.

dumb This terminal type typically specifies a terminal display which does not
support control or escape sequences for cursor positioning. If you do
not want escape sequences embedded in the data stream and the
server returns an error if the terminal type is not specified, try using this
terminal type.

pcansi This terminal type is usually available on UNIX based servers. This
specifies that the client is a using a PC terminal emulator that supports
basic ANSI escape sequences for cursor control. This may also enable
escape sequences which can set the display colors.

vt100 This terminal type is usually available on UNIX and VMS based servers.
On some VMS systems this string may need to be specified as DEC-
VT100. This specifies that the client is capable of emulating a DEC
VT100 terminal. The VT100 supports many of the same cursor control
sequences as an ANSI terminal.

vt220 This terminal type is usually available on UNIX and VMS based servers.
On some VMS systems this string may need to be specified as DEC-
VT220. This specifies that the client is capable of emulating a DEC
VT220 terminal, which is a later version of the VT100.

vt320 This terminal type is usually available on UNIX and VMS based servers.
On some VMS systems this string may need to be specified as DEC-
VT320. This specifies that the client is capable of emulating a DEC
VT320 terminal, which is similar to the VT100 and VT220 and provides
advanced features such as the ability to set display colors.

xterm This terminal type is may be available on UNIX based servers which
have X Windows installed. This specifies that the client is a using the X
Windows xterm emulator which supports standard ANSI escape
sequences for cursor control.

Requirements

Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
RshAsyncExecute, RshAsyncLogin, RshDisconnect, RshExecute, RshInitialize, RshSearch,
RshUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RshRead Function

INT WINAPI RshRead(
 HCLIENT hClient,
 LPBYTE lpBuffer,
 INT cbBuffer
);

The RshRead function reads the specified number of bytes from the client socket and copies them
into the buffer. The data may be of any type, and is not terminated with a null character.

Parameters
hClient

Handle to the client session.

lpBuffer

Pointer to the buffer in which the data will be copied.

cbBuffer

The maximum number of bytes to read and copy into the specified buffer. This value must be
greater than zero.

Return Value
If the function succeeds, the return value is the number of bytes actually read. A return value of
zero indicates that the server has closed the connection and there is no more data available to be
read. If the function fails, the return value is RSH_ERROR. To get extended error information, call
RshGetLastError.

Remarks
When RshRead is called and the client is in non-blocking mode, it is possible that the function will
fail because there is no available data to read at that time. This should not be considered a fatal
error. Instead, the application should simply wait to receive the next asynchronous notification that
data is available.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib

See Also
RshIsBlocking, RshIsReadable, RshSearch, RshWrite

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RshRegisterEvent Function

INT WINAPI RshRegisterEvent(
 HCLIENT hClient,
 UINT nEventId,
 INETEVENTPROC lpfnEvent,
 DWORD_PTR dwParam
);

The RshRegisterEvent function registers an event handler for the specified event.

Parameters
hClient

Handle to client session.

nEventId

An unsigned integer which specifies which event should be registered with the specified callback
function. One or more of the following values may be used:

Constant Description

RSH_EVENT_CONNECT The connection to the server has completed.

RSH_EVENT_DISCONNECT The server has closed the connection to the client. The
client should read any remaining data and disconnect.

RSH_EVENT_READ Data is available to read by the calling process. No
additional messages will be posted until the client has
read at least some of the data. This event is only
generated if the client is in asynchronous mode.

RSH_EVENT_WRITE The client can now write data. This notification is sent after
a connection has been established, or after a previous
attempt to write data has failed because it would result in
a blocking operation. This event is only generated if the
client is in asynchronous mode.

RSH_EVENT_TIMEOUT The network operation has exceeded the specified
timeout period. The client application may attempt to
retry the operation, or may disconnect from the server
and report an error to the user.

RSH_EVENT_CANCEL The current operation has been canceled. Under most
circumstances the client should disconnect from the server
and re-connect if needed. After an operation has been
canceled, the server may abort the connection or refuse
to accept further commands from the client.

lpfnEvent

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the RshEventProc callback
function. If this parameter is NULL, the callback for the specified event is disabled.

dwParam

A user-defined integer value that is passed to the callback function. If the application targets the

x86 (32-bit) platform, this parameter must be a 32-bit unsigned integer. If the application
targets the x64 (64-bit) platform, this parameter must be a 64-bit unsigned integer.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
RSH_ERROR. To get extended error information, call RshGetLastError.

Remarks
The RshRegisterEvent function associates a callback function with a specific event. The event
handler is an RshEventProc function that is invoked when the event occurs. Arguments are
passed to the function to identify the client session, the event type and the user-defined value
specified when the event handler is registered. If the event occurs because of an error condition,
the error code will be provided to the handler.

The callback function specified by the lpEventProc parameter must be declared using the
__stdcall calling convention. This ensures the arguments passed to the event handler are pushed
on to the stack in the correct order. Failure to use the correct calling convention will corrupt the
stack and cause the application to terminate abnormally.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib

See Also
RshDisableEvents, RshEnableEvents, RshEventProc, RshFreezeEvents

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RshSearch Function

BOOL WINAPI RshSearch(
 HCLIENT hClient,
 LPCTSTR lpszString,
 LPVOID lpvBuffer,
 LPDWORD lpdwLength,
 DWORD dwReserved
);

The RshSearch function searches for a specific character sequence in the data stream and stops
reading if the sequence is encountered.

Parameters
hClient

Handle to the client session.

lpszString

A pointer to a string which specifies the sequence of characters to search for in the data stream.
This parameter cannot be NULL or point to an empty string.

lpvBuffer

A pointer to a byte buffer which will contain the output from the server, or a pointer to a global
memory handle which will reference the output when the function returns. If the output from
the server is not required, this parameter may be NULL.

lpdwLength

A pointer to an unsigned integer which should be initialized to the maximum number of bytes
that can be copied to the buffer specified by the lpvBuffer parameter. If the lpvBuffer
parameter points to a global memory handle, the length value should be initialized to zero.
When the function returns, this value will be updated with the actual number of bytes of output
stored in the buffer. If the lpvBuffer parameter is NULL, this parameter should also be NULL.

dwReserved

A reserved parameter. This value must be zero.

Return Value
If the function succeeds and the character sequences was found in the data stream, the return
value is non-zero. If the function fails or a timeout occurs before the sequence is found, the return
value is zero. To get extended error information, call RshGetLastError.

Remarks
The RshSearch function searches for a character sequence in the data stream and stops reading
when it is found. This is useful when the client wants to automate responses to the server, such as
executing a command and processing the output. The function collects the output from the server
and stores it in the buffer specified by the lpvBuffer parameter. When the function returns, the
buffer will contain everything sent by the server up to and including the search string.

The lpvBuffer parameter may be specified in one of two ways, depending on the needs of the
application. The first method is to pre-allocate a buffer large enough to store the a fixed amount
of output. In this case, the lpvBuffer parameter will point to the buffer that was allocated, the value
that the lpdwLength parameter points to should be initialized to the size of that buffer. If the
server sends more output than can be stored in the buffer, the remaining output will be discarded.

The second method that can be used is have the lpvBuffer parameter point to a global memory
handle which will contain the output when the function returns. In this case, the value that the
lpdwLength parameter points to must be initialized to zero. It is important to note that the
memory handle returned by the function must be freed by the application, otherwise a memory
leak will occur. This method is preferred if the client application does not have a general idea of
how much output will be generated until the search string is found.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
RshExecute, RshIsBlocking, RshIsReadable, RshLogin, RshRead

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RshSetLastError Function

VOID WINAPI RshSetLastError(
 DWORD dwErrorCode
);

The RshSetLastError function sets the error code for the current thread. This function is typically
used to clear the last error by passing a value of zero as the parameter.

Parameters
dwErrorCode

Specifies the error code for the current thread.

Return Value
None.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. Most functions will
set the last error code value when they fail; a few functions set it when they succeed. Function
failure is typically indicated by a return value such as FALSE, NULL, INVALID_CLIENT or
RSH_ERROR. Those functions which call RshSetLastError when they succeed are noted on the
function reference page.

Applications can retrieve the value saved by this function by using the RshGetLastError function.
The use of RshGetLastError is optional; an application can call the function to determine the
specific reason for a function failure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib

See Also
RshGetErrorString, RshGetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RshSetTimeout Function

INT WINAPI RshSetTimeout(
 HCLIENT hClient,
 INT nTimeout
);

The RshSetTimeout function sets the number of seconds the client will wait for a response from
the server. Once the specified number of seconds has elapsed, the function will fail and return to
the caller.

Parameters
hClient

Handle to the client session.

nTimeout

The number of seconds to wait for a blocking operation to complete.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
RSH_ERROR. To get extended error information, call RshGetLastError.

Remarks
The timeout value is only used with blocking client connections.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib

See Also
RshGetTimeout

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RshUninitialize Function

VOID WINAPI RshUninitialize();

The RshUninitialize function terminates the use of the library.

Parameters
There are no parameters.

Return Value
None.

Remarks
An application is required to perform a successful RshInitialize call before it can call any of the
other the library functions. When it has completed the use of library, the application must call
RshUninitialize to allow the library to free any resources allocated on behalf of the process. Any
pending blocking or asynchronous calls in this process are canceled without posting any
notification messages, and all sockets that were opened by the process are closed.

There must be a call to RshUninitialize for every successful call to RshInitialize made by a
process. In a multithreaded environment, operations for all threads in the client are terminated.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib

See Also
RshDisconnect, RshInitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RshWrite Function

INT WINAPI RshWrite(
 HCLIENT hClient,
 LPBYTE lpBuffer,
 INT cbBuffer
);

The RshWrite function sends the specified number of bytes to the server.

Parameters
hClient

Handle to the client session.

lpBuffer

The pointer to the buffer which contains the data that is to be sent to the server.

cbBuffer

The number of bytes to send from the specified buffer.

Return Value
If the function succeeds, the return value is the number of bytes actually written. If the function
fails, the return value is RSH_ERROR. To get extended error information, call RshGetLastError.

Remarks
The return value may be less than the number of bytes specified by the cbBuffer parameter. In this
case, the data has been partially written and it is the responsibility of the client application to send
the remaining data at some later point. For non-blocking clients, the client must wait for the
RSH_EVENT_WRITE asynchronous notification message before it resumes sending data.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csrshv11.lib

See Also
RshIsBlocking, RshIsWritable, RshRead

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Remote Command Protocol Data Structures

 INITDATA

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 INITDATA Structure

This structure contains information about the SocketTools library when the initialization function
returns.

typedef struct _INITDATA
{
 DWORD dwSize;
 DWORD dwVersionMajor;
 DWORD dwVersionMinor;
 DWORD dwVersionBuild;
 DWORD dwOptions;
 DWORD_PTR dwReserved1;
 DWORD_PTR dwReserved2;
 TCHAR szDescription[128];
} INITDATA, *LPINITDATA;

Members
dwSize

Size of this structure. This structure member must be set to the size of the structure prior to
calling the initialization function. Failure to do so will cause the function to fail.

dwVersionMajor

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the major version number for the library.

dwVersionMinor

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the minor version number for the library.

dwVersionBuild

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the build number for the library.

dwOptions

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

dwReserved1

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

dwReserved2

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

szDescription

A null terminated string which describes the library.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Secure Shell Protocol Library

Establish an interactive terminal session with an SSH server and execute remote commands.

Reference

Functions
Data Structures
Error Codes

Library Information

File Name CSTSHV11.DLL

Version 11.0.2180.1635

LibID CC5C4328-4DED-4C40-AA58-00A9A09EA7DD

Import Library CSTSHV11.LIB

Dependencies None

Standards RFC 4251

Remarks
The Secure Shell (SSH) protocol API is used to establish a secure connection with a server which
provides a virtual terminal session for a user. Its functionality is similar to how character based
consoles and serial terminals work, enabling a user to login to the server, execute commands and
interact with applications running on the server. The library provides an interface for establishing
the connection and handling the standard I/O functions needed by the program. It also provides
functions that enable a program to easily scan the data stream for specific sequences of
characters, making it very simple to write light-weight client interfaces to applications running on
the server. This library can be combined with the Terminal Emulation library to provide complete
terminal emulation services for a standard ANSI or DEC-VT220 terminal.

Requirements
The SocketTools Library Edition libraries are compatible with any programming language which
supports calling functions exported from a standard dynamic link library (DLL). If you are using
Visual C++ 6.0 it is required that you have Service Pack 6 (SP6) installed. You should install all
updates for your development tools and have the current Windows SDK installed. The minimum
recommended version of Visual Studio is Visual Studio 2010.

This library is supported on Windows 7, Windows Server 2008 R2 and later versions of the desktop
and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1) installed as
a minimum requirement. It is recommended that you install the current service pack and all critical
updates available for your version of the operating system.

This product includes both 32-bit and 64-bit libraries. Native 64-bit CPU support requires the 64-
bit version of Windows 7 or later versions of the Windows operating system.

Distribution
When you distribute your application that uses this library, it is recommended that you install the
file in the same folder as your application executable. If you install the library into a shared location
on the system, it is important that you distribute the correct version for the target platform and it

should be registered as a shared DLL. This is a standard Windows dynamic link library, not an
ActiveX component, and does not require COM registration.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Secure Shell Protocol Functions

Function Description

SshAsyncConnect Connect asynchronously to the specified server

SshAttachThread Attach the specified client handle to another thread

SshCancel Cancel the current blocking operation

SshConnect Connect to the specified server

SshControl Send a control sequence to the server

SshCreateSecurityCredentials Create a new security credentials structure

SshDeleteSecurityCredentials Delete a previously created security credentials structure

SshDisableEvents Disable asynchronous event notification

SshDisableTrace Disable logging of network function calls to the trace log

SshDisconnect Disconnect from the current server

SshEnableEvents Enable asynchronous event notification

SshEnableTrace Enable logging of network function calls to a file

SshEventProc Callback function that processes events generated by the client

SshExecute Execute a command on a server and return the output in the specified
buffer

SshFreezeEvents Suspend asynchronous event processing

SshGetErrorString Return a description for the specified error code

SshGetExitCode Return the exit code from the remote program

SshGetLastError Return the last error code

SshGetLineMode Return the current mode used to send end-of-line character sequences

SshGetSecurityInformation Return security information about the current client connection

SshGetStatus Return the current client status

SshGetTimeout Return the number of seconds until an operation times out

SshInitialize Initialize the library and validate the specified license key at runtime

SshIsBlocking Determine if the client is blocked, waiting for information

SshIsConnected Determine if the client is connected to the server

SshIsReadable Determine if data can be read from the server

SshIsWritable Determine if data can be written to the server

SshPeek Read data returned by the server, but do not remove it from the receive
buffer

SshRead Read data returned by the server

SshReadLine Read a line of text from the server and return it in a string buffer

SshRegisterEvent Register an event callback function

SshSearch Search for a specific character sequence in the data stream

SshSetLastError Set the last error code

SshSetLineMode Change how end-of-line character sequences are sent to the server

SshSetTimeout Set the number of seconds until an operation times out

SshUninitialize Terminate use of the library by the application

SshWrite Write data to the server

SshWriteLine Write a line of text to the server

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SshAsyncConnect Function

HCLIENT WINAPI SshAsyncConnect(
 LPCTSTR lpszRemoteHost,
 UINT nRemotePort,
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword,
 UINT nTimeout,
 DWORD dwOptions,
 LPSSHOPTIONDATA lpOptions,
 LPSECURITYCREDENTIALS lpCredentials,
 HWND hEventWnd,
 UINT uEventMsg
);

The SshAsyncConnect function is used to establish a connection with the server.

This function has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

The application should create a background worker thread and establish a connection by calling
SshConnect within that thread. If the application requires multiple simultaneous connections, it is
recommended you create a worker thread for each client session.

Parameters
lpszRemoteHost

A pointer to a string which specifies the name of the server to connect to. This may either be a
fully-qualified domain name or an IP address. This parameter cannot be NULL.

nRemotePort

The port number the server is listening on. A value of zero specifies that the default port
number 22 should be used.

lpszUserName

A pointer to a string which specifies the user name which will be used to authenticate the client
session. This parameter must specify a valid user name and cannot be NULL or an empty string.

lpszPassword

A pointer to a string which specifies the password which will be used to authenticate the client
session. If the user does not have a password, this parameter can be NULL or an empty string.

nTimeout

The number of seconds that the client will wait for a response from the server before failing the
current operation.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

SSH_OPTION_NONE No options specified. A standard terminal session will
be established with the default terminal type.

SSH_OPTION_KEEPALIVE This option specifies the library should attempt to
maintain an idle client session for long periods of time.
This option is only necessary if you expect that the
connection will be held open for more than two hours.

SSH_OPTION_NOPTY This option specifies that a pseudoterminal (PTY)
should not be created for the client session. This
option is automatically set if the
SSH_OPTION_COMMAND option has been specified.

SSH_OPTION_NOSHELL This option specifies that a command shell should not
be used when executing a command on the server.

SSH_OPTION_NOAUTHRSA This option specifies that RSA authentication should
not be used with SSH-1 connections. This option is
ignored with SSH-2 connections and should only be
specified if required by the server.

SSH_OPTION_NOPWDNULL This option specifies the user password cannot be
terminated with a null character. This option is ignored
with SSH-2 connections and should only be specified if
required by the server.

SSH_OPTION_NOREKEY This option specifies the client should never attempt a
repeat key exchange with the server. Some SSH
servers do not support rekeying the session, and this
can cause the client to become non-responsive or
abort the connection after being connected for an
hour.

SSH_OPTION_COMPATSID This compatibility option changes how the session ID is
handled during public key authentication with older
SSH servers. This option should only be specified when
connecting to servers that use OpenSSH 2.2.0 or
earlier versions.

SSH_OPTION_COMPATHMAC This compatibility option changes how the HMAC
authentication codes are generated. This option
should only be specified when connecting to servers
that use OpenSSH 2.2.0 or earlier versions.

SSH_OPTION_TERMINAL This option specifies the client session will use terminal
emulation and the SSHOPTIONDATA structure
specifies the characteristics of the virtual terminal. This
enables the caller to specify the dimensions of the
virtual display (in columns and rows) and the type of
terminal that will be emulated. If this option is omitted,
the session will default to a virtual display that is 80
columns, 25 rows.

SSH_OPTION_COMMAND This option specifies the client session will be used to
issue a command that is executed on the server, and
the output will be returned to the caller. If this option is
specified, the session will not be interactive and no
pseudoterminal is created for the client. The

szCommandLine member of the SSHOPTIONDATA
structure specifies the command string that will be sent
to the server.

SSH_OPTION_PROXYSERVER This option specifies the client should establish a
connection through a proxy server. The two protocols
that are supported are SSH_PROXY_HTTP and
SSH_PROXY_TELNET, which specifies the protocol that
the proxy connection is created through. The proxy-
related members of the SSHOPTIONDATA structure
should be set to the appropriate values.

SSH_OPTION_PREFER_IPV6 This option specifies the client should prefer the use of
IPv6 if the server hostname can be resolved to both an
IPv6 and IPv4 address. This option is ignored if the
local system does not have IPv6 enabled, or when the
hostname can only be resolved to an IPv4 address. If
the server hostname can only be resolved to an IPv6
address, the client will attempt to establish a
connection using IPv6 regardless if this option has
been specified.

SSH_OPTION_FREETHREAD This option specifies the handle returned by this
function may be used by any thread, and is not limited
to the thread which created it. The application is
responsible for ensuring that access to the handle is
synchronized across multiple threads.

lpOptions

A pointer to a SSHOPTIONDATA structure which specifies additional information for one or
more options. If no optional data is required, a NULL pointer may be specified.

lpCredentials

A pointer to a SECURITYCREDENTIALS structure which specifies additional security-related
information required to establish the connection. This parameter may be NULL, in which case
default values will be used. Note that the dwSize member must be initialized to the size of the
SECURITYCREDENTIALS structure that is being passed to the function.

hEventWnd

The handle to the event notification window. This window receives messages which notify the
client of various asynchronous socket events that occur.

uEventMsg

The message identifier that is used when an asynchronous socket event occurs. This value
should be greater than WM_USER as defined in the Windows header files.

Return Value
If the function succeeds, the return value is a handle to a client session. If the function fails, the
return value is INVALID_CLIENT. To get extended error information, call SshGetLastError.

Remarks
When a message is posted to the notification window, the low word of the lParam parameter
contains the event identifier. The high word of lParam contains the low word of the error code, if
an error has occurred. The wParam parameter contains the client handle. One or more of the

following event identifiers may be sent:

Constant Description

SSH_EVENT_CONNECT The connection to the server has completed. The high word of the
lParam parameter should be checked, since this notification
message will be posted if an error has occurred.

SSH_EVENT_DISCONNECT The server has closed the connection to the client. The client
should read any remaining data and disconnect.

SSH_EVENT_READ Data is available to read by the calling process. No additional
messages will be posted until the client has read at least some of
the data. This event is only generated if the client is in
asynchronous mode.

SSH_EVENT_WRITE The client can now write data. This notification is sent after a
connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking
operation. This event is only generated if the client is in
asynchronous mode.

SSH_EVENT_TIMEOUT The network operation has exceeded the specified timeout period.
The client application may attempt to retry the operation, or may
disconnect from the server and report an error to the user.

SSH_EVENT_CANCEL The current operation has been canceled. Under most
circumstances the client should disconnect from the server and re-
connect if needed. After an operation has been canceled, the
server may abort the connection or refuse to accept further
commands from the client.

To cancel asynchronous notification and return the client to a blocking mode, use the
SshDisableEvents function.

It is recommended that you only establish an asynchronous connection if you understand the
implications of doing so. In most cases, it is preferable to create a synchronous connection and
create worker threads for each additional session if more than one active client session is required.

The dwOptions argument can be used to specify the threading model that is used by the library
when a connection is established. By default, the handle is initially attached to the thread that
created it. From that point on, until the it is released, only the owner may call functions using that
handle. The ownership of the handle may be transferred from one thread to another using the
SshAttachThread function.

Specifying the SSH_OPTION_FREETHREAD option enables any thread to call any function using
the handle, regardless of which thread created it. It is important to note that this option disables
certain internal safety checks which are performed by the library and may result in unexpected
behavior unless access to the handle is synchronized. If one thread calls a function in the library, it
must ensure that no other thread will call another function at the same time using the same
handle.

Example
// Define the asynchronous event notification message ID
#define WM_CLIENT_EVENTS (WM_APP + 1)

HCLIENT hClient;
SSHOPTIONDATA sshOptions;

// Initialize the SSHOPTIONDATA structure and specify the
// command that should be executed on the server
ZeroMemory(&sshOptions, sizeof(sshOptions));
lstrcpyn(sshOptions.szCommandLine, lpszCommand, SSH_MAXCOMMANDLEN);

// Establish a connection with the SSH server

hClient = SshAsyncConnect(lpszHostName,
 SSH_PORT_DEFAULT,
 lpszUserName,
 lpszPassword,
 SSH_TIMEOUT,
 SSH_OPTION_COMMAND,
 &sshOptions,
 NULL,
 hAppWnd,
 WM_CLIENT_EVENTS);

// If the connection attempt fails, then get a description of
// the error and display it in a message box

if (hClient == INVALID_CLIENT)
{
 DWORD dwError;
 TCHAR szError[128];

 dwError = SshGetLastError();
 if (dwError > 0)
 {
 SshGetErrorString(dwError, szError, 128);
 MessageBox(NULL, szError, _T("Error"), MB_ICONEXCLAMATION);
 }

 return;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SshConnect, SshCreateSecurityCredentials, SshDeleteSecurityCredentials, SshDisconnect,
SshInitialize, SshUninitialize, SECURITYCREDENTIALS, SSHOPTIONDATA

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SshAttachThread Function

DWORD WINAPI SshAttachThread(
 HCLIENT hClient
 DWORD dwThreadId
);

The SshAttachThread function attaches the specified client handle to another thread.

Parameters
hClient

Handle to the client session.

dwThreadId

The ID of the thread that will become the new owner of the handle. A value of zero specifies
that the current thread should become the owner of the client handle.

Return Value
If the function succeeds, the return value is the thread ID of the previous owner. If the function
fails, the return value is SSH_ERROR. To get extended error information, call SshGetLastError.

Remarks
When a client handle is created, it is associated with the current thread that created it. Normally, if
another thread attempts to perform an operation using that handle, an error is returned since it
does not own the handle. This is used to ensure that other threads cannot interfere with an
operation being performed by the owner thread. In some cases, it may be desirable for one
thread in a client application to create the client handle, and then pass that handle to another
worker thread. The SshAttachThread function can be used to change the ownership of the
handle to the new worker thread. By preserving the return value from the function, the original
owner of the handle can be restored before the worker thread terminates.

This function should be called by the new thread immediately after it has been created, and if the
new thread does not release the handle itself, the ownership of the handle should be restored to
the parent thread before it terminates. Under no circumstances should SshAttachThread be used
to forcibly release a handle allocated by another thread while a blocking operation is in progress.
To cancel an operation, use the SshCancel function and then release the handle after the blocking
function exits and control is returned to the current thread.

Note that the dwThreadId parameter is presumed to be a valid thread ID and no checks are
performed to ensure that the thread actually exists. Specifying an invalid thread ID will orphan the
handle until the SshUninitialize function is called.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib

See Also
SshConnect, SshDisconnect, SshUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SshCancel Function

INT WINAPI SshCancel(
 HCLIENT hClient
);

The SshCancel function cancels any outstanding blocking operation in the client, causing the
blocking function to fail. The application may then retry the operation or terminate the client
session.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
SSH_ERROR. To get extended error information, call SshGetLastError.

Remarks
When the SshCancel function is called, the blocking function will not immediately fail. An internal
flag is set which causes the blocking operation to exit with an error. This means that the
application cannot cancel an operation and immediately perform some other operation. Instead it
must allow the calling stack to unwind, returning back to the blocking operation before making
any further function calls.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib

See Also
SshControl, SshIsBlocking

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SshConnect Function

HCLIENT WINAPI SshConnect(
 LPCTSTR lpszRemoteHost,
 UINT nRemotePort,
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword,
 UINT nTimeout,
 DWORD dwOptions,
 LPSSHOPTIONDATA lpOptions,
 LPSECURITYCREDENTIALS lpCredentials
);

The SshConnect function is used to establish a connection with the server.

Parameters
lpszRemoteHost

A pointer to a string which specifies the name of the server to connect to. This may either be a
fully-qualified domain name or an IP address. This parameter cannot be NULL.

nRemotePort

The port number the server is listening on. A value of zero specifies that the default port
number 22 should be used.

lpszUserName

A pointer to a string which specifies the user name which will be used to authenticate the client
session. This parameter must specify a valid user name and cannot be NULL or an empty string.

lpszPassword

A pointer to a string which specifies the password which will be used to authenticate the client
session. If the user does not have a password, this parameter can be NULL or an empty string.

nTimeout

The number of seconds that the client will wait for a response from the server before failing the
current operation.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

SSH_OPTION_NONE No options specified. A standard terminal session will
be established with the default terminal type.

SSH_OPTION_KEEPALIVE This option specifies the library should attempt to
maintain an idle client session for long periods of time.
This option is only necessary if you expect that the
connection will be held open for more than two hours.

SSH_OPTION_NOPTY This option specifies that a pseudoterminal (PTY)
should not be created for the client session. This
option is automatically set if the
SSH_OPTION_COMMAND option has been specified.

SSH_OPTION_NOSHELL This option specifies that a command shell should not

be used when executing a command on the server.

SSH_OPTION_NOAUTHRSA This option specifies that RSA authentication should
not be used with SSH-1 connections. This option is
ignored with SSH-2 connections and should only be
specified if required by the server.

SSH_OPTION_NOPWDNULL This option specifies the user password cannot be
terminated with a null character. This option is ignored
with SSH-2 connections and should only be specified if
required by the server.

SSH_OPTION_NOREKEY This option specifies the client should never attempt a
repeat key exchange with the server. Some SSH
servers do not support rekeying the session, and this
can cause the client to become non-responsive or
abort the connection after being connected for an
hour.

SSH_OPTION_COMPATSID This compatibility option changes how the session ID is
handled during public key authentication with older
SSH servers. This option should only be specified when
connecting to servers that use OpenSSH 2.2.0 or
earlier versions.

SSH_OPTION_COMPATHMAC This compatibility option changes how the HMAC
authentication codes are generated. This option
should only be specified when connecting to servers
that use OpenSSH 2.2.0 or earlier versions.

SSH_OPTION_TERMINAL This option specifies the client session will use terminal
emulation and the SSHOPTIONDATA structure
specifies the characteristics of the virtual terminal. This
enables the caller to specify the dimensions of the
virtual display (in columns and rows) and the type of
terminal that will be emulated. If this option is omitted,
the session will default to a virtual display that is 80
columns, 25 rows.

SSH_OPTION_COMMAND This option specifies the client session will be used to
issue a command that is executed on the server, and
the output will be returned to the caller. If this option is
specified, the session will not be interactive and no
pseudoterminal is created for the client. The
szCommandLine member of the SSHOPTIONDATA
structure specifies the command string that will be sent
to the server.

SSH_OPTION_PROXYSERVER This option specifies the client should establish a
connection through a proxy server. The two protocols
that are supported are SSH_PROXY_HTTP and
SSH_PROXY_TELNET, which specifies the protocol that
the proxy connection is created through. The proxy-
related members of the SSHOPTIONDATA structure

should be set to the appropriate values.

SSH_OPTION_PREFER_IPV6 This option specifies the client should prefer the use of
IPv6 if the server hostname can be resolved to both an
IPv6 and IPv4 address. This option is ignored if the
local system does not have IPv6 enabled, or when the
hostname can only be resolved to an IPv4 address. If
the server hostname can only be resolved to an IPv6
address, the client will attempt to establish a
connection using IPv6 regardless if this option has
been specified.

SSH_OPTION_FREETHREAD This option specifies the handle returned by this
function may be used by any thread, and is not limited
to the thread which created it. The application is
responsible for ensuring that access to the handle is
synchronized across multiple threads.

lpOptions

A pointer to a SSHOPTIONDATA structure which specifies additional information for one or
more options. If no optional data is required, a NULL pointer may be specified.

lpCredentials

A pointer to a SECURITYCREDENTIALS structure which specifies additional security-related
information required to establish the connection. This parameter may be NULL, in which case
default values will be used. Note that the dwSize member must be initialized to the size of the
SECURITYCREDENTIALS structure that is being passed to the function.

Return Value
If the function succeeds, the return value is a handle to a client session. If the function fails, the
return value is INVALID_CLIENT. To get extended error information, call SshGetLastError.

Remarks
This function will block the current thread until a connection has been established or the timeout
period has elapsed. To prevent it from blocking the main user interface thread, the application
should create a background worker thread and establish a connection by calling SshConnect in
that thread. If the application requires multiple simultaneous connections, it is recommended you
create a worker thread for each connection.

The dwOptions argument can be used to specify the threading model that is used by the library
when a connection is established. By default, the handle is initially attached to the thread that
created it. From that point on, until the it is released, only the owner may call functions using that
handle. The ownership of the handle may be transferred from one thread to another using the
SshAttachThread function.

Specifying the SSH_OPTION_FREETHREAD option enables any thread to call any function using
the handle, regardless of which thread created it. It is important to note that this option disables
certain internal safety checks which are performed by the library and may result in unexpected
behavior unless access to the handle is synchronized. If one thread calls a function in the library, it
must ensure that no other thread will call another function at the same time using the same
handle.

Example

HCLIENT hClient;
SSHOPTIONDATA sshOptions;

// Initialize the SSHOPTIONDATA structure and specify the
// command that should be executed on the server
ZeroMemory(&sshOptions, sizeof(sshOptions));
lstrcpyn(sshOptions.szCommandLine, lpszCommand, SSH_MAXCOMMANDLEN);

// Establish a connection with the SSH server

hClient = SshConnect(lpszHostName,
 SSH_PORT_DEFAULT,
 lpszUserName,
 lpszPassword,
 SSH_TIMEOUT,
 SSH_OPTION_COMMAND,
 &sshOptions,
 NULL);

// If the connection attempt fails, then get a description of
// the error and display it in a message box

if (hClient == INVALID_CLIENT)
{
 DWORD dwError;
 TCHAR szError[128];

 dwError = SshGetLastError();
 if (dwError > 0)
 {
 SshGetErrorString(dwError, szError, 128);
 MessageBox(NULL, szError, _T("Error"), MB_ICONEXCLAMATION);
 }

 return;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SshCreateSecurityCredentials, SshDeleteSecurityCredentials, SshDisconnect, SshExecute,
SshInitialize, SshUninitialize, SECURITYCREDENTIALS, SSHOPTIONDATA

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SshControl Function

INT WINAPI SshControl(
 HCLIENT hClient
 DWORD dwControlCode,
 LPVOID lpvReserved,
 DWORD dwReserved
);

The SshControl function sends a control message to the server.

Parameters
hClient

Handle to the client session.

dwControlCode

A numeric control code which specifies the control message which should be sent to the server.
This may be one of the following values:

Constant Description

SSH_CONTROL_BREAK Sends a control message to the server which simulates a
break signal on a physical terminal. This is used by some
operating systems as an instruction to enter a privileged
configuration mode. Note that this is not the same as sending
an interrupt character such as Ctrl+C to the server. This
control code is ignored for SSH 1.0 sessions.

SSH_CONTROL_NOOP Sends a control message to the server, but it does not
perform any operation. This is typically used by clients to
prevent the server from automatically closing a session that
has been idle for a long period of time.

SSH_CONTROL_EOF Sends a control message to the server indicating that the
client has finished sending data. Note that this option is
normally not used with interactive terminal sessions, and
should only be used when required by the server.

SSH_CONTROL_PING Sends a control message to the server which is used to test
whether or not the server is responsive to the client. This is
typically used by clients to attempt to detect if the connection
to the server is still active.

SSH_CONTROL_REKEY Sends a control message to the server requesting that the key
exchange be performed again. This control code is ignored
for SSH 1.0 sessions.

lpvReserved

A reserved parameter which should always be specified as NULL.

dwReserved

A reserved parameter which should always be specified as a value of 0.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is

SSH_ERROR. To get extended error information, call SshGetLastError.

Remarks
The SshControl function enables an application to send control messages to the server, which can
cause it to take specific actions such as simulate a terminal break or request that the key
exchanged be performed again. Some control messages are not supported by the SSH 1.0
protocol, in which case the control message is ignored.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib

See Also
SshCancel, SshIsBlocking

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SshCreateSecurityCredentials Function

BOOL WINAPI SshCreateSecurityCredentials(
 DWORD dwProtocol,
 DWORD dwOptions,
 LPCTSTR lpszKeyFile,
 LPCTSTR lpszPassword,
 LPVOID lpvReserved,
 LPSECURITYCREDENTIALS* lppCredentials
);

The SshCreateSecurityCredentials function creates a SECURITYCREDENTIALS structure.

Parameters
dwProtocol

A bitmask of supported security protocols. This parameter is constructed by using a bitwise
operator with any of the following values:

Constant Description

SECURITY_PROTOCOL_SSH Select either version 1.0 or 2.0 of the Secure Shell
protocol. The actual protocol version that is selected is
determined automatically. This is the recommended
value.

SECURITY_PROTOCOL_SSH1 Version 1.0 of the Secure Shell protocol. This protocol
has been deprecated and its use is not recommended.

SECURITY_PROTOCOL_SSH2 Version 2.0 of the Secure Shell protocol. This is currently
the most commonly used version of the protocol, and
most servers will require this version when establishing a
connection.

dwOptions

Credentials options. This argument is reserved for future use. Set it to a value of zero when
using this function.

lpszKeyFile

A pointer to a string which specifies the name of a private key file that used when authenticating
the client connection. If a private key is not required, value of NULL should be specified.

lpszPassword

A pointer to a string which specifies the password for the private key file. A value of NULL
specifies that no password is required.

lppCredentials

Pointer to an LPSECURITYCREDENTIALS pointer. The memory for the credentials structure will
be allocated by this function and must be released by calling the
SshDeleteSecurityCredentials function when it is no longer needed. The pointer value must
be set to NULL before the function is called.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call SshGetLastError.

Remarks
The structure that is created by this function may be used as client credentials when establishing a
secure connection. This is particularly useful for programming languages other than C/C++ which
may not support C structures or pointers. The pointer to the SECURITYCREDENTIALS structure can
be declared as an unsigned integer variable which is passed by reference to this function, and
then passed by value to the SshAsyncConnect or SshConnect functions.

Example
LPSECURITYCREDENTIALS lpSecCred = NULL;
SshCreateSecurityCredentials(SECURITY_PROTOCOL_SSH2,
 0,
 lpszKeyFile,
 lpszPassword,
 NULL,
 &lpSecCred);

hClient = SshConnect(lpszHostName,
 SSH_PORT_DEFAULT,
 lpszUserName,
 lpszPassword,
 SSH_TIMEOUT,
 SSH_OPTION_DEFAULT,
 NULL,
 lpSecCred);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SshConnect, SshDeleteSecurityCredentials, SshGetSecurityInformation, SECURITYCREDENTIALS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SshDeleteSecurityCredentials Function

VOID WINAPI SshDeleteSecurityCredentials(
 LPSECURITYCREDENTIALS* lppCredentials
);

The SshDeleteSecurityCredentials function deletes an existing SECURITYCREDENTIALS
structure.

Parameters
lppCredentials

Pointer to an LPSECURITYCREDENTIALS pointer. On exit from the function, the pointer will be
NULL.

Return Value
None.

Example
if (lpSecCred)
 SshDeleteSecurityCredentials(&lpSecCred);

SshUninitialize();

Remarks
This function can be used to release the memory allocated to the client or server credentials after
a secure connection has been terminated.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SshCreateSecurityCredentials, SshUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SshDisableEvents Function

INT WINAPI SshDisableEvents(
 HCLIENT hClient
);

The SshDisableEvents function disables the event notification mechanism, preventing subsequent
event notification messages from being posted to the application's message queue.

This function has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
SSH_ERROR. To get extended error information, call SshGetLastError.

Remarks
This function affects both event notification and event callbacks. Any outstanding events in the
message queue should be ignored by the client application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib

See Also
SshEnableEvents, SshFreezeEvents, SshRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SshDisableTrace Function

BOOL WINAPI SshDisableTrace();

The SshDisableTrace function disables the logging of socket function calls to the trace log.

Parameters
None.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib

See Also
SshEnableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SshDisconnect Function

INT WINAPI SshDisconnect(
 HCLIENT hClient
);

The SshDisconnect function terminates the connection with the server, closing the socket and
releasing the memory allocated for the client session.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
SSH_ERROR. To get extended error information, call SshGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SshConnect, SshUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SshEnableEvents Function

INT WINAPI SshEnableEvents(
 HCLIENT hClient,
 HWND hEventWnd,
 UINT uEventMsg
);

The SshEnableEvents function enables event notifications using Windows messages.

This function has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Applications should use the SshRegisterEvent function to register an event handler which is
invoked when an event occurs.

Parameters
hClient

Handle to the client session.

hEventWnd

Handle to the event notification window. This window receives a user-defined message which
specifies the event that has occurred. If this value is NULL, event notification is disabled.

uEventMsg

An unsigned integer which specifies the user-defined message that is sent when an event
occurs. This parameter's value must be greater than the value of WM_USER. If the hEventWnd
parameter is NULL, this value must be specified as WM_NULL.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
SSH_ERROR. To get extended error information, call SshGetLastError.

Remarks
When a message is posted to the notification window, the low word of the lParam parameter
contains the event identifier. The high word of lParam contains the low word of the error code, if
an error has occurred. The wParam parameter contains the client handle. One or more of the
following event identifiers may be sent:

Constant Description

SSH_EVENT_CONNECT The connection to the server has completed. The high word of the
lParam parameter should be checked, since this notification
message will be posted if an error has occurred.

SSH_EVENT_DISCONNECT The server has closed the connection to the client. The client
should read any remaining data and disconnect.

SSH_EVENT_READ Data is available to read by the calling process. No additional
messages will be posted until the client has read at least some of
the data. This event is only generated if the client is in
asynchronous mode.

SSH_EVENT_WRITE The client can now write data. This notification is sent after a
connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking
operation. This event is only generated if the client is in
asynchronous mode.

SSH_EVENT_TIMEOUT The network operation has exceeded the specified timeout period.
The client application may attempt to retry the operation, or may
disconnect from the server and report an error to the user.

SSH_EVENT_CANCEL The current operation has been canceled. Under most
circumstances the client should disconnect from the server and re-
connect if needed. After an operation has been canceled, the
server may abort the connection or refuse to accept further
commands from the client.

As noted, some events are only generated when the client is asynchronous mode. These events
depend on the Windows Sockets asynchronous notification mechanism.

If event notification is disabled by specifying a NULL window handle, there may still be outstanding
events in the message queue that must be processed. Since event handling has been disabled,
these events should be ignored by the client application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib

See Also
SshDisableEvents, SshFreezeEvents, SshRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SshEnableTrace Function

BOOL WINAPI SshEnableTrace(
 LPCTSTR lpszTraceFile,
 DWORD dwTraceFlags
);

The SshEnableTrace function enables the logging of Windows Sockets function calls to a file.

Parameters
lpszTraceFile

A pointer to a string which specifies the name of the trace log file. If this parameter is NULL or
an empty string, the default file name cstrace.log is used. The file is stored in the directory
specified by the TEMP environment variable, if it is defined; otherwise, the current working
directory is used.

dwTraceFlags

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

TRACE_INFO All function calls are written to the trace file. This is the default
value.

TRACE_ERROR Only those function calls which fail are recorded in the trace file.

TRACE_WARNING Only those function calls which fail or return values which indicate
a warning are recorded in the trace file.

TRACE_HEXDUMP All functions calls are written to the trace file, plus all the data that
is sent or received is displayed, in both ASCII and hexadecimal
format.

TRACE_PROCESS All function calls in the current process are logged, rather than
only those functions in the current thread. This option is useful for
multithreaded applications that are using worker threads.

Return Value
If the function succeeds, the return value is non-zero. A return value of zero indicates an error.
Failure typically indicates that the tracing library cstrcv11.dll cannot be loaded on the local
system.

Remarks
When trace logging is enabled, the file is opened, appended to and closed for each socket
function call. This makes it possible for an application to append its own logging information,
however care should be taken to ensure that the file is closed before the next network operation is
performed. To limit the size of the log files, enable and disable logging only around those sections
of code that you wish to trace.

Note that the TRACE_HEXDUMP trace level generates very large log files since it includes all of the
data exchanged between your application and the server.

Trace function logging is managed on a per-thread basis, not for each client handle. This means
that all SocketTools libraries and components share the same settings in the current thread. If you

are using multiple SocketTools libraries or components in your application, you only need to
enable logging once.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SshDisableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SshEventProc Function

VOID CALLBACK SshEventProc(
 HCLIENT hClient,
 UINT nEvent,
 DWORD dwError,
 DWORD_PTR dwParam
);

The SshEventProc function is an application-defined callback function that processes events
generated by the client.

Parameters
hClient

Handle to the client session.

nEvent

An unsigned integer which specifies which event occurred. For a complete list of events, refer to
the SshRegisterEvent function.

dwError

An unsigned integer which specifies any error that occurred. If no error occurred, then this
parameter will be zero.

dwParam

A user-defined integer value which was specified when the event callback was registered.

Return Value
None.

Remarks
An application must register this callback function by passing its address to the SshRegisterEvent
function. The SshEventProc function is a placeholder for the application-defined function name.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SshDisableEvents, SshEnableEvents, SshFreezeEvents, SshRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SshExecute Function

INT WINAPI SshExecute(
 LPCTSTR lpszRemoteHost,
 UINT nRemotePort,
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword,
 LPCTSTR lpszCommandLine,
 UINT nTimeout,
 DWORD dwOptions,
 LPVOID lpvBuffer,
 LPDWORD lpdwLength,
 LPSECURITYCREDENTIALS lpCredentials
);

The SshExecute function executes a command on the server and returns the output in the
specified buffer.

Parameters
lpszRemoteHost

A pointer to a string which specifies the name of the server. This may either be a fully-qualified
domain name, or an IP address. This parameter cannot be NULL.

nRemotePort

The port number the server is listening on. A value of zero specifies that the default port
number 22 should be used.

lpszUserName

A pointer to a string which specifies the user name which will be used to authenticate the client
session.

lpszPassword

A pointer to a string which specifies the password which will be used to authenticate the client
session.

nTimeout

The number of seconds that the client will wait for a response from the server before failing the
current operation.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

SSH_OPTION_NONE No options specified. A standard terminal session will
be established with the default terminal type.

SSH_OPTION_KEEPALIVE This option specifies the library should attempt to
maintain an idle client session for long periods of time.
This option is only necessary if you expect that the
connection will be held open for more than two hours.

SSH_OPTION_NOPTY This option specifies that a pseudoterminal (PTY)
should not be created for the client session. This

option is automatically set if the
SSH_OPTION_COMMAND option has been specified.

SSH_OPTION_NOSHELL This option specifies that a command shell should not
be used when executing a command on the server.

SSH_OPTION_NOAUTHRSA This option specifies that RSA authentication should
not be used with SSH-1 connections. This option is
ignored with SSH-2 connections and should only be
specified if required by the server.

SSH_OPTION_NOPWDNULL This option specifies the user password cannot be
terminated with a null character. This option is ignored
with SSH-2 connections and should only be specified if
required by the server.

SSH_OPTION_NOREKEY This option specifies the client should never attempt a
repeat key exchange with the server. Some SSH
servers do not support rekeying the session, and this
can cause the client to become non-responsive or
abort the connection after being connected for an
hour.

SSH_OPTION_COMPATSID This compatibility option changes how the session ID is
handled during public key authentication with older
SSH servers. This option should only be specified when
connecting to servers that use OpenSSH 2.2.0 or
earlier versions.

SSH_OPTION_COMPATHMAC This compatibility option changes how the HMAC
authentication codes are generated. This option
should only be specified when connecting to servers
that use OpenSSH 2.2.0 or earlier versions.

lpvBuffer

A pointer to a byte buffer which will contain the data transferred from the server, or a pointer to
a global memory handle which will reference the data when the function returns.

lpdwLength

A pointer to an unsigned integer which should be initialized to the maximum number of bytes
that can be copied to the buffer specified by the lpvBuffer parameter. If the lpvBuffer
parameter points to a global memory handle, the length value should be initialized to zero.
When the function returns, this value will be updated with the actual length of the file that was
downloaded.

lpCredentials

A pointer to a SECURITYCREDENTIALS structure which specifies additional security-related
information required to establish the connection. This parameter may be NULL, in which case
default values will be used. Note that the dwSize member must be initialized to the size of the
SECURITYCREDENTIALS structure that is being passed to the function.

Return Value
If the function succeeds, the return value is the exit code from the program that was executed on
the server. If the function fails, the return value is SSH_ERROR. To get extended error information,
call SshGetLastError.

Remarks
The SshExecute function is used to execute a command on a server, read the output from that
command and copy it into a local buffer. This function cannot be used if the connection to the
server must be established through a proxy server; if a proxy server must be used, then you
should use the SshConnect function to establish the connection, and then use either the
SshRead or SshReadLine functions to read the output.

This function may be used in one of two ways, depending on the needs of the application. The
first method is to pre-allocate a buffer large enough to store the command output. In this case,
the lpvBuffer parameter will point to the buffer that was allocated, the value that the lpdwLength
parameter points to should be initialized to the size of that buffer.

The second method that can be used is have the lpvBuffer parameter point to a global memory
handle which will contain the output when the function returns. In this case, the value that the
lpdwLength parameter points to must be initialized to zero. It is important to note that the
memory handle returned by the function must be freed by the application, otherwise a memory
leak will occur. See the example code below.

When the command output is being read from the server, this function will automatically convert
the data to match the end-of-line convention used on the Windows platform. This is useful when
executing a command on a UNIX based system where the end-of-line is indicated by a single
linefeed, while on Windows it is a carriage-return and linefeed pair. If the output contains
embedded nulls or escape sequences, then this conversion will not be performed.

This function will cause the current thread to block until the command completes or a timeout
occurs.

Example
HGLOBAL hgblBuffer = (HGLOBAL)NULL;
LPBYTE lpBuffer = (LPBYTE)NULL;
DWORD cbBuffer = 0;

// Execute a command on the server and return the data into block
// of global memory allocated by the GlobalAlloc function; the handle
// to this memory will be returned in the hgblBuffer parameter
nResult = SshExecute(lpszHostName,
 SSH_PORT_DEFAULT,
 lpszUserName,
 lpszPassword,
 lpszCommandLine,
 SSH_TIMEOUT,
 SSH_OPTION_NONE,
 &hgblBuffer,
 &cbBuffer,
 NULL);

if (nResult != SSH_ERROR)
{
 // Lock the global memory handle, returning a pointer to the
 // resource data
 lpBuffer = (LPBYTE)GlobalLock(hgblBuffer);

 // After the data has been used, the handle must be unlocked
 // and freed, otherwise a memory leak will occur
 GlobalUnlock(hgblBuffer);
 GlobalFree(hgblBuffer);

}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SshConnect, SshGetExitCode, SshRead, SshReadLine, SshWrite, SshWriteLine,
SECURITYCREDENTIALS, SSHOPTIONDATA

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SshFreezeEvents Function

INT WINAPI SshFreezeEvents(
 HCLIENT hClient,
 BOOL bFreeze
);

The SshFreezeEvents function is used to suspend and resume event handling by the client.

Parameters
hClient

Handle to the client session.

bFreeze

A non-zero value specifies that event handling should be suspended by the client. A zero value
specifies that event handling should be resumed.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
SSH_ERROR. To get extended error information, call SshGetLastError.

Remarks
This function should be used when the application does not want to process events, such as when
a modal dialog is being displayed. When events are suspended, all client events are queued. If
events are re-enabled at a later point, those queued events will be sent to the application for
processing. Note that only one of each event will be generated. For example, if the client has
suspended event handling, and four read events occur, once event handling is resumed only one
of those read events will be posted to the client. This prevents the application from being flooded
by a potentially large number of queued events.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib

See Also
SshDisableEvents, SshEnableEvents, SshRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SshGetErrorString Function

INT WINAPI SshGetErrorString(
 DWORD dwErrorCode,
 LPTSTR lpszDescription,
 INT cbDescription
);

The SshGetErrorString function is used to return a description of a specific error code. Typically
this is used in conjunction with the SshGetLastError function for use with warning dialogs or as
diagnostic messages.

Parameters
dwErrorCode

The error code for which a description is returned.

lpszDescription

A pointer to the buffer that will contain a description of the specified error code. This buffer
should be at least 128 characters in length.

cbDescription

The maximum number of characters that may be copied into the description buffer.

Return Value
If the function succeeds, the return value is the length of the description string. If the function fails,
the return value is zero, meaning that no description exists for the specified error code. Typically
this indicates that the error code passed to the function is invalid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SshGetLastError, SshSetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SshGetExitCode Function

INT WINAPI SshGetExitCode(
 HCLIENT hClient
);

The SshGetExitCode function returns the exit code for the remote session.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is the numeric exit code. If the function fails, the return
value is SSH_ERROR. To get extended error information, call SshGetLastError.

Remarks
This function should only be called after the command has completed and the SshRead function
has returned a value of zero. In most cases, an exit code value of zero indicates success, while any
other value indicates an error condition.

Note that the actual value is application dependent and is only meaningful in the context of that
particular program. A program may choose or use exit codes in a non-standard way, such as
having certain non-zero values indicate success.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib

See Also
SshGetStatus

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SshGetLastError Function

DWORD WINAPI SshGetLastError();

Parameters
None.

Return Value
The return value is the last error code value for the current thread. Functions set this value by
calling the SshSetLastError function. The Return Value section of each reference page notes the
conditions under which the function sets the last error code.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. You should call
the SshGetLastError function immediately when a function's return value indicates that an error
has occurred. That is because some functions call SshSetLastError(0) when they succeed, clearing
the error code set by the most recently failed function.

Most functions will set the last error code value when they fail; a few functions set it when they
succeed. Function failure is typically indicated by a return value such as FALSE, NULL,
INVALID_CLIENT or SSH_ERROR. Those functions which call SshSetLastError when they succeed
are noted on the function reference page.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib

See Also
SshGetErrorString, SshSetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SshGetLineMode Function

INT WINAPI SshGetLineMode(
 HCLIENT hClient
);

The SshGetLineMode function returns the current line mode.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is the current line mode. If the function fails, the return
value is SSH_ERROR. To get extended error information, call SshGetLastError.

Remarks
The SshGetLineMode function returns an integer value that specifies how end-of-line character
sequences are sent to the server. For more information about how newlines are processed by the
library and the available options, refer to the SshSetLineMode function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib

See Also
SshSetLineMode, SshWrite, SshWriteLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SshGetSecurityInformation Function

BOOL WINAPI SshGetSecurityInformation(
 HCLIENT hClient,
 LPSECURITYINFO lpSecurityInfo
);

The SshGetSecurityInformation function returns security protocol, encryption and certificate
information about the current client connection.

Parameters
hClient

Handle to the client session.

lpSecurityInfo

A pointer to a SECURITYINFO structure which contains information about the current client
connection. The dwSize member of this structure must be initialized to the size of the structure
before passing the address of the structure to this function.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call SshGetLastError.

Remarks
This function is used to obtain security related information about the current client connection to
the server. It can be used to determine if a secure connection has been established, what security
protocol was selected, and information about the server certificate. Note that a secure connection
has not been established, the dwProtocol structure member will contain the value
SECURITY_PROTOCOL_NONE.

Example
The following example demonstrates how to obtain the fingerprint for the server:

SECURITYINFO securityInfo;

securityInfo.dwSize = sizeof(SECURITYINFO);
if (SshGetSecurityInformation(hClient, &securityInfo))
{
 if (securityInfo.lpszFingerprint != NULL)
 {
 TCHAR szMessage[256];
 wsprintf(szMessage, _T("The fingerprint is %s",
securityInfo.lpszFingerprint);
 MessageBox(NULL, szMessage, "Connection", MB_OK);
 }
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SshConnect, SshDisconnect, SECURITYINFO

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SshGetStatus Function

INT WINAPI SshGetStatus(
 HCLIENT hClient
);

The SshGetStatus function returns the current status of the client session.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is the client status code. If the function fails, the return
value is SSH_ERROR. To get extended error information, call SshGetLastError.

Remarks
The SshGetStatus function returns a numeric code which identifies the current state of the client
session. The following values may be returned:

Value Constant Description

1 SSH_STATUS_IDLE The client is current idle and not sending or
receiving data.

2 SSH_STATUS_CONNECT The client is establishing a connection with the
server.

3 SSH_STATUS_AUTHENTICATE The client is authenticating the session with the
server.

4 SSH_STATUS_READ The client is reading data from the server.

5 SSH_STATUS_WRITE The client is writing data to the server.

6 SSH_STATUS_DISCONNECT The client is disconnecting from the server.

In a multithreaded application, any thread in the current process may call this function to obtain
status information for the specified client session.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib

See Also
SshGetExitCode, SshIsBlocking, SshIsConnected, SshIsReadable, SshIsWritable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SshGetTimeout Function

INT WINAPI SshGetTimeout(
 HCLIENT hClient
);

The SshGetTimeout function returns the number of seconds the client will wait for a response
from the server. Once the specified number of seconds has elapsed, the function will fail and
return to the caller.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is the timeout period in seconds. If the function fails, the
return value is SSH_ERROR. To get extended error information, call SshGetLastError.

Remarks
The timeout value is only used with blocking client connections. A value of zero indicates that the
default timeout period of 20 seconds should be used.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib

See Also
SshSetTimeout

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SshInitialize Function

BOOL WINAPI SshInitialize(
 LPCTSTR lpszLicenseKey,
 LPINITDATA lpData
);

The SshInitialize function initializes the library and validates the specified license key at runtime.

Parameters
lpszLicenseKey

Pointer to a string that specifies the runtime license key to be validated. If this parameter is
NULL, the library will validate the development license installed on the local system.

lpData

Pointer to an INITDATA data structure. This parameter may be NULL if the initialization data for
the library is not required.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call SshGetLastError. All other client functions will fail until a
license key has been successfully validated.

Remarks
This must be the first function that an application calls before using any of the other functions in
the library. When a NULL license key is specified, the library will only function on the development
system. Before redistributing the application to an end-user, you must insure that this function is
called with a valid license key.

If the lpData argument is specified, it must point to an INITDATA structure which has been
initialized by setting the dwSize member to the size of the structure. All other structure members
should be set to zero. If the function is successful, then the INITDATA structure will be filled with
identifying information about the library.

Although it is only required that SshInitialize be called once for the current process, it may be
called multiple times; however, each call must be matched by a corresponding call to
SshUninitialize.

This function dynamically loads other system libraries and allocates thread local storage. If you are
calling the functions in this library from within another DLL, it is important that you do not call the
SshInitialize or SshUninitialize functions from the DllMain function because it can result in
deadlocks or access violation errors. If the DLL is linked with the C runtime library (CRT), it will
automatically call the constructors and destructors for static and global C++ objects and has the
same restrictions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also

SshConnect, SshDisconnect, SshUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SshIsBlocking Function

BOOL WINAPI SshIsBlocking(
 HCLIENT hClient
);

The SshIsBlocking function is used to determine if the client is currently performing a blocking
operation.

Parameters
hClient

Handle to the client session.

Return Value
If the client is performing a blocking operation, the function returns a non-zero value. If the client
is not performing a blocking operation, or the client handle is invalid, the function returns zero.

Remarks
Because a blocking operation can allow the application to be re-entered (for example, by pressing
a button while the operation is being performed), it is possible that another blocking function may
be called while it is in progress. Since only one thread of execution may perform a blocking
operation at any one time, an error would occur. The SshIsBlocking function can be used to
determine if the client is already blocked, and if so, take some other action such as warning the
user that they must wait for the operation to complete.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib

See Also
SshCancel

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SshIsConnected Function

BOOL WINAPI SshIsConnected(
 HCLIENT hClient
);

The SshIsConnected function is used to determine if the client is currently connected to a server.

Parameters
hClient

Handle to the client session.

Return Value
If the client is connected to a server, the function returns a non-zero value. If the client is not
connected, or the client handle is invalid, the function returns zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SshIsBlocking, SshIsReadable, SshIsWritable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SshIsReadable Function

BOOL WINAPI SshIsReadable(
 HCLIENT hClient,
 INT nTimeout,
 LPDWORD lpdwAvail
);

The SshIsReadable function is used to determine if data is available to be read from the server.

Parameters
hClient

Handle to the client session.

nTimeout

Timeout for server response, in seconds. A value of zero specifies that the connection should be
polled without blocking the current thread.

lpdwAvail

A pointer to an unsigned integer which will contain the number of bytes available to read. This
parameter may be NULL if this information is not required.

Return Value
If the client can read data from the server within the specified timeout period, the function returns
a non-zero value. If the client cannot read any data, the function returns zero.

Remarks
On some platforms, this value will not exceed the size of the receive buffer (typically 64K bytes).
Because of differences between TCP/IP stack implementations on different versions of Windows, it
is not recommended that your application exclusively depend on this value to determine the exact
number of bytes available. Instead, it should be used as a general indicator that there is data
available to be read.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib

See Also
SshGetStatus, SshIsBlocking, SshIsConnected, SshIsWritable, SshRead

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SshIsWritable Function

BOOL WINAPI SshIsWritable(
 HCLIENT hClient,
 INT nTimeout
);

The SshIsWritable function is used to determine if data can be written to the server.

Parameters
hClient

Handle to the client session.

nTimeout

Timeout for server response, in seconds. A value of zero specifies that the connection should be
polled without blocking the current thread.

Return Value
If the client can write data to the server within the specified timeout period, the function returns a
non-zero value. If the client cannot write any data, the function returns zero.

Remarks
Although this function can be used to determine if some amount of data can be sent to the
remote process it does not indicate the amount of data that can be written without blocking the
client. In most cases, it is recommended that large amounts of data be broken into smaller logical
blocks, typically some multiple of 512 bytes in length.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib

See Also
SshGetStatus, SshIsBlocking, SshIsConnected, SshIsReadable, SshWrite

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SshPeek Function

INT WINAPI SshPeek(
 HCLIENT hClient,
 LPBYTE lpBuffer,
 INT cbBuffer
);

The SshPeek function reads the specified number of bytes from the server and copies them into
the buffer, but it does not remove the data from the internal receive buffer. The data may be of
any type, and is not terminated with a null character.

Parameters
hClient

Handle to the client session.

lpBuffer

Pointer to the buffer in which the data will be copied.

cbBuffer

The maximum number of bytes to read and copy into the specified buffer. This value must be
greater than zero.

Return Value
If the function succeeds, the return value is the number of bytes actually read. A return value of
zero indicates that there is no data available to be read at that time. If the function fails, the return
value is SSH_ERROR. To get extended error information, call SshGetLastError.

Remarks
The SshPeek function can be used to examine the data that is available to be read from the
internal receive buffer. If there is no data in the receive buffer at that time, a value of zero is
returned. It should be noted that this differs from the SshRead function, where a return value of
zero indicates that there is no more data available to be read and the connection has been closed.
The SshPeek function will never cause the client to block, and so may be safely used with
asynchronous connections.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SshIsReadable, SshRead, SshSearch, SshWrite

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SshRead Function

INT WINAPI SshRead(
 HCLIENT hClient,
 LPBYTE lpBuffer,
 INT cbBuffer
);

The SshRead function reads the specified number of bytes from the client socket and copies them
into the buffer. The data may be of any type, and is not terminated with a null character.

Parameters
hClient

Handle to the client session.

lpBuffer

Pointer to the buffer in which the data will be copied.

cbBuffer

The maximum number of bytes to read and copy into the specified buffer. This value must be
greater than zero.

Return Value
If the function succeeds, the return value is the number of bytes actually read. A return value of
zero indicates that the server has closed the connection and there is no more data available to be
read. If the function fails, the return value is SSH_ERROR. To get extended error information, call
SshGetLastError.

Remarks
When SshRead is called and the client is in non-blocking mode, it is possible that the function will
fail because there is no available data to read at that time. This should not be considered a fatal
error. Instead, the application should simply wait to receive the next asynchronous notification that
data is available.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SshIsReadable, SshPeek, SshReadLine, SshSearch, SshWrite, SshWriteLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SshReadLine Function

BOOL WINAPI SshReadLine(
 HCLIENT hClient,
 LPTSTR lpszBuffer,
 LPINT lpnLength
);

The SshReadLine function reads up to a line of data and returns it in a string buffer.

Parameters
hSocket

Handle to the client session.

lpszBuffer

Pointer to the string buffer that will contain the data when the function returns. The string will
be terminated with a null byte, and will not contain the end-of-line characters.

lpnLength

A pointer to an integer value which specifies the length of the buffer. The value should be
initialized to the maximum number of characters that can be copied into the string buffer,
including the terminating null character. When the function returns, its value will updated with
the actual length of the string.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call SshGetLastError.

Remarks
The SshReadLine function reads data sent by the server and copies it into a specified string
buffer. Unlike the SshRead function which reads arbitrary bytes of data, this function is specifically
designed to return a single line of text data in a string. When an end-of-line character sequence is
encountered, the function will stop and return the data up to that point. The string buffer is
guaranteed to be null-terminated and will not contain the end-of-line characters.

There are some limitations when using SshReadLine. The function should only be used to read
text, never binary data. In particular, the function will discard nulls, linefeed and carriage return
control characters. The Unicode version of this function will return a Unicode string, however this
function does not support reading raw Unicode data from the server. The data is internally
buffered as octets (eight-bit bytes) and converted to Unicode using the MultiByteToWideChar
function.

This function will force the thread to block until an end-of-line character sequence is processed,
the read operation times out or the server closes its end of the connection. If this function is called
with asynchronous events enabled, it will automatically switch the client into a blocking mode, read
the data and then restore the client to asynchronous operation. If another client operation is
attempted while SshReadLine is blocked waiting for data from the server, an error will occur. It is
recommended that this function only be used with blocking (synchronous) client connections; if
the application needs to establish multiple simultaneous connections, it should create worker
threads to manage each connection.

The SshRead and SshReadLine function calls can be intermixed, however be aware that SshRead
will consume any data that has already been buffered by the SshReadLine function and this may

have unexpected results.

Unlike the SshRead function, it is possible for data to be returned in the buffer even if the return
value is zero. Applications should also check the value of the lpnLength argument to determine if
any data was copied into the buffer. For example, if a timeout occurs while the function is waiting
for more data to arrive, it will return zero; however, data may have already been copied into the
string buffer prior to the error condition. It is the responsibility of the application to process that
data, regardless of the function return value.

Example
TCHAR szBuffer[MAXBUFLEN];
INT nLength;
BOOL bResult;

do
{
 nLength = sizeof(szBuffer);
 bResult = SshReadLine(hSocket, szBuffer, &nLength);

 if (nLength > 0)
 {
 // Process the line of data returned in the string
 // buffer; the string is always null-terminated
 }
} while (bResult);

DWORD dwError = SshGetLastError();
if (dwError == ST_ERROR_CONNECTION_CLOSED)
{
 // The server has closed its side of the connection and
 // there is no more data available to be read
}
else if (dwError != 0)
{
 // An error has occurred while reading a line of data
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SshIsReadble, SshRead, SshWrite, SshWriteLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SshRegisterEvent Function

INT WINAPI SshRegisterEvent(
 HCLIENT hClient,
 UINT nEvent,
 SSHEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

The SshRegisterEvent function registers an event handler for the specified event.

Parameters
hClient

Handle to the client session.

nEvent

An unsigned integer which specifies which event should be registered with the specified callback
function. One of the following values may be used:

Constant Description

SSH_EVENT_CONNECT The connection to the server has completed.

SSH_EVENT_DISCONNECT The server has closed the connection to the client. The
client should read any remaining data and disconnect.

SSH_EVENT_READ Data is available to read by the calling process. No
additional messages will be posted until the client has
read at least some of the data. This event is only
generated if the client is in asynchronous mode.

SSH_EVENT_WRITE The client can now write data. This notification is sent after
a connection has been established, or after a previous
attempt to write data has failed because it would result in
a blocking operation. This event is only generated if the
client is in asynchronous mode.

SSH_EVENT_TIMEOUT The network operation has exceeded the specified
timeout period. The client application may attempt to
retry the operation, or may disconnect from the server
and report an error to the user.

SSH_EVENT_CANCEL The current operation has been canceled. Under most
circumstances the client should disconnect from the server
and re-connect if needed. After an operation has been
canceled, the server may abort the connection or refuse
to accept further commands from the client.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the SshEventProc callback
function. If this parameter is NULL, the callback for the specified event is disabled.

dwParam

A user-defined integer value that is passed to the callback function. If the application targets the

x86 (32-bit) platform, this parameter must be a 32-bit unsigned integer. If the application
targets the x64 (64-bit) platform, this parameter must be a 64-bit unsigned integer.

Remarks
The SshRegisterEvent function associates a callback function with a specific event. The event
handler is an SshEventProc function that is invoked when the event occurs. Arguments are
passed to the function to identify the client session, the event type and the user-defined value
specified when the event handler is registered. If the event occurs because of an error condition,
the error code will be provided to the handler.

The callback function specified by the lpEventProc parameter must be declared using the
__stdcall calling convention. This ensures the arguments passed to the event handler are pushed
on to the stack in the correct order. Failure to use the correct calling convention will corrupt the
stack and cause the application to terminate abnormally.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
SSH_ERROR. To get extended error information, call SshGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib

See Also
SshDisableEvents, SshEnableEvents, SshEventProc, SshFreezeEvents

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SshSearch Function

BOOL WINAPI SshSearch(
 HCLIENT hClient,
 LPCTSTR lpszString,
 LPVOID lpvBuffer,
 LPDWORD lpdwLength,
 DWORD dwReserved
);

The SshSearch function searches for a specific character sequence in the data stream and stops
reading if the sequence is encountered.

Parameters
hClient

Handle to the client session.

lpszString

A pointer to a string which specifies the sequence of characters to search for in the data stream.
This parameter cannot be NULL or point to an empty string.

lpvBuffer

A pointer to a byte buffer which will contain the output from the server, or a pointer to a global
memory handle which will reference the output when the function returns. If the output from
the server is not required, this parameter may be NULL.

lpdwLength

A pointer to an unsigned integer which should be initialized to the maximum number of bytes
that can be copied to the buffer specified by the lpvBuffer parameter. If the lpvBuffer
parameter points to a global memory handle, the length value should be initialized to zero.
When the function returns, this value will be updated with the actual number of bytes of output
stored in the buffer. If the lpvBuffer parameter is NULL, this parameter should also be NULL.

dwReserved

A reserved parameter. This value must be zero.

Return Value
If the function succeeds and the character sequences was found in the data stream, the return
value is non-zero. If the function fails or a timeout occurs before the sequence is found, the return
value is zero. To get extended error information, call SshGetLastError.

Remarks
The SshSearch function searches for a character sequence in the data stream and stops reading
when it is found. This is useful when the client wants to automate responses to the server. The
function collects the output from the server and stores it in the buffer specified by the lpvBuffer
parameter. When the function returns, the buffer will contain everything sent by the server up to
and including the matching string.

The lpvBuffer parameter may be specified in one of two ways, depending on the needs of the
application. The first method is to pre-allocate a buffer large enough to store the a fixed amount
of output. In this case, the lpvBuffer parameter will point to the buffer that was allocated, the value
that the lpdwLength parameter points to should be initialized to the size of that buffer. If the
server sends more output than can be stored in the buffer, the remaining output will be discarded.

The second method that can be used is have the lpvBuffer parameter point to a global memory
handle which will contain the output when the function returns. In this case, the value that the
lpdwLength parameter points to must be initialized to zero. It is important to note that the
memory handle returned by the function must be freed by the application, otherwise a memory
leak will occur. This method is preferred if the client application does not have a general idea of
how much output will be generated until the search string is found.

Example
LPCTSTR lpszCommand = _T("/bin/ls -l\r\n");
LPCTSTR lpszPrompt = _T("$ ");
HGLOBAL hgblOutput = NULL;
DWORD cbOutput = 0;
BOOL bResult;

// Search for a command prompt issued by the server

bResult = SshSearch(hClient,
 lpszPrompt,
 NULL,
 NULL,
 0);

// If the shell prompt was found, issue the command
// and capture the output into the hgblBuffer global
// memory buffer; the cbBuffer variable will contain
// the actual number of bytes in the buffer when the
// function returns

if (bResult)
{
 SshWrite(hClient,
 (LPBYTE)lpszCommand,
 lstrlen(lpszCommand));

 bResult = SshSearch(hClient,
 lpszPrompt,
 &hgblOutput,
 &cbOutput,
 0);
}

// Write the contents of the output buffer to the
// standard output stream

if (bResult)
{
 LPBYTE lpBuffer = (LPBYTE)GlobalLock(hgblBuffer);

 if (lpBuffer)
 fwrite(lpBuffer, 1, cbBuffer, stdout);

 GlobalUnlock(hgblBuffer);
 GlobalFree(hgblBuffer);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)

Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SshIsBlocking, SshIsReadable, SshPeek, SshRead, SshReadLine, SshWrite, SshWriteLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SshSetLastError Function

VOID WINAPI SshSetLastError(
 DWORD dwErrorCode
);

The SshSetLastError function sets the last error code for the current thread. This function is
typically used to clear the last error by specifying a value of zero as the parameter.

Parameters
dwErrorCode

Specifies the last error code for the current thread.

Return Value
None.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. Most functions will
set the last error code value when they fail; a few functions set it when they succeed. Function
failure is typically indicated by a return value such as FALSE, NULL, INVALID_CLIENT or
SSH_ERROR. Those functions which call SshSetLastError when they succeed are noted on the
function reference page.

Applications can retrieve the value saved by this function by using the SshGetLastError function.
The use of SshGetLastError is optional; an application can call the function to determine the
specific reason for a function failure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib

See Also
SshGetErrorString, SshGetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SshSetLineMode Function

INT WINAPI SshSetLineMode(
 HCLIENT hClient,
 INT nLineMode
);

The SshSetLineMode function changes the current line mode for the client session.

Parameters
hClient

Handle to the client session.

nLineMode

An integer value which specifies how the newlines are sent by the library. It must be one of the
following values:

Value Constant Description

0 SSH_NEWLINE_DEFAULT There are no changes to how data is sent to the
server. Any carriage return or linefeed characters
that are sent using the SshWrite function will be
sent as-is. The SshWriteLine function will terminate
each line of text with a carriage return and linefeed
(CRLF) sequence. This is the default line mode that is
set when a new connection is established.

1 SSH_NEWLINE_CR A carriage return is used as the end-of-line
character. Any data sent using the SshWrite
function that contains only a linefeed (LF) character
or a carriage return and linefeed (CRLF) sequence to
indicate the end-of-line will be replaced by a
carriage return (CR) character. The SshWriteLine
function will terminate each line of text with a single
carriage return character.

2 SSH_NEWLINE_LF A linefeed is used as the end-of-line character. Any
data sent using the SshWrite function that contains
only a carriage return (CR) character or a carriage
return an linefeed (CRLF) sequence to indicate the
end-of-line will be replaced by a linefeed (LF)
character. The SshWriteLine function will terminate
each line of text with a single linefeed character.

3 SSH_NEWLINE_CRLF A carriage return and linefeed (CRLF) character
sequence is used to indicate the end-of-line. Any
data sent using the SshWrite function that contains
only a carriage return (CR) or linefeed (LF) will be
replaced by a carriage return and linefeed. The
SshWriteLine function will terminate each line of
text with a carriage return and linefeed sequence.

Return Value

If the function succeeds, the return value is the previous line mode for the client session. If the
function fails, the return value is SSH_ERROR. To get extended error information, call
SshGetLastError.

Remarks
When a connection is initially established with the server, it determines what characters are used to
indicate the end-of-line and how they are displayed. On UNIX based systems, this is controlled by
the settings for the pseudo-terminal that is allocated for the client session, and can be changed
using the stty command. In most cases, the client line mode can be left at the default. However, in
some cases you may need to change the line mode, particularly if you intend to send data from a
Windows text file or copied from the clipboard.

Windows uses a carriage return and linefeed (CRLF) sequence to indicate the end-of-line and a
UNIX based server may interpret that as multiple newlines. To prevent this, use the
SshSetLineMode function to change the current line mode to SSH_NEWLINE_CR and the CRLF
sequence in the text will be replaced by a single carriage return.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib

See Also
SshGetLineMode, SshWrite, SshWriteLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SshSetTimeout Function

INT WINAPI SshSetTimeout(
 HCLIENT hClient,
 INT nTimeout
);

The SshSetTimeout function sets the number of seconds the client will wait for a response from
the server. Once the specified number of seconds has elapsed, the function will fail and return to
the caller.

Parameters
hClient

Handle to the client session.

nTimeout

The number of seconds to wait for a blocking operation to complete.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
SSH_ERROR. To get extended error information, call SshGetLastError.

Remarks
The timeout value is only used with blocking client connections.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib

See Also
SshGetTimeout

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SshUninitialize Function

VOID WINAPI SshUninitialize();

The SshUninitialize function terminates the use of the library.

Parameters
There are no parameters.

Return Value
None.

Remarks
An application is required to perform a successful SshInitialize call before it can call any of the
other library functions. When it has completed the use of library, the application must call
SshUninitialize to allow the library to free any resources allocated on behalf of the process. Any
pending blocking or asynchronous calls in this process are canceled without posting any
notification messages, and all sockets that were opened by the process are closed.

There must be a call to SshUninitialize for every successful call to SshInitialize made by a
process. In a multithreaded environment, operations for all threads in the client are terminated.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SshDisconnect, SshInitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SshWrite Function

INT WINAPI SshWrite(
 HCLIENT hClient,
 LPBYTE lpBuffer,
 INT cbBuffer
);

The SshWrite function sends the specified number of bytes to the server.

Parameters
hClient

Handle to the client session.

lpBuffer

The pointer to the buffer which contains the data that is to be sent to the server.

cbBuffer

The number of bytes to send from the specified buffer.

Return Value
If the function succeeds, the return value is the number of bytes actually written. If the function
fails, the return value is SSH_ERROR. To get extended error information, call SshGetLastError.

Remarks
The return value may be less than the number of bytes specified by the cbBuffer parameter. In this
case, the data has been partially written and it is the responsibility of the client application to send
the remaining data at some later point. For non-blocking clients, the client must wait for the
SSH_EVENT_WRITE asynchronous notification message before it resumes sending data.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SshIsWritable, SshRead, SshReadLine, SshSetLineMode, SshWriteLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SshWriteLine Function

BOOL WINAPI SshWriteLine(
 HCLIENT hClient,
 LPCTSTR lpszBuffer,
 LPINT lpnLength
);

The SshWriteLine function sends a line of text to the server, terminated by a carriage-return and
linefeed.

Parameters
hClient

Handle to the client session.

lpszBuffer

The pointer to a string buffer which contains the data that will be sent to the server. All
characters up to, but not including, the terminating null character will be written to the server.
The data will always be terminated with a carriage-return and linefeed control character
sequence. If this parameter points to an empty string or NULL pointer, then a only a carriage-
return and linefeed are written to the server.

lpnLength

A pointer to an integer value which will contain the number of characters written to the server,
including the carriage-return and linefeed sequence. If this information is not required, a NULL
pointer may be specified.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call SshGetLastError.

Remarks
The SshWriteLine function writes a line of text to the server and terminates the line with a
carriage-return and linefeed control character sequence. Unlike the SshWrite function which
writes arbitrary bytes of data to the server, this function is specifically designed to write a single
line of text data from a string.

If the lpszBuffer string is terminated with a linefeed (LF) or carriage return (CR) character, it will be
automatically converted to a standard CRLF end-of-line sequence. Because the string will be sent
with a terminating CRLF sequence, the value returned in the lpnLength parameter will typically be
larger than the original string length (reflecting the additional CR and LF characters), unless the
string was already terminated with CRLF.

There are some limitations when using SshWriteLine. The function should only be used to send
text, never binary data. In particular, the function will discard nulls and append linefeed and
carriage return control characters to the data stream. The Unicode version of this function will
accept a Unicode string, however this function does not support sending raw Unicode data to the
server. Unicode strings will be automatically converted to UTF-8 encoding using the
WideCharToMultiByte function and then written as a stream of bytes.

This function will force the thread to block until the complete line of text has been written, the
write operation times out or the server aborts the connection. If this function is called with
asynchronous events enabled, it will automatically switch the client into a blocking mode, send the

data and then restore the client to asynchronous operation. If another network operation is
attempted while SshWriteLine is blocked sending data to the server, an error will occur. It is
recommended that this function only be used with blocking (synchronous) connections; if the
application needs to establish multiple simultaneous connections, it should create worker threads
to manage each connection.

The SshWrite and SshWriteLine function calls can be safely intermixed.

Unlike the SshWrite function, it is possible for data to have been written to the server if the return
value is zero. For example, if a timeout occurs while the function is waiting to send more data to
the server, it will return zero; however, some data may have already been written prior to the error
condition. If this is the case, the lpnLength argument will specify the number of characters actually
written up to that point.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstshv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SshIsWritable, SshRead, SshReadLine, SshSetLineMode, SshWrite

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SSH Protocol Data Structures

INITDATA
SECURITYCREDENTIALS
SECURITYINFO
SSHOPTIONDATA

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 INITDATA Structure

This structure contains information about the SocketTools library when the initialization function
returns.

typedef struct _INITDATA
{
 DWORD dwSize;
 DWORD dwVersionMajor;
 DWORD dwVersionMinor;
 DWORD dwVersionBuild;
 DWORD dwOptions;
 DWORD_PTR dwReserved1;
 DWORD_PTR dwReserved2;
 TCHAR szDescription[128];
} INITDATA, *LPINITDATA;

Members
dwSize

Size of this structure. This structure member must be set to the size of the structure prior to
calling the initialization function. Failure to do so will cause the function to fail.

dwVersionMajor

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the major version number for the library.

dwVersionMinor

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the minor version number for the library.

dwVersionBuild

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the build number for the library.

dwOptions

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

dwReserved1

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

dwReserved2

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

szDescription

A null terminated string which describes the library.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SECURITYINFO Structure

This structure contains information about a secure connection that has been established with a
server.

typedef struct _SECURITYINFO
{
 DWORD dwSize;
 DWORD dwProtocol;
 DWORD dwCipher;
 DWORD dwCipherStrength;
 DWORD dwHash;
 DWORD dwHashStrength;
 DWORD dwKeyExchange;
 DWORD dwCertStatus;
 SYSTEMTIME stCertIssued;
 SYSTEMTIME stCertExpires;
 LPCTSTR lpszCertIssuer;
 LPCTSTR lpszCertSubject;
 LPCTSTR lpszFingerprint;
} SECURITYINFO, *LPSECURITYINFO;

Members
dwSize

Specifies the size of the data structure. This member must always be initialized to
sizeof(SECURITYINFO) prior to passing the address of this structure to the function. Note that
if this member is not initialized, an error will be returned indicating that an invalid parameter has
been passed to the function.

dwProtocol

A numeric value which specifies the protocol that was selected to establish the secure
connection. One of the following values will be returned:

Constant Description

SECURITY_PROTOCOL_NONE No security protocol has been selected. A secure
connection has not been established with the server.
The remaining member values in this structure are not
valid and should be ignored.

SECURITY_PROTOCOL_SSH1 The Secure Shell 1.0 protocol should be used. This
protocol has been deprecated and is no longer widely
used. It is not recommended that this protocol be used
when establishing secure connections. This protocol
can only be specified when connecting to an SSH
server and is not supported with any other application
protocol.

SECURITY_PROTOCOL_SSH2 The Secure Shell 2.0 protocol should be used. This is
the most commonly used version of the protocol. It is
recommended that this version of the protocol be
used unless the server explicitly requires the client to
use an earlier version. This protocol can only be
specified when connecting to an SSH server and is not
supported with any other application protocol.

dwCipher

A numeric value which specifies the cipher that was selected when establishing the secure
connection. One of the following values will be returned:

Constant Description

SECURITY_CIPHER_RC5 The RC5 block cipher was selected. This is a variable key
length cipher which supports keys up to 2040 bits, in 8-bit
increments.

SECURITY_CIPHER_DES The DES (Data Encryption Standard) block cipher was
selected. This is a fixed key length cipher, using 56-bit keys.

SECURITY_CIPHER_DES3 The Triple DES block cipher was selected. This cipher
encrypts the data three times using different keys, effectively
providing a 168-bit length key.

SECURITY_CIPHER_AES The Advanced Encryption Standard cipher (also known as
the Rijndael cipher) is a fixed block size cipher which use a
key size of 128, 192 or 256 bits. This cipher is supported on
Windows XP SP3 and later versions of the operating system.

dwCipherStrength

A numeric value which specifies the strength (the length of the cipher key in bits) of the cipher
that was selected. Typically this value will be 128 or 256. 40-bit and 56-bit key lengths are
considered weak encryption, and subject to brute force attacks. 128-bit and 256-bit key lengths
are considered to be secure and are the recommended key length for secure communications.

dwHash

A numeric value which specifies the hash algorithm which was selected. One of the following
values will be returned:

Constant Description

SECURITY_HASH_MD5 The MD5 algorithm was selected. Its use has been
deprecated and is no longer considered to be
cryptographically secure.

SECURITY_HASH_SHA1 The SHA-1 algorithm was selected. Its use has been
deprecated and is no longer considered to be
cryptographically secure.

SECURITY_HASH_SHA256 The SHA-256 algorithm was selected.

dwHashStrength

A numeric value which specifies the strength (the length in bits) of the message digest that was
selected.

dwKeyExchange

A numeric value which specifies the key exchange algorithm which was selected. One of the
following values will be returned:

Constant Description

SECURITY_KEYEX_RSA The RSA public key algorithm was selected.

SECURITY_KEYEX_KEA The Key Exchange Algorithm (KEA) was selected. This is an
improved version of the Diffie-Hellman public key algorithm.

SECURITY_KEYEX_DH The Diffie-Hellman key exchange algorithm was selected.

SECURITY_KEYEX_ECDH The Elliptic Curve Diffie-Hellman key exchange algorithm was
selected. This is a variant of the Diffie-Hellman algorithm
which uses elliptic curve cryptography. This key exchange
algorithm is only supported on Windows XP SP3 and later
versions of the operating system.

dwCertStatus

A numeric value which specifies the status of the certificate returned by the secure server. This
member only has meaning for connections using the SSL or TLS protocols.

stCertIssued

A structure which contains the date and time that the certificate was issued by the certificate
authority. If the issue date cannot be determined for the certificate, the SYSTEMTIME structure
members will have zero values. This member only has meaning for connections using the SSL or
TLS protocols.

stCertExpires

A structure which contains the date and time that the certificate expires. If the expiration date
cannot be determined for the certificate, the SYSTEMTIME structure members will have zero
values. This member only has meaning for connections using the SSL or TLS protocols.

lpszCertIssuer

A pointer to a string which contains information about the organization that issued the
certificate. This string consists of one or more comma-separated tokens. Each token consists of
an identifier, followed by an equal sign and a value. If the certificate issuer could not be
determined, this member may be NULL. This member only has meaning for connections using
the SSL or TLS protocols.

lpszCertSubject

A pointer to a string which contains information about the organization that the certificate was
issued to. This string consists of one or more comma-separated tokens. Each token consists of
an identifier, followed by an equal sign and a value. If the certificate subject could not be
determined, this member may be NULL. This member only has meaning for connections using
the SSL or TLS protocols.

lpszFingerprint

A pointer to a string which contains a sequence of hexadecimal values that uniquely identify the
server. This member is only used when a connection has been established using the Secure
Shell (SSH) protocol.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SECURITYCREDENTIALS Structure

The SECURITYCREDENTIALS structure specifies the information needed by the library to specify
additional security credentials, such as a client certificate or private key, when establishing a secure
connection.

typedef struct _SECURITYCREDENTIALS
{
 DWORD dwSize;
 DWORD dwProtocol;
 DWORD dwOptions;
 DWORD dwReserved;
 LPCTSTR lpszHostName;
 LPCTSTR lpszUserName;
 LPCTSTR lpszPassword;
 LPCTSTR lpszCertStore;
 LPCTSTR lpszCertName;
 LPCTSTR lpszKeyFile;
} SECURITYCREDENTIALS, *LPSECURITYCREDENTIALS;

Members
dwSize

Size of this structure. If the structure is being allocated dynamically, this member must be set to
the size of the structure and all other unused structure members must be initialized to a value of
zero or NULL.

dwProtocol

A value which specifies which security protocols are supported:

Constant Description

SECURITY_PROTOCOL_SSH Either version 1.0 or 2.0 of the Secure Shell protocol
should be used when establishing the connection. The
correct protocol is automatically selected based on the
version of the protocol that is supported by the server.

SECURITY_PROTOCOL_SSH1 The Secure Shell 1.0 protocol should be used when
establishing the connection. This is an older version of
the protocol which should not be used unless explicitly
required by the server. Most modern SSH server
support version 2.0 of the protocol.

SECURITY_PROTOCOL_SSH2 The Secure Shell 2.0 protocol should be used when
establishing the connection. This is the default version of
the protocol that is supported by most SSH servers.

dwOptions

This structure member is reserved for use with SSL and TLS connections and should always be
initialized to zero.

dwReserved

This structure member is reserved for future use and should always be initialized to zero.

lpszHostName

A pointer to a null terminated string which specifies the hostname that will be used when

validating a server certificate. This member should always be initialized as a NULL pointer for
connections using the SSH protocol.

lpszUserName

A pointer to a null terminated string which identifies the owner of client certificate. Currently this
member is not used by the library and should always be initialized as a NULL pointer.

lpszPassword

A pointer to a null terminated string which specifies the password needed to access the
certificate. Currently this member is only used if a private key file has been specified. If there is
no password associated with the certificate, then this member should be initialized as a NULL
pointer.

lpszCertStore

A pointer to a null terminated string which specifies the name of the certificate store to open.
This member should always be initialized as a NULL pointer for connections using the SSH
protocol.

lpszCertName

A pointer to a null terminated string which specifies the name of the certificate to use. This
member should always be initialized as a NULL pointer for connections using the SSH protocol.

lpszKeyFile

A pointer to a null terminated string which specifies the name of the file which contains the
private key required to establish the connection. This member is only used with the SSH
protocol. If the member is NULL, then no private key is used.

Remarks
A client application typically only needs to create this structure if the server requires that the client
provide a private key as part of the process of negotiating the secure session.

Note that the lpszUserName and lpszPassword members are values which are used to access the
private key file. They are not the credentials which are used when establishing the connection with
the server or authenticating the client session.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SSHOPTIONDATA Structure

This structure specifies additional option information for the client session. A pointer to this
structure can be passed to the SshConnect function.

#define SSH_MAXTERMNAMELEN 32
#define SSH_MAXHOSTNAMELEN 128
#define SSH_MAXUSERNAMELEN 128
#define SSH_MAXPASSWORDLEN 128
#define SSH_MAXCOMMANDLEN 512

typedef struct _SSHOPTIONDATA
{
 DWORD dwSize;
 DWORD dwReserved;
 UINT nProxyType;
 UINT nProxyPort;
 TCHAR szProxyHost[SSH_MAXHOSTNAMELEN];
 TCHAR szProxyUser[SSH_MAXUSERNAMELEN];
 TCHAR szProxyPassword[SSH_MAXPASSWORDLEN];
 UINT nTermCols;
 UINT nTermRows;
 TCHAR szTermName[SSH_MAXTERMNAMELEN];
 TCHAR szCommandLine[SSH_MAXCOMMANDLEN];
} SSHOPTIONDATA, *LPSSHOPTIONDATA;

Members
dwSize

An unsigned integer value which specifies the size of the SSHOPTIONDATA structure. This
member must be initialized prior to passing the structure to the SshAsyncConnect or
SshConnect functions.

dwReserved

An unsigned integer value that is reserved for internal use, and should always be initialized to a
value of zero.

nProxyType

An unsigned integer value that specifies the type of proxy that the client should connect
through. This structure member is only used if the option SSH_OPTION_PROXYSERVER has
been specified. Possible values are:

Constant Description

SSH_PROXY_NONE No proxy server should be used when establishing the
connection.

SSH_PROXY_HTTP The connection should be established on port 80 using HTTP.
An alternate port number can be specified by setting the
nProxyPort structure member to the desired value.

SSH_PROXY_TELNET The connection should be established on port 23 using TELNET.
An alternate port number can be specified by setting the
nProxyPort structure member to the desired value.

nProxyPort

An unsigned integer value that specifies the port number which should be used to establish the

proxy connection. A value of zero specifies that the default port number appropriate for the
selected protocol should be used. This structure member is only used if the option
SSH_OPTION_PROXYSERVER has been specified.

szProxyHost

A null terminated string which specifies the host name or IP address of the proxy server. This
structure member is only used if the option SSH_OPTION_PROXYSERVER has been specified.

szProxyUser

A null terminated string which specifies the user name which is used to authenticate the
connection through the proxy server. This structure member is only used if the option
SSH_OPTION_PROXYSERVER has been specified.

szProxyPassword

A null terminated string which specifies the password which is used to authenticate the
connection through the proxy server. This structure member is only used if the option
SSH_OPTION_PROXYSERVER has been specified.

nTermCols

An unsigned integer value which specifies the number of columns for the virtual terminal
allocated for the client session. The default number of columns is 80. This structure member is
only used if the option SSH_OPTION_TERMINAL has been specified.

nTermRows

An unsigned integer value which specifies the number of rows for the virtual terminal allocated
for the client session. The default number of rows is 25. This structure member is only used if
the option SSH_OPTION_TERMINAL has been specified.

szTermName

A null terminated string which specifies the name of the terminal emulation type. On UNIX
based systems, this name typically corresponds to an entry in the terminal capability database
(either termcap or terminfo). If the name is not specified, then the default name terminal name
of "unknown" will be used. This structure member is only used if the option
SSH_OPTION_TERMINAL has been specified.

szCommandLine

A null terminated string which specifies the command that should be executed on the server.
The output from the command is returned to the client, and the session is terminated. This
structure member is only used if the option SSH_OPTION_COMMAND has been specified.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Simple Mail Transfer Protocol Library

Submit email messages for delivery to one or more recipients.

Reference

Functions
Data Structures
Error Codes

Library Information

File Name CSMTPV11.DLL

Version 11.0.2180.1635

LibID 3764CDB1-DB3D-4458-B23C-FFEFA4040608

Import Library CSMTPV11.LIB

Dependencies None

Standards RFC 821, RFC 1425, RFC 1869, RFC 2821

Overview
The Simple Mail Transfer Protocol (SMTP) enables applications to deliver email messages to one or
more recipients. The library provides an API for addressing and delivering messages, and
extended features such as user authentication and delivery status notification. Unlike Microsoft's
Messaging API (MAPI) or Collaboration Data Objects (CDO), there is no requirement to have
certain third-party email applications installed or specific types of servers installed on the local
system. The library can be used to deliver mail through a wide variety of systems, from standard
UNIX based mail servers to Windows systems running Microsoft Exchange.

Using this library, messages can be delivered directly to the recipient, or they can be routed
through a relay server, such as an Internet service provider's mail system. The SocketTools Mail
Message API can be integrated with this library in order to provide an extremely simple, yet
flexible interface for composing and delivering messages.

This library supports secure connections using the standard SSL and TLS protocols. Both implicit
and explicit SSL connections are supported, as well as client certificates used for authentication.

Requirements
The SocketTools Library Edition libraries are compatible with any programming language which
supports calling functions exported from a standard dynamic link library (DLL). If you are using
Visual C++ 6.0 it is required that you have Service Pack 6 (SP6) installed. You should install all
updates for your development tools and have the current Windows SDK installed. The minimum
recommended version of Visual Studio is Visual Studio 2010.

This library is supported on Windows 7, Windows Server 2008 R2 and later versions of the desktop
and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1) installed as
a minimum requirement. It is recommended that you install the current service pack and all critical
updates available for your version of the operating system.

This product includes both 32-bit and 64-bit libraries. Native 64-bit CPU support requires the 64-
bit version of Windows 7 or later versions of the Windows operating system.

Distribution
When you distribute your application that uses this library, it is recommended that you install the
file in the same folder as your application executable. If you install the library into a shared location
on the system, it is important that you distribute the correct version for the target platform and it
should be registered as a shared DLL. This is a standard Windows dynamic link library, not an
ActiveX component, and does not require COM registration.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Simple Mail Transfer Protocol Functions

Function Description

SmtpAddRecipient Add an address to the recipient list

SmtpAppendMessage Append contents of specified file to the current message

SmtpAsyncConnect Establish an asynchronous connection with a server

SmtpAsyncSendMessage Send message to the specified recipient

SmtpAsyncSubmitMessage Compose and submit a message for delivery to the specified mail server

SmtpAttachThread Attach the specified client handle to another thread

SmtpAuthenticate Authenticate the client session with a user name and password

SmtpCancel Cancel the current blocking operation

SmtpCloseMessage Close the message being composed and submit for delivery

SmtpCommand Send a command to the server

SmtpConnect Establish a connection with a server

SmtpCreateMessage Create a new message

SmtpCreateSecurityCredentials Allocate a structure to establish client security credentials

SmtpDeleteSecurityCredentials Delete the specified client security credentials

SmtpDisableEvents Disable all event notification, including event callbacks

SmtpDisableTrace Disable logging of network function calls to the trace log

SmtpDisconnect Disconnect from the current server

SmtpEnableEvents Enable event handling by the library

SmtpEnableTrace Enable logging of network function calls to a file

SmtpEnumTasks Return a list of asynchronous tasks

SmtpEventProc Process events generated by the client

SmtpExpandAddress Expand the specified address

SmtpFreezeEvents Suspend and resume event handling by the client

SmtpGetCurrentDate Return the current date and time

SmtpGetDeliveryOptions Return the delivery options for the current session

SmtpGetErrorString Return a description for the specified error code

SmtpGetExtendedOptions Return the extended options supported by the server

SmtpGetLastError Return the last error code

SmtpGetResultCode Return the result code from the previous command

SmtpGetResultString Return the result string from the previous command

SmtpGetSecurityInformation Return security information about the current client connection

SmtpGetStatus Return the current status of the client

SmtpGetTaskError Return the last error code for the specified asynchronous task

SmtpGetTaskId Return the unique task identifier associated with the specified client session

SmtpGetTimeout Return the number of seconds until an operation times out

SmtpGetTransferStatus Return data transfer statistics

SmtpInitialize Initialize the library and validate the specified license key at runtime

SmtpIsBlocking Determine if the client is blocked, waiting for information

SmtpIsConnected Determine if the client is connected to the server

SmtpIsReadable Determine if data can be read from the server

SmtpIsWritable Determine if data can be written to the server

SmtpRegisterEvent Register an event handler for the specified event

SmtpReset Reset the client and return to a command state

SmtpSendMessage Send message to the specified recipient

SmtpSetDeliveryOptions Set the delivery options for the current session

SmtpSetLastError Set the last error code

SmtpSetTimeout Set the number of seconds until an operation times out

SmtpSubmitMessage Compose and submit a message for delivery to the specified mail server

SmtpSubmitMessageEx Compose and submit a message for delivery with additional options

SmtpTaskAbort Abort the specified asynchronous task

SmtpTaskDone Determine if an asynchronous task has completed

SmtpTaskResume Resume execution of an asynchronous task

SmtpTaskSuspend Suspend execution of an asynchronous task

SmtpTaskWait Wait for an asynchronous task to complete

SmtpUninitialize Terminate use of the library by the application

SmtpVerifyAddress Verify that the specified address is valid

SmtpWrite Write data to the server

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpAddRecipient Function

INT WINAPI SmtpAddRecipient(
 HCLIENT hClient,
 LPCTSTR lpszAddress
);

The SmtpAddRecipient function adds the specified address to the recipient list for the current
message. This function should be called once for each recipient.

Parameters
hClient

Handle to the client session.

lpszAddress

Points to a string which specifies the address to be added to the recipient list.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is SMTP_ERROR. To get extended error information, call SmtpGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SmtpCloseMessage, SmtpCreateMessage, SmtpExpandAddress, SmtpVerifyAddress

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpAppendMessage Function

INT WINAPI SmtpAppendMessage(
 HCLIENT hClient,
 LPVOID lpvMessage,
 DWORD dwMessageSize,
 DWORD dwOptions
);

The SmtpAppendMessage function writes the contents of a specified file or buffer to the data
stream, appending it to the current message contents.

Parameters
hClient

Handle to the client session.

lpvMessage

Pointer to a buffer which contains the message data to be appended, or a pointer to the name
of the file which contains the data to be written to the data stream. The use of this parameter
depends on the value of the dwOptions parameter.

dwMessageSize

An unsigned integer which specifies the length of the message in bytes.

dwOptions

Specifies the source of the message data that will be written to the data stream; it may be one
of the following values:

Constant Description

SMTP_MESSAGE_MEMORY The lpvMessage parameter specifies a pointer to an
array of characters. If the value of dwMessageSize is
zero, then it is assumed to be a pointer to a string.

SMTP_MESSAGE_HGLOBAL The lpvMessage parameter specifies an HGLOBAL
which contains the data to be written to the data
stream. If the value of the dwMessageSize parameter is
zero, then the data is assumed to be null-terminated.

SMTP_MESSAGE_FILE The lpvMessage parameter specifies a pointer to a
string which contains the name of a file. The file is
opened and the contents of the file are written to the
data stream. The value of the dwMessageSize
parameter is ignored when this option is specified.

SMTP_MESSAGE_CLIPBOARD The lpvMessage and dwMessageSize parameters are
ignored. The current contents of the clipboard are
written to the data stream.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
SMTP_ERROR. To get extended error information, call SmtpGetLastError.

Remarks
The SmtpAppendMessage function is used to append the contents of a memory buffer, file or

the system clipboard to the current message that is being composed for delivery. To send a
complete RFC 822 formatted message, refer to the SmtpSendMessage function.

This function will cause the current thread to block until the complete message has been written, a
timeout occurs or the operation is canceled. During the transfer, the SMTP_EVENT_PROGRESS
event will be periodically fired, enabling the application to update any user interface controls.
Event notification must be enabled, either by calling SmtpEnableEvents, or by registering a
callback function using the SmtpRegisterEvent function.

To determine the current status of a transfer while it is in progress, use the
SmtpGetTransferStatus function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SmtpCloseMessage, SmtpCreateMessage, SmtpSendMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpAsyncConnect Function

HCLIENT WINAPI SmtpAsyncConnect(
 LPCTSTR lpszRemoteHost,
 UINT nRemotePort,
 UINT nTimeout,
 DWORD dwOptions,
 LPCTSTR lpszLocalName,
 LPSECURITYCREDENTIALS lpCredentials,
 HWND hEventWnd,
 UINT uEventMsg
);

The SmtpAsyncConnect function is used to establish a connection with the server.

This function has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

The application should create a background worker thread and establish a connection by calling
SmtpConnect within that thread. If the application requires multiple simultaneous connections, it
is recommended you create a worker thread for each client session.

Parameters
lpszRemoteHost

A pointer to the name of the server to connect to; this may be a fully-qualified domain name or
an IP address.

nRemotePort

The port number the server is listening on. A value of zero specifies that the default port
number should be used. For standard connections, the default port number is 25. An alternative
port is 587, which is commonly used by authenticated clients to submit messages for delivery.
For secure connections, the default port number is 465. If the secure port number is specified,
an implicit SSL/TLS connection will be established by default.

nTimeout

The number of seconds that the client will wait for a response from the server before failing the
current operation.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

SMTP_OPTION_NONE No additional options are specified when
establishing a connection with the server. A
standard, non-secure connection will be used and
the client will not attempt to use extended
(ESMTP) features of the protocol. Note that if the
mail server requires authentication, the
SMTP_OPTION_EXTENDED option must be
specified.

SMTP_OPTION_EXTENDED Extended SMTP commands should be used if
possible. This option enables features such as
authentication and delivery status notification. If
this option is not specified, the library will not
attempt to use any extended features. This option
is automatically enabled if the connection is
established on port 587 because submitting
messages for delivery using this port typically
requires client authentication.

SMTP_OPTION_TUNNEL This option specifies that a tunneled TCP
connection and/or port-forwarding is being used
to establish the connection to the server. This
changes the behavior of the client with regards to
internal checks of the destination IP address and
remote port number, default capability selection
and how the connection is established.

SMTP_OPTION_TRUSTEDSITE This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option
only affects connections using either the SSL or
TLS protocols.

SMTP_OPTION_SECURE This option specifies that a secure connection
should be established with the server and
requires that the server support either the SSL or
TLS protocol. This option is the same as
specifying SMTP_OPTION_SECURE_EXPLICIT,
which initiates the secure session using the
STARTTLS command.

SMTP_OPTION_SECURE_EXPLICIT This option specifies the client should attempt to
establish a secure connection with the server
using the STARTTLS command. Note that the
server must support secure connections using
either the SSL or TLS protocol.

SMTP_OPTION_SECURE_IMPLICIT This option specifies the client should attempt to
establish a secure connection with the server. The
server must support secure connections using
either the SSL or TLS protocol, and the secure
session must be negotiated immediately after the
connection has been established.

SMTP_OPTION_SECURE_FALLBACK This option specifies the client should permit the
use of less secure cipher suites for compatibility
with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

SMTP_OPTION_PREFER_IPV6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be
resolved to both an IPv6 and IPv4 address. This

option is ignored if the local system does not
have IPv6 enabled, or when the hostname can
only be resolved to an IPv4 address. If the server
hostname can only be resolved to an IPv6
address, the client will attempt to establish a
connection using IPv6 regardless if this option has
been specified.

SMTP_OPTION_FREETHREAD This option specifies the handle returned by this
function may be used by any thread, and is not
limited to the thread which created it. The
application is responsible for ensuring that access
to the handle is synchronized across multiple
threads.

lpszLocalName

A pointer to a string which specifies the domain name of the local host. This parameter can be
NULL or point to an empty string, in which case the local domain name is determined
automatically from the system configuration. This parameter should be used if the mail server
only accepts messages from a client that identifies itself using a specific domain name.

lpCredentials

A pointer to a SECURITYCREDENTIALS structure which is used to establish the client credentials
for a secure connection to the server. The function SmtpCreateSecurityCredentials can be
used to create this structure if necessary. If a standard non-secure connection is being
established, or client credentials are not required by the server, this parameter can be NULL.

hEventWnd

The handle to the event notification window. This window receives messages which notify the
client of various asynchronous socket events that occur. If this parameter is NULL, a blocking
connection is established with the server.

uEventMsg

The message identifier that is used when an asynchronous socket event occurs. This value
should be greater than WM_USER as defined in the Windows header files. If the hEventWnd
parameter is NULL, this parameter must be specified as WM_NULL.

Return Value
If the function succeeds, the return value is a handle to a client session. If the function fails, the
return value is INVALID_CLIENT. To get extended error information, call SmtpGetLastError.

Remarks
The lpszLocalName argument should only specify a domain name if it is absolutely necessary. In
most cases, it is preferable to pass this parameter as NULL or an empty string and allow the library
to automatically determine the correct domain name to use. Providing an invalid domain name
may cause the mail server to reject the connection.

When a message is posted to the notification window, the low word of the lParam parameter
contains the event identifier. The high word of lParam contains the low word of the error code, if
an error has occurred. The wParam parameter contains the client handle. One or more of the
following event identifiers may be sent:

Constant Description

SMTP_EVENT_CONNECT The connection to the server has completed. The high word of
the lParam parameter should be checked, since this notification
message will be posted if an error has occurred.

SMTP_EVENT_DISCONNECT The server has closed the connection to the client. The client
should read any remaining data and disconnect.

SMTP_EVENT_READ Data is available to read by the client. No additional messages
will be posted until the client has read at least some of the data.
This event is only generated if the calling process is in
asynchronous mode.

SMTP_EVENT_WRITE The client can now write data. This notification is sent after a
connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking
operation. This event is only generated if the client is in
asynchronous mode.

SMTP_EVENT_TIMEOUT The client has timed out while waiting for a response from the
server. Note that under some circumstances this event can be
generated for a non-blocking connection, such as when the client
is establishing a secure connection.

SMTP_EVENT_CANCEL The client has canceled the current operation.

SMTP_EVENT_COMMAND The client has processed a command that was sent to the server.
The result code and result string can be used to determine if the
response to the command. The high word of the lParam
parameter should be checked, since this notification message will
also be posed if the command cannot be executed.

SMTP_EVENT_PROGRESS This event notification is sent periodically during lengthy blocking
operations, such as retrieving a complete message from the
server.

To cancel asynchronous notification and return the client to a blocking mode, use the
SmtpDisableEvents function.

It is recommended that you only establish an asynchronous connection if you understand the
implications of doing so. In most cases, it is preferable to create a synchronous connection and
create threads for each additional session if more than one active client session is required.

The dwOptions argument can be used to specify the threading model that is used by the library
when a connection is established. By default, the handle is initially attached to the thread that
created it. From that point on, until the it is released, only the owner may call functions using that
handle. The ownership of the handle may be transferred from one thread to another using the
SmtpAttachThread function.

Specifying the SMTP_OPTION_FREETHREAD option enables any thread to call any function using
the handle, regardless of which thread created it. It is important to note that this option disables
certain internal safety checks which are performed by the library and may result in unexpected
behavior unless access to the handle is synchronized. If one thread calls a function in the library, it
must ensure that no other thread will call another function at the same time using the same
handle.

Requirements

Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SmtpAuthenticate, SmtpConnect, SmtpDisconnect, SmtpInitialize, SmtpUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpAsyncSendMessage Function

UINT WINAPI SmtpAsyncSendMessage(
 HCLIENT hClient,
 LPCTSTR lpszFrom,
 LPCTSTR lpszRecipient,
 LPVOID lpvMessage,
 DWORD dwMessageSize,
 DWORD dwOptions,
 SMTPEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

Send the contents of a file or memory buffer to the specified recipients.

Parameters
hClient

Handle to the client session.

lpszFrom

Pointer to a string which specifies the email address of the sender.

lpszRecipient

Pointer to a string which specifies the recipient of the message. Multiple recipients may be
specified by separating each address with a comma.

lpvMessage

Pointer to a buffer which contains the message to be delivered, or a pointer to the name of the
file which contains the data to be written to the data stream. The use of this parameter depends
on the value of the dwOptions parameter.

dwMessageSize

An unsigned integer which specifies the length of the message in bytes.

dwOptions

Specifies the source of the message data that will be written to the data stream; it may be one
of the following values:

Constant Description

SMTP_MESSAGE_MEMORY The lpvMessage parameter specifies a pointer to an
array of characters. If the value of dwMessageSize is
zero, then it is assumed to be a pointer to a string.

SMTP_MESSAGE_HGLOBAL The lpvMessage parameter specifies an HGLOBAL
which contains the data to be written to the data
stream. If the value of the dwMessageSize parameter is
zero, then the data is assumed to be null-terminated.

SMTP_MESSAGE_FILE The lpvMessage parameter specifies a pointer to a
string which contains the name of a file. The file is
opened and the contents of the file are written to the
data stream. The value of the dwMessageSize
parameter is ignored when this option is specified.

SMTP_MESSAGE_CLIPBOARD The lpvMessage and dwMessageSize parameters are

ignored. The current contents of the clipboard are
written to the data stream.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the SmtpEventProc callback
function. This parameter may be NULL if you do not wish to implement an event handler.

dwParam

A user-defined integer value that is passed to the callback function. This parameter is ignored if
the lpEventProc parameter is NULL.

Return Value
If the function succeeds, the return value is non-zero integer value that specifies a unique
asynchronous task identifier. If the function fails, the return value is zero. To get extended error
information, call the SmtpGetLastError function.

Remarks
The SmtpAsyncSendMessage function is used to send the contents of a memory buffer, file or
the system clipboard to the specified recipients. This function is similar to the SmtpSendMessage
function, however it uses a background worker thread and does not block the current working
thread. This enables the application to continue to perform other operations while the message is
being submitted to mail server for delivery.

Because this function works asynchronously, it is important that the memory allocated for the
message is not released before the asynchronous task completes. If you provide a buffer that is
allocated on the stack, ensure that your code does not return from the function while the message
is being submitted. This can be achieved by calling the SmtpTaskWait function or periodically
calling the SmtpTaskDone function to determine if the background task has completed. If you
wish to return from the calling function immediately, then you must dynamically allocate memory
for the lpvMessage parameter on the heap and free that memory after the task has completed.

If the address of an event handler is provided to this function, it is guaranteed that the handler will
be invoked with the SMTP_EVENT_CONNECT event after the connection has been established,
and the SMTP_EVENT_DISCONNECT event after the message has been submitted. This enables
your application to know when the message is being submitted to the mail server, and
immediately before the worker thread is terminated. The worker thread creates a secondary
connection to the server with its own session handle. This ensures that the asynchronous
operation will not interfere with the current client session. Your application can interact with this
background worker thread using the client handle that is passed to the event handler.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SmtpAsyncSubmitMessage, SmtpSendMessage, SmtpSubmitMessage, SmtpTaskWait

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpAsyncSubmitMessage Function

UINT WINAPI SmtpAsyncSubmitMessage(
 LPSMTPSERVER lpServer,
 LPSMTPMESSAGE lpMessage,
 SMTPEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

The SmtpSubmitMessage function composes and submits a message for delivery to the
specified mail server.

Parameters
lpServer

A pointer to an SMTPSERVER structure that contains information about the mail server that the
message will be submitted to for delivery. This parameter cannot be NULL and the structure
members must be properly initialized prior to calling this function.

lpMessage

A pointer to an SMTPMESSAGE structure that contains information about the message,
including the sender, recipients and the body of the message. This parameter cannot be NULL
and the structure members must be property initialized prior to calling this function.

lpEventProc

A pointer to the procedure-instance address of an application defined callback function. For
more information about event handling and the callback function, see the description of the
SmtpEventProc callback function. If this parameter is NULL, event notification is disabled.

dwParam

A user-defined integer value that is passed to the callback function. If the lpEventProc
parameter is NULL, this value should be zero.

Return Value
If the function succeeds, the return value is non-zero integer value that specifies a unique
asynchronous task identifier. If the function fails, the return value is zero. To get extended error
information, call the SmtpGetLastError function.

Remarks
The SmtpAsyncSubmitMessage function provides a high-level interface that enables an
application to send an email message with a single function call. This function is similar to the
SmtpSubmitMessage function; however, it uses a background worker thread and does not block
the current working thread. This enables the application to continue to perform other operations
while the message is being submitted to the mail server.

The SMTPSERVER and SMTPMESSAGE structures are used to provide the function with
information about the mail server that will accept the message and the contents of the message
itself. Note that this function does not require a client session handle, and therefore it is not
required that you call the SmtpConnect function prior to calling this function.

If the address of an event handler is provided to this function, it is guaranteed that the handler will
be invoked with the SMTP_EVENT_CONNECT event after the connection has been established,
and the SMTP_EVENT_DISCONNECT event after the message has been submitted. This enables
your application to know when the message is being submitted to the mail server, and

immediately before the worker thread is terminated. The worker thread creates a secondary
connection to the server with its own session handle. This ensures that the asynchronous
operation will not interfere with the current client session. Your application can interact with this
background worker thread using the client handle that is passed to the event handler.

Example
SMTPSERVER mailServer;
ZeroMemory(&mailServer, sizeof(mailServer));
mailServer.lpszHostName = _T("smtp.gmail.com");
mailServer.nHostPort = SMTP_PORT_SUBMIT;
mailServer.lpszUserName = m_strSender;
mailServer.lpszPassword = m_strPassword;
mailServer.dwOptions = SMTP_OPTION_SECURE;

SMTPMESSAGE mailMessage;
ZeroMemory(&mailMessage, sizeof(mailMessage));
mailMessage.lpszFrom = m_strSender;
mailMessage.lpszTo = m_strRecipients;
mailMessage.lpszSubject = m_strSubject;
mailMessage.lpszText = m_strMessage;

UINT nTaskId = SmtpAsyncSubmitMessage(&mailServer, &mailMessage, NULL, 0);

if (nTaskId != 0)
{
 DWORD dwError = NO_ERROR;
 DWORD dwElapsed = 0;

 // Wait for the message to be submitted
 SmtpTaskWait(nTaskId, INFINTE, &dwElapsed, &dwError);

 if (dwError == NO_ERROR)
 _tprintf(_T("SmtpAsyncSubmitMessage was successful\n"));
}
else
{
 DWORD dwError = SmtpGetLastError();
 _tprintf(_T("SmtpSubmitMessage failed with error 0x%08lx\n"), dwError);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SmtpAsyncSendMessage, SmtpEventProc, SmtpSendMessage, SmtpSubmitMessage,
SmtpTaskWait, SMTPMESSAGE, SMTPSERVER

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpAttachThread Function

DWORD WINAPI SmtpAttachThread(
 HCLIENT hClient
 DWORD dwThreadId
);

The SmtpAttachThread function attaches the specified client handle to another thread.

Parameters
hClient

Handle to the client session.

dwThreadId

The ID of the thread that will become the new owner of the handle. A value of zero specifies
that the current thread should become the owner of the client handle.

Return Value
If the function succeeds, the return value is the thread ID of the previous owner. If the function
fails, the return value is SMTP_ERROR. To get extended error information, call SmtpGetLastError.

Remarks
When a client handle is created, it is associated with the current thread that created it. Normally, if
another thread attempts to perform an operation using that handle, an error is returned since it
does not own the handle. This is used to ensure that other threads cannot interfere with an
operation being performed by the owner thread. In some cases, it may be desirable for one
thread in a client application to create the client handle, and then pass that handle to another
worker thread. The SmtpAttachThread function can be used to change the ownership of the
handle to the new worker thread. By preserving the return value from the function, the original
owner of the handle can be restored before the worker thread terminates.

This function should be called by the new thread immediately after it has been created, and if the
new thread does not release the handle itself, the ownership of the handle should be restored to
the parent thread before it terminates. Under no circumstances should SmtpAttachThread be
used to forcibly release a handle allocated by another thread while a blocking operation is in
progress. To cancel an operation, use the SmtpCancel function and then release the handle after
the blocking function exits and control is returned to the current thread.

Note that the dwThreadId parameter is presumed to be a valid thread ID and no checks are
performed to ensure that the thread actually exists. Specifying an invalid thread ID will orphan the
handle until the SmtpUninitialize function is called.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib

See Also
SmtpConnect, SmtpDisconnect, SmtpUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpAuthenticate Function

INT WINAPI SmtpAuthenticate(
 HCLIENT hClient,
 UINT nAuthType,
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword
);

The SmtpAuthenticate function provides client authentication information to the server.

Parameters
hClient

The handle to the client session.

nAuthType

An integer value which specifies which method the library should use to authenticate the client
session. This parameter should be set to one of the following values:

Constant Description

SMTP_AUTH_LOGIN The client will authenticate using the AUTH LOGIN
command. This encodes the username and password,
however the credentials are not encrypted and it is
recommended you use a secure connection. This is the
default method accepted by most mail servers and is the
preferred authentication type for most clients.

SMTP_AUTH_PLAIN The client will authenticate using the AUTH PLAIN command.
This encodes the username and password, however the
credentials are not encrypted and it is recommended you use
a secure connection. The server must support the PLAIN
Simple Authentication and Security Layer (SASL) mechanism
as defined in RFC 4616.

SMTP_AUTH_XOAUTH2 The client will authenticate using the AUTH XOAUTH2
command. This authentication method does not require the
user password, instead the lpszPassword parameter must
specify the OAuth 2.0 bearer token issued by the service
provider. The application must provide a valid access token
which has not expired, or this function will fail.

SMTP_AUTH_BEARER The client will authenticate using the AUTH OAUTHBEARER
command as defined in RFC 7628. This authentication
method does not require the user password, instead the
lpszPassword parameter must specify the OAuth 2.0 bearer
token issued by the service provider. The application must
provide a valid access token which has not expired, or this
function will fail.

lpszUserName

A null terminated string which specifies the account name for the user authorized to send mail
through the server.

lpszPassword

A null terminated string which specifies the password to be used when authenticating the
current client session. If you are using the SMTP_AUTH_XOAUTH2 or SMTP_AUTH_BEARER
authentication methods, this parameter is not a password, instead it specifies the OAuth 2.0
access token provided by the mail service.

Return Value
If the function succeeds, the return value is the command result code. If the function fails, the
return value is SMTP_ERROR. To get extended error information, call SmtpGetLastError.

Remarks
To submit a mail message for delivery, virtually all public mail servers require clients to
authenticate and will only accept messages from authorized users. In some cases, they may also
require the sender email address match the account being used to authenticate the session. It is
also typical for most public mail servers to reject authentication attempts over a standard (non-
secure) connection. You should always use a secure connection whenever possible.

All authentication methods require the mail server to support the standard service extensions for
authentication as specified in the RFC 4954. The server must support the ESMTP protocol
extensions and the AUTH command. A user name and password are required for authentication. If
you wish to authenticate without a user password, you must use one of the OAuth 2.0
authentication methods.

The default authentication method is SMTP_AUTH_LOGIN and this is accepted by most mail
servers. It is common for mail servers to allow the SMTP_AUTH_PLAIN method as well, however it
is recommended you explicitly check whether the server supports the desired authentication
method by calling the SmtpGetExtendedOptions function. If you attempt to use an
authentication method which is not supported by the server, this function will fail and the last error
code will be set to ST_ERROR_INVALID_AUTHENTICATION_TYPE.

You should only use an OAuth 2.0 authentication method if you understand the process of how to
request the access token. Obtaining an access token requires registering your application with the
mail service provider (e.g.: Microsoft or Google), getting a unique client ID associated with your
application and then requesting the access token using the appropriate scope for the service.
Obtaining the initial token will typically involve interactive confirmation on the part of the user,
requiring they grant permission to your application to access their mail account.

The SMTP_AUTH_XOAUTH2 and SMTP_AUTH_BEARER authentication methods are similar, but
they are not interchangeable. Both use an OAuth 2.0 bearer token to authenticate the client
session, but they differ in how the token is presented to the server. It is currently preferable to use
the XOAUTH2 method because it is more widely available and some service providers do not yet
support the OAUTHBEARER method.

Your application should not store an OAuth 2.0 bearer token for later use. They have a relatively
short lifespan, typically about an hour, and are designed to be used with that session. You should
specify offline access as part of the OAuth 2.0 scope if necessary and store the refresh token
provided by the service. The refresh token has a much longer validity period and can be used to
obtain a new bearer token when needed.

Example
BOOL bExtended = FALSE;
DWORD dwOptions = 0;

// Determine which extended options and authentication methods

// are supported by this server

bExtended = SmtpGetExtendedOptions(hClient, &dwOptions);

if (bUseBearerToken)
{
 if (bExtended && (dwOptions & SMTP_EXTOPT_XOAUTH2))
 {
 INT nResult = SmtpAuthenticate(hClient, SMTP_AUTH_XOAUTH2, lpszUserName,
lpszBearerToken);

 if (nResult == SMTP_ERROR)
 {
 // An error occurred during authentication; when using an
 // OAuth 2.0 bearer token, this typically means that the token
 // has expired and must be refreshed
 return;
 }
 }
 else
 {
 // The server does not support XOAUTH2
 return;
 }
}
else
{
 if (bExtended && (dwOptions & SMTP_EXTOPT_AUTHLOGIN))
 {
 INT nResult = SmtpAuthenticate(hClient, SMTP_AUTH_LOGIN, lpszUserName,
lpszPassword);

 if (nResult == SMTP_ERROR)
 {
 // An error occurred during authentication
 return;
 }
 }
 else
 {
 // The server does not support AUTH LOGIN
 return;
 }
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SmtpConnect, SmtpGetExtendedOptions

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpCancel Function

INT WINAPI SmtpCancel(
 HCLIENT hClient
);

The SmtpCancel function cancels any outstanding blocking operation in the client, causing the
blocking function to fail. The application may then retry the operation or terminate the client
session.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
SMTP_ERROR. To get extended error information, call SmtpGetLastError.

Remarks
When the SmtpCancel function is called, the blocking function will not immediately fail. An
internal flag is set which causes the blocking operation to exit with an error. This means that the
application cannot cancel an operation and immediately perform some other operation. Instead it
must allow the calling stack to unwind, returning back to the blocking operation before making
any further function calls.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SmtpIsBlocking

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpCloseMessage Function

INT WINAPI SmtpCloseMessage(
 HCLIENT hClient
);

The SmtpCloseMessage function ends the composition of the current message. The server then
queues the message for delivery to each recipient specified by the client.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
SMTP_ERROR. To get extended error information, call SmtpGetLastError.

Remarks
The SmtpCloseMessage function should be called after all of the message data has been written
to the data stream.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SmtpAppendMessage, SmtpCreateMessage, SmtpWrite

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpCommand Function

INT WINAPI SmtpCommand(
 HCLIENT hClient,
 LPCTSTR lpszCommand,
 LPCTSTR lpszParameter
);

The SmtpCommand function sends a command to the server and returns the result code back to
the caller. This function is typically used for site-specific commands not directly supported by the
API.

Parameters
hClient

Handle to the client session.

lpszCommand

The command which will be executed by the server.

lpszParameter

An optional command parameter. If the command requires more than one parameter, then
they should be combined into a single string, with a space separating each parameter. If the
command does not accept any parameters, this value may be NULL.

Return Value
If the command was successful, the function returns the result code. If the command failed, the
function returns SMTP_ERROR. To get extended error information, call SmtpGetLastError.

Remarks
A list of valid commands can be found in the technical specification for the protocol. Many servers
will list supported commands when the HELP command is used.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SmtpGetResultCode, SmtpGetResultString

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpConnect Function

HCLIENT WINAPI SmtpConnect(
 LPCTSTR lpszRemoteHost,
 UINT nRemotePort,
 UINT nTimeout,
 DWORD dwOptions,
 LPCTSTR lpszLocalName,
 LPSECURITYCREDENTIALS lpCredentials
);

The SmtpConnect function is used to establish a connection with the server.

Parameters
lpszRemoteHost

A pointer to the name of the server to connect to; this may be a fully-qualified domain name or
an IP address.

nRemotePort

The port number the server is listening on. A value of zero specifies that the default port
number should be used. For standard connections, the default port number is 25. An alternative
port is 587, which is commonly used by authenticated clients to submit messages for delivery.
For implicit SSL connections, the default port number is 465.

nTimeout

The number of seconds that the client will wait for a response from the server before failing the
current operation.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

SMTP_OPTION_NONE No additional options are specified when
establishing a connection with the server. A
standard, non-secure connection will be used and
the client will not attempt to use extended
(ESMTP) features of the protocol. Note that if the
mail server requires authentication, the
SMTP_OPTION_EXTENDED option must be
specified.

SMTP_OPTION_EXTENDED Extended SMTP commands should be used if
possible. This option enables features such as
authentication and delivery status notification. If
this option is not specified, the library will not
attempt to use any extended features. This option
is automatically enabled if the connection is
established on port 587 because submitting
messages for delivery using this port typically
requires client authentication.

SMTP_OPTION_TUNNEL This option specifies that a tunneled TCP

connection and/or port-forwarding is being used
to establish the connection to the server. This
changes the behavior of the client with regards to
internal checks of the destination IP address and
remote port number, default capability selection
and how the connection is established.

SMTP_OPTION_TRUSTEDSITE This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option
only affects connections using either the SSL or
TLS protocols.

SMTP_OPTION_SECURE This option specifies that a secure connection
should be established with the server and
requires that the server support either the SSL or
TLS protocol. The client will initiate the secure
session using the STARTTLS command.

SMTP_OPTION_SECURE_IMPLICIT This option specifies the client should attempt to
establish a secure connection with the server. The
server must support secure connections using
either the SSL or TLS protocol, and the secure
session must be negotiated immediately after the
connection has been established.

SMTP_OPTION_SECURE_FALLBACK This option specifies the client should permit the
use of less secure cipher suites for compatibility
with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

SMTP_OPTION_PREFER_IPV6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be
resolved to both an IPv6 and IPv4 address. This
option is ignored if the local system does not
have IPv6 enabled, or when the hostname can
only be resolved to an IPv4 address. If the server
hostname can only be resolved to an IPv6
address, the client will attempt to establish a
connection using IPv6 regardless if this option has
been specified.

SMTP_OPTION_FREETHREAD This option specifies the handle returned by this
function may be used by any thread, and is not
limited to the thread which created it. The
application is responsible for ensuring that access
to the handle is synchronized across multiple
threads.

lpszLocalName

A pointer to a string which specifies the domain name of the local host. This parameter can be
NULL or point to an empty string, in which case the local domain name is determined

automatically from the system configuration. This parameter should be used if the mail server
only accepts messages from a client that identifies itself using a specific domain name.

lpCredentials

A pointer to a SECURITYCREDENTIALS structure which is used to establish the client credentials
for a secure connection to the server. The function SmtpCreateSecurityCredentials can be
used to create this structure if necessary. If a standard non-secure connection is being
established, or client credentials are not required by the server, this parameter can be NULL.

Return Value
If the function succeeds, the return value is a handle to a client session. If the function fails, the
return value is INVALID_CLIENT. To get extended error information, call SmtpGetLastError.

Remarks
This function will block the current thread until a connection has been established or the timeout
period has elapsed. To prevent it from blocking the main user interface thread, the application
should create a background worker thread and establish a connection by calling SmtpConnect in
that thread. If the application requires multiple simultaneous connections, it is recommended you
create a worker thread for each connection.

The lpszLocalName argument should only point to a specific domain name if it is absolutely
necessary. In most cases, it is preferable to pass this parameter as NULL or an empty string and
allow the library to automatically determine the correct domain name to use. Providing an invalid
domain name may cause the mail server to reject the connection.

The dwOptions argument can be used to specify the threading model that is used by the library
when a connection is established. By default, the handle is initially attached to the thread that
created it. From that point on, until the it is released, only the owner may call functions using that
handle. The ownership of the handle may be transferred from one thread to another using the
SmtpAttachThread function.

Specifying the SMTP_OPTION_FREETHREAD option enables any thread to call any function using
the handle, regardless of which thread created it. It is important to note that this option disables
certain internal safety checks which are performed by the library and may result in unexpected
behavior unless access to the handle is synchronized. If one thread calls a function in the library, it
must ensure that no other thread will call another function at the same time using the same
handle.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SmtpAuthenticate, SmtpDisconnect, SmtpInitialize, SmtpUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpCreateMessage Function

INT WINAPI SmtpCreateMessage(
 HCLIENT hClient
 LPCTSTR lpszSender,
 DWORD dwMessageSize,
 DWORD dwReserved
);

The SmtpCreateMessage function creates a new message for delivery.

Parameters
hClient

Handle to the client session.

lpszSender

A pointer to a string which specifies the email address of the user sending the message. This
typically corresponds to the address in the From header of the message, but it is not required
that they be the same.

dwMessageSize

An unsigned integer which specifies the size of the message in bytes. If the size of the message
is unknown, this value should be zero. This parameter is ignored if the server does not support
extended features. If the message size is larger than what the server will accept, this function will
fail. Most Internet Service Providers impose a limit on the size of an email message, typically
between 5 and 10 megabytes.

dwReserved

A reserved parameter. This value should be zero.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
SMTP_ERROR. To get extended error information, call SmtpGetLastError.

Remarks
The SmtpCreateMessage function begins the composition of a new message to be submitted to
the mail server for delivery. There are several steps that must be followed when dynamically
composing a message for delivery:

1. Call the SmtpCreateMessage function to begin the message composition. The sender
email address should generally be the same address as the one used in the "From" header
field in the message.

2. Call the SmtpAddRecipient function for each recipient of the message. These addresses
are typically specified in the "To" and "Cc" header fields in the message. Additional
addresses may also be be provided which are not specified in the email message itself. This
is how one or more blind carbon copies of a message is delivered. Most servers have a limit
on the total number of recipients that may be specified for a single message. This limit is
usually around 100 addresses.

3. Call the SmtpWrite function to write the contents of the message to the data stream. The
application may also choose to use the SmtpAppendMessage function to write out a large
amount of message data, or write the contents of a file to the data stream.

4. Call the SmtpCloseMessage function to close the message and submit it to the mail server
for delivery.

For applications that do not need to dynamically compose the message and already have the
message contents stored in a file or memory buffer, the SmtpSendMessage function is the
preferred method of submitting a message for delivery.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SmtpAddRecipient, SmtpAppendMessage, SmtpCloseMessage, SmtpSendMessage, SmtpWrite

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpCreateSecurityCredentials Function

BOOL WINAPI SmtpCreateSecurityCredentials(
 DWORD dwProtocol,
 DWORD dwOptions,
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword,
 LPCTSTR lpszCertStore,
 LPCTSTR lpszCertName,
 LPVOID lpvReserved,
 LPSECURITYCREDENTIALS* lppCredentials
);

The SmtpCreateSecurityCredentials function creates a SECURITYCREDENTIALS structure.

Parameters
dwProtocol

A bitmask of supported security protocols. This parameter is constructed by using a bitwise
operator with any of the following values:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The
correct protocol is automatically selected, based on
what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.
This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is

supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

dwOptions

A value which specifies one or options. This member is constructed by using a bitwise operator
with any of the following values:

Constant Description

CREDENTIAL_STORE_CURRENT_USER The library will attempt to open a store for
the current user using the certificate store
name provided in this structure. If no options
are specified, then this is the default
behavior.

CREDENTIAL_STORE_LOCAL_MACHINE The library will attempt to open a local
machine store using the certificate store
name provided in this structure. If this option
is specified, the library will always search for a
local machine store before searching for the
store by that name for the current user.

CREDENTIAL_STORE_FILENAME The certificate store name is a file that
contains the certificate and private key that
will be used.

lpszUserName

A pointer to a string which specifies the certificate owner's username. A value of NULL specifies
that no username is required. Currently this parameter is not used and any value specified will
be ignored.

lpszPassword

A pointer to a string which specifies the certificate owner's password. A value of NULL specifies
that no password is required. This parameter is only used if a PKCS #12 (PFX) certificate file is
specified and that certificate has been secured with a password. This value will be ignored the
current user or local machine certificate store is specified.

lpszCertStore

A pointer to a string which specifies the name of the certificate store to open. A certificate store
is a collection of certificates and their private keys, typically organized by how they are used. If
this value is NULL or points to an empty string, the default certificate store "MY" will be used.

Store Name Description

CA Certification authority certificates. These are certificates that are issued by
entities which are entrusted to issue certificates to other individuals or
organizations. Companies such as VeriSign and Thawte act as
certification authorities.

MY Personal certificates and their associated private keys for the current user.
This store typically holds the client certificates used to establish a user's
credentials. This corresponds to the "Personal" store that is displayed by
the certificate manager utility and is the default store used by the library.

ROOT Certificates that have been self-signed by a certificate authority. Root
certificates for a number of different certification authorities such as
VeriSign and Thawte are installed as part of the operating system and
periodically updated by Microsoft.

lpszCertName

A pointer to a null terminated string which specifies the name of the certificate to use. The
function will first search the certificate store for a certificate with a matching "friendly name"; this
is a name for the certificate that is assigned by the user. Note that the name must match
completely, but the comparison is not case sensitive. If no matching certificate is found, the
function will then attempt to find a certificate that has a matching common name (also called
the certificate subject). This comparison is less stringent, and the first partial match will be
returned. If this second search fails, the function will return an error indicating that the certificate
could not be found.

lpvReserved

Pointer reserved for future use. Set it to NULL when using this function.

lppCredentials

Pointer to an LPSECURITYCREDENTIALS pointer. The memory for the credentials structure will
be allocated by this function and must be released by calling the
SmtpDeleteSecurityCredentials function when it is no longer needed. The pointer value must
be set to NULL before the function is called. It is important to note that this is a pointer to a
pointer variable, not a pointer to the SECURITYCREDENTIALS structure itself.

Return Value

If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call SmtpGetLastError.

Remarks
The structure that is created by this function may be used as client credentials when establishing a
secure connection. This is particularly useful for programming languages other than C/C++ which
may not support C structures or pointers. The pointer to the SECURITYCREDENTIALS structure can
be declared as an unsigned integer variable which is passed by reference to this function, and
then passed by value to the SmtpAsyncConnect or SmtpConnect functions.

Example
LPSECURITYCREDENTIALS lpSecCred = NULL;
SmtpCreateSecurityCredentials(SECURITY_PROTOCOL_DEFAULT,
 0,
 NULL,
 NULL,
 lpszCertStore,
 lpszCertName,
 NULL,
 &lpSecCred);

hClient = SmtpConnect(lpszHostName,
 SMTP_PORT_SECURE,
 SMTP_TIMEOUT,
 SMTP_OPTION_EXTENDED | SMTP_OPTION_SECURE,
 lpSecCred);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SmtpConnect, SmtpDeleteSecurityCredentials, SmtpGetSecurityInformation,
SECURITYCREDENTIALS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpDeleteSecurityCredentials Function

VOID WINAPI SmtpDeleteSecurityCredentials(
 LPSECURITYCREDENTIALS* lppCredentials
);

The SmtpDeleteSecurityCredentials function deletes an existing SECURITYCREDENTIALS
structure.

Parameters
lppCredentials

Pointer to an LPSECURITYCREDENTIALS pointer. On exit from the function, the pointer will be
NULL.

Return Value
None.

Example
if (lpSecCred)
 SmtpDeleteSecurityCredentials(&lpSecCred);

SmtpUninitialize();

Remarks
This function can be used to release the memory allocated to the client or server credentials after
a secure connection has been terminated.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SmtpCreateSecurityCredentials, SmtpUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpDisableEvents Function

INT WINAPI SmtpDisableEvents(
 HCLIENT hClient
);

The SmtpDisableEvents function disables the event notification mechanism, preventing
subsequent event notification messages from being posted to the application's message queue.

This function has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
SMTP_ERROR. To get extended error information, call SmtpGetLastError.

Remarks
The SmtpDisableEvents function is used to disable event message posting for the specified client
session. Although this will immediately prevent any new events from being generated, it is possible
that messages could be waiting in the message queue. Therefore, an application must be
prepared to handle client event messages after this function has been called.

This function is automatically called if the client has event notification enabled, and the
SmtpDisconnect function is called. The same issues regarding outstanding event messages also
applies in this situation, requiring that the application handle event messages that may reference a
client handle that is no longer valid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib

See Also
SmtpEnableEvents, SmtpRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpDisableTrace Function

BOOL WINAPI SmtpDisableTrace();

The SmtpDisableTrace function disables the logging of socket function calls to the trace log.

Parameters
None.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call SmtpGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib

See Also
SmtpEnableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpDisconnect Function

INT WINAPI SmtpDisconnect(
 HCLIENT hClient
);

The SmtpDisconnect function terminates the connection with the server, closing the socket and
releasing the memory allocated for the client session.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
SMTP_ERROR. To get extended error information, call SmtpGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SmtpConnect, SmtpUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpEnableEvents Function

INT WINAPI SmtpEnableEvents(
 HCLIENT hClient,
 HWND hEventWnd,
 UINT uEventMsg
);

The SmtpEnableEvents function enables event notifications using Windows messages.

This function has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Applications should use the SmtpRegisterEvent function to register an event handler which is
invoked when an event occurs.

Parameters
hClient

Handle to the client session.

hEventWnd

Handle to the window which will receive the client notification messages. This parameter must
specify a valid window handle. If a NULL handle is specified, event notification will be disabled.

uEventMsg

The message that is received when a client event occurs. To avoid conflict with standard
Windows messages, this value must be greater than WM_USER (1024) or an error will be
returned. If the hEventWnd parameter is NULL, this value should be WM_NULL.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
SMTP_ERROR. To get extended error information, call SmtpGetLastError.

Remarks
The SmtpEnableEvents function is used to request that notification messages be posted to the
specified window whenever a client event occurs. This allows an application to monitor the status
of different client operations, such as a file transfer. The client must create a window message
handler, which processes the various events. The wParam argument will contain the client handle,
the low word of the lParam argument will contain the event identifier, and the high word will
contain any error code. If no error has occurred, the high word will have a value of zero. The
following events may be generated:

Constant Description

SMTP_EVENT_CONNECT The connection to the server has completed. The high word of
the lParam parameter should be checked, since this notification
message will be posted if an error has occurred.

SMTP_EVENT_DISCONNECT The server has closed the connection to the client. The client
should read any remaining data and disconnect.

SMTP_EVENT_READ Data is available to read by the client. No additional messages
will be posted until the client has read at least some of the data.

This event is only generated if the calling process is in
asynchronous mode.

SMTP_EVENT_WRITE The client can now write data. This notification is sent after a
connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking
operation. This event is only generated if the client is in
asynchronous mode.

SMTP_EVENT_TIMEOUT The client has timed out while waiting for a response from the
server. Note that under some circumstances this event can be
generated for a non-blocking connection, such as when the client
is establishing a secure connection.

SMTP_EVENT_CANCEL The client has canceled the current operation.

SMTP_EVENT_COMMAND The client has processed a command that was sent to the server.
The result code and result string can be used to determine if the
response to the command. The high word of the lParam
parameter should be checked, since this notification message will
also be posed if the command cannot be executed.

SMTP_EVENT_PROGRESS This event notification is sent periodically during lengthy blocking
operations, such as retrieving a complete message from the
server.

It is not required that the client be placed in asynchronous (non-blocking) mode in order to
receive event notifications, except for the connect, disconnect, read and write events. To disable
event notification, call the SmtpDisableEvents function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib

See Also
SmtpDisableEvents, SmtpRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpEnableTrace Function

BOOL WINAPI SmtpEnableTrace(
 LPCTSTR lpszTraceFile,
 DWORD dwTraceFlags
);

The SmtpEnableTrace function enables the logging of socket function calls to a file.

Parameters
lpszTraceFile

Name of the trace log file. If this parameter is NULL or empty, the file CSTRACE.LOG is used.
The directory for CSTRACE.LOG is given by the TEMP environment variable, if it is defined;
otherwise, the directory given by the TMP environment variable is used, if it is defined;
otherwise, the current working directory is used.

dwTraceFlags

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Value Constant Description

0 TRACE_DEFAULT All function calls and return values are written to the trace
file. The actual data being sent or received will not be
logged. This is the default value.

1 TRACE_ERROR Only those function calls which fail are recorded in the
trace file. Those errors which are not fatal and only indicate
a warning will not be logged.

2 TRACE_WARNING Only those function calls which fail, or return values which
indicate a warning, are recorded in the trace file.

4 TRACE_HEXDUMP All functions calls are written to the trace file, plus all the
data that is sent or received is displayed, in both ASCII and
hexadecimal format.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call SmtpGetLastError.

Remarks
When trace logging is enabled, the logfile is opened, appended to and closed for each socket
function call. Using the same logfile name, you can do the same in your application to add
additional information to the logfile if needed. This can provide an application-level context for the
entries made by the library. Make sure that the logfile is closed after the data has been written.

The TRACE_HEXDUMP option can produce very large logfiles, since all data that is being sent and
received by the application is logged. To reduce the size of the file, you can enable and disable
logging around limited sections of code that you wish to analyze.

All of the SocketTools networking components that use the Windows Sockets API support logging.
If you are using multiple components, you only need to enable tracing once in your application or
once per thread in a multithreaded application.

To redistribute an application that includes logging functionality, the cstrcv11.dll library must be
included as part of the installation package. This library provides the trace logging features, and if
it is not available the SmtpEnableTrace function will fail. Note that the trace logging library is a
standard Windows DLL and does not need to be registered, it only needs to be redistributed with
your application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SmtpDisableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpEnumTasks Function

INT WINAPI SmtpEnumTasks(
 UINT * lpTasks,
 INT nMaxTasks,
 DWORD dwOptions
);

Return a list of active, suspended or finished asynchronous tasks.

Parameters
lpTasks

A pointer to an array of unsigned integer values that will contain unique task identifiers when
the function returns. If this parameter is NULL, the function will return the number of tasks.

nMaxTasks

An integer value that specifies the maximum number of task identifiers that may be copied into
the lpTasks array. If the lpTasks parameter is NULL, this value must be zero.

dwOptions

An unsigned integer that specifies the type of asynchronous tasks that may be returned by this
function. It may be a combination of the following values:

Constant Description

SMTP_TASK_DEFAULT The list of asynchronous task IDs should include both active
and suspended tasks. This option is the same as specifying
both the SMTP_TASK_ACTIVE and
SMTP_TASK_SUSPENDED options.

SMTP_TASK_ACTIVE The list of asynchronous task IDs should include those tasks
which are currently active. An active task represents a
background connection to a server that is in the process of
performing the requested action, such as uploading or
downloading a file.

SMTP_TASK_SUSPENDED The list of asynchronous task IDs should include those tasks
which have been suspended. A suspended task represents
a background connection that has been established, but
the worker thread is not scheduled for execution.

SMTP_TASK_FINISHED The list of asynchronous task IDs should include those tasks
which have completed recently.

Return Value
If the function is successful, the return value is the number of task identifiers copied into the
provided array. If there are no tasks which match the requested criteria, the return value is zero. A
return value of SMTP_ERROR indicates an error has occurred. To get extended error information,
call the SmtpGetLastError function.

Remarks
The SmtpEnumTasks function can be used to obtain a list of numeric identifiers that represent
the asynchronous tasks that have been started or those that have completed. These task IDs are
used by other functions to reference the background worker thread that has been created and

obtain status information for the task. For example, the SmtpTaskDone function can be used to
determine if a particular task has completed, and the SmtpTaskWait function can be used to wait
for a task to complete and return an error status code if the background operation failed.

There is an internal limit of 128 asynchronous tasks per process that may be active at any one
time. When a task completes, the status information about that task is maintained for period of
time after the task has completed.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib

See Also
SmtpTaskDone, SmtpTaskResume, SmtpTaskSuspend, SmtpTaskWait

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpEventProc Function

VOID CALLBACK SmtpEventProc(
 HCLIENT hClient,
 UINT nEvent,
 DWORD dwError,
 DWORD_PTR dwParam
);

The SmtpEventProc function is an application-defined callback function that processes events
generated by the client.

Parameters
hClient

Handle to the client session.

nEvent

An unsigned integer which specifies which event occurred. For a complete list of events, refer to
the SmtpRegisterEvent function.

dwError

An unsigned integer which specifies any error that occurred. If no error occurred, then this
parameter will be zero.

dwParam

A user-defined integer value which was specified when the event callback was registered.

Return Value
None.

Remarks
An application must register this callback function by passing its address to the
SmtpRegisterEvent function. This callback function is also used by asynchronous tasks to notify
the application when the task has started and completed. The SmtpEventProc function is a
placeholder for the application-defined function name.

If the callback function is invoked by an asynchronous task, it will execute in the context of the
worker thread that is managing the client session. You must ensure that any access to global or
static variables are synchronized, otherwise the results may be unpredictable. It is recommended
that you do not declare any static variables within the callback function itself.

If the application has a graphical user interface, you should never attempt to directly modify a UI
control from within the callback function for an asynchronous task. Controls should only be
modified by the same UI thread that created their window. One common approach to resolve this
issue is to post a user-defined message to the main window to signal that the user interface needs
to be updated. The message handler would then process the user-defined message and update
the user interface as needed.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib

See Also
SmtpDisableEvents, SmtpEnableEvents, SmtpFreezeEvents, SmtpRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpExpandAddress Function

INT WINAPI SmtpExpandAddress(
 HCLIENT hClient,
 LPCTSTR lpszMailingList,
 LPTSTR lpszAddresses,
 INT nMaxLength
);

The SmtpExpandAddress function expands the specified mailing list, returning the membership
of that list.

Parameters
hClient

Handle to the client session.

lpszMailingList

Points to a string which specifies the mailing list that the server should expand into full
addresses.

lpszAddresses

Points to a buffer that the expanded addresses will be copied into.

nMaxLength

Maximum number of characters that may be copied into the buffer, including the terminating
null character.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is SMTP_ERROR. To get extended error information, call SmtpGetLastError.

Remarks
The SmtpExpandAddress function requests that the server expand the specified email address.
Typically this is used to expand aliases which refer to a mailing list, returning all of the members of
that list. A server may not support this command, or may restrict its usage. An application should
not depend on the ability to expand addresses.

This function cannot be called while a mail message is being composed.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SmtpAddRecipient, SmtpVerifyAddress

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpFreezeEvents Function

INT WINAPI SmtpFreezeEvents(
 HCLIENT hClient,
 BOOL bFreeze
);

The SmtpFreezeEvents function is used to suspend and resume event handling by the client.

Parameters
hClient

Handle to the client session.

bFreeze

A non-zero value specifies that event handling should be suspended by the client. A zero value
specifies that event handling should be resumed.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
SMTP_ERROR. To get extended error information, call SmtpGetLastError.

Remarks
This function should be used when the application does not want to process events, such as when
a modal dialog is being displayed. When events are suspended, all client events are queued. If
events are re-enabled at a later point, those queued events will be sent to the application for
processing. Note that only one of each event will be generated. For example, if the client has
suspended event handling, and four events of the same type occur, once event handling is
resumed only one of those events will be posted to the client. This prevents the application from
being flooded by a potentially large number of queued events.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib

See Also
SmtpDisableEvents, SmtpEnableEvents, SmtpRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpGetCurrentDate Function

INT WINAPI SmtpGetCurrentDate(
 LPTSTR lpszDateString,
 INT nMaxLength
);

The SmtpGetCurrentDate function copies the current date and time to the specified buffer in a
format that is commonly used in mail messages. This date format should be used in all date-
related fields in the message header.

Parameters
lpszDateString

Pointer to a string buffer that will contain the current date and time when the function returns.

nMaxLength

The maximum number of characters that can be copied into the string buffer.

Return Values

If the function succeeds, the return value is the number of characters copied into the buffer, not
including the null-terminator. If the function fails, the return value is SMTP_ERROR. To get
extended error information, call SmtpGetLastError.

Remarks
The date value that is returned is adjusted for the local timezone.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SmtpCloseMessage, SmtpCreateMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpGetDeliveryOptions Function

BOOL WINAPI SmtpGetDeliveryOptions(
 HCLIENT hClient,
 LPDWORD lpdwOptions
);

The SmtpGetDeliveryOptions function returns the delivery status notification options for the
current session.

Parameters
hClient

Handle to the client session.

lpdwOptions

Address of a variable that will be set to the current delivery options. This bitmask is created by
combining one or more of the following values with a bitwise Or operator:

Constant Description

SMTP_NOTIFY_NEVER Never return information about the success or failure of
the message delivery process.

SMTP_NOTIFY_SUCCESS Return a message to the sender if the message has been
successfully delivered to the recipient's mail server.

SMTP_NOTIFY_FAILURE Return a message to the sender if the message could not
be delivered to the recipient's mail server.

SMTP_NOTIFY_DELAY Return a message to the sender if delivery of the message
was delayed.

SMTP_RETURN_HEADERS Return only the message headers to the sender.

SMTP_RETURN_MESSAGE Return the complete message headers and body to the
sender.

Return Values

If the function succeeds, the return value is a non-zero value. If the function fails, the return value
is zero. To get extended error information, call SmtpGetLastError.

Remarks
The SmtpGetDeliveryOptions function returns the current delivery options for the client session.
Note that delivery options are only available on those mail servers which support delivery status
notification (DSN) using the extended SMTP protocol. The client must connect specifying
SMTP_OPTION_EXTENDED in order to use extended server options.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib

See Also
SmtpConnect, SmtpGetExtendedOptions, SmtpSetDeliveryOptions

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpGetErrorString Function

INT WINAPI SmtpGetErrorString(
 DWORD dwErrorCode,
 LPTSTR lpszDescription,
 INT nMaxLength
);

The SmtpGetErrorString function is used to return a description of a specific error code. Typically
this is used in conjunction with the SmtpGetLastError function for use with warning dialogs or as
diagnostic messages.

Parameters
dwErrorCode

The error code for which a description should be returned. If this value is zero, then the
description of the last error will be returned. If the last error code is zero, indicating no error,
then this function will return zero.

lpszDescription

A pointer to the buffer that will contain a description of the specified error code. It is
recommended that this buffer be at least 128 characters in length. If a NULL pointer is specified,
then no message will be returned but the function will return the length of the error string, not
including the terminating null byte.

nMaxLength

The maximum number of characters that may be copied into the description buffer.

Return Value
If the function succeeds, the return value is the length of the description string. If the function fails,
the return value is 0, meaning that no description exists for the specified error code. Typically this
indicates that the error code passed to the function is invalid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SmtpGetLastError, SmtpGetResultCode, SmtpGetResultString, SmtpSetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpGetExtendedOptions Function

BOOL WINAPI SmtpGetExtendedOptions(
 HCLIENT hClient,
 LPDWORD lpdwOptions
);

The SmtpGetExtendedOptions function returns the extended server options for the current
session.

Parameters
hClient

Handle to the client session.

lpdwOptions

Address of a variable that will be set to the current server options. This bitmask is created by
combining one or more of the following values with a bitwise Or operator:

Constant Description

SMTP_EXTOPT_EXPN The server supports address expansion using the EXPN
command. The SmtpExpandAddress function can be
used to expand addresses, which typically returns the email
addresses associated with a mailing list. Most public mail
servers restrict or disable this functionality because it can
present a security risk. If a server does permit the use of the
command, it is often limited to specific authorized users.

SMTP_EXTOPT_VRFY The server supports verification of addresses using the
VRFY command. The SmtpVerifyAddress function can be
used to verify addresses. Most public mail servers restrict
the ability for clients to verify email addresses to prevent
potential abuse. If a server does permit the use of the
command, it is often limited to specific authorized users.

SMTP_EXTOPT_DSN The server supports delivery status notification (DSN) which
allows the sender to be notified when a message has been
delivered, or when an error occurs during the delivery
process. The SmtpSetDeliveryOptions function can be
used to specify the delivery options to be used in the
current session.

SMTP_EXTOPT_SIZE The server supports the use of the SIZE parameter, which
enables the client to determine the maximum message size
that may be delivered through the server. Most public mail
servers impose a limit of on the total size of a message,
including any encoded attachments.

SMTP_EXTOPT_ETRN The server supports the use of the ETRN command,
instructing the server to start processing its message
queues for a specific host. Most public mail servers do not
support this capability and its use has been deprecated.

SMTP_EXTOPT_8BITMIME The server supports the delivery of messages that contain

characters with the high bit set. Most servers support this
option, however it is recommended that you encode any
message text which contains non-ASCII characters to
ensure the broadest compatibility with other servers and
clients.

SMTP_EXTOPT_STARTTLS The server supports explicit TLS sessions. This extended
option is used internally to determine how secure
connections should be established, and if a secure
connection can be made using the standard submission
port.

SMTP_EXTOPT_UTF8 The server supports UTF-8 encoding in email addresses
and the message envelope. Not all mail servers will have
this extended capability enabled, and applications should
not depend on being able to provide internationalized user
and domain names unless this option bitflag has been set.

In addition, there are extended options which specify the authentication methods
supported by the server. A server will typically support multiple authentication methods
and may be one or more of the following values:

Constant Description

SMTP_EXTOPT_AUTHLOGIN The server supports client authentication using the
AUTH LOGIN command. This is the default
authentication method and is supported by most mail
servers. The user name and password are encoded in a
specific format, but are not encrypted. The client should
use a secure connection whenever possible.

SMTP_EXTOPT_AUTHPLAIN The server supports client authentication using the
AUTH PLAIN command. The use name and password
are encoded in a specific format, but are not encrypted.
If a server supports this authentication method, it is very
likely it also supports AUTH LOGIN. It is recommended
you use only use AUTH PLAIN authentication if the
server does not support AUTH LOGIN.

SMTP_EXTOPT_XOAUTH2 The server supports client authentication using AUTH
XOAUTH2 command. Instead of a password, an OAuth
2.0 bearer token is used to authenticate the user which
previously authorized access to the mail server using
their account information. The connection must be
secure to use this authentication method.

SMTP_EXTOPT_BEARER The server supports client authentication using AUTH
OAUTHBEARER command as specified in RFC 7628.
Instead of a password, an OAuth 2.0 bearer token is
used to authenticate the user which previously
authorized access to the mail server using their account
information. The connection must be secure to use this
authentication method.

Return Value
If the function succeeds, the return value is a non-zero value. If the function fails, the return value
is zero. To get extended error information, call SmtpGetLastError.

Remarks
The SmtpGetExtendedOptions function returns the extended options supported by the server.
The use of extended options requires that the server support the ESMTP protocol, and that the
client connect using the SMTP_OPTION_EXTENDED option.

You should check these options prior to calling SmtpAuthenticate to determine which
authentication methods are acceptable to the server. If you wish to use an OAuth 2.0 bearer
token, always check to make sure either the SMTP_EXTOPT_XOAUTH2 or SMTP_EXTOPT_BEARER
bitflags are set in the options value returned by this function.

Example
BOOL bExtended = FALSE;
DWORD dwOptions = 0;

// Determine which extended options and authentication methods
// are supported by this server

bExtended = SmtpGetExtendedOptions(hClient, &dwOptions);

if (bExtended && (dwOptions & SMTP_EXTOPT_XOAUTH2))
{
 INT nResult = SmtpAuthenticate(hClient, SMTP_AUTH_XOAUTH2, lpszUserName,
lpszBearerToken);

 if (nResult == SMTP_ERROR)
 {
 // An error occurred during authentication; when using an
 // OAuth 2.0 bearer token, this typically means that the token
 // has expired and must be refreshed
 return;
 }
}
else
{
 // The server does not support XOAUTH2
 return;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib

See Also
SmtpAuthenticate, SmtpConnect, SmtpGetDeliveryOptions, SmtpSetDeliveryOptions

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpGetLastError Function

DWORD WINAPI SmtpGetLastError();

Parameters
None.

Return Value
The return value is the calling thread's last error code value. Functions set this value by calling the
SmtpSetLastError function. The return value section of each reference page notes the conditions
under which the function sets the last error code.

Remarks
You should call the SmtpGetLastError function immediately when a function's return value
indicates that an error has occurred. That is because some functions call SmtpSetLastError(0)
when they succeed, clearing the error code set by the most recently failed function.

Most functions will set the last error code value when they fail; a few functions set it when they
succeed. Function failure is typically indicated by a return value error code such as FALSE, NULL,
INVALID_CLIENT or SMTP_ERROR. Those functions which call SmtpSetLastError when they
succeed are noted on the function reference page.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib

See Also
SmtpGetErrorString, SmtpSetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpGetResultCode Function

INT WINAPI SmtpGetResultCode(
 HCLIENT hClient
);

The SmtpGetResultCode function reads the result code returned by the server in response to a
command. The result code is an integer value, and indicates if the operation succeeded or failed.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is the result code. If the function fails, it returns
SMTP_ERROR. To get extended error information, call SmtpGetLastError.

Remarks
The following result codes may be returned by the SMTP server:

Value Description

100-
199

Positive preliminary result. This indicates that the requested action is being initiated, and
the client should expect another reply from the server before proceeding.

200-
299

Positive completion result. This indicates that the server has successfully completed the
requested action.

300-
399

Positive intermediate result. This indicates that the requested action cannot complete
until additional information is provided to the server.

400-
499

Transient negative completion result. This indicates that the requested action did not
take place, but the error condition is temporary and may be attempted again.

500-
599

Permanent negative completion result. This indicates that the requested action did not
take place.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib

See Also
SmtpCommand, SmtpGetResultString

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpGetResultString Function

INT WINAPI SmtpGetResultString(
 HCLIENT hClient,
 LPTSTR lpszResult,
 INT nMaxLength
);

The SmtpGetResultString function returns the last message sent by the server along with the
result code.

Parameters
hClient

Handle to the client session.

lpszResult

A pointer to the buffer that will contain the result string returned by the server.

nMaxLength

The maximum number of characters that may be copied into the result string buffer, including
the terminating null character.

Return Value
If the function succeeds, the return value is the length of the result string. If a value of zero is
returned, this means that no result string was sent by the server. If the function fails, the return
value is SMTP_ERROR. To get extended error information, call SmtpGetLastError.

Remarks
The SmtpGetResultString function is most useful when an error occurs because the server will
typically include a brief description of the cause of the error. This can then be parsed by the
application or displayed to the user. The result string is updated each time the client sends a
command to the server and then calls SmtpGetResultCode to obtain the result code for the
operation.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SmtpCommand, SmtpGetResultCode

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpGetSecurityInformation Function

BOOL WINAPI SmtpGetSecurityInformation(
 HCLIENT hClient,
 LPSECURITYINFO lpSecurityInfo
);

The SmtpGetSecurityInformation function returns security protocol, encryption and certificate
information about the current client connection.

Parameters
hClient

Handle to the client session.

lpSecurityInfo

A pointer to a SECURITYINFO structure which contains information about the current client
connection. The dwSize member of this structure must be initialized to the size of the structure
before passing the address of the structure to this function.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call SmtpGetLastError.

Remarks
This function is used to obtain security related information about the current client connection to
the server. It can be used to determine if a secure connection has been established, what security
protocol was selected, and information about the server certificate. Note that a secure connection
has not been established, the dwProtocol structure member will contain the value
SECURITY_PROTOCOL_NONE.

Example
The following example notifies the user if the connection is secure or not:

SECURITYINFO securityInfo;

securityInfo.dwSize = sizeof(SECURITYINFO);
if (SmtpGetSecurityInformation(hClient, &securityInfo))
{
 if (securityInfo.dwProtocol == SECURITY_PROTOCOL_NONE)
 {
 MessageBox(NULL, _T("The connection is not secure"),
 _T("Connection"), MB_OK);
 }
 else
 {
 if (securityInfo.dwCertStatus == SECURITY_CERTIFICATE_VALID)
 {
 MessageBox(NULL, _T("The connection is secure"),
 _T("Connection"), MB_OK);
 }
 else
 {
 MessageBox(NULL, _T("The server certificate not valid"),
 _T("Connection"), MB_OK);
 }

 }
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SmtpConnect, SmtpDisconnect, SECURITYINFO

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpGetStatus Function

INT WINAPI SmtpGetStatus(
 HCLIENT hClient
);

The SmtpGetStatus function returns the current status of the client session.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is the client status code. If the function fails, the return
value is SMTP_ERROR. To get extended error information, call SmtpGetLastError.

Remarks
The SmtpGetStatus function returns a numeric code which identifies the current state of the
client session. The following values may be returned:

Value Constant Description

1 SMTP_STATUS_IDLE The client is current idle and not sending or
receiving data.

2 SMTP_STATUS_CONNECT The client is establishing a connection with the
server.

3 SMTP_STATUS_READ The client is reading data from the server.

4 SMTP_STATUS_WRITE The client is writing data to the server.

5 SMTP_STATUS_DISCONNECT The client is disconnecting from the server.

In a multithreaded application, any thread in the current process may call this function to obtain
status information for the specified client session.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib

See Also
SmtpIsBlocking, SmtpIsConnected, SmtpIsReadable, SmtpIsWritable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpGetTaskError Function

DWORD WINAPI SmtpGetTaskError(
 UINT nTaskId
);

Return the last error code for the specified asynchronous task.

Parameters
nTaskId

The task identifier.

Return Value
If the asynchronous task has completed successfully, this function returns a value of zero. A non-
zero return value indicates an error has occurred.

Remarks
The SmtpGetTaskError function returns the last error code associated with the specified
asynchronous task. If the task completed successfully, the return value will be zero. If the task is still
active, the function will return the error ST_ERROR_TASK_ACTIVE. If the task has been suspended,
the function will return ST_ERROR_TASK_SUSPENDED. Any other value indicates that the task
completed, but the operation has failed and the error code will specify the cause of the failure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib

See Also
SmtpTaskAbort, SmtpTaskResume, SmtpTaskSuspend, SmtpTaskWait

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpGetTaskId Function

UINT WINAPI SmtpGetTaskId(
 HCLIENT hClient
);

Return the asynchronous task identifier associated with the client session.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is non-zero integer value that specifies a unique
asynchronous task identifier. If the client handle is not associated with an asynchronous task, the
function will return a value of zero.

Remarks
The SmtpGetTaskId function will return the task ID that is associated with a client session. This is a
unique unsigned integer value that references the worker thread that was created to manage the
asynchronous client session. This function should only be called within an event handler that is
invoked by a background task that has been started using a function such as SmtpAsyncGetFile.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib

See Also
SmtpTaskAbort, SmtpTaskDone, SmtpTaskResume, SmtpTaskSuspend, SmtpTaskWait

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpGetTimeout Function

INT WINAPI SmtpGetTimeout(
 HCLIENT hClient
);

The SmtpGetTimeout function returns the number of seconds the client will wait for a response
from the server. Once the specified number of seconds has elapsed, the function will fail and
return to the caller.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is the timeout period in seconds. If the function fails, the
return value is SMTP_ERROR. To get extended error information, call SmtpGetLastError.

Remarks
The timeout value is only used with blocking client connections. A value of zero indicates that the
default timeout period of 20 seconds should be used.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib

See Also
SmtpSetTimeout

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpGetTransferStatus Function

INT WINAPI SmtpGetTransferStatus(
 HCLIENT hClient,
 LPSMTPTRANSFERSTATUS lpStatus
);

The SmtpGetTransferStatus function returns information about the message being submitted to
the mail server.

Parameters
hClient

Handle to the client session.

lpStatus

A pointer to an SMTPTRANSFERSTATUS structure which contains information about the status
of the message being submitted for delivery.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
SMTP_ERROR. To get extended error information, call SmtpGetLastError.

Remarks
The SmtpGetTransferStatus function returns information about the current message being
submitted, including the average number of bytes transferred per second and the estimated
amount of time until the transfer completes. If there is no message currently being submitted, this
function will return the status of the last successful submission made by the client.

In a multithreaded application, any thread in the current process may call this function to obtain
the status of a submission for the specified client session.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SmtpEnableEvents, SmtpGetStatus, SmtpRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpInitialize Function

BOOL WINAPI SmtpInitialize(
 LPCTSTR lpszLicenseKey,
 LPINITDATA lpData
);

The SmtpInitialize function initializes the library and validates the specified license key at runtime.

Parameters
lpszLicenseKey

Pointer to a string that specifies the runtime license key to be validated. If this parameter is
NULL, the library will validate the development license installed on the local system.

lpData

Pointer to an INITDATA data structure. This parameter may be NULL if the initialization data for
the library is not required.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call SmtpGetLastError. All other client functions will fail until a
license key has been successfully validated.

Remarks
This must be the first function that an application calls before using any of the other functions in
the library. When a NULL license key is specified, the library will only function on the development
system. Before redistributing the application to an end-user, you must insure that this function is
called with a valid license key.

If the lpData argument is specified, it must point to an INITDATA structure which has been
initialized by setting the dwSize member to the size of the structure. All other structure members
should be set to zero. If the function is successful, then the INITDATA structure will be filled with
identifying information about the library.

Although it is only required that SmtpInitialize be called once for the current process, it may be
called multiple times; however, each call must be matched by a corresponding call to
SmtpUninitialize.

This function dynamically loads other system libraries and allocates thread local storage. If you are
calling the functions in this library from within another DLL, it is important that you do not call the
SmtpInitialize or SmtpUninitialize functions from the DllMain function because it can result in
deadlocks or access violation errors. If the DLL is linked with the C runtime library (CRT), it will
automatically call the constructors and destructors for static and global C++ objects and has the
same restrictions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also

SmtpConnect, SmtpDisconnect, SmtpUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpIsBlocking Function

BOOL WINAPI SmtpIsBlocking(
 HCLIENT hClient
);

The SmtpIsBlocking function is used to determine if the client is currently performing a blocking
operation.

Parameters
hClient

Handle to the client session.

Return Value
If the client is performing a blocking operation, the function returns a non-zero value. If the client
is not performing a blocking operation, or the client handle is invalid, the function function returns
zero.

Remarks
Because a blocking operation can allow the application to be re-entered (for example, by pressing
a button while the operation is being performed), it is possible that another blocking function may
be called while it is in progress. Since only one thread of execution may perform a blocking
operation at any one time, an error would occur. The SmtpIsBlocking function can be used to
determine if the client is already blocked, and if so, take some other action such as warning the
user that they must wait for the operation to complete.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib

See Also
SmtpCancel, SmtpIsConnected, SmtpIsReadable, SmtpIsWritable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpIsConnected Function

BOOL WINAPI SmtpIsConnected(
 HCLIENT hClient
);

The SmtpIsConnected function is used to determine if the client is currently connected to a
server.

Parameters
hClient

Handle to the client session.

Return Value
If the client is connected to a server, the function returns a non-zero value. If the client is not
connected, or the client handle is invalid, the function returns zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SmtpIsBlocking, SmtpIsReadable, SmtpIsWritable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpIsReadable Function

BOOL WINAPI SmtpIsReadable(
 HCLIENT hClient,
 INT nTimeout,
 LPDWORD lpdwAvail
);

The SmtpIsReadable function is used to determine if data is available to be read from the server.

Parameters
hClient

Handle to the client session.

nTimeout

Timeout for server response, in seconds. A value of zero specifies that the connection should be
polled without blocking the current thread.

lpdwAvail

A pointer to an unsigned integer which will contain the number of bytes available to read. This
parameter may be NULL if this information is not required.

Return Value
If the client can read data from the server within the specified timeout period, the function returns
a non-zero value. If the client cannot read any data, the function returns zero.

Remarks
On some platforms, this value will not exceed the size of the receive buffer (typically 64K bytes).
Because of differences between TCP/IP stack implementations, it is not recommended that your
application exclusively depend on this value to determine the exact number of bytes available.
Instead, it should be used as a general indicator that there is data available to be read.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib

See Also
SmtpGetStatus, SmtpIsBlocking, SmtpIsConnected, SmtpIsWritable, SmtpWrite

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpIsWritable Function

BOOL WINAPI SmtpIsWritable(
 HCLIENT hClient,
 INT nTimeout
);

The SmtpIsWritable function is used to determine if data can be written to the server.

Parameters
hClient

Handle to the client session.

nTimeout

Timeout for server response, in seconds. A value of zero specifies that the connection should be
polled without blocking the current thread.

Return Value
If the client can write data to the server within the specified timeout period, the function returns a
non-zero value. If the client cannot write any data, the function returns zero.

Remarks
Although this function can be used to determine if some amount of data can be sent to the
remote process it does not indicate the amount of data that can be written without blocking the
client. In most cases, it is recommended that large amounts of data be broken into smaller logical
blocks, typically some multiple of 512 bytes in length.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib

See Also
SmtpGetStatus, SmtpIsBlocking, SmtpIsConnected, SmtpIsReadable, SmtpWrite

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpRegisterEvent Function

INT WINAPI SmtpRegisterEvent(
 HCLIENT hClient,
 UINT nEvent,
 SMTPEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

The SmtpRegisterEvent function registers a callback function for the specified event.

Parameters
hClient

Handle to the client session.

nEvent

An unsigned integer which specifies which event should be registered with the specified callback
function. One of the following values may be used:

Constant Description

SMTP_EVENT_CONNECT The connection to the server has completed.

SMTP_EVENT_DISCONNECT The server has closed the connection to the client. The
client should read any remaining data and disconnect.

SMTP_EVENT_READ Data is available to read by the client. No additional
messages will be posted until the client has read at least
some of the data. This event is only generated if the
calling process is in asynchronous mode.

SMTP_EVENT_WRITE The client can now write data. This notification is sent
after a connection has been established, or after a
previous attempt to write data has failed because it
would result in a blocking operation. This event is only
generated if the client is in asynchronous mode.

SMTP_EVENT_TIMEOUT The client has timed out while waiting for a response
from the server. Note that under some circumstances
this event can be generated for a non-blocking
connection, such as when the client is establishing a
secure connection.

SMTP_EVENT_CANCEL The client has canceled the current operation.

SMTP_EVENT_COMMAND The client has processed a command that was sent to
the server. The result code and result string can be used
to determine if the response to the command.

SMTP_EVENT_PROGRESS This event notification is sent periodically during lengthy
blocking operations, such as retrieving a complete
message from the server.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the SmtpEventProc callback

function. If this parameter is NULL, the callback for the specified event is disabled.

dwParam

A user-defined integer value that is passed to the callback function. If the application targets the
x86 (32-bit) platform, this parameter must be a 32-bit unsigned integer. If the application
targets the x64 (64-bit) platform, this parameter must be a 64-bit unsigned integer.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
SMTP_ERROR. To get extended error information, call SmtpGetLastError.

Remarks
The SmtpRegisterEvent function associates a callback function with a specific event. The event
handler is an SmtpEventProc function that is invoked when the event occurs. Arguments are
passed to the function to identify the client session, the event type and the user-defined value
specified when the event handler is registered. If the event occurs because of an error condition,
the error code will be provided to the handler.

This function is typically used to register an event handler that is invoked while a message is being
submitted to the server for delivery. The SMTP_EVENT_PROGRESS event will only be generated
periodically during the transfer to ensure the application is not flooded with event notifications. It
is guaranteed that at least one SMTP_EVENT_PROGRESS notification will occur at the beginning of
the transfer, and one at the end of the transfer when it has completed.

The callback function specified by the lpEventProc parameter must be declared using the
__stdcall calling convention. This ensures the arguments passed to the event handler are pushed
on to the stack in the correct order. Failure to use the correct calling convention will corrupt the
stack and cause the application to terminate abnormally.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib

See Also
SmtpDisableEvents, SmtpEnableEvents, SmtpEventProc, SmtpFreezeEvents

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpReset Function

INT WINAPI SmtpReset(
 HCLIENT hClient
);

The SmtpReset function resets the client state and resynchronizes with the server. This function is
typically called after an unexpected error has occurred, or an operation has been canceled.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
SMTP_ERROR. To get extended error information, call SmtpGetLastError.

Remarks
The client cannot be reset while in a blocked state.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SmtpCancel, SmtpCloseMessage, SmtpCreateMessage, SmtpIsBlocking

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpSendMessage Function

INT WINAPI SmtpSendMessage(
 HCLIENT hClient,
 LPCTSTR lpszFrom,
 LPCTSTR lpszRecipient,
 LPVOID lpvMessage,
 DWORD dwMessageSize,
 DWORD dwOptions
);

The SmtpSendMessage function sends the contents of a file or memory buffer to the specified
recipients.

Parameters
hClient

Handle to the client session.

lpszFrom

Pointer to a string which specifies the email address of the sender.

lpszRecipient

Pointer to a string which specifies the recipient of the message. Multiple recipients may be
specified by separating each address with a comma.

lpvMessage

Pointer to a buffer which contains the message to be delivered, or a pointer to the name of the
file which contains the data to be written to the data stream. The use of this parameter depends
on the value of the dwOptions parameter.

dwMessageSize

An unsigned integer which specifies the length of the message in bytes.

dwOptions

Specifies the source of the message data that will be written to the data stream; it may be one
of the following values:

Constant Description

SMTP_MESSAGE_MEMORY The lpvMessage parameter specifies a pointer to an
array of characters. If the value of dwMessageSize is
zero, then it is assumed to be a pointer to a string.

SMTP_MESSAGE_HGLOBAL The lpvMessage parameter specifies an HGLOBAL
which contains the data to be written to the data
stream. If the value of the dwMessageSize parameter is
zero, then the data is assumed to be null-terminated.

SMTP_MESSAGE_FILE The lpvMessage parameter specifies a pointer to a
string which contains the name of a file. The file is
opened and the contents of the file are written to the
data stream. The value of the dwMessageSize
parameter is ignored when this option is specified.

SMTP_MESSAGE_CLIPBOARD The lpvMessage and dwMessageSize parameters are
ignored. The current contents of the clipboard are

written to the data stream.

Return Value
If the function succeeds, the return value is the result code from the server. If the function fails, the
return value is SMTP_ERROR. To get extended error information, call SmtpGetLastError.

Remarks
The SmtpSendMessage function is used to send the contents of a memory buffer, file or the
system clipboard to the specified recipients. The message must be in the standard format as
described in RFC 822 or a MIME multipart message. The MIME API can be used to compose and
export a message in the correct format.

This protocol is only concerned with the delivery of a message and not its contents. Header fields
in the message are not parsed to determine the recipients. This recipient parameter should be a
concatenation of all recipients, including carbon copies and blind carbon copies, with each
address separated with a comma.

This function will cause the current thread to block until the complete message has been
delivered, a timeout occurs or the operation is canceled. During the transfer, the
SMTP_EVENT_PROGRESS event will be periodically fired, enabling the application to update any
user interface controls. Event notification must be enabled, either by calling SmtpEnableEvents,
or by registering a callback function using the SmtpRegisterEvent function.

To determine the current status of the transaction while it is in progress, use the
SmtpGetTransferStatus function.

An alternative approach to creating a message without using the MIME API is the
SmtpSubmitMessage function. It accepts two structure parameters which define the message
contents and the connection information for the mail server. This enables the application to
compose the message and submit it for delivery in a single function call.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SmtpAppendMessage, SmtpCloseMessage, SmtpGetTransferStatus, SmtpSubmitMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpSetDeliveryOptions Function

BOOL WINAPI SmtpSetDeliveryOptions(
 HCLIENT hClient,
 DWORD dwOptions
);

The SmtpSetDeliveryOptions function sets the delivery status notification options for the current
session.

Parameters
hClient

Handle to the client session.

dwOptions

A bitmask that defines the current delivery options. This value is created by combining one or
more of the following constants with a bitwise Or operator:

Constant Description

SMTP_NOTIFY_NEVER Never return information about the success or failure of
the message delivery process.

SMTP_NOTIFY_SUCCESS Return a message to the sender if the message has been
successfully delivered to the recipient's mail server.

SMTP_NOTIFY_FAILURE Return a message to the sender if the message could not
be delivered to the recipient's mail server.

SMTP_NOTIFY_DELAY Return a message to the sender if delivery of the message
was delayed.

SMTP_RETURN_HEADERS Return only the message headers to the sender.

SMTP_RETURN_MESSAGE Return the complete message headers and body to the
sender.

Return Value
If the function succeeds, the return value is a non-zero value. If the function fails, the return value
is zero. To get extended error information, call SmtpGetLastError.

Remarks
The SmtpSetDeliveryOptions function sets the current delivery options for the client session.
Note that delivery options are only available on those mail servers which support delivery status
notification (DSN) using the extended SMTP protocol. The client must connect specifying
SMTP_OPTION_EXTENDED in order to use extended server options.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also

SmtpGetDeliveryOptions, SmtpGetExtendedOptions

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpSetLastError Function

VOID WINAPI SmtpSetLastError(
 DWORD dwErrorCode
);

The SmtpSetLastError function sets the last error code for the current thread.

Parameters
dwErrorCode

Specifies the last error code for the caller. A value of zero clears the last error code.

Return Value
None.

Remarks
Most functions will set the last error code value when they fail; a few functions set it when they
succeed. Function failure is typically indicated by a return value error code such as FALSE, NULL,
INVALID_CLIENT or SMTP_ERROR. Those functions which call SmtpSetLastError when they
succeed are noted on the function reference page.

Applications can retrieve the value saved by this function by using the SmtpGetLastError
function. The use of SmtpGetLastError is optional. An application can call it to find out the
specific reason for a function failure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib

See Also
SmtpGetErrorString, SmtpGetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpSetTimeout Function

INT WINAPI SmtpSetTimeout(
 HCLIENT hClient,
 INT nTimeout
);

The SmtpSetTimeout function sets the number of seconds the client will wait for a response from
the server. Once the specified number of seconds has elapsed, the function will fail and return to
the caller.

Parameters
hClient

Handle to the client session.

nTimeout

The number of seconds to wait for a blocking operation to complete.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
SMTP_ERROR. To get extended error information, call SmtpGetLastError.

Remarks
The timeout value is only used with blocking client connections.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib

See Also
SmtpGetTimeout

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpSubmitMessage Function

INT WINAPI SmtpSubmitMessage(
 LPSMTPSERVER lpServer,
 LPSMTPMESSAGE lpMessage,
 SMTPEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

The SmtpSubmitMessage function composes and submits a message for delivery to the
specified mail server.

Parameters
lpServer

A pointer to an SMTPSERVER structure that contains information about the mail server that the
message will be submitted to for delivery. This parameter cannot be NULL and the structure
members must be properly initialized prior to calling this function.

lpMessage

A pointer to an SMTPMESSAGE structure that contains information about the message,
including the sender, recipients and the body of the message. This parameter cannot be NULL
and the structure members must be property initialized prior to calling this function.

lpEventProc

A pointer to the procedure-instance address of an application defined callback function. For
more information about event handling and the callback function, see the description of the
SmtpEventProc callback function. If this parameter is NULL, event notification is disabled.

dwParam

A user-defined integer value that is passed to the callback function. If the lpEventProc
parameter is NULL, this value should be zero.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
SMTP_ERROR. To get extended error information, call SmtpGetLastError.

Remarks
The SmtpSubmitMessage function provides a high-level interface that enables an application to
send an email message with a single function call. The SMTPSERVER and SMTPMESSAGE
structures are used to provide the function with information about the mail server that will accept
the message and the contents of the message itself. Note that this function does not require a
client session handle, and therefore it is not required that you call the SmtpConnect function
prior to calling this function.

If you need to specify additional custom headers in the message that is submitted for delivery, you
should use the SmtpSubmitMessageEx function. That version of the function uses an extended
version of the message structure which will allow you to define custom headers to be included in
the message.

This function will cause the calling thread to block until the message has been submitted for
delivery, an error occurs or the connection to the mail server times out. If an event handler is
specified, then the callback function will be periodically invoked as the message is being sent. For
large messages, the SMTP_EVENT_PROGRESS event can be used to monitor the submission

process and update the user interface. The SmtpGetTransferStatus function can be used within
the callback function to obtain information about the current status of the submission.

Example
SMTPSERVER mailServer;
ZeroMemory(&mailServer, sizeof(mailServer));
mailServer.lpszHostName = _T("smtp.gmail.com");
mailServer.nHostPort = SMTP_PORT_SUBMIT;
mailServer.lpszUserName = m_strSender;
mailServer.lpszPassword = m_strPassword;
mailServer.dwOptions = SMTP_OPTION_SECURE;

SMTPMESSAGE mailMessage;
ZeroMemory(&mailMessage, sizeof(mailMessage));
mailMessage.lpszFrom = m_strSender;
mailMessage.lpszTo = m_strRecipients;
mailMessage.lpszSubject = m_strSubject;
mailMessage.lpszText = m_strMessage;

INT nResult = SmtpSubmitMessage(&mailServer, &mailMessage, NULL, 0);

if (nResult != SMTP_ERROR)
 _tprintf(_T("SmtpSubmitMessage was successful\n"));
else
{
 DWORD dwError = SmtpGetLastError();
 _tprintf(_T("SmtpSubmitMessage failed with error 0x%08lx\n"), dwError);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SmtpEventProc, SmtpSendMessage, SmtpSubmitMessageEx, SMTPMESSAGE, SMTPSERVER

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpSubmitMessageEx Function

INT WINAPI SmtpSubmitMessageEx(
 LPSMTPSERVER lpServer,
 LPSMTPMESSAGEEX lpMessageEx,
 DWORD dwReserved,
 SMTPEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

The SmtpSubmitMessageEx function composes and submits a message for delivery to the
specified mail server.

Parameters
lpServer

A pointer to an SMTPSERVER structure that contains information about the mail server that the
message will be submitted to for delivery. This parameter cannot be NULL and the structure
members must be properly initialized prior to calling this function.

lpMessageEx

A pointer to an SMTPMESSAGEEX structure that contains information about the message,
including the sender, recipients and the body of the message. This parameter cannot be NULL
and the structure members must be property initialized prior to calling this function.

dwReserved

An integer value that is reserved for future use. This value must be zero or the function will fail.

lpEventProc

A pointer to the procedure-instance address of an application defined callback function. For
more information about event handling and the callback function, see the description of the
SmtpEventProc callback function. If this parameter is NULL, event notification is disabled.

dwParam

A user-defined integer value that is passed to the callback function. If the lpEventProc
parameter is NULL, this value should be zero.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
SMTP_ERROR. To get extended error information, call SmtpGetLastError.

Remarks
The SmtpSubmitMessageEx function provides a high-level interface that enables an application
to send an email message with a single function call. The SMTPSERVER and SMTPMESSAGEEX
structures are used to provide the function with information about the mail server that will accept
the message and the contents of the message itself. Note that this function does not require a
client session handle, and therefore it is not required that you call the SmtpConnect function
prior to calling this function.

This function will cause the calling thread to block until the message has been submitted for
delivery, an error occurs or the connection to the mail server times out. If an event handler is
specified, then the callback function will be periodically invoked as the message is being sent. For
large messages, the SMTP_EVENT_PROGRESS event can be used to monitor the submission
process and update the user interface. The SmtpGetTransferStatus function can be used within

the callback function to obtain information about the current status of the submission.

Example
SMTPSERVER mailServer;
ZeroMemory(&mailServer, sizeof(mailServer));
mailServer.lpszHostName = _T("smtp.gmail.com");
mailServer.nHostPort = SMTP_PORT_SUBMIT;
mailServer.lpszUserName = m_strSender;
mailServer.lpszPassword = m_strPassword;
mailServer.dwOptions = SMTP_OPTION_SECURE;

SMTPMESSAGEEX mailMessageEx;
ZeroMemory(&mailMessageEx, sizeof(mailMessageEx));
mailMessageEx.dwSize = sizeof(mailMessageEx);
mailMessageEx.lpszFrom = m_strSender;
mailMessageEx.lpszTo = m_strRecipients;
mailMessageEx.lpszSubject = m_strSubject;
mailMessageEx.lpszText = m_strMessage;

INT nResult = SmtpSubmitMessageEx(&mailServer, &mailMessageEx, 0, NULL, 0);

if (nResult != SMTP_ERROR)
 _tprintf(_T("SmtpSubmitMessageEx was successful\n"));
else
{
 DWORD dwError = SmtpGetLastError();
 _tprintf(_T("SmtpSubmitMessageEx failed with error 0x%08lx\n"), dwError);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SmtpEventProc, SmtpSendMessage, SmtpSubmitMessage, SMTPMESSAGEEX, SMTPSERVER

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpTaskAbort Function

BOOL WINAPI SmtpTaskAbort(
 UINT nTaskId,
 DWORD dwMilliseconds
);

Abort the specified asynchronous task.

Parameters
nTaskId

The task identifier.

dwMilliseconds

An unsigned integer that specifies the number of milliseconds to wait for the background task
to abort.

Return Value
If the function succeeds and the worker thread has terminated, the return value is non-zero. A
return value of zero indicates that the worker thread is still running or an error has occurred. To
get extended error information, call the SmtpGetLastError function.

Remarks
The SmtpTaskAbort function signals the background worker thread associated with the task ID to
abort the current operation and terminate as soon as possible. If the dwMilliseconds parameter
has a value of zero, the function returns immediately after the background thread has been
signaled. If the dwMilliseconds parameter is non-zero, the function will wait that amount of time
for the background thread to terminate.

This function should never be called from within the event handler for an asynchronous task
because it can cause the process to deadlock. To abort a file transfer within an event handler, use
the SmtpCancel function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib

See Also
SmtpTaskDone, SmtpTaskResume, SmtpTaskSuspend, SmtpTaskWait

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpTaskDone Function

BOOL WINAPI SmtpTaskDone(
 UINT nTaskId
);

Determine if an asynchronous task has completed.

Parameters
nTaskId

The task identifier.

Return Value
If the asynchronous task has completed, this function returns a non-zero value. A return value of
zero indicates that the worker thread is still running or an error has occurred. To get extended
error information, call the SmtpGetLastError function.

Remarks
The SmtpTaskDone function is used to determine if the specified asynchronous task has
completed. If you use this function to poll the status of a background task from within the main UI
thread, you must ensure that Windows messages are processed so that the application remains
responsive to the end-user. To check if a background transfer has completed, it is recommended
that you use a timer to periodically call this function rather than calling it repeatedly within a loop.

To determine if the task completed successfully, the SmtpGetTaskError function will return the
last error code associated with the task. A return value of zero indicates success, while a non-zero
return value specifies an error code that indicates the cause of the failure. The last error code for
the task can also be retrieved using the SmtpTaskWait function, which causes the application to
wait for the asynchronous task to complete.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib

See Also
SmtpGetTaskError, SmtpTaskAbort, SmtpTaskResume, SmtpTaskSuspend, SmtpTaskWait

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpTaskResume Function

BOOL WINAPI SmtpTaskResume(
 UINT nTaskId
);

Resume execution of an asynchronous task.

Parameters
nTaskId

The task identifier.

Return Value
If the asynchronous task has resumed, this function returns a non-zero value. A return value of
zero indicates that an error has occurred. To get extended error information, call the
SmtpGetLastError function.

Remarks
The SmtpTaskResume function resumes execution of the background worker thread that was
previously suspended using the SmtpTaskSuspend function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib

See Also
SmtpTaskAbort, SmtpTaskDone, SmtpTaskSuspend, SmtpTaskWait

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpTaskSuspend Function

BOOL WINAPI SmtpTaskSuspend(
 UINT nTaskId
);

Suspend execution of an asynchronous task.

Parameters
nTaskId

The task identifier.

Return Value
If the asynchronous task has resumed, this function returns a non-zero value. A return value of
zero indicates that an error has occurred. To get extended error information, call the
SmtpGetLastError function.

Remarks
The SmtpTaskSuspend function will suspend execution of the background worker thread
associated with the task. Once the task has been suspended, it will no longer be scheduled for
execution, however the client session will remain active and the task may be resumed using the
SmtpTaskResume function. Note that if a task is suspended for a long period of time, the
background operation may fail because it has exceeded the timeout period imposed by the
server.

This function should never be called from within the event handler for an asynchronous task
because it can cause the process to deadlock.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib

See Also
SmtpTaskAbort, SmtpTaskDone, SmtpTaskResume, SmtpTaskWait

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpTaskWait Function

BOOL WINAPI SmtpTaskWait(
 UINT nTaskId,
 DWORD dwMilliseconds,
 DWORD dwReserved,
 LPDWORD lpdwElapsed,
 LPDWORD lpdwError
);

Wait for an asynchronous task to complete.

Parameters
nTaskId

The task identifier.

dwMilliseconds

An unsigned integer that specifies the number of milliseconds to wait for the background task
to complete.

dwReserved

An unsigned integer reserved for future use. This value should always be zero.

lpdwElapsed

A pointer to an unsigned integer that will contain elapsed time in milliseconds when the
function returns. If this information is not required, this parameter may be NULL.

lpdwError

A pointer to an unsigned integer that will contain the error code associated with the completed
task. If this information is not required, this parameter may be NULL.

Return Value
If the function succeeds and the worker thread has terminated, the return value is non-zero. A
return value of zero indicates that the worker thread is still running or an error has occurred. To
get extended error information, call the SmtpGetLastError function.

Remarks
The SmtpTaskWait function waits for the specified task to complete. If the task is active and the
dwMilliseconds parameter is non-zero, this function will cause the current working thread to block
until the task completes or the amount of time exceeds the number of milliseconds specified by
the caller. If the dwMilliseconds parameter is zero, then this function will poll the status of the task
and return immediately to the caller.

If the specified task has already completed at the time this function is called, the function will
return immediately without causing the current thread to block. If the lpdwElapsed parameter is
not NULL, it will contain the number of milliseconds that it took for the task to complete. If the
lpdwError parameter is not NULL, it will contain the last error code value that was set by the
worker thread before it terminated. If this value is zero, that means that the background operation
was successful and no error occurred. A non-zero value will indicate that the background
operation has failed.

You should not call this function from the main UI thread with a long timeout period to wait for a
background task to complete. Windows messages will not be processed while this function is
blocked waiting for the background task to complete, and this can cause your application to

appear non-responsive to the end-user. If you have a GUI application and you need to
periodically check to see if a task has completed, create a timer to periodically call the
SmtpTaskDone function. When it returns a non-zero value (indicating that the task has
completed), you can safely call SmtpTaskWait to obtain the elapsed time and last error code
without blocking the current thread.

This function should never be called from within the event handler for an asynchronous task
because it can cause the process to deadlock.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib

See Also
SmtpTaskDone, SmtpTaskResume, SmtpTaskSuspend, SmtpTaskWait

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpUninitialize Function

VOID WINAPI SmtpUninitialize();

The SmtpUninitialize function terminates the use of the library.

Parameters
There are no parameters.

Return Value
None.

Remarks
An application is required to perform a successful SmtpInitialize call before it can call any of the
other library functions. When it has completed the use of library, the application must call
SmtpUninitialize to allow the library to free any resources allocated on behalf of the process. Any
pending blocking or asynchronous calls in this process are canceled without posting any
notification messages, and all sockets that were opened by the process are closed.

There must be a call to SmtpUninitialize for every successful call to SmtpInitialize made by a
process. In a multithreaded environment, operations for all threads in the client are terminated.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib

See Also
SmtpConnect, SmtpDisconnect, SmtpInitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpVerifyAddress Function

INT WINAPI SmtpVerifyAddress(
 HCLIENT hClient,
 LPCTSTR lpszAddress,
 LPTSTR lpszBuffer,
 INT nMaxLength
);

The SmtpVerifyAddress function verifies the specified address is valid.

Parameters
hClient

Handle to the client session.

lpszAddress

Points to a string which specifies the address that the server should verify.

lpszBuffer

Points to a buffer that the verified address will be copied into.

nMaxLength

Maximum number of characters that may be copied into the buffer, including the terminating
null character.

Return Value
If the function succeeds, the return value is the server result code. If the function fails, the return
value is SMTP_ERROR. To get extended error information, call SmtpGetLastError.

Remarks
The SmtpVerifyAddress function requests that the server verify the specified email address.
Typically this is used to verify that a recipient address is valid, and return a fully qualified email
address for that recipient. A server may not support this command, or may restrict its usage. An
application should not depend on the ability to verify addresses.

This function cannot be called while a mail message is being composed.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csmtpv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SmtpAddRecipient, SmtpExpandAddress

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmtpWrite Function

INT WINAPI SmtpWrite(
 HCLIENT hClient,
 LPBYTE lpBuffer,
 INT cbBuffer
);

The SmtpWrite function sends the specified number of bytes to the server.

Parameters
hClient

Handle to the client session.

lpBuffer

The pointer to the buffer which contains the data that is to be sent to the server.

cbBuffer

The number of bytes to send from the specified buffer.

Return Value
If the function succeeds, the return value is the number of bytes actually written. If the function
fails, the return value is SMTP_ERROR. To get extended error information, call SmtpGetLastError.

Remarks
The return value may be less than the number of bytes specified by the cbBuffer parameter. In this
case, the data has been partially written and it is the responsibility of the client application to send
the remaining data at some later point. For non-blocking clients, the client must wait for the
SMTP_EVENT_WRITE asynchronous notification message before it resumes sending data.

If the SmtpWrite function is used to send the message contents to the server, the application
must first call the SmtpCreateMessage function to specify the sender and the length of the
message, followed by one or more calls to the SmtpAddRecipient function to specify each
recipient of the message. When all of the message text has been submitted to the server, the
application must call the SmtpCloseMessage function.

The message text is filtered by the SmtpWrite function, and it will automatically normalize end-of-
line character sequences to ensure the message meets the protocol requirements. The message
itself must be in a standard RFC 822 or multi-part MIME message format, or the server may reject
the message. Binary data, such as file attachments, should always be encoded. The MIME API can
be used to compose and export a message in the correct format, which can then be submitted to
the server.

It is recommended that most applications use the SmtpSendMessage function to submit the
message for delivery.

 An alternative approach to creating a message without using the MIME API is the
SmtpSubmitMessage function. It accepts two structure parameters which define the message
contents and the connection information for the mail server. This enables the application to
compose the message and submit it for delivery in a single function call.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)

Header File: cstools11.h
Import Library: csmtpv11.lib

See Also
SmtpAddRecipient, SmtpAppendMessage, SmtpCloseMessage, SmtpCreateMessage,
SmtpSendMessage, SmtpSubmitMessage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Simple Message Transfer Protocol Data Structures

INITDATA
SECURITYCREDENTIALS
SECURITYINFO
SMTPMESSAGE
SMTPMESSAGEEX
SMTPSERVER
SMTPTRANSFERSTATUS
SYSTEMTIME

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 INITDATA Structure

This structure contains information about the SocketTools library when the initialization function
returns.

typedef struct _INITDATA
{
 DWORD dwSize;
 DWORD dwVersionMajor;
 DWORD dwVersionMinor;
 DWORD dwVersionBuild;
 DWORD dwOptions;
 DWORD_PTR dwReserved1;
 DWORD_PTR dwReserved2;
 TCHAR szDescription[128];
} INITDATA, *LPINITDATA;

Members
dwSize

Size of this structure. This structure member must be set to the size of the structure prior to
calling the initialization function. Failure to do so will cause the function to fail.

dwVersionMajor

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the major version number for the library.

dwVersionMinor

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the minor version number for the library.

dwVersionBuild

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the build number for the library.

dwOptions

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

dwReserved1

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

dwReserved2

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

szDescription

A null terminated string which describes the library.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SECURITYCREDENTIALS Structure

The SECURITYCREDENTIALS structure specifies the information needed by the library to specify
additional security credentials, such as a client certificate or private key, when establishing a secure
connection.

typedef struct _SECURITYCREDENTIALS
{
 DWORD dwSize;
 DWORD dwProtocol;
 DWORD dwOptions;
 DWORD dwReserved;
 LPCTSTR lpszHostName;
 LPCTSTR lpszUserName;
 LPCTSTR lpszPassword;
 LPCTSTR lpszCertStore;
 LPCTSTR lpszCertName;
 LPCTSTR lpszKeyFile;
} SECURITYCREDENTIALS, *LPSECURITYCREDENTIALS;

Members
dwSize

Size of this structure. If the structure is being allocated dynamically, this member must be set to
the size of the structure and all other unused structure members must be initialized to a value of
zero or NULL.

dwProtocol

A bitmask of supported security protocols. The value of this structure member is constructed by
using a bitwise operator with any of the following values:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The
correct protocol is automatically selected, based on

what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.
This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is
supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

dwOptions

A value which specifies one or options. This member is constructed by using a bitwise operator
with any of the following values:

Constant Description

CREDENTIAL_STORE_CURRENT_USER The library will attempt to open a store for
the current user using the certificate store
name provided in this structure. If no options
are specified, then this is the default
behavior.

CREDENTIAL_STORE_LOCAL_MACHINE The library will attempt to open a local
machine store using the certificate store

name provided in this structure. If this option
is specified, the library will always search for a
local machine store before searching for the
store by that name for the current user.

CREDENTIAL_STORE_FILENAME The certificate store name is a file that
contains the certificate and private key that
will be used.

dwReserved

This structure member is reserved for future use and should always be initialized to zero.

lpszHostName

A pointer to a null terminated string which specifies the hostname that will be used when
validating the server certificate. If this member is NULL, then the server certificate will be
validated against the hostname used to establish the connection.

lpszUserName

A pointer to a null terminated string which identifies the owner of client certificate. Currently this
member is not used by the library and should always be initialized as a NULL pointer.

lpszPassword

A pointer to a null terminated string which specifies the password needed to access the
certificate. Currently this member is only used if the CREDENTIAL_STORE_FILENAME option has
been specified. If there is no password associated with the certificate, then this member should
be initialized as a NULL pointer.

lpszCertStore

A pointer to a null terminated string which specifies the name of the certificate store to open. A
certificate store is a collection of certificates and their private keys, typically organized by how
they are used. If this value is NULL or points to an empty string, the default certificate store "MY"
will be used.

Store
Name

Description

CA
Certification authority certificates. These are certificates that are issued by entities
which are entrusted to issue certificates to other individuals or organizations.
Companies such as VeriSign and Thawte act as certification authorities.

MY

Personal certificates and their associated private keys for the current user. This
store typically holds the client certificates used to establish a user's credentials.
This corresponds to the "Personal" store that is displayed by the certificate
manager utility and is the default store used by the library.

ROOT
Certificates that have been self-signed by a certificate authority. Root certificates
for a number of different certification authorities such as VeriSign and Thawte are
installed as part of the operating system and periodically updated by Microsoft.

lpszCertName

A pointer to a null terminated string which specifies the name of the certificate to use. The
library will first search the certificate store for a certificate with a matching "friendly name"; this is
a name for the certificate that is assigned by the user. Note that the name must match
completely, but the comparison is not case sensitive. If no matching certificate is found, the
library will then attempt to find a certificate that has a matching common name (also called the
certificate subject). This comparison is less stringent, and the first partial match will be returned.

If this second search fails, the library will return an error indicating that the certificate could not
be found. If the SECURITY_PROTOCOL_SSH protocol has been specified, this member should
be NULL.

lpszKeyFile

A pointer to a null terminated string which specifies the name of the file which contains the
private key required to establish the connection. This member is only used for SSH connections
and should always be NULL when establishing a secure connection using SSL or TLS.

Remarks
A client application only needs to create this structure if the server requires that the client provide
a certificate as part of the process of negotiating the secure session. If a certificate is required,
note that it must have a private key associated with it. Attempting to use a certificate that does not
have a private key will result in an error during the connection process indicating that the client
credentials could not be established.

If you are using a local certificate store, with the certificate and private key stored in the registry,
you can explicitly specify whether the certificate store for the current user or the local machine (all
users) should be used. This is done by prefixing the certificate store name with "HKCU:" for the
current user, or "HKLM:" for the local machine. For example, a certificate store name of
"HKLM:MY" would specify the personal certificate store for the local machine, rather than the
current user. If neither prefix is specified, then it will default to the certificate store for the current
user. You can manage these certificates using the CertMgr.msc Microsoft Management Console
(MMC) snap-in.

It is possible to load the certificate from a file rather than from current user's certificate store. The
dwOptions member should be set to CREDENTIAL_STORE_FILENAME and the lpszCertStore
member should specify the name of the file that contains the certificate and its private key. The file
must be in Private Information Exchange (PFX) format, also known as PKCS #12. These certificate
files typically have an extension of .pfx or .p12. Note that if a password was specified when the
certificate file was created, it must be provided in the lpszPassword member or the library will be
unable to access the certificate.

Note that the lpszUserName and lpszPassword members are values which are used to access the
certificate store or private key file. They are not the credentials which are used when establishing
the connection with the remote host or authenticating the client session.

The TLS 1.1 and TLS 1.2 protocols are only supported on Windows 7, Windows Server 2008 R2
and later versions of the platform. If these options are specified and the application is running on
Windows XP or Windows Vista, the protocol version will be downgraded to TLS 1.0 for backwards
compatibility with those platforms.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SECURITYINFO Structure

This structure contains information about a secure connection that has been established.

typedef struct _SECURITYINFO
{
 DWORD dwSize;
 DWORD dwProtocol;
 DWORD dwCipher;
 DWORD dwCipherStrength;
 DWORD dwHash;
 DWORD dwHashStrength;
 DWORD dwKeyExchange;
 DWORD dwCertStatus;
 SYSTEMTIME stCertIssued;
 SYSTEMTIME stCertExpires;
 LPCTSTR lpszCertIssuer;
 LPCTSTR lpszCertSubject;
 LPCTSTR lpszFingerprint;
} SECURITYINFO, *LPSECURITYINFO;

Members
dwSize

Specifies the size of the data structure. This member must always be initialized to
sizeof(SECURITYINFO) prior to passing the address of this structure to the function. Note that
if this member is not initialized, an error will be returned indicating that an invalid parameter has
been passed to the function.

dwProtocol

A numeric value which specifies the protocol that was selected to establish the secure
connection. One of the following values will be returned:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The

correct protocol is automatically selected, based on
what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.
This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is
supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

dwCipher

A numeric value which specifies the cipher that was selected when establishing the secure
connection. One of the following values will be returned:

Constant Description

SECURITY_CIPHER_RC2 The RC2 block cipher was selected. This is a variable
key length cipher which supports keys between 40 and
128 bits, in 8-bit increments.

SECURITY_CIPHER_RC4 The RC4 stream cipher was selected. This is a variable
key length cipher which supports keys between 40 and
128 bits, in 8-bit increments.

SECURITY_CIPHER_RC5 The RC5 block cipher was selected. This is a variable
key length cipher which supports keys up to 2040 bits,
in 8-bit increments.

SECURITY_CIPHER_DES The DES (Data Encryption Standard) block cipher was
selected. This is a fixed key length cipher, using 56-bit
keys.

SECURITY_CIPHER_DES3 The Triple DES block cipher was selected. This cipher
encrypts the data three times using different keys,
effectively providing a 168-bit length key.

SECURITY_CIPHER_DESX A variant of the DES block cipher which XORs an extra
64-bits of the key before and after the plaintext has
been encrypted, increasing the key size to 184 bits.

SECURITY_CIPHER_AES The Advanced Encryption Standard cipher (also known
as the Rijndael cipher) is a fixed block size cipher which
use a key size of 128, 192 or 256 bits. This cipher is
supported on Windows XP SP3 and later versions of
the operating system.

SECURITY_CIPHER_SKIPJACK The Skipjack block cipher was selected. This is a fixed
key length cipher, using 80-bit keys.

SECURITY_CIPHER_BLOWFISH The Blowfish block cipher was selected. This is a
variable key length cipher up to 448 bits, using a 64-bit
block size.

dwCipherStrength

A numeric value which specifies the strength (the length of the cipher key in bits) of the cipher
that was selected. Typically this value will be 128 or 256. 40-bit and 56-bit key lengths are
considered weak encryption, and subject to brute force attacks. 128-bit and 256-bit key lengths
are considered to be secure, and are the recommended key length for secure communications.

dwHash

A numeric value which specifies the hash algorithm which was selected. One of the following
values will be returned:

Constant Description

SECURITY_HASH_MD5 The MD5 algorithm was selected. Its use has been
deprecated and is no longer considered to be
cryptographically secure.

SECURITY_HASH_SHA1 The SHA-1 algorithm was selected. Its use has been
deprecated and is no longer considered to be
cryptographically secure.

SECURITY_HASH_SHA256 The SHA-256 algorithm was selected.

SECURITY_HASH_SHA384 The SHA-384 algorithm was selected.

SECURITY_HASH_SHA512 The SHA-512 algorithm was selected.

dwHashStrength

A numeric value which specifies the strength (the length in bits) of the message digest that was

selected.

dwKeyExchange

A numeric value which specifies the key exchange algorithm which was selected. One of the
following values will be returned:

Constant Description

SECURITY_KEYEX_RSA The RSA public key algorithm was selected.

SECURITY_KEYEX_KEA The Key Exchange Algorithm (KEA) was selected. This is an
improved version of the Diffie-Hellman public key algorithm.

SECURITY_KEYEX_DH The Diffie-Hellman key exchange algorithm was selected.

SECURITY_KEYEX_ECDH The Elliptic Curve Diffie-Hellman key exchange algorithm was
selected. This is a variant of the Diffie-Hellman algorithm
which uses elliptic curve cryptography. This key exchange
algorithm is only supported on Windows XP SP3 and later
versions of the operating system.

dwCertStatus

A numeric value which specifies the status of the certificate returned by the secure server. This
member only has meaning for connections using the SSL or TLS protocols. One of the following
values will be returned:

Constant Description

SECURITY_CERTIFICATE_VALID The certificate is valid.

SECURITY_CERTIFICATE_NOMATCH The certificate is valid, but the domain name
does not match the common name in the
certificate.

SECURITY_CERTIFICATE_EXPIRED The certificate is valid, but has expired.

SECURITY_CERTIFICATE_REVOKED The certificate has been revoked and is no
longer valid.

SECURITY_CERTIFICATE_UNTRUSTED The certificate or certificate authority is not
trusted on the local system.

SECURITY_CERTIFICATE_INVALID The certificate is invalid. This typically indicates
that the internal structure of the certificate has
been damaged.

stCertIssued

A structure which contains the date and time that the certificate was issued by the certificate
authority. If the issue date cannot be determined for the certificate, the SYSTEMTIME structure
members will have zero values. This member only has meaning for connections using the SSL or
TLS protocols.

stCertExpires

A structure which contains the date and time that the certificate expires. If the expiration date
cannot be determined for the certificate, the SYSTEMTIME structure members will have zero
values. This member only has meaning for connections using the SSL or TLS protocols.

lpszCertIssuer

A pointer to a string which contains information about the organization that issued the
certificate. This string consists of one or more comma-separated tokens. Each token consists of
an identifier, followed by an equal sign and a value. If the certificate issuer could not be
determined, this member may be NULL. This member only has meaning for connections using
the SSL or TLS protocols.

lpszCertSubject

A pointer to a string which contains information about the organization that the certificate was
issued to. This string consists of one or more comma-separated tokens. Each token consists of
an identifier, followed by an equal sign and a value. If the certificate subject could not be
determined, this member may be NULL. This member only has meaning for connections using
the SSL or TLS protocols.

lpszFingerprint

A pointer to a string which contains a sequence of hexadecimal values that uniquely identify the
server. This member is only used when a connection has been established using the Secure
Shell (SSH) protocol.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SMTPMESSAGE Structure

This structure provides information about the contents of a message and is used by the
SmtpSubmitMessage function.

typedef struct _SMTPMESSAGE
{
 LPCTSTR lpszFrom;
 LPCTSTR lpszTo;
 LPCTSTR lpszCc;
 LPCTSTR lpszBcc;
 LPCTSTR lpszSubject;
 LPCTSTR lpszText;
 LPCTSTR lpszHTML;
 LPCTSTR lpszAttach;
 UINT nCharSet;
 UINT nEncType;
 DWORD dwReserved;
} SMTPMESSAGE, *LPSMTPMESSAGE;

Members
lpszFrom

A pointer to a string that specifies the email address of the person sending the message. This
structure member must point to a valid address and cannot be NULL.

lpszTo

A pointer to a string that specifies the email addresses of one or more recipients. If multiple
addresses are provided, they must be separated by commas or semi-colons. This structure
member must point to at least one valid address and cannot be NULL.

lpszCc

A pointer to a string that specifies the email addresses of one or more recipients that will receive
copies of the message. If multiple addresses are provided, they must be separated by commas
or semi-colons. This structure member may be NULL or point to an empty string.

lpszBcc

A pointer to a string that specifies the email addresses of one or more recipients that will receive
blind copies of the message. If multiple addresses are provided, they must be separated by
commas or semi-colons. This structure member may be NULL or point to an empty string.
Unlike the recipients specified by the lpszTo and lpszCc members, any addresses specified by
this member will not be included in the header of the email message.

lpszSubject

A pointer to a string that specifies the subject of the message. This structure member may be
NULL, in which case no subject will be included in the message.

lpszText

A pointer to a string which contains the body of the message as plain text. Each line of text
contained in the string should be terminated with a carriage-return and linefeed (CRLF) pair,
which is recognized as the end-of-line. If this structure member is NULL or points to an empty
string, then the lpszHTML member must specify the body of the message.

lpszHTML

A pointer to a string which contains the message using HTML formatting. If the lpszText
member is not NULL, then a multipart message will be created with both plain text and HTML

text as the alternative. This allows mail clients to select which message body they wish to display.
If the lpszText member is NULL or points to an empty string, then the message will only contain
HTML. Although this is supported, it is not recommended because older mail clients may be
unable to display the message correctly.

lpszAttach

A pointer to a string which specifies one or more file attachments for the message. If multiple
files are to be attached to the message, each file name must be separated by a semi-colon. It is
recommended that you provide the complete path to the file. If this structure member is NULL
or points to an empty string, the message will be created without attachments.

nCharSet

A integer value which specifies the character set to use when composing the message. A value
of zero specifies that the default USASCII character set should be used. The following values
may also be used:

Constant Description

MIME_CHARSET_USASCII Each character is encoded in one or more bytes, with
each byte being 8 bits long, with the first bit cleared. This
encoding is most commonly used with plain text using
the US-ASCII character set, where each character is
represented by a single byte in the range of 20h to 7Eh.

MIME_CHARSET_ISO8859_1 An 8-bit character set for most western European
languages such as English, French, Spanish and German.
This character set is also commonly referred to as Latin1.

MIME_CHARSET_ISO8859_2 An 8-bit character set for most central and eastern
European languages such as Czech, Hungarian, Polish
and Romanian. This character set is also commonly
referred to as Latin2.

MIME_CHARSET_ISO8859_5 An 8-bit character set for Cyrillic languages such as
Russian, Bulgarian and Serbian.

MIME_CHARSET_ISO8859_6 An 8-bit character set for Arabic languages. Note that
the application is responsible for displaying text that uses
this character set. In particular, any display engine needs
to be able to handle the reverse writing direction and
analyze the context of the message to correctly combine
the glyphs.

MIME_CHARSET_ISO8859_7 An 8-bit character set for the Greek language.

MIME_CHARSET_ISO8859_8 An 8-bit character set for the Hebrew language. Note
that similar to Arabic, Hebrew uses a reverse writing
direction. An application which displays this character
should be capable of processing bi-directional text where
a single message may include both right-to-left and left-
to-right languages, such as Hebrew and English.

MIME_CHARSET_ISO8859_9 An 8-bit character set for the Turkish language. This
character set is also commonly referred to as Latin5.

nEncType

A numeric identifier which specifies the encoding type to use when composing the message. A
value of zero specifies that default 7bit encoding should be used. The following values may also
be used:

Constant Description

MIME_ENCODING_7BIT Each character is encoded in one or more bytes, with
each byte being 8 bits long, with the most significant bit
cleared. This encoding is most commonly used with
plain text using the US-ASCII character set, where each
character is represented by a single byte in the range of
20h to 7Eh.

MIME_ENCODING_8BIT Each character is encoded in one or more bytes, with
each byte being 8 bits long and all bits are used. 8-bit
encoding is typically used with multibyte character sets
and is the default encoding used with Unicode text.

MIME_ENCODING_QUOTED Quoted-printable encoding is designed for textual
messages where most of the characters are represented
by the ASCII character set and is generally human-
readable. Non-printable characters or 8-bit characters
with the high bit set are encoded as hexadecimal values
and represented as 7-bit text. Quoted-printable
encoding is typically used for messages which use
character sets such as ISO-8859-1, as well as those
which use HTML.

dwReserved

An unsigned integer value reserved for future use. This structure member should always have a
value of zero.

Remarks
This structure is used to define the contents of a message that will be submitted for delivery using
the SmtpSubmitMessage function. It is required that you specify a sender, at least one recipient
and a message body. All other structure members may be NULL or have a value of zero to
indicate that either the value is not required, or that a default should be used. It is recommended
that you initialize all of the structure members to a value of zero using the ZeroMemory function
prior to populating the structure.

email addresses may be specified as simple addresses, or as commented addresses that include
the sender's name or other information. For example, any one of these address formats are
acceptable:

user@domain.tld
User Name <user@domain.tld>
user@domain.tld (User Name)

To specify multiple addresses, you should separate each address by a comma or semi-colon. Note
that the lpszFrom member cannot specify multiple addresses, however it is permitted with the
lpszTo, lpszCc and lpszBcc structure members. Each message must have at least one valid
recipient, or the message cannot be submitted for delivery.

To send a message that contains HTML, it is recommended that you provide both a plain text
version of the message body and an HTML formatted version. While it is permitted to send a

message that only contains HTML, some older mail clients may not be capable of displaying the
message correctly. In some cases, anti-spam software will increase the spam score of messages
that do not contain a plain text message body. This can result in your message being rejected or
quarantined by the mail server.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

See Also
SMTPSERVER

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SMTPMESSAGEEX Structure

This structure provides information about the contents of a message and is used by the
SmtpSubmitMessageEx function.

typedef struct _SMTPMESSAGEEX
{
 DWORD dwSize
 LPCTSTR lpszFrom;
 LPCTSTR lpszTo;
 LPCTSTR lpszCc;
 LPCTSTR lpszBcc;
 LPCTSTR lpszDate;
 LPCTSTR lpszSubject;
 LPCTSTR lpszHeaders;
 LPCTSTR lpszText;
 LPCTSTR lpszHTML;
 LPCTSTR lpszAttach;
 UINT nCharSet;
 UINT nEncType;
 DWORD dwReserved;
} SMTPMESSAGEEX, *LPSMTPMESSAGEEX;

Members
dwSize

An integer value that specifies the size of the SMTPMESSAGEEX data structure. This must
always be explicitly defined, and if the value is incorrect, an error will be returned. This structure
member is used to ensure that the correct version of the structure is being passed to the
function.

lpszFrom

A pointer to a string that specifies the email address of the person sending the message. This
structure member must point to a valid address and cannot be NULL.

lpszTo

A pointer to a string that specifies the email addresses of one or more recipients. If multiple
addresses are provided, they must be separated by commas or semi-colons. This structure
member must point to at least one valid address and cannot be NULL.

lpszCc

A pointer to a string that specifies the email addresses of one or more recipients that will receive
copies of the message. If multiple addresses are provided, they must be separated by commas
or semi-colons. This structure member may be NULL or point to an empty string.

lpszBcc

A pointer to a string that specifies the email addresses of one or more recipients that will receive
blind copies of the message. If multiple addresses are provided, they must be separated by
commas or semi-colons. This structure member may be NULL or point to an empty string.
Unlike the recipients specified by the lpszTo and lpszCc members, any addresses specified by
this member will not be included in the header of the email message.

lpszDate

A pointer to a string that specifies the date and time for the message. This structure member
may be NULL or point to an empty string. If the date is not specified, then the current date and
time will be used by default. If a date is specified, it should be in the standard format as defined

by RFC822.

lpszSubject

A pointer to a string that specifies the subject of the message. This structure member may be
NULL, in which case no subject will be included in the message.

lpszHeaders

A pointer to a string that specifies additional headers that should be included in the message.
Header names should be separated from values by a colon, and multiple headers may be
defined by separating them with a newline character. This structure member may be NULL, in
which case no additional headers will be included in the message.

lpszText

A pointer to a string which contains the body of the message as plain text. Each line of text
contained in the string should be terminated with a carriage-return and linefeed (CRLF) pair,
which is recognized as the end-of-line. If this structure member is NULL or points to an empty
string, then the lpszHTML member must specify the body of the message.

lpszHTML

A pointer to a string which contains the message using HTML formatting. If the lpszText
member is not NULL, then a multipart message will be created with both plain text and HTML
text as the alternative. This allows mail clients to select which message body they wish to display.
If the lpszText member is NULL or points to an empty string, then the message will only contain
HTML. Although this is supported, it is not recommended because older mail clients may be
unable to display the message correctly.

lpszAttach

A pointer to a string which specifies one or more file attachments for the message. If multiple
files are to be attached to the message, each file name must be separated by a semi-colon. It is
recommended that you provide the complete path to the file. If this structure member is NULL
or points to an empty string, the message will be created without attachments.

nCharSet

A integer value which specifies the character set to use when composing the message. A value
of zero specifies that the default USASCII character set should be used. The following values
may also be used:

Constant Description

MIME_CHARSET_USASCII Each character is encoded in one or more bytes, with
each byte being 8 bits long, with the first bit cleared. This
encoding is most commonly used with plain text using
the US-ASCII character set, where each character is
represented by a single byte in the range of 20h to 7Eh.

MIME_CHARSET_ISO8859_1 An 8-bit character set for most western European
languages such as English, French, Spanish and German.
This character set is also commonly referred to as Latin1.

MIME_CHARSET_ISO8859_2 An 8-bit character set for most central and eastern
European languages such as Czech, Hungarian, Polish
and Romanian. This character set is also commonly
referred to as Latin2.

MIME_CHARSET_ISO8859_5 An 8-bit character set for Cyrillic languages such as
Russian, Bulgarian and Serbian.

MIME_CHARSET_ISO8859_6 An 8-bit character set for Arabic languages. Note that
the application is responsible for displaying text that uses
this character set. In particular, any display engine needs
to be able to handle the reverse writing direction and
analyze the context of the message to correctly combine
the glyphs.

MIME_CHARSET_ISO8859_7 An 8-bit character set for the Greek language.

MIME_CHARSET_ISO8859_8 An 8-bit character set for the Hebrew language. Note
that similar to Arabic, Hebrew uses a reverse writing
direction. An application which displays this character
should be capable of processing bi-directional text where
a single message may include both right-to-left and left-
to-right languages, such as Hebrew and English.

MIME_CHARSET_ISO8859_9 An 8-bit character set for the Turkish language. This
character set is also commonly referred to as Latin5.

nEncType

A numeric identifier which specifies the encoding type to use when composing the message. A
value of zero specifies that default 7bit encoding should be used. The following values may also
be used:

Constant Description

MIME_ENCODING_7BIT Each character is encoded in one or more bytes, with
each byte being 8 bits long, with the most significant bit
cleared. This encoding is most commonly used with
plain text using the US-ASCII character set, where each
character is represented by a single byte in the range of
20h to 7Eh.

MIME_ENCODING_8BIT Each character is encoded in one or more bytes, with
each byte being 8 bits long and all bits are used. 8-bit
encoding is typically used with multibyte character sets
and is the default encoding used with Unicode text.

MIME_ENCODING_QUOTED Quoted-printable encoding is designed for textual
messages where most of the characters are represented
by the ASCII character set and is generally human-
readable. Non-printable characters or 8-bit characters
with the high bit set are encoded as hexadecimal values
and represented as 7-bit text. Quoted-printable
encoding is typically used for messages which use
character sets such as ISO-8859-1, as well as those
which use HTML.

dwReserved

An unsigned integer value reserved for future use. This structure member should always have a
value of zero.

Remarks
This structure is used to define the contents of a message that will be submitted for delivery using

the SmtpSubmitMessageEx function. It is required that you specify a sender, at least one
recipient and a message body. Other structure members may be NULL or have a value of zero to
indicate that either the value is not required, or that a default should be used. It is recommended
that you initialize all of the structure members to a value of zero using the ZeroMemory function
prior to populating the structure.

Note that you must explicitly define the size of the structure by setting the value of the dwSize
member variable. This ensures that the correct version of the structure is being passed to the
function. This structure is not compatible with the SmtpSubmitMessage function and must only
be used with SmtpSubmitMessageEx.

Email addresses may be specified as simple addresses, or as commented addresses that include
the sender's name or other information. For example, any one of these address formats are
acceptable:

user@domain.tld
User Name <user@domain.tld>
user@domain.tld (User Name)

To specify multiple addresses, you should separate each address by a comma or semi-colon. Note
that the lpszFrom member cannot specify multiple addresses, however it is permitted with the
lpszTo, lpszCc and lpszBcc structure members. Each message must have at least one valid
recipient, or the message cannot be submitted for delivery.

If you specify a message date by assigning a value to the lpszDate member, and it does not
include any timezone information, Coordinated Universal Time (UTC) will be used by default. This
is an important consideration if you provide input from a user, because in most cases they will not
include the timezone and will assume the date and time they enter is for their current timezone.

If you wish to include additional headers in the message, you can specify them in a string. Each
header consists of a name and value, separated by a colon (":") character. If you wish to define
multiple headers, then you can separate them with a newline (e.g.: a linefeed character or
combination of a carriage-return and linefeed). Extraneous leading and trailing whitespace are
trimmed from header names and values. Invalid names or values will be ignored and will not
generate an error.

To send a message that contains HTML, it is recommended that you provide both a plain text
version of the message body and an HTML formatted version. While it is permitted to send a
message that only contains HTML, some older mail clients may not be capable of displaying the
message correctly. In some cases, anti-spam software will increase the spam score of messages
that do not contain a plain text message body. This can result in your message being rejected or
quarantined by the mail server.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

See Also
SMTPSERVER

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SMTPSERVER Structure

This structure provides connection information for a mail server and is used by the
SmtpSubmitMessage function.

typedef struct _SMTPSERVER
{
 LPCTSTR lpszHostName;
 LPCTSTR lpszUserName;
 LPCTSTR lpszPassword;
 UINT nHostPort;
 UINT nTimeout;
 DWORD dwOptions;
 DWORD dwReserved;
} SMTPSERVER, *LPSMTPSERVER;

Members
lpszHostName

A pointer to a string that specifies the host name or IP address of the mail server. This structure
member cannot be NULL.

lpszUserName

A pointer to a string that specifies the username that will be used to authenticate the client
session. If the mail server does not require authentication, this structure member can be NULL
or point to an empty string.

lpszPassword

A pointer to a string that specifies the password that will be used to authenticate the client
session. If the mail server does not require authentication, this structure member can be NULL
or point to an empty string.

nHostPort

An integer value that specifies the port number used to establish the connection. A value of
zero specifies that the default port number should be used. For standard connections, the
default port number is 25. An alternative port is 587, which is commonly used by authenticated
clients to submit messages for delivery. For implicit SSL connections, the default port number is
465.

nTimeout

An integer value that specifies the number of seconds that the client will wait for a response
from the server before failing the operation. A value of zero specifies the default timeout period
of 20 seconds.

dwOptions

An unsigned integer that specifies one or more options. The value of this structure member is
constructed by using a bitwise operator with any of the following values:

Constant Description

SMTP_OPTION_NONE No additional options are specified when
establishing a connection with the server. A
standard, non-secure connection will be used.

SMTP_OPTION_EXTENDED Extended SMTP commands should be used if
possible. This option enables features such as

authentication and delivery status notification. If
this option is not specified, the library will not
attempt to use any extended features. This option
is automatically enabled if a username and
password are specified, or if the connection is
established on port 587, because submitting
messages for delivery using this port typically
requires client authentication.

SMTP_OPTION_TUNNEL This option specifies that a tunneled TCP
connection and/or port-forwarding is being used
to establish the connection to the server. This
changes the behavior of the client with regards to
internal checks of the destination IP address and
remote port number, default capability selection
and how the connection is established.

SMTP_OPTION_TRUSTEDSITE This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option
only affects connections using either the SSL or TLS
protocols.

SMTP_OPTION_SECURE This option specifies that a secure connection
should be established with the server and requires
that the server support either the SSL or TLS
protocol. The client will initiate the secure session
using the STARTTLS command.

SMTP_OPTION_SECURE_IMPLICIT This option specifies the client should attempt to
establish a secure connection with the server. The
server must support secure connections using
either the SSL or TLS protocol, and the secure
session must be negotiated immediately after the
connection has been established.

dwReserved

An unsigned integer value reserved for future use. This structure member should always have a
value of zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

See Also
SMTPMESSAGE

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SMTPTRANSFERSTATUS Structure

This structure is used by the SmtpGetTransferStatus function to return information about a
message being submitted for delivery.

typedef struct _SMTPTRANSFERSTATUS
{
 DWORD dwBytesTotal;
 DWORD dwBytesCopied;
 DWORD dwBytesPerSecond;
 DWORD dwTimeElapsed;
 DWORD dwTimeEstimated;
} SMTPTRANSFERSTATUS, *LPSMTPTRANSFERSTATUS;

Members
dwBytesTotal

The total number of bytes that will be transferred. If the size of the message cannot be
determined, this value will be zero.

dwBytesCopied

The total number of bytes that have been copied.

dwBytesPerSecond

The average number of bytes that have been copied per second.

dwTimeElapsed

The number of seconds that have elapsed since the file transfer started.

dwTimeEstimated

The estimated number of seconds until the transfer is completed. This is based on the average
number of bytes transferred per second.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SYSTEMTIME Structure

The SYSTEMTIME structure represents a date and time using individual members for the month,
day, year, weekday, hour, minute, second, and millisecond.

typedef struct _SYSTEMTIME
{
 WORD wYear;
 WORD wMonth;
 WORD wDayOfWeek;
 WORD wDay;
 WORD wHour;
 WORD wMinute;
 WORD wSecond;
 WORD wMilliseconds;
} SYSTEMTIME, *LPSYSTEMTIME;

Members
wYear

Specifies the current year. The year value must be greater than 1601.

wMonth

Specifies the current month. January is 1, February is 2 and so on.

wDayOfWeek

Specifies the current day of the week. Sunday is 0, Monday is 1 and so on.

wDay

Specifies the current day of the month

wHour

Specifies the current hour.

wMinute

Specifies the current minute

wSecond

Specifies the current second.

wMilliseconds

Specifies the current millisecond.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include windows.h.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Telnet Protocol Library

Establish an interactive terminal session with a server.

Reference

Functions
Data Structures
Error Codes

Library Information

File Name CSTNTV11.DLL

Version 11.0.2180.1635

LibID ED8B1962-CB47-46C9-9A25-3EFDCF59D4C5

Import Library CSTNTV11.LIB

Dependencies None

Standards RFC 854

Overview
The Telnet protocol is used to establish a connection with a server which provides a virtual
terminal session for a user. Its functionality is similar to how character based consoles and serial
terminals work, enabling a user to login to the server, execute commands and interact with
applications running on the server. The class provides an interface for establishing the connection,
negotiating certain options (such as whether characters will be echoed back to the client) and
handling the standard I/O functions needed by the program.

The API also includes functions that enable a program to easily scan the data stream for specific
sequences of characters, making it very simple to write light-weight client interfaces to applications
running on the server. This library can be combined with the SocketTools Terminal Emulation API
to provide complete terminal emulation services for a standard ANSI or DEC-VT220 terminal.

This library supports secure connections using the standard SSL and TLS protocols. To establish a
secure connection to the server using the Secure Shell (SSH) protocol, use the SocketTools Secure
Shell API.

Requirements
The SocketTools Library Edition libraries are compatible with any programming language which
supports calling functions exported from a standard dynamic link library (DLL). If you are using
Visual C++ 6.0 it is required that you have Service Pack 6 (SP6) installed. You should install all
updates for your development tools and have the current Windows SDK installed. The minimum
recommended version of Visual Studio is Visual Studio 2010.

This library is supported on Windows 7, Windows Server 2008 R2 and later versions of the desktop
and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1) installed as
a minimum requirement. It is recommended that you install the current service pack and all critical
updates available for your version of the operating system.

This product includes both 32-bit and 64-bit libraries. Native 64-bit CPU support requires the 64-
bit version of Windows 7 or later versions of the Windows operating system.

Distribution
When you distribute your application that uses this library, it is recommended that you install the
file in the same folder as your application executable. If you install the library into a shared location
on the system, it is important that you distribute the correct version for the target platform and it
should be registered as a shared DLL. This is a standard Windows dynamic link library, not an
ActiveX component, and does not require COM registration.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Telnet Protocol Functions

Function Description

TelnetAbort Abort the current session and close the connection with the server

TelnetAsyncConnect Connect asynchronously to the specified server

TelnetAttachThread Attach the specified client handle to another thread

TelnetBreak Send a break signal to the server

TelnetCancel Cancel the current blocking operation

TelnetConnect Connect to the specified server

TelnetCreateSecurityCredentials Create a new security credentials structure

TelnetDeleteSecurityCredentials Delete a previously created security credentials structure

TelnetDisableEvents Disable asynchronous event notification

TelnetDisableTrace Disable logging of network function calls to the trace log

TelnetDisconnect Disconnect from the current server

TelnetEnableEvents Enable asynchronous event notification

TelnetEnableTrace Enable logging of network function calls to a file

TelnetEventProc Callback function that processes events generated by the client

TelnetFreezeEvents Suspend asynchronous event processing

TelnetGetErrorString Return a description for the specified error code

TelnetGetLastError Return the last error code

TelnetGetMode Return the current client mode

TelnetGetSecurityInformation Return security information about the current client connection

TelnetGetStatus Return the current client status

TelnetGetTerminalType Return the current terminal type

TelnetGetTimeout Return the number of seconds until an operation times out

TelnetInitialize Initialize the library and validate the specified license key at runtime

TelnetIsBlocking Determine if the client is blocked, waiting for information

TelnetIsConnected Determine if the client is connected to the server

TelnetIsReadable Determine if data can be read from the server

TelnetIsThere Determine if the server is available

TelnetIsWritable Determine if data can be written to the server

TelnetLogin Login to the server using the specified username and password

TelnetRead Read data returned by the server

TelnetReadLine Read a line of text from the server and return it in a string buffer

TelnetRegisterEvent Register an event callback function

TelnetSearch Search for a specific character sequence in the data stream

TelnetSetLastError Set the last error code

TelnetSetMode Set the current client mode

TelnetSetTerminalType Set the current terminal type

TelnetSetTimeout Set the number of seconds until an operation times out

TelnetUninitialize Terminate use of the library by the application

TelnetWrite Write data to the server

TelnetWriteLine Write a line of text to the server

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TelnetAbort Function

INT WINAPI TelnetAbort(
 HCLIENT hClient
);

The TelnetAbort function aborts the current session and terminates the connection.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
TELNET_ERROR. To get extended error information, call TelnetGetLastError.

Remarks
When the TelnetAbort function is called, the Telnet abort sequence is sent to the server and the
connection to the server is terminated. Once this function returns, the client handle is no longer
valid. If a program is currently executing on the server at the time this function is called, that
program may be terminated as a result of the session being aborted. Applications should normally
call TelnetDisconnect to gracefully disconnect from the server and should only use this function
when the connection must be aborted immediately.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib

See Also
TelnetBreak, TelnetCancel, TelnetIsBlocking

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TelnetAsyncConnect Function

HCLIENT WINAPI TelnetAsyncConnect(
 LPCTSTR lpszRemoteHost,
 UINT nRemotePort,
 UINT nTimeout,
 DWORD dwOptions,
 LPSECURITYCREDENTIALS lpCredentials,
 HWND hEventWnd,
 UINT uEventMsg
);

The TelnetAsyncConnect function is used to establish a connection with the server.

This function has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

The application should create a background worker thread and establish a connection by calling
TelnetConnect within that thread. If the application requires multiple simultaneous connections, it
is recommended you create a worker thread for each client session.

Parameters
lpszRemoteHost

A pointer to the name of the server to connect to; this may be a fully-qualified domain name or
an IP address.

nRemotePort

The port number the server is listening on; a value of zero specifies that the default port
number should be used.

nTimeout

The number of seconds that the client will wait for a response from the server before failing the
current operation.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

TELNET_OPTION_NONE No connection options specified. A standard
connection to the server will be established
using the specified host name and port
number.

TELNET_OPTION_TUNNEL This option specifies that a tunneled TCP
connection and/or port-forwarding is being
used to establish the connection to the server.
This changes the behavior of the client with
regards to internal checks of the destination IP
address and remote port number, default
capability selection and how the connection is
established.

TELNET_OPTION_TRUSTEDSITE This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option
only affects connections using either the SSL or
TLS protocols.

TELNET_OPTION_SECURE This option specifies the client should attempt
to establish a secure connection with the server.
Note that the server must support secure
connections using either the SSL or TLS
protocol.

TELNET_OPTION_SECURE_EXPLICIT This option specifies the client should attempt
to establish a secure connection with the server
using the START_TLS option. The client initiates
a standard connection with the server, then
requests a secure connection during the option
negotiation process.

TELNET_OPTION_SECURE_FALLBACK This option specifies the client should permit
the use of less secure cipher suites for
compatibility with legacy servers. If this option is
specified, the client will allow connections using
TLS 1.0 and cipher suites that use RC4, MD5
and SHA1.

TELNET_OPTION_PREFER_IPV6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be
resolved to both an IPv6 and IPv4 address. This
option is ignored if the local system does not
have IPv6 enabled, or when the hostname can
only be resolved to an IPv4 address. If the
server hostname can only be resolved to an
IPv6 address, the client will attempt to establish
a connection using IPv6 regardless if this option
has been specified.

TELNET_OPTION_FREETHREAD This option specifies the handle returned by this
function may be used by any thread, and is not
limited to the thread which created it. The
application is responsible for ensuring that
access to the handle is synchronized across
multiple threads.

lpCredentials

Pointer to credentials structure SECURITYCREDENTIALS. This parameter is only used if the
TELNET_OPTION_SECURE option is specified for the connection. This parameter may be NULL,
in which case no client credentials will be provided to the server. If client credentials are
required, the fields dwSize, lpszCertStore, and lpszCertName must be defined, while other
fields may be left undefined. Set dwSize to the size of the SECURITYCREDENTIALS structure.

hEventWnd

The handle to the event notification window. This window receives messages which notify the

client of various asynchronous socket events that occur.

uEventMsg

The message identifier that is used when an asynchronous socket event occurs. This value
should be greater than WM_USER as defined in the Windows header files.

Return Value
If the function succeeds, the return value is a handle to a client session. If the function fails, the
return value is INVALID_CLIENT. To get extended error information, call TelnetGetLastError.

Remarks
When a message is posted to the notification window, the low word of the lParam parameter
contains the event identifier. The high word of lParam contains the low word of the error code, if
an error has occurred. The wParam parameter contains the client handle. One or more of the
following event identifiers may be sent:

Constant Description

TELNET_EVENT_CONNECT The connection to the server has completed. The high word of
the lParam parameter should be checked, since this
notification message will be posted if an error has occurred.

TELNET_EVENT_DISCONNECT The server has closed the connection to the client. The client
should read any remaining data and disconnect.

TELNET_EVENT_READ Data is available to read by the calling process. No additional
messages will be posted until the client has read at least some
of the data. This event is only generated if the client is in
asynchronous mode.

TELNET_EVENT_WRITE The client can now write data. This notification is sent after a
connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking
operation. This event is only generated if the client is in
asynchronous mode.

TELNET_EVENT_TIMEOUT The network operation has exceeded the specified timeout
period. The client application may attempt to retry the
operation, or may disconnect from the server and report an
error to the user.

TELNET_EVENT_CANCEL The current operation has been canceled. Under most
circumstances the client should disconnect from the server and
re-connect if needed. After an operation has been canceled,
the server may abort the connection or refuse to accept further
commands from the client.

To cancel asynchronous notification and return the client to a blocking mode, use the
TelnetDisableEvents function.

It is recommended that you only establish an asynchronous connection if you understand the
implications of doing so. In most cases, it is preferable to create a synchronous connection and
create threads for each additional session if more than one active client session is required.

The dwOptions argument can be used to specify the threading model that is used by the library
when a connection is established. By default, the handle is initially attached to the thread that

created it. From that point on, until the it is released, only the owner may call functions using that
handle. The ownership of the handle may be transferred from one thread to another using the
TelnetAttachThread function.

Specifying the TELNET_OPTION_FREETHREAD option enables any thread to call any function using
the handle, regardless of which thread created it. It is important to note that this option disables
certain internal safety checks which are performed by the library and may result in unexpected
behavior unless access to the handle is synchronized. If one thread calls a function in the library, it
must ensure that no other thread will call another function at the same time using the same
handle.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
TelnetConnect, TelnetCreateSecurityCredentials, TelnetDeleteSecurityCredentials,
TelnetDisconnect, TelnetInitialize, TelnetUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TelnetAttachThread Function

DWORD WINAPI TelnetAttachThread(
 HCLIENT hClient
 DWORD dwThreadId
);

The TelnetAttachThread function attaches the specified client handle to another thread.

Parameters
hClient

Handle to the client session.

dwThreadId

The ID of the thread that will become the new owner of the handle. A value of zero specifies
that the current thread should become the owner of the client handle.

Return Value
If the function succeeds, the return value is the thread ID of the previous owner. If the function
fails, the return value is TELNET_ERROR. To get extended error information, call
TelnetGetLastError.

Remarks
When a client handle is created, it is associated with the current thread that created it. Normally, if
another thread attempts to perform an operation using that handle, an error is returned since it
does not own the handle. This is used to ensure that other threads cannot interfere with an
operation being performed by the owner thread. In some cases, it may be desirable for one
thread in a client application to create the client handle, and then pass that handle to another
worker thread. The TelnetAttachThread function can be used to change the ownership of the
handle to the new worker thread. By preserving the return value from the function, the original
owner of the handle can be restored before the worker thread terminates.

This function should be called by the new thread immediately after it has been created, and if the
new thread does not release the handle itself, the ownership of the handle should be restored to
the parent thread before it terminates. Under no circumstances should TelnetAttachThread be
used to forcibly release a handle allocated by another thread while a blocking operation is in
progress. To cancel an operation, use the TelnetCancel function and then release the handle after
the blocking function exits and control is returned to the current thread.

Note that the dwThreadId parameter is presumed to be a valid thread ID and no checks are
performed to ensure that the thread actually exists. Specifying an invalid thread ID will orphan the
handle until the TelnetUninitialize function is called.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib

See Also
TelnetConnect, TelnetDisconnect, TelnetUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TelnetBreak Function

INT WINAPI TelnetBreak(
 HCLIENT hClient
);

The TelnetBreak function sends a signal to the server which may terminate an application that is
currently running. The actual response to the break signal depends on the application.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
TELNET_ERROR. To get extended error information, call TelnetGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
TelnetAbort, TelnetCancel, TelnetRead, TelnetWrite

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TelnetCancel Function

INT WINAPI TelnetCancel(
 HCLIENT hClient
);

The TelnetCancel function cancels any outstanding blocking operation in the client, causing the
blocking function to fail. The application may then retry the operation or terminate the client
session.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
TELNET_ERROR. To get extended error information, call TelnetGetLastError.

Remarks
When the TelnetCancel function is called, the blocking function will not immediately fail. An
internal flag is set which causes the blocking operation to exit with an error. This means that the
application cannot cancel an operation and immediately perform some other operation. Instead it
must allow the calling stack to unwind, returning back to the blocking operation before making
any further function calls.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib

See Also
TelnetAbort, TelnetBreak, TelnetIsBlocking

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TelnetConnect Function

HCLIENT WINAPI TelnetConnect(
 LPCTSTR lpszRemoteHost,
 UINT nRemotePort,
 UINT nTimeout,
 DWORD dwOptions,
 LPSECURITYCREDENTIALS lpCredentials
);

The TelnetConnect function is used to establish a connection with the server.

Parameters
lpszRemoteHost

A pointer to the name of the server to connect to; this may be a fully-qualified domain name or
an IP address.

nRemotePort

The port number the server is listening on; a value of zero specifies that the default port
number should be used.

nTimeout

The number of seconds that the client will wait for a response from the server before failing the
current operation.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

TELNET_OPTION_NONE No connection options specified. A standard
connection to the server will be established
using the specified host name and port
number.

TELNET_OPTION_TUNNEL This option specifies that a tunneled TCP
connection and/or port-forwarding is being
used to establish the connection to the server.
This changes the behavior of the client with
regards to internal checks of the destination IP
address and remote port number, default
capability selection and how the connection is
established.

TELNET_OPTION_TRUSTEDSITE This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option
only affects connections using either the SSL or
TLS protocols.

TELNET_OPTION_SECURE This option specifies the client should attempt
to establish a secure connection with the server.
Note that the server must support secure

connections using either the SSL or TLS
protocol.

TELNET_OPTION_SECURE_EXPLICIT This option specifies the client should attempt
to establish a secure connection with the server
using the START_TLS option. The client initiates
a standard connection with the server, then
requests a secure connection during the option
negotiation process.

TELNET_OPTION_SECURE_FALLBACK This option specifies the client should permit
the use of less secure cipher suites for
compatibility with legacy servers. If this option is
specified, the client will allow connections using
TLS 1.0 and cipher suites that use RC4, MD5
and SHA1.

TELNET_OPTION_PREFER_IPV6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be
resolved to both an IPv6 and IPv4 address. This
option is ignored if the local system does not
have IPv6 enabled, or when the hostname can
only be resolved to an IPv4 address. If the
server hostname can only be resolved to an
IPv6 address, the client will attempt to establish
a connection using IPv6 regardless if this option
has been specified.

TELNET_OPTION_FREETHREAD This option specifies the handle returned by this
function may be used by any thread, and is not
limited to the thread which created it. The
application is responsible for ensuring that
access to the handle is synchronized across
multiple threads.

lpCredentials

Pointer to credentials structure SECURITYCREDENTIALS. This parameter is only used if the
TELNET_OPTION_SECURE option is specified for the connection. This parameter may be NULL,
in which case no client credentials will be provided to the server. If client credentials are
required, the fields dwSize, lpszCertStore, and lpszCertName must be defined, while other
fields may be left undefined. Set dwSize to the size of the SECURITYCREDENTIALS structure.

Return Value
If the function succeeds, the return value is a handle to a client session. If the function fails, the
return value is INVALID_CLIENT. To get extended error information, call TelnetGetLastError.

Remarks
This function will block the current thread until a connection has been established or the timeout
period has elapsed. To prevent it from blocking the main user interface thread, the application
should create a background worker thread and establish a connection by calling TelnetConnect
in that thread. If the application requires multiple simultaneous connections, it is recommended
you create a worker thread for each connection.

The dwOptions argument can be used to specify the threading model that is used by the library
when a connection is established. By default, the handle is initially attached to the thread that
created it. From that point on, until the it is released, only the owner may call functions using that
handle. The ownership of the handle may be transferred from one thread to another using the
TelnetAttachThread function.

Specifying the TELNET_OPTION_FREETHREAD option enables any thread to call any function using
the handle, regardless of which thread created it. It is important to note that this option disables
certain internal safety checks which are performed by the library and may result in unexpected
behavior unless access to the handle is synchronized. If one thread calls a function in the library, it
must ensure that no other thread will call another function at the same time using the same
handle.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
TelnetCreateSecurityCredentials, TelnetDeleteSecurityCredentials, TelnetDisconnect,
TelnetInitialize, TelnetUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TelnetCreateSecurityCredentials Function

BOOL WINAPI TelnetCreateSecurityCredentials(
 DWORD dwProtocol,
 DWORD dwOptions,
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword,
 LPCTSTR lpszCertStore,
 LPCTSTR lpszCertName,
 LPVOID lpvReserved,
 LPSECURITYCREDENTIALS* lppCredentials
);

The TelnetCreateSecurityCredentials function creates a SECURITYCREDENTIALS structure.

Parameters
dwProtocol

A bitmask of supported security protocols. This parameter is constructed by using a bitwise
operator with any of the following values:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The
correct protocol is automatically selected, based on
what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.
This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is

supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

dwOptions

A value which specifies one or options. This member is constructed by using a bitwise operator
with any of the following values:

Constant Description

CREDENTIAL_STORE_CURRENT_USER The library will attempt to open a store for
the current user using the certificate store
name provided in this structure. If no options
are specified, then this is the default
behavior.

CREDENTIAL_STORE_LOCAL_MACHINE The library will attempt to open a local
machine store using the certificate store
name provided in this structure. If this option
is specified, the library will always search for a
local machine store before searching for the
store by that name for the current user.

CREDENTIAL_STORE_FILENAME The certificate store name is a file that
contains the certificate and private key that
will be used.

lpszUserName

A pointer to a string which specifies the certificate owner's username. A value of NULL specifies
that no username is required. Currently this parameter is not used and any value specified will
be ignored.

lpszPassword

A pointer to a string which specifies the certificate owner's password. A value of NULL specifies
that no password is required. This parameter is only used if a PKCS #12 (PFX) certificate file is
specified and that certificate has been secured with a password. This value will be ignored the
current user or local machine certificate store is specified.

lpszCertStore

A pointer to a string which specifies the name of the certificate store to open. A certificate store
is a collection of certificates and their private keys, typically organized by how they are used. If
this value is NULL or points to an empty string, the default certificate store "MY" will be used.

Store Name Description

CA Certification authority certificates. These are certificates that are issued by
entities which are entrusted to issue certificates to other individuals or
organizations. Companies such as VeriSign and Thawte act as
certification authorities.

MY Personal certificates and their associated private keys for the current user.
This store typically holds the client certificates used to establish a user's
credentials. This corresponds to the "Personal" store that is displayed by
the certificate manager utility and is the default store used by the library.

ROOT Certificates that have been self-signed by a certificate authority. Root
certificates for a number of different certification authorities such as
VeriSign and Thawte are installed as part of the operating system and
periodically updated by Microsoft.

lpszCertName

A pointer to a null terminated string which specifies the name of the certificate to use. The
function will first search the certificate store for a certificate with a matching "friendly name"; this
is a name for the certificate that is assigned by the user. Note that the name must match
completely, but the comparison is not case sensitive. If no matching certificate is found, the
function will then attempt to find a certificate that has a matching common name (also called
the certificate subject). This comparison is less stringent, and the first partial match will be
returned. If this second search fails, the function will return an error indicating that the certificate
could not be found.

lpvReserved

Pointer reserved for future use. Set it to NULL when using this function.

lppCredentials

Pointer to an LPSECURITYCREDENTIALS pointer. The memory for the credentials structure will
be allocated by this function and must be released by calling the
TelnetDeleteSecurityCredentials function when it is no longer needed. The pointer value
must be set to NULL before the function is called. It is important to note that this is a pointer to
a pointer variable, not a pointer to the SECURITYCREDENTIALS structure itself.

Return Value

If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call TelnetGetLastError.

Remarks
The structure that is created by this function may be used as client credentials when establishing a
secure connection. This is particularly useful for programming languages other than C/C++ which
may not support C structures or pointers. The pointer to the SECURITYCREDENTIALS structure can
be declared as an unsigned integer variable which is passed by reference to this function, and
then passed by value to the TelnetAsyncConnect or TelnetConnect functions.

Example
LPSECURITYCREDENTIALS lpSecCred = NULL;
TelnetCreateSecurityCredentials(SECURITY_PROTOCOL_DEFAULT,
 0,
 NULL,
 NULL,
 lpszCertStore,
 lpszCertName,
 NULL,
 &lpSecCred);

hClient = TelnetConnect(lpszHostName,
 TELNET_PORT_SECURE,
 TELNET_TIMEOUT,
 TELNET_OPTION_SECURE,
 lpSecCred);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
TelnetConnect, TelnetDeleteSecurityCredentials, TelnetGetSecurityInformation,
SECURITYCREDENTIALS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TelnetDeleteSecurityCredentials Function

VOID WINAPI TelnetDeleteSecurityCredentials(
 LPSECURITYCREDENTIALS* lppCredentials
);

The TelnetDeleteSecurityCredentials function deletes an existing SECURITYCREDENTIALS
structure.

Parameters
lppCredentials

Pointer to an LPSECURITYCREDENTIALS pointer. On exit from the function, the pointer will be
NULL.

Return Value
None.

Example
if (lpSecCred)
 TelnetDeleteSecurityCredentials(&lpSecCred);

TelnetUninitialize();

Remarks
This function can be used to release the memory allocated to the client or server credentials after
a secure connection has been terminated.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
TelnetCreateSecurityCredentials, TelnetUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TelnetDisableEvents Function

INT WINAPI TelnetDisableEvents(
 HCLIENT hClient
);

The TelnetDisableEvents function disables the event notification mechanism, preventing
subsequent event notification messages from being posted to the application's message queue.

This function has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
TELNET_ERROR. To get extended error information, call TelnetGetLastError.

Remarks
This function affects both event notification and event callbacks. Any outstanding events in the
message queue should be ignored by the client application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib

See Also
TelnetEnableEvents, TelnetFreezeEvents, TelnetRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TelnetDisableTrace Function

BOOL WINAPI TelnetDisableTrace();

The TelnetDisableTrace function disables the logging of socket function calls to the trace log.

Parameters
None.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib

See Also
TelnetEnableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TelnetDisconnect Function

INT WINAPI TelnetDisconnect(
 HCLIENT hClient
);

The TelnetDisconnect function terminates the connection with the server, closing the socket and
releasing the memory allocated for the client session.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
TELNET_ERROR. To get extended error information, call TelnetGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
TelnetConnect, TelnetUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TelnetEnableEvents Function

INT WINAPI TelnetEnableEvents(
 HCLIENT hClient,
 HWND hEventWnd,
 UINT uEventMsg
);

The TelnetEnableEvents function enables event notifications using Windows messages.

This function has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Applications should use the TelnetRegisterEvent function to register an event handler which is
invoked when an event occurs.

Parameters
hClient

Handle to the client session.

hEventWnd

Handle to the event notification window. This window receives a user-defined message which
specifies the event that has occurred. If this value is NULL, event notification is disabled.

uEventMsg

An unsigned integer which specifies the user-defined message that is sent when an event
occurs. This parameter's value must be greater than the value of WM_USER. If the hEventWnd
parameter is NULL, this value must be specified as WM_NULL.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
TELNET_ERROR. To get extended error information, call TelnetGetLastError.

Remarks
When a message is posted to the notification window, the low word of the lParam parameter
contains the event identifier. The high word of lParam contains the low word of the error code, if
an error has occurred. The wParam parameter contains the client handle. One or more of the
following event identifiers may be sent:

Constant Description

TELNET_EVENT_CONNECT The connection to the server has completed. The high word of
the lParam parameter should be checked, since this
notification message will be posted if an error has occurred.

TELNET_EVENT_DISCONNECT The server has closed the connection to the client. The client
should read any remaining data and disconnect.

TELNET_EVENT_READ Data is available to read by the calling process. No additional
messages will be posted until the client has read at least some
of the data. This event is only generated if the client is in
asynchronous mode.

TELNET_EVENT_WRITE The client can now write data. This notification is sent after a
connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking
operation. This event is only generated if the client is in
asynchronous mode.

TELNET_EVENT_TIMEOUT The network operation has exceeded the specified timeout
period. The client application may attempt to retry the
operation, or may disconnect from the server and report an
error to the user.

TELNET_EVENT_CANCEL The current operation has been canceled. Under most
circumstances the client should disconnect from the server and
re-connect if needed. After an operation has been canceled,
the server may abort the connection or refuse to accept further
commands from the client.

As noted, some events are only generated when the client is asynchronous mode. These events
depend on the Windows Sockets asynchronous notification mechanism.

If event notification is disabled by specifying a NULL window handle, there may still be outstanding
events in the message queue that must be processed. Since event handling has been disabled,
these events should be ignored by the client application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib

See Also
TelnetDisableEvents, TelnetFreezeEvents, TelnetRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TelnetEnableTrace Function

BOOL WINAPI TelnetEnableTrace(
 LPCTSTR lpszTraceFile,
 DWORD dwTraceFlags
);

The TelnetEnableTrace function enables the logging of Windows Sockets function calls to a file.

Parameters
lpszTraceFile

A pointer to a string which specifies the name of the trace log file. If this parameter is NULL or
an empty string, the default file name cstrace.log is used. The file is stored in the directory
specified by the TEMP environment variable, if it is defined; otherwise, the current working
directory is used.

dwTraceFlags

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

TRACE_INFO All function calls are written to the trace file. This is the default
value.

TRACE_ERROR Only those function calls which fail are recorded in the trace file.

TRACE_WARNING Only those function calls which fail or return values which indicate
a warning are recorded in the trace file.

TRACE_HEXDUMP All functions calls are written to the trace file, plus all the data that
is sent or received is displayed, in both ASCII and hexadecimal
format.

TRACE_PROCESS All function calls in the current process are logged, rather than
only those functions in the current thread. This option is useful for
multithreaded applications that are using worker threads.

Return Value
If the function succeeds, the return value is non-zero. A return value of zero indicates an error.
Failure typically indicates that the tracing library cstrcv11.dll cannot be loaded on the local
system.

Remarks
When trace logging is enabled, the file is opened, appended to and closed for each socket
function call. This makes it possible for an application to append its own logging information,
however care should be taken to ensure that the file is closed before the next network operation is
performed. To limit the size of the log files, enable and disable logging only around those sections
of code that you wish to trace.

Note that the TRACE_HEXDUMP trace level generates very large log files since it includes all of the
data exchanged between your application and the server.

Trace function logging is managed on a per-thread basis, not for each client handle. This means
that all SocketTools libraries and components share the same settings in the current thread. If you

are using multiple SocketTools libraries or components in your application, you only need to
enable logging once.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
TelnetDisableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TelnetEventProc Function

VOID CALLBACK TelnetEventProc(
 HCLIENT hClient,
 UINT nEvent,
 DWORD dwError,
 DWORD_PTR dwParam
);

The TelnetEventProc function is an application-defined callback function that processes events
generated by the client.

Parameters
hClient

Handle to the client session.

nEvent

An unsigned integer which specifies which event occurred. For a complete list of events, refer to
the TelnetRegisterEvent function.

dwError

An unsigned integer which specifies any error that occurred. If no error occurred, then this
parameter will be zero.

dwParam

A user-defined integer value which was specified when the event callback was registered.

Return Value
None.

Remarks
An application must register this callback function by passing its address to the
TelnetRegisterEvent function. The TelnetEventProc function is a placeholder for the application-
defined function name.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
TelnetDisableEvents, TelnetEnableEvents, TelnetFreezeEvents, TelnetRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TelnetFreezeEvents Function

INT WINAPI TelnetFreezeEvents(
 HCLIENT hClient,
 BOOL bFreeze
);

The TelnetFreezeEvents function is used to suspend and resume event handling by the client.

Parameters
hClient

Handle to the client session.

bFreeze

A non-zero value specifies that event handling should be suspended by the client. A zero value
specifies that event handling should be resumed.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
TELNET_ERROR. To get extended error information, call TelnetGetLastError.

Remarks
This function should be used when the application does not want to process events, such as when
a modal dialog is being displayed. When events are suspended, all client events are queued. If
events are re-enabled at a later point, those queued events will be sent to the application for
processing. Note that only one of each event will be generated. For example, if the client has
suspended event handling, and four read events occur, once event handling is resumed only one
of those read events will be posted to the client. This prevents the application from being flooded
by a potentially large number of queued events.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib

See Also
TelnetDisableEvents, TelnetEnableEvents, TelnetRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TelnetGetErrorString Function

INT WINAPI TelnetGetErrorString(
 DWORD dwErrorCode,
 LPTSTR lpszDescription,
 INT cbDescription
);

The TelnetGetErrorString function is used to return a description of a specific error code.
Typically this is used in conjunction with the TelnetGetLastError function for use with warning
dialogs or as diagnostic messages.

Parameters
dwErrorCode

The error code for which a description is returned.

lpszDescription

A pointer to the buffer that will contain a description of the specified error code. This buffer
should be at least 128 characters in length.

cbDescription

The maximum number of characters that may be copied into the description buffer.

Return Value
If the function succeeds, the return value is the length of the description string. If the function fails,
the return value is zero, meaning that no description exists for the specified error code. Typically
this indicates that the error code passed to the function is invalid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
TelnetGetLastError, TelnetSetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TelnetGetLastError Function

DWORD WINAPI TelnetGetLastError();

Parameters
None.

Return Value
The return value is the last error code value for the current thread. Functions set this value by
calling the TelnetSetLastError function. The Return Value section of each reference page notes
the conditions under which the function sets the last error code.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. You should call
the TelnetGetLastError function immediately when a function's return value indicates that an
error has occurred. That is because some functions call TelnetSetLastError(0) when they succeed,
clearing the error code set by the most recently failed function.

Most functions will set the last error code value when they fail; a few functions set it when they
succeed. Function failure is typically indicated by a return value such as FALSE, NULL,
INVALID_CLIENT or TELNET_ERROR. Those functions which call TelnetSetLastError when they
succeed are noted on the function reference page.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib

See Also
TelnetGetErrorString, TelnetSetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TelnetGetMode Function

UINT WINAPI TelnetGetMode(
 HCLIENT hClient
);

The TelnetGetMode function returns the current client mode.

Parameters
hClient

A handle to the client session.

Return Values

If the function succeeds, the return value is the current client mode. If the function fails, the return
value is TELNET_ERROR. To get extended error information, call TelnetGetLastError.

Remarks
The client mode is a combination of one or more flags which determines how the client handles
local character echo and character processing. The following values are recognized:

Value Description

TELNET_MODE_LOCALECHO The local client is responsible for echoing data entered by the
user. By default, this mode is not set which means that the
server is responsible for echoing back each character written to
it.

TELNET_MODE_BINARY Data exchanged between the client and server should not be
converted or line buffered. If this option is not specified, the
high-bit will be cleared on all characters and single linefeeds will
be automatically converted to carriage-return/linefeed
sequences.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
TelnetSetMode

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TelnetGetSecurityInformation Function

BOOL WINAPI TelnetGetSecurityInformation(
 HCLIENT hClient,
 LPSECURITYINFO lpSecurityInfo
);

The TelnetGetSecurityInformation function returns security protocol, encryption and certificate
information about the current client connection.

Parameters
hClient

Handle to the client session.

lpSecurityInfo

A pointer to a SECURITYINFO structure which contains information about the current client
connection. The dwSize member of this structure must be initialized to the size of the structure
before passing the address of the structure to this function.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call TelnetGetLastError.

Remarks
This function is used to obtain security related information about the current client connection to
the server. It can be used to determine if a secure connection has been established, what security
protocol was selected, and information about the server certificate. Note that a secure connection
has not been established, the dwProtocol structure member will contain the value
SECURITY_PROTOCOL_NONE.

Example
The following example notifies the user if the connection is secure or not:

SECURITYINFO securityInfo;

securityInfo.dwSize = sizeof(SECURITYINFO);
if (TelnetGetSecurityInformation(hClient, &securityInfo))
{
 if (securityInfo.dwProtocol == SECURITY_PROTOCOL_NONE)
 {
 MessageBox(NULL, _T("The connection is not secure"),
 _T("Connection"), MB_OK);
 }
 else
 {
 if (securityInfo.dwCertStatus == SECURITY_CERTIFICATE_VALID)
 {
 MessageBox(NULL, _T("The connection is secure"),
 _T("Connection"), MB_OK);
 }
 else
 {
 MessageBox(NULL, _T("The server certificate not valid"),
 _T("Connection"), MB_OK);
 }

 }
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
TelnetConnect, TelnetDisconnect, SECURITYINFO

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TelnetGetStatus Function

INT WINAPI TelnetGetStatus(
 HCLIENT hClient
);

The TelnetGetStatus function returns the current status of the client session.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is the client status code. If the function fails, the return
value is TELNET_ERROR. To get extended error information, call TelnetGetLastError.

Remarks
The TelnetGetStatus function returns a numeric code which identifies the current state of the
client session. The following values may be returned:

Value Constant Description

1 TELNET_STATUS_IDLE The client is current idle and not sending or
receiving data.

2 TELNET_STATUS_CONNECT The client is establishing a connection with
the server.

3 TELNET_STATUS_READ The client is reading data from the server.

4 TELNET_STATUS_WRITE The client is writing data to the server.

5 TELNET_STATUS_DISCONNECT The client is disconnecting from the server.

In a multithreaded application, any thread in the current process may call this function to obtain
status information for the specified client session.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib

See Also
TelnetIsBlocking, TelnetIsConnected, TelnetIsReadable, TelnetIsWritable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TelnetGetTerminalType Function

INT WINAPI TelnetGetTerminalType(
 HCLIENT hClient,
 LPCTSTR lpszTermType,
 INT nMaxLength
);

The TelnetGetTerminalType function returns the terminal type for the current client session.

Parameters
hClient

Handle to the client session.

lpszTermType

Points to a buffer which the current terminal type is copied into. This buffer should be at least
32 characters in length, including the terminating null character.

nMaxLength

Maximum number of characters that may be copied to the buffer, including the terminating null
character.

Return Value
If the function succeeds, the return value is the length of the terminal type name. A value of zero
indicates that no terminal type has been specified. If the function fails, the return value is
TELNET_ERROR. To get extended error information, call TelnetGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
TelnetSetTerminalType

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TelnetGetTimeout Function

INT WINAPI TelnetGetTimeout(
 HCLIENT hClient
);

The TelnetGetTimeout function returns the number of seconds the client will wait for a response
from the server. Once the specified number of seconds has elapsed, the function will fail and
return to the caller.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is the timeout period in seconds. If the function fails, the
return value is TELNET_ERROR. To get extended error information, call TelnetGetLastError.

Remarks
The timeout value is only used with blocking client connections. A value of zero indicates that the
default timeout period of 20 seconds should be used.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib

See Also
TelnetSetTimeout

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TelnetInitialize Function

BOOL WINAPI TelnetInitialize(
 LPCTSTR lpszLicenseKey,
 LPINITDATA lpData
);

The TelnetInitialize function initializes the library and validates the specified license key at
runtime.

Parameters
lpszLicenseKey

Pointer to a string that specifies the runtime license key to be validated. If this parameter is
NULL, the library will validate the development license installed on the local system.

lpData

Pointer to an INITDATA data structure. This parameter may be NULL if the initialization data for
the library is not required.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call TelnetGetLastError. All other client functions will fail until
a license key has been successfully validated.

Remarks
This must be the first function that an application calls before using any of the other functions in
the library. When a NULL license key is specified, the library will only function on the development
system. Before redistributing the application to an end-user, you must insure that this function is
called with a valid license key.

If the lpData argument is specified, it must point to an INITDATA structure which has been
initialized by setting the dwSize member to the size of the structure. All other structure members
should be set to zero. If the function is successful, then the INITDATA structure will be filled with
identifying information about the library.

Although it is only required that TelnetInitialize be called once for the current process, it may be
called multiple times; however, each call must be matched by a corresponding call to
TelnetUninitialize.

This function dynamically loads other system libraries and allocates thread local storage. If you are
calling the functions in this library from within another DLL, it is important that you do not call the
TelnetInitialize or TelnetUninitialize functions from the DllMain function because it can result in
deadlocks or access violation errors. If the DLL is linked with the C runtime library (CRT), it will
automatically call the constructors and destructors for static and global C++ objects and has the
same restrictions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
TelnetConnect, TelnetDisconnect, TelnetUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TelnetIsBlocking Function

BOOL WINAPI TelnetIsBlocking(
 HCLIENT hClient
);

The TelnetIsBlocking function is used to determine if the client is currently performing a blocking
operation.

Parameters
hClient

Handle to the client session.

Return Value
If the client is performing a blocking operation, the function returns a non-zero value. If the client
is not performing a blocking operation, or the client handle is invalid, the function returns zero.

Remarks
Because a blocking operation can allow the application to be re-entered (for example, by pressing
a button while the operation is being performed), it is possible that another blocking function may
be called while it is in progress. Since only one thread of execution may perform a blocking
operation at any one time, an error would occur. The TelnetIsBlocking function can be used to
determine if the client is already blocked, and if so, take some other action such as warning the
user that they must wait for the operation to complete.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib

See Also
TelnetCancel

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TelnetIsConnected Function

BOOL WINAPI TelnetIsConnected(
 HCLIENT hClient
);

The TelnetIsConnected function is used to determine if the client is currently connected to a
server.

Parameters
hClient

Handle to the client session.

Return Value
If the client is connected to a server, the function returns a non-zero value. If the client is not
connected, or the client handle is invalid, the function returns zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
TelnetIsBlocking, TelnetIsReadable, TelnetIsThere, TelnetIsWritable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TelnetIsReadable Function

BOOL WINAPI TelnetIsReadable(
 HCLIENT hClient,
 INT nTimeout,
 LPDWORD lpdwAvail
);

The TelnetIsReadable function is used to determine if data is available to be read from the
server.

Parameters
hClient

Handle to the client session.

nTimeout

Timeout for server response, in seconds. A value of zero specifies that the connection should be
polled without blocking the current thread.

lpdwAvail

A pointer to an unsigned integer which will contain the number of bytes available to read. This
parameter may be NULL if this information is not required.

Return Value
If the client can read data from the server within the specified timeout period, the function returns
a non-zero value. If the client cannot read any data, the function returns zero.

Remarks
On some platforms, this value will not exceed the size of the receive buffer (typically 64K bytes).
Because of differences between TCP/IP stack implementations, it is not recommended that your
application exclusively depend on this value to determine the exact number of bytes available.
Instead, it should be used as a general indicator that there is data available to be read.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib

See Also
TelnetGetStatus, TelnetIsBlocking, TelnetIsConnected, TelnetIsThere, TelnetIsWritable, TelnetRead

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TelnetIsThere Function

BOOL WINAPI TelnetIsThere(
 HCLIENT hClient
);

The TelnetIsThere function reports the response of the client to a "Are you there" command to
the telnet server.

Parameters
hClient

Handle to the client session.

Return Value
The function returns a non-zero value if the server acknowledges a specific control sequence used
to determine if a Telnet server is responsive. If the server does not respond, the function will return
a value of zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib

See Also
TelnetGetStatus, TelnetIsBlocking, TelnetIsConnected, TelnetIsReadable, TelnetIsWritable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TelnetIsWritable Function

BOOL WINAPI TelnetIsWritable(
 HCLIENT hClient,
 INT nTimeout
);

The TelnetIsWritable function is used to determine if data can be written to the server.

Parameters
hClient

Handle to the client session.

nTimeout

Timeout for server response, in seconds. A value of zero specifies that the connection should be
polled without blocking the current thread.

Return Value
If the client can write data to the server within the specified timeout period, the function returns a
non-zero value. If the client cannot write any data, the function returns zero.

Remarks
Although this function can be used to determine if some amount of data can be sent to the
remote process it does not indicate the amount of data that can be written without blocking the
client. In most cases, it is recommended that large amounts of data be broken into smaller logical
blocks, typically some multiple of 512 bytes in length.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib

See Also
TelnetGetStatus, TelnetIsBlocking, TelnetIsConnected, TelnetIsReadable, TelnetIsThere, TelnetWrite

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TelnetLogin Function

BOOL WINAPI TelnetLogin(
 HCLIENT hClient,
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword
);

The TelnetLogin function attempts to authenticate the user and log them in to the current
session.

Parameters
hClient

Handle to the client session.

lpszUserName

A pointer to a string which specifies the name of the user to authenticate.

lpszPassword

A pointer to a string which specifies the password to be used when authenticating the user. If
the user does not require a password, this parameter may be NULL.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call TelnetGetLastError.

Remarks
The TelnetLogin function is used to authenticate a user, logging them into the server. This
function is specifically designed to work with most UNIX based servers, and may work with other
servers that use a similar login process. The function works by scanning the data stream for a
username prompt and then replying with the specified username. If that is successful, it will then
scan for a password prompt and provide the specified password. If no recognized prompt is
found, or if the server responds with an error indicating that the username or password is invalid,
the function will fail.

If the TelnetLogin function succeeds, the next call to TelnetRead by the client will return any
welcome message to the user. This is typically followed by a command prompt where the user can
enter commands to be executed on the server. The data sent by the server during the login
process is discarded and not available when the function returns. If the client requires this
information, use the TelnetSearch function to automate the login process instead.

Because the TelnetLogin function is designed for UNIX based systems, it may not work with
servers running on other operating system platforms such as Windows or VMS. In this case,
applications should use the TelnetSearch function to search for the appropriate login prompts in
the data stream.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
TelnetConnect, TelnetIsConnected, TelnetIsReadable, TelnetRead, TelnetSearch

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TelnetRead Function

INT WINAPI TelnetRead(
 HCLIENT hClient,
 LPBYTE lpBuffer,
 INT cbBuffer
);

The TelnetRead function reads the specified number of bytes from the client socket and copies
them into the buffer. The data may be of any type, and is not terminated with a null character.

Parameters
hClient

Handle to the client session.

lpBuffer

Pointer to the buffer in which the data will be copied.

cbBuffer

The maximum number of bytes to read and copy into the specified buffer. This value must be
greater than zero.

Return Value
If the function succeeds, the return value is the number of bytes actually read. A return value of
zero indicates that the server has closed the connection and there is no more data available to be
read. If the function fails, the return value is TELNET_ERROR. To get extended error information,
call TelnetGetLastError.

Remarks
When TelnetRead is called and the client is in non-blocking mode, it is possible that the function
will fail because there is no available data to read at that time. This should not be considered a
fatal error. Instead, the application should simply wait to receive the next asynchronous notification
that data is available.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
TelnetIsReadable, TelnetSearch, TelnetWrite

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TelnetReadLine Function

BOOL WINAPI TelnetReadLine(
 HCLIENT hClient,
 LPTSTR lpszBuffer,
 LPINT lpnLength
);

The TelnetReadLine function reads up to a line of data and returns it in a string buffer.

Parameters
hSocket

Handle to the client session.

lpszBuffer

Pointer to the string buffer that will contain the data when the function returns. The string will
be terminated with a null byte, and will not contain the end-of-line characters.

lpnLength

A pointer to an integer value which specifies the length of the buffer. The value should be
initialized to the maximum number of characters that can be copied into the string buffer,
including the terminating null character. When the function returns, its value will updated with
the actual length of the string.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call TelnetGetLastError.

Remarks
The TelnetReadLine function reads data sent by the server and copies it into a specified string
buffer. Unlike the TelnetRead function which reads arbitrary bytes of data, this function is
specifically designed to return a single line of text data in a string. When an end-of-line character
sequence is encountered, the function will stop and return the data up to that point. The string
buffer is guaranteed to be null-terminated and will not contain the end-of-line characters.

There are some limitations when using TelnetReadLine. The function should only be used to read
text, never binary data. In particular, the function will discard nulls, linefeed and carriage return
control characters. The Unicode version of this function will return a Unicode string, however this
function does not support reading raw Unicode data from the server. The data is internally
buffered as octets (eight-bit bytes) and converted to Unicode using the MultiByteToWideChar
function.

This function will force the thread to block until an end-of-line character sequence is processed,
the read operation times out or the server closes its end of the connection. If this function is called
with asynchronous events enabled, it will automatically switch the client into a blocking mode, read
the data and then restore the client to asynchronous operation. If another client operation is
attempted while TelnetReadLine is blocked waiting for data from the server, an error will occur. It
is recommended that this function only be used with blocking (synchronous) client connections; if
the application needs to establish multiple simultaneous connections, it should create worker
threads to manage each connection.

The TelnetRead and TelnetReadLine function calls can be intermixed, however be aware that
TelnetRead will consume any data that has already been buffered by the TelnetReadLine

function and this may have unexpected results.

Unlike the TelnetRead function, it is possible for data to be returned in the buffer even if the
return value is zero. Applications should also check the value of the lpnLength argument to
determine if any data was copied into the buffer. For example, if a timeout occurs while the
function is waiting for more data to arrive, it will return zero; however, data may have already
been copied into the string buffer prior to the error condition. It is the responsibility of the
application to process that data, regardless of the function return value.

Example
TCHAR szBuffer[MAXBUFLEN];
INT nLength;
BOOL bResult;

do
{
 nLength = sizeof(szBuffer);
 bResult = TelnetReadLine(hSocket, szBuffer, &nLength);

 if (nLength > 0)
 {
 // Process the line of data returned in the string
 // buffer; the string is always null-terminated
 }
} while (bResult);

DWORD dwError = TelnetGetLastError();
if (dwError == ST_ERROR_CONNECTION_CLOSED)
{
 // The server has closed its side of the connection and
 // there is no more data available to be read
}
else if (dwError != 0)
{
 // An error has occurred while reading a line of data
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
TelnetIsReadble, TelnetRead, TelnetWrite, TelnetWriteLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TelnetRegisterEvent Function

INT WINAPI TelnetRegisterEvent(
 HCLIENT hClient,
 UINT nEvent,
 TELNETEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

The TelnetRegisterEvent function registers a callback function for the specified event.

Parameters
hClient

Handle to the client session.

nEvent

An unsigned integer which specifies which event should be registered with the specified callback
function. One of the following values may be used:

Constant Description

TELNET_EVENT_CONNECT The connection to the server has completed.

TELNET_EVENT_DISCONNECT The server has closed the connection to the client. The
client should read any remaining data and disconnect.

TELNET_EVENT_READ Data is available to read by the calling process. No
additional messages will be posted until the client has
read at least some of the data. This event is only
generated if the client is in asynchronous mode.

TELNET_EVENT_WRITE The client can now write data. This notification is sent
after a connection has been established, or after a
previous attempt to write data has failed because it
would result in a blocking operation. This event is only
generated if the client is in asynchronous mode.

TELNET_EVENT_TIMEOUT The network operation has exceeded the specified
timeout period. The client application may attempt to
retry the operation, or may disconnect from the server
and report an error to the user.

TELNET_EVENT_CANCEL The current operation has been canceled. Under most
circumstances the client should disconnect from the
server and re-connect if needed. After an operation
has been canceled, the server may abort the
connection or refuse to accept further commands
from the client.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the TelnetEventProc callback
function. If this parameter is NULL, the callback for the specified event is disabled.

dwParam

A user-defined integer value that is passed to the callback function. If the application targets the
x86 (32-bit) platform, this parameter must be a 32-bit unsigned integer. If the application
targets the x64 (64-bit) platform, this parameter must be a 64-bit unsigned integer.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
TELNET_ERROR. To get extended error information, call TelnetGetLastError.

Remarks
The TelnetRegisterEvent function associates a callback function with a specific event. The event
handler is an TelnetEventProc function that is invoked when the event occurs. Arguments are
passed to the function to identify the client session, the event type and the user-defined value
specified when the event handler is registered. If the event occurs because of an error condition,
the error code will be provided to the handler.

The callback function specified by the lpEventProc parameter must be declared using the
__stdcall calling convention. This ensures the arguments passed to the event handler are pushed
on to the stack in the correct order. Failure to use the correct calling convention will corrupt the
stack and cause the application to terminate abnormally.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib

See Also
TelnetDisableEvents, TelnetEnableEvents, TelnetEventProc, TelnetFreezeEvents

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TelnetSearch Function

BOOL WINAPI TelnetSearch(
 HCLIENT hClient,
 LPCTSTR lpszString,
 LPVOID lpvBuffer,
 LPDWORD lpdwLength,
 DWORD dwReserved
);

The TelnetSearch function searches for a specific character sequence in the data stream and
stops reading if the sequence is encountered.

Parameters
hClient

Handle to the client session.

lpszString

A pointer to a string which specifies the sequence of characters to search for in the data stream.
This parameter cannot be NULL or point to an empty string.

lpvBuffer

A pointer to a byte buffer which will contain the output from the server, or a pointer to a global
memory handle which will reference the output when the function returns. If the output from
the server is not required, this parameter may be NULL.

lpdwLength

A pointer to an unsigned integer which should be initialized to the maximum number of bytes
that can be copied to the buffer specified by the lpvBuffer parameter. If the lpvBuffer
parameter points to a global memory handle, the length value should be initialized to zero.
When the function returns, this value will be updated with the actual number of bytes of output
stored in the buffer. If the lpvBuffer parameter is NULL, this parameter should also be NULL.

dwReserved

A reserved parameter. This value must be zero.

Return Value
If the function succeeds and the character sequences was found in the data stream, the return
value is non-zero. If the function fails or a timeout occurs before the sequence is found, the return
value is zero. To get extended error information, call TelnetGetLastError.

Remarks
The TelnetSearch function searches for a character sequence in the data stream and stops
reading when it is found. This is useful when the client wants to automate responses to the server,
such as logging in a user and executing a command. The function collects the output from the
server and stores it in the buffer specified by the lpvBuffer parameter. When the function returns,
the buffer will contain everything sent by the server up to and including the search string.

The lpvBuffer parameter may be specified in one of two ways, depending on the needs of the
application. The first method is to pre-allocate a buffer large enough to store the a fixed amount
of output. In this case, the lpvBuffer parameter will point to the buffer that was allocated, the value
that the lpdwLength parameter points to should be initialized to the size of that buffer. If the
server sends more output than can be stored in the buffer, the remaining output will be discarded.

The second method that can be used is have the lpvBuffer parameter point to a global memory
handle which will contain the output when the function returns. In this case, the value that the
lpdwLength parameter points to must be initialized to zero. It is important to note that the
memory handle returned by the function must be freed by the application, otherwise a memory
leak will occur. This method is preferred if the client application does not have a general idea of
how much output will be generated until the search string is found.

Example
LPCTSTR lpszUserName = "abc123\r\n";
LPCTSTR lpszPassword = "secret\r\n";
LPCTSTR lpszCommand = "/bin/ls -l\r\n";
HGLOBAL hgblOutput = NULL;
DWORD cbOutput = 0;
BOOL bResult;

// Search for the login prompt issued by the server

bResult = TelnetSearch(hClient,
 _T("ogin: "),
 NULL,
 NULL,
 0);

// If the Login: prompt was found, then write out the
// username and search for the Password: prompt; note
// that the username, password and command strings are
// terminated with a carriage-return/linefeed sequence
// which the server will see as the user pressing the
// Enter or Return key on the keyboard

if (bResult)
{
 TelnetWrite(hClient,
 (LPBYTE)lpszUserName,
 lstrlen(lpszUserName));

 bResult = TelnetSearch(hClient,
 _T("word: "),
 NULL,
 NULL,
 0);
}

// If the Password: prompt was found, write out the
// password and then search for the shell prompt;
// the prompt may be different, depending on what
// operating system and shell is being used

if (bResult)
{
 TelnetWrite(hClient,
 (LPBYTE)lpszPassword,
 lstrlen(lpszPassword));

 bResult = TelnetSearch(hClient,
 _T("$ "),
 NULL,
 NULL,

 0);
}

// If the shell prompt was found, issue the command
// and capture the output into the hgblBuffer global
// memory buffer; the cbBuffer variable will contain
// the actual number of bytes in the buffer when the
// function returns

if (bResult)
{
 TelnetWrite(hClient,
 (LPBYTE)lpszCommand,
 lstrlen(lpszCommand));

 bResult = TelnetSearch(hClient,
 _T("$ "),
 &hgblOutput,
 &cbOutput,
 0);
}

// Write the contents of the output buffer to the
// standard output stream

if (bResult)
{
 LPBYTE lpBuffer = (LPBYTE)GlobalLock(hgblBuffer);

 if (lpBuffer)
 fwrite(lpBuffer, 1, cbBuffer, stdout);

 GlobalUnlock(hgblBuffer);
 GlobalFree(hgblBuffer);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
TelnetIsBlocking, TelnetIsReadable, TelnetLogin, TelnetRead

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TelnetSetLastError Function

VOID WINAPI TelnetSetLastError(
 DWORD dwErrorCode
);

The TelnetSetLastError function sets the last error code for the current thread. This function is
typically used to clear the last error by specifying a value of zero as the parameter.

Parameters
dwErrorCode

Specifies the last error code for the current thread.

Return Value
None.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. Most functions will
set the last error code value when they fail; a few functions set it when they succeed. Function
failure is typically indicated by a return value such as FALSE, NULL, INVALID_CLIENT or
TELNET_ERROR. Those functions which call TelnetSetLastError when they succeed are noted on
the function reference page.

Applications can retrieve the value saved by this function by using the TelnetGetLastError
function. The use of TelnetGetLastError is optional; an application can call the function to
determine the specific reason for a function failure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib

See Also
TelnetGetErrorString, TelnetGetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TelnetSetMode Function

UINT WINAPI TelnetSetMode(
 HCLIENT hClient,
 UINT nMode,
 BOOL bEnable
);

The TelnetSetMode function sets one or more client modes for the specified session.

Parameters
hClient

Handle to the client session.

nMode

The client mode. This value is a combination of one or more flags which determines how the
client handles local character echo and character processing. The following values are
recognized:

Value Description

TELNET_MODE_LOCALECHO The local client is responsible for echoing data entered
by the user. By default, this mode is not set which
means that the server is responsible for echoing back
each character written to it.

TELNET_MODE_BINARY Data exchanged between the client and server should
not be converted or line buffered. If this option is not
specified, the high-bit will be cleared on all characters,
and single linefeed characters will be converted to
carriage-return/linefeed sequences.

bEnable

This boolean flag specifies if the specified mode is to be enabled or disabled.

Return Value
If the function succeeds, the return value is the previous mode. If the function fails, the return
value is TELNET_ERROR. To get extended error information, call TelnetGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib

See Also
TelnetGetMode

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TelnetSetTerminalType Function

INT WINAPI TelnetSetTerminalType(
 HCLIENT hClient,
 LPCTSTR lpszTermType
);

The TelnetSetTerminalType function sets the terminal type for the current client session.

Parameters
hClient

Handle to the client session.

lpszTermType

Points to a string which specifies the terminal type.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
TELNET_ERROR. To get extended error information, call TelnetGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
TelnetGetTerminalType

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TelnetSetTimeout Function

INT WINAPI TelnetSetTimeout(
 HCLIENT hClient,
 INT nTimeout
);

The TelnetSetTimeout function sets the number of seconds the client will wait for a response
from the server. Once the specified number of seconds has elapsed, the function will fail and
return to the caller.

Parameters
hClient

Handle to the client session.

nTimeout

The number of seconds to wait for a blocking operation to complete.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
TELNET_ERROR. To get extended error information, call TelnetGetLastError.

Remarks
The timeout value is only used with blocking client connections.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib

See Also
TelnetGetTimeout

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TelnetUninitialize Function

VOID WINAPI TelnetUninitialize();

The TelnetUninitialize function terminates the use of the library.

Parameters
There are no parameters.

Return Value
None.

Remarks
An application is required to perform a successful TelnetInitialize call before it can call any of the
other library functions. When it has completed the use of library, the application must call
TelnetUninitialize to allow the library to free any resources allocated on behalf of the process.
Any pending blocking or asynchronous calls in this process are canceled without posting any
notification messages, and all sockets that were opened by the process are closed.

There must be a call to TelnetUninitialize for every successful call to TelnetInitialize made by a
process. In a multithreaded environment, operations for all threads in the client are terminated.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
TelnetDisconnect, TelnetInitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TelnetWrite Function

INT WINAPI TelnetWrite(
 HCLIENT hClient,
 LPBYTE lpBuffer,
 INT cbBuffer
);

The TelnetWrite function sends the specified number of bytes to the server.

Parameters
hClient

Handle to the client session.

lpBuffer

The pointer to the buffer which contains the data that is to be sent to the server.

cbBuffer

The number of bytes to send from the specified buffer.

Return Value
If the function succeeds, the return value is the number of bytes actually written. If the function
fails, the return value is TELNET_ERROR. To get extended error information, call
TelnetGetLastError.

Remarks
The return value may be less than the number of bytes specified by the cbBuffer parameter. In this
case, the data has been partially written and it is the responsibility of the client application to send
the remaining data at some later point. For non-blocking clients, the client must wait for the
TELNET_EVENT_WRITE asynchronous notification message before it resumes sending data.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
TelnetRead

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TelnetWriteLine Function

BOOL WINAPI TelnetWriteLine(
 HCLIENT hClient,
 LPCTSTR lpszBuffer,
 LPINT lpnLength
);

The TelnetWriteLine function sends a line of text to the server, terminated by a carriage-return
and linefeed.

Parameters
hClient

Handle to the client session.

lpszBuffer

The pointer to a string buffer which contains the data that will be sent to the server. All
characters up to, but not including, the terminating null character will be written to the server.
The data will always be terminated with a carriage-return and linefeed control character
sequence. If this parameter points to an empty string or NULL pointer, then a only a carriage-
return and linefeed are written to the server.

lpnLength

A pointer to an integer value which will contain the number of characters written to the server,
including the carriage-return and linefeed sequence. If this information is not required, a NULL
pointer may be specified.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call TelnetGetLastError.

Remarks
The TelnetWriteLine function writes a line of text to the server and terminates the line with a
carriage-return and linefeed control character sequence. Unlike the TelnetWrite function which
writes arbitrary bytes of data to the server, this function is specifically designed to write a single
line of text data from a string.

If the lpszBuffer string is terminated with a linefeed (LF) or carriage return (CR) character, it will be
automatically converted to a standard CRLF end-of-line sequence. Because the string will be sent
with a terminating CRLF sequence, the value returned in the lpnLength parameter will typically be
larger than the original string length (reflecting the additional CR and LF characters), unless the
string was already terminated with CRLF.

There are some limitations when using TelnetWriteLine. The function should only be used to
send text, never binary data. In particular, the function will discard nulls and append linefeed and
carriage return control characters to the data stream. The Unicode version of this function will
accept a Unicode string, however this function does not support sending raw Unicode data to the
server. Unicode strings will be automatically converted to UTF-8 encoding using the
WideCharToMultiByte function and then written as a stream of bytes.

This function will force the thread to block until the complete line of text has been written, the
write operation times out or the server aborts the connection. If this function is called with
asynchronous events enabled, it will automatically switch the client into a blocking mode, send the

data and then restore the client to asynchronous operation. If another network operation is
attempted while TelnetWriteLine is blocked sending data to the server, an error will occur. It is
recommended that this function only be used with blocking (synchronous) connections; if the
application needs to establish multiple simultaneous connections, it should create worker threads
to manage each connection.

The TelnetWrite and TelnetWriteLine function calls can be safely intermixed.

Unlike the TelnetWrite function, it is possible for data to have been written to the server if the
return value is zero. For example, if a timeout occurs while the function is waiting to send more
data to the server, it will return zero; however, some data may have already been written prior to
the error condition. If this is the case, the lpnLength argument will specify the number of
characters actually written up to that point.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstntv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
TelnetIsWritable, TelnetRead, TelnetReadLine, TelnetWrite

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Telnet Protocol Data Structures

INITDATA
SECURITYCREDENTIALS
SECURITYINFO

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 INITDATA Structure

This structure contains information about the SocketTools library when the initialization function
returns.

typedef struct _INITDATA
{
 DWORD dwSize;
 DWORD dwVersionMajor;
 DWORD dwVersionMinor;
 DWORD dwVersionBuild;
 DWORD dwOptions;
 DWORD_PTR dwReserved1;
 DWORD_PTR dwReserved2;
 TCHAR szDescription[128];
} INITDATA, *LPINITDATA;

Members
dwSize

Size of this structure. This structure member must be set to the size of the structure prior to
calling the initialization function. Failure to do so will cause the function to fail.

dwVersionMajor

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the major version number for the library.

dwVersionMinor

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the minor version number for the library.

dwVersionBuild

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the build number for the library.

dwOptions

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

dwReserved1

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

dwReserved2

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

szDescription

A null terminated string which describes the library.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SECURITYINFO Structure

This structure contains information about a secure connection that has been established.

typedef struct _SECURITYINFO
{
 DWORD dwSize;
 DWORD dwProtocol;
 DWORD dwCipher;
 DWORD dwCipherStrength;
 DWORD dwHash;
 DWORD dwHashStrength;
 DWORD dwKeyExchange;
 DWORD dwCertStatus;
 SYSTEMTIME stCertIssued;
 SYSTEMTIME stCertExpires;
 LPCTSTR lpszCertIssuer;
 LPCTSTR lpszCertSubject;
 LPCTSTR lpszFingerprint;
} SECURITYINFO, *LPSECURITYINFO;

Members
dwSize

Specifies the size of the data structure. This member must always be initialized to
sizeof(SECURITYINFO) prior to passing the address of this structure to the function. Note that
if this member is not initialized, an error will be returned indicating that an invalid parameter has
been passed to the function.

dwProtocol

A numeric value which specifies the protocol that was selected to establish the secure
connection. One of the following values will be returned:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The

correct protocol is automatically selected, based on
what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.
This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is
supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

dwCipher

A numeric value which specifies the cipher that was selected when establishing the secure
connection. One of the following values will be returned:

Constant Description

SECURITY_CIPHER_RC2 The RC2 block cipher was selected. This is a variable
key length cipher which supports keys between 40 and
128 bits, in 8-bit increments.

SECURITY_CIPHER_RC4 The RC4 stream cipher was selected. This is a variable
key length cipher which supports keys between 40 and
128 bits, in 8-bit increments.

SECURITY_CIPHER_RC5 The RC5 block cipher was selected. This is a variable
key length cipher which supports keys up to 2040 bits,
in 8-bit increments.

SECURITY_CIPHER_DES The DES (Data Encryption Standard) block cipher was
selected. This is a fixed key length cipher, using 56-bit
keys.

SECURITY_CIPHER_DES3 The Triple DES block cipher was selected. This cipher
encrypts the data three times using different keys,
effectively providing a 168-bit length key.

SECURITY_CIPHER_DESX A variant of the DES block cipher which XORs an extra
64-bits of the key before and after the plaintext has
been encrypted, increasing the key size to 184 bits.

SECURITY_CIPHER_AES The Advanced Encryption Standard cipher (also known
as the Rijndael cipher) is a fixed block size cipher which
use a key size of 128, 192 or 256 bits. This cipher is
supported on Windows XP SP3 and later versions of
the operating system.

SECURITY_CIPHER_SKIPJACK The Skipjack block cipher was selected. This is a fixed
key length cipher, using 80-bit keys.

SECURITY_CIPHER_BLOWFISH The Blowfish block cipher was selected. This is a
variable key length cipher up to 448 bits, using a 64-bit
block size.

dwCipherStrength

A numeric value which specifies the strength (the length of the cipher key in bits) of the cipher
that was selected. Typically this value will be 128 or 256. 40-bit and 56-bit key lengths are
considered weak encryption, and subject to brute force attacks. 128-bit and 256-bit key lengths
are considered to be secure, and are the recommended key length for secure communications.

dwHash

A numeric value which specifies the hash algorithm which was selected. One of the following
values will be returned:

Constant Description

SECURITY_HASH_MD5 The MD5 algorithm was selected. Its use has been
deprecated and is no longer considered to be
cryptographically secure.

SECURITY_HASH_SHA1 The SHA-1 algorithm was selected. Its use has been
deprecated and is no longer considered to be
cryptographically secure.

SECURITY_HASH_SHA256 The SHA-256 algorithm was selected.

SECURITY_HASH_SHA384 The SHA-384 algorithm was selected.

SECURITY_HASH_SHA512 The SHA-512 algorithm was selected.

dwHashStrength

A numeric value which specifies the strength (the length in bits) of the message digest that was

selected.

dwKeyExchange

A numeric value which specifies the key exchange algorithm which was selected. One of the
following values will be returned:

Constant Description

SECURITY_KEYEX_RSA The RSA public key algorithm was selected.

SECURITY_KEYEX_KEA The Key Exchange Algorithm (KEA) was selected. This is an
improved version of the Diffie-Hellman public key algorithm.

SECURITY_KEYEX_DH The Diffie-Hellman key exchange algorithm was selected.

SECURITY_KEYEX_ECDH The Elliptic Curve Diffie-Hellman key exchange algorithm was
selected. This is a variant of the Diffie-Hellman algorithm
which uses elliptic curve cryptography. This key exchange
algorithm is only supported on Windows XP SP3 and later
versions of the operating system.

dwCertStatus

A numeric value which specifies the status of the certificate returned by the secure server. This
member only has meaning for connections using the SSL or TLS protocols. One of the following
values will be returned:

Constant Description

SECURITY_CERTIFICATE_VALID The certificate is valid.

SECURITY_CERTIFICATE_NOMATCH The certificate is valid, but the domain name
does not match the common name in the
certificate.

SECURITY_CERTIFICATE_EXPIRED The certificate is valid, but has expired.

SECURITY_CERTIFICATE_REVOKED The certificate has been revoked and is no
longer valid.

SECURITY_CERTIFICATE_UNTRUSTED The certificate or certificate authority is not
trusted on the local system.

SECURITY_CERTIFICATE_INVALID The certificate is invalid. This typically indicates
that the internal structure of the certificate has
been damaged.

stCertIssued

A structure which contains the date and time that the certificate was issued by the certificate
authority. If the issue date cannot be determined for the certificate, the SYSTEMTIME structure
members will have zero values. This member only has meaning for connections using the SSL or
TLS protocols.

stCertExpires

A structure which contains the date and time that the certificate expires. If the expiration date
cannot be determined for the certificate, the SYSTEMTIME structure members will have zero
values. This member only has meaning for connections using the SSL or TLS protocols.

lpszCertIssuer

A pointer to a string which contains information about the organization that issued the
certificate. This string consists of one or more comma-separated tokens. Each token consists of
an identifier, followed by an equal sign and a value. If the certificate issuer could not be
determined, this member may be NULL. This member only has meaning for connections using
the SSL or TLS protocols.

lpszCertSubject

A pointer to a string which contains information about the organization that the certificate was
issued to. This string consists of one or more comma-separated tokens. Each token consists of
an identifier, followed by an equal sign and a value. If the certificate subject could not be
determined, this member may be NULL. This member only has meaning for connections using
the SSL or TLS protocols.

lpszFingerprint

A pointer to a string which contains a sequence of hexadecimal values that uniquely identify the
server. This member is only used when a connection has been established using the Secure
Shell (SSH) protocol.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SECURITYCREDENTIALS Structure

The SECURITYCREDENTIALS structure specifies the information needed by the library to specify
additional security credentials, such as a client certificate or private key, when establishing a secure
connection.

typedef struct _SECURITYCREDENTIALS
{
 DWORD dwSize;
 DWORD dwProtocol;
 DWORD dwOptions;
 DWORD dwReserved;
 LPCTSTR lpszHostName;
 LPCTSTR lpszUserName;
 LPCTSTR lpszPassword;
 LPCTSTR lpszCertStore;
 LPCTSTR lpszCertName;
 LPCTSTR lpszKeyFile;
} SECURITYCREDENTIALS, *LPSECURITYCREDENTIALS;

Members
dwSize

Size of this structure. If the structure is being allocated dynamically, this member must be set to
the size of the structure and all other unused structure members must be initialized to a value of
zero or NULL.

dwProtocol

A bitmask of supported security protocols. The value of this structure member is constructed by
using a bitwise operator with any of the following values:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The
correct protocol is automatically selected, based on

what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.
This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is
supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

dwOptions

A value which specifies one or options. This member is constructed by using a bitwise operator
with any of the following values:

Constant Description

CREDENTIAL_STORE_CURRENT_USER The library will attempt to open a store for
the current user using the certificate store
name provided in this structure. If no options
are specified, then this is the default
behavior.

CREDENTIAL_STORE_LOCAL_MACHINE The library will attempt to open a local
machine store using the certificate store

name provided in this structure. If this option
is specified, the library will always search for a
local machine store before searching for the
store by that name for the current user.

CREDENTIAL_STORE_FILENAME The certificate store name is a file that
contains the certificate and private key that
will be used.

dwReserved

This structure member is reserved for future use and should always be initialized to zero.

lpszHostName

A pointer to a null terminated string which specifies the hostname that will be used when
validating the server certificate. If this member is NULL, then the server certificate will be
validated against the hostname used to establish the connection.

lpszUserName

A pointer to a null terminated string which identifies the owner of client certificate. Currently this
member is not used by the library and should always be initialized as a NULL pointer.

lpszPassword

A pointer to a null terminated string which specifies the password needed to access the
certificate. Currently this member is only used if the CREDENTIAL_STORE_FILENAME option has
been specified. If there is no password associated with the certificate, then this member should
be initialized as a NULL pointer.

lpszCertStore

A pointer to a null terminated string which specifies the name of the certificate store to open. A
certificate store is a collection of certificates and their private keys, typically organized by how
they are used. If this value is NULL or points to an empty string, the default certificate store "MY"
will be used.

Store
Name

Description

CA
Certification authority certificates. These are certificates that are issued by entities
which are entrusted to issue certificates to other individuals or organizations.
Companies such as VeriSign and Thawte act as certification authorities.

MY

Personal certificates and their associated private keys for the current user. This
store typically holds the client certificates used to establish a user's credentials.
This corresponds to the "Personal" store that is displayed by the certificate
manager utility and is the default store used by the library.

ROOT
Certificates that have been self-signed by a certificate authority. Root certificates
for a number of different certification authorities such as VeriSign and Thawte are
installed as part of the operating system and periodically updated by Microsoft.

lpszCertName

A pointer to a null terminated string which specifies the name of the certificate to use. The
library will first search the certificate store for a certificate with a matching "friendly name"; this is
a name for the certificate that is assigned by the user. Note that the name must match
completely, but the comparison is not case sensitive. If no matching certificate is found, the
library will then attempt to find a certificate that has a matching common name (also called the
certificate subject). This comparison is less stringent, and the first partial match will be returned.

If this second search fails, the library will return an error indicating that the certificate could not
be found. If the SECURITY_PROTOCOL_SSH protocol has been specified, this member should
be NULL.

lpszKeyFile

A pointer to a null terminated string which specifies the name of the file which contains the
private key required to establish the connection. This member is only used for SSH connections
and should always be NULL when establishing a secure connection using SSL or TLS.

Remarks
A client application only needs to create this structure if the server requires that the client provide
a certificate as part of the process of negotiating the secure session. If a certificate is required,
note that it must have a private key associated with it. Attempting to use a certificate that does not
have a private key will result in an error during the connection process indicating that the client
credentials could not be established.

If you are using a local certificate store, with the certificate and private key stored in the registry,
you can explicitly specify whether the certificate store for the current user or the local machine (all
users) should be used. This is done by prefixing the certificate store name with "HKCU:" for the
current user, or "HKLM:" for the local machine. For example, a certificate store name of
"HKLM:MY" would specify the personal certificate store for the local machine, rather than the
current user. If neither prefix is specified, then it will default to the certificate store for the current
user. You can manage these certificates using the CertMgr.msc Microsoft Management Console
(MMC) snap-in.

It is possible to load the certificate from a file rather than from current user's certificate store. The
dwOptions member should be set to CREDENTIAL_STORE_FILENAME and the lpszCertStore
member should specify the name of the file that contains the certificate and its private key. The file
must be in Private Information Exchange (PFX) format, also known as PKCS #12. These certificate
files typically have an extension of .pfx or .p12. Note that if a password was specified when the
certificate file was created, it must be provided in the lpszPassword member or the library will be
unable to access the certificate.

Note that the lpszUserName and lpszPassword members are values which are used to access the
certificate store or private key file. They are not the credentials which are used when establishing
the connection with the remote host or authenticating the client session.

The TLS 1.1 and TLS 1.2 protocols are only supported on Windows 7, Windows Server 2008 R2
and later versions of the platform. If these options are specified and the application is running on
Windows XP or Windows Vista, the protocol version will be downgraded to TLS 1.0 for backwards
compatibility with those platforms.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminal Emulation Library

Emulate an ANSI or DEC VT-220 character mode display terminal.

Reference

Functions
Data Structures
Control Sequences
Error Codes

Library Information

File Name CSNVTV11.DLL

Version 11.0.2180.1635

LibID 9A302CB9-6BEE-4D11-9785-76E7624BD130

Import Library CSNVTV11.LIB

Dependencies None

Overview
The Terminal Emulation library provides a comprehensive API for emulating an ANSI or DEC-
VT220 terminal, with full support for all standard escape and control sequences, color mapping
and other advanced features. The library functions provide both a high level interface for parsing
escape sequences and updating a display, as well as lower level primitives for directly managing
the virtual display, such as controlling the individual display cells, moving the cursor position and
specifying display attributes.

This library can be used in conjunction with the Remote Command, Secure Shell or Telnet Protocol
libraries to provide terminal emulation services for an application, or it can be used independently.
For example, this library could be used to provide emulation services for a program that connects
to a device using an RS-232 serial port.

Requirements
The SocketTools Library Edition libraries are compatible with any programming language which
supports calling functions exported from a standard dynamic link library (DLL). If you are using
Visual C++ 6.0 it is required that you have Service Pack 6 (SP6) installed. You should install all
updates for your development tools and have the current Windows SDK installed. The minimum
recommended version of Visual Studio is Visual Studio 2010.

This library is supported on Windows 7, Windows Server 2008 R2 and later versions of the desktop
and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1) installed as
a minimum requirement. It is recommended that you install the current service pack and all critical
updates available for your version of the operating system.

This product includes both 32-bit and 64-bit libraries. Native 64-bit CPU support requires the 64-
bit version of Windows 7 or later versions of the Windows operating system.

Distribution
When you distribute your application that uses this library, it is recommended that you install the
file in the same folder as your application executable. If you install the library into a shared location

on the system, it is important that you distribute the correct version for the target platform and it
should be registered as a shared DLL. This is a standard Windows dynamic link library, not an
ActiveX component, and does not require COM registration.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Terminal Emulation Functions

Function Description

NvtClearDisplay Clear the specified display

NvtConvertDisplayPos Convert between pixel and screen coordinates

NvtCopySelectedText Copy the selected text to the clipboard

NvtCreateDisplay Create a new virtual terminal emulation display

NvtDeleteChar Delete the specified number of characters

NvtDeleteLine Delete the current line, shifting remaining lines up

NvtDestroyDisplay Destroy the specified virtual display

NvtEraseChar Erase the specified number of characters

NvtEraseLine Erase the current line

NvtGetCursorPos Return the current cursor position

NvtGetDisplayAttributes Return the current display attributes

NvtGetDisplayCell Return information about the specified cell in the virtual display

NvtGetDisplayCellSize Return the size of the display character cells

NvtGetDisplayColor Get the current virtual display colors

NvtGetDisplayColorMap Return the virtual display color table

NvtGetDisplayDC Get the current virtual display device context

NvtGetDisplayEmulation Get the current terminal emulation type

NvtGetDisplayFont Get the current virtual display font

NvtGetDisplayInfo Return information about the virtual display

NvtGetDisplayLine Return a line of text from the virtual display

NvtGetDisplayMode Get the current virtual display mode

NvtGetDisplayRect Return the rectangle for the display window client area

NvtGetDisplayScrollPos Get the display scroll box position

NvtGetDisplaySize Return the current size of the virtual display

NvtGetDisplayText Get the specified block of text from the virtual display

NvtGetDisplayWindow Get the current virtual display window

NvtGetMappedKey Return the escape sequence for the mapped key

NvtGetScrollRegion Return the current scrolling region

NvtGetSelectedText Return the currently selected text

NvtGetTextColor Return the current text foreground or background color

NvtInitialize Initialize the library for use by the client

NvtInsertChar Insert the specified number of characters

NvtInsertLine Insert a line, shifting the remaining lines down

NvtRefreshDisplay Refresh the specified display

NvtResetDisplay Reset the virtual display

NvtResetMappedKeys Reset the mapped key table to default values

NvtResizeDisplay Resize the virtual display

NvtRestoreCursor Restore the saved cursor position and text attributes

NvtSaveCursor Save the current cursor position and text attributes

NvtScrollDisplay Scroll the virtual display

NvtSelectDisplayText Select a region of the virtual display

NvtSetCursorPos Set the current cursor position

NvtSetDisplayAttributes Set the current display attributes

NvtSetDisplayBackColor Set the background color for the virtual display

NvtSetDisplayBoldColor Set the bold color for the virtual display

NvtSetDisplayCell Set the value of a character cell in the virtual display

NvtSetDisplayColor Set the virtual display colors

NvtSetDisplayColorMap Set the virtual display color table

NvtSetDisplayDC Set the current virtual display device context

NvtSetDisplayEmulation Set the current terminal emulation type

NvtSetDisplayFocus Set the focus on the virtual display

NvtSetDisplayFont Set the current virtual display font

NvtSetDisplayFontName Set the current virtual display font by name

NvtSetDisplayForeColor Set the foreground color for the virtual display

NvtSetDisplayMode Set the current virtual display mode

NvtSetDisplayScrollPos Set the display scroll box position

NvtSetDisplaySize Set the size of the virtual display

NvtSetDisplayWindow Set the current virtual display window

NvtSetMappedKey Set the escape sequence for the specified key

NvtSetScrollRegion Set the current scrolling region

NvtSetTextColor Set the current text foreground or background color

NvtTranslateMappedKey Translate the keypress to a mapped key escape sequence

NvtUninitialize Terminate use of the library by the application

NvtUpdateCaret Update the display window caret

NvtUpdateDisplay Update the window attached to the virtual display

NvtWriteDisplay Write the specified buffer to the virtual display

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtClearDisplay Function

BOOL WINAPI NvtClearDisplay(
 HDISPLAY hDisplay,
 UINT nMode
);

The NvtClearDisplay function clears the specified display, erasing the text and clearing any
attributes.

Parameters
hDisplay

Handle to the virtual display.

nMode

Mode which specifies how the display will be cleared. The following values may be used:

Constant Description

NVT_CLEAR_EOS The display is cleared from the current cursor position to the end of
the display. The cursor position is not changed.

NVT_CLEAR_TOS The display is cleared from the beginning of the display to the
current cursor position. The cursor position is not changed.

NVT_CLEAR_ALL The entire display is cleared and the cursor is repositioned to the
upper left corner of the display.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, it returns zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
NvtDeleteChar, NvtDeleteLine, NvtEraseChar, NvtEraseLine, NvtResetDisplay

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtConvertDisplayPos Function

BOOL WINAPI NvtConvertDisplayPos(
 HDISPLAY hDisplay,
 INT nMethod,
 INT xPos,
 INT yPos,
 LPPOINT lppt
);

The NvtConvertDisplayPos function converts the specified X,Y position and stores the result in
the POINT structure provided by the caller.

Parameters
hDisplay

Handle to the virtual display.

nMethod

An integer value which specifies the conversion method to use. This may be one of the
following values:

Constant Description

NVT_CURSOR_TO_PIXELS Convert cursor X,Y coordinates to the current window X,Y
pixel coordinates. An error is returned if the coordinates
are out of bounds for the current display.

NVT_PIXELS_TO_CURSOR Convert window X,Y pixel coordinates to cursor X,Y
coordinates. If the point is outside of the bounds of the
display, it is normalized to account for mouse capture.

xPos

An integer value which specifies the X position in the virtual display. This may either be the
cursor position or a pixel position, based on the value of the nMethod parameter.

yPos

An integer value which specifies the Y position in the virtual display. This may either be the
cursor position or a pixel position, based on the value of the nMethod parameter.

lppt

A pointer to a POINT structure which will contain the converted coordinates.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, it returns zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
NvtGetCursorPos, NvtGetDisplayCellSize, NvtGetDisplayScrollPos, NvtGetDisplaySize,
NvtSetCursorPos, NvtSetDisplayScrollPos

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtCopySelectedText Function

BOOL WINAPI NvtCopySelectedText(
 HDISPLAY hDisplay
);

The NvtCopySelectedText function copies any selected text to the system clipboard.

Parameters
hDisplay

Handle to the virtual display.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, it returns zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
NvtGetSelectedText, NvtSelectDisplayText

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtCreateDisplay Function

HDISPLAY WINAPI NvtCreateDisplay(
 HWND hWnd,
 HFONT hFont,
 UINT nEmulation,
 UINT nColumns,
 UINT nRows
);

The NvtCreateDisplay function creates a new virtual terminal emulation display using the
specified window and font.

Parameters
hWnd

Handle to the window that will be used to display the virtual terminal.

hFont

Handle to the font that will be used with the virtual terminal. This parameter may be NULL, in
which case a default fixed-width font will be used. If a font is specified, it must be fixed-width,
otherwise the virtual cursor positioning will be incorrect in some cases.

nEmulation

Identifies the virtual terminal emulation type. The following emulation types are currently
supported.

Constant Description

NVT_EMULATION_NONE The virtual display does not emulate any specific terminal
type, and does not process escape sequences.

NVT_EMULATION_ANSI The virtual display processes ANSI escape sequences for
screen management and cursor positioning. This emulation
also supports escape sequences to control the foreground
and background color. The default keymap for ANSI
function key escape sequences will be selected.

NVT_EMULATION_VT100 The virtual display processes DEC VT-100 escape
sequences for screen management and cursor positioning.
The default keymap for a DEC VT-100 terminal will be
selected.

NVT_EMULATION_VT220 The virtual display processes DEC VT-220 escape
sequences for screen management and cursor positioning.
This emulation also supports DEC VT-320 escape
sequences to control the foreground and background
color. The default keymap for a DEC VT-220 terminal will
be selected.

nColumns

The maximum number of columns used by the virtual display. This value must be at least 5, and
no greater than 255.

nRows

The maximum number of rows used by the virtual display. This value must be at least 5, and no

greater than 127.

Return Value
If the function succeeds, the return value is a handle to the virtual display. If the function fails, the
return value is INVALID_DISPLAY.

Remarks
The default colors for the display is a black background and white foreground. If ANSI terminal
emulation is selected, bold characters will be displayed on a white background and blue
foreground.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
NvtDestroyDisplay, NvtInitialize, NvtUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtDeleteChar Function

BOOL WINAPI NvtDeleteChar(
 HDISPLAY hDisplay,
 INT nChars
);

The NvtDeleteChar function deletes the specified number of characters from the display, shifting
the characters that follow to the left. The characters are deleted from the current cursor position.

Parameters
hDisplay

Handle to the virtual display.

nChars

Number of characters to delete from the display.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, it returns zero.

Remarks
This function does not change the current cursor position. To erase characters from the display
without affecting the characters that follow, use the NvtEraseChar function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
NvtClearDisplay, NvtDeleteLine, NvtEraseChar, NvtEraseLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtDeleteLine Function

BOOL WINAPI NvtDeleteLine(
 HDISPLAY hDisplay
);

The NvtDeleteLine function deletes the current line, shifting up the lines that follow.

Parameters
hDisplay

Handle to the virtual display.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, it returns zero.

Remarks
This function does not change the current cursor position. To erase a line from the display without
affecting the lines that follow, use the NvtEraseLine function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
NvtClearDisplay, NvtDeleteChar, NvtEraseChar, NvtEraseLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtDestroyDisplay Function

VOID WINAPI NvtDestroyDisplay(
 HDISPLAY hDisplay
);

The NvtDestroyDisplay function releases the memory allocated for the virtual display.

Parameters
hDisplay

Handle to the virtual display.

Return Value
None.

Remarks
If the display font was specified when the display was created, then it is the responsibility of the
application to delete the font object using the DeleteObject function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
NvtCreateDisplay, NvtInitialize, NvtUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtEraseChar Function

BOOL WINAPI NvtEraseChar(
 HDISPLAY hDisplay,
 INT nChars
);

The NvtEraseChar function erases the specified number of characters from the display, without
affecting the position of the characters that follow. The characters are erased from the current
cursor position.

Parameters
hDisplay

Handle to the virtual display.

nChars

Number of characters to erase from the display.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, it returns zero.

Remarks
This function does not change the current cursor position. To delete characters from the display
and shift the remaining characters to the left, use the NvtDeleteChar function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
NvtClearDisplay, NvtDeleteChar, NvtDeleteLine, NvtEraseLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtEraseLine Function

BOOL WINAPI NvtEraseLine(
 HDISPLAY hDisplay,
 UINT nMode
);

The NvtEraseLine function erases the current line without affecting the lines that follow.

Parameters
hDisplay

Handle to the virtual display.

nMode

Mode which specifies how the line will be erased. The following values may be used:

Value Description

0 The line is erased from the current cursor position to the end of the line.

1 The line is cleared from the beginning of the line to the current cursor position.

2 The entire line is cleared.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, it returns zero.

Remarks
This function does not change the current cursor position. To delete a line from the display and
shift the remaining lines up, use the NvtDeleteLine function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NvtClearDisplay, NvtDeleteChar, NvtDeleteLine, NvtEraseChar

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtGetCursorPos Function

BOOL WINAPI NvtGetCursorPos(
 HDISPLAY hDisplay,
 LPINT lpnCursorX,
 LPINT lpnCursorY
);

The NvtGetCursorPos function returns the current cursor column and row position on the virtual
display.

Parameters
hDisplay

Handle to the virtual display.

lpnCursorX

Address of the variable that will be set to the column of the current cursor position. If this
argument is a NULL pointer, the argument is ignored.

lpnCursorY

Address of the variable that will be set to the row of the current cursor position. If this argument
is a NULL pointer, the argument is ignored.

Return Value
If the function succeeds, the return value is a non-zero value. If the handle to the virtual display is
invalid, the function will return zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
NvtConvertDisplayPos, NvtSetCursorPos

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtGetDisplayAttributes Function

UINT WINAPI NvtGetDisplayAttributes(
 HDISPLAY hDisplay
);

The NvtGetDisplayAttributes function returns the current display attributes which have been set,
either explicitly by the client or as the result of an escape sequence parsed by the emulator.

Parameters
hDisplay

Handle to the virtual display.

Return Value
If the function succeeds, the return value the current display attributes. If the function fails, the
return value is NVT_ERROR.

The following table lists the valid attributes:

Constant Description

NVT_ATTRIBUTE_NORMAL Normal, default attributes.

NVT_ATTRIBUTE_REVERSE Foreground and background cell colors are reversed.

NVT_ATTRIBUTE_BOLD The character is displayed using a higher intensity color.

NVT_ATTRIBUTE_DIM The character is displayed using a lower intensity color.

NVT_ATTRIBUTE_UNDERLINE The character is displayed with an underline.

NVT_ATTRIBUTE_HIDDEN The character is stored in display memory, but not
shown.

NVT_ATTRIBUTE_PROTECT The character is protected and cannot be cleared.

One or more attributes may be combined using a bitwise Or operator. Certain attributes, such as
NVT_ATTRIBUTE_BOLD and NVT_ATTRIBUTE_DIM are mutually exclusive.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
NvtGetDisplayCell, NvtSetDisplayAttributes

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtGetDisplayCell Function

DWORD WINAPI NvtGetDisplayCell(
 HDISPLAY hDisplay,
 INT xPos,
 INT yPos
);

The NvtGetDisplayCell function returns information about the specified character cell in the
display.

Parameters
hDisplay

Handle to the virtual display.

xPos

An integer value which specifies the X cursor position in the display.

yPos

An integer value which specifies the Y cursor position in the display.

Return Value
If the function succeeds, the return value is the cell character and attributes. If the function fails, it
returns NVT_ERROR.

Remarks
The value returned by the NvtGetDisplayCell function is an unsigned 32-bit integer value, where
the low order word specifies the ANSI character stored at that position and the high order word
specifies the display attributes for that cell.

The character cell attributes may be one or more of the following values:

Constant Description

NVT_ATTRIBUTE_NORMAL Normal, default attributes.

NVT_ATTRIBUTE_REVERSE Foreground and background cell colors are reversed.

NVT_ATTRIBUTE_BOLD The character is displayed using a higher intensity color.

NVT_ATTRIBUTE_DIM The character is displayed using a lower intensity color.

NVT_ATTRIBUTE_UNDERLINE The character is displayed with an underline.

NVT_ATTRIBUTE_HIDDEN The character is stored in display memory, but not
shown.

NVT_ATTRIBUTE_PROTECT The character is protected and cannot be cleared.

One or more attributes may be combined using a bitwise Or operator. Certain attributes, such as
NVT_ATTRIBUTE_BOLD and NVT_ATTRIBUTE_DIM are mutually exclusive.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
NvtGetDisplayAttributes, NvtGetDisplayCellSize, NvtSetDisplayAttributes

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtGetDisplayCellSize Function

BOOL WINAPI NvtGetDisplayCellSize(
 HDISPLAY hDisplay,
 LPSIZE lpCellSize
);

The NvtGetDisplayCellSize function returns the size of a character cell in pixels.

Parameters
hDisplay

Handle to the virtual display.

lpCellSize

A pointer to a SIZE structure which will contain the size of a character cell in pixels.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, it returns zero.

Remarks
The NvtGetDisplayCellSize function is used to determine the size of a character cell in the
display. This can be useful when the application needs to determine where a display cell is
physically located within the virtual display window.

To convert between display and window coordinates, use the NvtConvertDisplayPos function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
NvtConvertDisplayPos, NvtGetDisplayCell

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtGetDisplayColor Function

COLORREF WINAPI NvtGetDisplayColor(
 HDISPLAY hDisplay,
 UINT nColorIndex,
 BOOL bForeground
);

The NvtGetDisplayColor function returns the color used by the virtual display to display text with
a specific attribute.

Parameters
hDisplay

Handle to the virtual display.

nColorIndex

The index into the virtual display color table. It may be one of the following values.

Value Description

NVT_COLOR_NORMAL The colors displayed for normal text. These are the
default colors used with the display.

NVT_COLOR_REVERSE The colors displayed for text with the reverse attribute
set. This is only used when emulation is enabled.

NVT_COLOR_BOLD The colors displayed for text with the bold attribute set.
This is only used when emulation is enabled.

NVT_COLOR_REVERSEBOLD The colors displayed for text with the reverse and bold
attributes set. This is only used when emulation is
enabled.

bForeground

A boolean flag which specifies if the color is a foreground color, used when displaying text, or a
background color.

Return Value
If the function succeeds, the return value is the RGB value of the specified color. If the function
fails, it returns zero.

Remarks
The default colors for the display is a black background and white foreground. Bold characters are
displayed on a white background and blue foreground.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
NvtSetDisplayBackColor, NvtSetDisplayBoldColor, NvtSetDisplayColor, NvtSetDisplayForeColor

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtGetDisplayColorMap Function

BOOL WINAPI NvtGetDisplayColorMap(
 HDISPLAY hDisplay,
 COLORREF* lpColor,
 INT nMaxColors
);

The NvtGetDisplayColorMap function returns the virtual display color table which determines
what RGB values are used to display foreground and background text color attributes.

Parameters
hDisplay

Handle to the virtual display.

lpColor

A pointer to an array of COLORREF values which will contain the color values currently being
used in the virtual display.

nMaxColors

The maximum number of colors which may be stored in the color array. The minimum value for
this parameter is 1, and the maximum value is 16.

Return Value
If the function succeeds, the return value is a non-zero value. If the function fails, the return value
is zero. Failure indicates that the handle to the virtual display is invalid, the pointer to the color
table is NULL or the maximum number of color values is invalid.

Remarks
When the emulator processes an escape sequence that changes the current foreground or
background color, the actual RGB color value is determined by looking up the value in the virtual
display's color table. The NvtGetDisplayColorMap function is useful for determining what values
are being used when a color attribute is set. The emulator currently supports a maximum of
sixteen (16) color values, and the index into the table corresponds to the color as defined by the
standard for ANSI terminals:

Index Color Default (Hex) Default (Integer) Default (RGB)

0 Black 0 0 RGB(0,0,0)

1 Red 000000A0h 160 RGB(160,0,0)

2 Green 0000A000h 40960 RGB(0,160,0)

3 Yellow 0000A0A0h 41120 RGB(160,160,0)

4 Blue 00A00000h 10485760 RGB(0,0,160)

5 Magenta 00A000A0h 10485920 RGB(160,0,160)

6 Cyan 00A0A000h 10526720 RGB(0,160,160)

7 White 00E0E0E0h 14737632 RGB(224,224,224)

8 Gray 00C0C0C0h 12632256 RGB(192,192,192)

9 Light Red 008080FFh 8421631 RGB(255,128,128)

10 Light Green 0090EE90h 9498256 RGB(144,238,144)

11 Light Yellow 00C0FFFFh 12648447 RGB(255,255,192)

12 Light Blue 00E6D8ADh 15128749 RGB(173,216,230)

13 Light Magenta 00FFC0FFh 16761087 RGB(255,192,255)

14 Light Cyan 00FFFFE0h 16777184 RGB(224,255,255)

15 High White 00FFFFFFh 16777215 RGB(255,255,255)

A standard ANSI color terminal supports eight standard colors (0-7). To select a foreground color,
you add 30 to the color index and pass that value as a parameter to the SGR (select graphic
rendition) escape sequence. To select a background color, you add 40 to the color index. For
example, to set the current foreground color to white and the background color to blue, you
could send the following escape sequence:

ESC [37;44 m

Note that if you wanted to set the foreground color to a bold version of standard yellow, you
would first set the bold attribute, and then use the index value of 3, such as:

ESC [1;33m

NvtGetDisplayColorMap is typically used in conjunction with the NvtSetDisplayColorMap
function to load the current color values and then make selective changes to the actual RGB color
value that is used when a color attribute is set. Note that changes to the color map will only affect
new characters as they are displayed, not any previously displayed characters.

Example
The following example will load the current color table for the virtual display and change the
standard white color attribute to use the same value as the high-intensity white:

COLORREF rgbColor[16];

if (NvtGetDisplayColorMap(hDisplay, rgbColor, 16))
{
 rgbColor[7] = rgbColor[15];
 NvtSetDisplayColorMap(hDisplay, rgbColor, 16);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NvtGetDisplayColor, NvtGetTextColor, NvtSetDisplayColor, NvtSetDisplayColorMap,
NvtSetTextColor

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtGetDisplayDC Function

HDC WINAPI NvtGetDisplayDC(
 HDISPLAY hDisplay
);

The NvtGetDisplayDC returns the device context that has been specified for the virtual display.

Parameters
hDisplay

Handle to the virtual display.

Return Value
If the function succeeds, the return value is a handle to the device context. If the function fails, or
no device context has been specified, the return value is NULL.

Remarks
Normally there is no device context explicitly set for the display. Instead, the device context is
dynamically created and released when the virtual display is updated.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
NvtSetDisplayDC, NvtUpdateDisplay

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtGetDisplayEmulation Function

UINT WINAPI NvtGetDisplayEmulation(
 HDISPLAY hDisplay
);

The NvtGetDisplayEmulation function returns the current virtual terminal emulation type.

Parameters
hDisplay

Handle to the virtual display.

Return Value
If the function succeeds, the return value is the terminal emulation type and may contain one of
the following values:

Value Description

NVT_EMULATION_NONE The virtual display does not emulate any specific terminal type, and
does not process any escape sequences.

NVT_EMULATION_ANSI The virtual display will process ANSI escape sequences. The default
keymap for an ANSI console is loaded.

NVT_EMULATION_VT100 The virtual display will process DEC VT100 escape sequences. The
default keymap for a VT100 terminal is loaded.

NVT_EMULATION_VT220 The virtual display will process DEC VT220 escape sequences. The
default keymap for a VT220 terminal is loaded.

If the function fails, because an invalid display handle was specified, the return value will be
NVT_ERROR.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
NvtCreateDisplay, NvtResetDisplay, NvtSetDisplayEmulation

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtGetDisplayFont Function

HFONT WINAPI NvtGetDisplayFont(
 HDISPLAY hDisplay
);

The NvtGetDisplayFont function returns the current font handle being used by the virtual display.

Parameters
hDisplay

Handle to the virtual display.

Return Value
If the function succeeds, the return value is a handle to the font. If the function fails, it returns
NULL.

Remarks
The handle returned by this function should not be released, and the font object should never be
directly modified by the application. Functions that return information about the font, such as
GetTextMetrics, may be safely called.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
NvtCreateDisplay, NvtSetDisplayFont, NvtSetDisplayFontName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtGetDisplayInfo Function

BOOL WINAPI NvtGetDisplayInfo(
 HDISPLAY hDisplay,
 LPNVTDISPLAYINFO lpvdi
);

The NvtGetDisplayInfo function returns information about the specified virtual display.

Parameters
hDisplay

Handle to the virtual display.

lpvdi

Pointer to a NVTDISPLAYINFO structure which contains information about the virtual display,
including the display window, font, cursor and scrolling position.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, it returns zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
NvtGetCursorPos, NvtGetDisplayFont, NvtGetDisplayMode, NvtGetDisplayRect,
NvtGetDisplayScrollPos

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtGetDisplayLine Function

INT WINAPI NvtGetDisplayLine(
 HDISPLAY hDisplay,
 INT nRow,
 LPTSTR lpszBuffer,
 INT nMaxLength
);

The NvtGetDisplayLine function copies a block of text from the specified virtual display into a
string buffer.

Parameters
hDisplay

Handle to the virtual display.

nRow

The row in the virtual display to return the line of text from. The first row in the display is zero. If
the value -1 is specified, the row where the cursor is currently located will be used.

lpszBuffer

Pointer to the buffer that the display text will be copied to, terminated with a null character
character.

cbBuffer

Maximum number of characters that may be copied into the specified buffer, including the null
character terminator.

Return Value
If the function succeeds, the return value is the number of characters copied into the buffer, not
including the null character terminator. If the function fails, it returns zero.

Remarks
The NvtGetDisplayLine function allows the application to copy the contents of the display at a
specific row. Note that the buffer must be large enough to accommodate the text and the null
character terminator. Unlike the NvtGetDisplayText function, any trailing whitespace in the
specified row is not copied to the buffer.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NvtGetDisplayText, NvtUpdateDisplay, NvtWriteDisplay

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtGetDisplayMode Function

UINT WINAPI NvtGetDisplayMode(
 HDISPLAY hDisplay
);

The NvtGetDisplayMode function returns the current virtual display modes.

Parameters
hDisplay

Handle to the virtual display.

Return Value
If the function succeeds, the return value is the display mode for the virtual display. If the function
fails, it returns zero.

Remarks
The display mode is a combination of one or more flags which determines how the emulator
handles automatic line wrapping, caret display, and other functions. The following values are
recognized.

Constant Description

NVT_MODE_AUTOWRAP The emulator will automatically wrap to the next line when a
character is written to the last column on the virtual display.

NVT_MODE_SHOWCARET The emulator will display a caret when the display receives the
focus.

NVT_MODE_BLOCKCARET The emulator will display a block carat that is the height of the
selected font characters. If this mode is not set, the caret is
displayed as an underline.

NVT_MODE_BELL The emulator will beep when a BEL character is processed.

NVT_MODE_CRLF The cursor will automatically be positioned at the first column when
a linefeed character is processed.

NVT_MODE_CRNL The cursor will automatically advance to the next row when a
carriage return character is processed.

NVT_MODE_APPCURSOR The emulator cursor keys are placed in application mode. This
mode changes the default key mappings used when the cursor
(arrow) keys are translated. This corresponds to the application
mode supported by DEC VT terminals.

NVT_MODE_APPKEYPAD The emulator keypad keys are placed in application mode. This
mode changes the default key mappings used when the keypad
keys are translated. This corresponds to the application keypad
mode supported by DEC VT terminals.

NVT_MODE_ORIGIN The emulator is in origin mode. If enabled, the cursor cannot be
positioned outside of the current scrolling region. Otherwise, the
cursor can be positioned at any valid location on the virtual display.

NVT_MODE_COLOR The emulator supports the use of escape sequences to change the

foreground and background colors. This option is enabled by
default if emulating an ANSI console or DEC VT220 terminal.

NVT_MODE_TABOVER The emulator will clear the character cells between the current
cursor position and the next tab stop when the HT (horizontal tab)
control sequence is processed. By default this mode is disabled,
and the cursor is simply positioned at the next tab stop.

NVT_MODE_HSCROLL The emulator will display a horizontal scroll bar if the number of
visible columns are less then that total number of columns in the
virtual display. Disabling this mode prevents a horizontal scrollbar
from being displayed, regardless of the number of visible columns.
By default, this mode is enabled.

NVT_MODE_VSCROLL The emulator will display a vertical scroll bar if the number of
visible rows are less then that total number of rows in the virtual
display. Disabling this mode prevents a vertical scrollbar from being
displayed, regardless of the number of visible rows. By default, this
mode is enabled.

NVT_MODE_NOREFRESH The emulator will not automatically refresh the window after any
change has been made to the virtual display, including changes in
the cursor position or display mode. This allows the caller to make
a sequence of changes, and then update the display all at one time
to prevent a flicker effect.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
NvtGetDisplayEmulation, NvtGetDisplayInfo, NvtSetDisplayMode

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtGetDisplayRect Function

BOOL WINAPI NvtGetDisplayRect(
 HDISPLAY hDisplay,
 LPRECT lprc
);

The NvtGetDisplayRect returns the client rectangle for the virtual display window.

Parameters
hDisplay

Handle to the virtual display.

lpRect

Pointer to a RECT structure which will contain the client rectangle values when the function
returns.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, it returns zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
NvtGetDisplayInfo, NvtGetDisplaySize, NvtResizeDisplay, NvtSetDisplaySize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtGetDisplayScrollPos Function

INT WINAPI NvtGetDisplayScrollPos(
 HDISPLAY hDisplay,
 INT nScrollBar
);

The NvtGetDisplayScrollPos function gets the position of the scroll box for the specified scroll
bar.

Parameters
hDisplay

Handle to the virtual display.

nScrollBar

Specifies the scroll bar to return the position for. This parameter can be one of the following
values:

Constant Description

SB_HORZ Gets the position of the scroll box in the display's standard horizontal scroll
bar.

SB_VERT Gets the position of the scroll box in the display's standard vertical scroll
bar.

Return Value
If the function succeeds, the return value is the position of the scroll box. If the function fails, it
returns -1.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
NvtSetDisplayScrollPos

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtGetDisplaySize Function

BOOL WINAPI NvtGetDisplaySize(
 HDISPLAY hDisplay,
 LPSIZE lpSize
);

The NvtGetDisplaySize returns the size of the virtual display in columns and rows.

Parameters
hDisplay

Handle to the virtual display.

lpRect

Pointer to a SIZE structure which will contain the size of the virtual display.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, it returns zero.

Remarks
The NvtGetDisplaySize function returns the number of columns and rows in the virtual display.
To convert this to pixels, use the NvtGetDisplayCellSize function to determine the size of a
character cell and multiply that by the number of columns and/or rows.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
NvtGetDisplayCellSize, NvtGetDisplayInfo, NvtGetDisplayRect

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtGetDisplayText Function

INT WINAPI NvtGetDisplayText(
 HDISPLAY hDisplay,
 INT nOffset,
 LPTSTR lpszBuffer,
 INT nMaxLength
);

The NvtGetDisplayText function copies a block of text from the specified virtual display into a
string buffer.

Parameters
hDisplay

Handle to the virtual display.

nOffset

Offset into the virtual display buffer. A value of -1 specifies that the current cursor position
should be used as the offset.

lpszBuffer

Pointer to the buffer that the display text will be copied to, terminated with a null character
character.

nMaxLength

Maximum number of characters that may be copied into the specified buffer, including the null
character terminator.

Return Value
If the function succeeds, the return value is the number of characters copied into the buffer, not
including the null character terminator. If the function fails, it returns zero.

Remarks
The NvtGetDisplayText function allows the application to copy the contents of the display at a
specific location. Note that the buffer must be large enough to accommodate the text and the null
character terminator. To copy an entire row of text in the display, use the NvtGetDisplayLine
function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NvtGetDisplayLine, NvtUpdateDisplay, NvtWriteDisplay

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtGetDisplayWindow Function

HWND WINAPI NvtGetDisplayWindow(
 HDISPLAY hDisplay
);

The NvtGetDisplayWindow returns the handle to the window being used by the virtual display.

Parameters
hDisplay

Handle to the virtual display.

Return Value
If the function succeeds, the return value is a handle to the virtual display window. If the function
fails, it returns NULL.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
NvtGetDisplayInfo

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtGetMappedKey Function

BOOL WINAPI NvtGetMappedKey(
 HDISPLAY hDisplay,
 UINT nMappedKey,
 LPTSTR lpszKeyBuffer,
 UINT cchKeyBuffer
);

The NvtGetMappedKey function returns the escape sequence mapped to the specified key.

Parameters
hDisplay

Handle to the virtual display.

nMappedKey

The key which is an index into the display key mapping table. This defines the values returned
by special (function) keys for the current emulation.

lpszKeyBuffer

Address of the buffer which will receive the escape sequence mapped to the specified key.

cchKeyBuffer

The maximum number of characters that may be copied into the key buffer string, including the
terminating null character.

Return Value
If the function succeeds, the return value is non-zero and the escape sequence for the mapped
key is copied into the specified buffer. If the key has not been mapped, and there is no default
escape sequence defined, then the function will return zero.

Remarks
The NvtGetMappedKey function returns the escape sequence that has been mapped to a special
key. This function can be used to determine what sequence of characters should be sent in
response to a keypress (for example, what sequence should be sent to a server when the user
presses the F1 function key). If a sequence has not been explicitly mapped through a call to
NvtSetMappedKey, the default sequence for the current emulation will be returned.

Note that the current display mode, such as whether or not the emulator is in application mode or
not, should be considered when determining which mapped key to use. For example, if the
emulator is not in application mode and the user presses the up-arrow key, the sequence mapped
to the NVT_UP key should be sent to the server. However, if the emulator is in application mode,
the sequence mapped to the NVT_APPUP key should be sent instead. This is automatically
handled by the NvtTranslateMappedKey function, so it is recommended that it be used when
mapping a virtual keypress to the appropriate escape sequence.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NvtGetDisplayMode, NvtResetMappedKeys, NvtSetDisplayMode, NvtSetMappedKey,
NvtTranslateMappedKey

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtGetScrollRegion Function

BOOL WINAPI NvtGetScrollRegion(
 HDISPLAY hDisplay,
 LPINT lpnTop,
 LPINT lpnBottom
);

The NvtGetScrollRegion function returns the top and bottom rows of the current scrolling
region.

Parameters
hDisplay

Handle to the virtual display.

lpnTop

Address of the variable that will be set to the top row of the current scrolling region. If no
scrolling region has been defined, the value will be 0, the first row in the virtual display. If a
NULL pointer is passed as the value, this argument will be ignored.

lpnBottom

Address of the variable that will be set to the bottom row of the current scrolling region. If no
scrolling region has been defined, the value will be one less than the maximum number of rows
in the virtual display. If a NULL pointer is passed as the value, this argument will be ignored.

Return Value
If the function succeeds, it will return zero. If the handle to the display is invalid, the function will
return zero.

Remarks
The NvtGetScrollRegion function allows an application to determine the top and bottom rows of
the current scrolling region. By default, the scrolling region is the entire virtual display, however
this may be changed through a call to NvtSetScrollRegion or an ANSI escape sequence. If the
display is in origin mode, note that the cursor cannot be positioned outside of the current scrolling
region.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
NvtGetDisplayMode, NvtSetDisplayMode, NvtSetScrollRegion

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtGetSelectedText Function

INT WINAPI NvtGetSelectedText(
 HDISPLAY hDisplay,
 LPTSTR lpszBuffer,
 INT nMaxLength
);

The NvtGetSelectedText function copies the currently selected text into the specified buffer.

Parameters
hDisplay

Handle to the virtual display.

lpszBuffer

Pointer to the buffer that the selected text will be copied to, terminated with a null character
character.

nMaxLength

Maximum number of characters that may be copied into the specified buffer, including the null
character terminator.

Return Value
If the function succeeds, the return value is the number of characters copied into the buffer, not
including the null character terminator. If the function fails, it returns zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NvtCopySelectedText, NvtSelectDisplayText

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtGetTextColor Function

BOOL WINAPI NvtGetTextColor(
 HDISPLAY hDisplay,
 COLORREF *lprgbColor,
 BOOL bForeground
);

The NvtGetTextColor function returns the current foreground or background text color.

Parameters
hDisplay

Handle to the virtual display.

lprgbColor

A pointer to a COLORREF variable which will contain the current foreground or background text
color.

bForeground

A boolean value which determines if the foreground or background color is returned. A value of
TRUE indicates that the foreground color should be returned, otherwise the background color is
returned.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
Failure indicates that the handle to the display is invalid, the display does not support text color
attributes, or the pointer to the color value is NULL.

Remarks
This function is used to return the current foreground or background color, as determined by the
text attribute. The RGB color value for a color attribute is determined by the virtual display's color
table.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
NvtGetDisplayColorMap, NvtSetDisplayColorMap, NvtSetTextColor

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtInitialize Function

BOOL WINAPI NvtInitialize(
 LPCTSTR lpszLicenseKey,
 LPINITDATA lpData
);

The NvtInitialize function initializes the library and validates the specified license key at runtime.

Parameters
lpszLicenseKey

Pointer to a string that specifies the runtime license key to be validated. If this parameter is
NULL, the library will validate the development license installed on the local system.

lpData

Pointer to an INITDATA data structure. This parameter may be NULL if the initialization data for
the library is not required.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call NvtGetLastError. All other client functions will fail until a
license key has been successfully validated.

Remarks
This must be the first function that an application calls before using any of the other functions in
the library. When a NULL license key is specified, the library will only function on the development
system. Before redistributing the application to an end-user, you must insure that this function is
called with a valid license key.

If the lpData argument is specified, it must point to an INITDATA structure which has been
initialized by setting the dwSize member to the size of the structure. All other structure members
should be set to zero. If the function is successful, then the INITDATA structure will be filled with
identifying information about the library.

Although it is only required that NvtInitialize be called once for the current process, it may be
called multiple times; however, each call must be matched by a corresponding call to
NvtUninitialize.

This function dynamically loads other system libraries and allocates thread local storage. If you are
calling the functions in this library from within another DLL, it is important that you do not call the
NvtInitialize or NvtUninitialize functions from the DllMain function because it can result in
deadlocks or access violation errors. If the DLL is linked with the C runtime library (CRT), it will
automatically call the constructors and destructors for static and global C++ objects and has the
same restrictions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also

NvtCreateDisplay, NvtDestroyDisplay, NvtResetDisplay, NvtUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtInsertChar Function

BOOL WINAPI NvtInsertChar(
 HDISPLAY hDisplay,
 INT nChars
);

The NvtInsertChar function inserts one or more space characters at the current cursor position.

Parameters
hDisplay

Handle to the virtual display.

nChars

Number of space characters to insert at the current cursor position.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, it returns zero.

Remarks
This function does not change the cursor position. Inserting space characters may cause the virtual
display to scroll.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
NvtDeleteChar, NvtEraseChar, NvtInsertLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtInsertLine Function

BOOL WINAPI NvtInsertLine(
 HDISPLAY hDisplay
);

The NvtInsertLine function inserts an empty line at the current row, shifting the remaining lines
down.

Parameters
hDisplay

Handle to the virtual display.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, it returns zero.

Remarks
This function does not change the cursor position. Inserting a line may cause the virtual display to
scroll.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
NvtDeleteLine, NvtEraseLine, NvtInsertChar

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtRefreshDisplay Function

BOOL WINAPI NvtRefreshDisplay(
 HDISPLAY hDisplay,
 BOOL bUpdate
);

The NvtRefreshDisplay function refreshes the specified virtual display, updating the current scroll
position and caret.

Parameters
hDisplay

Handle to the virtual display.

bUpdate

Boolean flags which specifies if the display window is to be updated. If set, the window client
area is invalidated and the virtual display is redrawn.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, it returns zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
NvtUpdateCaret, NvtUpdateDisplay, NvtWriteDisplay

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtResetDisplay Function

BOOL WINAPI NvtResetDisplay(
 HDISPLAY hDisplay,
 HWND hWnd,
 HFONT hFont,
 UINT nColumns,
 UINT nRows
);

The NvtResetDisplay resets the virtual terminal display, using the new window, font, columns and
rows. This function should be used when the virtual display must be attached to a different
window, or the number of rows or columns must be changed.

Parameters
hDisplay

Handle to the virtual display.

hWnd

Handle to the window that will be used to display the virtual terminal. This parameter may be
NULL, in which case the current window will be used.

hFont

Handle to the font that will be used with the virtual terminal. This parameter may be NULL, in
which case the current font will be used. If a font is specified, it must be fixed-width, otherwise
the virtual cursor positioning will be incorrect in some cases.

nColumns

The maximum number of columns used by the virtual display. A value of zero specifies that the
same number of columns should be used. If a non-zero value is specified, it must be at least 5,
and no greater than 255.

nRows

The maximum number of rows used by the virtual display. A value of zero specifies that the
same number of columns should be used. If a non-zero value is specified, it must be at least 5,
and no greater than 127.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.

Remarks
This function will clear the display and reset the current text attributes.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
NvtClearDisplay, NvtCreateDisplay, NvtRefreshDisplay, NvtResizeDisplay, NvtUpdateDisplay

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtResetMappedKeys Function

BOOL WINAPI NvtResetMappedKeys(
 HDISPLAY hDisplay
);

The NvtResetMappedKeys function resets all mapped function keys to their default values, based
on the current emulation.

Parameters
hDisplay

Handle to the virtual display.

Return Value
If the function succeeds, the return value is non-zero. If the handle to the display is invalid, the
function will return zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
NvtGetMappedKey, NvtSetMappedKey, NvtTranslateMappedKey

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtResizeDisplay Function

BOOL WINAPI NvtResizeDisplay(
 HDISPLAY hDisplay,
 INT cxClient,
 INT cyClient
);

The NvtResizeDisplay function resizes the virtual display to the specified width and height.

Parameters
hDisplay

Handle to the virtual display.

cxClient

New width of the display window in pixels. If this value is zero, the width of the virtual display
remains unchanged.

cyClient

New height of the display window in pixels. If this value is zero, the height of the virtual display
remains unchanged.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, it returns zero.

Remarks
This function resizes the virtual display and updates the scrolling information. Typically this
function is called when the display window receives a WM_SIZE message, causing the virtual
display to match the size of the window's client area.

This function will not change the size of the display window. To change the size of the display
window, use the SetWindowPos function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NvtCreateDisplay, NvtGetDisplayRect, NvtRefreshDisplay, NvtResetDisplay, NvtUpdateDisplay

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtRestoreCursor Function

BOOL WINAPI NvtRestoreCursor(
 HDISPLAY hDisplay
);

The NvtRestoreCursor function restores the cursor position and text attributes to their previous
values.

Parameters
hDisplay

Handle to the virtual display.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, it returns zero.

Remarks
Use the NvtSaveCursor function to save the current cursor position and text attributes. This
function may only be called once for each time that the cursor position is saved.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
NvtGetCursorPos, NvtSaveCursor, NvtSetCursorPos, NvtUpdateCaret, NvtUpdateDisplay

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtSaveCursor Function

BOOL WINAPI NvtSaveCursor(
 HDISPLAY hDisplay
);

The NvtSaveCursor function saves the current cursor position and text attributes.

Parameters
hDisplay

Handle to the virtual display.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, it returns zero.

Remarks
Use the NvtRestoreCursor function to restore the cursor position and text attributes to their
previous values.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
NvtGetCursorPos, NvtRestoreCursor, NvtSetCursorPos, NvtUpdateCaret, NvtUpdateDisplay

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtScrollDisplay Function

BOOL WINAPI NvtScrollDisplay(
 HDISPLAY hDisplay,
 BOOL bScrollUp
);

The NvtScrollDisplay function scrolls the virtual display up or down and updates the scroll box
position if necessary.

Parameters
hDisplay

Handle to the virtual display.

bScrollUp

Boolean flag which specifies if the virtual display is scrolled up or down.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, it returns zero.

Remarks
This function does not change the current cursor position. The NvtRefreshDisplay function
should be called to update the window attached to the virtual display.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
NvtGetDisplayScrollPos, NvtRefreshDisplay, NvtSetDisplayScrollPos

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtSelectDisplayText Function

BOOL WINAPI NvtSelectDisplayText(
 HDISPLAY hDisplay,
 LPRECT lprc,
 DWORD dwOptions
);

The NvtSelectDisplayText function selects or unselects a region of the virtual display.

Parameters
hDisplay

Handle to the virtual display.

lprc

A pointer to a region of the display to select. The coordinates must be in display cursor
coordinates, not pixels. If this parameter is NULL, any selected text in the display is unselected.

dwOptions

One or more options which specifies how the region will be selected. These options may be
combined using a bitwise Or operator. The following values may be used:

Constant Description

NVT_SELECT_DEFAULT The default selection option. If there is a region of the
display already selected, it will be cleared and the new
region is selected.

NVT_SELECT_CLIPBOARD Copy the selected text to the clipboard. If this option is not
specified, the selected text is buffered and may be copied
at a later point.

NVT_SELECT_NOREFRESH The display is not refreshed when the region is selected.
This is useful if the application is going to be selecting
multiple regions of the display, or combining more than
one region, in order to minimize output to the window.

NVT_SELECT_NOBUFFER Do not buffer the text in the selected region of the display.
The display will show any text as being selected, but it will
not be available to be copied by the application. This can
be useful if the application is going to select multiple
regions and combine them.

NVT_SELECT_COMBINE If there is already a region of the display that has been
selected, the new region is combined with the previous
region, selecting all of the text.

NVT_SELECT_UNSELECT Unselect the specified region of the display.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, it returns zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)

Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
NvtCopySelectedText, NvtGetSelectedText

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtSetCursorPos Function

BOOL WINAPI NvtSetCursorPos(
 HDISPLAY hDisplay,
 INT nCursorX,
 INT nCursorY
);

The NvtSetCursorPos function sets the current cursor column and row position on the virtual
display.

Parameters
hDisplay

Handle to the virtual display.

nCursorX

New cursor column position. If this value is greater than the maximum number of columns, the
current position is set to the last column on the display. The first column on the display is zero.

nCursorY

New cursor row position. If this value is greater than the maximum number of rows, the current
position is set to the last row on the display. The first row on the display is zero.

Return Value
If the function succeeds, the return value is non-zero. If the handle to the virtual display is invalid,
the function will return zero.

Remarks
The NvtSetCursorPos function sets the current cursor position on the virtual display. If the display
is in origin mode (a scrolling region has been set), then the cursor row position is bound by the
current region.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NvtGetCursorPos

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtSetDisplayAttributes Function

UINT WINAPI NvtSetDisplayAttributes(
 HDISPLAY hDisplay,
 UINT nAttributes
);

The NvtSetDisplayAttributes function sets the current display attributes.

Parameters
hDisplay

Handle to the virtual display.

nAttributes

An unsigned integer value which specifies the new display attributes. This may be one or more
of the following values:

Constant Description

NVT_ATTRIBUTE_NORMAL Normal, default attributes.

NVT_ATTRIBUTE_REVERSE Foreground and background cell colors are reversed.

NVT_ATTRIBUTE_BOLD The character is displayed using a higher intensity color.

NVT_ATTRIBUTE_DIM The character is displayed using a lower intensity color.

NVT_ATTRIBUTE_UNDERLINE The character is displayed with an underline.

NVT_ATTRIBUTE_HIDDEN The character is stored in display memory, but not
shown.

NVT_ATTRIBUTE_PROTECT The character is protected and cannot be cleared.

Return Value
If the function succeeds, the return value is the previous display attributes. If the function fails, the
return value is NVT_ERROR.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
NvtGetDisplayAttributes, NvtGetDisplayCell

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtSetDisplayBackColor Function

BOOL WINAPI NvtSetDisplayBackColor(
 HDISPLAY hDisplay,
 COLORREF rgbBackground
);

The NvtSetDisplayBackColor sets the background color used by the virtual display.

Parameters
hDisplay

Handle to the virtual display.

rgbBackground

The background color specified as a 32-bit RGB value.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, it returns zero.

Remarks
This function sets the background color for normal, reverse, bold and reverse-bold text attributes.
To set the background color for a specific attribute, use the NvtSetDisplayColor function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
NvtGetDisplayColor, NvtSetDisplayBoldColor, NvtSetDisplayColor, NvtSetDisplayForeColor

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtSetDisplayBoldColor Function

BOOL WINAPI NvtSetDisplayBoldColor(
 HDISPLAY hDisplay,
 COLORREF rgbBold
);

The NvtSetDisplayBoldColor sets the color used by the virtual display to display text with the
bold attribute enabled.

Parameters
hDisplay

Handle to the virtual display.

rgbBold

The bold attribute color specified as a 32-bit RGB value.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, it returns zero.

Remarks
This function sets the foreground color for the bold and reverse-bold text attributes. To set the
color for a specific attribute, use the NvtSetDisplayColor function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
NvtGetDisplayColor, NvtSetDisplayBackColor, NvtSetDisplayColor, NvtSetDisplayForeColor

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtSetDisplayCell Function

DWORD WINAPI NvtSetDisplayCell(
 HDISPLAY hDisplay,
 INT xPos,
 INT yPos,
 DWORD dwCell
);

The NvtSetDisplayCell function sets the value of the specified cell in the virtual display.

Parameters
hDisplay

Handle to the virtual display.

xPos

An integer value which specifies the cell column in the virtual display. A value of -1 specifies that
the current cursor position should be used.

yPos

An integer value which specifies the cell row in the virtual display. A value of -1 specifies that the
current cursor position should be used.

dwCell

An unsigned integer which specifies the new value for the cell in the virtual display. The low
order word of this value should contain the character to be displayed at that location. The high
order word should specify the attributes for that cell.

Return Value
If the function succeeds, the return value is the previous cell value. If the function fails, it returns
0xFFFFFFFF. The previous cell value is the same value returned by the NvtGetDisplayCell
function.

Remarks
The NvtSetDisplayCell function is used to modify a specific character cell in the virtual display,
changing both the character and the attributes for that cell. Unlike the higher level functions such
as NvtWriteDisplay which process character strings and escape sequences, the
NvtGetDisplayCell and NvtSetDisplayCell functions allow direct, low-level access to the virtual
display in memory. After one or more cells are modified using this function, you should call the
NvtRefreshDisplay function to redraw the virtual display.

The character cell attributes may be one or more of the following values:

Constant Description

NVT_ATTRIBUTE_NORMAL Normal, default attributes.

NVT_ATTRIBUTE_REVERSE Foreground and background cell colors are reversed.

NVT_ATTRIBUTE_BOLD The character is displayed using a higher intensity color.

NVT_ATTRIBUTE_DIM The character is displayed using a lower intensity color.

NVT_ATTRIBUTE_UNDERLINE The character is displayed with an underline.

NVT_ATTRIBUTE_HIDDEN The character is stored in display memory, but not

shown.

NVT_ATTRIBUTE_PROTECT The character is protected and cannot be cleared.

One or more attributes may be combined using a bitwise Or operator. Certain attributes, such as
NVT_ATTRIBUTE_BOLD and NVT_ATTRIBUTE_DIM are mutually exclusive.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
NvtGetDisplayAttributes, NvtGetDisplayCell, NvtRefreshDisplay, NvtSetDisplayAttributes,
NvtWriteDisplay

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtSetDisplayColor Function

BOOL WINAPI NvtSetDisplayColor(
 HDISPLAY hDisplay,
 UINT nColorIndex,
 COLORREF dwColor,
 BOOL bForeground
);

The NvtSetDisplayColor function sets the colors used by the virtual display. Each display has a
color table which specifies the foreground and background colors used when displaying text with
a specific attribute.

Parameters
hDisplay

Handle to the virtual display.

nColorIndex

The index into the virtual display color table. It may be one of the following values.

Constant Description

NVT_COLOR_NORMAL The colors displayed for normal text. These are the
default colors used with the display.

NVT_COLOR_REVERSE The colors displayed for text with the reverse attribute
set. This is only used when emulation is enabled.

NVT_COLOR_BOLD The colors displayed for text with the bold attribute set.
This is only used when emulation is enabled.

NVT_COLOR_REVERSEBOLD The colors displayed for text with the reverse and bold
attributes set. This is only used when emulation is
enabled.

dwColor

The RGB color value that will be used.

bForeground

A boolean flag which specifies if the color is a foreground color, used when displaying text, or a
background color.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, it returns zero.

Remarks
The default colors for the display is a black background and white foreground. Bold characters are
displayed on a white background and blue foreground.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NvtGetDisplayColor, NvtSetDisplayBackColor, NvtSetDisplayBoldColor, NvtSetDisplayForeColor

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtSetDisplayColorMap Function

BOOL WINAPI NvtSetDisplayColorMap(
 HDISPLAY hDisplay,
 COLORREF *lpColor,
 INT nColors
);

The NvtSetDisplayColorMap function modifies the virtual display color table which determines
what RGB values are used to display foreground and background text color attributes.

Parameters
hDisplay

Handle to the virtual display.

lpColor

A pointer to an array of COLORREF values which specifies the values to be used by the
emulator when setting a color attribute. If this value is NULL, the default color table will be
loaded.

nColors

The number of colors which are stored in the array. The minimum value for this parameter is 1,
and the maximum value is 16.

Return Value
If the function succeeds, the return value is a non-zero value. If the function fails, the return value
is zero. Failure indicates that the handle to the virtual display is invalid or the number of color
values is invalid.

Remarks
When the emulator processes an escape sequence that changes the current foreground or
background color, the actual RGB color value is determined by looking up the value in the virtual
display's color table. The NvtSetDisplayColorMap function is useful for changing what values are
being used when a color attribute it set. The emulator currently supports a maximum of sixteen
(16) color values, and the index into the table corresponds to the color as defined by the standard
for ANSI terminals:

Index Color Default (Hex) Default (Integer) Default (RGB)

0 Black 0 0 RGB(0,0,0)

1 Red 000000A0h 160 RGB(160,0,0)

2 Green 0000A000h 40960 RGB(0,160,0)

3 Yellow 0000A0A0h 41120 RGB(160,160,0)

4 Blue 00A00000h 10485760 RGB(0,0,160)

5 Magenta 00A000A0h 10485920 RGB(160,0,160)

6 Cyan 00A0A000h 10526720 RGB(0,160,160)

7 White 00E0E0E0h 14737632 RGB(224,224,224)

8 Gray 00C0C0C0h 12632256 RGB(192,192,192)

9 Light Red 008080FFh 8421631 RGB(255,128,128)

10 Light Green 0090EE90h 9498256 RGB(144,238,144)

11 Light Yellow 00C0FFFFh 12648447 RGB(255,255,192)

12 Light Blue 00E6D8ADh 15128749 RGB(173,216,230)

13 Light Magenta 00FFC0FFh 16761087 RGB(255,192,255)

14 Light Cyan 00FFFFE0h 16777184 RGB(224,255,255)

15 High White 00FFFFFFh 16777215 RGB(255,255,255)

A standard ANSI color terminal supports eight standard colors (0-7). To select a foreground color,
you add 30 to the color index and pass that value as a parameter to the SGR (select graphic
rendition) escape sequence. To select a background color, you add 40 to the color index. For
example, to set the current foreground color to white and the background color to blue, you
could send the following escape sequence:

ESC [37;44 m

Note that if you wanted to set the foreground color to a bold version of standard yellow, you
would first set the bold attribute, and then use the index value of 3, such as:

ESC [1;33m

The NvtSetDisplayColorMap function is used to modify the actual color displayed by the
emulator. For example, if the emulator processes an escape sequence which sets the current
foreground color to white, the actual color displayed could be changed to light green. Passing a
NULL pointer as the second parameter restores the original color map back to the default values.
Note that changes to the color map will only affect new characters as they are displayed, not any
previously displayed characters.

Example
The following example will load the current color table for the virtual display and change the
standard white color attribute to use the same value as the high-intensity white:

COLORREF rgbColor[16];

if (NvtGetDisplayColorMap(hDisplay, rgbColor, 16))
{
 rgbColor[7] = rgbColor[15];
 NvtSetDisplayColorMap(hDisplay, rgbColor, 16);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
NvtGetDisplayColor, NvtGetDisplayColorMap, NvtGetTextColor, NvtSetDisplayColor,
NvtSetTextColor

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtSetDisplayDC Function

BOOL WINAPI NvtSetDisplayDC(
 HDISPLAY hDisplay,
 HDC hDC
);

The NvtSetDisplayDC function sets the device context to be used by the virtual display when
updating the window.

Parameters
hDisplay

Handle to the virtual display.

hDC

Handle to the device context. This parameter may be NULL, any device context that is currently
associated with the virtual display will be removed. Note that the application still has the
responsibility for deleting the device context, otherwise a handle leak will occur.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, it returns zero.

Remarks
It is not required that the device context be explicitly set by the application. By default, the library
will use a device context created using the window attached to the virtual display. If a device
context is specified by the application, it must be released when it is no longer needed.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
NvtGetDisplayDC, NvtUpdateDisplay

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtSetDisplayEmulation Function

BOOL WINAPI NvtSetDisplayEmulation(
 HDISPLAY hDisplay,
 UINT nEmulation
);

The NvtSetDisplayEmulation function specifies the type of terminal emulation to be performed
by the virtual display.

Parameters
hDisplay

Handle to the virtual display.

nEmulation

Identifies the virtual terminal emulation type. The following emulation types are currently
supported.

Value Description

NVT_EMULATION_NONE The virtual display does not emulate any specific terminal
type, and does not process any escape sequences.

NVT_EMULATION_ANSI The virtual display will process ANSI escape sequences. The
default keymap for an ANSI console is loaded.

NVT_EMULATION_VT100 The virtual display will process DEC VT100 escape
sequences. The default keymap for a VT100 terminal is
loaded.

NVT_EMULATION_VT220 The virtual display will process DEC VT220 escape
sequences. The default keymap for a VT220 terminal is
loaded.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, it returns zero.

Remarks
Changing the emulation type will not affect the current display.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
NvtGetDisplayEmulation, NvtGetDisplayMode, NvtResetDisplay, NvtSetDisplayMode

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtSetDisplayFocus Function

BOOL WINAPI NvtSetDisplayFocus(
 HDISPLAY hDisplay,
 BOOL bFocus
);

The NvtSetDisplayFocus function sets or removes the focus from the virtual display. This function
should be called when the display window receives or loses focus.

Parameters
hDisplay

Handle to the virtual display.

bFocus

A boolean flag which specifies that the display should receive or lose focus.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, it returns zero.

Remarks
When the virtual display receives focus, it updates the current cursor position and displays the
caret. When the display loses focus, the caret is hidden. This function should be called in response
to the display window receiving the WM_SETFOCUS and WM_KILLFOCUS messages.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
NvtUpdateCaret

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtSetDisplayFont Function

BOOL WINAPI NvtSetDisplayFont(
 HDISPLAY hDisplay,
 HFONT hFont
);

The NvtSetDisplayFont sets the font that will be used when updating the display. The specified
font must be fixed-width, otherwise the virtual cursor positioning will be incorrect in some cases.

Parameters
hDisplay

Handle to the virtual display.

hFont

Handle to the font that will be used with the virtual terminal. This parameter may be NULL, in
which case a default fixed-width font will be used.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, it returns zero.

Remarks
If the previous font was a default font created by the library as the result of a NULL font handle
being passed to a function, it will be released. However, if the previous font was created by the
application, the DeleteObject function must be called to release it.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
NvtGetDisplayFont, NvtSetDisplayFontName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtSetDisplayFontName Function

BOOL WINAPI NvtSetDisplayFontName(
 HDISPLAY hDisplay,
 LPTSTR lpszFontName,
 INT nFontSize
);

The NvtSetDisplayFontName function sets the font that is to be used when updating the display.
This function always attempts to load a font which is fixed-width and uses the OEM character set.

Parameters
hDisplay

Handle to the virtual display.

lpszFontName

A pointer to a string which specifies the name of the font that will be loaded. If a NULL pointer
or an empty string is passed as the value, the default Terminal font will be used.

nFontSize

The point size of the font that will be loaded. If this value is zero, a default point size will be
used.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, it returns zero.

Remarks
The NvtGetDisplayFont function will return the handle to the font created by this function.
However, this handle should not be released using the DeleteObject function. Font handles
created by calling this function or passing a NULL handle to the NvtSetDisplayFont function will
be automatically released by the library when the font is changed or the virtual display is
destroyed.

If the previous display font was created using the CreateFont or CreateFontIndirect functions
and then set using NvtSetDisplayFont, the font handle must be released by calling the
DeleteObject function after this function has been called.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NvtGetDisplayFont, NvtSetDisplayFont

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtSetDisplayForeColor Function

BOOL WINAPI NvtSetDisplayForeColor(
 HDISPLAY hDisplay,
 COLORREF rgbForeground
);

The NvtSetDisplayForeColor sets the foreground color used by the virtual display.

Parameters
hDisplay

Handle to the virtual display.

rgbForeground

The foreground color specified as a 32-bit RGB value.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, it returns zero.

Remarks
This function sets the foreground color for the normal and reverse text attributes. To set the
foreground color for a specific attribute, use the NvtSetDisplayColor function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
NvtGetDisplayColor, NvtSetDisplayBackColor, NvtSetDisplayBoldColor, NvtSetDisplayColor

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtSetDisplayMode Function

BOOL WINAPI NvtSetDisplayMode(
 HDISPLAY hDisplay,
 UINT nMode,
 BOOL bEnable
);

The NvtSetDisplayMode function sets one or more display modes for the specified virtual
display.

Parameters
hDisplay

Handle to the virtual display.

nMode

The virtual display mode bitmask. This value is a combination of one or more flags which
determines how the emulator handles automatic line wrapping, caret display, and other
functions. The following values may be specified.

Constant Description

NVT_MODE_AUTOWRAP The emulator will automatically wrap to the next line when
a character is written to the last column on the virtual
display.

NVT_MODE_SHOWCARET The emulator will display a caret when the display receives
the focus.

NVT_MODE_BLOCKCARET The emulator will display a block carat that is the height of
the selected font characters. If this mode is not set, the
caret is displayed as an underline.

NVT_MODE_BELL The emulator will beep when a BEL character is processed.

NVT_MODE_CRLF The cursor will automatically be positioned at the first
column when a linefeed character is processed.

NVT_MODE_CRNL The cursor will automatically advance to the next row
when a carriage return character is processed.

NVT_MODE_APPCURSOR The emulator cursor keys are placed in application mode.
This mode changes the default key mappings used when
the cursor (arrow) keys are translated. This corresponds to
the application mode supported by DEC VT terminals.

NVT_MODE_APPKEYPAD The emulator keypad keys are placed in application mode.
This mode changes the default key mappings used when
the keypad keys are translated. This corresponds to the
application keypad mode supported by DEC VT terminals.

NVT_MODE_ORIGIN The emulator is in origin mode. If enabled, the cursor
cannot be positioned outside of the current scrolling
region. Otherwise, the cursor can be positioned at any
valid location on the virtual display.

NVT_MODE_COLOR The emulator supports the use of escape sequences to

change the foreground and background colors. This
option is enabled by default if emulating an ANSI console
or DEC VT220 terminal.

NVT_MODE_TABOVER The emulator will clear the character cells between the
current cursor position and the next tab stop when the HT
(horizontal tab) control sequence is processed. By default
this mode is disabled, and the cursor is simply positioned
at the next tab stop.

NVT_MODE_HSCROLL The emulator will display a horizontal scroll bar if the
number of visible columns are less then the total number
of columns in the virtual display. Disabling this mode
prevents a horizontal scroll bar from being displayed,
regardless of the number of visible columns. By default,
this mode is enabled.

NVT_MODE_VSCROLL The emulator will display a vertical scroll bar if the number
of visible rows are less then the total number of rows in
the virtual display. Disabling this mode prevents a vertical
scroll bar from being displayed, regardless of the number
of visible rows. By default, this mode is enabled.

NVT_MODE_NOREFRESH The emulator will not automatically refresh the window
after any change has been made to the virtual display,
including changes in the cursor position or display mode.
This allows the caller to make a sequence of changes, and
then update the display all at one time to prevent a flicker
effect.

bEnable

This boolean flag specifies if the specified mode is to be enabled or disabled.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, it returns zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
NvtCreateDisplay, NvtGetDisplayInfo, NvtGetDisplayMode, NvtSetDisplayEmulation

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtSetDisplayScrollPos Function

BOOL WINAPI NvtSetDisplayScrollPos(
 HDISPLAY hDisplay,
 INT nScrollBar,
 INT nScrollPos
);

The NvtSetDisplayScrollPos function sets the position of the scroll box for the specified scroll bar
and redraws the scroll bar to reflect the new position of the scroll box.

Parameters
hDisplay

Handle to the virtual display.

nScrollBar

Specifies the scroll bar to be set. This parameter can be one of the following values:

Value Description

SB_HORZ Sets the position of the scroll box in the display's standard horizontal scroll
bar.

SB_VERT Sets the position of the scroll box in the display's standard vertical scroll
bar.

nScrollPos

Specifies the new row or column of the scroll box. The position must be within the scrolling
range.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, it returns zero.

Remarks
This function should always be used to change the scroll box position. The
NvtSetDisplayScrollPos function will result in unpredictable behavior if used on the virtual display
window.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
NvtGetDisplayScrollPos, NvtScrollDisplay, NvtUpdateDisplay

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtSetDisplaySize Function

BOOL WINAPI NvtSetDisplaySize(
 HDISPLAY hDisplay,
 LPSIZE lpSize
);

The NvtSetDisplaySize sets the size of the virtual display.

Parameters
hDisplay

Handle to the virtual display.

lpRect

Pointer to a SIZE structure which specifies the new size of the virtual display. The width should
be specified in columns and the height should be specified in rows.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, it returns zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
NvtGetDisplayInfo, NvtGetDisplayRect

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtSetDisplayWindow Function

BOOL WINAPI NvtSetDisplayWindow(
 HDISPLAY hDisplay,
 HWND hWnd
);

The NvtSetDisplayWindow function sets the window used by the virtual display.

Parameters
hDisplay

Handle to the virtual display.

hWnd

Handle to the window that will be used by the virtual display. This parameter cannot be NULL.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, it returns zero.

Remarks
This function will clear the display and reset the current text attributes.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
NvtCreateDisplay, NvtGetDisplayDC, NvtGetDisplayWindow, NvtResetDisplay, NvtSetDisplayDC

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtSetMappedKey Function

BOOL WINAPI NvtSetMappedKey(
 HDISPLAY hDisplay,
 UINT nMappedKey,
 LPCTSTR lpszKeyBuffer
);

The NvtSetMappedKey function maps an escape sequence to the specified key.

Parameters
hDisplay

Handle to the virtual display.

nMappedKey

The key which is an index into the display key mapping table. This defines the values returned
by special (function) keys for the current emulation.

lpszKeyBuffer

Pointer to a string which defines the sequence of characters that are to be mapped to the
specified key. Passing an empty string or NULL pointer will delete the current sequence mapped
to the key and restore the default value, if one has been defined.

Return Value
If the function succeeds, the return value is non-zero and the escape sequence is mapped to the
specified key. If the key value is invalid or could not be mapped, then the function will return zero.

Remarks
The NvtSetMappedKey function maps an escape sequence to a special key. This function can be
used to specify what sequence of characters should be sent in response to a keypress (for
example, what sequence should be sent to a server when the user presses the F1 function key).
There are a number of default sequences that are mapped to the function and cursor keys, based
on the current emulation. Calling this function will override the default sequence for a key, if one
has been defined.

The following special keys are defined:

Value Constant Description
0 NVT_F1 F1 function key
1 NVT_F2 F2 function key
2 NVT_F3 F3 function key
3 NVT_F4 F4 function key
4 NVT_F5 F5 function key
5 NVT_F6 F6 function key
6 NVT_F7 F7 function key
7 NVT_F8 F8 function key
8 NVT_F9 F9 function key
9 NVT_F10 F10 function key
10 NVT_F11 F11 function key
11 NVT_F12 F12 function key
12 NVT_SF1 Shift F1 function key
13 NVT_SF2 Shift F2 function key

Value Constant Description
26 NVT_UP Cursor up key
27 NVT_DOWN Cursor down key
28 NVT_LEFT Cursor left key
29 NVT_RIGHT Cursor right key
30 NVT_INSERT Insert key
31 NVT_DELETE Delete key
32 NVT_HOME Home key
33 NVT_END End key
34 NVT_PGUP Page up key
35 NVT_PGDN Page down key
36 NVT_APPUP Up arrow key
37 NVT_APPDOWN Down arrow key
38 NVT_APPLEFT Left arrow key
39 NVT_APPRIGHT Right arrow key

14 NVT_SF3 Shift F3 function key
15 NVT_SF4 Shift F4 function key
16 NVT_SF5 Shift F5 function key
17 NVT_SF6 Shift F6 function key
18 NVT_SF7 Shift F7 function key
19 NVT_SF8 Shift F8 function key
20 NVT_SF9 Shift F9 function key
21 NVT_SF10 Shift F10 function key
22 NVT_SF11 Shift F11 function key
23 NVT_SF12 Shift F12 function key
24 NVT_ENTER Enter key
25 NVT_ERASE Backspace key

40 NVT_APPENTER Keypad enter key
41 NVT_KEYPAD0 Numeric keypad 0
42 NVT_KEYPAD1 Numeric keypad 1
43 NVT_KEYPAD2 Numeric keypad 2
44 NVT_KEYPAD3 Numeric keypad 3
45 NVT_KEYPAD4 Numeric keypad 4
46 NVT_KEYPAD5 Numeric keypad 5
47 NVT_KEYPAD6 Numeric keypad 6
48 NVT_KEYPAD7 Numeric keypad 7
49 NVT_KEYPAD8 Numeric keypad 8
50 NVT_KEYPAD9 Numeric keypad 9

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NvtGetDisplayMode, NvtGetMappedKey, NvtResetMappedKeys, NvtSetDisplayMode,
NvtTranslateMappedKey

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtSetScrollRegion Function

BOOL WINAPI NvtSetScrollRegion(
 HDISPLAY hDisplay,
 INT nTop,
 INT nBottom
);

The NvtSetScrollRegion function sets the top and bottom rows of the current scrolling region.

Parameters
hDisplay

Handle to the virtual display.

nTop

The top row of the current scrolling region. If this value is greater than the bottom scrolling
region row or the total number of rows in the display, it will be silently adjusted.

nBottom

The bottom row of the current scrolling region. If this value is less than zero or the top scrolling
region row, it will be silently adjusted.

Return Value
If the function succeeds, it will return zero. If the handle to the display is invalid, the function will
return zero.

Remarks
The NvtSetScrollRegion function allows an application to set the current scrolling region for the
virtual display. This specifies the region (between the top and bottom rows) in which text will
normally scroll. If the display is in origin mode, the cursor cannot be positioned outside of the
scrolling region.

The minimum scrolling region that may be defined is two rows. If a scrolling region is specified
that is less than two rows, the function will fail and the current scrolling region will remain
unchanged. Specifying values of -1 for both arguments will reset the scrolling region to the default
values (the full display).

The DEC STBM escape sequence is used to set or clear the scrolling region of the virtual display.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
NvtGetDisplayMode, NvtSetDisplayMode, NvtSetScrollRegion

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtSetTextColor Function

BOOL WINAPI NvtSetTextColor(
 HDISPLAY hDisplay,
 COLORREF rgbColor,
 BOOL bForeground
);

The NvtSetTextColor function changes the current foreground or background text color.

Parameters
hDisplay

Handle to the virtual display.

rgbColor

A color value which specifies the current foreground or background text color. The RGB macro
can be used to specify the red, green and blue values for the color.

bForeground

A boolean value which determines if the foreground or background color is changed. A value of
TRUE indicates that the foreground color should be changed, otherwise the background color is
changed.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
Failure indicates that the handle to the display is invalid or that the current display does not
support color text attributes.

Remarks
This function is used to change the current foreground or background color, as determined by the
text attribute. Note that changing the current foreground or background text color does not affect
the virtual display color table. To change how color attributes are mapped to an RGB color value,
use the NvtSetDisplayColorMap function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
NvtGetDisplayColorMap, NvtGetTextColor, NvtSetDisplayColorMap

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtTranslateMappedKey Function

BOOL WINAPI NvtTranslateMappedKey(
 HDISPLAY hDisplay,
 UINT nKey,
 UINT nFlags,
 UINT * lpnMappedKey,
 LPTSTR lpszKeyBuffer,
 UINT cchBuffer
);

The NvtTranslateMappedKey function translates a virtual key press to an escape sequence
based on the current terminal emulation that has been selected.

Parameters
hDisplay

Handle to the virtual display.

nKey

The virtual key code for the specified key.

nFlags

The scan code, key-transition code, previous key state, and context code for the specified key.

lpnMappedKey

A pointer to an unsigned integer which will contain the index into the keymap table when the
function returns. This is the same value used with the NvtGetMappedKey and
NvtSetMappedKey function. If the index into the keymap is not required, this parameter can
be NULL.

lpszKeyBuffer

Address of the buffer to receive the escape sequence mapped to the specified key. If the
mapped key string is not required, this parameter can be NULL.

cchBuffer

The maximum number of characters that can be copied into the key buffer, including the
terminating null character. If the lpszKeyBuffer parameter is NULL, this value must be zero.

Return Value
If the virtual key can be mapped to an escape sequence, the function will return a non-zero value.
If the key is not mapped, or one of the arguments is invalid, the function will return zero.

Remarks
The NvtTranslateMappedKey function allows an application to map a virtual key code to an
escape sequence that is appropriate for the type of terminal that is being emulated. For example,
it will return the escape sequence for the F1 function key when passed the VK_F1 key value. This
function should be called when the WM_KEYDOWN message is processed by an application so
that it may send the correct sequence to the server.

This function should only be called in response to a keyboard message such as WM_KEYDOWN.
To determine if a specific key has been mapped to an escape sequence, use the
NvtGetMappedKey function.

Example

case WM_KEYDOWN:
 /*
 * If the Num Lock key is pressed, then set the terminal into application
 * keypad mode. This will change how the NvtTranslateMappedKey function will
 * translate the keypad keys.
 *
 * Note that the terminal may also be placed into application keypad mode
 * if emulating a DEC VT terminal and the DECNKM escape sequence is sent
 * by the host.
 */
 if (wParam == VK_NUMLOCK)
 NvtSetDisplayMode(hDisplay, NVT_MODE_APPKEYPAD, !
(GetKeyState(VK_NUMLOCK) & 1));
 else
 {
 BOOL bMapped;
 UINT nMappedKey;
 TCHAR szKey[128];

 bMapped = NvtTranslateMappedKey(hDisplay, wParam, HIWORD(lParam),
 &nMappedKey, szKey, 128);

 if (bMapped)
 TelnetWrite(hClient, szKey, lstrlen(szKey));
 }
 break;

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
NvtGetDisplayMode, NvtGetMappedKey, NvtResetMappedKeys, NvtSetDisplayMode,
NvtSetMappedKey

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtUninitialize Function

VOID WINAPI NvtUninitialize();

The NvtUninitialize function terminates the use of the library.

Parameters
There are no parameters.

Return Value
None.

Remarks
An application is required to perform a successful NvtInitialize call before it can call any of the
other library functions. When it has completed the use of library, the application must call
NvtUninitialize to allow the library to free any resources allocated on behalf of the process.

There must be a call to NvtUninitialize for every successful call to NvtInitialize made by a
process. In a multithreaded environment, operations for all threads in the client are terminated.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
NvtDestroyDisplay, NvtUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtUpdateCaret Function

BOOL WINAPI NvtUpdateCaret(
 HDISPLAY hDisplay
);

The NvtUpdateCaret function updates the position of the caret in the display window to the
current cursor position.

Parameters
hDisplay

Handle to the virtual display.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, it returns zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
NvtSetCursorPos, NvtSetDisplayMode, NvtUpdateDisplay

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtUpdateDisplay Function

BOOL WINAPI NvtUpdateDisplay(
 HDISPLAY hDisplay
);

The NvtUpdateDisplay function updates the window attached to the virtual display.

Parameters
hDisplay

Handle to the virtual display.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, it returns zero.

Remarks
This function should be called when the display window receives a WM_PAINT message. If the
NvtSetDisplayDC function has not been called to explicitly set the display device context, this
function will acquire one for the display window. In this case, the application should not create a
device context for the window or call the BeginPaint and EndPaint functions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
NvtRefreshDisplay, NvtResizeDisplay, NvtSetDisplayDC, NvtSetDisplayScrollPos,
NvtSetDisplayWindow

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NvtWriteDisplay Function

BOOL WINAPI NvtWriteDisplay(
 HDISPLAY hDisplay,
 LPBYTE lpBuffer,
 INT cbBuffer
);

The NvtWriteDisplay function writes the contents of the specified buffer to the virtual display.

Parameters
hDisplay

Handle to the virtual display.

lpBuffer

Pointer to the buffer which contains the data to be written to the virtual display.

cbBuffer

Number of bytes to write to the display.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, it returns zero.

Remarks
This function writes the data at the current cursor location. Control characters are recognized by
this function and processed accordingly. If ANSI emulation is enabled, embedded escape
sequences will also be parsed and processed.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: csnvtv11.lib

See Also
NvtGetDisplayText, NvtRefreshDisplay, NvtUpdateCaret, NvtUpdateDisplay

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Terminal Emulation Data Structures

INITDATA
NVTDISPLAYINFO

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 INITDATA Structure

This structure contains information about the SocketTools library when the initialization function
returns.

typedef struct _INITDATA
{
 DWORD dwSize;
 DWORD dwVersionMajor;
 DWORD dwVersionMinor;
 DWORD dwVersionBuild;
 DWORD dwOptions;
 DWORD_PTR dwReserved1;
 DWORD_PTR dwReserved2;
 TCHAR szDescription[128];
} INITDATA, *LPINITDATA;

Members
dwSize

Size of this structure. This structure member must be set to the size of the structure prior to
calling the initialization function. Failure to do so will cause the function to fail.

dwVersionMajor

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the major version number for the library.

dwVersionMinor

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the minor version number for the library.

dwVersionBuild

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the build number for the library.

dwOptions

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

dwReserved1

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

dwReserved2

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

szDescription

A null terminated string which describes the library.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NVTDISPLAYINFO Structure

This structure is used by the NvtGetDisplayInfo function to return information about the specified
virtual terminal display. No member of this structure should be modified directly by the
application.

typedef struct _NVTDISPLAYINFO {
 HWND hWnd;
 HFONT hFont;
 INT xPos;
 INT yPos;
 INT cxClient;
 INT cyClient;
 INT cxChar;
 INT cyChar;
 INT nScrollCol;
 INT nScrollRow;
 INT nMaxScrollCol;
 INT nMaxScrollRow;
} NVTDISPLAYINFO, *LPNVTDISPLAYINFO;

Members
hWnd

The handle to the terminal emulation display window.

hFont

The handle to the current font.

xPos

The current display x coordinate.

yPos

The current display y coordinate.

cxClient

The width of the client window in pixels.

cyClient

The height of the client window in pixels.

cxChar

The width of the current font in pixels.

cyChar

The height of the current font in pixels.

nScrollCol

The current horizontal scrolling column.

nScrollRow

The current vertical scrolling row.

nMaxScrollCol

The maximum horizontal scrolling column.

nMaxScrollRow

The maximum vertical scrolling row.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Terminal Emulator Control Sequences

Terminal Control Sequences
<ESC>c Reset display to initial state
<ESC>8 Display alignment test

Cursor Control Sequences
<ESC>D Move cursor down to next line
<ESC>E Move cursor to first column and down one line
<ESC>M Move cursor up one line
<ESC>7 Save cursor position, attributes and colors
<ESC>8 Restore saved cursor position, attributes and colors
<ESC>[nA Move cursor up n lines
<ESC>[nB Move cursor down n lines
<ESC>[nC Move cursor forward n spaces
<ESC>[nD Move cursor backward n spaces
<ESC>[nE Move cursor to beginning of line, down n lines
<ESC>[nF Move cursor to beginning of line, up n lines
<ESC>[xG Move cursor to column x
<ESC>[y;xH Move cursor to line y, column x
<ESC>[nI Move cursor forward n tabstops
<ESC>[nZ Move cursor backwards n tabstops
<ESC>[na Move cursor forward n spaces
<ESC>[yd Move cursor to row y
<ESC>[ne Move cursor down n lines
<ESC>[y;xf Move cursor to line y, column x
<ESC>[s Save cursor position
<ESC>[u Return to saved cursor position
<ESC>[x` Move cursor to column x

Attribute and Color Sequence
Select display attributes and color

n Value Description

0 Reset to default attributes and colors

1 Bold attribute

2 Dim attribute

4 Underline attribute

5 Blink attribute (same as reverse)

7 Reverse attribute

8 Hidden attribute

22 Clear bold attribute

24 Clear underline attribute

25 Clear blink attribute

<ESC>[nm

27 Clear reverse attribute

29 Clear color attributes

30 Black foreground

31 Red foreground

32 Green foreground

33 Yellow foreground

34 Blue foreground

35 Magenta foreground

36 Cyan foreground

37 White foreground

40 Black background

41 Red background

42 Green background

43 Yellow background

44 Blue background

45 Magenta background

46 Cyan background

47 White background

Character Set Sequences
<ESC>(A Assign ISO Latin 1 character set to font bank G0
<ESC>(B Assign United States ASCII character set to font bank G0
<ESC>(0 Assign graphics character set to font bank G0
<ESC>)A Assign ISO Latin 1 character set to font bank G1
<ESC>)B Assign United States ASCII character set to font bank G1
<ESC>)0 Assign graphics character set to font bank G1

Erase Sequences
<ESC>[n@ Insert n blank spaces

<ESC>[nJ

Erase all or part of the display

n Value Description

0 From current position to end of display

1 From beginning of display to current position

2 Erase the entire display

<ESC>[nK

Erase all or part of a line

n Value Description

0 From current position to end of line

1 From beginning of line to current position

2 Erase the entire line

<ESC>[nL Insert n new blank lines

<ESC>[nM Delete n lines from current cursor position
<ESC>[nP Delete n characters from current cursor position

Scrolling Sequences
<ESC>[nS Scroll display up n lines
<ESC>[nT Scroll display down n lines
<ESC>[nX Erase n characters from the current position
<ESC>[y1;y2r Set scrolling region from lines y1 to y2

Keypad Sequences
<ESC>= Place keypad into applications mode
<ESC>> Place keypad into numeric mode

Emulation Option Sequences

<ESC>[?nh

Set emulation option

n Value Description

1 Enable cursor key application mode

2 Enable ANSI escape sequences

5 Reverse foreground and background colors

6 Enable origin mode

7 Enable auto-wrap mode

20 Enable linefeed/newline mode

25 Display caret

66 Place keypad in applications mode

<ESC>[?n1

Set emulation option

n Value Description

1 Disable cursor key application mode

2 Enable VT52 escape sequences

5 Restore foreground and background colors

6 Disable origin mode

7 Disable auto-wrap mode

20 Disable linefeed/newline mode

25 Hide caret

66 Place keypad in numeric mode

Console Escape Sequences
<ESC>[=nA Set the overscan color (ignored)
<ESC>[=n1;n2B Set bell sound (parameters ignored)
<ESC>[=n1;n2C Set the caret size

<ESC>[=nD

Set background color intensity

n Value Description

0 Decrease background color intensity

1 Increase background color intensity

<ESC>[=nE Set blink vs. bold attribute (ignored)
<ESC>[=nF Set normal foreground color
<ESC>[=nG Set normal background color
<ESC>[=nH Set reverse foreground color
<ESC>[=nI Set reverse background color
<ESC>[=nJ Set graphics foreground color

<ESC>[=nK

Set graphics background color

n Value Description

0 Black

1 Blue

2 Green

3 Cyan

4 Red

5 Magenta

6 Brown

7 White

8 Gray

9 Light blue

10 Light green

11 Light cyan

12 Light red

13 Light magenta

14 Yellow

15 High White

Control Character Sequences
<CTL>G Ring audible bell, if enabled
<CTL>H Move cursor one character backwards
<CTL>I Move cursor forward to next tabstop
<CTL>J Move cursor down to next line
<CTL>M Move cursor to beginning of line
<CTL>N Select G1 character set
<CTL>O Select G0 character set
<CTL>Z Abort current escape sequence
 Erase and move cursor one character backwards

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Text Message Library

Send text messages to a mobile communications device using a gateway service.

Reference

Functions
Data Structures
Error Codes

Library Information

File Name CSTXTV11.DLL

Version 11.0.2180.1635

LibID E082680A-65EA-4332-B071-DF4611D727AF

Import Library CSTXTV11.LIB

Dependencies None

Overview
Short Message Service (SMS) is a text messaging service used by mobile communication devices
to exchange brief text messages. Most service providers also provide gateway servers that can be
used to send messages to a wireless device on their network using standard email protocols. The
Text Message API provides functions that can be used to determine the provider associated with a
specific telephone number and send a text message to the device using the provider's mail
gateway.

This library has been designed to assist developers in sending text message notifications as part of
their application. For example, it can be used to enable your software to automatically send
notifications when a specific event occurs, such as an error condition. This library is not designed
to be used with software that will send out a large number of text messages to many users, and
there are limitations on the number of messages that may be sent to different phone numbers
over a short period of time. Because many recipients must pay a fee for each text message they
receive, text messages should only be sent to those who explicitly request them.

Note: This library only supports service providers in North America and cannot be used to send
text messages to mobile devices that use providers outside of the United States and Canada.
Some service providers may prevent messages from being sent through their gateway to a user
that does not have unlimited text messaging as part of their service agreement.

Requirements
The SocketTools Library Edition libraries are compatible with any programming language which
supports calling functions exported from a standard dynamic link library (DLL). If you are using
Visual C++ 6.0 it is required that you have Service Pack 6 (SP6) installed. You should install all
updates for your development tools and have the current Windows SDK installed. The minimum
recommended version of Visual Studio is Visual Studio 2010.

This library is supported on Windows 7, Windows Server 2008 R2 and later versions of the desktop
and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1) installed as
a minimum requirement. It is recommended that you install the current service pack and all critical
updates available for your version of the operating system.

This product includes both 32-bit and 64-bit libraries. Native 64-bit CPU support requires the 64-
bit version of Windows 7 or later versions of the Windows operating system.

Distribution
When you distribute your application that uses this library, it is recommended that you install the
file in the same folder as your application executable. If you install the library into a shared location
on the system, it is important that you distribute the correct version for the target platform and it
should be registered as a shared DLL. This is a standard Windows dynamic link library, not an
ActiveX component, and does not require COM registration.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Text Message Functions

Function Description

SmsDisableTrace Disable logging of network function calls

SmsEnableTrace Enable logging of network function calls to a text file

SmsEnumProviders Enumerate the available wireless service providers

SmsGetErrorString Return a description for the specified error code

SmsGetFirstProvider Return information about the first supported wireless service provider

SmsGetGateway Return information about the gateway server for the specified phone number

SmsGetNextProvider Return information about the next supported wireless service provider

SmsGetProvider Return information about the wireless service provider for the specified phone
number

SmsGetLastError Return the last error code

SmsInitialize Initialize the library and validate the specified license key at runtime

SmsSendMessage Send a text message to the specified mobile device

SmsSetLastError Set the last error code

SmsUninitialize Terminate use of the library by the application

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmsDisableTrace Function

BOOL WINAPI SmsDisableTrace();

The SmsDisableTrace function disables the logging of network function calls.

Parameters
None.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstxtv11.lib

See Also
SmsEnableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmsEnableTrace Function

BOOL WINAPI SmsEnableTrace(
 LPCTSTR lpszTraceFile,
 DWORD dwTraceFlags
);

The SmsEnableTrace function enables the logging of network function calls to a text file.

Parameters
lpszTraceFile

A pointer to a string which specifies the name of the trace log file. If this parameter is NULL or
an empty string, the default file name cstrace.log is used. The file is stored in the directory
specified by the TEMP environment variable, if it is defined; otherwise, the current working
directory is used.

dwTraceFlags

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

TRACE_INFO All function calls are written to the trace file. This is the default
value.

TRACE_ERROR Only those function calls which fail are recorded in the trace file.

TRACE_WARNING Only those function calls which fail or return values which indicate
a warning are recorded in the trace file.

TRACE_HEXDUMP All functions calls are written to the trace file, plus all the data that
is sent or received is displayed, in both ASCII and hexadecimal
format.

TRACE_PROCESS All function calls in the current process are logged, rather than
only those functions in the current thread. This option is useful for
multithreaded applications that are using worker threads.

Return Value
If the function succeeds, the return value is non-zero. A return value of zero indicates an error.
Failure typically indicates that the tracing library cstrcv11.dll cannot be loaded on the local
system.

Remarks
When trace logging is enabled, the file is opened, appended to and closed for each socket
function call. This makes it possible for an application to append its own logging information,
however care should be taken to ensure that the file is closed before the next network operation is
performed. To limit the size of the log files, enable and disable logging only around those sections
of code that you wish to trace.

Note that the TRACE_HEXDUMP trace level generates very large log files since it includes all of the
data exchanged between your application and the server.

Trace function logging is managed on a per-thread basis, not for each client handle. This means
that all SocketTools libraries and components share the same settings in the current thread. If you

are using multiple SocketTools libraries or components in your application, you only need to
enable logging once.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstxtv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SmsDisableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmsEnumProviders Function

INT WINAPI SmsEnumProviders(
 LPSMSPROVIDER lpProviders,
 INT nMaxProviders,
 DWORD dwReserved
);

The SmsEnumProviders function enumerates the supported wireless service providers and
populates an array of SMSPROVIDER structures.

Parameters
lpProviders

A pointer to an array of SMSPROVIDER structures that will be populated with information about
each service provider. If this parameter is NULL, the function will return the number of service
providers that are known.

nMaxProviders

An integer value which specifies the maximum number of service providers that may be
enumerated by this function. If this parameter is zero, the function will return the number of
service providers that are known. If the lpProviders parameter is NULL, this value should be
zero.

dwReserved

A reserved parameter. This value should always be zero.

Return Value
If the function succeeds, the return value is the number of known service providers. If the function
fails, the return value is SMS_ERROR. To get extended error information, call SmsGetLastError. If
the lpProviders parameter is not NULL and the nMaxProviders parameter indicates the array is
not large enough to store all of the provider information, this function will fail with an error
indicating that the buffer is too small.

Remarks
The SmsEnumProviders function is used to enumerate all of the supported service providers,
populating an array of SMSPROVIDER structures that contains information about each provider,
such as their name, domain, region of the country they service and the maximum message size
they will accept. Typically this would be used to update a user interface control such as a listbox or
drop-down combobox, enabling a user to select a preferred service provider.

Because some programming languages may not support arrays of structures in the same way that
C/C++ does, the SmsGetFirstProvider and SmsGetNextProvider functions offer an alternative
way to easily enumerate the available service providers.

To obtain information about a single service provider, use the SmsGetProvider function.

Example
SMSPROVIDER smsProviders[MAXPROVIDERS];
INT nProviders;

nProviders = SmsEnumProviders(smsProviders, MAXPROVIDERS, 0);
if (nProviders == SMS_ERROR)
{
 DWORD dwError = SmsGetLastError();

 _tprintf(_T("An error has occurred, error code %d\n"),
(INT)LOWORD(dwError));
}
else
{
 for (INT nIndex = 0; nIndex < nProviders; nIndex++)
 _tprintf(_T("%s\n"), smsProviders[nIndex].szName);

 _tprintf(_T("%d providers returned\n"), nProviders);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstxtv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SmsGetFirstProvider, SmsGetGateway, SmsGetNextProvider, SmsGetProvider, SMSPROVIDER

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmsGetErrorString Function

INT WINAPI SmsGetErrorString(
 DWORD dwErrorCode,
 LPTSTR lpszDescription,
 INT cbDescription
);

The SmsGetErrorString function is used to return a description of a specific error code. Typically
this is used in conjunction with the SmsGetLastError function for use with warning dialogs or as
diagnostic messages.

Parameters
dwErrorCode

The last-error code for which a description is returned.

lpszDescription

A pointer to the buffer that will contain a description of the specified error code. This buffer
should be at least 128 characters in length.

cbDescription

The maximum number of characters that may be copied into the description buffer.

Return Value
If the function succeeds, the return value is the length of the description string. If the function fails,
the return value is zero, meaning that no description exists for the specified error code. Typically
this indicates that the error code passed to the function is invalid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstxtv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SmsGetLastError, SmsSetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmsGetFirstProvider Function

BOOL WINAPI SmsGetFirstProvider(
 LPSMSPROVIDER lpProvider,
 LPDWORD lpdwToken,
);

The SmsGetFirstProvider function returns information about the first supported wireless service
provider.

Parameters
lpProvider

A pointer to an SMSPROVIDER structure that will contain information about the service provider.
This parameter cannot be NULL.

lpdwToken

A pointer to an unsigned integer value that is used when enumerating the service providers.
The value will be initialized by this function and the modified by subsequent calls to the
SmsGetNextProvider function. This parameter cannot be NULL.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call SmsGetLastError.

Remarks
The SmsGetFirstProvider function is used in conjunction with SmsGetNextProvider to
enumerate all of the supported wireless providers available to the client. These two functions can
be used as an alternative to the SmsEnumProviders function, which may not be easily used with
some programming languages because it populates an array of data structures rather than a
single structure. The data that is returned is identical, the only difference is the method by which
the service providers are enumerated.

The lpdwToken parameter is used to maintain context between multiple calls to the
SmsGetNextProvider function. It should be treated as an opaque value and never modified
directly by the application.

Example
SMSPROVIDER smsProvider;
DWORD dwToken;
BOOL bResult;

bResult = SmsGetFirstProvider(&smsProvider, &dwToken);
while (bResult)
{
 pListBox->AddString(smsProvider.szName);
 bResult = SmsGetNextProvider(&smsProvider, &dwToken);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstxtv11.lib

Unicode: Implemented as Unicode and ANSI versions.

See Also
SmsEnumProviders, SmsGetGateway, SmsGetNextProvider, SMSPROVIDER

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmsGetGateway Function

INT WINAPI SmsGetGateway(
 LPCTSTR lpszPhoneNumber,
 LPCTSTR lpszProvider,
 LPSMSGATEWAY lpGateway
);

The SmsGetGateway function returns text message service information for a phone number.

Parameters
lpszPhoneNumber

A pointer to a string which specifies the telephone number that you wish to obtain information
about. Any whitespace, punctuation or other non-numeric characters in the string will be
ignored. This parameter cannot be NULL.

lpszProvider

A pointer to a string which specifies the preferred service provider for this telephone number. If
the preferred service provider is unknown, this parameter can be NULL and the default provider
will be selected.

lpGateway

A pointer to an SMSGATEWAY structure that will contain information about the text message
gateway when the function returns. This includes information such as the name of the provider,
the server that will accept text messages for this phone number, and the recipient address that
should be used. This parameter cannot be NULL.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
SMS_ERROR. To get extended error information, call SmsGetLastError.

Remarks
The SmsGetGateway function returns information about the service provider and mail gateway
for a specific phone number, and can be used to determine if a given phone number is assigned
to a mobile device capable of receiving text messages. This is done by sending an query to a
server that will check the phone number against a database of known providers and the phone
numbers that have been allocated for wireless devices. If the phone number is valid, information
will be returned about the provider that is responsible for that number along with information
about its text message gateway service.

If the lpszProvider parameter is not NULL, this will identify a preferred provider for the phone
number specified. In the United States and Canada, most wireless common carriers are required to
provide wireless number portability (WNP) which allows a customer to continue to use their
current phone number even if they switch to another service provider. This can result in a situation
where a specific phone number is shown as allocated to one provider, but in actuality that user
has switched to a different provider. For example, a user may have originally purchased a phone
and service with AT&T and then later switched to Verizon, but decided to keep their phone
number. In this case, if Verizon was not specified as the preferred provider, the library would
attempt to send the message to the AT&T gateway, since that was the original provider who
allocated the phone number.

For most applications, the correct way to handle the situation in which a user may have switched
to a different service provider is to allow them to select an alternate service provider in your user

interface. For example, you could display a drop-down list of available service providers,
populated using the SmsEnumProviders function. If they select a preferred provider, then you
would pass that value to this function. If they do not, then specify a NULL pointer and the default
provider will be selected.

This function sends an HTTP query to the server api.sockettools.com to obtain information about
the phone number and wireless service provider. This requires that the local system can establish a
standard network connection over port 80. If the client cannot connect to the server, the function
will fail and an appropriate error will be returned. The server imposes a limit on the maximum
number of connections that can be established and the maximum number of requests that can be
issued per minute. If this function is called multiple times over a short period, the library may also
force the application to block briefly. Server responses are cached per session, so calling this
function multiple times using the same phone number will not increase the request count.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstxtv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SmsEnumProviders, SmsGetProvider, SMSGATEWAY

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmsGetLastError Function

DWORD WINAPI SmsGetLastError();

Parameters
None.

Return Value
The return value is the last error code value for the current thread. Functions set this value by
calling the SmsSetLastError function. The Return Value section of each reference page notes the
conditions under which the function sets the last error code.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. You should call
the SmsGetLastError function immediately when a function's return value indicates that an error
has occurred. That is because some functions call SmsSetLastError(0) when they succeed,
clearing the error code set by the most recently failed function.

Most functions will set the last error code value when they fail; a few functions set it when they
succeed. Function failure is typically indicated by a return value such as FALSE, NULL,
INVALID_CHANNEL or SMS_ERROR. Those functions which call SmsSetLastError when they
succeed are noted on the function reference page.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstxtv11.lib

See Also
SmsGetErrorString, SmsSetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmsGetNextProvider Function

BOOL WINAPI SmsGetNextProvider(
 LPSMSPROVIDER lpProvider,
 LPDWORD lpdwToken,
);

The SmsGetNextProvider function returns information about the next supported wireless service
provider.

Parameters
lpProvider

A pointer to an SMSPROVIDER structure that will contain information about the service provider.
This parameter cannot be NULL.

lpdwToken

A pointer to an unsigned integer value that is used when enumerating the service providers.
The value will be initialized by the SmsGetFirstProvider function and the modified by
subsequent calls to this function. This parameter cannot be NULL.

Return Value
If the function succeeds, the return value is non-zero. If the last service provider has been
enumerated or the function fails, the return value is zero. To get extended error information, call
SmsGetLastError.

Remarks
The SmsGetNextProvider function is used in conjunction with SmsGetFirstProvider to
enumerate all of the supported wireless providers available to the client. These two functions can
be used as an alternative to the SmsEnumProviders function, which may not be easily used with
some programming languages because it populates an array of data structures rather than a
single structure. The data that is returned is identical, the only difference is the method by which
the service providers are enumerated.

The lpdwToken parameter is used to maintain context between multiple calls to this function. It
should be treated as an opaque value and never modified directly by the application.

Example
SMSPROVIDER smsProvider;
DWORD dwToken;
BOOL bResult;

bResult = SmsGetFirstProvider(&smsProvider, &dwToken);
while (bResult)
{
 pListBox->AddString(smsProvider.szName);
 bResult = SmsGetNextProvider(&smsProvider, &dwToken);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstxtv11.lib

Unicode: Implemented as Unicode and ANSI versions.

See Also
SmsEnumProviders, SmsGetGateway, SmsGetNextProvider, SMSPROVIDER

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmsGetProvider Function

INT WINAPI SmsGetProvider(
 LPCTSTR lpszPhoneNumber,
 LPSMSPROVIDER lpProvider
);

The SmsGetProvider function returns information about the service provider for the specified
phone number.

Parameters
lpszPhoneNumber

A pointer to a string which specifies the telephone number that you wish to obtain information
about. Any whitespace, punctuation or other non-numeric characters in the string will be
ignored. This parameter cannot be NULL.

lpProvider

A pointer to an SMSPROVIDER structure that will contain information about the service provider
for the specified phone number.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
SMS_ERROR. To get extended error information, call SmsGetLastError.

Remarks
The SmsGetProvider function returns information about the service provider associated with a
phone number. This is done by sending an query to a server that will check the phone number
against a database of known providers and the phone numbers that have been allocated for
wireless devices. If the phone number is valid, information will be returned about the provider that
is responsible for that number.

Because most wireless carriers in the United States and Canada must provide for wireless number
portability, there is the possibility that the provider information returned may no longer
correspond to the telephone number. It is recommended that you provide your end-user with the
ability to specify an alternate preferred provider to use when sending the text message. For more
information, refer to the SmsGetGateway function.

This function sends an HTTP query to the server api.sockettools.com to obtain information about
the wireless service provider. This requires that the local system can establish a standard network
connection over port 80. If the client cannot connect to the server, the function will fail and an
appropriate error will be returned. The server imposes a limit on the maximum number of
connections that can be established and the maximum number of requests that can be issued per
minute. If this function is called multiple times over a short period, the library may also force the
application to block briefly. Server responses are cached per session, so calling this function
multiple times using the same phone number will not increase the request count.

For a list of all supported wireless service providers, use the SmsEnumProviders function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstxtv11.lib

Unicode: Implemented as Unicode and ANSI versions.

See Also
SmsEnumProviders, SmsGetGateway, SMSPROVIDER

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmsInitialize Function

BOOL WINAPI SmsInitialize(
 LPCTSTR lpszLicenseKey,
 LPINITDATA lpData
);

The SmsInitialize function initializes the library and validates the specified license key at runtime.

Parameters
lpszLicenseKey

Pointer to a string that specifies the runtime license key to be validated. If this parameter is
NULL, the library will validate the development license installed on the local system.

lpData

Pointer to an INITDATA data structure. This parameter may be NULL if the initialization data for
the library is not required.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call SmsGetLastError. All other client functions will fail until a
license key has been successfully validated.

Remarks
This must be the first function that an application calls before using any of the other functions in
the library. When a NULL license key is specified, the library will only function on the development
system. Before redistributing the application to an end-user, you must insure that this function is
called with a valid license key.

If the lpData argument is specified, it must point to an INITDATA structure which has been
initialized by setting the dwSize member to the size of the structure. All other structure members
should be set to zero. If the function is successful, then the INITDATA structure will be filled with
identifying information about the library.

Although it is only required that SmsInitialize be called once for the current process, it may be
called multiple times; however, each call must be matched by a corresponding call to
SmsUninitialize.

This function dynamically loads other system libraries and allocates thread local storage. If you are
calling the functions in this library from within another DLL, it is important that you do not call the
SmsInitialize or SmsUninitialize functions from the DllMain function because it can result in
deadlocks or access violation errors. If the DLL is linked with the C runtime library (CRT), it will
automatically call the constructors and destructors for static and global C++ objects and has the
same restrictions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstxtv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also

SmsSendMessage, SmsUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmsSendMessage Function

INT WINAPI SmsSendMessage(
 LPSMSSERVICE lpService,
 LPSMSMESSAGE lpMessage,
 DWORD dwReserved,
);

The SmsSendMessage function sends a text message to the specified mobile device.

Parameters
lpService

A pointer to an SMSSERVICE structure that identifies the messaging service that will be used to
send the text message. The default service sends the message through the mail server gateway
for the wireless service provider associated with the recipient's phone number. This parameter
cannot be NULL.

lpMessage

A pointer to an SMSMESSAGE structure that contains information about the message to be
sent, including the sender, the recipient and the text message itself. This parameter cannot be
NULL.

dwReserved

A reserved parameter. This value should always be zero.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
SMS_ERROR. To get extended error information, call SmsGetLastError.

Remarks
The SmsSendMessage function is used to send a text message to a mobile device. This API is
designed to support multiple methods of sending text messages, with the default method sending
the message through a server gateway established by the wireless service provider.

SMS_SERVICE_SMTP
This message service sends the message through the wireless service provider's mail gateway
using the SMTP protocol. However, it is important to note that many of these gateways will not
accept messages from a client that is connected to them using a residential Internet service
provider. If the application is being run on a system that uses a residential provider, that service
provider may also block outbound connections to all mail servers other than their own. These anti-
spam measures typically require that most end-user applications specify a relay mail server rather
than submitting the message directly to the wireless provider's gateway.

Because most wireless carriers in the United States and Canada must provide for wireless number
portability, there is the possibility that the provider information returned may no longer
correspond to the telephone number. It is recommended that you provide your end-user with the
ability to specify an alternate preferred provider to use when sending the text message. For more
information, refer to the SmsGetGateway function.

This service also sends an HTTP query to the server api.sockettools.com to obtain information
about the phone number and wireless service provider. This requires that the local system can
establish a standard network connection over port 80. If the client cannot connect to the server,
the function will fail and an appropriate error will be returned. The server imposes a limit on the

maximum number of connections that can be established and the maximum number of requests
that can be issued per minute. If this function is called multiple times over a short period, the
library may also force the application to block briefly. Server responses are cached per session, so
calling this function multiple times using the same phone number will not increase the request
count.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstxtv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
SmsGetGateway, SmsGetProvider, SMSMESSAGE, SMSSERVICE

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmsSetLastError Function

VOID WINAPI SmsSetLastError(
 DWORD dwErrorCode
);

The SmsSetLastError function sets the error code for the current thread. This function is typically
used to clear the last error by passing a value of zero as the parameter.

Parameters
dwErrorCode

Specifies the error code for the current thread.

Return Value
None.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. Most functions will
set the last error code value when they fail; a few functions set it when they succeed. Function
failure is typically indicated by a return value such as FALSE, NULL, INVALID_CLIENT or
SMS_ERROR. Those functions which call SmsSetLastError when they succeed are noted on the
function reference page.

Applications can retrieve the value saved by this function by using the SmsGetLastError function.
The use of SmsGetLastError is optional; an application can call the function to determine the
specific reason for a function failure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstxtv11.lib

See Also
SmsGetErrorString, SmsGetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SmsUninitialize Function

VOID WINAPI SmsUninitialize();

The SmsUninitialize function terminates the use of the library.

Parameters
There are no parameters.

Return Value
None.

Remarks
An application is required to perform a successful SmsInitialize call before it can call any of the
other the library functions. When it has completed the use of library, the application must call
SmsUninitialize to allow the library to free any resources allocated on behalf of the process. Any
pending blocking or asynchronous calls in this process are canceled without posting any
notification messages, and all sockets that were opened by the process are closed.

There must be a call to SmsUninitialize for every successful call to SmsInitialize made by a
process. In a multithreaded environment, operations for all threads in the client are terminated.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstxtv11.lib

See Also
SmsInitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Text Message Data Structures

SMSGATEWAY
SMSMESSAGE
SMSPROVIDER
SMSSERVICE

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 INITDATA Structure

This structure contains information about the SocketTools library when the initialization function
returns.

typedef struct _INITDATA
{
 DWORD dwSize;
 DWORD dwVersionMajor;
 DWORD dwVersionMinor;
 DWORD dwVersionBuild;
 DWORD dwOptions;
 DWORD_PTR dwReserved1;
 DWORD_PTR dwReserved2;
 TCHAR szDescription[128];
} INITDATA, *LPINITDATA;

Members
dwSize

Size of this structure. This structure member must be set to the size of the structure prior to
calling the initialization function. Failure to do so will cause the function to fail.

dwVersionMajor

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the major version number for the library.

dwVersionMinor

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the minor version number for the library.

dwVersionBuild

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the build number for the library.

dwOptions

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

dwReserved1

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

dwReserved2

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

szDescription

A null terminated string which describes the library.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SMSGATEWAY Structure

This structure contains information about a text message gateway server and the recipient.

typedef struct _SMSGATEWAY
{
 INT nGatewayId;
 INT nCountryCode;
 INT nAreaCode;
 INT nExchange;
 INT nMessageLength;
 DWORD dwReserved;
 TCHAR szProvider[SMS_MAXPROVIDERNAMELEN];
 TCHAR szDomain[SMS_MAXDOMAINNAMELEN];
 TCHAR szServer[SMS_MAXMAILSERVERLEN];
 TCHAR szAddress[SMS_MAXMAILADDRESSLEN];
} SMSCHANNEL, *LPSMSCHANNEL;

Members
nGatewayId

An integer value which identifies the gateway record. This value is used internally and an
application should not depend on the value not changing over time for a specific telephone
number. As new area codes are introduced, the provider database will be updated to reflect
these changes and that can result in a change to the gateway ID associated with a specific
telephone number.

nCountryCode

An integer value which specifies the ITU country calling code associated with the service
provider. Currently this value will always be 1, which is the country code used by North
American service providers. If the service provider database is expanded to include additional
countries in the future, this value will identify the country of origin.

nAreaCode

An integer value which specifies the Numbering Plan Area (NPA) code, commonly known as the
area code. For the United States and Canada, area codes are assigned by the North American
Numbering Plan Administration (NANPA). In North America, the area code is digits 1-3 for a 10-
digit telephone number. This value, along with the exchange, is used to determine which
company provides wireless service for a specific telephone number.

nExchange

An integer value which specifies the exchange area. In North America, the exchange is digits 4-6
for a 10-digit telephone number. This value, along with the area code, is used to determine
which company provides wireless service for a specific telephone number.

nMessageLength

An integer value which specifies the maximum number of characters that the service provider
will accept for a single text message. If the message exceeds this number of characters, the
service provider may reject the message, or it may split the message into multiple messages.

dwReserved

A value reserved for internal use.

szProvider

A pointer to a string which identifies the name of the service provider that is associated with the
specified telephone number. Note that this value may not represent the actual company that is

providing the wireless service.

szDomain

A pointer to a string which identifies the gateway domain name used by the service provider to
accept text messages for their customer. This domain name is used to determine the actual
name of the gateway mail server that is responsible for accepting messages.

szServer

A pointer to a string which identifies the host name or IP address of the mail server used to
accept text messages for the specified service provider. In some cases, a provider may have
multiple gateway servers and this value will represent the preferred mail server for the domain.

szAddress

A pointer to a string which contains the complete email address that should be used when
sending the text message through the gateway mail server. Different service providers can have
slightly different rules about how the address is formatted, but it typically is a combination of the
telephone number and the gateway domain name.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SMSMESSAGE Structure

This structure provides information about a text message.

typedef struct _SMSMESSAGE
{
 DWORD dwFormat;
 DWORD dwLength;
 DWORD dwFlags;
 DWORD dwReserved;
 LPCTSTR lpszProvider;
 LPCTSTR lpszPhoneNumber;
 LPCTSTR lpszSender;
 LPCTSTR lpszMessage;
} SMSMESSAGE, *LPSMSMESSAGE;

Members
dwFormat

An integer value which specifies the format of the message message. This member is included
for future use where a service provider supports multiple message formats based on different
versions of the protocol. The default value for this member is SMS_FORMAT_TEXT.

dwLength

An integer value which specifies the length of the message. If this member is zero, the length
will be automatically calculated based on the length of the lpszMessage text that is terminated
by a null character. If this value is larger than the actual length of the message text, it will be
ignored.

dwFlags

An integer value which specifies one or more message options.

Constant Description

SMS_MESSAGE_DEFAULT The default value used with standard text messages.

SMS_MESSAGE_URGENT The text message should be flagged as urgent. For
messages that are sent through a mail gateway, this will set
the header to indicate that it is a high priority message.
Note that service providers handle urgent messages
differently and some may ignore the message priority.

dwReserved

Reserved for future use. This value should always be zero.

lpszProvider

A pointer to a null terminated string which specifies the name of the preferred wireless service
provider responsible for handling the message. If this member is NULL or an empty string, the
default provider assigned to the recipient's phone number will be used. This structure member
is only used with SMS_SERVICE_SMTP messages and is ignored for other message services.

lpszPhoneNumber

A pointer to a null terminated string which specifies the recipient's phone number. This can be a
standard E.164 formatted number or an unformatted number. Any extraneous whitespace,
punctuation or other non-numeric characters in the string will be ignored. This structure
member cannot be NULL.

lpszSender

A pointer to a null terminated string which identifies the sender of the message. For
SMS_SERVICE_SMTP messages, this string should be a valid email address. For other services,
this string may specify a phone number or shortcode. This structure member cannot be NULL.

lpszMessage

A pointer to a null terminated string that contains the message to be sent to the recipient. In
most cases, a message should not exceed 160 characters in length, although some service
providers may accept longer messages. If a message exceeds the maximum number of
characters accepted by a service provider, the message may be ignored or it may be split into
multiple messages.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

See Also
SmsSendMessage, SMSSERVICE

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SMSPROVIDER Structure

This structure contains information about a wireless service provider.

typedef struct _SMSPROVIDER
{
 INT nProviderId;
 INT nCountryCode;
 INT nRegionCode;
 INT nMessageLength;
 DWORD dwFlags;
 DWORD dwReserved;
 TCHAR szGuid[SMS_MAXPROVIDERGUIDLEN];
 TCHAR szName[SMS_MAXPROVIDERNAMELEN];
 TCHAR szCompany[SMS_MAXCOMPANYNAMELEN];
 TCHAR szDomain[SMS_MAXDOMAINNAMELEN];
} SMSPROVIDER, *LPSMSPROVIDER;

Members
nProviderId

An integer value which identifies the provider record. This value is used internally and an
application should not depend on the value not changing over time for a specific service
provider. To uniquely identify a provider, use the szGuid member of the structure, which is
guaranteed not to change as providers are added and removed from the database.

nCountryCode

An integer value which specifies the ITU country calling code associated with the service
provider. Currently this value will always be 1, which is the country code used by North
American service providers. If the service provider database is expanded to include additional
countries in the future, this value will identify the country of origin.

nRegionCode

An integer value which identifies the region that the service provider covers. In North America,
each region consists of multiple states and/or provinces. If a provider services multiple regions,
this will identify the primary region where they provide coverage.

Constant Description

SMS_REGION_NATIONAL
0

All regions. This region code is used for
service providers that have national coverage
and do not exclusively provide service within
one or more specific geographical regions.

SMS_REGION_NORTH_EAST_ATLANTIC

1

Northeastern Atlantic region which includes
Connecticut, Maine, Massachusetts, New
Hampshire, New Brunswick, Newfoundland,
Nova Scotia, Rhode Island and Vermont.

SMS_REGION_MIDDLE_ATLANTIC
2

Middle Atlantic region which includes New
Jersey, New York, Delaware, District of
Columbia, Maryland, Pennsylvania, Quebec,
Virginia and West Virginia.

SMS_REGION_EAST_NORTH_CENTRAL
3

Northeastern central region which includes
Illinois, Indiana, Michigan, Ohio and

Wisconsin.

SMS_REGION_SOUTH_ATLANTIC
4

Southern Atlantic region which includes
Florida, Georgia, North Carolina and South
Carolina.

SMS_REGION_EAST_SOUTH_CENTRAL
5

Southeastern central region which includes
Alabama, Kentucky, Mississippi and
Tennessee.

SMS_REGION_WEST_NORTH_CENTRAL

6

Northwestern central region which includes
Iowa, Kansas, Manitoba, Minnesota, Missouri,
Nebraska, North Dakota, Ontario and South
Dakota.

SMS_REGION_WEST_SOUTH_CENTRAL

7

Southwestern central region which includes
Arkansas, Louisiana, Oklahoma and Texas.

SMS_REGION_MOUNTAIN
8

Mountain region which includes Alberta,
Arizona, Colorado, Idaho, Montana, Nevada,
New Mexico, Northwest Territories,
Saskatchewan, Utah and Wyoming.

SMS_REGION_PACIFIC
9

Pacific region which includes Alaska, British
Columbia, California, Hawaii, Oregon,
Washington and Yukon.

nMessageLength

An integer value which specifies the maximum number of characters that the service provider
will accept for a single text message. If the message exceeds this number of characters, the
service provider may reject the message, or it may split the message into multiple messages.

dwFlags

An unsigned integer value which specifies one or more flags that provides additional
information about the service provider. This value is constructed by using a bitwise operator
with any of the following constants:

Constant Description

SMS_PROVIDER_DEFAULT

0

A standard service provider. Typically this means that
customers have a service contract for their mobile device
and pay monthly access and service charges.

SMS_PROVIDER_PREPAID

1

A service provider that offers pre-paid calling cards or
fixed month-to-month payments that do not require long-
term service contracts.

dwReserved

A value reserved for internal use.

szGuid

A pointer to a string which uniquely identifies the service provider. The string is in a standard
format used for globally unique identifiers (GUIDs) and is guaranteed to not change for the
service provider it has been assigned to.

szName

A pointer to a string which specifies the name of service provider. Note that this value may not
represent the actual company that is providing the wireless service.

szCompany

A pointer to a string which specifies the name of the company associated with the service
provider. This may be the same as name of the service provider itself or it may be the name of a
parent company that owns the service provider.

szDomain

A pointer to a string which identifies the gateway domain name used by the service provider to
accept text messages for their customer. This domain name is used to determine the actual
name of the gateway mail server that is responsible for accepting messages.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SMSSERVICE Structure

This structure provides information about the service used to send a text message.

typedef struct _SMSSERVICE
{
 DWORD dwServiceType;
 DWORD dwAuthType;
 DWORD dwVersion;
 DWORD dwTimeout;
 DWORD dwOptions;
 DWORD dwReserved;
 LPCTSTR lpszResource;
 LPCTSTR lpszAccount;
 LPCTSTR lpszUserName;
 LPCTSTR lpszPassword;
} SMSSERVICE, *LPSMSSERVICE;

Members
dwServiceType

An integer value which identifies the type of service that will be used to send the message. This
member can be one of the following values:

Constant Description

SMS_SERVICE_SMTP The text message will be sent through the mail gateway for the
specified service provider. This service uses SMTP to submit the
message for delivery, either directly to the server provider's mail
gateway server or through a relay server. This is the default
service type.

dwAuthType

An integer value which identifies the type of authentication used with the service. This member
can be one of the following values:

Constant Description

SMS_AUTH_DEFAULT The default authentication method for this service type
should be used. Most applications should use this value
unless a service type provides multiple authentication
methods.

SMS_AUTH_USERNAME The service requires authentication using a username and
password. This value can be used with an SMTP service that
requires user authentication and is typically needed when
using a mail server relay. For the SMS_SERVICE_SMTP service,
this is the default authentication method.

dwVersion

An integer value which identifies the interface version for the service being used. This member is
included for future use where a service may support multiple versions of their interface and
should normally be set to the value SMS_VERSION_DEFAULT.

dwTimeout

An integer value which specifies the amount of time in seconds that a function will wait for a

response from the service. If this value is zero, a default timeout period of 20 seconds will be
used. If the service does not respond within this time period, the function will fail.

dwOptions

An integer value which specifies one or more options.

Constant Description

SMS_OPTION_NONE No additional options for the service.

SMS_OPTION_SECURE This option specifies that SSL/TLS will be used to establish a
secure, encrypted connection with the service. For some
services, it may be required to connect to them securely and
this option will be enabled automatically.

dwReserved

Reserved for future use. This value should always be zero.

lpszResource

A pointer to a null terminated string that specifies a resource for the service. Typically this will be
either a fully qualified domain name or a URL. For gateways using SMTP, this string should
identify the mail server. An alternate port number can also be specified by appending it to the
hostname, separated by a colon. For example, smtp.company.com:587 would connect to the
server on port 587. If you are specifying an IPv6 address with an alternate port number, the
address must be enclosed in brackets. For services where a domain name or resource URL is not
required, this member will be ignored and can be NULL.

lpszAccount

A pointer to a null terminated string that specifies an account name or identifier. Some service
providers may require a unique account name or a token (application ID) in conjunction with
other credentials. This member is not used with mail gateways and ignored if the service type is
SMS_SERVICE_SMTP. If no account name is required for session authentication, this member
can be NULL.

lpszUserName

A pointer to a null terminated string that specifies a user name to authenticate the session. If the
authentication type is SMS_AUTH_USERNAME this member must specify a valid user name. If no
authentication is required, this member may be NULL. Note that some service providers may
use terminology other than "username" with their documentation; this member will always
specify the first of a pair of authentication tokens.

lpszPassword

A pointer to a null terminated string that specifies the password used to authenticate the
session. If the authentication type is SMS_AUTH_USERNAME this member must specify a valid
password. If no authentication is required, this member may be NULL. Note that some service
providers may use terminology other than "password" with their documentation; this member
will always specify the second of a pair of authentication tokens.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

See Also
SmsSendMessage, SMSMESSAGE

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Time Protocol Library

Query a time server for the current time and synchronize the local system clock with that value.

Reference

Functions
Data Structures
Error Codes

Library Information

File Name CSTIMV11.DLL

Version 11.0.2180.1635

LibID B8642781-FD81-4457-BE92-60730AB11246

Import Library CSTIMV11.LIB

Dependencies None

Standards RFC 868

Overview
The Time Protocol library provides an interface for synchronizing the local system's time and date
with that of a server. The time values returned are in in Coordinated Universal Time and be
adjusted for the local host's timezone. The library enables developers to query a server for the
current time and then update the system clock if desired.

Requirements
The SocketTools Library Edition libraries are compatible with any programming language which
supports calling functions exported from a standard dynamic link library (DLL). If you are using
Visual C++ 6.0 it is required that you have Service Pack 6 (SP6) installed. You should install all
updates for your development tools and have the current Windows SDK installed. The minimum
recommended version of Visual Studio is Visual Studio 2010.

This library is supported on Windows 7, Windows Server 2008 R2 and later versions of the desktop
and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1) installed as
a minimum requirement. It is recommended that you install the current service pack and all critical
updates available for your version of the operating system.

This product includes both 32-bit and 64-bit libraries. Native 64-bit CPU support requires the 64-
bit version of Windows 7 or later versions of the Windows operating system.

Distribution
When you distribute your application that uses this library, it is recommended that you install the
file in the same folder as your application executable. If you install the library into a shared location
on the system, it is important that you distribute the correct version for the target platform and it
should be registered as a shared DLL. This is a standard Windows dynamic link library, not an
ActiveX component, and does not require COM registration.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Time Protocol Functions

Function Description

ConvertNetworkTime Convert network time to system time

ConvertSystemTime Convert system time to network time

GetNetworkTime Return the current network time from the server

QueryNetworkTime Query the server for the network time

ReadNetworkTime Read the network time returned by the server

TimeDisableTrace Disable logging of network function calls to the trace log

TimeEnableTrace Enable logging of network function calls to a file

TimeGetErrorString Return a description for the specified error code

TimeGetLastError Return the last error code

TimeInitialize Initialize the library and validate the specified license key at runtime

TimeSetLastError Set the last error code

TimeUninitialize Terminate use of the library by the application

UpdateLocalTime Update the local system time with the network time

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ConvertNetworkTime Function

BOOL WINAPI ConvertNetworkTime(
 DWORD dwNetworkTime,
 LPSYSTEMTIME lpSystemTime,
 BOOL bLocalTime
);

The ConvertNetworkTime function converts the specified network time, adjusting for the local
timezone if required. The network time is a 32-bit number, represented as the number of seconds
since midnight, 1 January 1900 UTC.

Parameters
dwNetworkTime

The network time to be converted.

lpSystemTime

A pointer to a SYSTEMTIME structure which will be modified for the specified network time.

bLocalTime

A boolean flag that is used to specify if the network time should be adjusted for the local
timezone.

Return Value
If the network time could be converted, the function returns a non-zero value. If the network time
cannot be converted, or the pointer to the SYSTEMTIME structure is invalid, the function will return
zero.

Remarks
The network time value can represent a date and time up to the year 2036.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstimv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ConvertSystemTime

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ConvertSystemTime Function

DWORD WINAPI ConvertSystemTime(
 LPSYSTEMTIME lpSystemTime
);

The ConvertSystemTime function converts the specified system time to network time. The
network time value is a 32-bit number, represented as the number of seconds since midnight, 1
January 1900 UTC.

Parameters
lpSystemTime

A pointer to a SYSTEMTIME structure which will be modified for the specified network time.

Return Value
If the system time could be converted, the function returns the number of seconds since midnight,
1 January 1900 UTC. If the pointer to the SYSTEMTIME structure is invalid, or the structure contains
invalid data, the function will return zero.

Remarks
The network time value can represent a date and time up to the year 2036.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstimv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ConvertNetworkTime, UpdateLocalTime

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 GetNetworkTime Function

DWORD WINAPI GetNetworkTime(
 LPCTSTR lpszRemoteHost,
 UINT nRemotePort,
 UINT nTimeout
);

The GetNetworkTime function returns the network time from the specified host. The network
time is a 32-bit number, represented as the number of seconds since midnight, 1 January 1900
UTC.

Parameters
lpszRemoteHost

A pointer to the name of the server. The host must be running a time server that complies with
the specifications outlined in RFC 868.

nRemotePort

The port the time server is running on. A value of zero indicates that the default port number
for the service should be used.

nTimeout

The number of seconds that the function will wait for a response from the server.

Return Value
If the function succeeds, it returns the number of seconds since midnight, 1 January 1900 UTC. If
the function was unable to obtain the time from the specified host, it returns zero.

Remarks
The GetNetworkTime function will cause the calling thread to block until the time is returned by
the server, or the operation times out. For applications which require asynchronous operation, the
QueryNetworkTime function should be used instead.

The network time value can represent a date and time up to the year 2036. It is important to note
that the network time value is not the same as the UNIX time value that is used the standard C
library time functions.

In the United States, the National Institute of Standards and Technology (NIST) hosts a number of
public servers which can be used to obtain the current time. The following table lists the current
host names and addresses:

Server Name IP Address Location

time-a.nist.gov 129.6.15.28 Gaithersburg, Maryland

time-b.nist.gov 129.6.15.29 Gaithersburg, Maryland

time-nw.nist.gov 131.107.13.100 Redmond, Washington

time-a.timefreq.bldrdoc.gov 132.163.4.101 Boulder, Colorado

time-b.timefreq.bldrdoc.gov 132.163.4.102 Boulder, Colorado

time-c.timefreq.bldrdoc.gov 132.163.4.103 Boulder, Colorado

Time servers are also commonly maintained by Internet service providers and universities. If you
are unable to obtain the time from a server, contact the system administrator to determine if they

have the standard time service available on port 37.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstimv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ConvertNetworkTime, QueryNetworkTime, ReadNetworkTime, TimeInitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 QueryNetworkTime Function

HCLIENT WINAPI QueryNetworkTime(
 LPCTSTR lpszRemoteHost,
 UINT nRemotePort,
 HWND hEventWnd,
 UINT uEventMsg
);

The QueryNetworkTime function connects to the specified server and issues a request for the
current network time. The handle is passed as a parameter to the ReadNetworkTime function to
read the value returned by the server.

Parameters
lpszRemoteHost

A pointer to the name of the server. The host must be running a time server that complies with
the specifications outlined in RFC 868.

nRemotePort

The port the time server is running on. A value of zero indicates that the default port number
for the service (37) should be used.

hEventWnd

A handle to the window that will receive the notification that the network time has been
returned by the server.

uEventMsg

The notification message that will be sent to the window, indicating that the client has received
the network time from the server.

Return Value
If the function succeeds, it returns a handle which can be used with the obtain the network time. If
the function fails, it returns INVALID_CLIENT. To get extended error information, call
TimeGetLastError.

Remarks
When a message is posted to the notification window, the low word of the lParam parameter
contains the event identifier. The high word of lParam contains the low word of the error code, if
an error has occurred. The wParam parameter contains the client handle. One or more of the
following event identifiers may be sent:

Constant Description

TIME_EVENT_QUERY The connection to the server has completed and the request for the
time has been sent. The client should wait for the response from the
server.

TIME_EVENT_REPLY The server has replied to the request for the time. The client should
call the ReadNetworkTime function to read the value returned by the
server.

TIME_EVENT_TIMEOUT The network operation has exceeded the specified timeout period. The
client application may attempt to retry the operation, or may
disconnect from the server and report an error to the user.

TIME_EVENT_CANCEL The current operation has been canceled. Under most circumstances
the client should disconnect from the server and re-connect if needed.
After an operation has been canceled, the server may abort the
connection or refuse to accept further commands from the client.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstimv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ConvertNetworkTime, GetNetworkTime, ReadNetworkTime, UpdateLocalTime

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ReadNetworkTime Function

DWORD WINAPI ReadNetworkTime(
 HCLIENT hClient
);

The ReadNetworkTime function returns the network time from the specified host.

Parameters
hClient

The client handle.

Return Value
If the function succeeds, it returns the number of seconds since midnight, 1 January 1900 UTC. If
the function was unable to read the time from the specified host, it returns zero.

Remarks
The ReadNetworkTime function reads the time value returned by the server using the handle
returned by the QueryNetworkTime function. The network time value can represent a date and
time up to the year 2036.

To convert the time value to a SYSTEMTIME structure, use the ConvertNetworkTime function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstimv11.lib

See Also
ConvertNetworkTime, QueryNetworkTime

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TimeAttachThread Function

DWORD WINAPI TimeAttachThread(
 HCLIENT hClient
 DWORD dwThreadId
);

The TimeAttachThread function attaches the specified client handle to another thread.

Parameters
hClient

Handle to the client session.

dwThreadId

The ID of the thread that will become the new owner of the handle. A value of zero specifies
that the current thread should become the owner of the client handle.

Return Value
If the function succeeds, the return value is the thread ID of the previous owner. If the function
fails, the return value is TIME_ERROR. To get extended error information, call TimeGetLastError.

Remarks
When a client handle is created, it is associated with the current thread that created it. Normally, if
another thread attempts to perform an operation using that handle, an error is returned since it
does not own the handle. This is used to ensure that other threads cannot interfere with an
operation being performed by the owner thread. In some cases, it may be desirable for one
thread in a client application to create the client handle, and then pass that handle to another
worker thread. The TimeAttachThread function can be used to change the ownership of the
handle to the new worker thread. By preserving the return value from the function, the original
owner of the handle can be restored before the worker thread terminates.

This function should be called by the new thread immediately after it has been created, and if the
new thread does not release the handle itself, the ownership of the handle should be restored to
the parent thread before it terminates. Under no circumstances should TimeAttachThread be
used to forcibly release a handle allocated by another thread while a blocking operation is in
progress. To cancel an operation, use the TimeCancel function and then release the handle after
the blocking function exits and control is returned to the current thread.

Note that the dwThreadId parameter is presumed to be a valid thread ID and no checks are
performed to ensure that the thread actually exists. Specifying an invalid thread ID will orphan the
handle until the TimeUninitialize function is called.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstimv11.lib

See Also
QueryNetworkTime, ReadNetworkTime, TimeInitialize, TimeUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TimeDisableEvents Function

INT WINAPI TimeDisableEvents(
 HCLIENT hClient
);

The TimeDisableEvents function disables the event notification mechanism, preventing
subsequent event notification messages from being posted to the application's message queue.

This function has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
TIME_ERROR. To get extended error information, call TimeGetLastError.

Remarks
This function affects both event notification and event callbacks. Any outstanding events in the
message queue should be ignored by the client application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstimv11.lib

See Also
TimeEnableEvents, TimeFreezeEvents, TimeRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TimeDisableTrace Function

BOOL WINAPI TimeDisableTrace();

The TimeDisableTrace function disables the logging of socket function calls to the trace log.

Parameters
None.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstimv11.lib

See Also
TimeEnableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TimeEnableEvents Function

INT WINAPI TimeEnableEvents(
 HCLIENT hClient,
 HWND hEventWnd,
 UINT uEventMsg
);

The TimeEnableEvents function enables event notifications using Windows messages.

This function has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Applications should use the TimeRegisterEvent function to register an event handler which is
invoked when an event occurs.

Parameters
hClient

Handle to the client session.

hEventWnd

Handle to the event notification window. This window receives a user-defined message which
specifies the event that has occurred. If this value is NULL, event notification is disabled.

uEventMsg

An unsigned integer which specifies the user-defined message that is sent when an event
occurs. This parameter's value must be greater than the value of WM_USER.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
TIME_ERROR. To get extended error information, call TimeGetLastError.

Remarks
When a message is posted to the notification window, the low word of the lParam parameter
contains the event identifier. The high word of lParam contains the low word of the error code, if
an error has occurred. The wParam parameter contains the client handle. One or more of the
following event identifiers may be sent:

Constant Description

TIME_EVENT_CONNECT The connection to the server has completed. The high word of the
lParam parameter should be checked, since this notification
message will be posted if an error has occurred.

TIME_EVENT_DISCONNECT The server has closed the connection to the client. The client
should read any remaining data and disconnect.

TIME_EVENT_READ Data is available to read by the calling process. No additional
messages will be posted until the client has read at least some of
the data. This event is only generated if the client is in
asynchronous mode.

TIME_EVENT_WRITE The client can now write data. This notification is sent after a

connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking
operation. This event is only generated if the client is in
asynchronous mode.

TIME_EVENT_TIMEOUT The network operation has exceeded the specified timeout period.
The client application may attempt to retry the operation, or may
disconnect from the server and report an error to the user.

TIME_EVENT_CANCEL The current operation has been canceled. Under most
circumstances the client should disconnect from the server and
re-connect if needed. After an operation has been canceled, the
server may abort the connection or refuse to accept further
commands from the client.

To cancel asynchronous notification and return the client to a blocking mode, use the
TimeDisableEvents function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstimv11.lib

See Also
TimeDisableEvents, TimeFreezeEvents, TimeRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TimeEnableTrace Function

BOOL WINAPI TimeEnableTrace(
 LPCTSTR lpszTraceFile,
 DWORD dwTraceFlags
);

The TimeEnableTrace function enables the logging of socket function calls to a file.

Parameters
lpszTraceFile

A pointer to a string which specifies the name of the trace log file. If this parameter is NULL or
an empty string, the default file name cstrace.log is used. The file is stored in the directory
specified by the TEMP environment variable, if it is defined; otherwise, the current working
directory is used.

dwTraceFlags

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

TRACE_INFO All function calls are written to the trace file. This is the default
value.

TRACE_ERROR Only those function calls which fail are recorded in the trace file.

TRACE_WARNING Only those function calls which fail or return values which indicate
a warning are recorded in the trace file.

TRACE_HEXDUMP All functions calls are written to the trace file, plus all the data that
is sent or received is displayed, in both ASCII and hexadecimal
format.

TRACE_PROCESS All function calls in the current process are logged, rather than
only those functions in the current thread. This option is useful for
multithreaded applications that are using worker threads.

Return Value
If the function succeeds, the return value is non-zero. A return value of zero indicates an error.
Failure typically indicates that the tracing library cstrcv11.dll cannot be loaded on the local
system.

Remarks
When trace logging is enabled, the file is opened, appended to and closed for each socket
function call. This makes it possible for an application to append its own logging information,
however care should be taken to ensure that the file is closed before the next network operation is
performed. To limit the size of the log files, enable and disable logging only around those sections
of code that you wish to trace.

Note that the TRACE_HEXDUMP trace level generates very large log files since it includes all of the
data exchanged between your application and the server.

Trace function logging is managed on a per-thread basis, not for each client handle. This means
that all SocketTools libraries and components share the same settings in the current thread. If you

are using multiple SocketTools libraries or components in your application, you only need to
enable logging once.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstimv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
TimeDisableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TimeEventProc Function

VOID CALLBACK TimeEventProc(
 HCLIENT hClient,
 UINT nEventId,
 DWORD dwError,
 DWORD_PTR dwParam
);

The TimeEventProc function is an application-defined callback function that processes events
generated by the calling process.

Parameters
hClient

The handle to the client session.

nEvent

An unsigned integer which specifies which event occurred. For a complete list of events, refer to
the TimeRegisterEvent function.

dwError

An unsigned integer which specifies any error that occurred. If no error occurred, then this
parameter will be zero.

dwParam

A user-defined integer value which was specified when the event callback was registered.

Return Value
None.

Remarks
An application must register this callback function by passing its address to the
TimeRegisterEvent function. The TimeEventProc function is a placeholder for the application-
defined function name.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstimv11.lib

See Also
TimeDisableEvents, TimeEnableEvents, TimeFreezeEvents, TimeRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TimeFreezeEvents Function

INT WINAPI TimeFreezeEvents(
 HCLIENT hClient,
 BOOL bFreeze
);

The TimeFreezeEvents function is used to suspend and resume event handling by the client.

Parameters
hClient

Handle to the client session.

bFreeze

A non-zero value specifies that event handling should be suspended by the client. A zero value
specifies that event handling should be resumed.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
TIME_ERROR. To get extended error information, call TimeGetLastError.

Remarks
This function should be used when the application does not want to process events, such as when
a modal dialog is being displayed. When events are suspended, all client events are queued. If
events are re-enabled at a later point, those queued events will be sent to the application for
processing. Note that only one of each event will be generated. For example, if the client has
suspended event handling, and four read events occur, once event handling is resumed only one
of those read events will be posted to the client. This prevents the application from being flooded
by a potentially large number of queued events.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstimv11.lib

See Also
TimeDisableEvents, TimeEnableEvents, TimeRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TimeGetErrorString Function

INT WINAPI TimeGetErrorString(
 DWORD dwErrorCode,
 LPTSTR lpszDescription,
 INT cbDescription
);

The TimeGetErrorString function is used to return a description of a specific error code. Typically
this is used in conjunction with the TimeGetLastError function for use with warning dialogs or as
diagnostic messages.

Parameters
dwErrorCode

The last-error code for which a description is returned.

lpszDescription

A pointer to the buffer that will contain a description of the specified error code. This buffer
should be at least 128 characters in length.

cbDescription

The maximum number of characters that may be copied into the description buffer.

Return Value
If the function succeeds, the return value is the length of the description string. If the function fails,
the return value is 0, meaning that no description exists for the specified error code. Typically this
indicates that the error code passed to the function is invalid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstimv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
TimeGetLastError, TimeSetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TimeGetLastError Function

DWORD WINAPI TimeGetLastError();

Parameters
None.

Return Value
The return value is the last error code value for the current thread. Functions set this value by
calling the TimeSetLastError function. The Return Value section of each reference page notes the
conditions under which the function sets the last error code.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. You should call
the TimeGetLastError function immediately when a function's return value indicates that an error
has occurred. That is because some functions call TimeSetLastError(0) when they succeed,
clearing the error code set by the most recently failed function.

Most functions will set the last error code value when they fail; a few functions set it when they
succeed. Function failure is typically indicated by a return value such as FALSE, NULL,
INVALID_CLIENT or TIME_ERROR. Those functions which call TimeSetLastError when they
succeed are noted on the function reference page.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstimv11.lib

See Also
TimeGetErrorString, TimeSetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TimeGetStatus Function

INT WINAPI TimeGetStatus(
 HCLIENT hClient
);

The TimeGetStatus function returns the current status of the client session.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is the client status code. If the function fails, the return
value is TIME_ERROR. To get extended error information, call TimeGetLastError.

Remarks
The TimeGetStatus function returns a numeric code which identifies the current state of the client
session. The following values may be returned:

Value Constant Description

1 TIME_STATUS_IDLE The client is current idle and not sending or
receiving data.

2 TIME_STATUS_CONNECT The client is establishing a connection with the
server.

3 TIME_STATUS_READ The client is reading data from the server.

4 TIME_STATUS_WRITE The client is writing data to the server.

5 TIME_STATUS_DISCONNECT The client is disconnecting from the server.

In a multithreaded application, any thread in the current process may call this function to obtain
status information for the specified client session.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstimv11.lib

See Also
QueryNetworkTime, ReadNetworkTime

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TimeInitialize Function

BOOL WINAPI TimeInitialize(
 LPCTSTR lpszLicenseKey,
 LPINITDATA lpData
);

The TimeInitialize function initializes the library and validates the specified license key at runtime.

Parameters
lpszLicenseKey

Pointer to a string that specifies the runtime license key to be validated. If this parameter is
NULL, the library will validate the development license installed on the local system.

lpData

Pointer to an INITDATA data structure. This parameter may be NULL if the initialization data for
the library is not required.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call TimeGetLastError. All other client functions will fail until a
license key has been successfully validated.

Remarks
This must be the first function that an application calls before using any of the other functions in
the library. When a NULL license key is specified, the library will only function on the development
system. Before redistributing the application to an end-user, you must insure that this function is
called with a valid license key.

If the lpData argument is specified, it must point to an INITDATA structure which has been
initialized by setting the dwSize member to the size of the structure. All other structure members
should be set to zero. If the function is successful, then the INITDATA structure will be filled with
identifying information about the library.

Although it is only required that TimeInitialize be called once for the current process, it may be
called multiple times; however, each call must be matched by a corresponding call to
TimeUninitialize.

This function dynamically loads other system libraries and allocates thread local storage. If you are
calling the functions in this library from within another DLL, it is important that you do not call the
TimeInitialize or TimeUninitialize functions from the DllMain function because it can result in
deadlocks or access violation errors. If the DLL is linked with the C runtime library (CRT), it will
automatically call the constructors and destructors for static and global C++ objects and has the
same restrictions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstimv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also

GetNetworkTime, QueryNetworkTime, TimeUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TimeRegisterEvent Function

INT WINAPI TimeRegisterEvent(
 HCLIENT hClient,
 UINT nEventId,
 INETEVENTPROC lpfnEvent,
 DWORD_PTR dwParam
);

The TimeRegisterEvent function registers a callback function for the specified event.

Parameters
hClient

Handle to client session.

nEventId

An unsigned integer which specifies which event should be registered with the specified callback
function. One or more of the following values may be used:

Constant Description

TIME_EVENT_CONNECT The connection to the server has completed.

TIME_EVENT_DISCONNECT The server has closed the connection to the client. The
client should read any remaining data and disconnect.

TIME_EVENT_READ Data is available to read by the calling process. No
additional messages will be posted until the client has
read at least some of the data. This event is only
generated if the client is in asynchronous mode.

TIME_EVENT_WRITE The client can now write data. This notification is sent
after a connection has been established, or after a
previous attempt to write data has failed because it
would result in a blocking operation. This event is only
generated if the client is in asynchronous mode.

TIME_EVENT_TIMEOUT The network operation has exceeded the specified
timeout period. The client application may attempt to
retry the operation, or may disconnect from the server
and report an error to the user.

TIME_EVENT_CANCEL The current operation has been canceled. Under most
circumstances the client should disconnect from the
server and re-connect if needed. After an operation has
been canceled, the server may abort the connection or
refuse to accept further commands from the client.

lpfnEvent

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the TimeEventProc callback
function. If this parameter is NULL, the callback for the specified event is disabled.

dwParam

A user-defined integer value that is passed to the callback function. If the application targets the

x86 (32-bit) platform, this parameter must be a 32-bit unsigned integer. If the application
targets the x64 (64-bit) platform, this parameter must be a 64-bit unsigned integer.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
TIME_ERROR. To get extended error information, call TimeGetLastError.

Remarks
The TimeRegisterEvent function associates a callback function with a specific event. The event
handler is an TimeEventProc function that is invoked when the event occurs. Arguments are
passed to the function to identify the client session, the event type and the user-defined value
specified when the event handler is registered. If the event occurs because of an error condition,
the error code will be provided to the handler.

The callback function specified by the lpEventProc parameter must be declared using the
__stdcall calling convention. This ensures the arguments passed to the event handler are pushed
on to the stack in the correct order. Failure to use the correct calling convention will corrupt the
stack and cause the application to terminate abnormally.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstimv11.lib

See Also
TimeDisableEvents, TimeEnableEvents, TimeEventProc, TimeFreezeEvents

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TimeSetLastError Function

VOID WINAPI TimeSetLastError(
 DWORD dwErrorCode
);

The TimeSetLastError function sets the error code for the current thread. This function is typically
used to clear the last error by passing a value of zero as the parameter.

Parameters
dwErrorCode

Specifies the error code for the current thread.

Return Value
None.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. Most functions will
set the last error code value when they fail; a few functions set it when they succeed. Function
failure is typically indicated by a return value such as FALSE, NULL, INVALID_CLIENT or
TIME_ERROR. Those functions which call TimeSetLastError when they succeed are noted on the
function reference page.

Applications can retrieve the value saved by this function by using the TimeGetLastError function.
The use of TimeGetLastError is optional; an application can call the function to determine the
specific reason for a function failure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstimv11.lib

See Also
TimeGetErrorString, TimeGetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TimeUninitialize Function

VOID WINAPI TimeUninitialize();

The TimeUninitialize function terminates the use of the library.

Parameters
There are no parameters.

Return Value
None.

Remarks
An application is required to perform a successful TimeInitialize call before it can call any of the
other the library functions. When it has completed the use of library, the application must call
TimeUninitialize to allow the library to free any resources allocated on behalf of the process. Any
pending blocking or asynchronous calls in this process are canceled without posting any
notification messages, and all sockets that were opened by the process are closed.

There must be a call to TimeUninitialize for every successful call to TimeInitialize made by a
process. In a multithreaded environment, operations for all threads in the client are terminated.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstimv11.lib

See Also
TimeInitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 UpdateLocalTime Function

BOOL WINAPI UpdateLocalTime(
 DWORD dwNetworkTime
);

The UpdateLocalTime function sets the local system clock to the specified date and time.

Parameters
dwNetworkTime

The date and time the system clock should be set to, represented as the number of seconds
since midnight, 1 January 1900.

Return Value
If the function is able to update the local time, it returns a non-zero value. If the specified time is
invalid, or the user does not have the access rights to change the system clock, the function
returns zero.

Remarks
The network time value can represent a date and time up to the year 2036.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cstimv11.lib

See Also
ConvertNetworkTime, GetNetworkTime, QueryNetworkTime, TimeInitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Time Protocol Data Structures

INITDATA
SYSTEMTIME

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 INITDATA Structure

This structure contains information about the SocketTools library when the initialization function
returns.

typedef struct _INITDATA
{
 DWORD dwSize;
 DWORD dwVersionMajor;
 DWORD dwVersionMinor;
 DWORD dwVersionBuild;
 DWORD dwOptions;
 DWORD_PTR dwReserved1;
 DWORD_PTR dwReserved2;
 TCHAR szDescription[128];
} INITDATA, *LPINITDATA;

Members
dwSize

Size of this structure. This structure member must be set to the size of the structure prior to
calling the initialization function. Failure to do so will cause the function to fail.

dwVersionMajor

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the major version number for the library.

dwVersionMinor

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the minor version number for the library.

dwVersionBuild

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the build number for the library.

dwOptions

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

dwReserved1

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

dwReserved2

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

szDescription

A null terminated string which describes the library.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SYSTEMTIME Structure

The SYSTEMTIME structure represents a date and time using individual members for the month,
day, year, weekday, hour, minute, second, and millisecond.

typedef struct _SYSTEMTIME
{
 WORD wYear;
 WORD wMonth;
 WORD wDayOfWeek;
 WORD wDay;
 WORD wHour;
 WORD wMinute;
 WORD wSecond;
 WORD wMilliseconds;
} SYSTEMTIME, *LPSYSTEMTIME;

Members
wYear

Specifies the current year. The year value must be greater than 1601.

wMonth

Specifies the current month. January is 1, February is 2 and so on.

wDayOfWeek

Specifies the current day of the week. Sunday is 0, Monday is 1 and so on.

wDay

Specifies the current day of the month

wHour

Specifies the current hour.

wMinute

Specifies the current minute

wSecond

Specifies the current second.

wMilliseconds

Specifies the current millisecond.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include windows.h.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Web Services Library

The Web Services library provides data storage and location services for applications.

Reference

Functions
Constants
Data Structures
Error Codes

Library Information

File Name CSWEBV11.DLL

Version 11.0.2180.1635

LibID FB6CDDA2-571F-4EC0-B37A-FA3E7B8B306C

Import Library CSWEBV11.LIB

Dependencies None

Overview
The Web Services library enables an application to store and manage data remotely, and return
information about the current physical location of the client. These functions use secure services
provided by SocketTools API servers and do not require third-party party APIs or accounts with
other cloud service providers.

Requirements
The SocketTools Library Edition libraries are compatible with any programming language which
supports calling functions exported from a standard dynamic link library (DLL). If you are using
Visual C++ 6.0 it is required that you have Service Pack 6 (SP6) installed. You should install all
updates for your development tools and have the current Windows SDK installed. The minimum
recommended version of Visual Studio is Visual Studio 2010.

This library is supported on Windows 7, Windows Server 2008 R2 and later versions of the desktop
and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1) installed as
a minimum requirement. It is recommended that you install the current service pack and all critical
updates available for your version of the operating system.

This product includes both 32-bit and 64-bit libraries. Native 64-bit CPU support requires the 64-
bit version of Windows 7 or later versions of the Windows operating system.

Distribution
When you distribute your application that uses this library, it is recommended that you install the
file in the same folder as your application executable. If you install the library into a shared location
on the system, it is important that you distribute the correct version for the target platform and it
should be registered as a shared DLL. This is a standard Windows dynamic link library, not an
ActiveX component, and does not require COM registration.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/websvc/library/constants.html

 Web Services Functions

Function Description

WebCancelTransfer Cancel a storage operation that is currently in progress

WebCloseStorage Close a storage container and release resources allocated for the client session

WebCompareFile Compare the contents of a stored object with a local file

WebCompareObject Compare the contents of a stored object with a memory buffer

WebCompareText Compare the contents of a stored object with a string

WebCopyObject Copy a storage object to a new location and optionally rename the object label

WebDeleteObject Delete an existing storage object

WebDownloadFile Download the contents of a stored object to a local file

WebDownloadFileEx Download the contents of a stored object with progress notifications

WebDisableTrace Disable logging of function calls to the trace log

WebEnableTrace Enable logging of function calls to a file

WebEnumApplications Enumerate all registered storage applications

WebEnumObjects Enumerate all storage objects that match the specified label or content type

WebGetAccountId Return the current web services account identifier

WebGetErrorString Return a description for the specified error code

WebGetFile Download the contents of a storage object and copy to a local file

WebGetFileEx Download the contents of a storage object and return information about the object

WebGetFirstApplication Return information about the first registered storage application

WebGetFirstObject Return information about the first object that matches search criteria

WebGetLastError Return the last error code

WebGetLocation Return the current physical location of the local computer system

WebGetNextApplication Return information about the next registered storage application

WebGetNextObject Return information about the next object that matches search criteria

WebGetObject Download the contents of a storage object to a buffer

WebGetObjectEx Download the contents of a storage object to buffer and return information about the object

WebGetObjectInformation Retrieve the metadata for the specified storage object

WebGetObjectSize Return the size of the specified storage object

WebGetStorageId Return the returns the storage container ID

WebGetStorageQuota Return quota limits assigned to your storage account

WebGetStorageTimeout Get the number of seconds until a storage operation times out

WebGetTextObject Download the contents of a text object into a string buffer

WebGetTransferStatus Return status information about the progress of a data transfer

WebInitialize Initialize the library and validate the specified license key at runtime

WebMoveObject Move a storage object to a new location and optionally rename the object label

WebOpenStorage Open a storage container and return a handle for the client session

WebPutFile Upload the contents of a local file to a new storage object

WebPutFileEx Upload the contents of a local file and return information about the new object

WebPutObject Upload the contents of a memory buffer to a new storage object

WebPutObjectEx Upload the contents of a memory buffer and return information about the new object

WebPutTextObject Create or replace a text object with the contents of a string buffer

WebRegisterAppId Register a new application identifier used to store and retrieve data

WebRegisterEvent Register an event handler to receive notifications for the session

WebRenameObject Change the label associated with a storage object

WebResetStorage Resets the application storage container and deletes all stored objects

WebResetStorageEx Resets the specified storage container for an application and deletes all stored objects

WebSetLastError Set the last error code

WebSetStorageTimeout Set the number of seconds until a storage operation times out

WebUninitialize Terminates the use of the library

WebUnregisterAppId Unregister the application identifier and delete all associated storage objects

WebUploadFile Upload the contents of a local file, creating or overwriting a stored object

WebUploadFileEx Upload the contents of a local file with progress notifications

WebValidateAppId Validate the specified application identifier

WebValidateLabel Check the specified string to ensure it is a valid object label

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WebCancelTransfer Function

BOOL WINAPI WebCancelTransfer(
 HSTORAGE hStorage
);

The WebCancelTransfer function cancels the current data transfer in progress.

Parameters
hStorage

A handle to the storage container.

Return Value
If the function succeeds, the return value is a non-zero. If the function fails, the return value is
zero. To get extended error information, call WebGetLastError.

Remarks
The WebCancelTransfer function will cancel the current data transfer and abort the connection
to the storage server. This function will fail if an active data transfer (either an upload or download)
is not in progress.

This would typically be used within an event handler to cancel an operation as the contents of an
object are being read or written. There is no mechanism to resume a canceled data transfer and
this function should only be used when absolutely necessary.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib

See Also
WebGetTransferStatus, WebRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WebCloseStorage Function

BOOL WINAPI WebCloseStorage(
 HSTORAGE hStorage
);

The WebCloseStorage function closes the storage container.

Parameters
hStorage

A handle to the storage container.

Return Value
If the function succeeds, the return value is a non-zero. If the function fails, the return value is
zero. To get extended error information, call WebGetLastError.

Remarks
The WebCloseStorage function must be called after all operations using the storage container
have completed. The access token granted to the application will be released and the memory
allocated for the session cache will be freed. Failure to call this function can result in a memory
leak.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib

See Also
WebOpenStorage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WebCompareFile Function

BOOL WINAPI WebCompareFile(
 HSTORAGE hStorage,
 LPCTSTR lpszObjectLabel,
 LPCTSTR lpszLocalFile
);

The WebCompareFile function compares the contents of a stored object with a local file.

Parameters
hStorage

A handle to the storage container.

lpszObjectLabel

A pointer to a null terminated string which specifies the label of the object to be compared.

lpszLocalFile

A pointer to a null terminated string that specifies the name of the local file. If a path is not
specified, the file will be created in the current working directory.

Return Value
If the function succeeds, the return value is a non-zero and the contents of the file matches the
stored object. If the function fails, the return value is zero. To get extended error information, call
WebGetLastError.

Remarks
The WebCompareFile function performs a binary comparison of the contents of a local file with a
stored object on the server. The contents of the file must be identical to the contents of the stored
object or the function will fail.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
WebCompareObject, WebCompareText, WebGetObjectInformation

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WebCompareObject Function

BOOL WINAPI WebCompareObject(
 HSTORAGE hStorage,
 LPCTSTR lpszObjectLabel,
 LPCVOID lpvBuffer,
 DWORD dwLength
);

The WebCompareObject function compares the contents of a stored object with the data
provided by the caller.

Parameters
hStorage

A handle to the storage container.

lpszObjectLabel

A pointer to a null terminated string which specifies the label of the object to be compared.

lpvBuffer

A pointer to a buffer that contains the data to be compared against the storage object.

dwLength

An unsigned integer which specifies the length of the data buffer to be compared.

Return Value
If the function succeeds, the return value is a non-zero and the data matches the contents of the
stored object. If the function fails, the return value is zero. To get extended error information, call
WebGetLastError.

Remarks
The WebCompareObject function performs a binary comparison of the data in the specified
buffer with the contents of the storage object on the server. The dwLength parameter must match
the size of the stored object exactly, or this function will fail. Partial comparisons are not supported
by this function.

If you wish to compare the contents of a text object, it is recommended that you use
WebCompareText. This function ensures that Unicode text is compared correctly.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
WebCompareFile, WebCompareText, WebGetObjectInformation

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WebCompareText Function

BOOL WINAPI WebCompareText(
 HSTORAGE hStorage,
 LPCTSTR lpszObjectLabel,
 LPCTSTR lpszObjectText,
 INT cchObjectText
);

The WebCompareText function compares the contents of a stored object with the string
provided by the caller.

Parameters
hStorage

A handle to the storage container.

lpszObjectLabel

A pointer to a null terminated string which specifies the label of the object to be compared.

lpszObjectText

A pointer to a null terminated string which contains the text to be compared with the stored
object.

cchObjectText

The number of characters in the lpszObjectText string to be compared. This value may be -1, in
which case the string length will be determined by counting the number of characters up to the
terminating null.

Return Value
If the function succeeds, the return value is a non-zero and the data matches the contents of the
stored object. If the function fails, the return value is zero. To get extended error information, call
WebGetLastError.

Remarks
The WebCompareText function performs a text comparison of the characters in the string with
the contents of the storage object on the server. The string length must match the amount of text
in the stored object exactly, or this function will fail. Partial comparisons are not supported by this
function.

The Unicode version of this function will automatically convert the UTF-16 string to UTF-8
encoding in the same way the WebPutTextObject function does.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
WebCompareFile, WebCompareObject, WebGetObjectInformation, WebGetTextObject,
WebPutTextObject

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WebCopyObject Function

BOOL WINAPI WebCopyObject(
 HSTORAGE hStorage,
 LPCTSTR lpszOldLabel,
 LPCTSTR lpszNewLabel,
 DWORD dwStorageType,
 LPWEB_STORAGE_OBJECT lpObject
);

The WebCopyObject function creates a copy of an existing storage object using a new label.

Parameters
hStorage

A handle to the storage container.

lpszOldLabel

A pointer to a null terminated string which specifies the label of the existing storage object to be
copied. This parameter must specify a valid object label and cannot be a NULL pointer or an
empty string.

lpszNewLabel

A pointer to a null terminated string which specifies the name of the new storage object that will
be created. This parameter may be NULL or point to an empty string, in which case the label
name is not changed. In this case, the dwStorageType parameter cannot be
WEB_STORAGE_DEFAULT.

dwStorageType

An integer value that identifies the storage container type. One of the following values should
be specified:

Constant Description

WEB_STORAGE_DEFAULT
(0)

The default storage type. If this value is specified, the new
object will be created using the same storage type as the
original storage object.

WEB_STORAGE_GLOBAL
(1)

Global storage. Objects stored using this storage type are
available to all users. Any changes made to objects using
this storage type will affect all users of the application.
Unless there is a specific need to limit access to the objects
stored by the application to specific domains, local
machines or users, it is recommended that you use this
storage type when creating new objects.

WEB_STORAGE_DOMAIN
(2)

Local domain storage. Objects stored using this storage
type are only available to users in the same local domain,
as defined by the domain name or workgroup name
assigned to the local system. If the domain or workgroup
name changes, objects previously stored using this
storage type will not be available to the application.

WEB_STORAGE_MACHINE
(3)

Local machine storage. Objects stored using this storage
type are only available to users on the same local

machine. The local machine is identified by unique
characteristics of the system, including the boot volume
GUID. Objects previously stored using this storage type will
not be available on that system if the boot disk is
reformatted.

WEB_STORAGE_USER
(4)

Current user storage. Objects stored using this storage
type are only available to the current user logged in on
the local machine. The user identifier is based on the
Windows user SID that is assigned when the user account
is created. If the user account is deleted, the objects
previously stored using this storage type will not be
available to the application.

lpObject

A pointer to a WEB_STORAGE_OBJECT structure that will contain information about the new
storage object. If this information is not required, this parameter may be a NULL pointer.

Return Value
If the function succeeds, the return value is a non-zero. If the function fails, the return value is
zero. To get extended error information, call WebGetLastError.

Remarks
The WebCopyObject function is used to create a copy of an existing storage object. It may be
used to duplicate an object with a different label, or it may be used to copy the object to a new
storage container type. For example, it can copy an object originally created using
WEB_STORAGE_USER to a new object stored using WEB_STORAGE_MACHINE.

Copied objects are assigned their own unique ID and are not linked to one another. Any
subsequent changes made to the original object will not affect the copied object. Attempting to
copy an object to itself or another existing object will result in an error.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
WebDeleteObject, WebMoveObject, WebRenameObject

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WebDeleteObject Function

BOOL WINAPI WebDeleteObject(
 HSTORAGE hStorage,
 LPCTSTR lpszObjectLabel
);

The WebDeleteObject function deletes an object from the storage container.

Parameters
hStorage

A handle to the storage container.

lpszObjectLabel

A pointer to a null terminated string which specifies the label of the object to be deleted.

Return Value
If the function succeeds, the return value is a non-zero. If the function fails, the return value is
zero. To get extended error information, call WebGetLastError.

Remarks
The WebDeleteObject function permanently deletes the storage object and its associated data
from the server. Deleted objects cannot be recovered by the application. To remove all objects
stored in the container, use the WebResetStorage function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
WebCopyObject, WebMoveObject, WebRenameObject, WebResetStorage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WebDisableTrace Function

BOOL WINAPI WebDisableTrace();

The WebDisableTrace function disables the logging of socket function calls to the trace log.

Parameters
None.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, a value of zero is
returned.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib

See Also
WebEnableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WebDownloadFile Function

BOOL WINAPI WebDownloadFile(
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszObjectLabel,
 LPWEB_STORAGE_OBJECT lpObject
);

The WebDownloadFile function downloads the contents of a storage object and copies it to a
local file.

Parameters
lpszObjectLabel

A pointer to a null terminated string that specifies the label of the object that should be
retrieved from the server. This parameter cannot be NULL or an empty string. Refer to the
WebValidateLabel function for more information about object labels.

lpszLocalFile

A pointer to a null terminated string that specifies the name of the local file that will be created
or overwritten with the contents of the storage object. If a path is not specified, the file will be
created in the current working directory.

lpObject

A pointer to a WEB_STORAGE_OBJECT structure that will contain additional information about
the object that has been downloaded. This parameter may be NULL if the information is not
required.

Return Value
If the function succeeds, the return value is a non-zero. If the function fails, the return value is
zero. To get extended error information, call WebGetLastError.

Remarks
The WebDownloadFile function downloads the contents of the storage object and stores it in a
local file. The object must have been previously created in the storage container
WEB_STORAGE_GLOBAL using the application ID SocketTools.Storage.Default. This is the
same default container used by the WebUploadFile function.

Unlike the WebGetFile and WebGetFileEx functions, it is not required that you open a storage
container using the WebOpenStorage function prior to calling WebDownloadFile.

Additional metadata about the object will be returned in the WEB_STORAGE_OBJECT structure
provided by the caller, such as the date and time the object was created, the content type and the
SHA-256 hash of the object contents.

The WebDownloadFileEx function provides similar functionality with a more complex interface
that supports custom application IDs, additional options and the ability to provide a callback
function that is invoked during the download process.

Example
WEB_STORAGE_OBJECT webObject;

// Download the object from global storage to a local file
if (WebDownloadFile(lpszLocalFile, lpszObjectLabel, &webObject))
{

 // The object was downloaded, display the metadata
 _tprintf(_T("Object: %s\n"), webObject.szObjectId);
 _tprintf(_T("Label: %s\n"), webObject.szLabel);
 _tprintf(_T("Size: %lu\n"), webObject.dwObjectSize);
 _tprintf(_T("Digest: %s\n"), webObject.szDigest);
 _tprintf(_T("Content: %s\n"), webObject.szContent);
}
else
{
 // The object could not be downloaded, display the error
 TCHAR szError[128];

 WebGetErrorString(WebGetLastError(), szError, 128);
 _tprintf(_T("Unable to download \"%s\" (%s)\n"), lpszObjectLabel, szError);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
WebDownloadFileEx, WebGetFile, WebUploadFile, WebValidateLabel

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WebDownloadFileEx Function

BOOL WINAPI WebDownloadFileEx(
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszObjectLabel,
 LPCTSTR lpszAppId,
 DWORD dwStorageType,
 DWORD dwReserved,
 DWORD dwTimeout,
 LPWEB_STORAGE_OBJECT lpObject,
 WEBEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

The WebDownloadFileEx function downloads the contents of a storage object and copies it to a
local file.

Parameters
lpszLocalFile

A pointer to a null terminated string that specifies the name of the local file that will be created
or overwritten with the contents of the storage object. If a path is not specified, the file will be
created in the current working directory.

lpszObjectLabel

A pointer to a null terminated string that specifies the label of the object that should be
retrieved from the server.

lpszAppId

A pointer to null terminated string which specifies the application ID for the storage container.
The application ID is a string that uniquely identifies the application and can only contain letters,
numbers, the period and the underscore character. If this parameter is NULL or an empty string,
the default identifier SocketTools.Storage.Default will be used.

dwStorageType

An integer value that identifies the storage container type. One of the following values should
be specified:

Constant Description

WEB_STORAGE_GLOBAL
(1)

Global storage. Objects stored using this storage type are
available to all users. Any changes made to objects using
this storage type will affect all users of the application.
Unless there is a specific need to limit access to the objects
stored by the application to specific domains, local
machines or users, it is recommended that you use this
storage type when creating new objects.

WEB_STORAGE_DOMAIN
(2)

Local domain storage. Objects stored using this storage
type are only available to users in the same local domain,
as defined by the domain name or workgroup name
assigned to the local system. If the domain or workgroup
name changes, objects previously stored using this
storage type will not be available to the application.

WEB_STORAGE_MACHINE
(3)

Local machine storage. Objects stored using this storage
type are only available to users on the same local
machine. The local machine is identified by unique
characteristics of the system, including the boot volume
GUID. Objects previously stored using this storage type will
not be available on that system if the boot disk is
reformatted.

WEB_STORAGE_USER
(4)

Current user storage. Objects stored using this storage
type are only available to the current user logged in on
the local machine. The user identifier is based on the
Windows user SID that is assigned when the user account
is created. If the user account is deleted, the objects
previously stored using this storage type will not be
available to the application.

dwReserved

An unsigned integer value that is reserved for future use. This value should always be zero.

dwTimeout

An unsigned integer value that specifies a timeout period in seconds. If this value is zero, a
default timeout period will be used.

lpObject

A pointer to a WEB_STORAGE_OBJECT structure that will contain additional information about
the object that has been downloaded. This parameter may be NULL if the information is not
required.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the WebEventProc callback
function. If this parameter is NULL, no callback function will be invoked during the data transfer.

dwParam

A user-defined integer value that is passed to the callback function specified by lpEventProc. If
the application targets the x86 (32-bit) platform, this parameter must be a 32-bit unsigned
integer. If the application targets the x64 (64-bit) platform, this parameter must be a 64-bit
unsigned integer.

Return Value
If the function succeeds, the return value is a non-zero. If the function fails, the return value is
zero. To get extended error information, call WebGetLastError.

Remarks
The WebDownloadFileEx function downloads the contents of the storage object and stores it in
a local file. The WebDownloadFile function provides a simpler interface that defaults to
downloading an object from the global storage container.

Unlike the WebGetFile and WebGetFileEx functions, it is not required that you open a storage
container using the WebOpenStorage function prior to calling WebDownloadFileEx.

Additional metadata about the object will be returned in the WEB_STORAGE_OBJECT structure
provided by the caller, such as the date and time the object was created, the content type and the
SHA-256 hash of the object contents.

If you are downloading a large object and want your application to receive progress updates
during the data transfer, provide a pointer to a callback function as the lpEventProc parameter.
That function will receive event notifications as the data is being downloaded.

Example
WEB_STORAGE_OBJECT webObject;

// Download the object from global storage to a local file
if (WebDownloadFileEx(lpszLocalFile,
 lpszObjectLabel,
 lpszAppId,
 WEB_STORAGE_GLOBAL,
 0,
 &webObject,
 NULL, 0))
{
 // The object was downloaded, display the metadata
 _tprintf(_T("Object: %s\n"), webObject.szObjectId);
 _tprintf(_T("Label: %s\n"), webObject.szLabel);
 _tprintf(_T("Size: %lu\n"), webObject.dwObjectSize);
 _tprintf(_T("Digest: %s\n"), webObject.szDigest);
 _tprintf(_T("Content: %s\n"), webObject.szContent);
}
else
{
 // The object could not be retrieved, display the error
 TCHAR szError[128];

 WebGetErrorString(WebGetLastError(), szError, 128);
 _tprintf(_T("Unable to retrieve \"%s\" (%s)\n"), lpszObjectLabel, szError);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
WebDownloadFile, WebGetFileEx, WebPutFileEx, WebUploadFile, WebUploadFileEx

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WebEnableTrace Function

BOOL WINAPI WebEnableTrace(
 LPCTSTR lpszTraceFile,
 DWORD dwTraceFlags
);

The WebEnableTrace function enables the logging of socket function calls to a file.

Parameters
lpszTraceFile

A pointer to a string which specifies the name of the trace log file. If this parameter is NULL or
an empty string, the default file name cstrace.log is used. The file is stored in the directory
specified by the TEMP environment variable, if it is defined; otherwise, the current working
directory is used.

dwTraceFlags

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

TRACE_INFO All function calls are written to the trace file. This is the default
value.

TRACE_ERROR Only those function calls which fail are recorded in the trace file.

TRACE_WARNING Only those function calls which fail or return values which indicate
a warning are recorded in the trace file.

TRACE_HEXDUMP All functions calls are written to the trace file, plus all the data that
is sent or received is displayed, in both ASCII and hexadecimal
format.

TRACE_PROCESS All function calls in the current process are logged, rather than
only those functions in the current thread. This option is useful for
multithreaded applications that are using worker threads.

Return Value
If the function succeeds, the return value is non-zero. A return value of zero indicates an error.
Failure typically indicates that the tracing library cstrcv11.dll cannot be loaded on the local
system.

Remarks
When trace logging is enabled, the file is opened, appended to and closed for each socket
function call. This makes it possible for an application to append its own logging information,
however care should be taken to ensure that the file is closed before the next network operation is
performed. To limit the size of the log files, enable and disable logging only around those sections
of code that you wish to trace.

Note that the TRACE_HEXDUMP trace level generates very large log files since it includes all of the
data exchanged between your application and the server.

Trace function logging is managed on a per-thread basis, not for each client handle. This means
that all SocketTools libraries and components share the same settings in the current thread. If you

are using multiple SocketTools libraries or components in your application, you only need to
enable logging once.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
WebDisableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WebEnumApplications Function

BOOL WINAPI WebEnumApplications(
 LPWEB_STORAGE_APPLICATION lpApplications,
 LPDWORD lpdwRegistered
);

The WebEnumApplications function enumerates all registered applications associated with the
storage account.

Parameters
hStorage

lpApplications

A pointer to an array of WEB_STORAGE_APPLICATION structures that will contain information
about the enumerated application IDs. If this parameter is NULL, then no information is
returned.

lpdwRegistered

A pointer to an unsigned integer that will contain the number of registered applications
enumerated by this function. If the lpApplications parameter points to an array of
WEB_STORAGE_APPLICATION structures, this parameter must be initialized to the maximum
size of the array being passed to the function. If the lpApplications parameter is NULL, this
value must be initialized to zero and when the function returns it will contain the number of
registered applications.

Return Value
If the function succeeds, the return value is a non-zero. If the function fails, the return value is
zero. To get extended error information, call WebGetLastError.

Remarks
The WebEnumApplications function can be used to enumerate the application IDs registered
with the storage account using the WebRegisterAppId function.

This function can be used in two ways. If the lpApplications parameter is NULL and the value
passed by reference in the lpdwRegistered parameter is initialized to zero, the function will return
the number of registered applications in lpdwRegistered. This can be used to dynamically
determine the size of the lpApplications array instead of declaring a fixed-size array in your
application.

If the lpApplications parameter is not NULL, then the value referenced by lpdwRegistered must be
initialized to the maximum size of the array that lpApplications points to. It is important to note
that if either parameter is not initialized correctly, it can result in memory corruption and/or an
unhandled exception.

The WebGetFirstApplication and WebGetNextApplication functions can be used to iterate
through all registered application IDs without requiring you to preallocate memory for an array.
This can be more efficient if a large number of application IDs have been registered.

Example
DWORD dwAppCount = 0;

if (WebEnumApplications(NULL, &dwAppCount))
{

 LPWEB_STORAGE_APPLICATION lpAppArray = NULL;
 DWORD dwIndex;

 // Return if there are no registered applications
 if (dwAppCount == 0)
 return;

 // Allocate memory for an array of WEB_STORAGE_APPLICATION structures
 lpAppArray = (LPWEB_STORAGE_APPLICATION)LocalAlloc(LPTR,
sizeof(WEB_STORAGE_APPLICATION) * dwAppCount);

 if (lpAppArray == NULL)
 return; // Exhausted virtual memory?

 // Enumerate the registered application IDs
 if (!WebEnumApplications(lpAppArray, &dwAppCount))
 return;

 // Print information about each application
 for (dwIndex = 0; dwIndex < dwAppCount ; dwIndex++)
 {
 _tprintf(_T("AppId: %s\n"), lpAppArray[dwIndex].szAppId);
 _tprintf(_T("Key: %s\n"), lpAppArray[dwIndex].szApiKey);
 _tprintf(_T("LUID: %s\n"), lpAppArray[dwIndex].szLuid);
 _tprintf(_T("Tokens: %lu\n"), lpAppArray[dwIndex].dwTokens);

 if (dwAppCount > 1 && dwIndex < dwAppCount - 1)
 _tprintf(_T("\n"));
 }

 LocalFree((HLOCAL)lpAppArray);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
WebGetFirstApplication, WebGetNextApplication, WebRegisterAppId, WebUnregisterAppId

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WebEnumObjects Function

BOOL WINAPI WebEnumObjects(
 HSTORAGE hStorage,
 LPCTSTR lpszMatchLabel,
 LPCTSTR lpszContentType,
 DWORD dwReserved,
 LPWEB_STORAGE_OBJECT lpObjects,
 LPDWORD lpdwObjects
);

The WebEnumObjects function enumerates all storage objects that match the specified label or
content type.

Parameters
hStorage

A handle to the storage container.

lpszMatchLabel

A pointer to a null terminated string which specifies the value to match against the object labels
in the container. The string may contain wildcard characters similar to those use with the
Windows filesystem. A "?" character matches any single character, and "*" matches any number
of characters in the label. If this value is a NULL pointer or an empty string, all objects in the
container will be matched.

lpszContentType

A pointer to a null terminated string which specifies the content type of the objects to be
enumerated. If this value is a NULL pointer or an empty string, the content type is ignored and
all matching objects are returned.

dwReserved

An unsigned integer value that is reserved for future use. This value must be zero.

lpObjects

A pointer to an array of WEB_STORAGE_OBJECT structures that will contain information about
the enumerated objects. If this parameter is NULL, then no object information is returned.

lpdwObjects

A pointer to an unsigned integer that will contain the number of objects enumerated by this
function. If the lpObjects parameter points to an array of WEB_STORAGE_OBJECT structures,
this parameter must be initialized to the maximum size of the array being passed to the
function. If the lpObjects parameter is NULL, this value must be initialized to zero, and when the
function returns it will contain the number of matching objects.

Return Value
If the function succeeds, the return value is a non-zero. If the function fails, the return value is
zero. To get extended error information, call WebGetLastError.

Remarks
The WebEnumObjects function can be used to enumerate the number of objects that match a
given label, content type or both. If a content type is specified, it must be a valid MIME media
content type designated using the type/subtype nomenclature. For example, "text/plain" or
"image/jpeg". An invalid MIME type will cause the function to fail.

This function can be used in two ways. If the lpObjects parameter is NULL and the value passed by
reference in the lpdwObjects parameter is initialized to zero, the function will return the number of
matching objects in lpdwObjects. This can be used to dynamically determine the size of the
lpObjects array instead of declaring a fixed-size array in your application.

If the lpObjects parameter is not NULL, then the value referenced by lpdwObjects must be
initialized to the maximum size of the array that lpObjects points to. It is important to note that if
either parameter is not initialized correctly, it can result in memory corruption and/or an
unhandled exception.

The WebGetFirstObject and WebGetNextObject functions can be used to iterate through all
matching storage objects without requiring you to preallocate memory for an array. Using
WebGetFirstObject and WebGetNextObject is more efficient when the container contains a
large number of objects that match the specified label and/or content type.

Example
DWORD dwObjects = 0;

if (WebEnumObjects(hStorage, _T("*.pdf"), NULL, 0, NULL, &dwObjects))
{
 LPWEB_STORAGE_OBJECT lpObjects = NULL;
 DWORD dwIndex;

 // Return if there are no matching objects in the container
 if (dwObjects == 0)
 return;

 // Allocate memory for an array of WEB_STORAGE_OBJECT structures
 lpObjects = (LPWEB_STORAGE_OBJECT)LocalAlloc(LPTR,
sizeof(WEB_STORAGE_OBJECT) * dwObjects);

 if (lpObjects == NULL)
 return; // Exhausted virtual memory?

 // Enumerate the matching objects
 if (!WebEnumObjects(hStorage, NULL, NULL, 0, lpObjects, &dwObjects))
 return;

 // Print information about each object
 for (dwIndex = 0; dwIndex < dwObjects; dwIndex++)
 {
 _tprintf(_T("Object: %s\n"), lpObjects[dwIndex].szObjectId);
 _tprintf(_T("Label: %s\n"), lpObjects[dwIndex].szLabel);
 _tprintf(_T("Size: %lu\n"), lpObjects[dwIndex].dwObjectSize);
 _tprintf(_T("Digest: %s\n"), lpObjects[dwIndex].szDigest);
 _tprintf(_T("Content: %s\n"), lpObjects[dwIndex].szContent);

 if (dwObjects > 1 && dwIndex < dwObjects - 1)
 _tprintf(_T("\n"));
 }

 LocalFree((HLOCAL)lpObjects);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)

Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
WebGetFirstObject, WebGetNextObject, WebGetObjectInformation

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WebEventProc Function

VOID CALLBACK WebEventProc(
 HSTORAGE hStorage,
 UINT nEventId,
 DWORD dwError,
 DWORD_PTR dwParam
);

The WebEventProc function is an application-defined callback function that processes events
generated by the client.

Parameters
hStorage

A handle to the storage container.

nEventId

An unsigned integer which specifies which event occurred. For a complete list of events, refer to
the WebRegisterEvent function.

dwError

An unsigned integer which specifies any error that occurred. If no error occurred, then this
parameter will be zero.

dwParam

A user-defined integer value which was specified when the event callback was registered. If the
application targets the x86 (32-bit) platform, this parameter must be a 32-bit unsigned integer.
If the application targets the x64 (64-bit) platform, this parameter must be a 64-bit unsigned
integer.

Return Value
None.

Remarks
An application must register this callback function by passing its address to the
WebRegisterEvent function. The WebEventProc function is a placeholder for the application-
defined function name.

To obtain information about the current status of the read or write operation, call the
WebGetTransferStatus function. An event handler can cancel the current operation by calling
the WebCancelTransfer function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
WebCancelTransfer, WebGetTransferStatus, WebRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WebGetAccountId Function

BOOL WINAPI WebGetAccountId(
 LPCTSTR lpszAccountId,
 INT nMaxLength
);

The WebGetAccountId function returns the web services account ID associated with the current
session.

Parameters
lpszAccountId

A pointer to a null-terminated string that will contain the account ID when the function returns.
This parameter cannot be NULL and must be at least 35 characters in length.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
lpszAccountId string parameter, including the terminating null character.

Return Value
If the function succeeds, the return value is a non-zero. If the function fails, the return value is
zero. To get extended error information, call WebGetLastError.

Remarks
The account ID is a string that uniquely identifies the web services account that is associated with
the session. The account ID corresponds with your product serial number and runtime license key,
but it is not identical to either of those values.

If you are using an evaluation license, the account ID is temporary and only valid
during the evaluation period. After the evaluation period has expired, the account ID
is revoked and objects stored using this ID will be deleted. It is not recommended
that you store critical application data using an evaluation license.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
WebGetStorageId

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WebGetErrorString Function

INT WINAPI WebGetErrorString(
 DWORD dwErrorCode,
 LPTSTR lpszDescription,
 INT cbDescription
);

The WebGetErrorString function is used to return a description of a specific error code. Typically
this is used in conjunction with the WebGetLastError function for use with warning dialogs or as
diagnostic messages.

Parameters
dwErrorCode

The error code for which a description is returned.

lpszDescription

A pointer to the buffer that will contain a description of the specified error code. This buffer
should be at least 128 characters in length.

cbDescription

The maximum number of characters that may be copied into the description buffer.

Return Value
If the function succeeds, the return value is the length of the description string. If the function fails,
the return value is zero, meaning that no description exists for the specified error code. Typically
this indicates that the error code passed to the function is invalid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
WebGetLastError, WebSetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WebGetFile Function

BOOL WINAPI WebGetFile(
 HSTORAGE hStorage,
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszObjectLabel
);

The WebGetFile function downloads the contents of a storage object and copies it to a local file.

Parameters
hStorage

A handle to the storage container.

lpszLocalFile

A pointer to a null terminated string that specifies the name of the local file that will be created
or overwritten with the contents of the storage object. If a path is not specified, the file will be
created in the current working directory.

lpszObjectLabel

A pointer to a null terminated string that specifies the label of the object that should be
retrieved from the server.

Return Value
If the function succeeds, the return value is a non-zero. If the function fails, the return value is
zero. To get extended error information, call WebGetLastError.

Remarks
The WebGetFile function downloads the contents of the storage object and stores it in a local file.
For information about the stored object that has been downloaded, use the WebGetFileEx
function.

If you are downloading a large object and want your application to receive progress updates
during the data transfer, use the WebRegisterEvent function and provide a pointer to a callback
function that will receive event notifications.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
WebDownloadFile, WebGetFileEx, WebGetObject, WebPutFile, WebPutObject, WebRegisterEvent,
WebUploadFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WebGetFileEx Function

BOOL WINAPI WebGetFileEx(
 HSTORAGE hStorage,
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszObjectLabel,
 DWORD dwReserved,
 LPWEB_STORAGE_OBJECT lpObject
);

The WebGetFileEx function downloads the contents of a storage object and copies it to a local
file.

Parameters
hStorage

A handle to the storage container.

lpszLocalFile

A pointer to a null terminated string that specifies the name of the local file that will be created
or overwritten with the contents of the storage object. If a path is not specified, the file will be
created in the current working directory.

lpszObjectLabel

A pointer to a null terminated string that specifies the label of the object that should be
retrieved from the server.

dwReserved

An unsigned integer value that is reserved for future use. This value should always be zero.

lpObject

A pointer to a WEB_STORAGE_OBJECT structure that will contain additional information about
the object. This parameter may be NULL if the information is not required.

Return Value
If the function succeeds, the return value is a non-zero. If the function fails, the return value is
zero. To get extended error information, call WebGetLastError.

Remarks
The WebGetFileEx function downloads the contents of the storage object and stores it in a local
file. Additional metadata about the object will be returned in the WEB_STORAGE_OBJECT structure
provided by the caller, such as the date and time the object was created, the content type and the
SHA-256 hash of the object contents.

If you are downloading a large object and want your application to receive progress updates
during the data transfer, use the WebRegisterEvent function and provide a pointer to a callback
function that will receive event notifications.

The WebDownloadFile and WebDownloadFileEx functions provide similar functionality, but do
not require a handle to an open storage container.

Example
WEB_STORAGE_OBJECT webObject;

// Download the object and store the contents in a local file
if (WebGetFileEx(hStorage, lpszLocalFile, lpszObjectLabel, 0, &webObject))

{
 // The object was downloaded, display the metadata
 _tprintf(_T("Object: %s\n"), webObject.szObjectId);
 _tprintf(_T("Label: %s\n"), webObject.szLabel);
 _tprintf(_T("Size: %I64u\n"), webObject.dwObjectSize);
 _tprintf(_T("Digest: %s\n"), webObject.szDigest);
 _tprintf(_T("Content: %s\n"), webObject.szContent);
}
else
{
 // The object could not be retrieved, display the error
 TCHAR szError[128];

 WebGetErrorString(WebGetLastError(), szError, 128);
 _tprintf(_T("Unable to retrieve \"%s\" (%s)\n"), lpszObjectLabel, szError);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
WebDownloadFile, WebGetFile, WebGetObjectEx, WebPutFileEx, WebPutObjectEx,
WebRegisterEvent, WebUploadFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WebGetLastError Function

DWORD WINAPI WebGetLastError();

Parameters
None.

Return Value
The return value is the last error code value for the current thread. Functions set this value by
calling the WebSetLastError function. The Return Value section of each reference page notes the
conditions under which the function sets the last error code.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. You should call
the WebGetLastError function immediately when a function's return value indicates that an error
has occurred. That is because some functions call WebSetLastError(0) when they succeed,
clearing the error code set by the most recently failed function.

Most functions will set the last error code value when they fail; a few functions set it when they
succeed. Function failure is typically indicated by a return value such as FALSE, NULL,
INVALID_CLIENT or WEB_ERROR. Those functions which call WebSetLastError when they succeed
are noted on the function reference page.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib

See Also
WebGetErrorString, WebSetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WebGetFirstApplication Function

BOOL WINAPI WebGetFirstApplication(
 LPWEB_STORAGE_APPLICATION lpAppInfo,
 LPDWORD lpdwContext,
);

The WebGetFirstApplication function returns information about the first registered application
for the current storage account.

Parameters
lpAppInfo

A pointer to a WEB_STORAGE_APPLICATION structure that will contain information about the
registered application when the function returns. This parameter cannot be NULL.

lpdwContext

A pointer to an unsigned integer that is used with subsequent calls to the
WebGetNextApplication function. This parameter cannot be NULL.

Return Value
If the function succeeds, the return value is a non-zero. If the function fails, the return value is
zero. To get extended error information, call WebGetLastError.

Remarks
The WebGetFirstApplication function returns information about the first registered application. It
is used in conjunction with the WebGetNextApplication function to enumerate all of the
registered application IDs associated with your storage account.

This function provides an alternative to the WebEnumApplications function, which populates an
array of WEB_STORAGE_APPLICATION structures. In some cases, iterating through each AppID in
a loop may be preferred to preallocating memory for an array to store every registered
application. Using WebGetFirstApplication and WebGetNextApplication is more efficient when
you have registered a large number of application IDs.

You cannot intermix calls between WebGetFirstApplication and WebEnumApplications. The
WebEnumApplications function will reset the internal application ID cache for the client session
and subsequent calls to WebGetNextApplication will fail. The cached application ID information
used by this function is shared by the entire process. Attempting to enumerate all registered
application IDs in multiple threads at the same time can yield unexpected results. It is
recommended that multi-threaded clients use a critical section to ensure that only a single thread
is enumerating the AppIDs at any one time.

Example
WEB_STORAGE_APPLICATION webApp;
DWORD dwContext = 0;

if (WebGetFirstApplication(&webApp, &dwContext))
{
 do
 {
 // Print information for each registered application
 _tprintf(_T("AppId: %s\n"), webApp.szAppId);
 _tprintf(_T("Key: %s\n"), webApp.szApiKey);
 _tprintf(_T("LUID: %s\n"), webApp.szLuid);

 _tprintf(_T("Tokens: %lu\n"), webApp.dwTokens);
 _tprintf(_T("\n"));
 }
 while (WebGetNextApplication(&webApp, &dwContext));
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
WebEnumApplications, WebGetNextApplication, WebRegisterAppId, WebUnregisterAppId

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WebGetFirstObject Function

BOOL WINAPI WebGetFirstObject(
 HSTORAGE hStorage,
 LPCTSTR lpszMatchLabel,
 LPCTSTR lpszContentType,
 DWORD dwReserved,
 LPWEB_STORAGE_OBJECT lpObject
);

The WebGetFirstObject function returns information about the first storage object that matches
the specified label or content type.

Parameters
hStorage

A handle to the storage container.

lpszMatchLabel

A pointer to a null terminated string which specifies the value to match against the object labels
in the container. The string may contain wildcard characters similar to those use with the
Windows filesystem. A "?" character matches any single character, and "*" matches any number
of characters in the label. If this value is a NULL pointer or an empty string, all objects in the
container will be matched.

lpszContentType

A pointer to a null terminated string which specifies the content type of the objects to be
enumerated. If this value is a NULL pointer or an empty string, the content type is ignored and
all matching objects are returned. If a content type is specified, it must be a valid MIME media
content type designated using the type/subtype nomenclature.

dwReserved

An unsigned integer value that is reserved for future use. This value must be zero.

lpObject

A pointer to a WEB_STORAGE_OBJECT structure that will contain information about the storage
object when the function returns. This parameter cannot be NULL.

Return Value
If the function succeeds, the return value is a non-zero. If the function fails, the return value is
zero. To get extended error information, call WebGetLastError.

Remarks
The WebGetFirstObject function returns information about the first object that matches a given
label, content type or both. It is used in conjunction with the WebGetNextObject function to
enumerate all of the matching objects in the storage container.

This function provides an alternative to the WebEnumObjects function, which populates an array
of WEB_STORAGE_OBJECT structures. In some cases, iterating over each object in a loop may be
preferred to preallocating memory for an array to store every matching object. Using
WebGetFirstObject and WebGetNextObject is more efficient when the container contains a
large number of objects that match the specified label and/or content type.

You cannot intermix calls between WebGetFirstObject and WebEnumObjects. The
WebEnumObjects function will reset the internal object cache for the client session and

subsequent calls to WebGetNextObject will fail.

Example
WEB_STORAGE_OBJECT webObject;

if (WebGetFirstObject(hStorage, _T("*.pdf"), NULL, 0, &webObject))
{
 do
 {
 // Print information about each object
 _tprintf(_T("Object: %s\n"), webObject.szObjectId);
 _tprintf(_T("Label: %s\n"), webObject.szLabel);
 _tprintf(_T("Size: %lu\n"), webObject.dwObjectSize);
 _tprintf(_T("Digest: %s\n"), webObject.szDigest);
 _tprintf(_T("Content: %s\n"), webObject.szContent);
 _tprintf(_T("\n"));
 }
 while (WebGetNextObject(hStorage, &webObject));
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
WebEnumObjects, WebGetNextObject

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WebGetLocation Function

BOOL WINAPI WebGetLocation(
 LPWEB_LOCATION lpLocation
);

The WebGetLocation function returns the current physical location of the local computer system.

Parameters
lpLocation

A pointer to a WEB_LOCATION structure that will contain information about the location when
the function returns. The structure members will be automatically initialized to zero and zero-
length strings when the function is called. This parameter cannot be a NULL pointer.

Return Value
If the function succeeds, the return value is a non-zero. If the function fails, the return value is
zero. To get extended error information, call WebGetLastError.

Remarks
The WebGetLocation function is used to obtain physical location information associated with the
with the external IP address of the local system. The accuracy of this information can vary
depending on the location, with the most detailed information being available for North America.
The country and time zone information for all locations is generally accurate. However, as the
location information becomes more precise, details such as city names, postal codes and specific
geographic locations (e.g.: longitude and latitude) may have reduced accuracy.

This location information should not be used by programs that require extremely accurate map
coordinates, such as navigation applications. The location information in North America should be
generally accurate within a 25 mile (40km) radius. However, given the nature of how IP address
location works, there is no guarantee that location information for any specific IP address or
network will be accurate.

Software that is designed to protect the privacy of users, such as those which route all Internet
traffic through proxy servers or VPNs, can significantly impact the accuracy of this information. In
this case, the data returned in this structure may reflect the location of the network or proxy
server, and not the location of the person using your application. It is recommended that you
always request permission from the user before acquiring their location, have them confirm that
the location is correct and provide a mechanism for them to update that information.

Example
WEB_LOCATION webLocation;

// Return information about the location of the local system
if (WebGetLocation(&webLocation))
{
 _tprintf(_T("Location ID: %s\n"), webLocation.szLocationId);
 _tprintf(_T("IP address: %s\n"), webLocation.szIPAddress);
 _tprintf(_T("ASN: %u\n"), webLocation.nAutonomousSystemNumber);
 _tprintf(_T("Organization: %s\n"), webLocation.szOrganization);
 _tprintf(_T("Region Name: %s\n"), webLocation.szRegionName);
 _tprintf(_T("Region Code: %03u\n"), webLocation.nRegionCode);
 _tprintf(_T("Country Name: %s\n"), webLocation.szCountryName);
 _tprintf(_T("Country Code: %03u\n"), webLocation.nCountryCode);
 _tprintf(_T("Subdivision: %s\n"), webLocation.szSubdivision);

 _tprintf(_T("City Name: %s\n"), webLocation.szCityName);
 _tprintf(_T("Postal Code: %s\n"), webLocation.szPostalCode);
 _tprintf(_T("Timezone: %s (%ld)\n"), webLocation.szTimezone,
webLocation.nTimezoneOffset);
 _tprintf(_T("Local Time: %04d-%02d-%02d %02d:%02d:%02d %s\n"),
 webLocation.stLocalTime.wYear,
 webLocation.stLocalTime.wMonth,
 webLocation.stLocalTime.wDay,
 webLocation.stLocalTime.wHour,
 webLocation.stLocalTime.wMinute,
 webLocation.stLocalTime.wSecond,
 webLocation.szTzShortName);
 _tprintf(_T("Coordinates: %s\n"), webLocation.szCoordinates);
 _tprintf(_T("Latitude: %.4f\n"), webLocation.dLatitude);
 _tprintf(_T("Longitude: %.4f\n"), webLocation.dLongitude);
}
else
{
 _tprintf(_T("Unable to determine the current location\n"));
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WebGetNextApplication Function

BOOL WINAPI WebGetNextApplication(
 LPWEB_STORAGE_APPLICATION lpAppInfo,
 LPDWORD lpdwContext,
);

The WebGetNextApplication function returns information about the next registered application
for the current storage account.

Parameters
lpAppInfo

A pointer to a WEB_STORAGE_APPLICATION structure that will contain information about the
registered application when the function returns. This parameter cannot be NULL.

lpdwContext

A pointer to an unsigned integer that is used with subsequent calls to the
WebGetNextApplication function. The value of this parameter is initialized by calling the
WebGetFirstApplication function. This parameter cannot be NULL.

Return Value
If the function succeeds, the return value is a non-zero. If the function fails, the return value is
zero. To get extended error information, call WebGetLastError.

Remarks
The WebGetNextApplication function returns information about the next registered application
after initially calling the WebGetFirstApplication function. It is used to enumerate all of the
registered application IDs associated with your storage account.

This function provides an alternative to the WebEnumApplications function, which populates an
array of WEB_STORAGE_APPLICATION structures. In some cases, iterating through each AppID in
a loop may be preferred to preallocating memory for an array to store every registered
application. Using WebGetFirstApplication and WebGetNextApplication is more efficient when
you have registered a large number of application IDs.

You cannot intermix calls between WebGetNextApplication and WebEnumApplications. The
WebEnumApplications function will reset the internal application ID cache for the client session
and subsequent calls to WebGetNextApplication will fail. The cached application ID information
used by this function is shared by the entire process. Attempting to enumerate all registered
application IDs in multiple threads at the same time can yield unexpected results. It is
recommended that multi-threaded clients use a critical section to ensure that only a single thread
is enumerating the AppIDs at any one time.

Example
WEB_STORAGE_APPLICATION webApp;
DWORD dwContext = 0;

if (WebGetFirstApplication(&webApp, &dwContext))
{
 do
 {
 // Print information for each registered application
 _tprintf(_T("AppId: %s\n"), webApp.szAppId);
 _tprintf(_T("Key: %s\n"), webApp.szApiKey);

 _tprintf(_T("LUID: %s\n"), webApp.szLuid);
 _tprintf(_T("Tokens: %lu\n"), webApp.dwTokens);
 _tprintf(_T("\n"));
 }
 while (WebGetNextApplication(&webApp, &dwContext));
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
WebEnumApplications, WebGetFirstApplication, WebRegisterAppId, WebUnregisterAppId

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WebGetNextObject Function

BOOL WINAPI WebGetNextObject(
 HSTORAGE hStorage,
 LPWEB_STORAGE_OBJECT lpObject
);

The WebGetNextObject function returns information about the next storage object that matches
the specified label or content type.

Parameters
hStorage

A handle to the storage container.

lpObject

A pointer to a WEB_STORAGE_OBJECT structure that will contain information about the storage
object when the function returns. This parameter cannot be NULL.

Return Value
If the function succeeds, the return value is a non-zero. If the function fails, the return value is
zero. To get extended error information, call WebGetLastError.

Remarks
The WebGetNextObject function returns information about the next object that matches the
label and/or content type that was specified by the WebGetFirstObject function call. This function
may only be called after WebGetFirstObject has been called, otherwise it will fail.

When all matching objects have been returned to the caller, this function will return zero (FALSE)
and the WebGetLastError function will return NO_ERROR. Any other error code indicates an
underlying problem with the request, such as an invalid parameter passed to the function.

You cannot intermix calls between WebGetNextObject and WebEnumObjects. The
WebEnumObjects function will reset the internal object cache for the client session and
subsequent calls to WebGetNextObject will fail.

Example
WEB_STORAGE_OBJECT webObject;

if (WebGetFirstObject(hStorage, _T("*.pdf"), NULL, 0, &webObject))
{
 do
 {
 // Print information about each object
 _tprintf(_T("Object: %s\n"), webObject.szObjectId);
 _tprintf(_T("Label: %s\n"), webObject.szLabel);
 _tprintf(_T("Size: %lu\n"), webObject.dwObjectSize);
 _tprintf(_T("Digest: %s\n"), webObject.szDigest);
 _tprintf(_T("Content: %s\n"), webObject.szContent);
 _tprintf(_T("\n"));
 }
 while (WebGetNextObject(hStorage, &webObject));
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)

Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
WebEnumObjects, WebGetFirstObject

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WebGetObject Function

BOOL WINAPI WebGetObject(
 HSTORAGE hStorage,
 LPCTSTR lpszObjectLabel,
 LPVOID lpvBuffer,
 DWORD lpdwLength
);

The WebGetObject function retrieves the contents of a storage object and copies it to the
memory buffer that is provided.

Parameters
hStorage

A handle to the storage container.

lpszObjectLabel

A pointer to a null terminated string that specifies the label of the object that should be
retrieved from the server.

lpvBuffer

A pointer to a byte buffer which will contain the data transferred from the server, or a pointer to
a global memory handle which will reference the data when the function returns.

lpdwLength

A pointer to an unsigned integer which should be initialized to the maximum number of bytes
that can be copied to the buffer specified by the lpvBuffer parameter. If the lpvBuffer
parameter points to a global memory handle, the length value should be initialized to zero.
When the function returns, this value will be updated with the actual length of the file that was
downloaded.

Return Value
If the function succeeds, the return value is a non-zero. If the function fails, the return value is
zero. To get extended error information, call WebGetLastError.

Remarks
The WebGetObject function is used to retrieve a stored object from the server and copy it into a
local buffer. The function may be used in one of two ways, depending on the needs of the
application. The first method is to pre-allocate a buffer large enough to store the contents of the
object. In this case, the lpvBuffer parameter will point to the buffer that was allocated and the
value that the lpdwLength parameter points to should be initialized to the size of that buffer.

The second method that can be used is have the lpvBuffer parameter point to a global memory
handle which will contain the file data when the function returns. In this case, the value that the
lpdwLength parameter points to must be initialized to zero. It is important to note that the
memory handle returned by the function must be freed by the application, otherwise a memory
leak will occur. See the example code below.

Example
HGLOBAL hgblBuffer = (HGLOBAL)NULL;
DWORD dwLength = 0;

// Return the file data into block of global memory allocated by
// the GlobalAlloc function; the handle to this memory will be

// returned in the hgblBuffer parameter
if (WebGetObject(hStorage, lpszObjectLabel, &hgblBuffer, &dwLength))
{
 // Lock the global memory handle, returning a pointer to the
 // resource data
 LPBYTE lpBuffer = (LPBYTE)GlobalLock(hgblBuffer);

 // After the data has been used, the handle must be unlocked
 // and freed, otherwise a memory leak will occur
 GlobalUnlock(hgblBuffer);
 GlobalFree(hgblBuffer);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
WebGetFile, WebGetObjectEx, WebPutFile, WebPutObject

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WebGetObjectEx Function

BOOL WINAPI WebGetObjectEx(
 HSTORAGE hStorage,
 LPCTSTR lpszObjectLabel,
 DWORD dwReserved,
 LPVOID lpvBuffer,
 LPDWORD lpdwLength,
 LPWEB_STORAGE_OBJECT lpObject,
);

The WebGetObjectEx function retrieves the contents of a storage object and copies it to the
memory buffer that is provided. Additional information about the object is returned to the caller.

Parameters
hStorage

A handle to the storage container.

lpszObjectLabel

A pointer to a null terminated string that specifies the label of the object that should be
retrieved from the server.

dwReserved

An unsigned integer that is reserved for future use. This value should always be zero.

lpvBuffer

A pointer to a byte buffer which will contain the data transferred from the server, or a pointer to
a global memory handle which will reference the data when the function returns.

lpdwLength

A pointer to an unsigned integer which should be initialized to the maximum number of bytes
that can be copied to the buffer specified by the lpvBuffer parameter. If the lpvBuffer
parameter points to a global memory handle, the length value should be initialized to zero.
When the function returns, this value will be updated with the actual length of the file that was
downloaded.

lpObject

A pointer to a WEB_STORAGE_OBJECT structure that will contain additional information about
the object. This parameter may be NULL if the information is not required.

Return Value
If the function succeeds, the return value is a non-zero. If the function fails, the return value is
zero. To get extended error information, call WebGetLastError.

Remarks
The WebGetObjectEx function is used to retrieve a stored object from the server and copy it into
a local buffer. The function may be used in one of two ways, depending on the needs of the
application. The first method is to pre-allocate a buffer large enough to store the contents of the
object. In this case, the lpvBuffer parameter will point to the buffer that was allocated and the
value that the lpdwLength parameter points to should be initialized to the size of that buffer.

The second method that can be used is have the lpvBuffer parameter point to a global memory
handle which will contain the file data when the function returns. In this case, the value that the
lpdwLength parameter points to must be initialized to zero. It is important to note that the

memory handle returned by the function must be freed by the application, otherwise a memory
leak will occur. See the example code below.

If you wish to retrieve the contents of a text object and store it in a null terminated string buffer,
use the WebGetTextObject function. If you wish to download the contents of a stored file, use
the WebGetFileEx function.

Additional metadata about the object will be returned in the WEB_STORAGE_OBJECT structure
provided by the caller, such as the date and time the object was created, the content type and the
SHA-256 hash of the object contents.

Example
HGLOBAL hgblBuffer = (HGLOBAL)NULL;
DWORD dwLength = 0;
WEB_STORAGE_OBJECT webObject;

// Return the file data into block of global memory allocated by
// the GlobalAlloc function; the handle to this memory will be
// returned in the hgblBuffer parameter
if (WebGetObjectEx(hStorage, lpszObjectLabel, 0, &hgblBuffer, &dwLength,
&webObject))
{
 // Lock the global memory handle, returning a pointer to the
 // resource data
 LPBYTE lpBuffer = (LPBYTE)GlobalLock(hgblBuffer);

 // After the data has been used, the handle must be unlocked
 // and freed, otherwise a memory leak will occur
 GlobalUnlock(hgblBuffer);
 GlobalFree(hgblBuffer);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
WebGetFileEx, WebGetObject, WebGetTextObject, WebPutFileEx, WebPutObjectEx

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WebGetObjectInformation Function

BOOL WINAPI WebGetObjectInformation(
 HSTORAGE hStorage,
 LPCTSTR lpszObjectLabel,
 DWORD dwReserved,
 LPWEB_STORAGE_OBJECT lpObject
);

The WebGetObjectInformation function retrieves the metadata for a storage object.

Parameters
hStorage

A handle to the storage container.

lpszObjectLabel

A pointer to a null terminated string that specifies the label of the storage object.

dwReserved

An unsigned integer that is reserved for future use. This value should always be zero.

lpObject

A pointer to a WEB_STORAGE_OBJECT structure that will contain additional information about
the object. This parameter cannot be a NULL pointer.

Return Value
If the function succeeds, the return value is a non-zero. If the function fails, the return value is
zero. To get extended error information, call WebGetLastError.

Remarks
The WebGetObjectInformation function is used to retrieve the metadata for a stored object on
the server, such as the date and time the object was created, the content type and the SHA-256
hash of the object contents. This function can also be used as a simple method to determine if the
specified object exists without the overhead of requesting the server attempt to retrieve the
contents of an object.

Although storage object labels are similar to Windows file names, they are case-sensitive. When
requesting information about an object, your application must specify the label name exactly as it
was created. The object label cannot contain wildcard characters.

If you are only interested in obtaining the size of a stored object, you can use the
WebGetObjectSize function.

To obtain information about how much storage your applications are using and the total number
of stored objects, use the WebGetStorageQuota function.

Example
WEB_STORAGE_OBJECT webObject;

// Get information about the object
if (WebGetObjectInformation(hStorage, lpszObjectLabel, 0, &webObject))
{
 // The object exists, display the metadata
 _tprintf(_T("Object: %s\n"), webObject.szObjectId);
 _tprintf(_T("Label: %s\n"), webObject.szLabel);

 _tprintf(_T("Size: %lu\n"), webObject.dwObjectSize);
 _tprintf(_T("Digest: %s\n"), webObject.szDigest);
 _tprintf(_T("Content: %s\n"), webObject.szContent);
}
else
{
 // The object does not exist, display the error
 TCHAR szError[128];

 WebGetErrorString(WebGetLastError(), szError, 128);
 _tprintf(_T("Unable to get information on \"%s\" (%s)\n"), lpszObjectLabel,
szError);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
WebGetFile, WebGetObject, WebGetObjectSize, WebGetStorageQuota, WebPutFile,
WebPutObject

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WebGetObjectSize Function

BOOL WINAPI WebGetObjectSize(
 HSTORAGE hStorage,
 LPCTSTR lpszObjectLabel,
 LPDWORD lpdwObjectSize
);

The WebGetObjectSize function returns the size of the stored object.

Parameters
hStorage

A handle to the storage container.

lpszObjectLabel

A pointer to a null terminated string that specifies the label of the storage object. This
parameter cannot be a NULL pointer.

lpdwObjectSize

A pointer to an unsigned integer value that will contain the size of the object. If this parameter is
NULL, the parameter is ignored and the function only checks for the existence of an object that
matches the specified label.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call WebGetLastError.

Remarks
The WebGetObjectSize function is used to retrieve the size of a stored object on the server. This
function can also be used as a simple method to determine if the specified object exists. An object
size of zero means the object exists, but currently has no data associated with it.

If the lpObjectSize parameter is not NULL, its value is initialized to zero when the function is called,
and updated with the object size when the function returns.

Although storage object labels are similar to Windows file names, they are case-sensitive. When
requesting the size of an object, your application must specify the label name exactly as it was
created. The object label cannot contain wildcard characters.

The WebGetObjectInformation function can be used to obtain the metadata associated with the
storage object, including the size, content type, creation date and a SHA-256 digest of the data.

To obtain information about how much storage your applications are using and the total number
of stored objects, use the WebGetStorageQuota function.

Example
// Check if the object exists
DWORD dwObjectSize;

if (WebGetObjectSize(hStorage, lpszObjectLabel, &dwObjectSize))
{
 // The object exists, display the size in bytes
 _tprintf(_T("The size of \"%s\" is %lu bytes\n"), lpszObjectLabel,
dwObjectSize);
}

else
{
 // The object size could not be determined, display the error
 TCHAR szError[128];

 WebGetErrorString(WebGetLastError(), szError, 128);
 _tprintf(_T("Unable to get the size of \"%s\" (%s)\n"), lpszObjectLabel,
szError);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
WebGetObject, WebGetObjectInformation, WebGetStorageQuota, WebPutObject

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WebGetStorageId Function

BOOL WINAPI WebGetStorageId(
 HSTORAGE hStorage,
 LPCTSTR lpszStorageId,
 INT nMaxLength
);

The WebGetStorageId function returns the storage container ID.

Parameters
hStorage

A handle to the storage container.

lpszStorageId

A pointer to a null-terminated string that will contain the storage ID when the function returns.
This parameter cannot be NULL and must be at least 35 characters in length.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
lpszStorageId string parameter, including the terminating null character.

Return Value
If the function succeeds, the return value is a non-zero. If the function fails, the return value is
zero. To get extended error information, call WebGetLastError.

Remarks
The storage ID is a string that identifies the storage container that was opened with the
WebOpenStorage function. The storage ID is associated with your development license and is
guaranteed to be a unique value.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
WebGetAccountId, WebOpenStorage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WebGetStorageQuota Function

BOOL WINAPI WebGetStorageQuota(
 LPWEB_STORAGE_QUOTA lpQuota
);

The WebGetStorageQuota function returns quota limits assigned to your storage account.

Parameters
lpQuota

A pointer to a WEB_STORAGE_QUOTA structure that will contain information the quota limits
for your account when the function returns. This parameter cannot be NULL.

Return Value
If the function succeeds, the return value is a non-zero. If the function fails, the return value is
zero. To get extended error information, call WebGetLastError.

Remarks
The WebGetStorageQuota function can be used to determine how much storage space is
available to your application. The ulBytesFree structure member will tell you how many bytes of
storage you have available, and the dwObjectSize member will tell you the maximum size of any
individual storage object. In addition to the bytes allocated for storage, there is also a limit on the
total number of objects that your application may create which is specified by the dwObjectLimit
member.

Accounts that are created with an evaluation license have much lower quota limits than a standard
account and should be used for testing purposes only. After the evaluation period has ended, all
objects stored using the evaluation license will be deleted.

Example
WEB_STORAGE_QUOTA appQuota;

// Initialize the library
if (WebInitialize(CSTOOLS11_LICENSE_KEY, NULL) == FALSE)
{
 _tprintf(_T("Unable to initialize the SocketTools library\n"));
 return;
}

// Display storage account usage and limits
if (WebGetStorageQuota(&appQuota))
{
 _tprintf(_T("Objects Used: %lu\n"), appQuota.dwObjects);
 _tprintf(_T("Object Limit: %lu\n"), appQuota.dwObjectLimit);
 _tprintf(_T("Object Size: %lu\n"), appQuota.dwObjectSize);
 _tprintf(_T("Bytes Used: %I64u\n"), appQuota.ulBytesUsed);
 _tprintf(_T("Bytes Free: %I64u\n"), appQuota.ulBytesFree);
 _tprintf(_T("Storage Limit: %I64u\n"), appQuota.ulStorageLimit);
}
else
{
 // Unable to get the quota information for this account
 TCHAR szError[128];

 WebGetErrorString(WebGetLastError(), szError, 128);

 _tprintf(_T("Unable to get the account quota (%s)\n"), szError);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
WebGetObjectInformation, WebGetObjectSize, WEB_STORAGE_QUOTA

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WebGetStorageTimeout Function

DWORD WINAPI WebGetStorageTimeout(
 HSTORAGE hStorage
);

The WebGetStorageTimeout function returns the number of seconds the client will wait for a
response from the storage server. Once the specified number of seconds has elapsed, the function
will fail and return to the caller.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is the timeout period in seconds. If the function fails, the
return value is zero. To get extended error information, call WebGetLastError.

Remarks
The default timeout period is 10 seconds.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib

See Also
WebOpenStorage, WebSetStorageTimeout

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WebGetTextObject Function

BOOL WINAPI WebGetTextObject(
 HSTORAGE hStorage,
 LPCTSTR lpszObjectLabel,
 LPTSTR lpszBuffer,
 INT nMaxLength,
 LPWEB_STORAGE_OBJECT lpObject,
);

The WebGetTextObject function retrieves the contents of a text storage object and copies it to
the string buffer that is provided. Additional information about the object is returned to the caller.

Parameters
hStorage

A handle to the storage container.

lpszObjectLabel

A pointer to a null terminated string that specifies the label of the text object that should be
retrieved from the server.

lpszBuffer

A pointer to a string buffer which will contain the text stored in the object. The string must be
large enough to store the terminating null character.

nMaxLength

An integer value that specifies the maximum number of characters that can be copied into the
string buffer. This value must be large enough to store the complete text and the terminating
null character.

lpObject

A pointer to a WEB_STORAGE_OBJECT structure that will contain additional information about
the object. This parameter may be NULL if the information is not required.

Return Value
If the function succeeds, the return value is a non-zero. If the function fails, the return value is
zero. To get extended error information, call WebGetLastError.

Remarks
The WebGetTextObject function is used to retrieve the text from a stored object and copy it into
a string buffer. The string buffer must be pre-allocated and large enough to contain the entire text
and a terminating null character.

If you use the WebGetObjectSize function to determine the size of the object so your application
can dynamically allocate memory for the string buffer, be sure to allocate a string buffer that is
larger than the reported size. The size of the stored text object may differ slightly from what is
returned in the string, depending on how the text has been encoded.

Text objects that are created or updated using the Unicode version of WebPutTextObject
function will always be converted and stored as UTF-8 encoded text. If your application uses the
ANSI version of this function to retrieve that text, it will be UTF-8 encoded and your application will
need to convert it back to UTF-16 encoded text, if needed. The Unicode version of this function
will perform the conversion automatically.

This function should never be used to retrieve data from an object that does not contain text. If

the WebPutObject function was previously used to store UTF-16 encoded text, you must use
WebGetObject to retrieve that data. This function only recognizes UTF-8 encoded text and
considers UTF-16 encoded text to be binary data.

Additional metadata about the object will be returned in the WEB_STORAGE_OBJECT structure
provided by the caller, such as the date and time the object was created, the content type and the
SHA-256 hash of the object contents.

Example
LPTSTR lpszBuffer = (LPTSTR)NULL;
INT nMaxLength = 8192;
WEB_STORAGE_OBJECT webObject;

lpszBuffer = (LPTSTR)LocalAlloc(LPTR, nMaxLength);
if (lpszBuffer == NULL)
{
 // Unable to allocate memory for the string
 _ftprintf(stderr, _T("Unable to allocate %d bytes of memory\n"),
nMaxLength);
 return;
}

if (WebGetTextObject(hStorage, lpszObjectLabel, lpszBuffer, nMaxLength,
&webObject))
{
 // Output the text contained in the object
 _fputts(lpszBuffer, stdout);
}
else
{
 DWORD dwError = WebGetLastError();
 TCHAR szError[128];

 WebGetErrorString(dwError, szError, 128);
 _ftprintf(stderr, _T("Unable to get \"%s\": %s\n"), lpszObjectLabel,
szError);
}

// Free memory allocated for the text when no longer needed
LocalFree((HLOCAL)lpszBuffer);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
WebCompareText, WebGetFileEx, WebGetObject, WebPutFileEx, WebPutObjectEx,
WebPutTextObject

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WebGetTransferStatus Function

BOOL WINAPI WebGetTransferStatus(
 HSTORAGE hStorage,
 LPWEB_STORAGE_TRANSFER lpStatus
);

The WebGetTransferStatus function returns information about the current data transfer in
progress.

Parameters
hStorage

Handle to the storage container.

lpStatus

A pointer to a WEB_STORAGE_TRANSFER structure which contains information about the status
of the current data transfer.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call WebGetLastError.

Remarks
The WebGetTransferStatus function returns information about the current data transfer,
including the average number of bytes transferred per second and the estimated amount of time
until the transfer completes. If there is no data currently being transferred, this function will return
the status of the last successful data transfer.

In a multithreaded application, any thread in the current process may call this function to obtain
status information for the specified storage session.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
WebCancelTransfer, WebRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WebInitialize Function

BOOL WINAPI WebInitialize(
 LPCTSTR lpszLicenseKey,
 LPINITDATA lpData
);

The WebInitialize function initializes the library and validates the specified license key at runtime.

Parameters
lpszLicenseKey

Pointer to a string that specifies the runtime license key to be validated. If this parameter is
NULL, the library will validate the development license installed on the local system.

lpData

Pointer to an INITDATA data structure. This parameter may be NULL if the initialization data for
the library is not required.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call WebGetLastError. All other client functions will fail until a
license key has been successfully validated.

Remarks
This must be the first function that an application calls before using any of the other functions in
the library. When a NULL license key is specified, the library will only function on the development
system. Before redistributing the application to an end-user, you must insure that this function is
called with a valid license key.

If the lpData argument is specified, it must point to an INITDATA structure which has been
initialized by setting the dwSize member to the size of the structure. All other structure members
should be set to zero. If the function is successful, then the INITDATA structure will be filled with
identifying information about the library.

Although it is only required that WebInitialize be called once for the current process, it may be
called multiple times; however, each call must be matched by a corresponding call to
WebUninitialize.

This function dynamically loads other system libraries and allocates thread local storage. If you are
calling the functions in this library from within another DLL, it is important that you do not call the
WebInitialize or WebUninitialize functions from the DllMain function because it can result in
deadlocks or access violation errors. If the DLL is linked with the C runtime library (CRT), it will
automatically call the constructors and destructors for static and global C++ objects and has the
same restrictions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also

WebCloseStorage, WebOpenStorage, WebRegisterAppId, WebUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WebMoveObject Function

BOOL WINAPI WebMoveObject(
 HSTORAGE hStorage,
 LPCTSTR lpszOldLabel,
 LPCTSTR lpszNewLabel,
 DWORD dwStorageType,
 LPWEB_STORAGE_OBJECT lpObject
);

The WebMoveObject function moves an existing object to a different storage container.

Parameters
hStorage

A handle to the storage container.

lpszOldLabel

A pointer to a null terminated string which specifies the name of the existing storage object to
be moved. This parameter must specify a valid object label and cannot be a NULL pointer or an
empty string.

lpszNewLabel

A pointer to a null terminated string which specifies a new label for the storage object being
moved. This parameter may be NULL or point to an empty string, in which case the label name
is not changed.

dwStorageType

An integer value that identifies the storage container type. One of the following values should
be specified:

Constant Description

WEB_STORAGE_GLOBAL
(1)

Global storage. Objects stored using this storage type are
available to all users. Any changes made to objects using
this storage type will affect all users of the application.
Unless there is a specific need to limit access to the objects
stored by the application to specific domains, local
machines or users, it is recommended that you use this
storage type when creating new objects.

WEB_STORAGE_DOMAIN
(2)

Local domain storage. Objects stored using this storage
type are only available to users in the same local domain,
as defined by the domain name or workgroup name
assigned to the local system. If the domain or workgroup
name changes, objects previously stored using this
storage type will not be available to the application.

WEB_STORAGE_MACHINE
(3)

Local machine storage. Objects stored using this storage
type are only available to users on the same local
machine. The local machine is identified by unique
characteristics of the system, including the boot volume
GUID. Objects previously stored using this storage type will
not be available on that system if the boot disk is
reformatted.

WEB_STORAGE_USER
(4)

Current user storage. Objects stored using this storage
type are only available to the current user logged in on
the local machine. The user identifier is based on the
Windows user SID that is assigned when the user account
is created. If the user account is deleted, the objects
previously stored using this storage type will not be
available to the application.

lpObject

A pointer to a WEB_STORAGE_OBJECT structure that will contain information about the new
storage object. If this information is not required, this parameter may be a NULL pointer.

Return Value
If the function succeeds, the return value is a non-zero. If the function fails, the return value is
zero. To get extended error information, call WebGetLastError.

Remarks
The WebMoveObject function is used to move an existing storage object to a new container. For
example, it can move an object originally created using WEB_STORAGE_USER to the
WEB_STORAGE_MACHINE container. The dwStorageType parameter must specify a valid storage
container type and cannot be WEB_STORAGE_DEFAULT.

If the dwStorageType parameter specifies the same container that the object is currently in, and
the lpszNewLabel parameter specifies a new label name, this function will simply rename the
existing object and is effectively the same as calling the WebRenameObject function.

To duplicate an existing storage object, use the WebCopyObject function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
WebCopyObject, WebDeleteObject, WebRenameObject

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WebOpenStorage Function

HSTORAGE WINAPI WebOpenStorage(
 LPCTSTR lpszAppId,
 DWORD dwStorageType

The WebOpenStorage function establishes a connection with the server and opens the storage
container associated with the specified storage type.

Parameters
lpszAppId

A pointer to null terminated string which specifies the application ID for the storage container.
The application ID is a string that uniquely identifies the application and can only contain letters,
numbers, the period and the underscore character. If this parameter is NULL or an empty string,
the default identifier SocketTools.Storage.Default will be used.

dwStorageType

An integer value that identifies the storage container type. One of the following values should
be specified:

Constant Description

WEB_STORAGE_GLOBAL
(1)

Global storage. Objects stored using this storage type are
available to all users. Any changes made to objects using
this storage type will affect all users of the application.
Unless there is a specific need to limit access to the objects
stored by the application to specific domains, local
machines or users, it is recommended that you use this
storage type when creating new objects.

WEB_STORAGE_DOMAIN
(2)

Local domain storage. Objects stored using this storage
type are only available to users in the same local domain,
as defined by the domain name or workgroup name
assigned to the local system. If the domain or workgroup
name changes, objects previously stored using this
storage type will not be available to the application.

WEB_STORAGE_MACHINE
(3)

Local machine storage. Objects stored using this storage
type are only available to users on the same local
machine. The local machine is identified by unique
characteristics of the system, including the boot volume
GUID. Objects previously stored using this storage type will
not be available on that system if the boot disk is
reformatted.

WEB_STORAGE_USER
(4)

Current user storage. Objects stored using this storage
type are only available to the current user logged in on
the local machine. The user identifier is based on the
Windows user SID that is assigned when the user account
is created. If the user account is deleted, the objects
previously stored using this storage type will not be
available to the application.

Return Value
If the function succeeds, the return value is a handle to the storage container. If the function fails,
the return value is INVALID_HANDLE. To get extended error information, call WebGetLastError.

Remarks
The WebOpenStorage function opens the specified storage container and requests an access
token for the application. This is the first function that must be called prior to accessing any stored
objects.

The application ID is a string that uniquely identifies the application requesting the access and
must have been previously registered with the server by calling the WebRegisterAppId function.
If the lpszAppId parameter is NULL or an empty string, the function will use a default internal ID
that is allocated for each storage account. You can use this default ID if you wish to share data
between all of the applications you create.

The storage type specifies the type of container that objects will be stored in. In most cases, we
recommend using WEB_STORAGE_GLOBAL which means that stored objects will be accessible to
all users of your application. However, you can limit access to the stored objects based on the
local domain, local machine ID or the current user SID.

If you specify anything other than global storage, objects can be orphaned if the system
configuration changes. For example, if WEB_STORAGE_MACHINE is specified, the objects that are
stored there can only be accessed from that computer system. If the system is reconfigured (for
example, the boot volume formatted and Windows is reinstalled) the unique identifier for that
system will change and the previous objects that were stored by your application can no longer be
accessed.

It is advisable is to store critical application data and configuration information using
WEB_STORAGE_GLOBAL and use other non-global storage containers for configuration
information that is unique to that system and/or user which is not critical and can be easily
recreated.

Example
 HSTORAGE hStorage = INVALID_HANDLE;
LPCTSTR lpszAppId = _T("MyCompany.WebTest.1");
LPCTSTR lpszLocalFile = _T("TestDocument.pdf");
LPCTSTR lpszObjectLabel = _T("TestDocument.pdf");
WEB_STORAGE_OBJECT webObject = { 0, };
BOOL bSuccess = FALSE;

// Register the application ID which identifies the application
if (!WebRegisterAppId(lpszAppId))
{
 tprintf(_T("Unable to register the application ID"));
 _exit(0);
}

// Open the application storage container
hStorage = WebOpenStorage(lpszAppId, WEB_STORAGE_GLOBAL);

if (hStorage == INVALID_HANDLE)
{
 tprintf(_T("Unable to open global storage for this application"));
 _exit(0);
}

// Upload a local file to the storage server and return information
// about the stored object when it completes
bSuccess = WebPutFileEx(hStorage,
 lpszLocalFile,
 lpszObjectLabel,
 NULL,
 WEB_OBJECT_DEFAULT,
 0,
 &webObject);

if (bSuccess)
{
 // Print information about the object that was created
 _tprintf(_T("Object: %s\n"), webObject.szObjectId);
 _tprintf(_T("Label: %s\n"), webObject.szLabel);
 _tprintf(_T("Size: %lu\n"), webObject.dwObjectSize);
 _tprintf(_T("Digest: %s\n"), webObject.szDigest);
 _tprintf(_T("Content: %s\n"), webObject.szContent);
}
else
{
 // The upload failed, display error information
 DWORD dwError = WebGetLastError();
 TCHAR szError[128];

 WebGetErrorString(dwError, szError, 128);
 _tprintf(_T("WebPutFileEx failed, error 0x%08lX (%s)\n"), dwError, szError);
}

// Release the handle allocated for this storage session
WebCloseStorage(hStorage);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
WebCloseStorage, WebGetFile, WebGetObject, WebGetStorageId, WebPutFile, WebPutObject,
WebRegisterAppId

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WebPutFile Function

BOOL WINAPI WebPutFile(
 HSTORAGE hStorage,
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszObjectLabel
);

The WebPutFile function uploads the contents of a local file to a storage container.

Parameters
hStorage

A handle to the storage container.

lpszLocalFile

A pointer to a null terminated string that specifies the name of the local file that will be
uploaded. If a path is not specified, the file will be read from the current working directory. The
current user must have read access to the file, and an error will be returned if the function
cannot obtain an exclusive lock on the file during the upload process.

lpszObjectLabel

A pointer to a null terminated string that specifies the label of the storage object that will be
created or replaced. This parameter cannot be NULL or a zero-length string. The function will
fail if the label contains any illegal characters.

Return Value
If the function succeeds, the return value is a non-zero. If the function fails, the return value is
zero. To get extended error information, call WebGetLastError.

Remarks
The WebPutFile function uploads the contents of a local file to the storage container specified by
the hStorage handle. If an object with this name already exists, its data will be replaced with the
contents of the file. The object will be created using the default attributes that permit read and
write access, and will automatically determine the content type based on the type of file being
uploaded.

If the label identifies an object that already exists in the container, and that object was created with
the WEB_OBJECT_READONLY attribute, this function will fail. To replace a read-only object, the
application must first move, rename or delete the existing object.

If you want to specify the object content type, its attributes, or obtain additional information about
the storage object that was created, use the WebPutFileEx function.

The WebValidateLabel function can be used to ensure a label is valid prior to calling this
function. Refer to that function for more information about the difference between Windows file
names and object labels.

If you are uploading a large file and want your application to receive progress updates during the
data transfer, use the WebRegisterEvent function and provide a pointer to a callback function
that will receive event notifications.

Example
// Upload a local file to the storage container
if (WebPutFile(hStorage, lpszLocalFile, lpszObjectLabel)

{
 // The file was uploaded successfully
 _tprintf(_T("The file was stored as \"%s\"\n"), lpszObjectLabel);
}
else
{
 // The file could not be uploaded, display the error
 TCHAR szError[128];

 WebGetErrorString(WebGetLastError(), szError, 128);
 _tprintf(_T("Unable to store \"%s\" (%s)\n"), lpszLocalFile, szError);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
WebDownloadFile, WebGetFile, WebPutFileEx, WebRegisterEvent, WebUploadFile,
WebValidateLabel

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WebPutFileEx Function

BOOL WINAPI WebPutFileEx(
 HSTORAGE hStorage,
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszObjectLabel,
 LPCTSTR lpszContentType,
 DWORD dwAttributes,
 DWORD dwReserved,
 LPWEB_STORAGE_OBJECT lpObject
);

The WebPutFileEx function uploads the contents of a local file to a storage container and returns
information about the new object.

Parameters
hStorage

A handle to the storage container.

lpszLocalFile

A pointer to a null terminated string that specifies the name of the local file that will be
uploaded. If a path is not specified, the file will be read from the current working directory. The
current user must have read access to the file, and an error will be returned if the function
cannot obtain an exclusive lock on the file during the upload process.

lpszObjectLabel

A pointer to a null terminated string that specifies the label of the storage object that will be
created or replaced. This parameter cannot be NULL or a zero-length string. The function will
fail if the label contains any illegal characters.

lpszContentType

A pointer to a null terminated string that identifies the contents of the file being uploaded. If this
parameter is a NULL pointer, or specifies a zero-length string, the function will attempt to
automatically determine the content type based on the file name extension and the contents of
the file.

dwAttributes

An unsigned integer that specifies the attributes associated with the storage object. This value
can be a combination of one or more of the following bitflags using a bitwise OR operation:

Value Constant Description

0 WEB_OBJECT_DEFAULT Default object attributes. This value is used to
indicate the object can be modified, or that the
attributes for a previously existing object should
not be changed.

1 WEB_OBJECT_NORMAL A normal object that that can be read and
modified by the application. This is the default
attribute for new objects that are created by the
application.

2 WEB_OBJECT_READONLY A read-only object that can only be read by the
application. Attempts to modify or replace the
contents of the object will fail. Read-only objects

can be deleted.

4 WEB_OBJECT_HIDDEN A hidden object. Objects with this attribute are not
returned when enumerated using the
WebEnumObjects function. The object can only
be accessed directly when specifying its label.

dwReserved

An unsigned integer value that is reserved for future use. This value should always be zero.

lpObject

A pointer to a WEB_STORAGE_OBJECT structure that will contain additional information about
the object. This parameter may be NULL if the information is not required.

Return Value
If the function succeeds, the return value is a non-zero. If the function fails, the return value is
zero. To get extended error information, call WebGetLastError.

Remarks
The WebPutFileEx function uploads the contents of a local file to the storage container specified
by the hStorage handle. The caller is responsible for specifying the object's content type and the
attributes for the object being created.

If a content type is provided, it must specify a valid MIME media type and subtype. For example,
normal text files have a content type of text/plain while an XML-formatted text file would have a
content type of text/xml. Files that contain unstructured binary data are typically identified as
application/octet-stream.

If the label identifies an object that already exists in the container, and that object was created with
the WEB_OBJECT_READONLY attribute, this function will fail. To replace a read-only object, the
application must first move, rename or delete the existing object.

The WebValidateLabel function can be used to ensure a label is valid prior to calling this
function. Refer to that function for more information about the difference between Windows file
names and object labels

If you are uploading a large file and want your application to receive progress updates during the
data transfer, use the WebRegisterEvent function and provide a pointer to a callback function
that will receive event notifications.

The WebUploadFile and WebUploadFileEx functions provide similar functionality, but do not
require a handle to an open storage container.

Example
WEB_STORAGE_OBJECT webObject;

// Upload a local file to the storage container, automatically
// determining the content type with normal read/write access
if (WebPutFileEx(hStorage, lpszLocalFile, lpszObjectLabel, NULL,
WEB_OBJECT_NORMAL, 0, &webObject))
{
 // The file was uploaded, display the object metadata
 _tprintf(_T("Object: %s\n"), webObject.szObjectId);
 _tprintf(_T("Label: %s\n"), webObject.szLabel);
 _tprintf(_T("Size: %lu\n"), webObject.dwObjectSize);
 _tprintf(_T("Digest: %s\n"), webObject.szDigest);

 _tprintf(_T("Content: %s\n"), webObject.szContent);
}
else
{
 // The file could not be uploaded, display the error
 TCHAR szError[128];

 WebGetErrorString(WebGetLastError(), szError, 128);
 _tprintf(_T("Unable to store \"%s\" (%s)\n"), lpszLocalFile, szError);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
WebDownloadFile, WebGetFile, WebPutFile, WebRegisterEvent, WebUploadFile, WebValidateLabel

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WebPutObject Function

BOOL WINAPI WebPutObject(
 HSTORAGE hStorage,
 LPCTSTR lpszObjectLabel,
 LPCVOID lpvBuffer,
 DWORD dwLength
);

The WebPutObject function creates a new storage object or overwrites an existing object with
the contents of the buffer provided.

Parameters
hStorage

A handle to the storage container.

lpszObjectLabel

A pointer to a null terminated string that specifies the label of the storage object that will be
created or replaced. This parameter cannot be NULL or a zero-length string. The function will
fail if the label contains any illegal characters.

lpvBuffer

A pointer to a buffer that contains the data to be stored. If this parameter is NULL, the
dwLength parameter must have a value of zero and a storage object will be created which has
no data associated with it.

dwLength

An unsigned integer value that specifies the number of bytes that will be copied from the
lpvBuffer parameter and stored in the object. If the lpvBuffer parameter is NULL, this value
must be zero or the function will fail.

Return Value
If the function succeeds, the return value is a non-zero. If the function fails, the return value is
zero. To get extended error information, call WebGetLastError.

Remarks
The WebPutObject function stores the contents of a buffer to the storage container specified by
the hStorage handle. If an object with this name already exists, its data will be replaced with the
contents of the file. The object will be created using the default attributes that permit read and
write access, and it will automatically determine the content type based on the data being stored.

Although storage object labels are similar to Windows file names, they are case-sensitive. When
requesting information about an object, your application must specify the label name exactly as it
was created using this function. The object label cannot contain wildcard characters.

If the label identifies an object that already exists in the container, and that object was created with
the WEB_OBJECT_READONLY attribute, this function will fail. To replace a read-only object, the
application must first move, rename or delete the existing object.

If you want to specify the object content type, its attributes, or obtain additional information about
the storage object that was created, use the WebPutObjectEx function.

If you want to upload the contents of a file, the WebPutFile function simplifies this process. The
example code below demonstrates how the Windows API can be used to read from a local file
and store the contents using WebPutObject.

If you are storing a large amount of data and want your application to receive progress updates
during the data transfer, use the WebRegisterEvent function and provide a pointer to a callback
function that will receive event notifications.

Example
HANDLE hFile = INVALID_HANDLE_VALUE;
LPBYTE lpContents = NULL;
DWORD dwLength = 0;
BOOL bFileRead = FALSE;

// Open a file on the local system and read the contents
// into a buffer that will be stored on the server
hFile = CreateFile(lpszLocalFile,
 GENERIC_READ,
 0,
 NULL,
 OPEN_EXISTING,
 FILE_ATTRIBUTE_NORMAL,
 NULL);

if (hFile == INVALID_HANDLE_VALUE)
{
 // Unable to open the file
 return;
}

// Get the size of the file and allocate a buffer large
// enough to store the contents of the file
dwLength = GetFileSize(hFile, NULL);
lpContents = (LPBYTE)LocalAlloc(LPTR, dwLength + 1);

if (lpContents == NULL)
{
 // Memory allocation failed
 return;
}

bFileRead = ReadFile(hFile, lpContents, dwLength, &dwLength, NULL);
CloseHandle(hFile);

if (!bFileRead)
{
 // Unable to read the contents of the file
 return;
}

// Store the contents of the buffer
if (WebPutObject(hStorage, lpszObjectLabel, lpContents, dwLength))
{
 _tprintf(_T("WebPutObject stored %lu bytes\n"), dwLength);
}
else
{
 // The object could not be created
 TCHAR szError[128];

 WebGetErrorString(WebGetLastError(), szError, 128);
 _tprintf(_T("Unable to create \"%s\" (%s)\n"), lpszObjectLabel, szError);

}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
WebPutFile, WebPutObjectEx, WebRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WebPutObjectEx Function

BOOL WINAPI WebPutObjectEx(
 HSTORAGE hStorage,
 LPCTSTR lpszObjectLabel,
 LPCTSTR lpszContentType,
 DWORD dwAttributes,
 DWORD dwReserved,
 LPCVOID lpvBuffer,
 DWORD dwLength,
 LPWEB_STORAGE_OBJECT lpObject
);

The WebPutObjectEx function stores the contents of buffer to a container and returns
information about the new object.

Parameters
hStorage

A handle to the storage container.

lpszObjectLabel

A pointer to a null terminated string that specifies the label of the storage object that will be
created or replaced. This parameter cannot be NULL or a zero-length string. The function will
fail if the label contains any illegal characters.

lpszContentType

A pointer to a null terminated string that identifies the contents of the buffer being stored. If this
parameter is a NULL pointer, or specifies a zero-length string, the function will attempt to
automatically determine the content type based on the object label and the contents of the
buffer.

dwAttributes

An unsigned integer that specifies the attributes associated with the storage object. This value
can be a combination of one or more of the following bitflags using a bitwise OR operation:

Value Constant Description

0 WEB_OBJECT_DEFAULT Default object attributes. This value is used to
indicate the object can be modified, or that the
attributes for a previously existing object should
not be changed.

1 WEB_OBJECT_NORMAL A normal object that that can be read and
modified by the application. This is the default
attribute for new objects that are created by the
application.

2 WEB_OBJECT_READONLY A read-only object that can only be read by the
application. Attempts to modify or replace the
contents of the object will fail. Read-only objects
can be deleted.

4 WEB_OBJECT_HIDDEN A hidden object. Objects with this attribute are not
returned when enumerated using the
WebEnumObjects function. The object can only

be accessed directly when specifying its label.

dwReserved

An unsigned integer value that is reserved for future use. This value should always be zero.

lpvBuffer

A pointer to a buffer that contains the data to be stored. If this parameter is NULL, the
dwLength parameter must have a value of zero and a storage object will be created which has
no data associated with it.

dwLength

An unsigned integer value that specifies the number of bytes that will be copied from the
lpvBuffer parameter and stored in the object. If the lpvBuffer parameter is NULL, this value
must be zero or the function will fail.

lpObject

A pointer to a WEB_STORAGE_OBJECT structure that will contain additional information about
the object that was created or replaced. This parameter may be NULL if the information is not
required.

Return Value
If the function succeeds, the return value is a non-zero. If the function fails, the return value is
zero. To get extended error information, call WebGetLastError.

Remarks
The WebPutObjectEx function uploads the contents of a buffer to the storage container specified
by the hStorage handle. The caller is responsible for specifying the object's content type and the
attributes for the object being created.

Although storage object labels are similar to Windows file names, they are case-sensitive. When
requesting information about an object, your application must specify the label name exactly as it
was created using this function. The object label cannot contain wildcard characters.

If a content type is provided, it must specify a valid MIME media type and subtype. For example,
typical text data has a content type of text/plain while XML-formatted text would have a content
type of text/xml. Data which contains unstructured binary data is typically identified as
application/octet-stream.

If the label identifies an object that already exists in the container, and that object was created with
the WEB_OBJECT_READONLY attribute, this function will fail. To replace a read-only object, the
application must explicitly move, rename or delete the existing object.

If you wish to store the contents of a null terminated string, you can use the WebPutTextObject
function. If you want to upload the contents of a file, the WebPutFileEx function simplifies this
process. The example code below demonstrates how the Windows API can be used to read from
a local file and store the contents using WebPutObjectEx.

If you are storing a large amount of data and want your application to receive progress updates
during the data transfer, use the WebRegisterEvent function and provide a pointer to a callback
function that will receive event notifications.

Example
HANDLE hFile = INVALID_HANDLE_VALUE;
LPBYTE lpContents = NULL;
DWORD dwLength = 0;
BOOL bFileRead = FALSE;

WEB_STORAGE_OBJECT webObject;

// Open a file on the local system and read the contents
// into a buffer that will be stored on the server
hFile = CreateFile(lpszLocalFile,
 GENERIC_READ,
 0,
 NULL,
 OPEN_EXISTING,
 FILE_ATTRIBUTE_NORMAL,
 NULL);

if (hFile == INVALID_HANDLE_VALUE)
{
 // Unable to open the file
 return;
}

// Get the size of the file and allocate a buffer large
// enough to store the contents of the file
dwLength = GetFileSize(hFile, NULL);
lpContents = (LPBYTE)LocalAlloc(LPTR, dwLength + 1);

if (lpContents == NULL)
{
 // Memory allocation failed
 return;
}

bFileRead = ReadFile(hFile, lpContents, dwLength, &dwLength, NULL);
CloseHandle(hFile);

if (!bFileRead)
{
 // Unable to read the contents of the file
 return;
}

// Store the contents of the buffer, identifying it as an unstructured
// stream of bytes, and the object is created with read/write access
if (WebPutObjectEx(hStorage,
 lpszObjectLabel,
 _T("application/octet-stream"),
 WEB_OBJECT_NORMAL,
 0,
 lpContents,
 dwLength,
 &webObject))
{
 // The object was created or replaced, display the metadata
 _tprintf(_T("Object: %s\n"), webObject.szObjectId);
 _tprintf(_T("Label: %s\n"), webObject.szLabel);
 _tprintf(_T("Size: %lu\n"), webObject.dwObjectSize);
 _tprintf(_T("Digest: %s\n"), webObject.szDigest);
 _tprintf(_T("Content: %s\n"), webObject.szContent);
}
else
{
 // The object could not be created

 TCHAR szError[128];

 WebGetErrorString(WebGetLastError(), szError, 128);
 _tprintf(_T("Unable to create \"%s\" (%s)\n"), lpszObjectLabel, szError);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
WebPutFileEx, WebPutObject, WebPutTextObject, WebRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WebPutTextObject Function

BOOL WINAPI WebPutTextObject(
 HSTORAGE hStorage,
 LPCTSTR lpszObjectLabel,
 LPCTSTR lpszObjectText,
 INT cchObjectText,
 LPWEB_STORAGE_OBJECT lpObject,
);

The WebPutTextObject function creates or replaces a text object with the contents of a string
buffer. Additional information about the object is returned to the caller.

Parameters
hStorage

A handle to the storage container.

lpszObjectLabel

A pointer to a null terminated string that specifies the label of the text object that should be
created or updated.

lpszObjectText

A pointer to a string which contains the text that should be uploaded to the storage server. This
parameter may be NULL, in which case the object is created but no data is stored.

cchObjectText

The number of characters that are stored in the lpszObjectText string. If this value is -1, the size
of the string will be determined automatically by counting the number of characters up to the
terminating null character. If the lpszObjectText parameter is NULL, this value must be zero.

lpObject

A pointer to a WEB_STORAGE_OBJECT structure that will contain additional information about
the object. This parameter may be NULL if the information is not required.

Return Value
If the function succeeds, the return value is a non-zero. If the function fails, the return value is
zero. To get extended error information, call WebGetLastError.

Remarks
The WebPutTextObject function is used to store the contents of a string as a text object. The
string should be terminated with a null character and cannot contain embedded nulls. If the
Unicode version of this function is called, the contents of the string will be normalized prior to
being converted to UTF-8 using canonical composition, where decomposed characters are
combined to create their canonical precomposed equivalent.

The size of the text object that is created can be different from the length of the string buffer
passed to this function, depending on how the text has been encoded and stored. This will almost
always be the case when the Unicode version of this function is called because the UTF-16 string
will be converted and stored as UTF-8 encoded text. This encoding will typically increase the size
of the stored object unless the string only contains ASCII characters.

This function should only be used to store textual data in a null terminated string, and should
never be used to store binary data. If you wish to create or update an object which contains binary
data, use the WebPutObjectEx function instead. If you want to upload the contents of a file, the

WebPutFileEx function simplifies this process.

Additional metadata about the object will be returned in the WEB_STORAGE_OBJECT structure
provided by the caller, such as the date and time the object was created, the content type and the
SHA-256 hash of the object contents.

Example
LPCTSTR lpszObjectLabel = _T("LoremIpsum");
LPCTSTR lpszObjectText = _T("Lorem ipsum dolor sit amet, consectetur adipiscing
elit.");
WEB_STORAGE_OBJECT webObject;

if (WebPutTextObject(hStorage, lpszObjectLabel, lpszObjectText, -1, &webObject))
{
 // The object was created or replaced, display the metadata
 _tprintf(_T("Object: %s\n"), webObject.szObjectId);
 _tprintf(_T("Label: %s\n"), webObject.szLabel);
 _tprintf(_T("Size: %lu\n"), webObject.dwObjectSize);
 _tprintf(_T("Digest: %s\n"), webObject.szDigest);
 _tprintf(_T("Content: %s\n"), webObject.szContent);
}
else
{
 DWORD dwError = WebGetLastError();
 TCHAR szError[128];

 WebGetErrorString(dwError, szError, 128);
 _ftprintf(stderr, _T("Unable to store \"%s\": %s\n"), lpszObjectLabel,
szError);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
WebCompareText, WebGetObjectEx, WebGetTextObject, WebPutFileEx, WebPutObjectEx

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WebRegisterAppId Function

BOOL WINAPI WebRegisterAppId(
 LPCTSTR lpszAppId
);

The WebRegisterAppId function registers a unique application identifier with the server.

Parameters
lpszAppId

A pointer to a null terminated string which identifies the application requesting access. This
parameter cannot be NULL or point to a zero-length string. If the application ID contains illegal
characters, the function will fail. See the remarks below on the recommended method for
identifying your application.

Return Value
If the function succeeds, the return value is a non-zero. If the function fails, the return value is
zero. To get extended error information, call WebGetLastError.

Remarks
The WebRegisterAppId function registers an application ID with the server which uniquely
identifies the application that is requesting access to the storage container. The ID must only
consist of ASCII letters, numbers, the period and underscore character. Whitespace characters and
non-ASCII Unicode characters are not permitted. The maximum length of an application ID string
is 64 characters, including the terminating null character.

 It is recommended that you use a standard format for the application ID that consists of your
company name, application name and optionally a version number. For example:

MyCompany.MyApplication

MyCompany.MyApplication.1

It is important to note that with these two example IDs, although they are similar, they reference
two different applications. Objects stored using the first ID will not be accessible using the second
ID. If you want to store objects that should be shared between all versions of the application, it is
recommended that you use the first form, without the version number. If you want to store objects
that should only be accessible to a specific version of your application, then it is recommended
that you use the second form that includes the version number.

It is safe to call this function with an application ID that was previously registered. If the provided
application ID has already been registered, this function will succeed. You can choose to call this
function every time your application starts to ensure the application has been registered correctly.

If you no longer wish to use an application ID you have previously registered, you can call the
WebUnregisterAppId function. Exercise caution when unregistering an application. This will
cause all objects stored using that ID to be deleted by the storage server. Once an application ID
has been unregistered, the operation is permanent. Calling WebUnregisterAppId and then
WebRegisterAppId again using the same ID will force the system to create new access tokens for
your application. You will not be able to regain access to the objects that were previously stored
using that ID.

The application ID is intended to be an application defined human-readable string that uniquely
identifies your application. If you want to obtain the internal storage ID associated with your

application, use the WebGetStorageId function. The storage ID is a fixed-length string of letters
and numbers guaranteed to be unique across all applications that you register.

It is not required for your application to create a unique application ID. Each storage account has a
default internal application ID named SocketTools.Storage.Default. This default ID is used if
a NULL pointer or an empty string is specified to functions like WebOpenStorage. It is intended
to identify storage available to all applications that you create.

To enumerate the application IDs that you have created, use the WebGetFirstApplication and
WebGetNextApplication functions.

Example
 HSTORAGE hStorage = INVALID_HANDLE;
LPCTSTR lpszAppId = _T("MyCompany.WebTest.1");
LPCTSTR lpszLocalFile = _T("TestDocument.pdf");
LPCTSTR lpszObjectLabel = _T("TestDocument.pdf");
WEB_STORAGE_OBJECT webObject = { 0, };
BOOL bSuccess = FALSE;

// Register the application ID which identifies the application
if (!WebRegisterAppId(lpszAppId))
{
 tprintf(_T("Unable to register the application ID"));
 _exit(0);
}

// Open the application storage container
hStorage = WebOpenStorage(lpszAppId, WEB_STORAGE_GLOBAL);

if (hStorage == INVALID_HANDLE)
{
 tprintf(_T("Unable to open global storage for this application"));
 _exit(0);
}

// Upload a local file to the storage server and return information
// about the stored object when it completes
bSuccess = WebPutFileEx(hStorage,
 lpszLocalFile,
 lpszObjectLabel,
 NULL,
 WEB_OBJECT_DEFAULT,
 0,
 &webObject);

if (bSuccess)
{
 // Print information about the object that was created
 _tprintf(_T("Object: %s\n"), webObject.szObjectId);
 _tprintf(_T("Label: %s\n"), webObject.szLabel);
 _tprintf(_T("Size: %I64u\n"), webObject.dwObjectSize);
 _tprintf(_T("Digest: %s\n"), webObject.szDigest);
 _tprintf(_T("Content: %s\n"), webObject.szContent);
}
else
{
 // The upload failed, display error information
 DWORD dwError = WebGetLastError();

 TCHAR szError[128];

 WebGetErrorString(dwError, szError, 128);
 _tprintf(_T("WebPutFileEx failed, error 0x%08lX (%s)\n"), dwError, szError);
}

// Release the handle allocated for this storage session
WebCloseStorage(hStorage);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
WebCloseStorage, WebOpenStorage, WebGetFirstApplication, WebGetNextApplication,
WebGetStorageId, WebUnregisterAppId, WebValidateAppId

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/websvc/library/webgetnextapplication,html

 WebRegisterEvent Function

INT WINAPI WebRegisterEvent(
 HSTORAGE hStorage,
 UINT nEventId,
 WEBEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

The WebRegisterEvent function registers an event handler for the specified event.

Parameters
hStorage

A handle to the storage container.
nEventId

An unsigned integer which specifies which event should be registered with the specified
callback function. This parameter cannot be zero. The following values may be used:

Constant Description

WEB_EVENT_CONNECT
(1)

The connection to the storage server has been established
and the session has been authenticated. This is the first
event that occurs when initiating an operation to create or
retrieve a storage object.

WEB_EVENT_DISCONNECT
(2)

The connection to the storage server has been closed and
the session is terminating. This is the last event that occurs
after completing an operation to create or retrieve a storage
object.

WEB_EVENT_READ
(4)

The contents of an object is being read from the storage
container. This event occurs only once after the operation
has been initiated by the application. This event can also be
generated if there is an error during the process of retrieving
the object contents from the container.

WEB_EVENT_WRITE
(8)

The contents of an object is being written to the storage
container. This event occurs only once after the operation
has been initiated by the application. This event can also be
generated if there is an error during the process of
submitting the object contents to the container.

WEB_EVENT_TIMEOUT
(16)

The operation has exceeded the specified timeout period.
The application may attempt to retry the operation or report
an error to the user. This event typically indicates a
connectivity problem with the storage server.

WEB_EVENT_CANCEL
(32)

The operation has been canceled. This event occurs after the
application calls WebCancelTransfer while an object is
being stored or retrieved.

WEB_EVENT_PROGRESS
(64)

A storage operation is in progress. This event periodically
occurs as the contents of a storage object is being read or
written from the container. To retrieve information about the
status of the operation, the application should register a

handler for this event and call the WebGetTransferStatus
function from within that handler.

lpEventProc
Specifies the procedure-instance address of the application defined callback function. For
more information about the callback function, see the description of the WebEventProc
callback function. If this parameter is NULL, the callback for the specified event is disabled.

dwParam
A user-defined integer value that is passed to the callback function specified by
lpEventProc. If the application targets the x86 (32-bit) platform, this parameter must be a
32-bit unsigned integer. If the application targets the x64 (64-bit) platform, this parameter
must be a 64-bit unsigned integer.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is
zero. To get extended error information, call WebGetLastError.

Remarks
The WebRegisterEvent function associates a callback function with a specific event. The
event handler is a WebEventProc function that is invoked when the event occurs.
Arguments are passed to the function to identify the storage handle, the event type and the
user-defined value specified when the event handler is registered. If the event occurs
because of an error condition, the error code will be provided to the handler.

Events are only generated as the result of a call to the WebGetFile, WebGetFileEx,
WebPutFile and WebPutFileEx functions. Other storage functions will not generate event
notifications.

This function is typically used to register an event handler that is invoked while the contents
of a storage object is being transferred. The WEB_EVENT_PROGRESS event will only be
generated periodically during the transfer to ensure the application is not flooded with
event notifications. It is guaranteed that at least one WEB_EVENT_PROGRESS notification will
occur at the beginning of the transfer, and one at the end of the transfer when it has
completed.

The callback function specified by the lpEventProc parameter must be declared using the
__stdcall calling convention. This ensures the arguments passed to the event handler are
pushed on to the stack in the correct order. Failure to use the correct calling convention will
corrupt the stack and cause the application to terminate abnormally.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
WebCancelTransfer, WebEventProc, WebGetTransferStatus

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WebRenameObject Function

BOOL WINAPI WebRenameObject(
 HSTORAGE hStorage,
 LPCTSTR lpszOldLabel,
 LPCTSTR lpszNewLabel
);

The WebRenameObject function changes the label associated with the storage object.

Parameters
hStorage

A handle to the storage container.

lpszOldLabel

A pointer to a null terminated string which specifies the name of the existing storage object to
be renamed. This parameter must specify a valid object label and cannot be a NULL pointer or
an empty string.

lpszNewLabel

A pointer to a null terminated string which specifies a new label for the storage object being
moved. This parameter may not be NULL or point to an empty string.

Return Value
If the function succeeds, the return value is a non-zero. If the function fails, the return value is
zero. To get extended error information, call WebGetLastError.

Remarks
The WebRenameObject function is used to change the label for an existing storage object.
Although storage object labels are similar to Windows file names, they are case-sensitive. When
renaming an object, your application must specify the original label name exactly as it was created.
The object label cannot contain wildcard characters.

To duplicate an existing storage object, use the WebCopyObject function. If you need to move
the object to a different storage container, use the WebMoveObject function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
WebCopyObject, WebDeleteObject, WebMoveObject

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WebResetStorage Function

BOOL WINAPI WebResetStorage(
 HSTORAGE hStorage
);

The WebResetStorage function resets the application storage container and deletes all stored
objects.

Parameters
hStorage

A handle to the storage container.

Return Value
If the function succeeds, the return value is a non-zero. If the function fails, the return value is
zero. To get extended error information, call WebGetLastError.

Remarks
The storage container contains information for each of the objects that have been stored using
the handle returned by the WebOpenStorage function. Each of these objects are associated with
both the application ID and the storage type that was specified by the caller. This function instructs
the server to reset the container back to its initial state, deleting all of the objects that were stored
in it.

Exercise caution when using this function. The reset operation is immediate and the
objects that are stored in the container are permanently deleted. They cannot be
recovered by your application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
WebDeleteObject, WebOpenStorage, WebRegisterAppId, WebUnregisterAppId

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WebResetStorageEx Function

BOOL WINAPI WebResetStorageEx(
 HSTORAGE hStorage,
 DWORD dwStorageType,
 LPVOID lpReserved,
 LPDWORD lpdwObjects
);

The WebResetStorageEx function resets the specified storage container and deletes all stored
objects.

Parameters
hStorage

A handle to the storage container.

dwStorageType

An integer value that identifies the storage container type. One of the following values should
be specified:

Constant Description

WEB_STORAGE_GLOBAL
(1)

Global storage. Objects stored using this storage type are
available to all users. Any changes made to objects using
this storage type will affect all users of the application.
Unless there is a specific need to limit access to the objects
stored by the application to specific domains, local
machines or users, it is recommended that you use this
storage type when creating new objects.

WEB_STORAGE_DOMAIN
(2)

Local domain storage. Objects stored using this storage
type are only available to users in the same local domain,
as defined by the domain name or workgroup name
assigned to the local system. If the domain or workgroup
name changes, objects previously stored using this
storage type will not be available to the application.

WEB_STORAGE_MACHINE
(3)

Local machine storage. Objects stored using this storage
type are only available to users on the same local
machine. The local machine is identified by unique
characteristics of the system, including the boot volume
GUID. Objects previously stored using this storage type will
not be available on that system if the boot disk is
reformatted.

WEB_STORAGE_USER
(4)

Current user storage. Objects stored using this storage
type are only available to the current user logged in on
the local machine. The user identifier is based on the
Windows user SID that is assigned when the user account
is created. If the user account is deleted, the objects
previously stored using this storage type will not be
available to the application.

lpReserved

A reserved parameter that should always be NULL. If your project targets the x64 platform, this
must be a 64-bit pointer with a value of zero. If this parameter is not a NULL pointer, the
function will fail.

lpdwObjects

A pointer to an unsigned integer value which will contain the number of objects that were
deleted when the contents of the container were expunged.

Return Value
If the function succeeds, the return value is a non-zero. If the function fails, the return value is
zero. To get extended error information, call WebGetLastError.

Remarks
The storage container contains information for each of the objects that have been stored using
the handle returned by the WebOpenStorage function. Each of these objects are associated with
both the application ID and the storage type that was specified by the caller. This function instructs
the server to reset the container back to its initial state, deleting all of the objects that were stored
in it.

Exercise caution when using this function. The reset operation is immediate and the
objects that are stored in the container are permanently deleted. They cannot be
recovered by your application.

Unlike the WebResetStorage function which deletes all of the objects in the container opened
using WebOpenStorage, this function enables you reset the contents of a different container
without explicitly opening it. For example, if you used WebOpenStorage to open the
WEB_STORAGE_GLOBAL container, you could call this version of the function using that handle,
but specifying the WEB_STORAGE_USER container to remove all of the objects created by the
current user without affecting the stored objects in the global container.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
WebDeleteObject, WebOpenStorage, WebRegisterAppId, WebResetStorage, WebUnregisterAppId

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WebSetLastError Function

VOID WINAPI WebSetLastError(
 DWORD dwErrorCode
);

The WebSetLastError function sets the last error code for the current thread. This function is
typically used to clear the last error by specifying a value of zero as the parameter.

Parameters
dwErrorCode

Specifies the last error code for the current thread.

Return Value
None.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. Most functions will
set the last error code value when they fail; a few functions set it when they succeed. Function
failure is typically indicated by a return value such as FALSE, NULL, INVALID_CLIENT or
WEB_ERROR. Those functions which call WebSetLastError when they succeed are noted on the
function reference page.

Applications can retrieve the value saved by this function by using the WebGetLastError function.
The use of WebGetLastError is optional; an application can call the function to determine the
specific reason for a function failure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib

See Also
WebGetErrorString, WebGetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WebSetStorageTimeout Function

INT WINAPI WebSetStorageTimeout(
 HSTORAGE hStorage,
 INT nSeconds
);

The WebSetStorageTimeout function sets the number of seconds the client will wait for a
response from the storage server. Once the specified number of seconds has elapsed, the function
will fail and return to the caller.

Parameters
hClient

Handle to the client session.

nSeconds

The number of seconds to wait for a storage operation to complete.

Return Value
If the function succeeds, the return value is the previous timeout period set for this storage handle.
If the function fails, the return value is zero. To get extended error information, call
WebGetLastError.

Remarks
The default timeout period is 10 seconds. The minimum timeout period is 5 seconds, and the
maximum timeout period is 60 seconds. Values outside of this range will be normalized internally
and will not cause the function to fail.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib

See Also
WebGetStorageTimeout, WebOpenStorage

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WebUninitialize Function

VOID WINAPI WebUninitialize();

The WebUninitialize function terminates the use of the library.

Parameters
There are no parameters.

Return Value
None.

Remarks
An application is required to perform a successful WebInitialize call before it can call any of the
other library functions. When it has completed the use of library, the application must call
WebUninitialize to allow the library to free any resources allocated on behalf of the process. Any
pending blocking or asynchronous calls in this process are canceled without posting any
notification messages, and all sockets that were opened by the process are closed.

There must be a call to WebUninitialize for every successful call to WebInitialize made by a
process. In a multithreaded environment, operations for all threads in the client are terminated.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib

See Also
WebCloseStorage, WebInitialize, WebOpenStorage, WebRegisterAppId

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WebUnregisterAppId Function

BOOL WINAPI WebUnregisterAppId(
 LPCTSTR lpszAppId
);

The WebUnregisterAppId function unregisters the application identifier and deletes all
associated storage objects.

Parameters
lpszAppId

A pointer to a null terminated string which specifies the application ID to be deleted. This
parameter cannot be NULL or point to a zero-length string. If the application ID contains illegal
characters, the function will fail.

Return Value
If the function succeeds, the return value is a non-zero. If the function fails, the return value is
zero. To get extended error information, call WebGetLastError.

Remarks
The WebUnregisterAppId function deletes the internal storage identifier associated with the
application ID and revokes all access tokens that were granted for the application. This operation is
immediate and permanent.

Exercise caution when using this function. This will permanently delete all objects that
were stored for the specified application. Calling WebUnregisterAppId and then
WebRegisterAppId again using the same ID will force the system to create new
access tokens for your application. You will not be able to regain access to the
objects that were previously stored using that ID.

This function cannot be used to unregister the default storage application identifier
SocketTools.Storage.Default. If this ID is specified, the function will fail with an error
indicating that the ID is invalid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
WebOpenStorage, WebRegisterAppId, WebResetStorage, WebValidateAppId

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WebUploadFile Function

BOOL WINAPI WebUploadFile(
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszObjectLabel,
 LPWEB_STORAGE_OBJECT lpObject
);

The WebUploadFile function uploads the contents of a local file and creates or overwrites a
storage object.

Parameters
lpszLocalFile

A pointer to a null terminated string that specifies the name of the local file that will be created
or overwritten with the contents of the storage object. If a path is not specified, the file will be
created in the current working directory.

lpszObjectLabel

A pointer to a null terminated string that specifies the label of the object that should be
retrieved from the server. This parameter cannot be NULL or an empty string. Refer to the
WebValidateLabel function for more information about object labels.

lpObject

A pointer to a WEB_STORAGE_OBJECT structure that will contain additional information about
the object that has been downloaded. This parameter may be NULL if the information is not
required.

Return Value
If the function succeeds, the return value is a non-zero. If the function fails, the return value is
zero. To get extended error information, call WebGetLastError.

Remarks
The WebUploadFile function uploads the contents of a local file and either creates a new storage
object, or replaces an object if one already exists with the same label. The object will be created in
the storage container WEB_STORAGE_GLOBAL using the application ID
SocketTools.Storage.Default. This is the same default container used by the
WebDownloadFile function.

If the label identifies an object that already exists in the container, and that object was created with
the WEB_OBJECT_READONLY attribute, this function will fail. To replace a read-only object, the
application must explicitly move, rename or delete the existing object.

Unlike the WebPutFile and WebPutFileEx functions, it is not required that you open a storage
container using the WebOpenStorage function prior to calling WebUploadFile.

Additional metadata about the object will be returned in the WEB_STORAGE_OBJECT structure
provided by the caller, such as the date and time the object was created, the content type and the
SHA-256 hash of the object contents.

The WebUploadFileEx function provides similar functionality with a more complex interface that
supports custom application IDs, additional options and the ability to provide a callback function
that is invoked during the upload process.

Example

WEB_STORAGE_OBJECT webObject;

// Upload a local file to the global storage container
if (WebUploadFile(lpszLocalFile, lpszObjectLabel, &webObject))
{
 // The object was uploaded, display the metadata
 _tprintf(_T("Object: %s\n"), webObject.szObjectId);
 _tprintf(_T("Label: %s\n"), webObject.szLabel);
 _tprintf(_T("Size: %lu\n"), webObject.dwObjectSize);
 _tprintf(_T("Digest: %s\n"), webObject.szDigest);
 _tprintf(_T("Content: %s\n"), webObject.szContent);
}
else
{
 // The object could not be uploaded, display the error
 TCHAR szError[128];

 WebGetErrorString(WebGetLastError(), szError, 128);
 _tprintf(_T("Unable to upload \"%s\" (%s)\n"), lpszLocalFile, szError);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
WebDownloadFile, WebGetFile, WebPutFile, WebUploadFileEx, WebValidateLabel

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WebUploadFileEx Function

BOOL WINAPI WebUploadFileEx(
 LPCTSTR lpszLocalFile,
 LPCTSTR lpszObjectLabel,
 LPCTSTR lpszAppId,
 DWORD dwStorageType,
 DWORD dwAttributes,
 DWORD dwReserved,
 DWORD dwTimeout,
 LPWEB_STORAGE_OBJECT lpObject,
 WEBEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

The WebUploadFileEx function uploads the contents of a local file and creates or overwrites a
storage object.

Parameters
lpszLocalFile

A pointer to a null terminated string that specifies the name of the local file that will be created
or overwritten with the contents of the storage object. If a path is not specified, the file will be
created in the current working directory.

lpszObjectLabel

A pointer to a null terminated string that specifies the label of the object that should be
retrieved from the server.

lpszAppId

A pointer to null terminated string which specifies the application ID for the storage container.
The application ID is a string that uniquely identifies the application and can only contain letters,
numbers, the period and the underscore character. If this parameter is NULL or an empty string,
the default identifier SocketTools.Storage.Default will be used.

dwStorageType

An integer value that identifies the storage container type. One of the following values should
be specified:

Constant Description

WEB_STORAGE_GLOBAL
(1)

Global storage. Objects stored using this storage type are
available to all users. Any changes made to objects using
this storage type will affect all users of the application.
Unless there is a specific need to limit access to the objects
stored by the application to specific domains, local
machines or users, it is recommended that you use this
storage type when creating new objects.

WEB_STORAGE_DOMAIN
(2)

Local domain storage. Objects stored using this storage
type are only available to users in the same local domain,
as defined by the domain name or workgroup name
assigned to the local system. If the domain or workgroup
name changes, objects previously stored using this
storage type will not be available to the application.

WEB_STORAGE_MACHINE
(3)

Local machine storage. Objects stored using this storage
type are only available to users on the same local
machine. The local machine is identified by unique
characteristics of the system, including the boot volume
GUID. Objects previously stored using this storage type will
not be available on that system if the boot disk is
reformatted.

WEB_STORAGE_USER
(4)

Current user storage. Objects stored using this storage
type are only available to the current user logged in on
the local machine. The user identifier is based on the
Windows user SID that is assigned when the user account
is created. If the user account is deleted, the objects
previously stored using this storage type will not be
available to the application.

dwAttributes

An unsigned integer that specifies the attributes associated with the storage object. This value
can be a combination of one or more of the following bitflags using a bitwise OR operation:

Value Constant Description

0 WEB_OBJECT_DEFAULT Default object attributes. This value is used to indicate the
object can be modified, or that the attributes for a
previously existing object should not be changed.

1 WEB_OBJECT_NORMAL A normal object that that can be read and modified by the
application. This is the default attribute for new objects that
are created by the application.

2 WEB_OBJECT_READONLY A read-only object that can only be read by the application.
Attempts to modify or replace the contents of the object will
fail. Read-only objects can be deleted.

4 WEB_OBJECT_HIDDEN A hidden object. Objects with this attribute are not returned
when enumerated using the WebEnumObjects function.
The object can only be accessed directly when specifying its
label.

dwReserved

An unsigned integer value that is reserved for future use. This value should always be zero.

dwTimeout

An unsigned integer value that specifies a timeout period in seconds. If this value is zero, a
default timeout period will be used.

lpObject

A pointer to a WEB_STORAGE_OBJECT structure that will contain additional information about
the object that has been downloaded. This parameter may be NULL if the information is not
required.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the WebEventProc callback
function. If this parameter is NULL, no callback function will be invoked during the data transfer.

dwParam

A user-defined integer value that is passed to the callback function specified by lpEventProc. If
the application targets the x86 (32-bit) platform, this parameter must be a 32-bit unsigned
integer. If the application targets the x64 (64-bit) platform, this parameter must be a 64-bit
unsigned integer.

Return Value
If the function succeeds, the return value is a non-zero. If the function fails, the return value is
zero. To get extended error information, call WebGetLastError.

Remarks
The WebUploadFileEx function uploads the contents of a local file and either creates a new
storage object, or replaces an object if one already exists with the same label. The
WebUploadFile function provides a simpler interface that defaults to uploading an object to the
global storage container.

If the label identifies an object that already exists in the container, and that object was created with
the WEB_OBJECT_READONLY attribute, this function will fail. To replace a read-only object, the
application must explicitly move, rename or delete the existing object.

Unlike the WebPutFile and WebPutFileEx functions, it is not required that you open a storage
container using the WebOpenStorage function prior to calling WebUploadFileEx.

Additional metadata about the object will be returned in the WEB_STORAGE_OBJECT structure
provided by the caller, such as the date and time the object was created, the content type and the
SHA-256 hash of the object contents.

If you are uploading a large file and want your application to receive progress updates during the
data transfer, provide a pointer to a callback function as the lpEventProc parameter. That function
will receive event notifications as the data is being uploaded.

Example
WEB_STORAGE_OBJECT webObject;

// Upload a local file to the global storage container
if (WebUploadFileEx(lpszLocalFile,
 lpszObjectLabel,
 lpszAppId,
 WEB_STORAGE_GLOBAL,
 WEB_OBJECT_DEFAULT,
 0,
 &webObject,
 NULL, 0))
{
 // The object was uploaded, display the metadata
 _tprintf(_T("Object: %s\n"), webObject.szObjectId);
 _tprintf(_T("Label: %s\n"), webObject.szLabel);
 _tprintf(_T("Size: %lu\n"), webObject.dwObjectSize);
 _tprintf(_T("Digest: %s\n"), webObject.szDigest);
 _tprintf(_T("Content: %s\n"), webObject.szContent);
}
else
{
 // The object could not be uploaded, display the error
 TCHAR szError[128];

 WebGetErrorString(WebGetLastError(), szError, 128);
 _tprintf(_T("Unable to upload \"%s\" (%s)\n"), lpszLocalFile, szError);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
WebDownloadFile, WebGetFileEx, WebPutFileEx, WebUploadFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WebValidateAppId Function

BOOL WINAPI WebValidateAppId(
 LPCTSTR lpszAppId
);

The WebValidateAppId function validates the specified application identifier.

Parameters
lpszAppId

A pointer to a null terminated string which specifies the application ID to be validated. This
parameter cannot be NULL or point to a zero-length string. If the application ID contains illegal
characters, the function will fail.

Return Value
If the function succeeds, the return value is a non-zero. If the function fails, the return value is
zero. To get extended error information, call WebGetLastError.

Remarks
The WebValidateAppId function is used to determine if the specified application identifier is valid
and has been previously registered using the WebRegisterAppId function. The ID must only
consist of ASCII letters, numbers, the period and underscore character. Whitespace characters and
non-ASCII Unicode characters are not permitted. The maximum length of an application ID string
is 64 characters, including the terminating null character.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
WebRegisterAppId, WebUnregisterAppId

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WebValidateLabel Function

BOOL WINAPI WebValidateLabel(
 LPCTSTR lpszObjectLabel
);

The WebValidateLabel function validates the specified object label.

Parameters
lpszObjectLabel

A pointer to a null terminated string which specifies the object label to be validated. This
parameter cannot be NULL or point to a zero-length string.

Return Value
If the function succeeds, the return value is a non-zero. If the function fails, the return value is
zero. To get extended error information, call WebGetLastError.

Remarks
Object labels are similar to Windows file names, except they are case-sensitive. The maximum
length of a label string is 512 characters, including the terminating null character. Leading and
trailing whitespace (spaces, tabs, linebreaks, etc.) are ignored in label names.

Illegal characters include ASCII and Unicode control characters 1 through 31, single quotes (39),
double quotes (34), less than symbol (60), greater than symbol (62), pipe (124), asterisk (42) and
question mark (63). A null character (0) specifies the end of the label and any subsequent
characters are ignored. It is not possible to embed null characters in the label name.

Label names may contain forward slash (47) characters and backslash (92) characters, however it is
important to note that objects are not stored in a hierarchical structure. An application can create
its own folder-like structure to the labels it creates, but this structure is not imposed or enforced by
the library.

If the application is built to use Unicode, labels can contain Unicode characters which are internally
encoded as UTF-8. This is important to consider if you have an project built using a multi-byte
(ANSI) character set and it needs to access an object that was created using Unicode characters. In
that case, the ANSI application must be prepared to handle UTF-8 encoded names and display
them appropriately.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswebv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
WebRegisterAppId, WebUnregisterAppId

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Web Services Data Structures

INITDATA
SYSTEMTIME
WEB_LOCATION
WEB_STORAGE_APPLICATION
WEB_STORAGE_QUOTA
WEB_STORAGE_OBJECT
WEB_STORAGE_TRANSFER

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 INITDATA Structure

This structure contains information about the SocketTools library when the initialization function
returns.

typedef struct _INITDATA
{
 DWORD dwSize;
 DWORD dwVersionMajor;
 DWORD dwVersionMinor;
 DWORD dwVersionBuild;
 DWORD dwOptions;
 DWORD_PTR dwReserved1;
 DWORD_PTR dwReserved2;
 TCHAR szDescription[128];
} INITDATA, *LPINITDATA;

Members
dwSize

Size of this structure. This structure member must be set to the size of the structure prior to
calling the initialization function. Failure to do so will cause the function to fail.

dwVersionMajor

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the major version number for the library.

dwVersionMinor

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the minor version number for the library.

dwVersionBuild

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the build number for the library.

dwOptions

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

dwReserved1

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

dwReserved2

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

szDescription

A null terminated string which describes the library.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SYSTEMTIME Structure

The SYSTEMTIME structure represents a date and time using individual members for the month,
day, year, weekday, hour, minute, second, and millisecond.

typedef struct _SYSTEMTIME
{
 WORD wYear;
 WORD wMonth;
 WORD wDayOfWeek;
 WORD wDay;
 WORD wHour;
 WORD wMinute;
 WORD wSecond;
 WORD wMilliseconds;
} SYSTEMTIME, *LPSYSTEMTIME;

Members
wYear

Specifies the current year. The year value must be greater than 1601.

wMonth

Specifies the current month. January is 1, February is 2 and so on.

wDayOfWeek

Specifies the current day of the week. Sunday is 0, Monday is 1 and so on.

wDay

Specifies the current day of the month

wHour

Specifies the current hour.

wMinute

Specifies the current minute

wSecond

Specifies the current second.

wMilliseconds

Specifies the current millisecond.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include windows.h.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WEB_LOCATION Structure

The WEB_LOCATION structure contains information about the current location of the local
computer system.

typedef struct _WEB_LOCATION
{
 TCHAR szLocationId[40];
 TCHAR szIPAddress[46];
 UINT nAutonomousSytemNumber;
 TCHAR szOrganization[64];
 TCHAR szRegionName[64];
 UINT nRegionCode;
 TCHAR szCountryName[64];
 TCHAR szCountryAlpha2[4];
 TCHAR szCountryAlpha3[4];
 UINT nCountryCode;
 TCHAR szSubdivision[64];
 TCHAR szSubdivisionCode[4];
 TCHAR szCityName[64];
 TCHAR szPostalCode[32];
 TCHAR szCoordinates[32];
 TCHAR szTimezone[64];
 TCHAR szTzShortName[16];
 LONG nTimezoneOffset;
 DOUBLE dLatitude;
 DOUBLE dLongitude;
 SYSTEMTIME stLocalTime;
} WEB_LOCATION, *LPWEB_LOCATION;

Members
szLocationId

A null-terminated string which contains contains a string of hexadecimal characters which
uniquely identifies the location for this computer system. This value is used internally by the
location service, and may also be used by the application for its own purposes. If this value
changes in subsequent queries, it indicates the external IP address for the local system has
changed.

lpszIPAddress

A null-terminated string which contains the external IP address for the local system. If the
system has been assigned multiple IP addresses, it reflects the address of the interface that was
used to establish a connection with the SocketTools server. If the connection is made through a
Virtual Private Network (VPN) it will use that assigned IP address. If a connection is made
through a proxy server, the IP address may the address of the proxy rather than the local host,
depending on how the connection is made.

nAutonomousSystemNumber

An unsigned integer value which is used to uniquely identify a global network (autonomous
system) that is connected to the Internet. This number is assigned by regional registries and
used by large networks, such as Internet Service Providers, for exchanging routing information
with one another. This value can be used to determine the ownership of a particular network.

szOrganization

A null-terminated string which identifies the organization associated with the local system's
external IP address. For residential end-users this is typically the name of their Internet Service

provider, however it may also identify a private company such as Microsoft, Google or Amazon.
Because of the nature of how this information is updated, the organization names can change
over time due to acquisitions or changes of ownership. If the owner of the network cannot be
determined, this member may contain an empty string.

szRegionName

A null-terminated string which identifies the region in which the external IP address is located.
This refers to a broad geographical area, such as "North America" or "Southeast Asia" and uses
the conventions for supranational regions as defined by UN M49 codes. These names will
always be in English, regardless of the current system locale.

nRegionCode

An unsigned integer value which identifies the geographical region in which the external IP
address is located. This value corresponds to the name returned in the szRegionName structure
member. The numeric values use the UN M49 standard established by the United Nations
Statistics Division.

szCountryName

A null-terminated string which contains the full name of the country in which the external IP
address is located. These names will always be in English, regardless of the current system
locale.

szCountryAlpha2

A null-terminated string which contains the ISO 3166-1 alpha-2 code for the country the
external IP address is located in. This is a two-letter country code established by the
International Organization for Standardization (ISO). For example, the code for the United
States is "US".

szCountryAlpha3

A null-terminated string which contains the ISO 3166-1 alpha-3 code for the country the
external IP address is located in. This is a three-letter country code established by the
International Organization for Standardization (ISO). For example, the code for the United
States is "USA".

nCountryCode

An unsigned integer value which identifies the country where the external IP address is located.
These codes can be up to three digits (usually displayed with leading zeros as necessary) and
correspond to the country codes assigned by the United Nations. For example, the code for the
United States is 840. It is important to note that these are not international dialing codes and
should not be used with telephony applications.

szSubdivision

A null-terminated string which identifies the geopolitical subdivision within a country where the
external IP address is located. In the United States, this will contain the full name of the state or
commonwealth. In Canada, this will contain the name of the province or territory. These names
will always be in English, regardless of the current system locale.

szSubdivisionCode

A null-terminated string which is either a two- or three-letter code which identifies a geopolitical
subdivision within the country where the external IP address is located. These codes are defined
by the ISO 3166-2 standard. For example, the code for the state of California in the United
States is "CA". For specificity, these subdivision codes are often combined with the ISO 3166-1
alpha-2 or alpha-3 code for the country the subdivision is located within. Using the previous
example of California, ISO alpha-2 code and subdivision code would be combined as "US-CA".

szCityName

A null-terminated string which identifies the city in which the external IP address is located.
These names will always be in English, regardless of the current system locale. If the city name
cannot be determined, this member may contain an empty string.

szPostalCode

A null-terminated string which contains the postal code associated with the area where the IP
address is located. In the United States, this is a 5-digit numeric code. In Canada, this will
contain the forward sortation area (the first three characters of the six character postal code).
Local delivery portions of a postal code (such as the ZIP+4 code in the United States, or the
local delivery unit in Canada) are not included. This information will be most accurate within the
geographic region of North America. Postal codes are locale specific, and this structure member
may contain an empty string if the postal code for the location cannot be determined.

szCooordinates

A null-terminated string which specifies the location expressed using the Universal Transverse
Mercator (UTM) coordinate system with the WGS-84 ellipsoid. UTM coordinates are commonly
used with the Global Positioning System (GPS) and are comprised of three parts: the zone, the
easting (the eastward-measured distance or x-coordinate) and the northing (the northward-
measured distance or y-coordinate). An example of a string value returned in this structure
member would be "14S 702089E 3646476N".

szTimezone

A null-terminated string which specifies the full time zone name in which the external IP address
is located. These names are defined by the Internet Assigned Numbers Authority (IANA) and
have values like "America/Los_Angeles" and "Europe/London". These time zones may also be
defined as "Etc/GMT+10" if there is not a regional name associated with the time zone.

szTzShortName

A null-terminated string which specifies the abbreviated time zone code in which the external IP
address is located. If daylight savings time is used within the time zone, then this value can
change based on whether or not daylight savings is in effect. For example, if the IP address is
located within the Pacific time zone in the United States, this will return "PDT" when daylight
savings is in effect and "PST" when it is not. If a short time zone code cannot be determined, a
value such as "UTC+9" may be returned, indicating the number of hours ahead or behind UTC.

nTimezoneOffset

A signed integer which specifies the number of seconds east or west of the prime meridian
(UTC). A positive value indicates a time zone that is east of the prime meridian and a negative
value indicates a time zone that is west of the prime meridian. For example, the Pacific time
zone in the western United States during daylight savings time would have a value of -25200 (7
hours).

dLatitude

A floating point value which specifies the latitude of the location in decimal format. A positive
value indicates a location that is north of the equator, while a negative value is a location that is
south of the equator.

dLongitude

A floating point value which specifies the longitude of the location in decimal format. A positive
value indicates a location that is east of the prime meridian, while a negative value is a location
that is west of the prime meridian.

stLocalTime

A SYSTEMTIME structure that contains information about the current date and time at the
location, adjusted for its time zone and whether or not it's in daylight savings time.

Remarks
Use the WebGetLocation function to populate this structure with information about the physical
location of the local computer system.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cstools11.h

See Also
WebGetLocation

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WEB_STORAGE_APPLICATION Structure

The WEB_STORAGE_APPLICATION structure contains information about a registered
application.

typedef struct _WEB_STORAGE_APPLICATION
{
 TCHAR szAppId[64];
 TCHAR szApiKey[64];
 TCHAR szLuid[64];
 DWORD dwTokens;
 DWORD dwReserved;
 SYSTEMTIME stCreated;
 SYSTEMTIME stUpdated;
} WEB_STORAGE_APPLICATION, *LPWEB_STORAGE_APPLICATION;

Members
szAppId

A null-terminated string which contains the application ID that was registered using the
WebRegisterAppId function.

szApiKey

A null-terminated string which contains the API key value that is used internally by the storage
services. The AppID is effectively the human readable alias for this key value used to identify the
stored objects for the application. This value is guaranteed to be unique across all applications
registered with the storage service.

szLuid

A null-terminated string which specifies a locally unique value associated with the registered
application. This value is used internally by the storage service and guaranteed to be unique to
the storage account that has registered the application. Note that there are no functions that
currently accept the application LUID as parameter, but you may choose to use this value in
your own application for other purposes.

dwTokens

An unsigned integer value which specifies the number of access tokens associated with the
registered application. Typically there is only one access token associated with a given AppID at
any one time, although it is possible that the API may allocate additional access tokens under
some circumstances.

dwReserved

An unsigned integer value that is reserved for future use. This value will always be zero.

stCreated

A SYSTEMTIME structure that specifies the date and time the AppID was registered. This value is
represented using Coordinated Universal Time (UTC) and is not adjusted for the local time zone.

stUpdated

A SYSTEMTIME structure that specifies the date and time the AppID object was last updated.
This value is represented using Coordinated Universal Time (UTC) and is not adjusted for the
local time zone. When a storage object is first created, this value will be the same as the object
creation time.

Remarks
This structure is used in conjunction with the WebEnumApplications function which is used to

enumerate all of the registered applications for the storage account. It is also used with the
WebGetFirstApplication and WebGetNextApplication functions which provide an alternative
method for enumerating registered applications.

To adjust the creation and update times to account for the local time zone, use the
SystemTimeToTzSpecificLocalTime function. If you prefer to use FILETIME values, use the
SystemTimeToFileTime function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WEB_STORAGE_OBJECT Structure

The WEB_STORAGE_OBJECT structure contains information about an individual storage object.

typedef struct _WEB_STORAGE_OBJECT
{
 TCHAR szObjectId[64];
 TCHAR szLabel[512];
 TCHAR szDigest[128];
 TCHAR szContent[128];
 DWORD dwAttributes;
 DWORD dwObjectSize;
 SYSTEMTIME stCreated;
 SYSTEMTIME stModified;
} WEB_STORAGE_OBJECT, *LPWEB_STORAGE_OBJECT;

Members
szObjectId

A null-terminated string which contains the unique identifier associated with this object. Object
IDs are guaranteed to be unique for each storage object that is created by the application. The
maximum length of an object ID is 64 characters, including the terminating null character.

szLabel

A null-terminated string which contains the label assigned to the object by the application.
Object labels are case-sensitive and must be unique for each object. An application uses labels
to reference an object with a human-recognizable name, rather than referencing them by their
object ID. The maximum length of an object label is 512 characters, including the terminating
null character.

szDigest

A null-terminated string which specifies the digest of the object contents, computed using an
SHA-256 hash. The maximum length of the szDigest string is 128 characters, including the
terminating null character. However, the digest value is always represented as a string of
hexadecimal numbers that is exactly 64 characters long. It is important to note that even a zero-
length object will have a digest, which is the standard SHA-256 NULL hash value.

szContent

A null-terminated string which specifies the MIME content type for the storage object. The
content type is determined by the object label and evaluating the contents of the object. It is
also possible for the application to explicitly specify the content type of the object when it is
created.

dwAttributes

An unsigned integer value that specifies the attributes for the storage object. The object
attributes are comprised of one or more bitflags:

Value Constant Description

0 WEB_OBJECT_DEFAULT Default object attributes. This value is used to
indicate the object can be modified, or that the
attributes for a previously existing object should
not be changed.

1 WEB_OBJECT_NORMAL A normal object that that can be read and
modified by the application. This is the default

attribute for new objects that are created by the
application.

2 WEB_OBJECT_READONLY A read-only object that can only be read by the
application. Attempts to modify or replace the
contents of the object will fail. Read-only objects
can be deleted.

4 WEB_OBJECT_HIDDEN A hidden object. Objects with this attribute are not
returned when enumerated using the
WebEnumObjects function. The object can only
be accessed directly when specifying its label.

dwObjectSize

An unsigned integer value that specifies the size of the storage object in bytes. The maximum
size of an individual object is determined by the storage quota limits established for the
account.

stCreated

A SYSTEMTIME structure that specifies the date and time the storage object was created. This
value is represented using Coordinated Universal Time (UTC) and is not adjusted for the local
time zone.

stModified

A SYSTEMTIME structure that specifies the date and time the storage object was last modified.
This value is represented using Coordinated Universal Time (UTC) and is not adjusted for the
local time zone. When a storage object is first created, this value will be the same as the object
creation time.

Remarks
The object content type will always be in the format type/subtype where the type specifies a
common media type (e.g.: text, audio, video, etc.) and subtype specifies the specific content. The
most common content type for text files is text/plain. If the content type is unknown, the default
content type is application/octet-stream.

Text objects may also optionally include the character encoding as part of the content type. For
example, if an object contains UTF-8 encoded text, the content type may be returned as
text/plain; charset=utf-8. If your application is parsing the content types, you must check if a
character encoding was also included in the value. Text objects that do not specify an encoding
either contain ASCII or text which uses the system code page. Unicode text will always be stored
using UTF-8 encoding.

To adjust the object creation and modification times to account for the local time zone, use the
SystemTimeToTzSpecificLocalTime function. If you prefer to use FILETIME values, use the
SystemTimeToFileTime function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WEB_STORAGE_QUOTA Structure

The WEB_STORAGE_QUOTA structure contains information about the current storage account
data usage and limits. This structure is used with the WebGetStorageQuota function.

typedef struct _WEB_STORAGE_QUOTA
{
 DWORD dwObjects;
 DWORD dwObjectLimit;
 DWORD dwObjectSize;
 ULONGLONG ulBytesUsed;
 ULONGLONG ulBytesFree;
 ULONGLONG ulStorageLimit;
} WEB_STORAGE_QUOTA, *LPWEB_STORAGE_QUOTA;

Members
dwObjects

An unsigned integer value which specifies the number of storage objects allocated for the
account. This value may not exceed the total number of objects specified by the dwObjectLimit
member.

dwObjectLimit

An unsigned integer value which specifies the maximum number of storage objects that may be
created. In addition to the limit on the total amount of storage that may be used, there is a limit
on the total number of objects that may be created by all applications.

dwObjectSize

An unsigned integer value which specifies the maximum size of an individual storage object. In
addition to a limit on the total amount of storage used and the number of objects created, each
object stored by the application cannot exceed this size.

ulBytesUsed

An unsigned 64-bit integer value which specifies the total number of bytes of data allocated for
all storage objects. This value may not exceed the total number of bytes of storage available,
which is specified by the ulStorageLimit member.

ulBytesFree

An unsigned 64-bit integer value which specifies the number of bytes available for the storage
of new objects. This value reflects the total amount of available storage across all applications
registered with the development account. If this value is zero, your storage account has reached
its storage limit.

ulStorageLimit

An unsigned 64-bit integer value which specifies the maximum number of bytes of data storage
available. This limit applies to all applications registered with the development account.

Remarks
Storage quota limits are assigned for each SocketTools development account. The
WebGetStorageQuota function will populate this structure with information about the limits on
your account. Accounts that are created with an evaluation license have much lower quota limits
than a standard account and should be used for testing purposes only. After the evaluation period
has ended, all objects stored using the evaluation license will be deleted.

These values do not represent limits on storage usage by a specific application. Quotas limits

apply to all applications that are registered with the development account, which is identified with
the runtime license key passed to the WebInitialize function.

If your storage quota has been exceeded, either because the total number of objects or the total
bytes of storage has reached their limit, your applications will be unable to create new objects.
Your application can continue to access existing objects, regardless of your current quota limits.

To free storage space, use the WebDeleteObject function to delete individual storage objects
that are no longer needed by your application, or use the WebResetStorage function to delete
all objects in a container.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cstools11.h

See Also
WebGetStorageQuota

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WEB_STORAGE_TRANSFER Structure

This structure is used by the WebGetTransferStatus function to return information about a data
transfer in progress.

typedef struct _WEB_STORAGE_TRANSFER
{
 TCHAR szObjectLabel[512];
 DWORD dwStorageType;
 DWORD dwBytesTotal;
 DWORD dwBytesCopied;
 DWORD dwBytesPerSecond;
 DWORD dwTimeElapsed;
 DWORD dwTimeEstimated;
} WEB_STORAGE_TRANSFER, *LPWEB_STORAGE_TRANSFER

Members
szObjectLabel

A null-terminated string that specifies the label for the object that is being retrieved, created or
replaced.

dwStorageType

An integer value that identifies the storage container type. This will be one of the following
values:

Constant Description

WEB_STORAGE_GLOBAL
(1)

Global storage. Objects stored using this storage type are
available to all users. Any changes made to objects using
this storage type will affect all users of the application.
Unless there is a specific need to limit access to the objects
stored by the application to specific domains, local
machines or users, it is recommended that you use this
storage type when creating new objects.

WEB_STORAGE_DOMAIN
(2)

Local domain storage. Objects stored using this storage
type are only available to users in the same local domain,
as defined by the domain name or workgroup name
assigned to the local system. If the domain or workgroup
name changes, objects previously stored using this
storage type will not be available to the application.

WEB_STORAGE_MACHINE
(3)

Local machine storage. Objects stored using this storage
type are only available to users on the same local
machine. The local machine is identified by unique
characteristics of the system, including the boot volume
GUID. Objects previously stored using this storage type will
not be available on that system if the boot disk is
reformatted.

WEB_STORAGE_USER
(4)

Current user storage. Objects stored using this storage
type are only available to the current user logged in on
the local machine. The user identifier is based on the
Windows user SID that is assigned when the user account

is created. If the user account is deleted, the objects
previously stored using this storage type will not be
available to the application.

dwBytesTotal

An unsigned integer which specifies the total number of bytes that will be transferred. If the
object is being downloaded to the local host, this is the size of the stored object. If the data is
being uploaded from the local host to be stored on the server, it is the size of the buffer or local
file.

dwBytesCopied

An unsigned integer which specifies the total number of bytes that have been copied.

dwBytesPerSecond

The average number of bytes that have been copied per second.

dwTimeElapsed

The number of seconds that have elapsed since the file transfer started.

dwTimeEstimated

The estimated number of seconds until the data transfer is completed. This is based on the
average number of bytes transferred per second.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Whois Protocol Library

Request registration information for an Internet domain name.

Reference

Functions
Data Structures
Error Codes

Library Information

File Name CSWHOV11.DLL

Version 11.0.2180.1635

LibID A15BDF07-F8CC-43FD-9DCF-39EA5C66E56C

Import Library CSWHOV11.LIB

Dependencies None

Standards RFC 954

Overview
The Whois protocol library provides an interface for requesting registration information for an
Internet domain name. When a domain name is registered, the organization that registers the
domain must provide certain contact information along with technical information such as the
primary name servers for that domain. The library provides an API for requesting that information
and returning it to the program so that it can be displayed or processed. This library would be
most commonly used to query the Whois server at whois.internic.net to obtain information
about a specific Internet domain name or an administrative contact at that domain.

Requirements
The SocketTools Library Edition libraries are compatible with any programming language which
supports calling functions exported from a standard dynamic link library (DLL). If you are using
Visual C++ 6.0 it is required that you have Service Pack 6 (SP6) installed. You should install all
updates for your development tools and have the current Windows SDK installed. The minimum
recommended version of Visual Studio is Visual Studio 2010.

This library is supported on Windows 7, Windows Server 2008 R2 and later versions of the desktop
and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1) installed as
a minimum requirement. It is recommended that you install the current service pack and all critical
updates available for your version of the operating system.

This product includes both 32-bit and 64-bit libraries. Native 64-bit CPU support requires the 64-
bit version of Windows 7 or later versions of the Windows operating system.

Distribution
When you distribute your application that uses this library, it is recommended that you install the
file in the same folder as your application executable. If you install the library into a shared location
on the system, it is important that you distribute the correct version for the target platform and it
should be registered as a shared DLL. This is a standard Windows dynamic link library, not an
ActiveX component, and does not require COM registration.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Whois Protocol Functions

Function Description

WhoisAsyncConnect Connect asynchronously to the specified server

WhoisAttachThread Attach the specified client handle to another thread

WhoisCancel Cancel the current blocking operation

WhoisConnect Connect to the specified server

WhoisDisableEvents Disable asynchronous event notification

WhoisDisableTrace Disable logging of network function calls to the trace log

WhoisDisconnect Disconnect from the current server

WhoisEnableEvents Enable asynchronous event notification

WhoisEnableTrace Enable logging of network function calls to a file

WhoisEventProc Callback function that processes events generated by the client

WhoisFreezeEvents Suspend or resume event handling by the calling process

WhoisGetErrorString Return a description for the specified error code

WhoisGetLastError Return the last error code

WhoisGetStatus Return the current client status.

WhoisGetTimeout Return the number of seconds until an operation times out

WhoisInitialize Initialize the library and validate the specified license key at runtime

WhoisIsBlocking Determine if the client is blocked, waiting for information

WhoisIsConnected Determine if the client is connected to the server

WhoisIsReadable Determine if there is data available to be read from the server

WhoisRead Read data returned by the server

WhoisRegisterEvent Register an event callback function

WhoisSearch Search for the specified record

WhoisSetLastError Set the last error code

WhoisSetTimeout Set the number of seconds until an operation times out

WhoisUninitialize Terminate use of the library by the application

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WhoisAsyncConnect Function

HCLIENT WINAPI WhoisAsyncConnect(
 LPCTSTR lpszRemoteHost,
 UINT nRemotePort,
 UINT nTimeout,
 DWORD dwReserved,
 HWND hEventWnd,
 UINT uEventMsg
);

The WhoisAsyncConnect function is used to establish a connection with the server.

This function has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

The application should create a background worker thread and establish a connection by calling
WhoisConnect within that thread. If the application requires multiple simultaneous connections, it
is recommended you create a worker thread for each client session.

Parameters
lpszRemoteHost

A pointer to the name of the server to connect to; this may be a fully-qualified domain name or
an IP address.

nRemotePort

The port number the server is listening on; a value of zero specifies that the default port
number should be used.

nTimeout

The number of seconds that the client will wait for a response from the server before failing the
current operation.

dwReserved

A reserved parameter. This value should always be zero.

hEventWnd

The handle to the event notification window. This window receives messages which notify the
client of various asynchronous network events that occur. If this parameter is NULL, then a
synchronous (blocking) connection will be established with the server.

uEventMsg

The message identifier that is used when an asynchronous network event occurs. This value
should be greater than WM_USER as defined in the Windows header files. If the hEventWnd
parameter is NULL, this parameter should be specified as WM_NULL.

Return Value
If the function succeeds, the return value is a handle to a client session. If the function fails, the
return value is INVALID_CLIENT. To get extended error information, call WhoisGetLastError.

Remarks
When a message is posted to the notification window, the low word of the lParam parameter
contains the event identifier. The high word of lParam contains the low word of the error code, if

an error has occurred. The wParam parameter contains the client handle. One or more of the
following event identifiers may be sent:

Constant Description

WHOIS_EVENT_CONNECT The connection to the server has completed. The high word of
the lParam parameter should be checked, since this notification
message will be posted if an error has occurred.

WHOIS_EVENT_DISCONNECT The server has closed the connection to the client. The client
should read any remaining data and disconnect.

WHOIS_EVENT_READ Data is available to read by the calling process. No additional
messages will be posted until the client has read at least some
of the data. This event is only generated if the client is in
asynchronous mode.

WHOIS_EVENT_WRITE The client can now write data. This notification is sent after a
connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking
operation. This event is only generated if the client is in
asynchronous mode.

WHOIS_EVENT_TIMEOUT The network operation has exceeded the specified timeout
period. The client application may attempt to retry the
operation, or may disconnect from the server and report an
error to the user.

WHOIS_EVENT_CANCEL The current operation has been canceled. Under most
circumstances the client should disconnect from the server and
re-connect if needed. After an operation has been canceled,
the server may abort the connection or refuse to accept further
commands from the client.

To cancel asynchronous notification and return the client to a blocking mode, use the
WhoisDisableEvents function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswhov11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
WhoisConnect, WhoisDisconnect, WhoisInitialize, WhoisSearch

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WhoisAttachThread Function

DWORD WINAPI WhoisAttachThread(
 HCLIENT hClient
 DWORD dwThreadId
);

The WhoisAttachThread function attaches the specified client handle to another thread.

Parameters
hClient

Handle to the client session.

dwThreadId

The ID of the thread that will become the new owner of the handle. A value of zero specifies
that the current thread should become the owner of the client handle.

Return Value
If the function succeeds, the return value is the thread ID of the previous owner. If the function
fails, the return value is WHOIS_ERROR. To get extended error information, call
WhoisGetLastError.

Remarks
When a client handle is created, it is associated with the current thread that created it. Normally, if
another thread attempts to perform an operation using that handle, an error is returned since it
does not own the handle. This is used to ensure that other threads cannot interfere with an
operation being performed by the owner thread. In some cases, it may be desirable for one
thread in a client application to create the client handle, and then pass that handle to another
worker thread. The WhoisAttachThread function can be used to change the ownership of the
handle to the new worker thread. By preserving the return value from the function, the original
owner of the handle can be restored before the worker thread terminates.

This function should be called by the new thread immediately after it has been created, and if the
new thread does not release the handle itself, the ownership of the handle should be restored to
the parent thread before it terminates. Under no circumstances should WhoisAttachThread be
used to forcibly release a handle allocated by another thread while a blocking operation is in
progress. To cancel an operation, use the WhoisCancel function and then release the handle after
the blocking function exits and control is returned to the current thread.

Note that the dwThreadId parameter is presumed to be a valid thread ID and no checks are
performed to ensure that the thread actually exists. Specifying an invalid thread ID will orphan the
handle until the WhoisUninitialize function is called.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswhov11.lib

See Also
WhoisConnect, WhoisDisconnect, WhoisUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WhoisCancel Function

INT WINAPI WhoisCancel(
 HCLIENT hClient
);

The WhoisCancel function cancels any outstanding blocking operation in the client, causing the
blocking function to fail. The application may then retry the operation or terminate the client
session.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
WHOIS_ERROR. To get extended error information, call WhoisGetLastError.

Remarks
When the WhoisCancel function is called, the blocking function will not immediately fail. An
internal flag is set which causes the blocking operation to exit with an error. This means that the
application cannot cancel an operation and immediately perform some other operation. Instead it
must allow the calling stack to unwind, returning back to the blocking operation before making
any further function calls.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswhov11.lib

See Also
WhoisIsBlocking

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WhoisConnect Function

HCLIENT WINAPI WhoisConnect(
 LPCTSTR lpszRemoteHost,
 UINT nRemotePort,
 UINT nTimeout,
 DWORD dwReserved
);

The WhoisConnect function is used to establish a connection with the specified server.

Parameters
lpszRemoteHost

A pointer to the name of the server to connect to; this may be a fully-qualified domain name or
an IP address.

nRemotePort

The port number the server is listening on; a value of zero specifies that the default port
number should be used.

nTimeout

The number of seconds that the client will wait for a response from the server before failing the
current operation.

dwReserved

A reserved parameter. This value should always be zero.

Return Value
This function will block the current thread until a connection has been established or the timeout
period has elapsed. To prevent it from blocking the main user interface thread, the application
should create a background worker thread and establish a connection by calling WhoisConnect
in that thread. If the application requires multiple simultaneous connections, it is recommended
you create a worker thread for each connection.

Remarks
When a message is posted to the notification window, the low word of the lParam parameter
contains the event identifier. The high word of lParam contains the low word of the error code, if
an error has occurred. The wParam parameter contains the client handle. One or more of the
following event identifiers may be sent:

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswhov11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
WhoisDisconnect, WhoisInitialize, WhoisSearch

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WhoisDisableEvents Function

INT WINAPI WhoisDisableEvents(
 HCLIENT hClient
);

The WhoisDisableEvents function disables the event notification mechanism, preventing
subsequent event notification messages from being posted to the application's message queue.

This function has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
WHOIS_ERROR. To get extended error information, call WhoisGetLastError.

Remarks
This function affects both event notification and event callbacks. Any outstanding events in the
message queue should be ignored by the client application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswhov11.lib

See Also
WhoisEnableEvents, WhoisFreezeEvents, WhoisRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WhoisDisableTrace Function

BOOL WINAPI WhoisDisableTrace();

The WhoisDisableTrace function disables the logging of socket function calls to the trace log file.

Parameters
None.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswhov11.lib

See Also
WhoisEnableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WhoisDisconnect Function

INT WINAPI WhoisDisconnect(
 HCLIENT hClient
);

The WhoisDisconnect function terminates the connection with the server, closing the socket and
releasing the memory allocated for the client session.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
WHOIS_ERROR. To get extended error information, call WhoisGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswhov11.lib

See Also
WhoisConnect, WhoisUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WhoisEnableEvents Function

INT WINAPI WhoisEnableEvents(
 HCLIENT hClient,
 HWND hEventWnd,
 UINT uEventMsg
);

The WhoisEnableEvents function enables event notifications using Windows messages.

This function has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Applications should use the WhoisRegisterEvent function to register an event handler which is
invoked when an event occurs.

Parameters
hClient

Handle to the client session.

hEventWnd

Handle to the event notification window. This window receives a user-defined message which
specifies the event that has occurred. If this value is NULL, event notification is disabled.

uEventMsg

An unsigned integer which specifies the user-defined message that is sent when an event
occurs. This parameter's value must be greater than the value of WM_USER.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
WHOIS_ERROR. To get extended error information, call WhoisGetLastError.

Remarks
When a message is posted to the notification window, the low word of the lParam parameter
contains the event identifier. The high word of lParam contains the low word of the error code, if
an error has occurred. The wParam parameter contains the client handle. One or more of the
following event identifiers may be sent:

Constant Description

WHOIS_EVENT_CONNECT The connection to the server has completed. The high word of
the lParam parameter should be checked, since this notification
message will be posted if an error has occurred.

WHOIS_EVENT_DISCONNECT The server has closed the connection to the client. The client
should read any remaining data and disconnect.

WHOIS_EVENT_READ Data is available to read by the calling process. No additional
messages will be posted until the client has read at least some
of the data. This event is only generated if the client is in
asynchronous mode.

WHOIS_EVENT_WRITE The client can now write data. This notification is sent after a

connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking
operation. This event is only generated if the client is in
asynchronous mode.

WHOIS_EVENT_TIMEOUT The network operation has exceeded the specified timeout
period. The client application may attempt to retry the
operation, or may disconnect from the server and report an
error to the user.

WHOIS_EVENT_CANCEL The current operation has been canceled. Under most
circumstances the client should disconnect from the server and
re-connect if needed. After an operation has been canceled,
the server may abort the connection or refuse to accept further
commands from the client.

To cancel asynchronous notification and return the client to a blocking mode, use the
WhoisDisableEvents function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswhov11.lib

See Also
WhoisDisableEvents, WhoisFreezeEvents, WhoisRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WhoisEnableTrace Function

BOOL WINAPI WhoisEnableTrace(
 LPCTSTR lpszTraceFile,
 DWORD dwTraceFlags
);

The WhoisEnableTrace function enables the logging of socket function calls to a file.

Parameters
lpszTraceFile

A pointer to a string which specifies the name of the trace log file. If this parameter is NULL or
an empty string, the default file name cstrace.log is used. The file is stored in the directory
specified by the TEMP environment variable, if it is defined; otherwise, the current working
directory is used.

dwTraceFlags

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

TRACE_INFO All function calls are written to the trace file. This is the default
value.

TRACE_ERROR Only those function calls which fail are recorded in the trace file.

TRACE_WARNING Only those function calls which fail or return values which indicate
a warning are recorded in the trace file.

TRACE_HEXDUMP All functions calls are written to the trace file, plus all the data that
is sent or received is displayed, in both ASCII and hexadecimal
format.

TRACE_PROCESS All function calls in the current process are logged, rather than
only those functions in the current thread. This option is useful for
multithreaded applications that are using worker threads.

Return Value
If the function succeeds, the return value is non-zero. A return value of zero indicates an error.
Failure typically indicates that the tracing library cstrcv11.dll cannot be loaded on the local
system.

Remarks
When trace logging is enabled, the file is opened, appended to and closed for each socket
function call. This makes it possible for an application to append its own logging information,
however care should be taken to ensure that the file is closed before the next network operation is
performed. To limit the size of the log files, enable and disable logging only around those sections
of code that you wish to trace.

Note that the TRACE_HEXDUMP trace level generates very large log files since it includes all of the
data exchanged between your application and the server.

Trace function logging is managed on a per-thread basis, not for each client handle. This means
that all SocketTools libraries and components share the same settings in the current thread. If you

are using multiple SocketTools libraries or components in your application, you only need to
enable logging once.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswhov11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
WhoisDisableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WhoisEventProc Function

VOID CALLBACK WhoisEventProc(
 HCLIENT hClient,
 UINT nEventId,
 DWORD dwError,
 DWORD_PTR dwParam
);

The WhoisEventProc function is an application-defined callback function that processes events
generated by the calling process.

Parameters
hClient

The handle to the client session.

nEvent

An unsigned integer which specifies which event occurred. For a complete list of events, refer to
the WhoisRegisterEvent function.

dwError

An unsigned integer which specifies any error that occurred. If no error occurred, then this
parameter will be zero.

dwParam

A user-defined integer value which was specified when the event callback was registered.

Return Value
None.

Remarks
An application must register this callback function by passing its address to the
WhoisRegisterEvent function. The WhoisEventProc function is a placeholder for the
application-defined function name.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswhov11.lib

See Also
WhoisDisableEvents, WhoisEnableEvents, WhoisFreezeEvents, WhoisRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WhoisFreezeEvents Function

INT WINAPI WhoisFreezeEvents(
 HCLIENT hClient,
 BOOL bFreeze
);

The WhoisFreezeEvents function is used to suspend and resume event handling by the client.

Parameters
hClient

Handle to the client session.

bFreeze

A non-zero value specifies that event handling should be suspended by the client. A zero value
specifies that event handling should be resumed.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
WHOIS_ERROR. To get extended error information, call WhoisGetLastError.

Remarks
This function should be used when the application does not want to process events, such as when
a modal dialog is being displayed. When events are suspended, all client events are queued. If
events are re-enabled at a later point, those queued events will be sent to the application for
processing. Note that only one of each event will be generated. For example, if the client has
suspended event handling, and four read events occur, once event handling is resumed only one
of those read events will be posted to the client. This prevents the application from being flooded
by a potentially large number of queued events.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswhov11.lib

See Also
WhoisDisableEvents, WhoisEnableEvents, WhoisRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WhoisGetErrorString Function

INT WINAPI WhoisGetErrorString(
 DWORD dwErrorCode,
 LPTSTR lpszDescription,
 INT cbDescription
);

The WhoisGetErrorString function is used to return a description of a specific error code.
Typically this is used in conjunction with the WhoisGetLastError function for use with warning
dialogs or as diagnostic messages.

Parameters
dwErrorCode

The last-error code for which a description is returned.

lpszDescription

A pointer to the buffer that will contain a description of the specified error code. This buffer
should be at least 128 characters in length.

cbDescription

The maximum number of characters that may be copied into the description buffer.

Return Value
If the function succeeds, the return value is the length of the description string. If the function fails,
the return value is 0, meaning that no description exists for the specified error code. Typically this
indicates that the error code passed to the function is invalid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswhov11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
WhoisGetLastError, WhoisSetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WhoisGetLastError Function

DWORD WINAPI WhoisGetLastError();

Parameters
None.

Return Value
The return value is the last error code value for the current thread. Functions set this value by
calling the WhoisSetLastError function. The Return Value section of each reference page notes
the conditions under which the function sets the last error code.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. You should call
the WhoisGetLastError function immediately when a function's return value indicates that an
error has occurred. That is because some functions call WhoisSetLastError(0) when they succeed,
clearing the error code set by the most recently failed function.

Most functions will set the last error code value when they fail; a few functions set it when they
succeed. Function failure is typically indicated by a return value such as FALSE, NULL,
INVALID_CLIENT or WHOIS_ERROR. Those functions which call WhoisSetLastError when they
succeed are noted on the function reference page.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswhov11.lib

See Also
WhoisGetErrorString, WhoisSetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WhoisGetStatus Function

INT WINAPI WhoisGetStatus(
 HCLIENT hClient
);

The WhoisGetStatus function returns the current status of the client session.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is the client status code. If the function fails, the return
value is WHOIS_ERROR. To get extended error information, call WhoisGetLastError.

Remarks
The WhoisGetStatus function returns a numeric code which identifies the current state of the
client session. The following values may be returned:

Value Constant Description

1 WHOIS_STATUS_IDLE The client is current idle and not sending or
receiving data.

2 WHOIS_STATUS_CONNECT The client is establishing a connection with the
server.

3 WHOIS_STATUS_READ The client is reading data from the server.

4 WHOIS_STATUS_WRITE The client is writing data to the server.

5 WHOIS_STATUS_DISCONNECT The client is disconnecting from the server.

In a multithreaded application, any thread in the current process may call this function to obtain
status information for the specified client session.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswhov11.lib

See Also
WhoisIsBlocking, WhoisIsConnected, WhoisIsReadable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WhoisGetTimeout Function

INT WINAPI WhoisGetTimeout(
 HCLIENT hClient
);

The WhoisGetTimeout function returns the number of seconds the client will wait for a response
from the server. Once the specified number of seconds has elapsed, the function will fail and
return to the caller.

Parameters
hClient

Handle to the client session.

Return Value
If the function succeeds, the return value is the timeout period in seconds. If the function fails, the
return value is WHOIS_ERROR. To get extended error information, call WhoisGetLastError.

Remarks
The timeout value is only used with blocking client connections. A value of zero indicates that the
default timeout period of 20 seconds should be used.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswhov11.lib

See Also
WhoisSetTimeout

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WhoisInitialize Function

BOOL WINAPI WhoisInitialize(
 LPCTSTR lpszLicenseKey,
 LPINITDATA lpData
);

The WhoisInitialize function initializes the library and validates the specified license key at
runtime.

Parameters
lpszLicenseKey

Pointer to a string that specifies the runtime license key to be validated. If this parameter is
NULL, the library will validate the development license installed on the local system.

lpData

Pointer to an INITDATA data structure. This parameter may be NULL if the initialization data for
the library is not required.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call WhoisGetLastError. All other client functions will fail until
a license key has been successfully validated.

Remarks
This must be the first function that an application calls before using any of the other functions in
the library. When a NULL license key is specified, the library will only function on the development
system. Before redistributing the application to an end-user, you must insure that this function is
called with a valid license key.

If the lpData argument is specified, it must point to an INITDATA structure which has been
initialized by setting the dwSize member to the size of the structure. All other structure members
should be set to zero. If the function is successful, then the INITDATA structure will be filled with
identifying information about the library.

Although it is only required that WhoisInitialize be called once for the current process, it may be
called multiple times; however, each call must be matched by a corresponding call to
WhoisUninitialize.

This function dynamically loads other system libraries and allocates thread local storage. If you are
calling the functions in this library from within another DLL, it is important that you do not call the
WhoisInitialize or WhoisUninitialize functions from the DllMain function because it can result in
deadlocks or access violation errors. If the DLL is linked with the C runtime library (CRT), it will
automatically call the constructors and destructors for static and global C++ objects and has the
same restrictions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswhov11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
WhoisConnect, WhoisDisconnect, WhoisUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WhoisIsBlocking Function

BOOL WINAPI WhoisIsBlocking(
 HCLIENT hClient
);

The WhoisIsBlocking function is used to determine if the client is currently performing a blocking
operation.

Parameters
hClient

Handle to the client session.

Return Value
If the client is performing a blocking operation, the function returns TRUE. If the client is not
performing a blocking operation, or the client handle is invalid, the function returns FALSE.

Remarks
Because a blocking operation can allow the application to be re-entered (for example, by pressing
a button while the operation is being performed), it is possible that another blocking function may
be called while it is in progress. Since only one thread of execution may perform a blocking
operation at any one time, an error would occur. The WhoisIsBlocking function can be used to
determine if the client is already blocked, and if so, take some other action (such as warning the
user that they must wait for the operation to complete).

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswhov11.lib

See Also
WhoisCancel, WhoisGetStatus, WhoisIsConnected, WhoisIsReadable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WhoisIsConnected Function

BOOL WINAPI WhoisIsConnected(
 HCLIENT hClient
);

The WhoisIsConnected function is used to determine if the client is currently connected to a
server.

Parameters
hClient

Handle to the client session.

Return Value
If the client is connected to a server, the function returns a non-zero value. If the client is not
connected, or the client handle is invalid, the function returns zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswhov11.lib

See Also
WhoisGetStatus, WhoisIsBlocking, WhoisIsReadable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WhoisIsReadable Function

BOOL WINAPI WhoisIsReadable(
 HCLIENT hClient,
 INT nTimeout,
 LPDWORD lpdwAvail
);

The WhoisIsReadable function is used to determine if data is available to be read from the
server.

Parameters
hClient

Handle to the client session.

nTimeout

Timeout for server response, in seconds. A value of zero specifies that the connection should be
polled without blocking the current thread.

lpdwAvail

A pointer to an unsigned integer which will contain the number of bytes available to read. This
parameter may be NULL if this information is not required.

Return Value
If the client can read data from the server within the timeout period, the function returns a non-
zero value. If the client cannot read any data, the function returns zero.

Remarks
On some platforms, this value will not exceed the size of the receive buffer (typically 64K bytes).
Because of differences between TCP/IP stack implementations, it is not recommended that your
application exclusively depend on this value to determine the exact number of bytes available.
Instead, it should be used as a general indicator that there is data available to be read.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswhov11.lib

See Also
WhoisGetStatus, WhoisIsBlocking, WhoisIsConnected

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WhoisRead Function

INT WINAPI WhoisRead(
 HCLIENT hClient,
 LPBYTE lpBuffer,
 INT cbBuffer
);

The WhoisRead function reads the specified number of bytes from the client socket and copies
them into the buffer. The data may be of any type, and is not terminated with a null character.

Parameters
hClient

Handle to the client session.

lpBuffer

Pointer to the buffer in which the data will be copied.

cbBuffer

The maximum number of bytes to read and copy into the specified buffer. This value must be
greater than zero.

Return Value
If the function succeeds, the return value is the number of bytes actually read. A return value of
zero indicates that the server has closed the connection and there is no more data available to be
read. If the function fails, the return value is WHOIS_ERROR. To get extended error information,
call WhoisGetLastError.

Remarks
When WhoisRead is called and the client is in non-blocking mode, it is possible that the function
will fail because there is no available data to read at that time. This should not be considered a
fatal error. Instead, the application should simply wait to receive the next asynchronous notification
that data is available.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswhov11.lib

See Also
WhoisIsBlocking, WhoisIsReadable, WhoisSearch

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WhoisRegisterEvent Function

INT WINAPI WhoisRegisterEvent(
 HCLIENT hClient,
 UINT nEventId,
 INETEVENTPROC lpfnEvent,
 DWORD_PTR dwParam
);

The WhoisRegisterEvent function registers a callback function for the specified event.

Parameters
hClient

Handle to client session.

nEventId

An unsigned integer which specifies which event should be registered with the specified callback
function. One or more of the following values may be used:

Constant Description

WHOIS_EVENT_CONNECT The connection to the server has completed.

WHOIS_EVENT_DISCONNECT The server has closed the connection to the client. The
client should read any remaining data and disconnect.

WHOIS_EVENT_READ Data is available to read by the calling process. No
additional messages will be posted until the client has
read at least some of the data. This event is only
generated if the client is in asynchronous mode.

WHOIS_EVENT_WRITE The client can now write data. This notification is sent
after a connection has been established, or after a
previous attempt to write data has failed because it
would result in a blocking operation. This event is only
generated if the client is in asynchronous mode.

WHOIS_EVENT_TIMEOUT The network operation has exceeded the specified
timeout period. The client application may attempt to
retry the operation, or may disconnect from the server
and report an error to the user.

WHOIS_EVENT_CANCEL The current operation has been canceled. Under most
circumstances the client should disconnect from the
server and re-connect if needed. After an operation
has been canceled, the server may abort the
connection or refuse to accept further commands from
the client.

lpfnEvent

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the WhoisEventProc callback
function. If this parameter is NULL, the callback for the specified event is disabled.

dwParam

A user-defined integer value that is passed to the callback function. If the application targets the
x86 (32-bit) platform, this parameter must be a 32-bit unsigned integer. If the application
targets the x64 (64-bit) platform, this parameter must be a 64-bit unsigned integer.

Remarks
The WhoisRegisterEvent function associates a callback function with a specific event. The event
handler is an WhoisEventProc function that is invoked when the event occurs. Arguments are
passed to the function to identify the client session, the event type and the user-defined value
specified when the event handler is registered. If the event occurs because of an error condition,
the error code will be provided to the handler.

The callback function specified by the lpEventProc parameter must be declared using the
__stdcall calling convention. This ensures the arguments passed to the event handler are pushed
on to the stack in the correct order. Failure to use the correct calling convention will corrupt the
stack and cause the application to terminate abnormally.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
WHOIS_ERROR. To get extended error information, call WhoisGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswhov11.lib

See Also
WhoisDisableEvents, WhoisEnableEvents, WhoisEventProc, WhoisFreezeEvents

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WhoisSearch Function

INT WINAPI WhoisSearch(
 HCLIENT hClient,
 LPCTSTR lpszKeyword,
 UINT nSearchType
);

The WhoisSearch function submits the specified keyword to the server.

Parameters
hClient

Handle to the client session.

lpszKeyword

Points to a string which specifies the query keyword. It may be a handle, name or mailbox.

nSearchType

The type of search being performed. One of the following values may be used:

Constant Description

WHOIS_SEARCH_ANY Search for any record that matches the specified keyword.

WHOIS_SEARCH_HANDLE Search only for handles that match the specified keyword.

WHOIS_SEARCH_MAILBOX Search only for mailboxes that match the specified
keyword.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
WHOIS_ERROR. To get extended error information, call WhoisGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswhov11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
WhoisConnect, WhoisIsReadable, WhoisRead

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WhoisSetLastError Function

VOID WINAPI WhoisSetLastError(
 DWORD dwErrorCode
);

The WhoisSetLastError function sets the error code for the current thread. This function is
typically used to clear the last error by passing a value of zero as the parameter.

Parameters
dwErrorCode

Specifies the error code for the current thread.

Return Value
None.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. Most functions will
set the last error code value when they fail; a few functions set it when they succeed. Function
failure is typically indicated by a return value such as FALSE, NULL, INVALID_CLIENT or
WHOIS_ERROR. Those functions which call WhoisSetLastError when they succeed are noted on
the function reference page.

Applications can retrieve the value saved by this function by using the WhoisGetLastError
function. The use of WhoisGetLastError is optional; an application can call the function to
determine the specific reason for a function failure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswhov11.lib

See Also
WhoisGetErrorString, WhoisGetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WhoisSetTimeout Function

INT WINAPI WhoisSetTimeout(
 HCLIENT hClient,
 UINT nTimeout
);

The WhoisSetTimeout function sets the number of seconds the client will wait for a response
from the server. Once the specified number of seconds has elapsed, the function will fail and
return to the caller.

Parameters
hClient

Handle to the client session.

nTimeout

The number of seconds to wait for a blocking operation to complete.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
WHOIS_ERROR. To get extended error information, call WhoisGetLastError.

Remarks
The timeout value is only used with blocking client connections.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswhov11.lib

See Also
WhoisGetTimeout

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WhoisUninitialize Function

VOID WINAPI WhoisUninitialize();

The WhoisUninitialize function terminates the use of the library.

Parameters
There are no parameters.

Return Value
None.

Remarks
An application is required to perform a successful WhoisInitialize call before it can call any of the
other the library functions. When it has completed the use of library, the application must call
WhoisUninitialize to allow the library to free any resources allocated on behalf of the process.
Any pending blocking or asynchronous calls in this process are canceled without posting any
notification messages, and all sockets that were opened by the process are closed.

There must be a call to WhoisUninitialize for every successful call to WhoisInitialize made by a
process. In a multithreaded environment, operations for all threads in the client are terminated.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Import Library: cswhov11.lib

See Also
WhoisDisconnect, WhoisInitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Whois Protocol Data Structures

 INITDATA

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 INITDATA Structure

This structure contains information about the SocketTools library when the initialization function
returns.

typedef struct _INITDATA
{
 DWORD dwSize;
 DWORD dwVersionMajor;
 DWORD dwVersionMinor;
 DWORD dwVersionBuild;
 DWORD dwOptions;
 DWORD_PTR dwReserved1;
 DWORD_PTR dwReserved2;
 TCHAR szDescription[128];
} INITDATA, *LPINITDATA;

Members
dwSize

Size of this structure. This structure member must be set to the size of the structure prior to
calling the initialization function. Failure to do so will cause the function to fail.

dwVersionMajor

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the major version number for the library.

dwVersionMinor

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the minor version number for the library.

dwVersionBuild

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the build number for the library.

dwOptions

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

dwReserved1

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

dwReserved2

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

szDescription

A null terminated string which describes the library.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench Windows Sockets Library

A general purpose TCP/IP networking library for developing client and server applications.

Reference

Functions
Data Structures
Error Codes

Library Information

File Name CSWSKV11.DLL

Version 11.0.2180.1635

LibID EC6DE93D-FBB8-4928-B2D5-C09758C644EE

Import Library CSWSKV11.LIB

Dependencies None

Standards RFC 768, RFC 791, RFC 793

Overview
At the core of all of the SocketTools networking libraries is the Windows Sockets API. This provides
a low level interface for sending and receiving data over the Internet or a local intranet using the
Transmission Control Protocol (TCP) and/or User Datagram Protocol (UDP). The SocketWrench
library provides a simpler interface to the Windows Sockets API, without sacrificing features or
functionality. Using SocketWrench, you can easily create client and server applications while
avoiding many of the mundane tasks and common problems that developers face when building
Internet applications.

This library supports secure connections using the TLS 1.2 protocol and can also be used to create
secure, customized server applications. Both implicit and explicit SSL connections are supported,
enabling the library to work with a wide variety of client and server applications without requiring
that you use third-party libraries or Microsoft's CryptoAPI.

Requirements
The SocketTools Library Edition libraries are compatible with any programming language which
supports calling functions exported from a standard dynamic link library (DLL). If you are using
Visual C++ 6.0 it is required that you have Service Pack 6 (SP6) installed. You should install all
updates for your development tools and have the current Windows SDK installed. The minimum
recommended version of Visual Studio is Visual Studio 2010.

This library is supported on Windows 7, Windows Server 2008 R2 and later versions of the desktop
and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1) installed as
a minimum requirement. It is recommended that you install the current service pack and all critical
updates available for your version of the operating system.

This library provides an implementation of a multithreaded server which should only be used with
languages that support the creation of multithreaded applications. It is important that you do not
link against static libraries which were not built with support for threading.

This product includes both 32-bit and 64-bit libraries. Native 64-bit CPU support requires the 64-

bit version of Windows 7 or later versions of the Windows operating system.

Distribution
When you distribute your application that uses this library, it is recommended that you install the
file in the same folder as your application executable. If you install the library into a shared location
on the system, it is important that you distribute the correct version for the target platform and it
should be registered as a shared DLL. This is a standard Windows dynamic link library, not an
ActiveX component, and does not require COM registration.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SocketWrench Library Functions

Function Description

InetAbort Abort the connection and immediately close the socket

InetAccept Accept a connection request from a remote host

InetAcceptEx Accept a client connection on a listening socket with additional options

InetAsyncAccept Accept an asynchronous connection request from a remote host

InetAsyncAcceptEx Accept a non-blocking connection on a listening socket

InetAsyncConnect Connect asynchronously to the specified server

InetAsyncConnectEx Connect asynchronously to the specified server

InetAsyncListen Listen for client connections on an asynchronous socket

InetAsyncListenEx Listen for client connections on an asynchronous socket with additional options

InetAttachSocket Attach the socket handle to the specified process

InetAttachThread Attach the specified socket to another thread

InetCancel Cancel a blocking operation

InetClientBroadcast Write data to all other clients that are connected to the same server

InetCompareAddress Compare two IP addresses to determine if they are identical

InetConnect Connect to the specified server

InetConnectEx Connect to the specified server with additional connection information

InetConnectUrl Connect to the specified server using a URL

InetCreateSecurityCredentials Create a new security credentials structure

InetDeleteSecurityCredentials Delete a previously created security credentials structure

InetDetachSocket Detach the socket handle from the current process

InetDisableEvents Disable asynchronous event notification

InetDisableSecurity Disable secure communication with the remote host

InetDisableTrace Disable logging of network function calls to the trace log

InetDisconnect Disconnect from the current server

InetEnableEvents Enable asynchronous event notification

InetEnableSecurity Enable secure communication with the remote host

InetEnableTrace Enable logging of network function calls to a file

InetEnumHostAliases Return a byte array that contains all the aliases for a specified host

InetEnumNetworkAddresses Return the list of network addresses that are configured for the local host

InetEnumServerClients Returns a list of active client sessions established with the specified server

InetEnumServerClientsByAddress Returns a list of active client sessions that match the specified IP address

InetEventProc Callback method that processes events generated on the socket

InetFindClientMoniker Returns a handle to the client socket which matches the specified moniker

InetFlush Flush the send and receive buffers

InetFormatAddress Convert an IP address in binary format into a printable string

InetFreezeEvents Suspend or resume event handling by the application

InetGetAdapterAddress Return the IP or MAC assigned to the specified network adapter

InetGetAddress Convert an IP address string to a binary format

InetGetAddressFamily Return the address family for the specified IP address

InetGetBlockingSocket Return the handle for the socket which is blocked in the current thread

InetGetDefaultHostFile Return the fully qualified path name of the host file on the local system

InetGetClientData Returns the application defined data associated with the specified client session

InetGetClientHandle Returns the handle for a specific client session based on its ID number

InetGetClientId Returns the unique ID number assigned to the specified client session

InetGetClientIdleTime Returns the amount of time the specified client session has been idle

InetGetClientMoniker Returns the string alias associated with the specified client session

InetGetClientPriority Returns the current priority for the specified client session

InetGetClientServer Returns a socket handle to the server for the specified client socket

InetGetClientServerById Returns a socket handle to the server for the specified session identifier

InetGetClientThreadId Returns the thread ID for the specified client session

InetGetClientThreads Returns the number of client session threads created by the server

InetGetErrorString Return a description for the specified error code

InetGetExternalAddress Return the external IP address assigned to the local system

InetGetHostAddress Return the IP address assigned to the specified hostname

InetGetHostFile Return the name of the host file

InetGetHostName Return the hostname assigned to the specified IP address

InetGetLastError Return the last error code

InetGetLocalAddress Return the local IP address and port number for a socket

InetGetLocalName Return the hostname assigned to the local system

InetGetLockedServer Return the handle to the server which has been locked

InetGetOption Return the current socket options

InetGetPeerAddress Return the IP address of the peer that the socket is connected to

InetGetPhysicalAddress Return the media access control (MAC) address for the primary network adapter

InetGetSecurityInformation Return information about the security characteristics of a connection

InetGetServerClient Return the handle for the last client connection accepted by the server

InetGetServerData Returns the application defined data associated with the specified server

InetGetServerPriority Return the current priority assigned to the specified server

InetGetServerStackSize Return the initial size of the stack allocated for threads created by the server

InetGetServerStatus Returns the status of the specified server

InetGetServerThreadId Returns the thread ID for the specified server

InetGetServiceName Return the service name associated with a specified port number

InetGetServicePort Return the port number associated with a service name

InetGetStatus Report what sort of socket operation is in progress

InetGetStreamInfo Return information about the current stream read or write operation

InetGetThreadClient Return the handle for the client session that is being managed by the specified thread

InetGetTimeout Return the timeout interval for blocking operations, in seconds

InetGetUrlHostName Return the host name and port number specified in a URL

InetHostNameToUnicode Converts the canonical form of a host name to its Unicode version

InetInitialize Initialize the library and validate the specified user license key at runtime

InetIsAddressNull Determine if the specified IP address is a null address

InetIsAddressRoutable Determine if the specified IP address is routable over the Internet

InetIsBlocking Determine if the socket is performing a blocking operation

InetIsClosed Determine if the remote host has closed its socket

InetIsConnected Determine if the socket is connected to a remote host

InetIsListening Determine if the socket is listening for a connection

InetIsProtocolAvailable Determine if the specified protocol and address family are supported

InetIsReadable Determine if date can be read from the remote process

InetIsUrgent Determine if there is any out-of-band (OOB) data available to be read

InetIsWritable Determine if data can be written to the remote process

InetListen Listen for client connections on the specified socket

InetListenEx Listen for client connections on the specified socket with additional options

InetMatchHostName Match a host name against of list of addresses including wildcards

InetNormalizeHostName Return the canonical form of a host name

InetPeek Read data from the socket without removing it from the socket buffer

InetRead Read data from the socket

InetReadEx Read data from the socket, with extended functionality

InetReadLine Read a line of data from the socket, storing it in a string buffer

InetReadStream Read a stream of data from the socket

InetRegisterEvent Register an event callback function

InetReject Reject a pending client connection request

InetServerAsyncNotify Enable or disable asynchronous notification of changes in server status

InetServerBroadcast Write data to all active clients currently connected to the specified server

InetServerLock Lock the specified server, causing all other client threads to block until it is unlocked

InetServerRestart Restart the server, terminating all active client sessions

InetServerResume Resume accepting client connections on the specified server

InetServerStart Begin listening for client connections on the specified address and port

InetServerStop Stop listening for connections and terminate all client sessions

InetServerStopEx Stop listening for connections and wait for the server to terminate

InetServerSuspend Suspend accepting client connections on the specified server

InetServerSuspendEx Suspend accepting client connections and optionally reject or disconnect clients

InetServerThrottle Limit the number of active client connections, connections per address and connection rate

InetServerUnlock Unlock the specified server, allowing other client threads to resume execution

InetSetClientData Associate application defined data with the specified client session

InetSetClientMoniker Associate a unique string alias with the specified client session

InetSetClientPriority Set the priority for the specified client session

InetSetServerData Associate application defined data with the specified server

InetSetServerPriority Change the priority assigned to the specified server

InetSetServerStackSize Change the initial size of the stack allocated for threads created by the server

InetSetHostFile Specify the name of an alternate host table

InetSetLastError Set the last error code

InetSetOption Set one or more options for the current socket

InetSetTimeout Set the interval used when waiting for a blocking operation to complete

InetShutdown Disable reception or transmission of data

InetStoreStream Read a stream of data from the remote host and store it in a file

InetUninitialize Terminate use of the library by the application

InetValidateCertificate Validate the specified security certificate is installed on the local system

InetValidateHostName Validate the specified host name and return the resolved IP address

InetWrite Write data to the socket

InetWriteEx Write data to the socket, with extended functionality

InetWriteLine Write a line of data to the socket, terminated with a carriage-return and linefeed

InetWriteStream Write a stream of data to the socket

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetAbort Function

INT WINAPI InetAbort(
 SOCKET hSocket
);

Immediately close the socket without waiting for any remaining data to be written out.

Parameters
hSocket

Handle to the socket.

Return Value
If the function succeeds, the return value is 0. If the function fails, the return value is INET_ERROR.
To get extended error information, call InetGetLastError.

Remarks
The InetAbort function should only be used when the connection must be closed immediately
before the application terminates. This function should only be used to abort client connections
and should not be used with passive (listening) sockets. Server applications that need to abort an
incoming client connection should use the InetReject function.

In most cases, the application should call the InetDisconnect function to gracefully close the
connection to the remote host. Aborting the connection will discard any buffered data and may
cause errors or result in unpredictable behavior.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetCancel, InetReject, InetDisconnect

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetAccept Function

SOCKET WINAPI InetAccept(
 SOCKET hSocket,
 UINT nTimeout
);

The InetAccept function is used to accept a pending client connection.

This function has been deprecated and is included for backwards compatibility. Use the
InetServerStart function to create a server application.

Parameters
hSocket

Handle to the listening socket.

nTimeout

The number of seconds that the server will wait for the connection to complete before failing
the operation.

Return Value
If the function succeeds, the return value is a handle to the socket. If the function fails, the return
value is INVALID_SOCKET. To get extended error information, call InetGetLastError.

Remarks
When a connection is accepted by the server, the original listening socket continues to listen for
more connections. The socket handle returned by InetAccept should be used to exchange
information with the client.

This function will block the current thread until a connection has been established or the timeout
period has elapsed. To prevent it from blocking the main user interface thread, the application
should create a background worker thread and accept the connection by calling InetAccept in
that thread. If the application requires multiple simultaneous connections, it is recommended you
create a worker thread for each connection.

To accept a secure connection, use the InetAcceptEx function and specify the
INET_OPTION_SECURE option.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetAcceptEx, InetConnect, InetListen, InetRegisterEvent, InetReject, InetServerStart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetAcceptEx Function

SOCKET WINAPI InetAcceptEx(
 SOCKET hSocket,
 UINT nTimeout,
 DWORD dwOptions,
 LPSECURITYCREDENTIALS lpCredentials
);

The InetAcceptEx function is used to accept a pending client connection.

This function has been deprecated and is included for backwards compatibility. Use the
InetServerStart function to create a server application.

Parameters
hSocket

Handle to the socket.

nTimeout

The number of seconds that the server will wait for a client connection before failing the current
operation.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

INET_OPTION_KEEPALIVE This option specifies that packets are to be sent to
the remote system when no data is being
exchanged to keep the connection active. This is
only valid for stream sockets.

INET_OPTION_NODELAY This option disables the Nagle algorithm, which
buffers unacknowledged data and insures that a
full-size packet can be sent to the remote host.

INET_OPTION_INLINE This option controls how urgent (out-of-band)
data is handled when reading data from the
socket. If set, urgent data is placed in the data
stream along with non-urgent data.

INET_OPTION_NOINHERIT This option prevents the socket handle from being
inherited by child processes created by the
application. Using this option can mitigate
situations in which a child process does not close
the handle, leaving it open after the parent
process has stopped the server.

INET_OPTION_SECURE This option determines if a secure connection is
negotiated with the remote host.

INET_OPTION_SECURE_FALLBACK This option specifies the server should permit the
use of less secure cipher suites for compatibility
with legacy clients. If this option is specified, the
server will allow connections using TLS 1.0 and

 cipher suites that use RC4, MD5 and SHA1.

INET_OPTION_FREETHREAD This option specifies the socket returned by this
function may be used by any thread, and is not
limited to the thread which created it. The
application is responsible for ensuring that access
to the socket is synchronized across multiple
threads.

lpCredentials

Pointer to credentials structure SECURITYCREDENTIALS. This may be NULL, unless dwOptions
includes INET_OPTION_SECURE. When INET_OPTION_SECURE is used, the fields dwSize,
lpszCertStore, and lpszCertName must be defined, while other fields may be left undefined. Set
dwSize to the size of the SECURITYCREDENTIALS structure.

Return Value
If the function succeeds, the return value is a handle to the socket. If the function fails, the return
value is INVALID_SOCKET. To get extended error information, call InetGetLastError.

Remarks
When a connection is accepted by the server, the original listening socket continues to listen for
more connections. The socket handle returned by InetAcceptEx should be used to exchange
information with the client.

This function will block the current thread until a connection has been established or the timeout
period has elapsed. To prevent it from blocking the main user interface thread, the application
should create a background worker thread and accept the connection by calling InetAcceptEx in
that thread. If the application requires multiple simultaneous connections, it is recommended you
create a worker thread for each connection.

The dwOptions argument can be used to specify the threading model that is used by the library
when a connection is established. By default, the handle is initially attached to the thread that
created it. From that point on, until the it is released, only the owner may call functions using that
handle. The ownership of the handle may be transferred from one thread to another using the
InetAttachThread function.

Specifying the INET_OPTION_FREETHREAD option enables any thread to call any function using
the socket handle, regardless of which thread created it. It is important to note that this option
disables certain internal safety checks which are performed by the library and may result in
unexpected behavior unless access to the socket is synchronized. If one thread calls a function in
the library, it must ensure that no other thread will call another function at the same time using the
same socket handle.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetAccept, InetConnect, InetConnectEx, InetListen, InetListenEx, InetRegisterEvent, InetServerStart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetAsyncAccept Function

SOCKET WINAPI InetAsyncAccept(
 SOCKET hSocket,
 UINT nTimeout,
 HWND hEventWnd,
 UINT uEventMsg
);

The InetAsyncAccept function is used to accept a pending client connection.

This function has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Use the InetServerStart function to create a server application.

Parameters
hSocket

Handle to the listening socket.

nTimeout

The number of seconds that the server will wait for the connection to complete before failing
the operation. This value is used only if hWnd is NULL.

hEventWnd

The handle to the event notification window. This window receives messages which notify the
application of various asynchronous socket events that occur.

uEventMsg

The message identifier that is used when an asynchronous socket event occurs. This value
should be greater than WM_USER as defined in the Windows header files.

Return Value
If the function succeeds, the return value is a handle to the socket. If the function fails, the return
value is INVALID_SOCKET. To get extended error information, call InetGetLastError.

Remarks
When a connection is accepted by the server, the original listening socket continues to listen for
more connections. The socket handle returned by InetAsyncAccept should be used to exchange
information with the client.

When a message is posted to the notification window, the low word of the lParam parameter
contains the event identifier. The high word of lParam contains the low word of the error code, if
an error has occurred. The wParam parameter contains the socket handle. One or more of the
following event identifiers may be sent:

Constant Description

INET_EVENT_DISCONNECT The remote host has closed the connection. The process should
read any remaining data and disconnect.

INET_EVENT_READ Data is available to read by the calling process. No additional
messages will be posted until the process has read at least some

of the data from the socket. This event is only generated if the
socket is in asynchronous mode.

INET_EVENT_WRITE The process can now write data. This notification is sent after a
connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking
operation. This event is only generated if the socket is in
asynchronous mode.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetAsyncConnect, InetAsyncListen, InetServerStart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetAsyncAcceptEx Function

SOCKET WINAPI InetAsyncAcceptEx(
 SOCKET hSocket,
 UINT nTimeout,
 DWORD dwOptions,
 LPSECURITYCREDENTIALS lpCredentials
 HWND hEventWnd,
 UINT uEventMsg
);

The InetAsyncAcceptEx function is used to accept a pending client connection.

This function has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Use the InetServerStart function to create a server application.

Parameters
hSocket

Handle to the listening socket.

nTimeout

The number of seconds that the server will wait for a client connection before failing the
operation. This value is only used with blocking connections.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

INET_OPTION_KEEPALIVE This option specifies that packets are to be sent to
the remote system when no data is being
exchanged to keep the connection active. This is
only valid for stream sockets.

INET_OPTION_REUSEADDRESS This option specifies the local address can be
reused. This option is commonly used by server
applications.

INET_OPTION_NODELAY This option disables the Nagle algorithm, which
buffers unacknowledged data and insures that a
full-size packet can be sent to the remote host.

INET_OPTION_INLINE This option controls how urgent (out-of-band)
data is handled when reading data from the
socket. If set, urgent data is placed in the data
stream along with non-urgent data.

INET_OPTION_NOINHERIT This option prevents the socket handle from being
inherited by child processes created by the
application. Using this option can mitigate
situations in which a child process does not close

the handle, leaving it open after the parent
process has stopped the server.

INET_OPTION_SECURE This option determines if a secure connection is
negotiated with the remote host.

INET_OPTION_SECURE_FALLBACK This option specifies the server should permit the
use of less secure cipher suites for compatibility
with legacy clients. If this option is specified, the
server will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

INET_OPTION_FREETHREAD This option specifies the socket returned by this
function may be used by any thread, and is not
limited to the thread which created it. The
application is responsible for ensuring that access
to the socket is synchronized across multiple
threads.

lpCredentials

Pointer to credentials structure SECURITYCREDENTIALS. This may be NULL, unless dwOptions
includes INET_OPTION_SECURE. When INET_OPTION_SECURE is used, the fields dwSize,
lpszCertStore, and lpszCertName must be defined, while other fields may be left undefined. Set
dwSize to the size of the SECURITYCREDENTIALS structure.

hEventWnd

The handle to the event notification window. This window receives messages which notify the
application of various asynchronous socket events that occur.

uEventMsg

The message identifier that is used when an asynchronous socket event occurs. This value
should be greater than WM_USER as defined in the Windows header files.

Return Value
If the function succeeds, the return value is a handle to the socket. If the function fails, the return
value is INVALID_SOCKET. To get extended error information, call InetGetLastError.

Remarks
When a connection is accepted by the server, the original listening socket continues to listen for
more connections. The socket handle returned by InetAsyncAccept or InetAsyncAcceptEx
should be used to exchange information with the client.

When a message is posted to the notification window, the low word of the lParam parameter
contains the event identifier. The high word of lParam contains the low word of the error code, if
an error has occurred. The wParam parameter contains the socket handle. One or more of the
following event identifiers may be sent:

Constant Description

INET_EVENT_DISCONNECT The remote host has closed the connection. The process should
read any remaining data and disconnect.

INET_EVENT_READ Data is available to read by the calling process. No additional
messages will be posted until the process has read at least some
of the data from the socket. This event is only generated if the

socket is in asynchronous mode.

INET_EVENT_WRITE The process can now write data. This notification is sent after a
connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking
operation. This event is only generated if the socket is in
asynchronous mode.

It is recommended that you only establish an asynchronous connection if you understand the
implications of doing so. In most cases, it is preferable to create a synchronous connection and
create threads for each additional session if more than one active client session is required.

The dwOptions argument can be used to specify the threading model that is used by the library
when a connection is established. By default, the handle is initially attached to the thread that
created it. From that point on, until the it is released, only the owner may call functions using that
handle. The ownership of the handle may be transferred from one thread to another using the
InetAttachThread function.

Specifying the INET_OPTION_FREETHREAD option enables any thread to call any function using
the socket handle, regardless of which thread created it. It is important to note that this option
disables certain internal safety checks which are performed by the library and may result in
unexpected behavior unless access to the socket is synchronized. If one thread calls a function in
the library, it must ensure that no other thread will call another function at the same time using the
same socket handle.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetAsyncAccept, InetAsyncListenEx, InetServerStart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetAsyncConnect Function

SOCKET WINAPI InetAsyncConnect(
 LPCTSTR lpszHostName,
 UINT nPort,
 UINT nProtocol,
 UINT nTimeout,
 DWORD dwOptions,
 LPSECURITYCREDENTIALS lpCredentials,
 HWND hEventWnd,
 UINT uEventMsg
);

The InetAsyncConnect function is used to establish a connection with a server.

This function has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

The application should create a background worker thread and establish a connection by calling
InetConnect within that thread. If the application requires multiple simultaneous connections, it is
recommended you create a worker thread for each connection.

Parameters
lpszHostName

A pointer to the name of the server to connect to; this may be a fully-qualified domain name or
an IP address.

nPort

The port number the server is listening on; a value of zero specifies that the default port
number should be used.

nProtocol

The protocol to be used when establishing the connection. This may be one of the following
values:

Constant Description

INET_PROTOCOL_TCP Specifies the Transmission Control Protocol. This protocol
provides a reliable, bi-directional byte stream. This is the
default protocol.

INET_PROTOCOL_UDP Specifies the User Datagram Protocol. This protocol is
message oriented, sending data in discrete packets. Note that
UDP is unreliable in that there is no way for the sender to
know that the receiver has actually received the datagram.

nTimeout

The number of seconds to wait for a response before failing the current operation.

dwOptions

An unsigned integer used to specify one or more socket options. This parameter is constructed
by using the bitwise Or operator with any of the following values:

Constant Description

INET_OPTION_BROADCAST This option specifies that broadcasting should be
enabled for datagrams. This option is invalid for
stream sockets.

INET_OPTION_DONTROUTE This option specifies default routing should not be
used. This option should not be specified unless
absolutely necessary.

INET_OPTION_KEEPALIVE This option specifies that packets are to be sent to
the remote system when no data is being
exchanged to keep the connection active. This is
only valid for stream sockets.

INET_OPTION_NODELAY This option disables the Nagle algorithm. By
default, small amounts of data written to the
socket are buffered, increasing efficiency and
reducing network congestion. However, this
buffering can negatively impact the responsiveness
of certain applications. This option disables this
buffering and immediately sends data packets as
they are written to the socket.

INET_OPTION_RESERVEDPORT This option specifies the socket should be bound
to an unused port number less than 1024, which is
typically reserved for well-known system services. If
this option is specified, the process may require
administrative privileges.

INET_OPTION_NOINHERIT This option prevents the socket handle from being
inherited by child processes created by the
application. Using this option can mitigate
situations in which a child process does not close
the handle, leaving it open after the parent
process has disconnected from the server.

INET_OPTION_TRUSTEDSITE This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option
only affects connections using either the SSL or
TLS protocols.

INET_OPTION_SECURE This option specifies that a secure connection
should be established with the remote host. The
specific version of TLS and other security related
options are provided in the lpCredentials
parameter. If the lpCredentials parameter is NULL,
the connection will default to using TLS 1.2 and
the strongest cipher suites available. Older
versions of Windows prior to Windows 7 and
Windows Server 2008 R2 only support TLS 1.0 and
secure connections will automatically downgrade
on those platforms.

INET_OPTION_SECURE_FALLBACK This option specifies the client should permit the
use of less secure cipher suites for compatibility
with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

INET_OPTION_PREFER_IPV6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be resolved
to both an IPv6 and IPv4 address. This option is
ignored if the local system does not have IPv6
enabled, or when the hostname can only be
resolved to an IPv4 address. If the server hostname
can only be resolved to an IPv6 address, the client
will attempt to establish a connection using IPv6
regardless if this option has been specified.

INET_OPTION_FREETHREAD This option specifies the socket returned by this
function may be used by any thread, and is not
limited to the thread which created it. The
application is responsible for ensuring that access
to the socket is synchronized across multiple
threads.

lpCredentials

A pointer to a SECURITYCREDENTIALS structure. This parameter is only used if
INET_OPTION_SECURE is specified for a TCP connection. This parameter may be NULL, in which
case no client credentials will be provided to the server. If client credentials are required, the
fields dwSize, lpszCertStore, and lpszCertName must be defined, while other fields may be left
undefined. Set dwSize to the size of the SECURITYCREDENTIALS structure.

hEventWnd

The handle to the event notification window. This window receives messages which notify the
application of various asynchronous socket events that occur.

uEventMsg

The message identifier that is used when an asynchronous socket event occurs. This value
should be greater than WM_USER as defined in the Windows header files.

Return Value
If the function succeeds, the return value is a handle to the socket. If the function fails, the return
value is INVALID_SOCKET. To get extended error information, call InetGetLastError.

Remarks
When this function is called with UDP as the specified protocol, it does not actually establish a
connection. Instead, it simply establishes a default destination IP address and port that is used with
subsequent InetRead and InetWrite calls.

When a message is posted to the notification window, the low word of the lParam parameter
contains the event identifier. The high word of lParam contains the low word of the error code, if
an error has occurred. The wParam parameter contains the socket handle. One or more of the
following event identifiers may be sent:

Constant Description

INET_EVENT_CONNECT The connection to the remote host has completed. The high word
of the lParam parameter should be checked, since this notification
message will be posted if an error has occurred.

INET_EVENT_DISCONNECT The remote host has closed the connection. The process should
read any remaining data and disconnect.

INET_EVENT_READ Data is available to read by the calling process. No additional
messages will be posted until the process has read at least some
of the data from the socket. This event is only generated if the
socket is in asynchronous mode.

INET_EVENT_WRITE The process can now write data. This notification is sent after a
connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking
operation. This event is only generated if the socket is in
asynchronous mode.

To cancel asynchronous notification and return the socket to a blocking mode, use the
InetDisableEvents function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetAsyncConnectEx, InetConnect, InetDisableEvents, InetDisconnect, InetEnableEvents,
InetInitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetAsyncConnectEx Function

SOCKET WINAPI InetAsyncConnectEx(
 LPCTSTR lpszHostName,
 UINT nPort,
 UINT nProtocol,
 UINT nTimeout,
 DWORD dwOptions,
 LPCTSTR lpszLocalAddress,
 UINT nLocalPort,
 LPSECURITYCREDENTIALS lpCredentials,
 HWND hEventWnd,
 UINT uEventMsg
);

The InetAsyncConnectEx function is used to establish a connection with a server.

This function has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

The application should create a background worker thread and establish a connection by calling
InetConnectEx within that thread. If the application requires multiple simultaneous connections, it
is recommended you create a worker thread for each connection.

Parameters
lpszHostName

A pointer to the name of the server to connect to; this may be a fully-qualified domain name or
an IP address.

nPort

The port number the server is listening on; a value of zero specifies that the default port
number should be used.

nProtocol

The protocol to be used when establishing the connection. This may be one of the following
values:

Constant Description

INET_PROTOCOL_TCP Specifies the Transmission Control Protocol. This protocol
provides a reliable, bi-directional byte stream. This is the
default protocol.

INET_PROTOCOL_UDP Specifies the User Datagram Protocol. This protocol is
message oriented, sending data in discrete packets. Note that
UDP is unreliable in that there is no way for the sender to
know that the receiver has actually received the datagram.

nTimeout

The number of seconds to wait for a response before failing the current operation.

dwOptions

An unsigned integer used to specify one or more socket options. The following values are

recognized:

Constant Description

INET_OPTION_BROADCAST This option specifies that broadcasting should be
enabled for datagrams. This option is invalid for
stream sockets.

INET_OPTION_DONTROUTE This option specifies default routing should not be
used. This option should not be specified unless
absolutely necessary.

INET_OPTION_KEEPALIVE This option specifies that packets are to be sent to
the remote system when no data is being
exchanged to keep the connection active. This is
only valid for stream sockets.

INET_OPTION_NODELAY This option disables the Nagle algorithm. By
default, small amounts of data written to the
socket are buffered, increasing efficiency and
reducing network congestion. However, this
buffering can negatively impact the responsiveness
of certain applications. This option disables this
buffering and immediately sends data packets as
they are written to the socket.

INET_OPTION_RESERVEDPORT This option specifies the socket should be bound
to an unused port number less than 1024, which is
typically reserved for well-known system services. If
this option is specified, the process may require
administrative privileges.

INET_OPTION_NOINHERIT This option prevents the socket handle from being
inherited by child processes created by the
application. Using this option can mitigate
situations in which a child process does not close
the handle, leaving it open after the parent
process has disconnected from the server.

INET_OPTION_TRUSTEDSITE This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option
only affects connections using either the SSL or
TLS protocols.

INET_OPTION_SECURE This option specifies that a secure connection
should be established with the remote host. The
specific version of TLS and other security related
options are provided in the lpCredentials
parameter. If the lpCredentials parameter is NULL,
the connection will default to using TLS 1.2 and
the strongest cipher suites available. Older
versions of Windows prior to Windows 7 and
Windows Server 2008 R2 only support TLS 1.0 and
secure connections will automatically downgrade

on those platforms.

INET_OPTION_SECURE_FALLBACK This option specifies the client should permit the
use of less secure cipher suites for compatibility
with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

INET_OPTION_PREFER_IPV6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be resolved
to both an IPv6 and IPv4 address. This option is
ignored if the local system does not have IPv6
enabled, or when the hostname can only be
resolved to an IPv4 address. If the server hostname
can only be resolved to an IPv6 address, the client
will attempt to establish a connection using IPv6
regardless if this option has been specified.

INET_OPTION_FREETHREAD This option specifies the socket returned by this
function may be used by any thread, and is not
limited to the thread which created it. The
application is responsible for ensuring that access
to the socket is synchronized across multiple
threads.

lpszLocalAddress

A pointer to a string that specifies the local IP address that the socket should be bound to. If this
parameter is NULL, then an appropriate address will automatically be used. A specific address
should only be used if it is required by the application.

nLocalPort

The local port number that the socket should be bound to. If this parameter is set to zero, then
an appropriate port number will automatically be used. A specific port number should only be
used if it is required by the application.

lpCredentials

A pointer to a SECURITYCREDENTIALS structure. This parameter is only used if
INET_OPTION_SECURE is specified for a TCP connection. This parameter may be NULL, in which
case no client credentials will be provided to the server. If client credentials are required, the
fields dwSize, lpszCertStore, and lpszCertName must be defined, while other fields may be left
undefined. Set dwSize to the size of the SECURITYCREDENTIALS structure.

hEventWnd

The handle to the event notification window. This window receives messages which notify the
application of various asynchronous socket events that occur.

uEventMsg

The message identifier that is used when an asynchronous socket event occurs. This value
should be greater than WM_USER as defined in the Windows header files.

Return Value
If the function succeeds, the return value is a handle to the socket. If the function fails, the return
value is INVALID_SOCKET. To get extended error information, call InetGetLastError.

Remarks
When a message is posted to the notification window, the low word of the lParam parameter
contains the event identifier. The high word of lParam contains the low word of the error code, if
an error has occurred. The wParam parameter contains the socket handle. One or more of the
following event identifiers may be sent:

Constant Description

INET_EVENT_CONNECT The connection to the remote host has completed. The high word
of the lParam parameter should be checked, since this notification
message will be posted if an error has occurred.

INET_EVENT_DISCONNECT The remote host has closed the connection. The process should
read any remaining data and disconnect.

INET_EVENT_READ Data is available to read by the calling process. No additional
messages will be posted until the process has read at least some
of the data from the socket. This event is only generated if the
socket is in asynchronous mode.

INET_EVENT_WRITE The process can now write data. This notification is sent after a
connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking
operation. This event is only generated if the socket is in
asynchronous mode.

The dwOptions argument can be used to specify the threading model that is used by the library
when a connection is established. By default, the handle is initially attached to the thread that
created it. From that point on, until the it is released, only the owner may call functions using that
handle. The ownership of the handle may be transferred from one thread to another using the
InetAttachThread function.

Specifying the INET_OPTION_FREETHREAD option enables any thread to call any function using
the socket handle, regardless of which thread created it. It is important to note that this option
disables certain internal safety checks which are performed by the library and may result in
unexpected behavior unless access to the socket is synchronized. If one thread calls a function in
the library, it must ensure that no other thread will call another function at the same time using the
same socket handle.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetAsyncConnect, InetConnect, InetDisableEvents, InetDisconnect, InetEnableEvents, InetInitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetAsyncListen Function

SOCKET WINAPI InetAsyncListen(
 LPCTSTR lpszLocalAddress,
 UINT nLocalPort,
 HWND hEventWnd,
 UINT uEventMsg
);

The InetAsyncListen function creates an listening socket.

This function has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Use the InetServerStart function to create a server application.

Parameters
lpszLocalAddress

A pointer to a string which specifies the local IP address that the socket should be bound to. If
this parameter is NULL or points to an empty string, a client may establish a connection using
any valid network interface configured on the local system. If an address is specified, then a
client may only establish a connection with the system using that address.

nLocalPort

The local port number that the socket should be bound to. This value must be greater than
zero. Port numbers less than 1024 are considered reserved ports and may require that the
process execute with administrative privileges and/or require changes to the default firewall
rules to permit inbound connections.

hEventWnd

The handle to the event notification window. This window receives messages which notify the
application of various asynchronous socket events that occur.

uEventMsg

The message identifier that is used when an asynchronous socket event occurs. This value
should be greater than WM_USER as defined in the Windows header files.

Return Value
If the function succeeds, the return value is a handle to the socket. If the function fails, the return
value is INVALID_SOCKET. To get extended error information, call InetGetLastError.

Remarks
To listen for connections on any suitable IPv4 interface, specify the special dotted-quad address
"0.0.0.0". You can accept connections from clients using either IPv4 or IPv6 on the same socket by
specifying the special IPv6 address "::0", however this is only supported on Windows 7 and
Windows Server 2008 R2 or later platforms. If no local address is specified, then the server will only
listen for connections from clients using IPv4. This behavior is by design for backwards
compatibility with systems that do not have an IPv6 TCP/IP stack installed.

The socket option INET_OPTION_REUSEADDRESS is enabled by default when calling the
InetAsyncListen function. This allows an application to re-use a local address and port number
when creating the listening socket. If this behavior is not desired, use the InetAsyncListenEx

function instead.

If an IPv6 address is specified as the local address, the system must have an IPv6 stack installed
and configured, otherwise the function will fail.

When a message is posted to the notification window, the low word of the lParam parameter
contains the event identifier. The high word of lParam contains the low word of the error code, if
an error has occurred. The wParam parameter contains the socket handle. One or more of the
following event identifiers may be sent:

Constant Description

INET_EVENT_ACCEPT The process has received a connection request from a client and should
accept the connection using the InetAsyncAccept function. This event
is only generated for server applications which have created an
asynchronous socket using the InetAsyncListen function.

To cancel asynchronous notification and return the socket to a blocking mode, use the
InetDisableEvents function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetAsyncAccept, InetAsyncListenEx, InetDisableEvents, InetEnableEvents, InetInitialize, InetListen,
InetServerStart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetAsyncListenEx Function

SOCKET WINAPI InetAsyncListenEx(
 LPCTSTR lpszLocalAddress,
 UINT nLocalPort,
 UINT nBacklog,
 DWORD dwOptions,
 HWND hEventWnd,
 UINT uEventMsg
);

The InetAsyncListenEx function creates an listening socket.

This function has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Use the InetServerStart function to create a server application.

Parameters
lpszLocalAddress

A pointer to a string which specifies the local IP address that the socket should be bound to. If
this parameter is NULL or points to an empty string, a client may establish a connection using
any valid network interface configured on the local system. If an address is specified, then a
client may only establish a connection with the system using that address.

nLocalPort

The local port number that the socket should be bound to. This value must be greater than
zero. Port numbers less than 1024 are considered reserved ports and may require that the
process execute with administrative privileges and/or require changes to the default firewall
rules to permit inbound connections.

nBacklog

The maximum length of the queue allocated for pending client connections. A value of zero
specifies that the size of the queue should be set to a maximum reasonable value. On Windows
server platforms, the maximum value is large enough to queue several hundred pending
connections.

dwOptions

An unsigned integer used to specify one or more socket options. The following values are
supported:

Constant Description

INET_OPTION_NONE No option specified. If the address and port number
are in use by another application or a closed socket
which was listening on this port is still in the
TIME_WAIT state, the function will fail.

INET_OPTION_REUSEADDRESS This option enables a server application to listen for
connections using the specified address and port
number even if they were in use recently. This is
typically used to enable an application to close the
listening socket and immediately reopen it without

getting an error that the address is in use.

INET_OPTION_EXCLUSIVE This option specifies the local address and port
number is for the exclusive use by the current
process, preventing another application from forcibly
binding to the same address. If another process has
already bound a socket to the address provided by
the caller, this function will fail.

INET_OPTION_RESERVEDPORT This option specifies the listening socket should be
bound to an unused port number less than 1024,
which is typically reserved for well-known system
services. If this option is specified, the process may
require administrative privileges and firewall rules that
will permit a client to establish a connection with the
service.

INET_OPTION_NOINHERIT This option prevents the socket handle from being
inherited by child processes created by the
application. Using this option can mitigate situations
in which a child process does not close the handle,
leaving it open after the parent process has stopped
the server.

hEventWnd

The handle to the event notification window. This window receives messages which notify the
application of various asynchronous socket events that occur.

uEventMsg

The message identifier that is used when an asynchronous socket event occurs. This value
should be greater than WM_USER as defined in the Windows header files.

Return Value
If the function succeeds, the return value is a handle to the socket. If the function fails, the return
value is INVALID_SOCKET. To get extended error information, call InetGetLastError.

Remarks
To listen for connections on any suitable IPv4 interface, specify the special dotted-quad address
"0.0.0.0". You can accept connections from clients using either IPv4 or IPv6 on the same socket by
specifying the special IPv6 address "::0", however this is only supported on Windows 7 and
Windows Server 2008 R2 or later platforms. If no local address is specified, then the server will only
listen for connections from clients using IPv4. This behavior is by design for backwards
compatibility with systems that do not have an IPv6 TCP/IP stack installed.

If the INET_OPTION_REUSEADDRESS option is not specified, an error may be returned if a
listening socket was recently created for the same local address and port number. By default, once
a listening socket is closed there is a period of time that all applications must wait before the
address can be reused (this is called the TIME_WAIT state). The actual amount of time depends on
the operating system and configuration parameters, but is typically two to four minutes. Specifying
this option enables an application to immediately re-use a local address and port number that was
previously in use.

If the INET_OPTION_EXCLUSIVE option is specified, the local address and port number cannot be
used by another process until the listening socket is closed. This can prevent another application

from forcibly binding to the same listening address as your server. This option can be useful in
determining whether or not another process is already bound to the address you wish to use, but
it may also prevent your server application from restarting immediately, regardless if the
INET_OPTION_REUSEADDRESS option has also been specified.

If an IPv6 address is specified as the local address, the system must have an IPv6 stack installed
and configured, otherwise the function will fail.

When a message is posted to the notification window, the low word of the lParam parameter
contains the event identifier. The high word of lParam contains the low word of the error code, if
an error has occurred. The wParam parameter contains the socket handle. One or more of the
following event identifiers may be sent:

Constant Description

INET_EVENT_ACCEPT An incoming client connection is pending. The connection will be
assigned to a new socket. This event is only generated if the socket is in
asynchronous mode.

To cancel asynchronous notification and return the socket to a blocking mode, use the
InetDisableEvents function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetAsyncAccept, InetAsyncAcceptEx, InetAsyncListen, InetDisableEvents, InetEnableEvents,
InetListenEx, InetServerStart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetAttachSocket Function

SOCKET WINAPI InetAttachSocket(
 SOCKET hSocket
 DWORD dwProcessId
);

The InetAttachThread function attaches the specified socket handle to another thread.

Parameters
hSocket

Handle to the socket.

dwProcessId

The process ID for the process that currently owns the socket handle. This value may be zero to
specify the current process.

Return Value
If the function succeeds, the return value is the handle to the attached socket. If the function fails,
the return value is INVALID_SOCKET. To get extended error information, call InetGetLastError.

Remarks
The InetAttachSocket function enables an application to attach an external socket handle to the
current thread and initializes it for use by the library. An external socket is any socket handle
created directly by the Windows Sockets API or by a third-party library. If the dwProcessId
parameter is zero or specifies the current process ID, then the function checks to see if the socket
was created by this library. If it was, then its owner context is switched to the current thread; if the
socket was created externally, then it is initialized for use by the library and attached to the current
thread.

If the dwProcessId parameter specifies another process, the socket will be duplicated into the
current process, attached to the current thread and the original socket handle will be closed in the
other process. This enables an application to effectively take control of a connection created by
another process. The original socket handle must be inheritable by the by the current process and
must be an actual Windows socket handle, not a pseudo-handle. This functionality is only
supported on Windows NT 4.0 and later versions of the operating system with the Microsoft
TCP/IP stack. Note that Layered Service Providers (LSPs) may interfere with the ability to inherit
handles across processes.

The attached socket is initialized in a blocking state, even if was originally using asynchronous
socket events. If the application requires that the socket use events, it must explicitly call
InetEnableEvents using the handle returned by this function.

In most cases, the handle returned by this function will be the same value as the hSocket
parameter, however an application should never make the assumption that this will be the case. If
InetAttachSocket returns a socket handle that has a different value than the hSocket parameter,
this indicates that the original handle has been destroyed and should never be used in subsequent
function calls.

This function should never be used with a secure socket connection because the attached socket
will not have the security context required to encrypt and decrypt the data exchanged with the
remote host.

Example

To demonstrate how to pass sockets between processes, this example will use two programs; one
acting as a server to listen for client connections and accept them, the other inheriting the client
socket and echoing back anything the client sends. The first program will create the listening
socket, and when a client connects, it will call CreateProcess to create a new child process to
handle that connection.

SOCKET hServer;
SOCKET hClient;

// Initialize the library

if (!InetInitialize(CSTOOLS11_LICENSE_KEY, NULL))
 return;

// Listen for incoming client connections

if ((hServer = InetListen(NULL, nLocalPort)) == INVALID_SOCKET)
 return;

while (TRUE)
{
 hClient = InetAccept(hServer, 10);

 if (hClient == INVALID_SOCKET)
 {
 // If InetAccept has timed-out, then simply loop back and attempt
 // to continue accepting connections; otherwise, exit the loop

 if (InetGetLastError() != ST_ERROR_OPERATION_TIMEOUT)
 break;
 }
 else
 {
 STARTUPINFO si;
 PROCESS_INFORMATION pi;
 CHAR szCommandLine[512];
 BOOL bResult;

 // Detach the socket, which will free the memory that the library
 // has allocated for it without actually destroying the socket handle;
 // the child process will close the handle in this process when it
 // attaches to it
 InetDetachSocket(hClient, 0);

 // Initialize the STARTUPINFO structure
 ZeroMemory(&si, sizeof(si));

 // Create the command line arguments, passing the current
 // process ID and socket handle to the new process

 wsprintf(szCommandLine, "%s %lu %lu",
 lpszAppName,
 (DWORD)GetCurrentProcessId(),
 (DWORD)hClient);

 // Create the child process

 bResult = CreateProcess(NULL,
 szCommandLine,

 NULL, NULL,
 TRUE,
 CREATE_DEFAULT_ERROR_MODE,
 NULL, NULL,
 &si, &pi);

 if (!bResult)
 InetDisconnect(hClient);
 }
}

InetDisconnect(hServer);
InetUninitialize();

The second program attaches to the socket handle that was passed to it by the parent process. It
goes into a loop, reading any data sent to it by the client and sending the same data back. When
the client disconnects, the InetRead function will return 0, it will exit the loop and the process will
terminate.

SOCKET hSocket;
SOCKET hClient;
DWORD dwProcessId;

// Initialize the library

if (!InetInitialize(CSTOOLS11_LICENSE_KEY, NULL))
 return;

// Process command line arguments that were passed to us
// by the server process

dwProcessId = (DWORD)atol(argv[1]);
hClient = (SOCKET)atol(argv[2]);

// Attach to the hClient socket that the server passed
// to us; this will close the socket in the server process

hSocket = InetAttachSocket(hClient, dwProcessId);

if (hSocket != INVALID_SOCKET)
{
 BYTE cBuffer[512];
 int nRead;

 do
 {
 // Read any data sent to us by the client
 nRead = InetRead(hSocket, cBuffer, sizeof(cBuffer));

 // Echo the data we have read back to the client
 if (nRead > 0)
 InetWrite(hSocket, cBuffer, nRead);
 }
 while (nRead > 0);

 InetDisconnect(hSocket);
}

InetUninitialize();

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetAttachThread, InetDetachSocket, InetInitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetAttachThread Function

DWORD WINAPI InetAttachThread(
 SOCKET hSocket
 DWORD dwThreadId
);

The InetAttachThread function attaches the specified socket handle to another thread.

Parameters
hSocket

Handle to the socket.

dwThreadId

The ID of the thread that will become the new owner of the handle. A value of zero specifies
that the current thread should become the owner of the socket handle.

Return Value
If the function succeeds, the return value is the thread ID of the previous owner. If the function
fails, the return value is INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
When a socket handle is created, it is associated with the current thread that created it. Normally,
if another thread attempts to perform an operation using that handle, an error is returned since it
does not own the handle. This is used to ensure that other threads cannot interfere with an
operation being performed by the owner thread. In some cases, it may be desirable for one
thread in an application to create the socket, and then pass that handle to another worker thread.
The InetAttachThread function can be used to change the ownership of the handle to the new
worker thread. By preserving the return value from the function, the original owner of the handle
can be restored before the worker thread terminates.

This function should be called by the new thread immediately after it has been created, and if the
new thread does not release the handle itself, the ownership of the handle should be restored to
the parent thread before it terminates. Under no circumstances should InetAttachThread be
used to forcibly release a handle allocated by another thread while a blocking operation is in
progress. To cancel an operation, use the InetCancel function and then release the handle after
the blocking function exits and control is returned to the current thread.

Note that the dwThreadId parameter is presumed to be a valid thread ID and no checks are
performed to ensure that the thread actually exists. Specifying an invalid thread ID will orphan the
handle until the InetUninitialize function is called.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetAccept, InetAcceptEx, InetConnect, InetConnectEx, InetDisconnect

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetCancel Function

INT WINAPI InetCancel(
 SOCKET hSocket
);

The InetCancel function cancels a blocking operation.

Parameters
hSocket

Handle to the socket.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
When the InetCancel function is called, the blocking function will not immediately fail. An internal
flag is set which causes the blocking operation to exit with an error. This means that the
application cannot cancel an operation and immediately perform some other operation. Instead it
must allow the calling stack to unwind, returning back to the blocking operation before making
any further function calls.

This function is typically called from within an event handler to signal that the current blocking
operation should stop. It may also be used to cancel a blocking operation that is occurring on
another thread.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetAbort

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetClientBroadcast Function

INT WINAPI InetClientBroadcast(
 SOCKET hClient,
 LPBYTE lpBuffer,
 INT cbBuffer
);

The InetClientBroadcast function sends data to all other clients that are connected to the same
server.

Parameters
hClient

The socket handle.

lpBuffer

The pointer to the buffer which contains the data that is to be sent to the server clients.

cbBuffer

The number of bytes to send from the specified buffer.

Return Value
If the function succeeds, the return value is the number of clients that the data was sent to. If the
function fails, the return value is INET_ERROR. To get extended error information, call
InetGetLastError.

Remarks
The InetClientBroadcast function sends the contents of the buffer to all other clients that are
connected to the same server as the specified client. This function will block until all clients have
been sent a copy of the data. There is no guarantee in which order the clients will receive and
process the data that has been broadcast.

This function can only be used with client sessions created as part of the server interface and
cannot be used with standard sockets created using the InetConnect function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetServerBroadcast, InetWrite, InetWriteLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetCompareAddress Function

BOOL WINAPI InetCompareAddress(
 LPINTERNET_ADDRESS lpAddress1,
 LPINTERNET_ADDRESS lpAddress2
);

The InetCompareAddress function compares two Internet addresses in a binary format.

Parameters
lpAddress1

A pointer to an INTERNET_ADDRESS structure that contains the first IP address to be compared.

lpAddress2

A pointer to an INTERNET_ADDRESS structure that contains the second IP address to be
compared.

Return Value
If the function succeeds and the two addresses are identical, the return value is non-zero. If the
function fails or the two addresses are not identical, the return value is zero. If either parameter is
NULL, or the address family for the two addresses are not the same, the last error code will be
updated. If the addresses are valid and in the same address family, but are not identical, the last
error code will be set to NO_ERROR.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetHostAddress, InetGetLocalAddress, InetGetPeerAddress, INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetConnect Function

SOCKET WINAPI InetConnect(
 LPCTSTR lpszHostName,
 UINT nRemotePort,
 UINT nProtocol,
 UINT nTimeout,
 DWORD dwOptions,
 LPSECURITYCREDENTIALS lpCredentials
);

The InetConnect function is used to establish a connection with a server.

Parameters
lpszHostName

A pointer to a null-terminated string which specifies the host name or IP address of the system
you want to connect with. This parameter cannot be a URL and must only specify the name of
the remote host. If this parameter is NULL or an empty string, the function will fail with an error
indicating the host name is invalid.

nRemotePort

The port number used to establish the connection. Valid port numbers range in value from 1
through 65535 and a value outside if this range will cause the function to fail. Port numbers in
the range of 49152 and 65535 are referred to as dynamic ports and are generally reserved for
private use by client applications. You cannot specify a port number of zero when establishing
an outbound connection.

nProtocol

The protocol to be used when establishing the connection. This may be one of the following
values:

Constant Description

INET_PROTOCOL_TCP Specifies the Transmission Control Protocol. This protocol
provides a reliable, bi-directional byte stream. This is the
default protocol.

INET_PROTOCOL_UDP Specifies the User Datagram Protocol. This protocol is
message oriented, sending data in discrete packets. Note that
UDP is unreliable in that there is no way for the sender to
know that the receiver has actually received the datagram.

nTimeout

The number of seconds to wait for the connection to complete before failing the current
operation.

dwOptions

An unsigned integer used to specify one or more socket options. This parameter is constructed
by using the bitwise Or operator with any of the following values:

Constant Description

INET_OPTION_BROADCAST This option specifies that broadcasting should be
enabled for datagrams. This option is invalid for

stream sockets.

INET_OPTION_DONTROUTE This option specifies default routing should not be
used. This option should not be specified unless
absolutely necessary.

INET_OPTION_KEEPALIVE This option specifies that packets are to be sent to
the remote system when no data is being
exchanged to keep the connection active. This is
only valid for stream sockets.

INET_OPTION_NODELAY This option disables the Nagle algorithm. By
default, small amounts of data written to the
socket are buffered, increasing efficiency and
reducing network congestion. However, this
buffering can negatively impact the responsiveness
of certain applications. This option disables this
buffering and immediately sends data packets as
they are written to the socket.

INET_OPTION_RESERVEDPORT This option specifies the socket should be bound
to an unused port number less than 1024, which is
typically reserved for well-known system services. If
this option is specified, the process may require
administrative privileges.

INET_OPTION_NOINHERIT This option prevents the socket handle from being
inherited by child processes created by the
application. Using this option can mitigate
situations in which a child process does not close
the handle, leaving it open after the parent
process has disconnected from the server.

INET_OPTION_TRUSTEDSITE This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option
only affects connections using either the SSL or
TLS protocols.

INET_OPTION_SECURE This option specifies that a secure connection
should be established with the remote host. The
specific version of TLS and other security related
options are provided in the lpCredentials
parameter. If the lpCredentials parameter is NULL,
the connection will default to using TLS 1.2 or later
and the strongest cipher suites available.

INET_OPTION_SECURE_FALLBACK This option specifies the client should permit the
use of less secure cipher suites for compatibility
with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

INET_OPTION_PREFER_IPV6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be resolved

to both an IPv6 and IPv4 address. This option is
ignored if the local system does not have IPv6
enabled, or when the hostname can only be
resolved to an IPv4 address. If the server hostname
can only be resolved to an IPv6 address, the client
will attempt to establish a connection using IPv6
regardless if this option has been specified.

INET_OPTION_FREETHREAD This option specifies the socket returned by this
function may be used by any thread, and is not
limited to the thread which created it. The
application is responsible for ensuring that access
to the socket is synchronized across multiple
threads.

lpCredentials

A pointer to a SECURITYCREDENTIALS structure. This parameter is only used if
INET_OPTION_SECURE is specified for a TCP connection. This parameter may be NULL, in which
case no client credentials will be provided to the server. If client credentials are required, the
fields dwSize, lpszCertStore, and lpszCertName must be defined, while other fields may be left
undefined. Set dwSize to the size of the SECURITYCREDENTIALS structure.

Return Value
If the function succeeds, the return value is a handle to a socket. If the function fails, the return
value is INVALID_SOCKET. To get extended error information, call InetGetLastError.

Remarks
The lpszHostName parameter must specify a valid host name or IP address. Host names are
resolved into an IP address by first checking the local hosts file and if the name is not found, a
name server query will be performed to determine the IP address. If the Unicode version of this
function is called and the host name includes non-ASCII characters, the host name will be
automatically converted to an ASCII compatible format. Refer to the InetNormalizeHostName
function for more information. To establish a connection using a URL rather than a host name, use
the InetConnectUrl function.

To prevent this function from blocking the main user interface thread, the application should
create a background worker thread and establish a connection by calling InetConnect in that
thread. If the application requires multiple simultaneous connections, it is recommended you
create a worker thread for each client session.

If you use the INET_OPTION_SECURE option to enable a secure connection, the connection will
always use implicit TLS. This means a secure session will be initiated immediately after the socket
connection has been established with the server. A common example of a service which uses
implicit TLS is the HTTPS protocol. Another type of secure connection is one that uses explicit TLS.
This is when the client establishes a normal (non-secure) connection with the server and then
explicitly switches to using a secure connection, typically by sending a command. If the server you
are connecting to requires explicit TLS, you should not specify the INET_OPTION_SECURE option.
Instead, connect without this option and then call the InetEnableSecurity function when you are
ready to initiate the TLS handshake.

The dwOptions argument can be used to specify the threading model that is used by the library
when a connection is established. By default, the handle is initially attached to the thread that
created it. From that point on, until the it is released, only the owner may call functions using that

handle. The ownership of the handle may be transferred from one thread to another using the
InetAttachThread function.

Specifying the INET_OPTION_FREETHREAD option enables any thread to call any function using
the socket handle, regardless of which thread created it. It is important to note that this option
disables certain internal safety checks which are performed by the library and may result in
unexpected behavior unless access to the socket is synchronized. If one thread calls a function in
the library, it must ensure that no other thread will call another function at the same time using the
same socket handle.

When this function is called with UDP as the specified protocol, it does not actually establish a
connection in the same way that a TCP stream connection is created. Instead, it simply establishes
a default destination IP address and port that is used with subsequent InetRead and InetWrite
calls.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetConnectEx, InetConnectUrl, InetDisconnect, InetEnableSecurity, InetInitialize, InetRead,
InetRegisterEvent, InetWrite

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetConnectEx Function

SOCKET WINAPI InetConnectEx(
 LPCTSTR lpszHostName,
 UINT nRemotePort,
 UINT nProtocol,
 UINT nTimeout,
 DWORD dwOptions,
 LPCTSTR lpszLocalAddress,
 UINT nLocalPort,
 LPSECURITYCREDENTIALS lpCredentials
);

The InetConnectEx function is used to establish a connection with a server.

Parameters
A pointer to a null-terminated string which specifies the host name or IP address of the system
you want to connect with. This parameter cannot be a URL and must only specify the name of
the remote host. If this parameter is NULL or an empty string, the function will fail with an error
indicating the host name is invalid.

nRemotePort

The port number used to establish the connection. Valid port numbers range in value from 1
through 65535 and a value outside if this range will cause the function to fail. Port numbers in
the range of 49152 and 65535 are referred to as dynamic ports and are generally reserved for
private use by client applications. You cannot specify a port number of zero when establishing
an outbound connection.

nProtocol

The protocol to be used when establishing the connection. This may be one of the following
values:

Constant Description

INET_PROTOCOL_TCP Specifies the Transmission Control Protocol. This protocol
provides a reliable, bi-directional byte stream. This is the
default protocol.

INET_PROTOCOL_UDP Specifies the User Datagram Protocol. This protocol is
message oriented, sending data in discrete packets. Note that
UDP is unreliable in that there is no way for the sender to
know that the receiver has actually received the datagram.

nTimeout

The number of seconds to wait for the connection to complete before failing the operation.

dwOptions

An unsigned integer used to specify one or more socket options. This parameter is constructed
by using the bitwise Or operator with any of the following values:

Constant Description

INET_OPTION_BROADCAST This option specifies that broadcasting should be
enabled for datagrams. This option is invalid for
stream sockets.

INET_OPTION_KEEPALIVE This option specifies that packets are to be sent to
the remote system when no data is being
exchanged to keep the connection active. This is
only valid for stream sockets.

INET_OPTION_NODELAY This option disables the Nagle algorithm. By
default, small amounts of data written to the
socket are buffered, increasing efficiency and
reducing network congestion. However, this
buffering can negatively impact the responsiveness
of certain applications. This option disables this
buffering and immediately sends data packets as
they are written to the socket.

INET_OPTION_RESERVEDPORT This option specifies the socket should be bound
to an unused port number less than 1024, which is
typically reserved for well-known system services. If
this option is specified, the process may require
administrative privileges.

INET_OPTION_TRUSTEDSITE This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option
only affects connections using either the SSL or
TLS protocols.

INET_OPTION_NOINHERIT This option prevents the socket handle from being
inherited by child processes created by the
application. Using this option can mitigate
situations in which a child process does not close
the handle, leaving it open after the parent
process has disconnected from the server.

INET_OPTION_SECURE This option specifies that a secure connection
should be established with the remote host. The
specific version of TLS and other security related
options are provided in the lpCredentials
parameter. If the lpCredentials parameter is NULL,
the connection will default to using TLS 1.2 or later
and the strongest cipher suites available.

INET_OPTION_SECURE_FALLBACK This option specifies the client should permit the
use of less secure cipher suites for compatibility
with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

INET_OPTION_PREFER_IPV6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be resolved
to both an IPv6 and IPv4 address. This option is
ignored if the local system does not have IPv6
enabled, or when the hostname can only be
resolved to an IPv4 address. If the server hostname
can only be resolved to an IPv6 address, the client

will attempt to establish a connection using IPv6
regardless if this option has been specified.

INET_OPTION_FREETHREAD This option specifies the socket returned by this
function may be used by any thread, and is not
limited to the thread which created it. The
application is responsible for ensuring that access
to the socket is synchronized across multiple
threads.

lpszLocalAddress

A pointer to a string that specifies the local IP address that the socket should be bound to. If this
parameter is NULL, then an appropriate address will automatically be used. A specific address
should only be used if it is required by the application.

nLocalPort

The local port number that the socket should be bound to. If this parameter is set to zero, then
an appropriate port number will automatically be used. A specific port number should only be
used if it is required by the application.

lpCredentials

A pointer to a SECURITYCREDENTIALS structure. This parameter is only used if
INET_OPTION_SECURE is specified for a TCP connection. This parameter may be NULL, in which
case no client credentials will be provided to the server. If client credentials are required, the
fields dwSize, lpszCertStore, and lpszCertName must be defined, while other fields may be left
undefined. Set dwSize to the size of the SECURITYCREDENTIALS structure.

Return Value
If the function succeeds, the return value is a handle to a socket. If the function fails, the return
value is INVALID_SOCKET. To get extended error information, call InetGetLastError.

Remarks
The lpszHostName parameter must specify a valid host name or IP address. Host names are
resolved into an IP address by first checking the local hosts file and if the name is not found, a
name server query will be performed to determine the IP address. If the Unicode version of this
function is called and the host name includes non-ASCII characters, the host name will be
automatically converted to an ASCII compatible format. Refer to the InetNormalizeHostName
function for more information. To establish a connection using a URL rather than a host name, use
the InetConnectUrl function.

To prevent this function from blocking the main user interface thread, the application should
create a background worker thread and establish a connection by calling InetConnect in that
thread. If the application requires multiple simultaneous connections, it is recommended you
create a worker thread for each client session.

If you use the INET_OPTION_SECURE option to enable a secure connection, the connection will
always use implicit TLS. This means a secure session will be initiated immediately after the socket
connection has been established with the server. A common example of a service which uses
implicit TLS is the HTTPS protocol. Another type of secure connection is one that uses explicit TLS.
This is when the client establishes a normal (non-secure) connection with the server and then
explicitly switches to using a secure connection, typically by sending a command. If the server you
are connecting to requires explicit TLS, you should not specify the INET_OPTION_SECURE option.
Instead, connect without this option and then call the InetEnableSecurity function when you are

ready to initiate the TLS handshake.

The dwOptions argument can be used to specify the threading model that is used by the library
when a connection is established. By default, the handle is initially attached to the thread that
created it. From that point on, until the it is released, only the owner may call functions using that
handle. The ownership of the handle may be transferred from one thread to another using the
InetAttachThread function.

Specifying the INET_OPTION_FREETHREAD option enables any thread to call any function using
the socket handle, regardless of which thread created it. It is important to note that this option
disables certain internal safety checks which are performed by the library and may result in
unexpected behavior unless access to the socket is synchronized. If one thread calls a function in
the library, it must ensure that no other thread will call another function at the same time using the
same socket handle.

When this function is called with UDP as the specified protocol, it does not actually establish a
connection in the same way that a TCP stream connection is created. Instead, it simply establishes
a default destination IP address and port that is used with subsequent InetRead and InetWrite
calls.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetConnect, InetConnectUrl, InetDisconnect, InetEnableSecurity, InetInitialize, InetRead,
InetRegisterEvent, InetWrite

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetConnectUrl Function

SOCKET WINAPI InetConnectUrl(
 LPCTSTR lpszUrl,
 UINT nTimeout,
 DWORD dwOptions
);

The InetConnectUrl function is used to establish a TCP connection with a server using the
information provided in a URL.

Parameters
lpszUrl

A pointer to a null-terminated string which specifies a URL used when establishing the
connection. This parameter cannot be NULL or point to an empty string. If a non-standard URI
scheme is used, the port number must be explicitly specified or the function will fail. See the
remarks below for more information on the format supported by this function.

nTimeout

The number of seconds to wait for the connection to complete before failing the current
operation. If this value is zero, a default timeout period will be used.

dwOptions

An unsigned integer used to specify one or more socket options. This parameter is constructed
by using the bitwise Or operator with any of the following values:

Constant Description

INET_OPTION_KEEPALIVE This option specifies that packets are to be sent to
the remote system when no data is being
exchanged to keep the connection active. This
option is not necessary for most connections,
particularly when the client will not be connected
to the server for an extended period of time.

INET_OPTION_NODELAY This option disables the Nagle algorithm. By
default, small amounts of data written to the
socket are buffered, increasing efficiency and
reducing network congestion. However, this
buffering can negatively impact the responsiveness
of certain applications. This option disables this
buffering and immediately sends data packets as
they are written to the socket.

INET_OPTION_NOINHERIT This option prevents the socket handle from being
inherited by child processes created by the
application. Using this option can mitigate
situations in which a child process does not close
the handle, leaving it open after the parent
process has disconnected from the server.

INET_OPTION_TRUSTEDSITE This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option

only affects secure connections using the TLS
protocol.

INET_OPTION_SECURE This option specifies that a secure connection
should be established with the remote host. The
connection will always default to using TLS 1.2 or
later and the strongest cipher suites available on
the client platform. This option may be
automatically enabled if the URL scheme specifies
a service which requires a secure connection. See
the remarks below for more information.

INET_OPTION_SECURE_FALLBACK This option specifies the client should permit the
use of less secure cipher suites for compatibility
with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

INET_OPTION_PREFER_IPV6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be resolved
to both an IPv6 and IPv4 address. This option is
ignored if the local system does not have IPv6
enabled, or when the hostname can only be
resolved to an IPv4 address. If the server hostname
can only be resolved to an IPv6 address, the client
will attempt to establish a connection using IPv6
regardless if this option has been specified.

INET_OPTION_FREETHREAD This option specifies the socket returned by this
function may be used by any thread, and is not
limited to the thread which created it. The
application is responsible for ensuring that access
to the socket is synchronized across multiple
threads.

Return Value
If the function succeeds, the return value is a handle to a socket. If the function fails, the return
value is INVALID_SOCKET. To get extended error information, call InetGetLastError.

Remarks
The InetConnectUrl function provides a simplified interface which can be used to establish a
connection using a URL. This function can only be used to establish connections using TCP and
does not currently support the use of URLs to connect with a service which uses UDP. The general
format of the URL should look like this:

[scheme]:// [[username : password] @] hostname [:port] / [path;paramters
...]

This function recognizes most standard URI schemes which use this format. The host name and
port number specified in the URL will be used to establish a connection and the remaining
information will be discarded. If the URL does not explicitly specify a port number, the default port
number associated with the scheme will be used as the default value. For example, consider the
following:

https://www.example.com

In this example, there is no port number specified; instead, the default port for the https://
scheme would be used, which is port 443. The host name www.example.com would be resolved
into an IP address and the connection established on port 443. This function will also recognize a
simpler format which only includes the host name and port number without a URI scheme, such
as:

www.example.com:443

When used in this way, the port number must always be provided. Without a URI scheme or an
explicit port number, the function cannot determine what port number should be used when
establishing the connection. The same also applies if a custom, non-standard URI scheme is
provided which is not recognized.

If the URI scheme specifies a secure protocol which requires implicit TLS, this function will
automatically enable the INET_OPTION_SECURE option. For example, providing a URL which uses
the https:// scheme will automatically enable a secure connection regardless if the dwOptions
parameter includes that option. If a URI scheme is used in conjunction with a port number
associated with a secure service, security will also be enabled for that connection. For example:

http://www.example.com:443

The standard http:// scheme is used which does not indicate a secure connection. However, since
port 443 is the standard port designated for a secure HTTP connection, a secure connection will
be enabled by default, even if INET_OPTION_SECURE has not been specified by the caller.
Alternatively, if a custom port number is specified in the URL or the scheme is not recognized as
one which requires implicit TLS, security options will not be automatically enabled for the
connection.

The host name portion of the URL can be specified as either a domain name or an IP address.
Because an IPv6 address can contain colon characters, you must enclose the entire address in
bracket [] characters. If this is not done, this function will return an error indicating the port
number is invalid. For example, the URL https://[2001:db8:0:0:1::128]/ uses an IPv6 host
address and this would be considered valid. Without the brackets, this URL would not be
accepted.

Important: The URL provided to this function will only be used to establish a connection with a
server. This is a general purpose function which does not enable support for any particular
application protocol and all implementation details are the responsibility of your application. If you
require higher-level support for a specific Internet protocol, the SocketTools API provides
comprehensive collection of higher-level functions which can be used to access those services.

If you use the INET_OPTION_SECURE option to enable a secure connection, the connection will
always use implicit TLS. This means a secure session will be initiated immediately after the socket
connection has been established with the server. A common example of a service which uses
implicit TLS is the HTTPS protocol. Another type of secure connection is one that uses explicit TLS.
This is when the client establishes a normal (non-secure) connection with the server and then
explicitly switches to using a secure connection, typically by sending a command. If the server you
are connecting to requires explicit TLS, you should not specify the INET_OPTION_SECURE option.
Instead, connect without this option and then call the InetEnableSecurity function when you are
ready to initiate the TLS handshake.

To prevent this function from blocking the main user interface thread, the application should
create a background worker thread and establish a connection by calling InetConnectUrl in that
thread. If the application requires multiple simultaneous connections, it is recommended you
create a worker thread for each client session.

The dwOptions argument can be used to specify the threading model that is used by the library
when a connection is established. By default, the handle is initially attached to the thread that
created it. From that point on, until the it is released, only the owner may call functions using that
handle. The ownership of the handle may be transferred from one thread to another using the
InetAttachThread function.

Specifying the INET_OPTION_FREETHREAD option enables any thread to call any function using
the socket handle, regardless of which thread created it. It is important to note that this option
disables certain internal safety checks which are performed by the library and may result in
unexpected behavior unless access to the socket is synchronized. If one thread calls a function in
the library, it must ensure that no other thread will call another function at the same time using the
same socket handle.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetConnect, InetDisconnect, InetEnableSecurity, InetGetUrlHostName, InetInitialize, InetRead,
InetRegisterEvent, InetWrite

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetCreateSecurityCredentials Function

BOOL WINAPI InetCreateSecurityCredentials(
 DWORD dwProtocol,
 DWORD dwOptions,
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword,
 LPCTSTR lpszCertStore,
 LPCTSTR lpszCertName,
 LPVOID lpvReserved,
 LPSECURITYCREDENTIALS* lppCredentials
);

The InetCreateSecurityCredentials function creates a SECURITYCREDENTIALS structure.

Parameters
dwProtocol

A bitmask of supported security protocols. This parameter is constructed by using a bitwise
operator with any of the following values:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The
correct protocol is automatically selected, based on
what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.
This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is

supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

dwOptions

A value which specifies one or options. This member is constructed by using a bitwise operator
with any of the following values:

Constant Description

CREDENTIAL_STORE_CURRENT_USER The library will attempt to open a store for
the current user using the certificate store
name provided in this structure. If no options
are specified, then this is the default
behavior.

CREDENTIAL_STORE_LOCAL_MACHINE The library will attempt to open a local
machine store using the certificate store
name provided in this structure. If this option
is specified, the library will always search for a
local machine store before searching for the
store by that name for the current user.

CREDENTIAL_STORE_FILENAME The certificate store name is a file that
contains the certificate and private key that
will be used.

lpszUserName

A pointer to a string which specifies the certificate owner's username. A value of NULL specifies
that no username is required. Currently this parameter is not used and any value specified will
be ignored.

lpszPassword

A pointer to a string which specifies the certificate owner's password. A value of NULL specifies
that no password is required. This parameter is only used if a PKCS #12 (PFX) certificate file is
specified and that certificate has been secured with a password. This value will be ignored the
current user or local machine certificate store is specified.

lpszCertStore

A pointer to a string which specifies the name of the certificate store to open. A certificate store
is a collection of certificates and their private keys, typically organized by how they are used. If
this value is NULL or points to an empty string, the default certificate store "MY" will be used.

Store Name Description

CA Certification authority certificates. These are certificates that are issued by
entities which are entrusted to issue certificates to other individuals or
organizations. Companies such as VeriSign and Thawte act as
certification authorities.

MY Personal certificates and their associated private keys for the current user.
This store typically holds the client certificates used to establish a user's
credentials. This corresponds to the "Personal" store that is displayed by
the certificate manager utility and is the default store used by the library.

ROOT Certificates that have been self-signed by a certificate authority. Root
certificates for a number of different certification authorities such as
VeriSign and Thawte are installed as part of the operating system and
periodically updated by Microsoft.

lpszCertName

A pointer to a null terminated string which specifies the name of the certificate to use. The
function will first search the certificate store for a certificate with a matching "friendly name"; this
is a name for the certificate that is assigned by the user. Note that the name must match
completely, but the comparison is not case sensitive. If no matching certificate is found, the
function will then attempt to find a certificate that has a matching common name (also called
the certificate subject). This comparison is less stringent, and the first partial match will be
returned. If this second search fails, the function will return an error indicating that the certificate
could not be found.

lpvReserved

Pointer reserved for future use. Set it to NULL when using this function.

lppCredentials

Pointer to an LPSECURITYCREDENTIALS pointer. The memory for the credentials structure will
be allocated by this function and must be released by calling the
InetDeleteSecurityCredentials function when it is no longer needed. The pointer value must
be set to NULL before the function is called. It is important to note that this is a pointer to a
pointer variable, not a pointer to the SECURITYCREDENTIALS structure itself.

Return Value

If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call InetGetLastError.

Remarks
The structure that is created by this function may be used as client credentials when establishing a
secure connection. This is particularly useful for programming languages other than C/C++ which
may not support C structures or pointers. The pointer to the SECURITYCREDENTIALS structure can
be declared as an unsigned integer variable which is passed by reference to this function, and
then passed by value to the InetAcceptEx, InetAsyncAcceptEx, InetAsyncConnectEx or
InetConnectEx functions.

If you are using a local certificate store, with the certificate and private key stored in the registry,
you can explicitly specify whether the certificate store for the current user or the local machine (all
users) should be used. This is done by prefixing the certificate store name with "HKCU:" for the
current user, or "HKLM:" for the local machine. For example, a certificate store name of
"HKLM:MY" would specify the personal certificate store for the local machine, rather than the
current user. If neither prefix is specified, then it will default to the certificate store for the current
user. You can manage these certificates using the CertMgr.msc Microsoft Management Console
(MMC) snap-in.

It is possible to load the certificate from a file rather than from current user's certificate store. The
dwOptions member should be set to CREDENTIAL_STORE_FILENAME and the lpszCertStore
member should specify the name of the file that contains the certificate and its private key. The file
must be in Private Information Exchange (PFX) format, also known as PKCS #12. These certificate
files typically have an extension of .pfx or .p12. Note that if a password was specified when the
certificate file was created, it must be provided in the lpszPassword member or the library will be
unable to access the certificate.

Example
LPSECURITYCREDENTIALS lpSecCred = NULL;
InetCreateSecurityCredentials(SECURITY_PROTOCOL_DEFAULT,
 CREDENTIAL_STORE_CURRENT_USER,
 NULL,
 NULL,
 strCertStore,
 strCertName,
 NULL,
 &lpSecCred);

hAcceptSocket = InetAsyncAcceptEx(hListenSocket,
 nTimeout,
 dwOptions,
 lpSecCred,
 hEventWnd,
 uEventMsg);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also

InetAcceptEx, InetAsyncAcceptEx, InetAsyncConnectEx, InetConnectEx,
InetDeleteSecurityCredentials, InetValidateCertificate

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetDeleteSecurityCredentials Function

VOID WINAPI InetDeleteSecurityCredentials(
 LPSECURITYCREDENTIALS* lppCredentials
);

The InetDeleteSecurityCredentials function deletes an existing SECURITYCREDENTIALS
structure.

Parameters
lppCredentials

Pointer to an LPSECURITYCREDENTIALS pointer. On exit from the function, the pointer value will
be NULL.

Return Value
None.

Example
if (lpSecCred != NULL)
 InetDeleteSecurityCredentials(&lpSecCred);

Remarks
This function can be used to release the memory allocated to the client or server credentials after
a secure connection has been established.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetCreateSecurityCredentials, InetValidateCertificate

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetDetachSocket Function

BOOL WINAPI InetDetachSocket(
 SOCKET hSocket
 DWORD dwThreadId
);

The InetDetachSocket function detaches the specified socket from the current process.

Parameters
hSocket

Handle to the socket.

dwThreadId

The ID of the thread that owns the socket handle. A value of zero specifies that the current
thread is the owner.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call InetGetLastError.

Remarks
The InetDetachSocket function will release the memory that the library has allocated for the
socket without destroying the socket handle. After the function returns, the socket can no longer
be used with other functions in the library, however the socket handle remains valid. This is
typically used when passing a socket handle between processes, where the parent process
detaches the socket prior to creating the child process. The child then calls InetAttachSocket to
attach the socket handle to its own process.

This function should never be used with a secure socket connection because detaching a secure
socket will force the security context for that session to be released. If the socket is attached to
another process, it will not have the security context originally created when the connection was
established and will be unable to encrypt or decrypt the data stream.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetAttachThread, InetAttachSocket, InetDisconnect

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetDisableEvents Function

INT WINAPI InetDisableEvents(
 SOCKET hSocket
);

The InetDisableEvents function disables the event notification mechanism, preventing
subsequent event notification messages from being posted to the application's message queue.

This function has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Parameters
hSocket

The socket handle.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
This function affects both event notification and event callbacks. Any outstanding events in the
message queue should be ignored by the application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetEnableEvents, InetFreezeEvents, InetRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetDisableSecurity Function

INT WINAPI InetDisableSecurity(
 SOCKET hSocket,
 DWORD dwReserved
);

The InetDisableSecurity function disables a secure session with the remote host.

Parameters
hSocket

The socket handle.

dwReserved

Reserved parameter. This value should always be zero.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
The InetDisableSecurity function disables a secure session, with subsequent calls to InetRead
and InetWrite sending and receiving unencrypted data. It is important to note that because this
function sends a shutdown message to terminate the secure session, this may cause connection to
be closed by the remote host.

This function does not close the socket. Use the InetDisconnect function to close the socket and
release the resources allocated for the current session.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetCreateSecurityCredentials, InetDeleteSecurityCredentials, InetEnableSecurity

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetDisableTrace Function

BOOL WINAPI InetDisableTrace();

The InetDisableTrace function disables the logging of socket function calls to the trace log.

Parameters
None.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call InetGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetEnableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetDisconnect Function

INT WINAPI InetDisconnect(
 SOCKET hSocket
);

The InetDisconnect function terminates the connection, closing the socket and releasing the
memory allocated for the session.

Parameters
hSocket

The socket handle.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
Once the connection has been terminated, the socket handle is no longer valid and should no
longer be used. Note that it is possible that the actual handle value may be re-used at a later point
when a new connection is established. An application should always consider the socket handle to
be opaque and never depend on it being a specific value.

After a socket is closed, it will go into a TIME-WAIT state which prevents an application from using
the same source and destination address and port numbers bound to that socket for a brief
period of time, typically two to four minutes. This is normal behavior designed to prevent delayed
or misrouted packets of data from being read by a subsequent connection. This can have an
impact on an application that rapidly connects and disconnects over a short period of time
because it can exhaust the pool of ephemeral ports.

If this function is called using a server socket handle returned by the InetServerStart function, all
active client connections will be disconnected, the listening socket will be closed and the server
thread will terminate. If this function is called with a client socket handle allocated by the server, it
will terminate the client connection and the thread that manages it.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetConnect, InetConnectEx, InetServerStart, InetUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetEnableEvents Function

INT WINAPI InetEnableEvents(
 SOCKET hSocket,
 HWND hEventWnd,
 UINT nEventMsg
);

The InetEnableEvents function enables event notifications using Windows messages.

This function has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Applications should use the InetRegisterEvent function to register an event handler which is
invoked when an event occurs.

Parameters
hSocket

The socket handle.

hEventWnd

Handle to the event notification window. This window receives a user-defined message which
specifies the event that has occurred. If this value is NULL, event notification is disabled.

nEventMsg

An unsigned integer which specifies the user-defined message that is sent when an event
occurs. This parameter's value must be greater than the value of WM_USER.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
When a message is posted to the notification window, the low word of the lParam parameter
contains the event identifier. The high word of lParam contains the low word of the error code, if
an error has occurred. The wParam parameter contains the socket handle. One or more of the
following event identifiers may be sent:

Constant Description

INET_EVENT_ACCEPT The process has received a connection request from a client and
should accept the connection using the InetAsyncAccept
function. This event is only generated for server applications which
have created an asynchronous socket using the InetAsyncListen
function.

INET_EVENT_CONNECT The connection to the remote host has completed. The high word
of the lParam parameter should be checked, since this notification
message will also be posted if an error has occurred.

INET_EVENT_DISCONNECT The remote host has closed the connection. The process should
read any remaining data and disconnect.

INET_EVENT_READ Data is available to read by the calling process. No additional
messages will be posted until the process has read at least some
of the data from the socket. This event is only generated if the
socket is in asynchronous mode.

INET_EVENT_WRITE The process can now write data. This notification is sent after a
connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking
operation. This event is only generated if the socket is in
asynchronous mode.

INET_EVENT_TIMEOUT The process has timed-out waiting for a blocking operation to
complete. This event is only generated for synchronous sockets.

INET_EVENT_CANCEL The application has canceled a blocking operation. This event is
fired once an operation has been terminated by the InetCancel
function, and control has been returned to the calling process.

This function cannot be used with sockets that are created by the SocketWrench server interface.
Those sockets are managed separately in their own thread, and event notifications are handled
inside the callback function specified when the server is created using the InetServerStart
function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetDisableEvents, InetFreezeEvents, InetRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetEnableSecurity Function

INT WINAPI InetEnableSecurity(
 SOCKET hSocket,
 DWORD dwOptions,
 LPSECURITYCREDENTIALS lpCredentials
);

The InetEnableSecurity function enables a secure session with the remote host.

Parameters
hSocket

The socket handle.

dwOptions

An unsigned integer value that specifies additional security options. It may have a value of zero
or one of the following options:

Constant Description

INET_SECURE_CLIENT The certificate specified by the lpCredentials parameter will be
used as a client certificate, and the application will begin to
negotiate the secure session as a client by initiating the
handshake with the server. The certificate that is used must be
a valid client certificate with a private key associated with it. If
the lpCredentials parameter is NULL, then a secure client
session will be initiated without a client certificate.

INET_SECURE_SERVER The certificate specified by the lpCredentials parameter will be
used as a server certificate, and the application will wait for the
remote host to initiate the handshake that establishes the
parameters of the secure session. The certificate that is used
must be a valid server certificate and have a private key
associated with it. The lpCredentials parameter cannot be
NULL if this option is specified.

lpCredentials

Pointer to a SECURITYCREDENTIALS structure. This parameter may be NULL, in which case no
client credentials will be provided. If client credentials are required, the fields dwSize,
lpszCertStore, and lpszCertName must be defined, while other fields may be left undefined. Set
dwSize to the size of the SECURITYCREDENTIALS structure.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
The InetEnableSecurity function enables a secure communications session with the remote host,
automatically negotiating the encryption algorithm and validating the certificate. This function is
useful if the application needs to establish a standard connection to the remote host and then
negotiate a secure connection at a later point (this is known as explicit TLS). If the function
succeeds, all subsequent calls to InetRead and InetWrite to receive and send data will be
encrypted.

If the dwOptions parameter has a value of zero and the socket was created using InetConnect or
related functions to establish a client connection, then InetEnableSecurity will initiate the
handshake with the remote host to establish a secure session. If the InetAccept or related
functions were used to accept a connection from a client, then the function will block and wait for
the client to initiate the handshake.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetConnect, InetConnectEx, InetCreateSecurityCredentials, InetDeleteSecurityCredentials,
InetDisableSecurity

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetEnableTrace Function

BOOL WINAPI InetEnableTrace(
 LPCTSTR lpszTraceFile,
 DWORD dwTraceFlags
);

The InetEnableTrace function enables the logging of socket function calls to a file.

Parameters
lpszTraceFile

Name of the trace log file. If this parameter is NULL or empty,the file CSTRACE.LOG is used. The
directory for CSTRACE.LOG is given by the TEMP environment variable, if it is defined;
otherwise, the directory given by the TMP environment variable is used, if it is defined;
otherwise, the current working directory is used.

dwTraceFlags

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Value Constant Description

0 TRACE_DEFAULT All function calls are written to the trace file. This is the
default value.

1 TRACE_ERROR Only those function calls which fail are recorded in the
trace file.

2 TRACE_WARNING Only those function calls which fail, or return values which
indicate a warning, are recorded in the trace file.

4 TRACE_HEXDUMP All functions calls are written to the trace file, plus all the
data that is sent or received is displayed, in both ASCII and
hexadecimal format.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call InetGetLastError.

Remarks
When trace logging is enabled, the logfile is opened, appended to and closed for each socket
function call. Using the same logfile name, you can do the same in your application to add
additional information to the logfile if needed. This can provide an application-level context for the
entries made by the library. Make sure that the logfile is closed after the data has been written.

The TRACE_HEXDUMP option can produce very large logfiles, since all data that is being sent and
received by the application is logged. To reduce the size of the file, you can enable and disable
logging around limited sections of code that you wish to analyze.

All of the SocketTools networking components that use the Windows Sockets API support logging.
If you are using multiple components, you only need to enable tracing once in your application or
once per thread in a multithreaded application.

To redistribute an application that includes logging functionality, the cstrcv11.dll library must be
included as part of the installation package. This library provides the trace logging features, and if

it is not available the InetEnableTrace function will fail. Note that this is a standard Windows DLL
and does not need to be registered, it only needs to be redistributed with your application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetDisableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetEnumHostAliases Function

INT WINAPI InetEnumHostAliases(
 LPCTSTR lpszHostName,
 INT nAddressFamily,
 LPTSTR lpszHostAliases,
 INT nMaxLength
);

The InetEnumHostAliases function returns a collection of null terminated strings which contain
the aliases for a specified host.

Parameters
lpszHostName

A pointer to a null terminated string which specifies a host name or IP address. This parameter
cannot be NULL and must specify a valid host name.

nAddressFamily

An integer which specifies the address family which should be used when resolving the host
name or IP address. It may be one of the following values:

Constant Description

INET_ADDRESS_UNKNOWN If the host name specifies an IP address, it will be
resolved based on the format of the string. For
compatibility, host names are resolved to IPv4 addresses
by default but if there is only an IPv6 address assigned to
the host name, it will be used.

INET_ADDRESS_IPV4 Specifies the host name should be resolved using an
IPv4 address.

INET_ADDRESS_IPV6 Specifies the host name should be resolved using an
IPv6 address.

lpszHostAliases

A pointer to a null terminated string buffer which will contain the aliases for the specified. If this
parameter is NULL, the function will return the number of characters which would be copied
into the buffer.

nMaxLength

An integer value which specifies the maximum number of characters which can be copied into
the buffer, including the terminating null characters. If the lpszHostAliases parameter is NULL,
this parameter should have a value of zero.

Return Value
If the function succeeds, the return value is the number of characters copied to the string,
including the terminating null characters which indicate the end of each host alias. If the function
fails, the return value is INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
If there are multiple aliases for the host name, each name will be terminated with a null character,
with an extra null character indicating the end of the list of aliases.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetEnumNetworkAddresses Function

INT WINAPI InetEnumNetworkAddresses(
 INT nAddressFamily,
 LPINTERNET_ADDRESS lpAddressList,
 INT nMaxAddresses
);

The InetEnumNetworkAddresses function returns the list of network addresses that are
configured for the local host.

Parameters
nAddressFamily

An integer which identifies the type of IP address that should be returned by this function. It
may be one of the following values:

Constant Description

INET_ADDRESS_ANY Return both IPv4 or IPv6 addresses assigned to the local host,
depending on how the system is configured and which network
interfaces are enabled. This option is only recommended for
applications that require support for IPv6 connections.

INET_ADDRESS_IPV4 Return only the IPv4 addresses assigned to the local host. The
first four bytes of the ipNumber array are significant and
contains the IP address. The remaining bytes are not significant
and an application should not depend on them having any
particular value, including zero.

INET_ADDRESS_IPV6 Return only the IPv6 addresses assigned to the local host. All
bytes in the ipNumber array are significant. This option is only
recommended for those applications that require support for
IPv6 connections.

lpAddressList

A pointer to an array of INTERNET_ADDRESS structures that will contain the IP address of each
local network interface. This parameter may be NULL, in which case the method will only return
the number of available addresses.

nMaxAddresses

Maximum number of addresses to be returned. If the lpAddressList parameter is NULL, this
value must be zero.

Return Value
If the function succeeds, the return value is the number of network addresses that are configured
for the local host. If the function fails, the return value is INET_ERROR. To get extended error
information, call InetGetLastError.

Remarks
If the nAddressFamily parameter is specified as INET_ADDRESS_ANY, the application must be
prepared to accept IPv6 addresses returned by this function. On Windows Vista and later versions
of the operating system, IPv6 support is enabled and the local network adapter will have IPv6
addresses assigned to them by default. For legacy applications that only recognize IPv4 addresses,

the nAddressFamily parameter should always be specified as INET_ADDRESS_IPV4 to ensure that
only IPv4 addresses are returned.

This function will ignore addresses that are bound to a disabled interface, as well as those
addresses bound to a virtual loopback interface. For example, although the loopback address
127.0.0.1 is a valid network address, it will not be included in list of addresses returned by this
function.

The first IPv4 or IPv6 address returned by this function is typically the address assigned to the
primary network adapter on the local system. However, your application should not depend on
addresses being returned in any particular order. If the system has dial-up networking or
virtualization software installed, this function may also include the IP addresses assigned to any
virtualized network adapters installed by that software.

Example
INTERNET_ADDRESS *lpAddressList = NULL;
INT nAddressCount = InetEnumNetworkAddresses(INET_ADDRESS_IPV4, NULL, 0);

if (nAddressCount > 0)
{
 // Allocate memory for the array of IP addresses
 lpAddressList = (INTERNET_ADDRESS *)LocalAlloc(LPTR, nAddressCount *
sizeof(INTERNET_ADDRESS));

 if (lpAddressList == NULL)
 {
 // Virtual memory exhausted
 return;
 }

 // Populate the array with the addresses
 nAddressCount = InetEnumNetworkAddresses(INET_ADDRESS_IPV4, lpAddressList,
nAddressCount);
}

_tprintf(_T("There are %d local network addresses assigned\n"), nAddressCount);

// Display each IP address assigned to the local system
for (INT nIndex = 0; nIndex < nAddressCount; nIndex++)
{
 TCHAR szValue[64];

 // Convert the IP address to a printable string
 InetFormatAddress(lpAddressList + nIndex, szValue, 64);
 _tprintf(_T("%d: %s\n"), nIndex, szValue);
}

// Free the memory allocated for the IP address list
if (lpAddressList != NULL)
 LocalFree((HLOCAL)lpAddressList);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetAdapterAddress, InetGetHostAddress, InetGetLocalAddress

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetEnumServerClients Function

INT WINAPI InetEnumServerClients(
 SOCKET hServer,
 SOCKET * lpClients,
 INT nMaxClients
);

The InetEnumServerClients function returns a list of active client sessions established with the
specified server.

Parameters
hServer

Handle to the server socket.

lpClients

Pointer to an array of socket handles which identifies all client connections. If this parameter is
NULL, then the function will return the number of active client connections established with the
server.

nMaxClients

Maximum number of client socket handles to be returned. If the lpClients parameter is NULL,
this parameter should be specified with a value of zero.

Return Value
If the function succeeds, the return value is the number of active client connections to the server.
A return value of zero indicates that there are no active client sessions. If the function fails, the
return value is INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
If the nMaxClients parameter is less than the number of active client connections, the function will
fail. To dynamically determine the number of active connections, call the function with the
lpClients parameter with a value of NULL, and the nMaxClients parameter with a value of zero. To
enumerate the active clients that match a specific IP address, use the
InetEnumServerClientsByAddress function.

This function will not enumerate clients that have disconnected from the server, even if the session
thread is still active. If the server is in the process of shutting down, this function will return zero,
indicating no active client sessions, even though there may be clients that are still in the process of
disconnecting from the server. To determine the actual number of client sessions regardless of
their status, use the InetGetClientThreads function.

The socket handle for the server must be one that was created using the InetServerStart function,
and cannot be a socket that was created using InetListen or InetListenEx.

Example
INT nMaxClients = InetEnumServerClients(hServer, NULL, 0);

if (nMaxClients > 0)
{
 SOCKET *lpClients = NULL;

 // Allocate memory for client sockets
 lpClients = (SOCKET *)LocalAlloc(LPTR, nMaxClients * sizeof(SOCKET));

 if (lpClients == NULL)
 {
 // Virtual memory has been exhausted
 return;
 }

 nMaxClients = InetEnumServerClients(hServer, lpClients, nMaxClients);
 if (nMaxClients == INET_ERROR)
 {
 // Unable to obtain list of connected clients
 return;
 }

 for (INT nClient = 0; nClient < nMaxClients; nClient++)
 {
 // Perform some action with each client socket
 SOCKET hClient = lpClients[nClient];
 }

 // Free memory allocated for client sockets
 LocalFree((HLOCAL)lpClients);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetEnumServerClientsByAddress, InetGetClientThreads, InetServerBroadcast, InetServerStart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetEnumServerClientsByAddress Function

INT WINAPI InetEnumServerClientsByAddress(
 SOCKET hServer,
 LPINTERNET_ADDRESS lpAddress,
 SOCKET * lpClients,
 INT nMaxClients
);

The InetEnumServerClientsByAddress function returns a list of active client sessions established
with the specified server that match the specified IP address.

Parameters
hServer

Handle to the server socket.

lpAddress

Pointer to an INTERNET_ADDRESS structure that specifies the client IP address. If this parameter
is NULL, then all active client sessions will be enumerated.

lpClients

Pointer to an array of socket handles which identifies all client connections that match the
specified IP address. If this parameter is NULL, then the function will return the number of active
client connections established with the server.

nMaxClients

Maximum number of client socket handles to be returned. If the lpClients parameter is NULL,
this parameter should be specified with a value of zero.

Return Value
If the function succeeds, the return value is the number of active client connections to the server
that match the specified IP address. A return value of zero indicates that no clients have
connected from the specified IP address. If the function fails, the return value is INET_ERROR. To
get extended error information, call InetGetLastError.

Remarks
If the nMaxClients parameter is less than the number of active client connections that match the
specified address, the function will fail. To dynamically determine the number of active
connections, call the function with the lpClients parameter with a value of NULL, and the
nMaxClients parameter with a value of zero. If the lpAddress parameter is NULL, this function will
return a list of all active clients connected to the server and is effectively the same as calling the
InetEnumServerClients function. If an address is provided, it must be a valid IP address in a
supported address family.

This function will not enumerate clients that have disconnected from the server, even if the session
thread is still active. If the server is in the process of shutting down, this function will return zero,
indicating no active client sessions, even though there may be clients that are still in the process of
disconnecting from the server.

The socket handle for the server must be one that was created using the InetServerStart function,
and cannot be a socket that was created using InetListen or InetListenEx.

Example
INTERNET_ADDRESS ipAddress;

if (InetGetPeerAddress(hSocket, &ipAddress, NULL) == INET_ERROR)
{
 // Unable to get the peer IP address for the socket
 return;
}

// Determine the number of clients that have the same IP address
INT nMaxClients = InetEnumServerClientsByAddress(hServer, &ipAddress, NULL, 0);

if (nMaxClients > 0)
{
 SOCKET *lpClients = NULL;

 // Allocate memory for client sockets
 lpClients = (SOCKET *)LocalAlloc(LPTR, nMaxClients * sizeof(SOCKET));
 if (lpClients == NULL)
 {
 // Virtual memory has been exhausted
 return;
 }

 nMaxClients = InetEnumServerClientsByAddress(hServer, &ipAddress, lpClients,
nMaxClients);
 if (nMaxClients == INET_ERROR)
 {
 // Unable to obtain list of connected clients
 return;
 }

 for (INT nClient = 0; nClient < nMaxClients; nClient++)
 {
 // Perform some action with each client socket
 SOCKET hClient = lpClients[nClient];
 }

 // Free memory allocated for client sockets
 LocalFree((HLOCAL)lpClients);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetEnumServerClients, InetGetClientThreads, InetServerBroadcast, InetServerStart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetEventProc Function

VOID CALLBACK InetEventProc(
 SOCKET hSocket,
 UINT nEvent,
 DWORD dwError,
 DWORD_PTR dwParam
);

The InetEventProc function is an application-defined callback function that processes events
generated by the calling process.

Parameters
hSocket

The socket handle.

nEvent

An unsigned integer which specifies which event occurred. For a complete list of events, refer to
the InetRegisterEvent function.

dwError

An unsigned integer which specifies any error that occurred. If no error occurred, then this
parameter will be zero.

dwParam

A user-defined integer value which was specified when the event callback was registered.

Return Value
None.

Remarks
An application must register this callback function by passing its address to the InetRegisterEvent
function. The InetEventProc function is a placeholder for the application-defined function name.

If the callback function is being used with the InetServerStart function, the function will be called
in the context of the thread that is currently managing the server or client session. You must
ensure that any access to global or static variables is synchronized, otherwise the results may be
unpredictable. It is recommended that you do not declare any static variables within the callback
function itself. If you need to manage state information for a specific client, then use the
InetGetClientData and InetSetClientData functions which will allow you to access application
defined data for that client session in a thread-safe manner.

When this callback function is used for event notifications from the server interface, the the
hSocket parameter specifies the client socket handle, except for the INET_EVENT_ACCEPT event,
in which case the handle references the server socket handle. To obtain the handle of the client
connection that was just accepted, use the InetGetServerClient function. To obtain the handle to
the server using the client socket handle, use the InetGetClientServer function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetDisableEvents, InetEnableEvents, InetFreezeEvents, InetGetClientServer, InetGetServerClient

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetFindClientMoniker Function

SOCKET WINAPI InetFindClientMoniker(
 SOCKET hServer,
 LPCTSTR lpszMoniker
);

The InetFindClientMoniker function returns a handle to the client socket which matches the
specified moniker.

Parameters
hServer

A handle to the server.

lpszMoniker

A pointer to a string which specifies the client moniker to search for. This parameter cannot be
NULL and cannot specify an empty string.

Return Value
If the function succeeds, the return value is the handle to the client socket for the session that
matches the specified moniker. If the function fails, the return value is INVALID_SOCKET. To get
extended error information, call InetGetLastError.

Remarks
A client moniker is a string which can be used to uniquely identify a specific client session aside
from its socket handle. A moniker can be assigned to the client session using the
InetSetClientMoniker function. This function will search all active client sessions for the server,
and returns the socket handle to the client that matches the specified moniker. If there is no
match, an error will be returned.

The moniker can be any string value, however monikers are not case sensitive and may not
contain embedded null characters. The maximum length of a moniker is 127 characters.

The socket handle for the server must be one that was created using the InetServerStart function,
and cannot be a socket that was created using InetListen or InetListenEx.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetGetClientMoniker, InetGetClientServer, InetGetClientThreadId, InetSetClientMoniker

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetFlush Function

INT WINAPI InetFlush(
 SOCKET hSocket
);

The InetFlush function flushes the internal send and receive buffers used by the socket.

Parameters
hSocket

The socket handle.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
The InetFlush function will flush any data waiting to be read or written to the remote host . It is
important to note that this function is not similar to flushing data to a disk file; it does not ensure
that a specific block of data has been written to the socket. For example, you should never call this
function immediately after calling InetWrite or prior to calling InetDisconnect.

An application never needs to use InetFlush under normal circumstances. This function is only to
be used when the application needs to immediately return the socket to an inactive state with no
pending data to be read or written. Calling this function may result in data loss and should only be
used if you understand the implications of discarding any data which has been sent by the remote
host.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetIsReadable, InetIsWritable, InetPeek, InetRead, InetWrite

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetFormatAddress Function

INT WINAPI InetFormatAddress(
 LPINTERNET_ADDRESS lpAddress,
 LPTSTR lpszAddress,
 INT cchAddress
);

The InetFormatAddress function converts a numeric IP address to a printable string. The format
of the string depends on whether an IPv4 or IPv6 address is specified.

Parameters
lpAddress

A pointer to an INTERNET_ADDRESS structure which specifies the numeric IP address that
should be converted to a string.

lpszAddress

A pointer to a string buffer that will contain the formatted IP address, terminated with a null
character. To accommodate both IPv4 and IPv6 addresses, this buffer should be at least 46
characters in length.

cchAddress

The maximum number of characters that can be copied into the address buffer.

Return Value
If the function succeeds, the return value is the length of the IP address string. If the function fails,
the return value is INET_ERROR, meaning that the IP address could not be converted into a string.
Typically this indicates that the pointer to the INTERNET_ADDRESS structure is invalid, or the data
does not specify a valid IP address family.

Remarks
The format and length of IPv4 and IPv6 address strings are very different. An IPv4 address string
looks like "192.168.0.20", while an IPv6 address string can look something like
"fd7c:2f6a:4f4f:ba34::a32". If your application checks for the format of these address strings, it
needs to be aware of the differences. You also need to make sure that you're providing enough
space to display or store an address to avoid buffer overruns.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetGetExternalAddress, InetGetHostAddress, InetGetLocalAddress, InetGetPeerAddress,
INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetFreezeEvents Function

INT WINAPI InetFreezeEvents(
 SOCKET hSocket,
 BOOL bFreeze
);

The InetFreezeEvents function is used to suspend and resume event handling.

Parameters
hSocket

Socket handle.

bFreeze

A non-zero value specifies that event handling should be suspended. A zero value specifies that
event handling should be resumed.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
This function should be used when the application does not want to process events, such as when
a modal dialog is being displayed. When events are suspended, all events are queued. If events
are re-enabled at a later point, those queued events will be sent to the application for processing.
Note that only one of each event will be generated. For example, if event handling has been
suspended, and four read events occur, only one of those read events will be posted to the
application when even handling is resumed. This prevents the application from being flooded by a
potentially large number of queued events.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetDisableEvents, InetEnableEvents, InetRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetAdapterAddress Function

INT WINAPI InetGetAdapterAddress(
 INT nAdapterIndex,
 INT nAddressType,
 LPTSTR lpszAddress,
 INT nMaxLength
);

Return the IP or MAC assigned to the specified network adapter.

Parameters
nAdapterIndex

An integer value that identifies the network adapter.

nAddressType

An integer value which specifies the type of address that should be returned:

Constant Description

INET_ADAPTER_IPV4 The address string will contain the primary IPv4 unicast address
assigned to the network adapter.

INET_ADAPTER_IPV6 The address string will contain the primary IPv6 unicast address
assigned to the network adapter.

INET_ADAPTER_MAC The address string will contain the media access control (MAC)
address assigned to the network adapter.

lpszAddress

A string buffer that will contain the IP or MAC address assigned to the adapter. This parameter
cannot be NULL and it is recommended that it be at least 64 characters in length to provide
enough space for any address type.

nMaxLength

The maximum number of characters that can be copied into the string buffer, including the
terminating null character. If the buffer is too small to store the complete address, this function
will fail.

Return Value
If the function succeeds, the return value is the number of characters copied to the string buffer,
not including the terminating null character. A return value of zero indicates that the requested
address type has not been assigned to the adapter. If the function fails, the return value is
INET_ERROR and this typically indicates that either the adapter index is invalid or the string buffer
is not large enough to store the complete address. To get extended error information, call
InetGetLastError.

Remarks
The InetGetAdapterAddress function will return the IPv4, IPv6 or MAC address assigned to a
specific network adapter. The primary network adapter has an index value of zero, and it
increments for each adapter that is configured on the local system.

The media access control (MAC) address is a 48 bit or 64 bit value that is assigned to each
network interface and is used for identification and access control. All network devices on the

same subnet must be assigned their own unique MAC address. Unlike IP addresses which may be
assigned dynamically and can be frequently changed, MAC addresses are considered to be more
permanent because they are usually assigned by the device manufacturer and stored in firmware.
Note that in some cases it is possible to change the address assigned to a device, and virtual
network interfaces may have configurable MAC addresses.

This function returns the MAC address string as sequence of hexadecimal values separated by a
colon. An example of a 48 bit MAC address would be "01:23:45:67:89:AB". Note that some virtual
network adapters may not have a MAC address assigned to them, in which case this function
would return zero.

This function will ignore network adapters that have been disabled, as well as those that are
bound to a virtual loopback interface. If the system has dial-up networking or virtualization
software installed, this function may also return IP addresses assigned to a virtualized network
adapters installed by that software.

Example
// Display the IPv4 address assigned to each network adapter
for (INT nIndex = 0;; nIndex++)
{
 TCHAR szAddress[64];
 INT cchAddress;

 cchAddress = InetGetAdapterAddress(nIndex, INET_ADAPTER_IPV4, szAddress,
64);

 if (cchAddress == INET_ERROR)
 break;

 _tprintf(_T("Adapter %d: %s\n"), nIndex, szAddress);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetEnumNetworkAddresses, InetGetLocalAddress, InetGetLocalName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetAddress Function

INT WINAPI InetGetAddress(
 LPCTSTR lpszAddress,
 INT nAddressFamily,
 LPINTERNET_ADDRESS lpAddress
);

The InetGetAddress function converts an IP address string to binary format.

Parameters
lpszAddress

A pointer to a null terminated string which specifies an IP address. This function recognizes the
format for both IPv4 and IPv6 format addresses.

nAddressFamily

An integer which identifies the type of IP address specified by the lpszAddress parameter. It may
be one of the following values:

Constant Description

INET_ADDRESS_UNKNOWN Return the IP address for the specified host in either IPv4
or IPv6 format, depending on the value of the
lpszAddress parameter.

INET_ADDRESS_IPV4 Specifies that the address should be in IPv4 format. The
first four bytes of the ipNumber array are significant and
contains the IP address. The remaining bytes are not
significant and an application should not depend on
them having any particular value, including zero. If the
lpszAddress parameter does not specify a valid IPv4
address string, this function will fail.

INET_ADDRESS_IPV6 Specifies that the address should be in IPv6 format. All
bytes in the ipNumber array are significant. If the
lpszAddress parameter does not specify a valid IPv6
address string, this function will fail.

lpAddress

A pointer to an INTERNET_ADDRESS structure that will contain the IP address.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
If the nAddressFamily parameter is specified as INET_ADDRESS_UNKNOWN, the application must
be prepared to handle IPv6 addresses because it is possible that an IPv6 address string has been
specified. For legacy applications that only recognize IPv4 addresses, the nAddressFamily member
should always be specified as INET_ADDRESS_IPV4 to ensure that only IPv4 addresses are
returned and any attempt to specify an IPv6 address string would result in an error.

To determine if the local system has an IPv6 TCP/IP stack installed and configured on the local
system, use the InetIsProtocolAvailable function. If an IPv6 stack is not installed, this function will

fail if the lpszAddress parameter specifies an IPv6 address, even if the address itself is valid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetFormatAddress, InetIsAddressNull, InetIsAddressRoutable, InetIsProtocolAvailable,
INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetAddressFamily Function

INT WINAPI InetGetAddressFamily(
 LPCTSTR lpszAddress,
);

Return the address family for the specified IP address.

Parameters
lpszAddress

A pointer to a string which specifies an IP address. This function recognizes the format for both
IPv4 and IPv6 format addresses.

Return Value
If the function succeeds, the return value is the address family for the specified IP address and may
be one of the values listed below. If the function fails, the return value is
INET_ADDRESS_UNKNOWN. To get extended error information, call InetGetLastError.

Constant Description

INET_ADDRESS_IPV4 The address passed to the function is a valid IPv4 address.

INET_ADDRESS_IPV6 The address passed to the function is a valid IPv6 address.

Remarks
The InetGetAddressFamily function returns the address family associated with the specified IP
address string. This can be used to determine if a string specifies a valid IPv4 or IPv6 address that
can be passed to other functions such as InetConnect. Note that this function will not attempt to
resolve hostnames, it will only accept IP addresses.

To determine if the local system has an IPv6 TCP/IP stack installed and configured on the local
system, use the InetIsProtocolAvailable function. If an IPv6 stack is not installed, this function will
fail if the lpszAddress parameter specifies an IPv6 address, even if the address itself is valid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetIsAddressNull, InetIsAddressRoutable, InetIsProtocolAvailable, INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetBlockingSocket Function

SOCKET InetGetBlockingSocket();

The InetGetBlockingSocket function returns the handle for the socket in the current thread
which is currently blocking, if there is one.

Parameters
None.

Return Value
If the function succeeds, the return value is the handle for the socket in the current thread which is
currently blocking. If the function fails, the return value is INET_ERROR. To get extended error
information, call InetGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetAbort, InetCancel

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetClientData Function

BOOL WINAPI InetGetClientData(
 SOCKET hClient,
 LPVOID * lppvData
);

The InetGetClientData function returns the application defined data associated with the specified
client session.

Parameters
hSocket

The socket handle.

lppvData

Pointer to a void pointer which will contain an application defined value associated with the
client session.

Return Value
If the function succeeds, the return value is non-zero. A return value of zero indicates that
application defined data for the client session could not be retrieved. To get extended error
information, call InetGetLastError.

Remarks
The InetGetClientData function is used to retrieve the application defined data that was
previously associated with a client session using the InetSetClientData function. This is typically
used to associate a pointer to a data structure or a class instance with a specific client handle.

This function can only be used with client socket handles created using the server interface. It
cannot be used with socket handles created using the InetConnect or InetAccept functions. If
the socket handle is invalid, or does not reference a client socket handle created by the server, the
lppvData pointer passed to this function will be initialized to a value of NULL and the function will
return a value of zero.

If this function is called with a valid socket handle and there is no data associated with the socket,
the function will return a non-zero value and the lppvData pointer will be returned with a NULL
value. Before dereferencing the pointer returned by this function, the application should always
check the return value to ensure the function succeeded and make sure that the pointer is not
NULL.

Example
UINT *pnValue1 = (UINT *)LocalAlloc(LPTR, sizeof(UINT));
UINT *pnValue2 = NULL;

*pnValue1 = 1234;

if (InetSetClientData(hSocket, pnValue1) == FALSE)
{
 // Unable to associate the data with this session
 return;
}

if (InetGetClientData(hSocket, &pnValue2) == FALSE)
{

 // Unable to retrieve the data associated with this session
 return;
}

// *pnValue2 == 1234
printf("The value of user defined data is %u\n", *pnValue2);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetServerData, InetSetClientData, InetSetServerData

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetClientHandle Function

SOCKET WINAPI InetGetClientHandle(
 SOCKET hServer,
 UINT nClientId
);

The InetGetClientHandle function returns the handle for a specific client session based on its ID
number.

Parameters
hServer

Handle to the server socket.

nClientId

An unsigned integer value which uniquely identifies the client session.

Return Value
If the function succeeds, the return value is the socket handle for the specified client session. If the
function fails, the return value is INVALID_SOCKET. To get extended error information, call
InetGetLastError.

Remarks
Each client connection that is accepted by the server is assigned a unique numeric value. This
value can be obtained by calling the InetGetClientId function and used by the application to
identify that client session. The InetGetClientHandle function can then be used to used to obtain
the client socket handle for the session, based on that client ID.

The socket handle for the server must be one that was created by calling the InetServerStart
function, and cannot be a socket that was created using the InetListen or InetListenEx functions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetClientId, InetGetClientMoniker, InetSetClientMoniker, InetGetServerClient,
InetGetThreadClient

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetClientId Function

UINT WINAPI InetGetClientId(
 SOCKET hClient
);

The InetGetClientId function returns the unique ID number assigned to the specified client
session.

Parameters
hClient

Handle to the client socket.

Return Value
If the function succeeds, the return value is an unsigned integer value which uniquely identifies the
client session. If the function fails, the return value is zero. To get extended error information, call
InetGetLastError.

Remarks
Each client connection that is accepted by the server is assigned a unique numeric value. This
value can be obtained by calling the InetGetClientId function and used by the application to
identify that client session. The InetGetClientHandle function can then be used to used to obtain
the client socket handle for the session, based on that client ID. It is important to note that the
actual value of the client ID should be considered opaque. It is only guaranteed that the value will
be greater than zero, and that it will be unique to the client session.

While it is possible for a client socket handle to be reused by the operating system, client IDs are
unique throughout the life of the server session and are never duplicated.

The socket handle for the client must be one that was created as part of the SocketWrench server
interface, and cannot be a socket that was created using the InetConnect or InetAccept
functions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetClientHandle, InetGetClientMoniker, InetSetClientMoniker, InetGetServerClient

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetClientIdleTime Function

DWORD WINAPI InetGetClientIdleTime(
 SOCKET hClient
);

Returns the number of milliseconds that the specified client session has been idle.

Parameters
hClient

Handle to the client socket.

Return Value
If the function succeeds, the return value is an unsigned integer value which specifies the number
of milliseconds the client session has been idle. If the function fails, the return value is INFINITE. To
get extended error information, call InetGetLastError.

Remarks
The InetGetClientIdleTime function will return the number of milliseconds that have elapsed
since data was exchanged with the client. The elapsed time is limited to the resolution of the
system timer, which is typically in the range of 10 milliseconds to 16 milliseconds.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetClientHandle, InetGetClientMoniker, InetGetServerClient

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetClientMoniker Function

INT WINAPI InetGetClientMoniker(
 SOCKET hSocket,
 LPTSTR lpszMoniker,
 INT nMaxLength
);

The InetGetClientMoniker function returns the moniker associated with the specified client
session.

Parameters
hSocket

Handle to the client socket.

lpszMoniker

Pointer to a string buffer that will contain the moniker for the specified client session when the
function returns.

nMaxLength

The maximum number of characters that may be copied into the string buffer. The buffer must
be large enough to store the moniker and a terminating null character. The maximum length of
a moniker is 127 characters.

Return Value
If the function succeeds, the return value is the number of characters in the moniker string. A
return value of zero specifies that no moniker was assigned to the socket. If the function fails, the
return value is INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
A client moniker is a string which can be used to uniquely identify a specific client session aside
from its socket handle. A moniker can be assigned to the client session using the
InetSetClientMoniker function. This function will return the moniker that was previously assigned
to the client, if any. To obtain the socket handle associated with a given moniker, use the
InetFindClientMoniker function.

The socket handle for the client must be one that was created as part of the SocketWrench server
interface, and cannot be a socket that was created using the InetConnect or InetAccept
functions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetFindClientMoniker, InetGetClientHandle, InetGetClientId, InetSetClientMoniker

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetClientPriority Function

INT WINAPI InetGetClientPriority(
 SOCKET hClient
);

The InetGetClientPriority function returns the current priority for the specified client session.

Parameters
hClient

Handle to the client socket.

Return Value
If the function succeeds, the return value is the priority for the specified client session. If the
function fails, the return value is INET_ERROR. To get extended error information, call
InetGetLastError.

Remarks
The InetGetClientPriority function can be used to determine the current priority assigned to the
specified client session. The client priority is inherited from the priority specified when the server is
started using the InetServerStart function. It may be one of the following values:

Constant Description

INET_PRIORITY_NORMAL The default priority which balances resource and processor
utilization. It is recommended that most applications use this
priority.

INET_PRIORITY_BACKGROUND This priority significantly reduces the memory, processor and
network resource utilization for the client session. It is typically
used with lightweight services running in the background that
are designed for few client connections. The client thread will
be assigned a lower scheduling priority and will be frequently
forced to yield execution to other threads.

INET_PRIORITY_LOW This priority lowers the overall resource utilization for the client
session and meters the processor utilization for the client
session. The client thread will be assigned a lower scheduling
priority and will occasionally be forced to yield execution to
other threads.

INET_PRIORITY_HIGH This priority increases the overall resource utilization for the
client session and the thread will be given higher scheduling
priority. It is not recommended that this priority be used on a
system with a single processor.

INET_PRIORITY_CRITICAL This priority can significantly increase processor, memory and
network utilization. The client thread will be given higher
scheduling priority and will be more responsive to network
events. It is not recommended that this priority be used on a
system with a single processor.

The socket handle for the client must be one that was created as part of the SocketWrench server
interface, and cannot be a socket that was created using the InetConnect or InetAccept

functions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetServerPriority, InetServerStart, InetSetClientPriority, InetSetServerPriority

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetClientServer Function

SOCKET WINAPI InetGetClientServer(
 SOCKET hClient
);

The InetGetClientServer function returns a socket handle to the server for the specified client
socket.

Parameters
hClient

Handle to the client socket.

Return Value
If the function succeeds, the return value is the handle to the server that created the client session.
If the function fails, the return value is INVALID_SOCKET. To get extended error information, call
InetGetLastError.

Remarks
The InetGetClientServer function returns the handle to the server that created the client session.
The InetGetClientServerById function can be used to obtain the server handle using the client
session ID rather than the client socket handle.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetClientHandle, InetGetClientId, InetGetClientServerById

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetClientServerById Function

SOCKET WINAPI InetGetClientServerById(
 UINT nClientId
);

The InetGetClientServerById function returns a socket handle to the server for the specified
client session identifier.

Parameters
nClientId

Client session identifier.

Return Value
If the function succeeds, the return value is the handle to the server that created the client session.
If the function fails, the return value is INVALID_SOCKET. To get extended error information, call
InetGetLastError.

Remarks
The InetGetClientServerById function returns the handle to the server that created the client
session using the client's unique identifier. The InetGetClientServer function can be used to
obtain the server handle using the client socket handle rather than the client session ID. This
function is typically used in conjunction with the INET_NOTIFY_CONNECT notification message to
obtain the handle to the server that generated the event using the client ID passed in the wParam
message parameter.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetClientHandle, InetGetClientId, InetGetClientServer, InetServerAsyncNotify

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetClientThreadId Function

DWORD WINAPI InetGetClientThreadId(
 SOCKET hClient
);

The InetGetClientThreadId function returns the thread ID for the specified client session.

Parameters
hClient

Handle to the client socket.

Return Value
If the function succeeds, the return value is an unsigned integer value which identifies the thread
that was created to manage the client session. If the function fails, the return value is zero. To get
extended error information, call InetGetLastError.

Remarks
The thread ID returned by this function can be used with the OpenThread function to obtain a
handle to the thread. Until the thread terminates, the thread identifier uniquely identifies the
thread throughout the system.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetClientPriority, InetGetServerThreadId, InetGetThreadClient, InetSetClientPriority

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetClientThreads Function

INT WINAPI InetGetClientThreads(
 SOCKET hServer
);

Returns the number of client session threads created by the server.

Parameters
hServer

Handle to the server socket.

Return Value
If the function succeeds, the return value is the number of client session threads that have been
created by the server. If the function fails, the return value is INET_ERROR. To get extended error
information, call InetGetLastError.

Remarks
The InetGetClientThreads function returns the number of threads that are managing client
sessions for the specified server. If there are no clients connected to the server, this function will
return a value of zero. Because this function returns the number of session threads, the value
returned will include those clients that are in the process of disconnecting from the server but their
session thread has not yet terminated. This differs from the InetEnumServerClients function
which will only enumerate active clients.

If you wish to determine when the last client has disconnected from the server, call this function
within an event handler for the INET_EVENT_DISCONNECT event. If the function returns a value
greater than one, then there are other client sessions that are either connected or in the process
of terminating.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetEnumServerClients, InetEnumServerClientsByAddress

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetDefaultHostFile Function

INT WINAPI InetGetDefaultHostFile(
 LPTSTR lpszFileName,
 INT nMaxLength
);

The InetGetDefaultHostFile function returns the fully qualified path name of the host file on the
local system. The host file is used as a database that maps an IP address to one or more
hostnames, and is used by the InetGetHostAddress and InetGetHostNames function. The file is
a plain text file, with each line in the file specifying a record, and each field separated by spaces or
tabs. The format of the file must be as follows:

ipaddress hostname [hostalias ...]

For example, one typical entry maps the name "localhost" to the local loopback IP address. This
would be entered as:

127.0.0.1 localhost

The hash character (#) may be used to specify a comment in the file, and all characters after it are
ignored up to the end of the line. Blank lines are ignored, as are any lines which do not follow the
required format.

The location of the default host file depends on the operating system. For Windows 95/98 and
Windows Me the file is stored in C:\Windows\hosts and for Windows NT and later versions the file
is stored in C:\Windows\system32\drivers\etc\hosts. Regardless of platform, there is no filename
extension and this file may or may not exist on a given system.

Parameters
lpszFileName

Pointer to a string buffer that will contain the fully qualified file name to the default host file. It is
recommended that this buffer be at least MAX_PATH characters in size. This parameter may be
NULL, in which case the function will return the length of the string, not including the
terminating null byte.

nMaxLength

The maximum number of characters that may be copied to the string buffer.

Return Value
If the function succeeds, the return value is length of the string. A return value of zero indicates
that the default host file could not be determined for the current platform. To get extended error
information, call InetGetLastError.

Remarks
This function only returns the default location of the host file and does not determine if the file
actually exists. It is not required that a host file be present on the system.

The default host file is processed before performing a nameserver lookup when resolving a
hostname into an IP address, or an IP address into a hostname.

To specify an alternate local host file, use the InetSetHostFile function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)

Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetGetHostAddress, InetGetHostFile, InetGetHostName, InetSetHostFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetErrorString Function

INT WINAPI InetGetErrorString(
 DWORD dwErrorCode,
 LPTSTR lpszDescription,
 INT cbDescription
);

The InetGetErrorString function is used to return a description of a specific error code. Typically
this is used in conjunction with the InetGetLastError function for use with warning dialogs or as
diagnostic messages.

Parameters
dwErrorCode

The last-error code for which a description is returned.

lpszDescription

A pointer to the buffer that will contain a description of the specified error code. This buffer
should be at least 128 characters in length.

cbDescription

The maximum number of characters that may be copied into the description buffer.

Return Value
If the function succeeds, the return value is the length of the description string. If the function fails,
the return value is 0, meaning that no description exists for the specified error code. Typically this
indicates that the error code passed to the function is invalid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetGetLastError, InetSetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetExternalAddress Function

INT WINAPI InetGetExternalAddress(
 INT nAddressFamily,
 LPINTERNET_ADDRESS lpAddress
);

The InetGetExternalAddress function returns the external IP address for the local system.

Parameters
nAddressFamily

An integer which identifies the type of IP address that should be returned by this function. It
may be one of the following values:

Constant Description

INET_ADDRESS_IPV4 Specifies that the address should be in IPv4 format. The method
will attempt to determine the external IP address using an IPv4
network connection.

INET_ADDRESS_IPV6 Specifies that the address should be in IPv6 format. The method
will attempt to determine the external IP address using an IPv6
network connection and requires that the local host have an
IPv6 network interface installed and enabled.

lpAddress

A pointer to an INTERNET_ADDRESS structure that will contain the external IP address of the
local host.

Return Value
If the function succeeds, the return value is zero and the INTERNET_ADDRESS structure contains
the external IP address for the local host in binary form. If the function fails, the return value is
INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
The InetGetExternalAddress function returns the IP address assigned to the router that connects
the local host to the Internet. This is typically used by an application executing on a system in a
local network that uses a router which performs Network Address Translation (NAT). In that
network configuration, the InetGetLocalAddress function will only return the IP address for the
local system on the LAN side of the network unless a connection has already been established to a
remote host. The InetGetExternalAddress function can be used to determine the IP address
assigned to the router on the Internet side of the connection and can be particularly useful for
servers running on a system behind a NAT router.

This function requires that you have an active connection to the Internet and calling this function
on a system that uses dial-up networking may cause the operating system to automatically
connect to the Internet service provider. An application should always check the return value in
case there is an error; never assume that the return value is always a valid address. The function
may be unable to determine the external IP address for the local host for a number of reasons,
particularly if the system is behind a firewall or uses a proxy server that restricts access to external
sites on the Internet. If the function is able to obtain a valid external address for the local host, that
address will be cached by the library for sixty minutes. Because dial-up connections typically have
different IP addresses assigned to them each time the system is connected to the Internet, it is

recommended that this function only be used with broadband connections where a NAT router is
being used.

Calling this function may cause the current thread to block until the external IP address can be
resolved and should never be used in conjunction with asynchronous socket connections. If you
need to call this function in an application which uses asynchronous sockets, it is recommended
that you create a new thread and call this function from within that thread.

To convert the address from its binary form into a string, use the InetFormatAddress function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetFormatAddress, InetGetHostAddress, InetGetLocalAddress, InetGetPeerAddress

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetHostAddress Function

INT WINAPI InetGetHostAddress(
 LPCTSTR lpszHostName,
 INT nAddressFamily,
 LPINTERNET_ADDRESS lpAddress
);

The InetGetHostAddress function resolves the specified host name into an IP address in binary
format.

Parameters
lpszHostName

A pointer to the name of the host to resolve; this may be a fully-qualified domain name or an IP
address. This function recognizes the format for both IPv4 and IPv6 format addresses.

nAddressFamily

An integer which identifies the type of IP address to return. It may be one of the following
values:

Constant Description

INET_ADDRESS_UNKNOWN Return the IP address for the specified host in either IPv4
or IPv6 format, depending on how the host name can be
resolved. By default, a preference will be given for
returning an IPv4 address. However, if the host only has
an IPv6 address, that value will be returned.

INET_ADDRESS_IPV4 Specifies that the address should be returned in IPv4
format. The first four bytes of the ipNumber array are
significant and contains the IP address. The remaining
bytes are not significant and an application should not
depend on them having any particular value, including
zero.

INET_ADDRESS_IPV6 Specifies that the address should be returned in IPv6
format. All bytes in the ipNumber array are significant.
Note that it is possible for an IPv6 address to actually
represent an IPv4 address. This is indicated by the first 10
bytes of the address being zero.

lpAddress

A pointer to an INTERNET_ADDRESS structure that will contain the IP address of the specified
host.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
This function can also be used to convert an address in dot notation to a binary format. If the
function must perform a DNS lookup to resolve the hostname, the calling thread will block. To
ensure future compatibility with IPv6 networks, it is important that the application does not make

any assumptions about the format of the address. If the function returns successfully, the ipFamily
member of the INTERNET_ADDRESS structure should always be checked to determine the type
of address.

The nAddressFamily parameter is used to specify a preference for the type of address returned,
however it is possible that a host may not have an IPv4 or IPv6 address record, in which case this
function will fail. Although IPv4 is still the most common address used at this time, an application
should not assume that because a given host name does not have an IPv4 address, that the host
name is invalid.

If the nAddressFamily parameter is specified as INET_ADDRESS_UNKNOWN, the application must
be prepared to handle IPv6 addresses because it is possible for a host name to have an IPv6
address assigned to it and no IPv4 address. For legacy applications that only recognize IPv4
addresses, the nAddressFamily member should always be specified as INET_ADDRESS_IPV4 to
ensure that only IPv4 addresses are returned.

To determine if the local system has an IPv6 TCP/IP stack installed and configured on the local
system, use the InetIsProtocolAvailable function. If an IPv6 stack is not installed, this function will
fail if the lpszHostName parameter specifies an host that only has an IPv6 (AAAA) DNS record.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetGetHostName, InetGetLocalAddress, InetGetLocalName, InetGetPeerAddress,
InetIsProtocolAvailable, INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetHostFile Function

INT WINAPI InetGetHostFile(
 LPTSTR lpszFileName,
 INT nMaxLength
);

The InetGetHostFile function returns the name of the host file previously set using the
InetSetHostFile function. The host file is used as a database that maps an IP address to one or
more hostnames, and is used by the InetGetHostAddress and InetGetHostNames function.

Parameters
lpszFileName

Pointer to a string buffer that will contain the host file name. It is recommended that this buffer
be at least MAX_PATH characters in size. This parameter may be NULL, in which case the
function will return the length of the string, not including the terminating null character.

nMaxLength

The maximum number of characters that may be copied to the string buffer.

Return Value
If the function succeeds, the return value is length of the string. A return value of zero indicates
that no host file has been specified or the function was unable to determine the file name. To get
extended error information, call InetGetLastError. If the last error is zero, this indicates that no
host file name has been specified for the current thread. If the last error is non-zero, this indicates
the reason that the function failed.

Remarks
This function only returns the name of the host file that is cached in memory for the current
thread. The contents of the file on the disk may have changed after the file was loaded into
memory. To reload the host file or clear the cache, call the InetSetHostFile function.

If a host file has been specified, it is processed before the default host file when resolving a
hostname into an IP address, or an IP address into a hostname. If the host name or address is not
found, or no host file has been specified, a nameserver lookup is performed.

The host file returned by this function may be different than the default host file for the local
system. To determine the file name for the default host file, use the InetGetDefaultHostFile
function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetGetDefaultHostFile, InetGetHostAddress, InetGetHostName, InetSetHostFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetHostName Function

INT WINAPI InetGetHostName(
 LPINTERNET_ADDRESS lpAddress,
 LPTSTR lpszHostName,
 INT cchHostName
);

The InetGetHostName function performs a reverse lookup, returning the host name associated
with a given IP address.

Parameters
lpAddress

A pointer to an INTERNET_ADDRESS structure which specifies the IP address that should be
resolved into a host name.

lpszHostName

A pointer to the buffer that will contain the host name. It is recommended that this buffer be at
least 256 characters in length to accommodate the longest possible fully qualified domain
name.

cchHostName

The maximum number of characters that can be copied into the buffer.

Return Value
If the function succeeds, the return value is the length of the hostname. If the function fails, the
return value is INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
If the function must perform a reverse DNS lookup to resolve the IP address into a host name, the
calling thread will block. This function requires that the host have a PTR record, otherwise it will fail.
Because many hosts do not have a PTR record, calling this function frequently may have a
negative impact on the overall performance of the application.

To determine if the local system has an IPv6 TCP/IP stack installed and configured on the local
system, use the InetIsProtocolAvailable function. If an IPv6 stack is not installed, this function will
fail if the lpAddress parameter specifies an IPv6 address, even if the address itself is valid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetGetHostAddress, InetGetLocalAddress, InetGetLocalName, InetGetPeerAddress,
InetGetUrlHostName, InetIsProtocolAvailable, INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetLastError Function

DWORD WINAPI InetGetLastError();

Parameters
None.

Return Value
Functions set this value by calling the InetSetLastError function. The return value section of each
reference page notes the conditions under which the function sets the last-error code.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. You should call
the InetGetLastError function immediately when a function's return value indicates that an error
has occurred. That is because some functions call InetSetLastError(0) when they succeed, clearing
the error code set by the most recently failed function.

Most functions will set the last error code value when they fail; a few functions set it when they
succeed. Function failure is typically indicated by a return value such as FALSE, NULL,
INVALID_SOCKET or INET_ERROR. Those functions which call InetSetLastError when they
succeed are noted on the function reference page.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetErrorString, InetSetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetLocalAddress Function

INT WINAPI InetGetLocalAddress(
 SOCKET hSocket,
 INT nAddressFamily,
 LPINTERNET_ADDRESS lpAddress,
 UINT* lpnPort
);

The InetGetLocalAddress function returns the local IP address and port number for the specified
socket.

Parameters
hSocket

The socket handle.

nAddressFamily

An integer which identifies the type of IP address to return. It may be one of the following
values:

Constant Description

INET_ADDRESS_UNKNOWN Return the IP address for the specified host in either IPv4
or IPv6 format, depending on the type of connection
that was established. If the hSocket parameter is
INVALID_SOCKET, a preference will be given for
returning an IPv4 address. However, if the local host only
has an IPv6 address, that value will be returned.

INET_ADDRESS_IPV4 Specifies that the address should be returned in IPv4
format. The first four bytes of the ipNumber array are
significant and contains the IP address. The remaining
bytes are not significant and an application should not
depend on them having any particular value, including
zero.

INET_ADDRESS_IPV6 Specifies that the address should be returned in IPv6
format. All bytes in the ipNumber array are significant.
Note that it is possible for an IPv6 address to actually
represent an IPv4 address. This is indicated by the first 10
bytes of the address being zero.

lpAddress

A pointer to an INTERNET_ADDRESS structure that will contain the IP address of the local host. If
the hSocket parameter is specified as INVALID_SOCKET, this function will attempt to determine
the IP address of the local host assigned by the system. If the address is not required, this
parameter may be NULL.

lpnPort

A pointer to an unsigned integer that will contain the local port number. If the hSocket
parameter specifies a valid socket, this parameter will be set to the local port that the socket was
bound to. If the hSocket parameter is specified as INVALID_SOCKET, this parameter is ignored.
If the port number is not required, this parameter may be NULL.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
To ensure future compatibility with IPv6 networks, it is important that the application does not
make any assumptions about the format of the address. If the function returns successfully, the
ipFamily member of the INTERNET_ADDRESS structure should always be checked to determine
the type of address.

If the nAddressFamily parameter is specified as INET_ADDRESS_UNKNOWN, the application must
be prepared to handle IPv6 addresses because it is possible for the local host to have an IPv6
address assigned to it and no IPv4 address. For legacy applications that only recognize IPv4
addresses, the nAddressFamily member should always be specified as INET_ADDRESS_IPV4 to
ensure that only IPv4 addresses are returned.

If the system is connected to the Internet through a local network and/or uses a router that
performs Network Address Translation (NAT), the InetGetLocalAddress function will return the
local, non-routable IP address assigned to the system. To determine the public IP address has
been assigned to the system, you should use the InetGetExternalAddress function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetExternalAddress, InetGetHostAddress, InetGetHostName, InetGetLocalName,
InetGetPeerAddress, INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetLocalName Function

INT WINAPI InetGetLocalName(
 LPTSTR lpszHostName,
 INT cchHostName
);

The InetGetLocalName function returns the hostname assigned to the local system.

Parameters
lpszHostName

A pointer to the buffer that will contain the hostname.

cchHostName

The maximum number of characters that can be copied into the address buffer.

Return Value
If the function succeeds, the return value is the length of the hostname. If the function fails, the
return value is INET_ERROR. To get extended error information, call InetGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetGetHostAddress, InetGetHostName, InetGetLocalAddress, InetGetPeerAddress

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetLockedServer Function

SOCKET WINAPI InetGetLockedServer(
 LPDWORD lpdwThreadId
);

The InetGetLockedServer function unlocks the specified server, allowing other server threads to
resume execution.

Parameters
lpdwThreadId

A pointer to an unsigned integer which identifies the thread that established the server lock. If
this information is not required, this parameter may be NULL.

Return Value
If the function succeeds, the return value is the handle to the locked server. If no server is in a
locked state, the function will return a value of INVALID_SOCKET.

Remarks
The InetGetLockedServer function can be used to determine if there is a server in a locked state.
If there is, the function will return a handle to the server and will identify the thread which
established the lock. This function may be called from any thread, however only the thread which
established the server lock may interact with the server or release the lock.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetServerLock, InetServerUnlock

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetOption Function

INT WINAPI InetGetOption(
 SOCKET hSocket,
 DWORD dwOption,
 LPBOOL lpbEnabled
);

The InetGetOption function is used to determine if a specific socket option has been enabled.

Parameters
hSocket

The socket handle.

dwOption

An unsigned integer used to specify one of the socket options. These options cannot be
combined. The following values are recognized:

Constant Description

INET_OPTION_BROADCAST This option specifies that broadcasting should be
enabled for datagrams. This option is invalid for
stream sockets.

INET_OPTION_KEEPALIVE This option specifies that packets are to be sent to the
remote system when no data is being exchanged to
keep the connection active. This is only valid for
stream sockets.

INET_OPTION_REUSEADDRESS This option specifies the local address can be reused.
This option is commonly used by server applications.

INET_OPTION_NODELAY This option disables the Nagle algorithm, which
buffers unacknowledged data and insures that a full-
size packet can be sent to the remote host.

lpbEnabled

A pointer to a boolean flag. If the option is enabled, the flag is set to a non-zero value,
otherwise it is set to a value of zero.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
INET_ERROR. To get extended error information, call InetGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetAsyncConnectEx, InetConnectEx, InetSetOption

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetPeerAddress Function

INT WINAPI InetGetPeerAddress(
 SOCKET hSocket,
 LPINTERNET_ADDRESS lpAddress,
 UINT* lpnPort
);

The InetGetPeerAddress function returns the peer IP address and remote port number for the
specified socket.

Parameters
hSocket

The socket handle.

lpAddress

A pointer to an INTERNET_ADDRESS structure that will contain the IP address of the remote
host that the socket is connected to.

lpnPort

A pointer to an unsigned integer that will contain the remote port that the socket is connected
to.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
If this function is called by a server application in response to a INET_EVENT_ACCEPT event, it will
return the IP address and port number for the client that is attempting to establish the connection.
If the peer address is unavailable, the ipFamily member of the INTERNET_ADDRESS structure will
be zero. To convert the IP address to a printable string, use the InetFormatAddress function.

It is not recommended that you use the port number for anything other than informational and
logging purposes. Server applications should not make any assumptions about the specific port
number or range of port numbers that a client is using when establishing a connection to the
server. The ephemeral port number that a client is bound to can vary based on the client
operating system.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetFormatAddress, InetGetHostAddress, InetGetHostName, InetGetLocalAddress,
InetGetLocalName, INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetPhysicalAddress Function

BOOL WINAPI InetGetPhysicalAddress(
 LPTSTR lpszAddress,
 UINT nMaxLength
);

Return the media access control (MAC) address for the primary network adapter.

Parameters
lpszAddress

A string buffer that will contain the address in a printable format when the function returns. This
parameter cannot be NULL.

nMaxLength

The maximum number of characters that can be copied into the buffer, including the
terminating null character.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call InetGetLastError.

Remarks
The InetGetPhysicalAddress function returns the media access control (MAC) address for the
primary network adapter. This is a 48 bit or 64 bit address that is assigned to each network
interface and is used for identification and access control. All network devices on the same subnet
must be assigned their own unique MAC address. Unlike IP addresses which may be assigned
dynamically and can be frequently changed, MAC addresses are considered to be more
permanent because they are usually assigned by the device manufacturer and stored in firmware.
Note that in some cases it is possible to change the address assigned to a device, and virtual
network interfaces may have configurable MAC addresses.

This function returns the MAC address as a printable string, with each byte of the address as a
two-digit hexadecimal value separated by a colon. The string buffer passed to the function should
be at least 20 characters long to accommodate the address and terminating null character. An
example of a 48 bit address would be "01:23:45:67:89:AB". If the local system is multi-homed
(having more than one network adapter) then this function will return the MAC address for the
primary network adapter.

This function is provided for backwards compatibility with previous versions of the library and it is
recommended that new applications use the InetGetAdapterAddress function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetEnumNetworkAddresses, InetGetAdapterAddress, InetGetLocalName, InetGetHostAddress

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetSecurityInformation Function

BOOL WINAPI InetGetSecurityInformation(
 SOCKET hSocket,
 LPSECURITYINFO lpSecurityInfo
);

The InetGetSecurityInformation function fills a structure with information about the security
characteristics of a connection.

Parameters
hSocket

Handle to the socket.

lpSecurityInfo

A pointer to a SECURITYINFO structure which contains information about the current client
connection. The dwSize member of this structure must be initialized to the size of the structure
before passing the address of the structure to this function.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call InetGetLastError.

Remarks
This function is used to obtain security related information about the current client connection to
the server. It can be used to determine if a secure connection has been established, what security
protocol was selected, and information about the server certificate. Note that a secure connection
has not been established, the dwProtocol structure member will contain the value
SECURITY_PROTOCOL_NONE.

Example
The following example notifies the user if the connection is secure or not:

SECURITYINFO securityInfo;

securityInfo.dwSize = sizeof(SECURITYINFO);
if (InetGetSecurityInformation(hClient, &securityInfo))
{
 if (securityInfo.dwProtocol == SECURITY_PROTOCOL_NONE)
 {
 MessageBox(NULL, _T("The connection is not secure"),
 _T("Connection"), MB_OK);
 }
 else
 {
 if (securityInfo.dwCertStatus == SECURITY_CERTIFICATE_VALID)
 {
 MessageBox(NULL, _T("The connection is secure"),
 _T("Connection"), MB_OK);
 }
 else
 {
 MessageBox(NULL, _T("The server certificate not valid"),
 _T("Connection"), MB_OK);
 }

 }
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetConnectEx, InetAsyncConnectEx

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetServerClient Function

SOCKET WINAPI InetGetServerClient(
 SOCKET hServer
);

The InetGetServerClient function returns the handle for the last client connection accepted by
the server.

Parameters
hServer

Handle to the server socket.

Return Value
If the function succeeds, the return value is the handle to the last client connection that was
accepted by the server. If the function fails, the return value is INVALID_SOCKET. To get extended
error information, call InetGetLastError.

Remarks
The InetGetServerClient function can be used inside the service event handler to determine the
client connection that was just accepted by the server. This would typically be used in conjunction
with the INET_EVENT_ACCEPT handler, enabling the application to obtain the handle of the new
client session.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetClientThreadId, InetGetServerThreadId, InetServerBroadcast, InetServerLock,
InetServerStop, InetServerThrottle, InetServerUnlock

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetServerData Function

BOOL WINAPI InetGetServerData(
 SOCKET hServer,
 LPVOID * lppvData
);

The InetGetServerData function returns the application defined data associated with the specified
server.

Parameters
hSocket

The server socket handle.

lppvData

Pointer to a void pointer which will contain an application defined value associated with the
server.

Return Value
If the function succeeds, the return value is non-zero. A return value of zero indicates that
application defined data for the server could not be retrieved. To get extended error information,
call InetGetLastError.

Remarks
The InetGetServerData function is used to retrieve the application defined data that was
previously associated with a server using the InetSetServerData function. This is typically used to
associate a pointer to a data structure or a class instance with a specific instance of a server.

This function can only be used with socket handles created using InetServerStart function. It
cannot be used with socket handles created using the InetListen or InetListenEx functions. If the
socket handle is invalid, or does not reference a server handle, the lppvData pointer passed to this
function will be initialized to a value of NULL and the function will return a value of zero.

If this function is called with a valid socket handle and there is no data associated with the socket,
the function will return a non-zero value and the lppvData pointer will be returned with a NULL
value. Before dereferencing the pointer returned by this function, the application should always
check the return value to ensure the function succeeded and make sure that the pointer is not
NULL.

Example
UINT *pnValue1 = (UINT *)LocalAlloc(LPTR, sizeof(UINT));
UINT *pnValue2 = NULL;

*pnValue1 = 1234;

if (InetSetServerData(hServer, pnValue1) == FALSE)
{
 // Unable to associate the data with this server
 return;
}

if (InetGetServerData(hServer, &pnValue2) == FALSE)
{
 // Unable to retrieve the data associated with this server

 return;
}

// *pnValue2 == 1234
printf("The value of user defined data is %u\n", *pnValue2);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetClientData, InetSetClientData, InetSetServerData

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetServerPriority Function

INT WINAPI InetGetServerPriority(
 SOCKET hServer
);

The InetGetServerPriority function returns the current priority for the specified server.

Parameters
hServer

Handle to the server socket.

Return Value
If the function succeeds, the return value is the priority for the specified server. If the function fails,
the return value is INET_PRIORITY_INVALID. To get extended error information, call
InetGetLastError.

Remarks
The InetGetServerPriority function can be used to determine the current priority assigned to the
specified server. It will be one of the following values:

Constant Description

INET_PRIORITY_BACKGROUND This priority significantly reduces the memory, processor and
network resource utilization for the server. It is typically used
with lightweight services running in the background that are
designed for few client connections. The server thread will be
assigned a lower scheduling priority and will be frequently
forced to yield execution to other threads.

INET_PRIORITY_LOW This priority lowers the overall resource utilization for the
server and meters the processor utilization for the server
thread. The server thread will be assigned a lower scheduling
priority and will occasionally be forced to yield execution to
other threads.

INET_PRIORITY_NORMAL The default priority which balances resource and processor
utilization. This is the priority that is initially assigned to the
server when it is started, and it is recommended that most
applications use this priority.

INET_PRIORITY_HIGH This priority increases the overall resource utilization for the
server and the thread will be given higher scheduling priority.
It is not recommended that this priority be used on a system
with a single processor.

INET_PRIORITY_CRITICAL This priority can significantly increase processor, memory and
network utilization. The server thread will be given higher
scheduling priority and will be more responsive to client
connection requests. It is not recommended that this priority
be used on a system with a single processor.

The socket handle for the server must be one that was created using the InetServerStart function,
and cannot be a socket that was created using the InetListen or InetListenEx functions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetClientPriority, InetServerStart, InetSetClientPriority, InetSetServerPriority

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetServerStackSize Function

DWORD WINAPI InetGetServerStackSize(
 SOCKET hServer
);

Return the initial size of the stack allocated for threads created by the server.

Parameters
hServer

Handle to the server socket.

Return Value
If the function succeeds, the return value is the amount of memory that will be allocated for the
stack in bytes. If the function fails, the return value is zero. To get extended error information, call
InetGetLastError.

Remarks
The InetGetServerStackSize function returns the initial amount of memory that is committed to
the stack for each thread created by the server. By default, the stack size for each thread is set to
256K for 32-bit processes and 512K for 64-bit processes.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetServerStart, InetSetServerStackSize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetServerStatus Function

INT WINAPI InetGetServerStatus(
 SOCKET hServer
);

The InetGetServerStatus function returns the current status of the specified server.

Parameters
hServer

Handle to the server socket.

Return Value
If the function succeeds, the return value is the status for the specified server. If the function fails,
the return value is INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
The InetGetServerStatus function can be used to determine the current status for the specified
server. It may be one of the following values:

Constant Description

INET_SERVER_INACTIVE The server is currently inactive.

INET_SERVER_STARTED The server has initialized and is preparing to listen for client
connections.

INET_SERVER_LISTENING The server is actively listening for incoming client connections.

INET_SERVER_SUSPENDED The server has been suspended and is no longer accepting client
connections.

INET_SERVER_SHUTDOWN The server has been stopped and is in the process of terminating
all active client connections.

The socket handle for the server must be one that was created by calling the InetServerStart
function, and cannot be a socket that was created using the InetListen or InetListenEx functions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetServerRestart, InetServerResume, InetServerStart, InetServerStop, InetServerSuspend

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetServerThreadId Function

DWORD WINAPI InetGetServerThreadId(
 SOCKET hServer
);

The InetGetServerThreadId function returns the thread ID for the specified server.

Parameters
hServer

Handle to the server socket.

Return Value
If the function succeeds, the return value is an unsigned integer value which identifies the thread
that was created to manage the server. If the function fails, the return value is zero. To get
extended error information, call InetGetLastError.

Remarks
The thread ID returned by this function can be used with the OpenThread function to obtain a
handle to the thread.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetClientPriority, InetGetClientThreadId, InetGetThreadClient, InetSetClientPriority

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetServiceName Function

BOOL WINAPI InetGetServiceName(
 UINT nServicePort,
 LPTSTR lpszServiceName,
 INT nMaxLength
);

The InetGetServiceName function returns the service name associated with a specified port
number.

Parameters
nServicePort

Port number associated with some network service.

lpszServiceName

A pointer to a string buffer that will contain the name of the service associated with the
specified port number. This string should be at least 32 characters long.

cchServiceName

An integer value which specifies the maximum number of characters that can be copied into the
string buffer.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call InetGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetGetServicePort

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetServicePort Function

UINT WINAPI InetGetServicePort(
 LPCTSTR lpszServiceName
);

The InetGetServicePort function returns the port number associated with a service name.

Parameters
lpszServiceName

A pointer to a string which specifies the name of the service to return the port number for.

Return Value
If the function succeeds, the return value is the port number associated with a service name. If the
function fails, the return value is INET_ERROR. To get extended error information, call
InetGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetGetServiceName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetStatus Function

INT WINAPI InetGetStatus(
 SOCKET hSocket
);

The InetGetStatus function is used to report what sort of socket operation is in progress.

Parameters
hSocket

The socket handle.

Return Value
If the function succeeds, the return value is the client status code. If the function fails, the return
value is INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
The return value is one of the following values:

Value Constant Description

0 INET_STATUS_UNUSED No connection has been established.

1 INET_STATUS_IDLE The socket is idle and not in a blocked state

2 INET_STATUS_LISTEN The socket is listening for inbound connections from a
client

3 INET_STATUS_CONNECT The socket is establishing a connection with a server

4 INET_STATUS_ACCEPT The socket is accepting a connection from a client

5 INET_STATUS_READ Data is being read from the socket

6 INET_STATUS_WRITE Data is being written to the socket

7 INET_STATUS_FLUSH The socket is being flushed; all data in the receive buffers
is being discarded

8 INET_STATUS_DISCONNECT The socket is disconnecting from the remote host

In a multithreaded application, any thread in the current process may call this function to obtain
status information for the specified socket.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetBlockingSocket, InetIsConnected, InetIsListening, InetIsReadable, InetIsWritable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetStreamInfo Function

BOOL WINAPI InetGetStreamInfo(
 SOCKET hSocket,
 LPINETSTREAMINFO lpStreamInfo
);

The InetGetStreamInfo function fills a structure with information about the current stream I/O
operation.

Parameters
hSocket

Handle to the socket.

lpSecurityInfo

A pointer to an INETSTREAMINFO structure which contains information about the status of the
current operation.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call InetGetLastError.

Remarks
The InetGetStreamInfo function returns information about the current streaming socket
operation, including the average number of bytes transferred per second and the estimated
amount of time until the operation completes. If there is no operation currently in progress, this
function will return the status of the last successful streaming read or write performed by the
client.

In a multithreaded application, any thread in the current process may call this function to obtain
status information for the specified socket.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetReadStream, InetStoreStream, InetWriteStream, INETSTREAMINFO

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetThreadClient Function

SOCKET WINAPI InetGetThreadClient(
 DWORD dwThreadId
);

The InetGetThreadClient function returns the socket handle for the client session that is being
managed by the specified thread.

Parameters
dwThreadId

An unsigned integer value which identifies the thread managing the client session. If this
parameter has a value of zero, then the client handle for the current thread is returned.

Return Value
If the function succeeds, the return value is the socket handle for the specified client session. If the
function fails, the return value is INVALID_SOCKET. To get extended error information, call
InetGetLastError.

Remarks
The InetGetThreadClient is used to obtain the socket handle for the client session that is being
managed by the specified thread. If the specified thread ID is zero, then the function will return the
client socket for the current thread, otherwise it will search the internal table of all active client
sessions and return the handle to the session that is being managed by that thread.

This function will fail if the thread ID does not specify an active client session thread.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetClientHandle, InetGetClientId, InetGetClientThreadId, InetGetServerClient,
InetGetServerThreadId

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetTimeout Function

INT WINAPI InetGetTimeout(
 SOCKET hSocket
);

The InetGetTimeout function returns the timeout interval for blocking operations, in seconds.

Parameters
hSocket

Handle to the socket.

Return Value
If the function succeeds, the return value is the timeout interval for blocking operations, in
seconds. If the function fails, the return value is INET_ERROR. To get extended error information,
call InetGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetSetTimeout

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetUrlHostName Function

INT WINAPI InetGetUrlHostName(
 LPCTSTR lpszUrl,
 DWORD dwReserved,
 LPTSTR lpszHostName,
 INT nMaxLength,
 LPUINT lpnHostPort,
 LPUINT lpnProtocol,
 LPDWORD lpdwOptions
);

The InetGetUrlHostName function returns the host name and port number specified in a URL.

Parameters
lpszUrl

A pointer to a null-terminated string which specifies a URL. This parameter cannot be NULL or
point to an empty string. If a non-standard URI scheme is used, the port number must be
explicitly specified or the function will fail. See the remarks below for more information on the
format supported by this function.

dwReserved

An unsigned integer value reserved for internal use. This value should always be zero.

lpszHostName

Pointer to the string buffer that will contain the canonical form of the host name, including the
terminating null character. It is recommended that this buffer be at least 256 characters in size.
This parameter cannot be a NULL pointer and must be large enough to store the complete host
name.

nMaxLength

The maximum number of characters that can be copied to the lpszHostName string buffer. This
parameter cannot be zero, and must include the terminating null character.

lpnHostPort

Pointer to an unsigned integer value which will contain the port number specified in the URL.
This parameter value will always be initialized by the function with a value of zero. If this
parameter is NULL, it will be ignored and no port information will be returned.

lpnProtocol

Pointer to an unsigned integer value which will contain the protocol associated with the URI
scheme. This parameter value will always be initialized by the function with a value of zero. If
this parameter is NULL, it will be ignored and no protocol information will be returned.

lpdwOptions

Pointer to an unsigned integer value which will contain any socket options required to establish
a connection based on the URI scheme or specified port. This parameter value will always be
initialized by the function with a value of zero. If this parameter is NULL, it will be ignored.

Return Value
If the function succeeds, the return value is the number of characters copied into the
lpszHostName buffer. If the function fails, the return value is INET_ERROR. To get extended error
information, call InetGetLastError.

Remarks
The InetGetUrlHostName function will extract the host name and port number from a URL and
return the canonical form of the host name. If the lpnHostPort, lpnProtocol and lpdwOptions
parameters have been specified, they will contain the port number, protocol and additional
connection options associated with the URL scheme.

The general format of the URL should look like this:

[scheme]:// [[username : password] @] hostname [:port] / [path;paramters
...]

This function recognizes most standard URI schemes which use this format. The host name and
port number specified in the URL will be used to establish a connection and the remaining
information will be discarded. If the URL does not explicitly specify a port number, the default port
number associated with the scheme will be used as the default value. For example, consider the
following:

https://www.example.com/

In this example, there is no port number specified; instead, the default port for the https://
scheme would be used, which is port 443. This function will also recognize a simpler format which
only includes the host name and port number without a URI scheme, such as:

www.example.com:443

If the lpszUrl parameter only specifies a host name without a URI scheme or port number, this
function will ignore the lpnHostPort, lpnProtocol and lpdwOptions parameters and return the
canonical form of the host name in the lpszHostName string argument.

The host name portion of the URL can be specified as either a domain name or an IP address.
Because an IPv6 address can contain colon characters, you must enclose the entire address in
bracket [] characters. If this is not done, the function will return an error indicating the port number
is invalid. For example, the URL https://[2001:db8:0:0:1::128]/ uses an IPv6 host address
and this would be considered valid. Without the brackets, this URL would not be accepted.

If the URL uses an IP address instead of a host name, this function will return a copy of that IP
address in the lpszHostName string provided by the caller. The function will not attempt to
resolve the IP address into a host name, however you can use the InetGetHostName function to
perform a reverse DNS lookup if required.

The only URI schemes currently supported by this function use TCP stream connections. In
practical terms, this means the lpnProtocol parameter will always return with the value
INET_PROTOCOL_TCP when the function is successful. If the function fails, this value will be
INET_PROTOCOL_NONE.

Although this function performs checks to ensure that the lpszUrl parameter is in the correct
format and does not contain any illegal characters or malformed encoding, it does not validate the
host name. To check if the host name exists and has a valid IP address, use the
InetValidateHostName function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also

InetConnectUrl, InetGetHostAddress, InetGetHostName, InetHostNameToUnicode,
InetNormalizeHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetHostNameToUnicode Function

INT WINAPI InetHostNameToUnicode(
 LPCTSTR lpszHostName,
 LPTSTR lpszUnicodeName,
 INT nMaxLength
);

The InetHostNameToUnicode function converts the canonical form of a host name to its
Unicode version.

Parameters
lpszHostName

Pointer to the host name as a null-terminated string. This parameter cannot be a NULL pointer
or a zero length string.

lpszUnicodeName

Pointer to the string buffer that will contain the original Unicode version of the host name,
including the terminating null character. It is recommended that this buffer be at least 256
characters in size. This parameter cannot be a NULL pointer.

nMaxLength

The maximum number of characters that can be copied to the lpszUnicodeName string buffer.
This parameter cannot be zero, and must include the terminating null character.

Return Value
If the function succeeds, the return value is the number of characters copied into the string buffer.
If the function fails, the return value is INET_ERROR. To get extended error information, call
DnsGetLastError.

Remarks
The InetHostNameToUnicode function will convert the encoded ASCII version of a host name to
its Unicode version. Although any valid host name is accepted by this function, it is intended to
convert a Punycode encoded host name to its original Unicode character encoding.

If the Unicode version of this function is used, the value returned in lpszUnicodeName will be a
Unicode string using UTF-16 encoding. If the ANSI version of this function, the value returned will
be a Unicode string using UTF-8 encoding. To display a UTF-8 encoded host name, your
application will need to convert it to UTF-16 using the MultiByteToWideChar function.

Although this function performs checks to ensure that the lpszHostName parameter is in the
correct format and does not contain any illegal characters or malformed encoding, it does not
validate the existence of the domain name. To check if the host name exists and has a valid IP
address, use the InetGetHostAddress function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also

InetGetHostAddress, InetNormalizeHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetInitialize Function

BOOL WINAPI InetInitialize(
 LPCTSTR lpszLicenseKey,
 LPINITDATA lpData
);

The InetInitialize function initializes the library and validates the specified license key at runtime.

Parameters
lpszLicenseKey

Pointer to a string that specifies the runtime license key to be validated. If this parameter is
NULL, the library will validate the development license installed on the local system.

lpData

Pointer to an INITDATA data structure. This parameter may be NULL if the initialization data for
the library is not required.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call InetGetLastError. All other functions will fail until a license
key has been successfully validated.

Remarks
This must be the first function that an application calls before using any of the other functions in
the library. When a NULL license key is specified, the library will only function on the development
system. Before redistributing the application to an end-user, you must insure that this function is
called with a valid license key.

If the lpData argument is specified, it must point to an INITDATA structure which has been
initialized by setting the dwSize member to the size of the structure. All other structure members
should be set to zero. If the function is successful, then the INITDATA structure will be filled with
identifying information about the library.

Although it is only required that InetInitialize be called once for the current process, it may be
called multiple times; however, each call must be matched by a corresponding call to
InetUninitialize.

This function dynamically loads other system libraries and allocates thread local storage. If you are
calling the functions in this library from within another DLL, it is important that you do not call the
InetInitialize or InetUninitialize functions from the DllMain function because it can result in
deadlocks or access violation errors. If the DLL is linked with the C runtime library (CRT), it will
automatically call the constructors and destructors for static and global C++ objects and has the
same restrictions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also

InetConnect, InetConnectEx, InetDisconnect, InetListen, InetUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetIsAddressNull Function

BOOL WINAPI InetIsAddressNull(
 LPINTERNET_ADDRESS lpAddress
);

The InetIsAddressNull function determines if the IP address is null.

Parameters
lpAddress

A pointer to an INTERNET_ADDRESS structure that contains the address to check.

Return Value
If the function succeeds and the IP address is null, or the lpAddress parameter is a NULL pointer,
the return value is non-zero. If the function fails or the address is not null, the return value is zero.
If the address family is not supported, the last error code will be updated. If the address is valid
but not null, the last error code will be set to NO_ERROR.

Remarks
A null IP address is one where all bits for the address (32 bits for IPv4 or 128 bits for IPv6) are zero.
This is a special address that is typically used when creating a passive socket that should listen for
connections on all available network interfaces.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetAddress, InetIsAddressRoutable, INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetIsAddressRoutable Function

BOOL WINAPI InetIsAddressRoutable(
 LPINTERNET_ADDRESS lpAddress
);

The InetIsAddressRoutable function determines if the IP address is routable over the Internet.

Parameters
lpAddress

A pointer to an INTERNET_ADDRESS structure that contains the address to check. This
parameter cannot be NULL.

Return Value
If the function succeeds and the IP address is routable over the Internet, the return value is non-
zero. If the function fails or the address is not routable, the return value is zero. If the parameter is
NULL, or the address family is not supported, the last error code will be updated. If the address is
valid but not routable, the last error code will be set to NO_ERROR.

Remarks
A routable IP address is one that can be reached by anyone over the public Internet. These are
also commonly referred to as "public addresses" which are typically assigned to networks and
individual hosts by an Internet service provider. There are also certain addresses that are not
routable over the Internet, and used to address systems over a local network or private intranet.
This function can be used to determine if a given IP address is public (routable) or private.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetAddress, InetGetExternalAddress, InetIsAddressNull, INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetIsBlocking Function

BOOL WINAPI InetIsBlocking(
 SOCKET hSocket
);

The InetIsBlocking function is used to determine if the socket is performing a blocking operation.

Parameters
hSocket

Socket handle.

Return Value
If the socket is currently performing a blocking operation, the function returns a non-zero value. If
the socket is not performing a blocking operation, or the socket handle is invalid, the function
returns zero.

Remarks
This function is typically used to determine if an open socket that is being used by another thread
is currently blocked. A socket may block when waiting to receive data from a remote host or while
data is actively being exchanged. Because there can only be one blocking socket operation per
thread, this function can be used to determine if a function such as InetRead or InetWrite would
fail because another thread is currently sending or receiving data on that socket. This socket
handle that is passed to this function does not need to be owned by the current thread.

It is important to note that if this function returns a non-zero value, it does not guarantee that a
subsequent read or write on the socket will succeed. The application should always check the
return value from functions such as InetRead and InetWrite to ensure they were successful.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetIsConnected, InetIsReadable, InetIsWritable, InetRead, InetWrite

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetIsClosed Function

BOOL WINAPI InetIsClosed(
 SOCKET hSocket
);

The InetIsClosed function is used to determine if the remote host has closed its socket.

Parameters
hSocket

Socket handle.

Return Value
If the remote host has closed its socket, the function returns a non-zero value. If the remote host
has not closed its connection, or the socket handle is invalid, the function returns zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetIsConnected, InetIsListening, InetIsReadable, InetIsWritable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetIsConnected Function

BOOL WINAPI InetIsConnected(
 SOCKET hSocket
);

The InetIsConnected function is used to determine if the socket is currently connected to a
remote host.

Parameters
hSocket

Socket handle.

Return Value
If the socket is connected to a remote host, the function returns a non-zero value. If the socket is
not connected, or the socket handle is invalid, the function returns zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetIsClosed, InetIsListening, InetIsReadable, InetIsWritable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetIsListening Function

BOOL WINAPI InetIsListening(
 SOCKET hSocket
);

The InetIsListening function determines if the socket is listening for connection requests.

Parameters
hSocket

Socket handle.

Return Value
If the socket is being used to listen for connection requests, the function returns a non-zero value.
If the socket is not listening or the socket handle is invalid, the function returns zero.

Remarks
The InetIsListening function determines if the socket is being used in a server application to
actively listen for incoming connection requests from client applications. A listening socket can be
created using either the InetAsyncListen or InetListen functions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetAsyncListen, InetIsReadable, InetIsWritable, InetIsConnected, InetListen

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetIsProtocolAvailable Function

BOOL WINAPI InetIsProtocolAvailable(
 INT nAddressFamily,
 INT nProtocol
);

The InetIsProtocolAvailable function determines if the operating system supports creating a
socket for the specified address family and protocol.

Parameters
nAddressFamily

An integer which identifies the address family that should be checked. It should be one of the
following values:

Constant Description

INET_ADDRESS_IPV4 Specifies that the function should determine if it can create an
Internet Protocol version 4 (IPv4) socket. This requires that the
system have an IPv4 TCP/IP stack bound to at least one network
adapter on the local system. All Windows systems include
support for IPv4 by default.

INET_ADDRESS_IPV6 Specifies that the function should determine if it can create an
Internet Protocol version 6 (IPv6) socket. This requires that the
system have an IPv6 TCP/IP stack bound to at least one network
adapter on the local system. Windows XP and Windows Server
2003 includes support for IPv6, however it is not installed by
default. Windows Vista and later versions include support for
IPv6 and enable it by default.

nProtocol

An integer which identifies the protocol that should be checked. It should be one of the
following values:

Constant Description

INET_PROTOCOL_TCP Specifies the Transmission Control Protocol. This protocol
provides a reliable, bi-directional byte stream. This requires
that the system be capable of creating a stream socket using
the specified address family.

INET_PROTOCOL_UDP Specifies the User Datagram Protocol. This protocol is
message oriented, sending data in discrete packets. This
requires that the system be capable of creating a datagram
socket using the specified address family.

Return Value
If the the system is capable of creating a socket using the specified address family and protocol,
this function will return a non-zero value. If the combination of address family and protocol is not
supported, this function will return a value of zero.

Remarks

The InetIsProtocolAvailable function is used to determine if the operating system supports
creating a particular type of socket. Typically it is used by an application to determine if the system
has an IPv6 TCP/IP stack installed and configured. By default, all Windows systems will have an
IPv4 stack installed if the system has a network adapter. However, not all systems may have an
IPv6 stack installed, particularly older Windows XP and Windows Server 2003 systems. Note that if
an IPv6 stack is not installed, the library will not recognize IPv6 addresses and cannot resolve host
names that only have an IPv6 (AAAA) record, even if the address or host name is valid.

Example
if (!InetIsProtocolAvailable(INET_ADDRESS_IPV6, INET_PROTOCOL_TCP))
{
 AfxMessageBox(_T("This system does not support IPv6"), MB_ICONEXCLAMATION);
 return;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetAddress, InetGetHostAddress, InetGetHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetIsReadable Function

BOOL WINAPI InetIsReadable(
 SOCKET hSocket,
 DWORD dwTimeout,
 LPDWORD lpdwAvail
);

The InetIsReadable function is used to determine if data is available to be read from the socket.

Parameters
hSocket

Socket handle.

dwTimeout

Timeout value in milliseconds. If the socket cannot be read within this time period, the function
will return a value of zero. A timeout value of zero specifies that the socket should be polled
without blocking the current thread.

lpdwAvail

A pointer to an unsigned integer which will contain the number of bytes available to read.

Return Value
If the current thread can read data from the socket without blocking, the function returns a non-
zero value. If the current thread cannot read any data without blocking, the function returns zero.

Remarks
On some platforms, the value returned in lpdwAvail will not exceed the size of the receive buffer
(typically 64K bytes). Because of differences between TCP/IP stack implementations, it is not
recommended that your application exclusively depend on this value to determine the exact
number of bytes available. Instead, it should be used as a general indicator that there is data
available to be read.

If the connection is secure, the value returned in lpdwAvail will reflect the number of bytes
available in the encrypted data stream. The actual amount of data available to the application after
it has been decrypted will vary.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetIsClosed, InetIsWritable, InetPeek, InetRead, InetReadLine, InetReadStream

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetIsUrgent Function

BOOL WINAPI InetIsUrgent(
 SOCKET hSocket
);

The InetIsUrgent function determines if there is any out-of-band (OOB) data available to be read.

Parameters
hSocket

Handle to the socket.

Return Value
If there is out-of-band data, the return value is non-zero. If there is no out-of-band data, or an
error occurs the return value is zero. To determine if an error has occurred, use the
InetGetLastError function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetSetOption (INET_OPTION_INLINE)

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetIsWritable Function

BOOL WINAPI InetIsWritable(
 SOCKET hSocket,
 DWORD dwTimeout
);

The InetIsWritable function is used to determine if data can be written to the socket.

Parameters
hSocket

Socket handle.

dwTimeout

Timeout value in milliseconds. If the socket cannot be written to within this time period, the
function will return a value of zero. A timeout value of zero specifies that the socket should be
polled without blocking the current thread.

Return Value
If the current thread can write data to the socket within the timeout period, the function returns a
non-zero value. The function will return zero if the socket send buffer is full.

Remarks
The InetIsWritable function cannot be used to determine the amount of data that can be sent to
the remote host without blocking the current thread. A non-zero return value only indicates that
the send buffer is not full and can accept some data. In most cases, it is recommended that larger
blocks of data be broken into smaller logical blocks rather than attempting to send it all of the
data at once. For very large streams of data, it is recommended that you use the
InetWriteStream function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetIsReadable, InetWrite, InetWriteLine, InetWriteStream

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetListen Function

SOCKET WINAPI InetListen(
 LPCTSTR lpszLocalAddress,
 UINT nLocalPort
);

The InetListen function creates a passive socket used to listen for connections from a client
application.

This function has been deprecated and is included for backwards compatibility. Use the
InetServerStart function to create a server application.

Parameters
lpszLocalAddress

A pointer to a string which specifies the local IP address that the socket should be bound to. If
this parameter is NULL or points to an empty string, a client may establish a connection using
any valid network interface configured on the local system. If an address is specified, then a
client may only establish a connection with the system using that address.

nLocalPort

The local port number that the socket should be bound to. This value must be greater than
zero. Port numbers less than 1024 are considered reserved ports and may require that the
process execute with administrative privileges and/or require changes to the default firewall
rules to permit inbound connections.

Return Value
If the function succeeds, the return value is a socket handle. If the function fails, the return value is
INVALID_SOCKET. To get extended error information, call InetGetLastError.

Remarks
To listen for connections on any suitable IPv4 interface, specify the special dotted-quad address
"0.0.0.0". You can accept connections from clients using either IPv4 or IPv6 on the same socket by
specifying the special IPv6 address "::0", however this is only supported on Windows 7 and
Windows Server 2008 R2 or later platforms. If no local address is specified, then the server will only
listen for connections from clients using IPv4. This behavior is by design for backwards
compatibility with systems that do not have an IPv6 TCP/IP stack installed.

The socket option INET_OPTION_REUSEADDRESS is enabled by default when calling the
InetListen function. This allows an application to re-use a local address and port number when
creating the listening socket. If this behavior is not desired, use the InetListenEx function instead.

If an IPv6 address is specified as the local address, the system must have an IPv6 stack installed
and configured, otherwise the function will fail.

After the listening socket has been created, the application should then call the InetAccept
function to wait for a client to establish a connection. For servers that need to handle multiple
simultaneous client connections, it is recommended that the asynchronous functions be used.

Example
SOCKET hServer = INVALID_SOCKET;
LPCTSTR lpszAddress = _T("192.168.0.48");

// Accept connections from clients that connect to

// address 192.168.0.48 on port 7000

hServer = InetListen(lpszAddress, 7000);
if (hServer == INVALID_SOCKET)
{
 DWORD dwError;
 TCHAR szError[256];

 dwError = InetGetLastError();
 InetGetErrorString(dwError, szError, 256);

 MessageBox(NULL, szError, NULL, MB_OK|MB_TASKMODAL);
 return;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetAccept, InetAcceptEx, InetInitialize, InetListenEx, InetServerStart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetListenEx Function

SOCKET WINAPI InetListenEx(
 LPCTSTR lpszLocalAddress,
 UINT nLocalPort,
 UINT nBacklog,
 DWORD dwOptions
);

The InetListenEx function creates a passive socket, and specifies the maximum number of
connection requests that will be queued.

This function has been deprecated and is included for backwards compatibility. Use the
InetServerStart function to create a server application.

Parameters
lpszLocalAddress

A pointer to a string which specifies the local IP address that the socket should be bound to. If
this parameter is NULL or points to an empty string, a client may establish a connection using
any valid network interface configured on the local system. If an address is specified, then a
client may only establish a connection with the system using that address.

nLocalPort

The local port number that the socket should be bound to. This value must be greater than
zero. Port numbers less than 1024 are considered reserved ports and may require that the
process execute with administrative privileges and/or require changes to the default firewall
rules to permit inbound connections.

nBacklog

The maximum length of the queue allocated for pending client connections. A value of zero
specifies that the size of the queue should be set to a maximum reasonable value. On Windows
server platforms, the maximum value is large enough to queue several hundred pending
connections.

dwOptions

An unsigned integer used to specify one or more socket options. The following values are
supported:

Constant Description

INET_OPTION_NONE No option specified. If the address and port number
are in use by another application or a closed socket
which was listening on this port is still in the
TIME_WAIT state, the function will fail.

INET_OPTION_REUSEADDRESS This option specifies the local address can be reused.
This option enables a server application to listen for
connections using the specified address and port
number even if they were in use recently. This is
typically used to enable an application to close the
listening socket and immediately reopen it without
getting an error that the address is in use.

INET_OPTION_EXCLUSIVE This option specifies the local address and port

number is for the exclusive use by the current
process, preventing another application from forcibly
binding to the same address. If another process has
already bound a socket to the address provided by
the caller, this function will fail.

INET_OPTION_RESERVEDPORT This option specifies the listening socket should be
bound to an unused port number less than 1024,
which is typically reserved for well-known system
services. If this option is specified, the process may
require administrative privileges and firewall rules that
will permit a client to establish a connection with the
service.

INET_OPTION_NOINHERIT This option prevents the socket handle from being
inherited by child processes created by the
application. Using this option can mitigate situations
in which a child process does not close the handle,
leaving it open after the parent process has
disconnected from the server.

Return Value
If the function succeeds, the return value is a socket handle. If the function fails, the return value is
INVALID_SOCKET. To get extended error information, call InetGetLastError.

Remarks
To listen for connections on any suitable IPv4 interface, specify the special dotted-quad address
"0.0.0.0". You can accept connections from clients using either IPv4 or IPv6 on the same socket by
specifying the special IPv6 address "::0", however this is only supported on Windows 7 and
Windows Server 2008 R2 or later platforms. If no local address is specified, then the server will only
listen for connections from clients using IPv4. This behavior is by design for backwards
compatibility with systems that do not have an IPv6 TCP/IP stack installed.

If the INET_OPTION_REUSEADDRESS option is not specified, an error may be returned if a
listening socket was recently created for the same local address and port number. By default, once
a listening socket is closed there is a period of time that all applications must wait before the
address can be reused (this is called the TIME_WAIT state). The actual amount of time depends on
the operating system and configuration parameters, but is typically two to four minutes. Specifying
this option enables an application to immediately re-use a local address and port number that was
previously in use. Note that this does not permit more than one server to bind to the same
address.

If the INET_OPTION_EXCLUSIVE option is specified, the local address and port number cannot be
used by another process until the listening socket is closed. This can prevent another application
from forcibly binding to the same listening address as your server. This option can be useful in
determining whether or not another process is already bound to the address you wish to use, but
it may also prevent your server application from restarting immediately, regardless if the
INET_OPTION_REUSEADDRESS option has also been specified.

If an IPv6 address is specified as the local address, the system must have an IPv6 stack installed
and configured, otherwise the function will fail.

After the listening socket has been created, the application should then call the InetAccept or
InetAcceptEx function to wait for a client to establish a connection. For servers that need to

handle multiple simultaneous client connections, it is recommended that the asynchronous
functions be used.

Example
SOCKET hServer = INVALID_SOCKET;
LPCTSTR lpszAddress = _T("192.168.0.48");

// Accept connections from clients that connect to
// address 192.168.0.48 on port 7000 with a standard
// backlog of 5 connections

hServer = InetListenEx(lpszAddress,
 7000,
 INET_BACKLOG,
 INET_OPTION_REUSEADDRESS);

if (hServer == INVALID_SOCKET)
{
 DWORD dwError;
 TCHAR szError[256];

 dwError = InetGetLastError();
 InetGetErrorString(dwError, szError, 256);

 MessageBox(NULL, szError, NULL, MB_OK|MB_TASKMODAL);
 return;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetAccept, InetAcceptex, InetListen, InetServerStart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetMatchHostName Function

BOOL WINAPI InetMatchHostName(
 LPCTSTR lpszHostName,
 LPCTSTR lpszHostMask
 BOOL bResolve
);

The InetMatchHostName function matches a host name against one more strings that may
contain wildcards.

Parameters
lpszHostName

A pointer to a string which specifies the host name or IP address to match.

lpszHostMask

A pointer to a string which specifies one or more values to match against the host name. The
asterisk character can be used to match any number of characters in the host name, and the
question mark can be used to match any single character. Multiple values may be specified by
separating them with a semicolon.

bResolve

A boolean value which specifies if the host name or IP address should be resolved when
matching the host against the mask string. If this parameter is non-zero, two checks against the
host mask string will be performed; once for the host name specified and once for its IP
address. If this parameter is zero, then the match is made only against the host name string
provided.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call InetGetLastError.

Remarks
The InetMatchHostName function provides a convenient way for an application to determine if a
given host name matches one or more mask strings which may contain wildcard characters. For
example, the host name could be "www.microsoft.com" and the host mask string could be
"*.microsoft.com". In this example, the function would return a non-zero value indicating the host
name matched the mask. However, if the mask string was "*.net" then the function would return
zero, indicating that there was no match. Multiple mask values can be combined by separating
them with a semicolon; for example, the mask "*.com;*.org" would match any host name in either
the .com or .org top-level domains.

If an internationalized domain name (IDN) is specified, it will be converted internally to an ASCII
string using Punycode encoding. The host mask will be matched against this encoded version of
the host name, not its Unicode version.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetGetAddress, InetGetHostAddress, InetGetHostName, InetGetLocalAddress, InetGetPeerAddress

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetNormalizeHostName Function

INT WINAPI InetNormalizeHostName(
 LPCTSTR lpszHostName,
 LPTSTR lpszNormalized,
 INT nMaxLength
);

The InetNormalizeHostName function returns the canonical form of a host name in the specified
buffer.

Parameters
lpszHostName

Pointer to the host name as a null-terminated string. This parameter cannot be a NULL pointer
or a zero length string.

lpszNormalized

Pointer to the string buffer that will contain the canonical form of the host name, including the
terminating null character. It is recommended that this buffer be at least 256 characters in size.
This parameter cannot be a NULL pointer and must be large enough to store the complete host
name.

nMaxLength

The maximum number of characters that can be copied to the lpszNormalized string buffer.
This parameter cannot be zero, and must include the terminating null character.

Return Value
If the function succeeds, the return value is the number of characters copied into the string buffer.
If the function fails, the return value is INET_ERROR. To get extended error information, call
InetGetLastError.

Remarks
The InetNormalizeHostName function will remove all leading and trailing whitespace characters
from the host name and fold all upper-case characters to lower-case. If an internationalized
domain name (IDN) containing Unicode characters is passed to this function, it will be converted
to an ASCII compatible format for domain names.

The lpszHostName parameter should only specify a host name or IP address. If you want to
support the use of URLs to establish a connection, use the InetGetUrlHostName function which
has extended support for extracting the host name and port number specified in a URL.

If the Unicode version of this function is used, the host name will be converted from UTF-16 to
UTF-8 and then processed. If you are unsure if an internationalized domain name will be specified
as the host name, it is recommended you use the Unicode version.

Although this function performs checks to ensure that the lpszHostName parameter is in the
correct format and does not contain any illegal characters or malformed encoding, it does not
validate the existence of the domain name. To check if the host name exists and has a valid IP
address, use the InetValidateHostName function.

It is recommended that you use this function if your application needs to store the host name, and
if accepts a host name as user input. It is not necessary to call this function prior to calling other
SocketWrench functions which accept a host name as a parameter. Those functions already
normalize the host name and perform checks to ensure it is in the correct format.

If the lpszHostName parameter specifies a valid IPv4 or IPv6 address string instead of a host
name, this function will return a copy of that IP address in the buffer provided by the caller. This
allows the function to be used in cases where a user may input either a host name or IP address.
To determine if the IP address has a corresponding host name, use the InetGetHostName
function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetGetHostAddress, InetGetHostName, InetGetUrlHostName, InetHostNameToUnicode,
InetValidateHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetPeek Function

INT WINAPI InetPeek(
 SOCKET hSocket,
 LPBYTE lpBuffer,
 INT cbBuffer
);

The InetPeek function reads the specified number of bytes from the socket and copies them into
the buffer, but it does not remove the data from the internal socket buffer. The data may be of
any type, and is not terminated with a null character.

Parameters
hSocket

The socket handle.

lpBuffer

Pointer to the buffer in which the data will be copied. This argument may be NULL, in which
case no data is copied from the socket buffers, however the function will return the number of
bytes available to read.

cbBuffer

The maximum number of bytes to read and copy into the specified buffer. If the lpBuffer
parameter is not NULL, this value must be greater than zero.

Return Value
If the function succeeds, the return value is the number of bytes available to read from the socket.
A return value of zero indicates that there is no data available to read at that time. If the function
fails, the return value is INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
The InetPeek function returns data that is available to read from the socket, up to the number of
bytes specified. The data returned by this function is not removed from the socket buffers. It must
be consumed by a subsequent call to the InetRead or InetReadEx function. The return value
indicates the number of bytes that can be read in a single operation, up to the specified buffer
size. However, it is important to note that it may not indicate the total amount of data available to
be read from the socket at that time.

If no data is available to be read, the method will return a value of zero. Using this method in a
loop to poll a non-blocking socket may cause the application to become non-responsive. To
determine if there is data available to be read, use the InetIsReadable function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetFlush, InetRead, InetReadEx, InetWrite, InetWriteEx

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetRead Function

INT WINAPI InetRead(
 SOCKET hSocket,
 LPBYTE lpBuffer,
 INT cbBuffer
);

The InetRead function reads the specified number of bytes from the socket and copies them into
the buffer. The data may be of any type, and is not terminated with a null character.

Parameters
hSocket

The socket handle.

lpBuffer

Pointer to the buffer in which the data will be copied.

cbBuffer

The maximum number of bytes to read and copy into the specified buffer. This value must be
greater than zero.

Return Value
If the function succeeds, the return value is the number of bytes actually read. A return value of
zero indicates that the remote host has closed the connection and there is no more data available
to be read. If the function fails, the return value is INET_ERROR. To get extended error information,
call InetGetLastError.

Remarks
The InetRead function will read up to the specified number of bytes and store the data in the
buffer provided by the caller. If there is no data available to be read at the time this function is
called, the current thread will block until at least one byte of data becomes available, the timeout
period elapses or an error occurs. This function will return if any amount of data is sent by the
remote host, and will not block until the entire buffer has been filled. To avoid blocking the current
thread, either create an asynchronous socket or use the InetIsReadable function to determine if
there is data available to be read prior to calling this function.

The application should never make an assumption about the amount of data that will be available
to read. TCP considers all data to be an arbitrary stream of bytes and does not impose any
structure on the data itself. For example, if the remote host is sending data to the server in fixed
512 byte blocks of data, it is possible that a single call to the Read function will return only a
partial block of data, or it may return multiple blocks combined together. It is the responsibility of
the application to buffer and process this data appropriately.

For applications that are built using the Unicode character set, it is important to note that the
buffer is an array of bytes, not characters. If the remote host is writing string data to the socket, it
must be read as a stream of bytes and converted using the MultiByteToWideChar function. If
the remote host is sending lines of text terminated with a linefeed or carriage return and linefeed
pair, the InetReadLine function will return a line of text at a time and perform this conversion for
you.

When InetRead is called and the socket is in non-blocking mode, it is possible that the function
will fail because there is no available data to read at that time. This should not be considered a

fatal error. Instead, the application should simply wait to receive the next asynchronous notification
that data is available.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetIsReadable, InetPeek, InetReadEx, InetWrite, InetWriteEx

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetReadEx Function

INT WINAPI InetReadEx(
 SOCKET hSocket,
 LPVOID lpvBuffer,
 INT cbBuffer,
 DWORD dwReserved,
 LPINTERNET_ADDRESS lpRemoteAddress,
 UINT * lpnRemotePort
);

The InetReadEx function reads the specified number of bytes from the socket and copies them
into the buffer. The data may be of any type, and is not terminated with a null character.

Parameters
hSocket

The socket handle.

lpvBuffer

Pointer to the buffer in which the data will be copied.

cbBuffer

The maximum number of bytes to read and copy into the specified buffer. This value must be
greater than zero.

dwReserved

Reserved parameter. This value must always be zero.

lpRemoteAddress

Pointer to an INTERNET_ADDRESS structure which will contain the IP address of the remote host
that sent the data being read. If this information is not required, the parameter may be specified
as NULL.

lpnRemotePort

Pointer to an unsigned integer which will contain the remote port number. If this information is
not required, the parameter may be specified as NULL.

Return Value
If the function succeeds, the return value is the number of bytes actually read. A return value of
zero indicates that the remote host has closed the connection and there is no more data available
to be read. If the function fails, the return value is INET_ERROR. To get extended error information,
call InetGetLastError.

Remarks
When InetReadEx is called and the socket is in non-blocking mode, it is possible that the function
will fail because there is no available data to read at that time. This should not be considered a
fatal error. Instead, the application should simply wait to receive the next asynchronous notification
that data is available.

This function extends the InetRead function to return additional information about the peer who
sent the data being received. For a client TCP socket, the IP address and remote port are the same
values that were used to establish the connection. For a server TCP socket, it is the IP address and
port number of the client which sent the data. When reading data from a UDP socket, this is the IP
address and remote port of the peer that sent the datagram. This information can be used in

conjunction with the InetWriteEx function to send a datagram back to that host.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetFlush, InetGetPeerAddress, InetPeek, InetRead, InetWrite, InetWriteEx, INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetReadLine Function

BOOL WINAPI InetReadLine(
 SOCKET hSocket,
 LPTSTR lpszBuffer,
 LPINT lpnLength
);

The InetReadLine function reads up to a line of data from the socket and returns it in a string
buffer.

Parameters
hSocket

The socket handle. The socket must reference a stream socket, not a datagram or raw socket. If
the socket type is not valid, the function will return an error.

lpszBuffer

Pointer to the string buffer that will contain the data when the function returns. The string will
be terminated with a null byte, and will not contain the end-of-line characters.

lpnLength

A pointer to an integer value which specifies the length of the buffer. The value should be
initialized to the maximum number of characters that can be copied into the string buffer,
including the terminating null character. When the function returns, its value will updated with
the actual length of the string.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call InetGetLastError.

Remarks
The InetReadLine function reads data from the socket and copies into a specified string buffer.
Unlike the InetRead function which reads arbitrary bytes of data, this function is specifically
designed to return a single line of text data in a null-terminated string. When an end-of-line
character sequence is encountered, the function will stop and return the data up to that point. The
string buffer is guaranteed to be null-terminated and will not contain the end-of-line characters.

There are some limitations when using InetReadLine. The function should only be used to read
text, never binary data. In particular, the function will discard nulls, linefeed and carriage return
control characters. The Unicode version of this function will return a Unicode string, however this
function does not support reading raw Unicode data from the socket. Any data read from the
socket is internally buffered as octets (eight-bit bytes) and converted to Unicode using the
MultiByteToWideChar function.

This function will force the thread to block until an end-of-line character sequence is processed,
the read operation times out or the remote host closes its end of the socket connection. If this
function is called with asynchronous events enabled, it will automatically switch the socket into a
blocking mode, read the data and then restore the socket to asynchronous operation. If another
socket operation is attempted while InetReadLine is blocked waiting for data from the remote
host, an error will occur. It is recommended that this function only be used with blocking
(synchronous) socket connections; if the application needs to establish multiple simultaneous
connections, it should create worker threads to manage each connection.

The InetRead and InetReadLine function calls can be intermixed, however be aware that
InetRead will consume any data that has already been buffered by the InetReadLine function
and this may have unexpected results.

Unlike the InetRead function, it is possible for data to be returned in the buffer even if the return
value is zero. Applications should also check the value of the lpnLength argument to determine if
any data was copied into the buffer. For example, if a timeout occurs while the function is waiting
for more data to arrive on the socket, it will return zero; however, data may have already been
copied into the string buffer prior to the error condition. It is the responsibility of the application to
process that data, regardless of the function return value.

Example
TCHAR szBuffer[MAXBUFLEN];
INT nLength;
BOOL bResult;

do
{
 nLength = sizeof(szBuffer);
 bResult = InetReadLine(hSocket, szBuffer, &nLength);

 if (nLength > 0)
 {
 // Process the line of data returned in the string
 // buffer; the string is always null-terminated
 }
} while (bResult);

DWORD dwError = InetGetLastError();
if (dwError == ST_ERROR_CONNECTION_CLOSED)
{
 // The remote host has closed its side of the connection and
 // there is no more data available to be read
}
else if (dwError != 0)
{
 // An error has occurred while reading a line of data
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetIsReadble, InetRead, InetWrite, InetWriteLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetReadStream Function

BOOL WINAPI InetReadStream(
 SOCKET hSocket,
 LPVOID lpvBuffer,
 LPDWORD lpdwLength,
 DWORD dwOptions,
 LPBYTE lpMarker,
 DWORD cbMarker,
 DWORD dwReserved
);

The InetReadStream function reads the socket data stream and stores the contents in the
specified buffer.

Parameters
hSocket

The socket handle. The socket must reference a stream socket, not a datagram or raw socket. If
the socket type is not valid, the function will return an error.

lpvBuffer

Pointer to the buffer that will contain or reference the data when the function returns. The
actual argument depends on the value of the dwOptions parameter which specifies how the
data stream will be stored.

lpdwLength

A pointer to an unsigned integer value which specifies the maximum length of the buffer and
contains the number of bytes read when the function returns. This argument should should
always point to an initialized value. If the lpvBuffer argument specifies a memory buffer, then
this argument cannot point to an initialized value of zero; if any other type of stream buffer is
used and the initialized value is zero, that indicates that all available data from the socket should
be returned until the end-of-stream marker is encountered or the remote host disconnects.

dwOptions

An unsigned integer value which specifies both the stream buffer type and any options to be
used when reading the data stream. One of the following stream types may be specified:

Constant Description

INET_STREAM_DEFAULT The default stream buffer type is determined by
the value passed as the lpvBuffer parameter. If the
argument specifies a pointer to a global memory
handle initialized to NULL, then the function will
return a handle which references the data;
otherwise, the function will consider the parameter
a pointer to a block of pre-allocated memory
which will contain the stream data when the
function returns. In most cases, it is recommended
that an application explicitly specify the stream
buffer type rather than using the default value.

INET_STREAM_MEMORY The lpvBuffer argument specifies a pointer to a
pre-allocated block of memory which will contain
the data read from the socket when the function

returns. If this stream buffer type is used, the
lpdwLength argument must point to an unsigned
integer which has been initialized with the
maximum length of the buffer.

INET_STREAM_HGLOBAL The lpvBuffer argument specifies a pointer to a
global memory handle. When the function returns,
the handle will reference a block of memory that
contains the stream data. The application should
take care to make sure that the handle passed to
the function does not currently reference a valid
block of memory; it is recommended that the
handle be initialized to NULL prior to calling this
function.

INET_STREAM_HANDLE The lpvBuffer argument specifies a Windows
handle to an open file, console or pipe. This should
be the same handle value returned by the
CreateFile function in the Windows API. The data
read from the socket will be written to this handle
using the WriteFile function.

INET_STREAM_SOCKET The lpvBuffer argument specifies a socket handle.
The data read from the socket specified by the
hSocket argument will be written to this socket.
The socket handle passed to this function must
have been created by this library; if it is a socket
created by an third-party library or directly by the
Windows Sockets API, you should either attach the
socket using the InetAttachSocket function or use
the INET_STREAM_HANDLE stream buffer type
instead.

In addition to the stream buffer types listed above, the dwOptions parameter may also
have one or more of the following bit flags set. Programs should use a bitwise operator
to combine values.

Constant Description

INET_STREAM_CONVERT The data stream is considered to be textual and
will be modified so that end-of-line character
sequences are converted to follow standard
Windows conventions. This will ensure that all lines
of text are terminated with a carriage-return and
linefeed sequence. Because this option modifies
the data stream, it should never be used with
binary data. Using this option may result in the
amount of data returned in the buffer to be larger
than the source data. For example, if the source
data only terminates a line of text with a single
linefeed, this option will have the effect of inserting
a carriage-return character before each linefeed.

INET_STREAM_UNICODE The data stream should be converted to Unicode.
This option should only be used with text data, and
will result in the stream data being returned as 16-
bit wide characters rather than 8-bit bytes. The
amount of data returned will be twice the amount
read from the source data stream; if the
application is using a pre-allocated memory buffer,
this must be considered before calling this
function.

lpMarker

A pointer to an array of bytes which marks the end of the data stream. When this byte
sequence is encountered by the function, it will stop reading and return to the caller.
The buffer will contain all of the data read from the socket up to and including the
end-of-stream marker. If this argument is NULL, then the function will continue to read
from the socket until the maximum buffer size is reached, the remote host closes its
socket or an error is encountered.

cbMarker

An unsigned integer value which specifies the length of the end-of-stream marker in
bytes. If the lpMarker parameter is NULL, then this value must be zero.

dwReserved

A reserved parameter. This value must always be zero.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value
is zero. To get extended error information, call InetGetLastError.

Remarks
The InetReadStream function enables an application to read an arbitrarily large stream
of data and store it in memory, write it to a file or even another socket. Unlike the
InetRead method, which will return immediately when any amount of data has been
read, InetReadStream will only return when the buffer is full as specified by the
lpdwLength parameter, the logical end-of-stream marker has been read, the socket
closed by the remote host or when an error occurs.

This function will force the thread to block until the operation completes. If this function is
called with asynchronous events enabled, it will automatically switch the socket into a
blocking mode, read the data stream and then restore the socket to asynchronous
operation when it has finished. If another socket operation is attempted while
InetReadStream is blocked waiting for data from the remote host, an error will occur. It
is recommended that this function only be used with blocking (synchronous) socket
connections; if the application needs to establish multiple simultaneous connections, it
should create worker threads to manage each connection.

It is possible for data to be returned in the buffer even if the function returns a value of
zero. Applications should also check the value of the lpdwLength argument to determine
if any data was copied into the buffer. For example, if a timeout occurs while the function
is waiting for more data to arrive on the socket, it will return zero; however, data may
have already been copied into the buffer prior to the error condition. It is the
responsibility of the application to process that data, regardless of the function return
value.

Because InetReadStream can potentially cause the application to block for long periods
of time as the data stream is being read, the function will periodically generate
INET_EVENT_PROGRESS events. An application can register an event hander using the
InetRegisterEvent function, and can obtain information about the current operation by
calling the InetGetStreamInfo function.

Example
HGLOBAL hgblBuffer = NULL; // Return data in a global memory buffer
DWORD cbBuffer = 102400; // Read up to 100K bytes
BOOL bResult;

bResult = InetReadStream(hSocket,
 &hgblBuffer,
 &cbBuffer,
 INET_STREAM_HGLOBAL | INET_STREAM_CONVERT,
 NULL, 0, 0);

if (bResult && cbBuffer > 0)
{
 LPBYTE lpBuffer = (LPBYTE)GlobalLock(hgblBuffer);

 // Use data in the stream buffer

 GlobalUnlock(hgblBuffer);
 GlobalFree(hgblBuffer);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetStreamInfo, InetRead, InetReadLine, InetStoreStream, InetWrite, InetWriteLine,
InetWriteStream

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetRegisterEvent Function

INT WINAPI InetRegisterEvent(
 SOCKET hSocket,
 UINT nEventId,
 INETEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

The InetRegisterEvent function registers a callback function for the specified event.

Parameters
hSocket

Socket handle.

nEventId

An unsigned integer which specifies which event should be registered with the specified callback
function. This parameter is ignored if the socket handle specifies a server created using the
InetServerStart function. One or more of the following values may be used:

Constant Description

INET_EVENT_ACCEPT A network event that indicates the process has received a
connection request from a client and should accept the
connection using the InetAsyncAccept function. This
event is only generated for server applications which have
created an asynchronous socket using the
InetAsyncListen function.

INET_EVENT_CONNECT A network event that indicates the connection to the
remote host has completed.

INET_EVENT_DISCONNECT A network event that indicates the remote host has
closed the connection. The process should read any
remaining data and disconnect.

INET_EVENT_READ A network event which indicates data is available to read.
No additional messages will be posted until the process
has read at least some of the data from the socket. This
event is only generated if the socket is in asynchronous
mode.

INET_EVENT_WRITE A network event which indicates the application can send
data to the remote host. This notification is sent after a
connection has been established, or after a previous
attempt to write data has failed because it would result in
a blocking operation. This event is only generated if the
socket is in asynchronous mode.

INET_EVENT_TIMEOUT The network operation has exceeded the specified
timeout period. The application may attempt to retry the
operation, or may disconnect from the remote host and
report an error to the user.

INET_EVENT_CANCEL The application has canceled a blocking operation. This

event is fired once an operation has been terminated by
the InetCancel function, and control has been returned
to the calling process.

lpEventProc

Specifies the address of the application defined callback function. For more information about
the callback function, see the description of the InetEventProc callback function. If this
parameter is NULL, the callback for the specified event is disabled. This parameter cannot be
NULL if the socket handle specifies a server created using the InetServerStart function.

dwParam

A user-defined integer value that is passed to the callback function. If the application targets the
x86 (32-bit) platform, this parameter must be a 32-bit unsigned integer. If the application
targets the x64 (64-bit) platform, this parameter must be a 64-bit unsigned integer.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
The InetRegisterEvent function associates a callback function with a specific event. The event
handler is an InetEventProc function that is invoked when the event occurs. Arguments are
passed to the function to identify the client session, the event type and the user-defined value
specified when the event handler is registered. If the event occurs because of an error condition,
the error code will be provided to the handler.

The callback function specified by the lpEventProc parameter must be declared using the
__stdcall calling convention. This ensures the arguments passed to the event handler are pushed
on to the stack in the correct order. Failure to use the correct calling convention will corrupt the
stack and cause the application to terminate abnormally.

This function can be used to change the callback function and user defined parameter for a server
created using the InetServerStart function. However, it cannot be used with client sockets
automatically created by the server interface. Those sockets are managed separately in their own
thread, and individual client event notifications are not supported.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetAsyncAccept, InetAsyncAcceptEx, InetAsyncListen, InetDisableEvents, InetEnableEvents,
InetEventProc, InetFreezeEvents

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetReject Function

BOOL WINAPI InetReject(
 SOCKET hSocket
);

The InetReject function is used to reject a client connection request.

Parameters
hSocket

Handle to a listening socket.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call InetGetLastError.

Remarks
The InetReject function rejects a pending client connection and the remote host will see this as
the connection being aborted. If there are no pending client connections at the time, this function
will immediately return with an error indicating that the operation would cause the thread to block.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetAbort, InetAccept, InetListen

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetServerAsyncNotify Function

BOOL WINAPI InetServerAsyncNotify(
 SOCKET hServer,
 HWND hWnd,
 UINT uMsg
);

Enable or disable asynchronous notification of changes in server status.

Parameters
hServer

The socket handle.

hWnd

A handle to the window whose window procedure will receive the notification message.

uMsg

The user-defined message that will be sent to the notification window.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call InetGetLastError.

Remarks
The InetServerAsyncNotify function is used by an application to enable or disable asynchronous
notifications. The message window is typically the main UI window and these notifications are used
signal to the application that it should update the user interface. If the hWnd parameter is not
NULL, it must specify a valid window handle and the user-defined message must have a value of
WM_USER or higher. The application cannot specify a notification message that is reserved by the
operating system. The pseudo-handle HWND_BROADCAST cannot be specified as the
notification window. If the hWnd parameter is NULL, notifications for the specified server will be
disabled.

When asynchronous notifications are enabled for a server, the server will post the user-defined
message to the window whenever there is a change in status or after a client has connected or
disconnected from the server. The wParam message parameter will contain the notification
message and the lParam message parameter will contain the handle to the server or the unique
client ID. The following notification messages are defined:

Constant Description

INET_NOTIFY_STARTUP This notification is sent when the server has started and
is preparing to accept client connections. This
notification is only sent once, and only if asynchronous
notifications are enabled immediately after the
InetServerStart function is called. This message will not
be sent once the server has begun accepting client
connections or when notification messages are disabled
and then subsequently re-enabled at a later time. The
lParam message parameter will specify the handle to
the server.

INET_NOTIFY_LISTEN This notification is sent when the server is listening for

client connections. This notification message may be
sent to the application multiple times over the lifetime of
the server. If the server was suspended, this notification
will be sent after the application calls the
InetServerResume function to resume accepting client
connections. The lParam message parameter will specify
the handle to the server.

INET_NOTIFY_SUSPEND This notification is sent when the server suspends
accepting new connections because the application has
called either the InetServerSuspend or
InetServerSuspendEx function. This notification
message may be sent to the application multiple times
over the lifetime of the server. The lParam message
parameter will specify the handle to the server.

INET_NOTIFY_RESTART This notification is sent when the server is restarted using
the InetServerRestart function. Note that the server
socket handle provided by the lParam message
parameter will specify the new socket handle of the
restarted server instance, not the original socket handle.
The lParam message parameter will specify the handle
to the server.

INET_NOTIFY_CONNECT This notification is sent when the server accepts a client
connection and the thread that manages the client
session has begun processing network events for that
client. This message notification will not be sent if the
client connection is rejected by the server. The lParam
message parameter will specify the unique ID of the
client that connected to the server.

INET_NOTIFY_DISCONNECT This notification is sent when the client disconnects from
the server and the client socket has been closed. This
notification message may not occur for each client
session that is forced to terminate as the result of the
server being stopped using the InetServerStop
function. The lParam message parameter will specify the
unique ID of the client that disconnected from the
server.

INET_NOTIFY_SHUTDOWN This notification is sent when the server thread is in the
process of terminating. At the time the application
processes this notification message, the server handle in
lParam will reference the defunct server and cannot be
used with other server functions. The lParam message
parameter will specify the handle to the server.

If asynchronous notifications are enabled, you should never use those notifications as a
replacement for an event handler. When an event occurs, the callback function that handles the
event is invoked in the context of the thread that manages the client session. The application
should exchange data with the client within that event handler and not in response to a
notification message. These notification messages should only be used to update the application

UI in response to changes in the status of the server.

The INET_NOTIFY_CONNECT and INET_NOTIFY_DISCONNECT notifications are different from the
other server notifications because the lParam message parameter does not specify the server
handle, but rather the unique client ID associated with the session that connected to or
disconnected from the server. If you need to obtain the handle to the client session using the ID,
call the InetGetClientHandle function. To obtain the server handle in response to the
INET_NOTIFY_CONNECT message, use the InetGetClientServerById function. Note that at the
time the application processes the INET_NOTIFY_DISCONNECT notification message, the client
session will have already terminated.

This function can only be used with a handle returned by the InetServerStart function and cannot
be used with sockets created using the InetListen or InetListenEx functions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetClientServerById, InetGetServerStatus, InetServerStart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetServerBroadcast Function

INT WINAPI InetServerBroadcast(
 SOCKET hServer,
 LPBYTE lpBuffer,
 INT cbBuffer
);

The InetServerBroadcast function sends data to clients that are connected to the specified
server.

Parameters
hServer

The socket handle.

lpBuffer

The pointer to the buffer which contains the data that is to be sent to the server clients.

cbBuffer

The number of bytes to send from the specified buffer.

Return Value
If the function succeeds, the return value is the number of clients that the data was sent to. If the
function fails, the return value is INET_ERROR. To get extended error information, call
InetGetLastError.

Remarks
The InetServerBroadcast function sends the contents of the buffer to all of the clients that are
connected to the specified server. This function will block until all clients have been sent a copy of
the data. There is no guarantee in which order the clients will receive and process the data that
has been broadcast.

This function can only be used with a socket handle created using the InetServerStart function
and cannot be used with sockets created using the InetListen or InetListenEx functions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetClientBroadcast, InetWrite, InetWriteLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetServerLock Function

BOOL WINAPI InetServerLock(
 SOCKET hServer
);

The InetServerLock function locks the specified server, causing other client threads to block until
it is unlocked.

Parameters
hServer

The socket handle to the server.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call InetGetLastError.

Remarks
The InetServerLock function causes the specified server to enter a locked state where only the
current thread may interact with the server and the clients that are connected to it. While a server
is locked, all other threads will block when they attempt to perform a network operation. When
the server is unlocked, the blocked threads will resume normal execution.

This function should be used carefully, and a server should never be left in a locked state for an
extended period of time. It is meant to be used when the server process updates a global data
structure and it must prevent any other threads from performing a network operation during the
update. Only one server can be locked at any one time, and once a server has been locked, it can
only be unlocked by the same thread.

The program should always check the return value from this function, and should never assume
that the lock has been established. If more than one thread attempts to lock a server at the same
time, there is no guarantee as to which thread will actually establish the lock. If a potential
deadlock situation is detected, this function will fail and return a value of zero.

Every time the InetServerLock function is called, an internal lock counter is incremented, and the
lock will not be released until the lock count drops to zero. This means that each call to
InetServerLock must be matched by an equal number of calls to the InetServerUnlock function.
Failure to do so will result in the server becoming non-responsive as it remains in a locked state.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetLockedServer, InetServerUnlock

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetServerRestart Function

SOCKET WINAPI InetServerRestart(
 SOCKET hServer
);

The InetServerRestart function restarts the server, terminating all active client sessions.

Parameters
hServer

Handle to the server socket.

Return Value
If the function succeeds, the return value is the new socket handle for the specified server. If the
function fails, the return value is INVALID_SOCKET. To get extended error information, call
InetGetLastError.

Remarks
The InetServerRestart function will restart the specified server, terminating all active client
sessions and recreating the listening socket. The socket handle that is returned by the function is
the handle for the new listening socket, and the old handle value is no longer valid. If the function
is unable to recreate the listening socket for any reason, the server thread is terminated.

The socket handle for the server must be one that was created by calling the InetServerStart
function, and cannot be a socket that was created using the InetListen or InetListenEx functions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetServerStatus, InetServerResume, InetServerStart, InetServerStop, InetServerSuspend

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetServerResume Function

BOOL WINAPI InetServerResume(
 SOCKET hServer
);

The InetServerResume function resumes accepting client connections on the specified server.

Parameters
hServer

Handle to the server socket.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call InetGetLastError.

Remarks
The InetServerResume function instructs the server to resume accepting client connections. Any
pending client connections that were requested while the server was suspended will be accepted.

The socket handle for the server must be one that was created by calling the InetServerStart
function, and cannot be a socket that was created using the InetListen or InetListenEx functions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetServerStatus, InetServerRestart, InetServerStart, InetServerStop, InetServerSuspend

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetServerStart Function

SOCKET WINAPI InetServerStart(
 LPCTSTR lpszLocalHost,
 UINT nLocalPort,
 UINT nBacklog,
 UINT nMaxClients,
 UINT nTimeout,
 UINT nPriority,
 DWORD dwOptions,
 INETEVENTPROC lpEventProc,
 DWORD_PTR dwEventParam,
 LPSECURITYCREDENTIALS lpCredentials
);

The InetServerStart function begins listening for client connections on the specified local address
and port number. The server is started in its own thread and manages the client sessions
independently of the calling thread. All interaction with the server and its client sessions takes
place inside the callback function specified by the caller.

Parameters
lpszLocalHost

A pointer to a string which specifies the local hostname or IP address address that the socket
should be bound to. If this parameter is NULL or an empty string, then an appropriate address
will automatically be used. A specific address should only be used if it is required by the
application.

nLocalPort

The local port number that the socket should be bound to. This value must be greater than
zero.

nBacklog

The maximum length of the queue allocated for pending client connections. A value of zero
specifies that the size of the queue should be set to a maximum reasonable value. On Windows
server platforms, the maximum value is large enough to queue several hundred pending
connections.

nMaxClients

The maximum number of client connections that can be established with the server. A value of
zero specifies that there should not be any fixed limit on the number of active client
connections. This value can be adjusted after the server has been created by calling the
InetServerThrottle function.

nTimeout

The number of seconds the server should wait for a client to perform a network operation. If the
client does not exchange any information with the server within this period of time, a timeout
event will occur. The timeout value affects all clients that are connected to the server.

nPriority

An integer value which specifies the priority for the server and all client sessions. The priority for
a specific client session may be modified by calling the InetSetClientPriority function. This
parameter may be one of the following values:

Constant Description

INET_PRIORITY_NORMAL The default priority which balances resource and
processor utilization. It is recommended that most
applications use this priority.

INET_PRIORITY_BACKGROUND This priority significantly reduces the memory,
processor and network resource utilization for the
client session. It is typically used with lightweight
services running in the background that are designed
for few client connections. The client thread will be
assigned a lower scheduling priority and will be
frequently forced to yield execution to other threads.

INET_PRIORITY_LOW This priority lowers the overall resource utilization for
the client session and meters the processor utilization
for the client session. The client thread will be
assigned a lower scheduling priority and will
occasionally be forced to yield execution to other
threads.

INET_PRIORITY_HIGH This priority increases the overall resource utilization
for the client session and the thread will be given
higher scheduling priority. It can be used when it is
important for the client session thread to be highly
responsive. It is not recommended that this priority be
used on a system with a single processor.

INET_PRIORITY_CRITICAL This priority can significantly increase processor,
memory and network utilization. The thread will be
given higher scheduling priority and will be more
responsive to the remote host. It is not recommended
that this priority be used on a system with a single
processor.

dwOptions

An unsigned integer used to specify one or more socket options. The following values are
supported:

Constant Description

INET_OPTION_NONE No option specified. If the address and port number
are in use by another application or a closed socket
which was listening on this port is still in the
TIME_WAIT state, the function will fail.

INET_OPTION_REUSEADDRESS This option specifies the local address can be reused.
This option enables a server application to listen for
connections using the specified address and port
number even if they were in use recently. This is
typically used to enable an application to close the
listening socket and immediately reopen it without
getting an error that the address is in use.

INET_OPTION_KEEPALIVE This option specifies that packets are to be sent to the
remote system when no data is being exchanged to

keep the connection active. Enabling this option will
also help applications detect the physical loss of a
network connection, such as an Ethernet cable being
unplugged. This option does not guarantee that
persistent connections will be maintained over long
periods of time.

INET_OPTION_NODELAY This option disables the Nagle algorithm, which
buffers unacknowledged data and combines smaller
packets into a single larger packet when sending data
to a remote host. Specifying this option can improve
the responsiveness and overall throughput of
applications that implement their own buffering and
exchange large amounts of information.

INET_OPTION_NOINHERIT This option prevents the server socket handle from
being inherited by child processes created by the
application. Using this option can mitigate situations
in which a child process does not close the handle,
leaving it open after the parent process has
disconnected from the server.

INET_OPTION_SECURE This option specifies that a secure connection should
be established with the client, where the client
immediately initiates the SSL handshake when it
connects to the server. To implement an explicit SSL
session, where the client establishes a standard, non-
secure connection and then sends a command to the
server to initiate a secure session, you should not use
this option. Instead, use the InetEnableSecurity
function to selectively enable SSL for the client
session.

lpEventProc

Specifies the address of the application defined callback function. For more information about
the callback function, see the description of the InetEventProc callback function. This
parameter cannot be NULL.

dwEventParam

A user-defined integer value that is passed to the callback function.

lpCredentials

Pointer to credentials structure SECURITYCREDENTIALS. This may be NULL, unless the
dwOptions parameter includes INET_OPTION_SECURE. When a secure session is specified, the
fields dwSize, lpszCertStore, and lpszCertName must be defined, while other fields may be left
undefined. Set dwSize to the size of the SECURITYCREDENTIALS structure.

Return Value
If the function succeeds, the return value is a socket handle. If the function fails, the return value is
INVALID_SOCKET. To get extended error information, call InetGetLastError.

Remarks
In most cases, the lpszLocalHost parameter should be a NULL pointer or an empty string. On a

multihomed system, this will enable the server to accept connections on any appropriately
configured network adapter. Specifying a hostname or IP address will limit client connections to
that particular address. Note that the hostname or address must be one that is assigned to the
local system, otherwise an error will occur.

If an IPv6 address is specified as the local address, the system must have an IPv6 stack installed
and configured, otherwise the function will fail.

To listen for connections on any suitable IPv4 interface, specify the special dotted-quad address
"0.0.0.0". You can accept connections from clients using either IPv4 or IPv6 on the same socket by
specifying the special IPv6 address "::0", however this is only supported on Windows 7 and
Windows Server 2008 R2 or later platforms. If no local address is specified, then the server will only
listen for connections from clients using IPv4. This behavior is by design for backwards
compatibility with systems that do not have an IPv6 TCP/IP stack installed.

If the INET_OPTION_REUSEADDRESS option is not specified, an error may be returned if a
listening socket was recently created for the same local address and port number. By default, once
a listening socket is closed there is a period of time that all applications must wait before the
address can be reused (this is called the TIME_WAIT state). The actual amount of time depends on
the operating system and configuration parameters, but is typically two to four minutes. Specifying
this option enables an application to immediately re-use a local address and port number that was
previously in use. Note that this does not permit more than one server to bind to the same
address.

When the event handler callback function is invoked by the server, it normally executes in the
context of the worker thread that manages that client session. This means that even if you do not
explicitly create any threads in your application, you must design your program to be thread-safe,
with synchronized access to global objects and data. If your application has a user interface, only
the main UI thread should attempt to modify controls. If you attempt to modify a control from a
worker thread, such as adding a row to a listbox control, it can result the application becoming
deadlocked. This means that you should not attempt to directly update the UI from within the
event handler function. To enable asynchronous server notifications for a GUI application, use the
InetServerAsyncNotify function.

The socket handle returned by this function references the listening socket that was created when
the server was started. The service is managed in another thread, and all interaction with the
server and active client connections are performed inside the event handler. To disconnect all
active connections, close the listening socket and terminate the server thread, call the
InetServerStop function.

Example
#define SERVER_PORT 7000
#define SERVER_CLIENTS 100

SOCKET hServer = INVALID_SOCKET;

// Accept connections from clients that connection on port 7000 with a default
// backlog of 5 connections and a maximum of 100 client connections.

hServer = InetServerStart(NULL,
 SERVER_PORT,
 INET_BACKLOG,
 SERVER_CLIENTS,
 INET_TIMEOUT,
 INET_PRIORITY_NORMAL,

 INET_OPTION_REUSEADDRESS,
 MyEventHandler,
 0,
 NULL);

if (hServer == INVALID_SOCKET)
{
 DWORD dwError;
 TCHAR szError[256];

 dwError = InetGetLastError();
 InetGetErrorString(dwError, szError, 256);

 MessageBox(NULL, szError, NULL, MB_OK|MB_TASKMODAL);
 return;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetGetServerData, InetGetServerPriority, InetGetServerStatus, InetServerLock, InetServerRestart,
InetServerResume, InetServerStop, InetServerSuspend, InetServerThrottle, InetServerUnlock,
InetSetServerData, InetSetServerPriority InetValidateCertificate

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetServerStop Function

BOOL WINAPI InetServerStop(
 SOCKET hServer
);

The InetServerStop function signals the server to stop listening for connections and terminates all
client sessions.

Parameters
hServer

Handle to the server socket.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call InetGetLastError.

Remarks
The InetServerStop function signals the server to stop accepting client connections, disconnects
all active client connections and terminates the thread that is managing the server session. The
socket handle is no longer valid after the server has been stopped and should no longer be used.
Note that it is possible that the actual handle value may be re-used at a later point when a new
server is started. An application should always consider the socket handle to be opaque and never
depend on it being a specific value.

If this function is called when there is one or more clients connected to the server, it will signal
each client thread to terminate and then wait for the server thread to terminate. As the client
sessions are terminated, the event handler will not be invoked. If you wish to ensure that all clients
are disconnected normally before stopping the server, call the InetServerSuspendEx function
with the INET_SUSPEND_DISCONNECT option and then stop the server after the last client has
disconnected.

Because the InetServerStop function waits for the server thread to terminate, this function may
cause your application to block. If this is not desirable, use the InetServerStopEx function which
can perform the shutdown sequence asynchronously.

After the server thread has been terminated, the listening socket will go into a TIME-WAIT state
which prevents an application from reusing the same address and port number bound to that
socket for a brief period of time, typically two to four minutes. This is normal behavior designed to
prevent delayed or misrouted packets of data from being read by a subsequent connection. To
immediately start a new server using the same local address and port number, the option
INET_OPTION_REUSEADDRESS must be specified when calling the InetServerStart function.

The socket handle for the server must be one that was created by calling the InetServerStart
function, and cannot be a socket that was created using the InetListen or InetListenEx functions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also

InetGetServerStatus, InetServerRestart, InetServerStart, InetServerStopEx, InetServerSuspendEx

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetServerStopEx Function

BOOL WINAPI InetServerStopEx(
 SOCKET hServer,
 DWORD dwMilliseconds
);

The InetServerStopEx function signals the server to stop listening for connections and terminates
all client sessions.

Parameters
hServer

Handle to the server socket.

dwMilliseconds

An unsigned integer value that specifies the number of milliseconds to wait for all active clients
to disconnect and the server thread to terminate.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call InetGetLastError.

Remarks
The InetServerStopEx function signals the server to stop accepting client connections,
disconnects all active client connections and terminates the thread that is managing the server
session. The socket handle is no longer valid after the server has been stopped and should no
longer be used. Note that it is possible that the actual handle value may be re-used at a later point
when a new server is started. An application should always consider the socket handle to be
opaque and never depend on it being a specific value.

Unlike the InetServerStop function, which waits for fixed period of time for the server thread to
terminate, the InetServerStopEx allows the caller to determine how much time should be spent
waiting for the clients to disconnect and the server thread to terminate. If the dwMilliseconds
parameter has a value of INFINITE, the function will wait for an indefinite period of time until all
clients have disconnected, the listening socket closed and the server thread has terminated. If the
dwMilliseconds parameter has a value of zero, the function does not wait for the server to
shutdown. Instead, it returns immediately and the shutdown process continues in the background.

If your application specifies a value of zero for the dwMilliseconds parameter, the event handler
will be invoked with the INET_EVENT_DISCONNECT event as each client disconnects from the
server during the shutdown process. If you depend on this event to perform some cleanup on a
per-client basis, you must ensure that the application does not exit until the server thread has
terminated. To perform a graceful shutdown of the server, it is recommended that you use the
InetServerSuspendEx function and specify the INET_SUSPEND_DISCONNECT option. After all
clients have disconnected, call the InetServerStop function to terminate the server thread.

After the server thread has been terminated, the listening socket will go into a TIME-WAIT state
which prevents an application from reusing the same address and port number bound to that
socket for a brief period of time, typically two to four minutes. This is normal behavior designed to
prevent delayed or misrouted packets of data from being read by a subsequent connection. To
immediately start a new server using the same local address and port number, the option
INET_OPTION_REUSEADDRESS must be specified when calling the InetServerStart function.

The socket handle for the server must be one that was created by calling the InetServerStart
function, and cannot be a socket that was created using the InetListen or InetListenEx functions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetServerStatus, InetServerRestart, InetServerStart, InetServerStop, InetServerSuspendEx

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetServerSuspend Function

BOOL WINAPI InetServerSuspend(
 SOCKET hServer
);

Suspend accepting client connections on the specified server.

Parameters
hServer

Handle to the server socket.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call InetGetLastError.

Remarks
The InetServerSuspend function instructs the server to suspend accepting new client
connections. Any incoming client connections will be queued up to the maximum backlog value
specified when the server was started. To resume accepting client connections, call the
InetServerResume function.

It is recommended that you only suspend a server if absolutely necessary, and only for brief
periods of time. If you want to limit the number of active client connections or control the
connection rate for clients, use the InetServerThrottle function.

The socket handle for the server must be one that was created by calling the InetServerStart
function, and cannot be a socket that was created using the InetListen or InetListenEx functions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetServerStatus, InetServerRestart, InetServerResume, InetServerStart, InetServerStop,
InetServerThrottle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetServerSuspendEx Function

BOOL WINAPI InetServerSuspendEx(
 SOCKET hServer,
 DWORD dwOptions
);

Suspend accepting client connections and optionally reject or disconnect clients.

Parameters
hServer

Handle to the server socket.

dwOptions

An unsigned integer that specifies one or more options.

Constant Description

INET_SUSPEND_DEFAULT Specifies that the server should suspend accepting
new connections. New incoming client connections will
be queued and clients that have already established a
connection to the server will remain connected.

INET_SUSPEND_REJECT Specifies that the server should suspend accepting
new connections and reject any new client
connections. Clients that have already established a
connection to the server will remain connected.

INET_SUSPEND_DISCONNECT Specifies that the server should suspend accepting
new connections and disconnect all active clients that
are currently connected to the server. If the
INET_SUSPEND_REJECT option is also specified, new
client connections will be rejected by the server.

INET_SUSPEND_WAIT Specifies that the function should wait for the clients to
disconnect from the server rather than return
immediately to the caller. This option is only
meaningful when used in conjunction with
INET_SUSPEND_DISCONNECT.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call InetGetLastError.

Remarks
The InetServerSuspendEx function instructs the server to suspend accepting new client
connections. Additional options can be used to control how the server suspends connections. If
you plan on suspending the server for any period of time greater than a few seconds, it is
recommended that you specify the INET_SUSPEND_REJECT option so that clients are not forced to
wait.

If the INET_SUSPEND_DISCONNECT option is specified, the server will signal each client to
disconnect and will stop accepting new connections. The event handler will be invoked for each
client that disconnects. If the INET_SUSPEND_WAIT option is also specified, the function will wait

until the last client has disconnected from the server before returning to the caller. If there are a
large number of clients connected to the server, this process may cause the application to block
for an extended period of time and appear to be non-responsive to the user. For this reason, you
should not specify the INET_SUSPEND_WAIT option if the function is being called from the
application's main UI thread.

To perform a graceful shutdown of the server, it is recommended that you call
InetServerSuspendEx with the INET_SUSPEND_REJECT and INET_SUSPEND_DISCONNECT
options. This will allow each client to disconnect from the server and the server will reject any new
incoming connections. After the last client has disconnected from the server, call the
InetServerStop function to complete the shutdown process. The InetGetClientThreads function
can be used to determine if all client session threads have terminated.

The socket handle for the server must be one that was created by calling the InetServerStart
function, and cannot be a socket that was created using the InetListen or InetListenEx functions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetServerStatus, InetServerRestart, InetServerResume, InetServerStart, InetServerStop,
InetServerThrottle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetServerThrottle Function

BOOL WINAPI InetServerThrottle(
 SOCKET hServer,
 UINT nMaxClients,
 UINT nMaxClientsPerAddress,
 DWORD dwConnectionRate
);

The InetServerThrottle function limits the number of active client connections, connections per
address and connection rate.

Parameters
hServer

Handle to the server socket.

nMaxClients

A value which specifies the maximum number of clients that may connect to the server. A value
of zero specifies that there is no fixed limit to the number of client connections.

nMaxClientsPerAddress

A value which specifies the maximum number of clients that may connect to the server from the
same IP address. A value of zero specifies that there is no fixed limit to the number of client
connections per address. By default, there is no limit on the number of client connections per
address.

dwConnectionRate

A value which specifies a restriction on the rate of client connections, limiting the number of
connections that will be accepted within that period of time. A value of zero specifies that there
is no restriction on the rate of client connections. The higher this value, the fewer the number of
connections that will be accepted within a specific period of time. By default, there is no limit on
the client connection rate.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call InetGetLastError.

Remarks
The InetServerThrottle function is used to limit the number of connections and the connection
rate to minimize the potential impact of a large number of client connections over a short period
of time. This can be used to protect the server from a client application that is malfunctioning or a
deliberate denial-of-service attack in which the attacker attempts to flood the server with
connection attempts.

If the maximum number of client connections or maximum number of connections per address is
exceeded, the server will reject subsequent connection attempts until the number of active client
sessions drops below the specified threshold. Note that adjusting these values lower than the
current connection limits will not affect clients that have already connected to the server. For
example, if the InetServerStart function is called with the maximum number of clients set to 100,
and then InetServerThrottle is called lowering that value to 75, no existing client connections will
be affected by the change. However, the server will not accept any new connections until the
number of active clients drops below 75.

Increasing the connection rate value will force the server to slow down the rate at which it will
accept incoming client connection requests. For example, setting this parameter to a value of 1000
would limit the server to accepting one client connection every second, while a value of 250 would
allow the server to accept four client connections per second. Note that significantly increasing the
amount of time the server must wait to accept client connections can exceed the connection
backlog queue, resulting in client connections being rejected.

The socket handle for the server must be one that was created by calling the InetServerStart
function, and cannot be a socket that was created using the InetListen or InetListenEx functions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetServerStatus, InetServerLock, InetServerRestart, InetServerResume, InetServerStart,
InetServerSuspend, InetServerUnlock

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetServerUnlock Function

BOOL WINAPI InetServerUnlock(
 SOCKET hServer
);

The InetServerUnlock function unlock the specified server, allowing other client threads to
resume execution.

Parameters
hServer

The socket handle to the server.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call InetGetLastError.

Remarks
The InetServerUnlock function releases the lock on the specified server and allows any blocked
threads to resume execution. Only one server may be locked at any one time, and only the thread
which established the lock can unlock the server.

Every time the InetServerLock function is called, an internal lock counter is incremented, and the
lock will not be released until the lock count drops to zero. This means that each call to
InetServerLock must be matched by an equal number of calls to the InetServerUnlock function.
Failure to do so will result in the server becoming non-responsive as it remains in a locked state.

The program should always check the return value from this function, and should never assume
that the lock has been released. If a potential deadlock situation is detected, this function will fail
and return a value of zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetLockedServer, InetGetServerStatus, InetServerLock

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetSetClientData Function

BOOL WINAPI InetSetClientData(
 SOCKET hClient,
 VOID lpvData
);

The InetSetClientData function sets the application defined data associated with the specified
client session.

Parameters
hSocket

The socket handle.

lppvData

Pointer to the application defined data associated with the specified client session.

Return Value
If the function succeeds, the return value is non-zero. A return value of zero indicates that
application defined data for the client session could not be modified. To get extended error
information, call InetGetLastError.

Remarks
The InetSetClientData function is used to associate application defined data with a specific client
session. This is typically used to associate a pointer to a data structure or a class instance with the
client socket. A pointer to the data can be retrieved using the InetGetClientData function.

You should never specify a pointer to a local variable or data structure that will go out of scope
when the calling function exits. If you do this, the pointer will no longer be valid after the function
exits and attempting to dereference that pointer at some later time can cause an exception to be
thrown and terminate the program. You should always allocate a block of memory for the data
using a function such as HeapAlloc or LocalAlloc. If you specify the address of a static or global
data structure, you must use thread synchronization functions when dereferencing and modifying
that structure.

This function can only be used with client socket handles created using the SocketWrench server
interface. It cannot be used with socket handles created using the InetConnect or InetAccept
functions.

Example
UINT *pnValue1 = (UINT *)LocalAlloc(LPTR, sizeof(UINT));
UINT *pnValue2 = NULL;

*pnValue1 = 1234;

if (InetSetClientData(hSocket, pnValue1) == FALSE)
{
 // Unable to associate the data with this session
 return;
}

if (InetGetClientData(hSocket, &pnValue2) == FALSE)
{
 // Unable to retrieve the data associated with this session

 return;
}

// *pnValue2 == 1234
printf("The value of user defined data is %u\n", *pnValue2);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetClientData, InetGetServerData, InetSetServerData

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetSetClientMoniker Function

INT WINAPI InetSetClientMoniker(
 SOCKET hSocket,
 LPCTSTR lpszMoniker
);

The InetSetClientMoniker function associates a unique string moniker with the specified client
session.

Parameters
hSocket

Handle to the client socket.

lpszMoniker

Pointer to a string which specifies the moniker for the specified client socket. If this parameter is
NULL or specifies an empty string, a moniker will no longer be associated with the client session.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
A client moniker is a string which can be used to uniquely identify a specific client session aside
from its socket handle. The InetGetClientMoniker function will return the moniker that was
previously assigned to the client, if any. To obtain the socket handle associated with a given
moniker, use the InetFindClientMoniker function.

Monikers are not case-sensitive, and they must be unique so that no client socket for a particular
server can have the same moniker. The maximum length for a moniker is 127 characters.

The socket handle for the client must be one that was created as part of the SocketWrench server
interface, and cannot be a socket that was created using the InetConnect or InetAccept
functions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetFindClientMoniker, InetGetClientHandle, InetGetClientId, InetGetClientMoniker

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetSetClientPriority Function

INT WINAPI InetSetClientPriority(
 SOCKET hClient,
 INT nPriority
);

The InetSetClientPriority function sets the current priority for the specified client session.

Parameters
hClient

Handle to the client session.

nPriority

An integer value which specifies the new priority for the client session. It may be one of the
following values:

Constant Description

INET_PRIORITY_NORMAL The default priority which balances resource and
processor utilization. It is recommended that most
applications use this priority.

INET_PRIORITY_BACKGROUND This priority significantly reduces the memory,
processor and network resource utilization for the
client session. It is typically used with lightweight
services running in the background that are designed
for few client connections. The client thread will be
assigned a lower scheduling priority and will be
frequently forced to yield execution to other threads.

INET_PRIORITY_LOW This priority lowers the overall resource utilization for
the client session and meters the processor utilization
for the client session. The client thread will be
assigned a lower scheduling priority and will
occasionally be forced to yield execution to other
threads.

INET_PRIORITY_HIGH This priority increases the overall resource utilization
for the client session and the thread will be given
higher scheduling priority. It is not recommended that
this priority be used on a system with a single
processor.

INET_PRIORITY_CRITICAL This priority can significantly increase processor,
memory and network utilization. The client thread will
be given higher scheduling priority and will be more
responsive to network events. It is not recommended
that this priority be used on a system with a single
processor.

Return Value
If the function succeeds, the return value is the previous priority for the specified client session. If
the function fails, the return value is INET_ERROR. To get extended error information, call

InetGetLastError.

Remarks
The InetSetClientPriority function can be used to change the current priority assigned to the
specified client session. The client priority is inherited from the priority specified when the server is
started using the InetServerStart function.

The socket handle for the client must be one that was created as part of the SocketWrench server
interface, and cannot be a socket that was created using the InetConnect or InetAccept
functions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetClientPriority, InetGetServerPriority, InetServerStart, InetSetServerPriority

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetSetHostFile Function

INT WINAPI InetSetHostFile(
 LPCTSTR lpszFileName
);

The InetSetHostFile function specifies the name of an alternate file to use when resolving
hostnames and IP addresses. The host file is used as a database that maps an IP address to one or
more hostnames, and is used by the InetGetHostAddress and InetGetHostNames function. The
file is a plain text file, with each line in the file specifying a record, and each field separated by
spaces or tabs. The format of the file must be as follows:

ipaddress hostname [hostalias ...]

For example, one typical entry maps the name "localhost" to the local loopback IP address. This
would be entered as:

127.0.0.1 localhost

The hash character (#) may be used to specify a comment in the file, and all characters after it are
ignored up to the end of the line. Blank lines are ignored, as are any lines which do not follow the
required format.

Parameters
lpszFileName

Pointer to a string that specifies the name of the file. If the parameter is NULL, then the current
host file is cleared from the cache and only the default host file will be used to resolve
hostnames and addresses.

Return Value
If the function succeeds, the return value is the number of entries in the host file. A return value of
INET_ERROR indicates failure. To get extended error information, call InetGetLastError.

Remarks
This function loads the file into memory allocated for the current thread. If the contents of the file
have changed after the function has been called, those changes will not be reflected when
resolving hostnames or addresses. To reload the host file from disk, call this function again with
the same file name. To remove the alternate host file from memory, specify a NULL pointer as the
parameter.

If a host file has been specified, it is processed before the default host file when resolving a
hostname into an IP address, or an IP address into a hostname. If the host name or address is not
found, or no host file has been specified, a nameserver lookup is performed.

To determine if an alternate host file has been specified, use the InetGetHostFile function. A
return value of zero indicates that no alternate host file has been cached for the current thread.

A system may have a default host file, which is used to resolve hostnames before performing a
nameserver lookup. To determine the name of this file, use the InetGetDefaultHostFile function.
It is not necessary to specify this default host file, since it is always used to resolve host names and
addresses.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)

Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetGetDefaultHostFile, InetGetHostAddress, InetGetHostFile, InetGetHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetSetLastError Function

VOID WINAPI InetSetLastError(
 DWORD dwErrorCode
);

The InetSetLastError function sets the last-error code for the caller. This function is typically used
to clear the last error by passing a value of zero as the parameter.

Parameters
dwErrorCode

Specifies the last-error code for the caller.

Return Value
None.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. Most functions will
set the last error code value when they fail; a few functions set it when they succeed. Function
failure is typically indicated by a return value such as FALSE, NULL, INVALID_SOCKET or
INET_ERROR. Those functions which call InetSetLastError when they succeed are noted on the
function reference page.

Applications can retrieve the value saved by this function by using the InetGetLastError function.
The use of InetGetLastError is optional; an application can call it to find out the specific reason
for a function failure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetErrorString, InetGetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetSetOption Function

INT WINAPI InetSetOption(
 SOCKET hSocket,
 DWORD dwOption,
 BOOL bEnabled
);

The InetSetOption function is used to enable or disable a specific socket option.

Parameters
hSocket

The socket handle.

dwOption

An unsigned integer used to specify one of the socket options. These options cannot be
combined. The following values are recognized:

Constant Description

INET_OPTION_BROADCAST This option specifies that broadcasting should be
enabled for datagrams. This option is invalid for
stream sockets.

INET_OPTION_KEEPALIVE This option specifies that packets are to be sent to the
remote system when no data is being exchanged to
keep the connection active. This is only valid for
stream sockets.

INET_OPTION_REUSEADDRESS This option specifies the local address can be reused.
This option is commonly used by server applications.

INET_OPTION_NODELAY This option disables the Nagle algorithm, which
buffers unacknowledged data and insures that a full-
size packet can be sent to the remote host.

bEnabled

A boolean flag. If the flag is set to a non-zero value, the option is enabled. Otherwise the socket
option is disabled.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
It is not recommend that you disable the Nagle algorithm by specifying the
INET_OPTION_NODELAY flag unless it is absolutely required. Doing so can have a significant,
negative impact on the performance of the application and network.

If if the INET_OPTION_KEEPALIVE option is enabled, keep-alive packets will start being generated
five seconds after the socket has become idle with no data being sent or received. Enabling this
option can be used by applications to detect when a physical network connection has been lost.
However, it is recommended that most applications query the remote host directly to determine if
the connection is still active. This is typically accomplished by sending specific commands to the

server to query its status, or checking the elapsed time since the last response from the server.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetAsyncConnectEx, InetConnectEx, InetGetOption

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetSetServerData Function

BOOL WINAPI InetSetServerData(
 SOCKET hServer,
 VOID lpvData
);

The InetSetServerData function sets the application defined data associated with the specified
server.

Parameters
hSocket

The socket handle.

lppvData

Pointer to the application defined data associated with the specified server.

Return Value
If the function succeeds, the return value is non-zero. A return value of zero indicates that
application defined data for the server could not be modified. To get extended error information,
call InetGetLastError.

Remarks
The InetSetServerData function is used to associate application defined data with a specific
server. A pointer to the data can be retrieved using the InetGetServerData function.

You should never specify a pointer to a local variable or data structure that will go out of scope
when the calling function exits. If you do this, the pointer will no longer be valid after the function
exits and attempting to dereference that pointer at some later time can cause an exception to be
thrown and terminate the program. You should always allocate a block of memory for the data
using a function such as HeapAlloc or LocalAlloc. If you specify the address of a static or global
data structure, you must use thread synchronization functions when dereferencing and modifying
that structure.

This function can only be used with server socket handles created using the InetServerStart
function. It cannot be used with socket handles created using the InetListen or InetListenEx
functions.

Example
UINT *pnValue1 = (UINT *)LocalAlloc(LPTR, sizeof(UINT));
UINT *pnValue2 = NULL;

*pnValue1 = 1234;

if (InetSetServerData(hServer, pnValue1) == FALSE)
{
 // Unable to associate the data with this server
 return;
}

if (InetGetServerData(hServer, &pnValue2) == FALSE)
{
 // Unable to retrieve the data associated with this server
 return;
}

// *pnValue2 == 1234
printf("The value of user defined data is %u\n", *pnValue2);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetClientData, InetGetServerData, InetSetClientData

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetSetServerPriority Function

INT WINAPI InetSetServerPriority(
 SOCKET hServer,
 INT nPriority
);

The InetSetServerPriority function sets the current priority for the specified server.

Parameters
hServer

Handle to the server socket.

nPriority

An integer value which specifies the new priority for the server. It may be one of the following
values:

Constant Description

INET_PRIORITY_BACKGROUND This priority significantly reduces the memory,
processor and network resource utilization for the
server. It is typically used with lightweight services
running in the background that are designed for few
client connections. The server thread will be assigned
a lower scheduling priority and will be frequently
forced to yield execution to other threads.

INET_PRIORITY_LOW This priority lowers the overall resource utilization for
the server and meters the processor utilization for the
server thread. The server thread will be assigned a
lower scheduling priority and will occasionally be
forced to yield execution to other threads.

INET_PRIORITY_NORMAL The default priority which balances resource and
processor utilization. This is the priority that is initially
assigned to the server when it is started, and it is
recommended that most applications use this priority.

INET_PRIORITY_HIGH This priority increases the overall resource utilization
for the server and the thread will be given higher
scheduling priority. It is not recommended that this
priority be used on a system with a single processor.

INET_PRIORITY_CRITICAL This priority can significantly increase processor,
memory and network utilization. The server thread
will be given higher scheduling priority and will be
more responsive to client connection requests. It is
not recommended that this priority be used on a
system with a single processor.

Return Value
If the function succeeds, the return value is the previous priority assigned to the server. If the
function fails, the return value is INET_PRIORITY_INVALID. To get extended error information, call
InetGetLastError.

Remarks
The InetSetServerPriority function can be used to change the current priority assigned to the
specified server. Client connections that are accepted after this function is called will inherit the
new priority as their default priority. Previously existing client connections will not be affected by
this function. To modify the priority for an active client session, use the InetSetClientPriority
function.

Higher priority values increase the thread priority and processor utilization for each client session.
You should only change the server priority if you understand the impact it will have on the system
and have thoroughly tested your application. Configuring the server to run with a higher priority
can have a negative effect on the performance of other programs running on the system.

The socket handle for the server must be one that was created using the InetServerStart function,
and cannot be a socket that was created using the InetListen or InetListenEx functions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetClientPriority, InetGetServerPriority, InetServerStart, InetSetClientPriority

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetSetServerStackSize Function

BOOL WINAPI InetSetServerStackSize(
 SOCKET hServer,
 DWORD dwStackSize
);

Change the initial size of the stack allocated for threads created by the server.

Parameters
hServer

Handle to the server socket.

dwStackSize

The amount of memory that will be committed to the stack for each thread created by the
server. If this value is zero, a default stack size will be used.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call InetGetLastError.

Remarks
The InetSetServerStackSize function changes the initial amount of memory that is committed to
the stack for each thread created by the server. By default, the stack size for each thread is set to
256K for 32-bit processes and 512K for 64-bit processes. Increasing or decreasing the stack size
will only affect new threads that are created by the server, it will not affect those threads that have
already been created to manage active client sessions. It is recommended that most applications
use the default stack size.

You should not change the stack size unless you understand the impact that it will have on your
system and have thoroughly tested your application. Increasing the initial commit size of the stack
will remove pages from the total system commit limit, and every page of memory that is reserved
for stack cannot be used for any other purpose.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetServerStackSize, InetServerStart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetSetTimeout Function

INT WINAPI InetSetTimeout(
 SOCKET hSocket,
 UINT nTimeout
);

The InetSetTimeout function sets the interval that is used when waiting for a blocking operation
to complete.

Parameters
hSocket

Handle to the socket.

nTimeout

Duration of timeout interval, in seconds. If a value over 1000 is specified, it is assumed that
milliseconds are intended by the user, and the value actually used will be adjusted accordingly.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
INET_ERROR. To get extended error information, call InetGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetTimeout, InetConnect, InetAccept, InetIsReadable, InetIsWritable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetShutdown Function

INT WINAPI InetShutdown(
 SOCKET hSocket,
 DWORD dwOption
);

The InetShutdown function is used to disable reception or transmission of data, or both.

Parameters
hSocket

The socket handle.

dwOption

An unsigned integer used to specify one of the shutdown options. These options cannot be
combined. The following values are recognized:

Value Constant Description

0 INET_SHUTDOWN_READ Disable reception of data.

1 INET_SHUTDOWN_WRITE Disable transmission of data.

2 INET_SHUTDOWN_BOTH Disable both reception and transmission of data.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
This function is rarely needed. It is provided as an interface to the Windows Sockets shutdown
function.

In some asynchronous applications, it may be desirable for a client to inform the server that no
further communication is wanted, while allowing the client to read any residual data that may
reside in internal buffers on the client side. InetShutdown accomplishes this because the socket
handle is still valid after it has been called, although some or all communication with the remote
host has ceased.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetDisconnect

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetStoreStream Function

BOOL WINAPI InetStoreStream(
 SOCKET hSocket,
 LPCTSTR lpszFileName,
 DWORD dwLength,
 LPDWORD lpdwCopied
 DWORD dwOffset,
 DWORD dwOptions
);

The InetStoreStream function reads the socket data stream and stores the contents in the
specified file.

Parameters
hSocket

The socket handle. The socket must reference a stream socket, not a datagram or raw socket. If
the socket type is not valid, the function will return an error.

lpszFileName

Pointer to a string which specifies the name of the file to create or overwrite.

dwLength

An unsigned integer which specifies the maximum number of bytes to read from the socket and
write to the file. If this value is zero, then the function will continue to read data from the socket
until the remote host disconnects or an error occurs.

lpdwCopied

A pointer to an unsigned integer value which will contain the number of bytes written to the file
when the function returns.

dwOffset

An unsigned integer which specifies the byte offset into the file where the function will start
storing data read from the socket. Note that all data after this offset will be truncated. A value of
zero specifies that the file should be completely overwritten if it already exists.

dwOptions

An unsigned integer value which specifies one or more options. Programs can use a bitwise
operator to combine any of the following values:

Constant Description

INET_STREAM_CONVERT The data stream is considered to be textual and
will be modified so that end-of-line character
sequences are converted to follow standard
Windows conventions. This will ensure that all lines
of text are terminated with a carriage-return and
linefeed sequence. Because this option modifies
the data stream, it should never be used with
binary data. Using this option may result in the
amount of data written to the file to be larger than
the source data. For example, if the source data
only terminates a line of text with a single linefeed,
this option will have the effect of inserting a

carriage-return character before each linefeed.

INET_STREAM_UNICODE The data stream should be converted to Unicode.
This option should only be used with text data, and
will result in the stream data being written as 16-bit
wide characters rather than 8-bit bytes. The
amount of data returned will be twice the amount
read from the source data stream. If the dwOffset
parameter has a value of zero, the Unicode byte
order mark (BOM) will be written to the beginning
of the file.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value
is zero. To get extended error information, call InetGetLastError.

Remarks
The InetStoreStream function enables an application to read an arbitrarily large stream
of data and store it in a file. This function is essentially a simplified version of the
InetReadStream function, designed specifically to be used with files rather than memory
buffers or handles.

This function will force the thread to block until the operation completes. If this function is
called with asynchronous events enabled, it will automatically switch the socket into a
blocking mode, read the data stream and then restore the socket to asynchronous
operation when it has finished. If another socket operation is attempted while
InetStoreStream is blocked waiting for data from the remote host, an error will occur. It
is recommended that this function only be used with blocking (synchronous) socket
connections; if the application needs to establish multiple simultaneous connections, it
should create worker threads to manage each connection.

Because InetStoreStream can potentially cause the application to block for long periods
of time as the data stream is being read, the function will periodically generate
INET_EVENT_PROGRESS events. An application can register an event handler using the
InetRegisterEvent function, and can obtain information about the current operation by
calling the InetGetStreamInfo function.

Example
DWORD dwCopied;
BOOL bResult;

bResult = InetStoreStream(hSocket,
 lpszFileName, 0,
 &dwCopied,
 0,
 INET_STREAM_CONVERT);

if (bResult && dwCopied > 0)
{
 // The data has been written to the file
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)

Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetGetStreamInfo, InetRead, InetReadLine, InetReadStream, InetWrite, InetWriteLine,
InetWriteStream

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetUninitialize Function

VOID WINAPI InetUninitialize();

The InetUninitialize function terminates the use of the library.

Parameters
None.

Return Value
None.

Remarks
An application is required to perform a successful InetInitialize call before it can call any of the
other library functions. When it has completed the use of library, the application must call
InetUninitialize to allow the library to free any resources allocated on behalf of the process. Any
pending blocking or asynchronous calls in this process are canceled without posting any
notification messages, and all sockets that were opened by the process are closed.

There must be a call to InetUninitialize for every successful call to InetInitialize made by a
process. In a multithreaded environment, operations for all threads are terminated.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetDisconnect, InetInitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetValidateCertificate Function

BOOL WINAPI InetValidateCertificate(
 LPCTSTR lpszCertStore,
 LPCTSTR lpszCertPassword,
 LPCTSTR lpszCertName
);

The InetValidateCertificate function determines if the specified security certificate is installed on
the local system.

Parameters
lpszCertStore

A pointer to a null terminated string which specifies the name of the certificate store to open. A
certificate store is a collection of certificates and their private keys, typically organized by how
they are used. If this value is NULL or points to an empty string, the personal certificate store will
be used as the default. This parameter may also specify the name of a certificate file in PKCS
#12 (PFX) format.

Store Name Description

CA Certification authority certificates. These are certificates that are issued by
entities which are entrusted to issue certificates to other individuals or
organizations. Companies such as VeriSign and Thawte act as
certification authorities.

MY Personal certificates and their associated private keys for the current user.
This store typically holds the client certificates used to establish a user's
credentials. This corresponds to the "Personal" store that is displayed by
the certificate manager utility and is the default store used by the library.

ROOT Certificates that have been self-signed by a certificate authority. Root
certificates for a number of different certification authorities such as
VeriSign and Thawte are installed as part of the operating system and
periodically updated by Microsoft.

lpszCertPassword

A null terminated string which specifies the password associated with a certificate file. This
parameter is only used if the lpszCertStore parameter specifies a certificate file, otherwise it is
ignored. If the certificate file is not protected with a password, this parameter should be a NULL
pointer or empty string.

lpszCertName

A pointer to a null terminated string which specifies the name of the certificate to validate. The
function will first search the certificate store for a certificate with a matching "friendly name"; this
is a name for the certificate that is assigned by the user. Note that the name must match
completely, but the comparison is not case sensitive. If no matching certificate is found, the
function will then attempt to find a certificate that has a matching common name (also called
the certificate subject). This comparison is less stringent, and the first partial match will be
returned. If this second search fails, the function will return an error indicating that the certificate
could not be found.

Return Value

If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call InetGetLastError.

Remarks
If you are checking the validity of a certificate installed in the local certificate store, you can
explicitly specify whether the certificate store for the current user or the local machine (all users)
should be used. This is done by prefixing the certificate store name with "HKCU:" for the current
user, or "HKLM:" for the local machine. For example, a certificate store name of "HKLM:MY" would
specify the personal certificate store for the local machine, rather than the current user. If neither
prefix is specified, then it will default to the certificate store for the current user.

It is possible to validate a certificate file rather than one stored in the local certificate store. The
lpszCertStore member should specify the name of a file in Private Information Exchange (PFX)
format, also known as PKCS #12.These certificate files typically have an extension of .pfx or .p12. If
a password was specified when the certificate file was created, it must be provided in with the
lpszCertPassword parameter or this function will be unable to access the certificate.

This function can only validate certificate files in PFX format and cannot be used to validate a
certificate file in another format, such as PEM (base64 encoded) or DER (binary).

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetCreateSecurityCredentials, InetDeleteSecurityCredentials

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetValidateHostName Function

BOOL WINAPI InetValidateHostName(
 LPCTSTR lpszHostName,
 LPTSTR lpszAddress,
 INT nMaxLength
);

The InetValidateHostName function determines if the specified host name is valid and returns its
IP address.

Parameters
lpszHostName

A pointer to a null terminated string which specifies the host name. The function will fail If this
parameter is NULL or an empty string.

lpszAddress

A pointer to a string buffer which will contain the IP address of the host. If specified, this string
must be large enough to store the complete IP address, including the terminating null
character. If this parameter is NULL or the nMaxLength parameter is zero, it will be ignored and
the IP address will not be returned.

nMaxLength

An integer value that specifies the maximum number of characters which can be copied into the
lpszAddress string buffer. The buffer must be large enough to store the complete address.
Because this function can return either an IPv4 or IPv6 address, it is recommended the minimum
length for the buffer to be 46 characters. If this parameter is zero, the lpszAddress parameter
will be ignored.

Return Value
If the function succeeds, the host name is valid and the return value will be non-zero. If the
function fails, the host name could not be resolved to an IP address and the return value will be
zero. To get extended error information, call InetGetLastError.

Remarks
The InetValidateHostName function provides a convenient way to determine if a host name is
valid by attempting to resolve the name into an IP address. It is similar to calling the
InetNormalizeHostName function to obtain the canonical form of the host name, calling
InetGetAddress to obtain the IP address and then calling InetFormatAddress to return the
string representation of the host's IP address.

If the Unicode version of this function is used, any non-ASCII characters in the host name will be
automatically encoded into a compatible format and then resolved to an IP address. If you are
unsure if an internationalized domain name will be specified as the host name, it is recommended
you use the Unicode version.

The lpszHostName parameter can only specify a host name or IP address and cannot be a URL. If
you want your application to support providing a URL in addition to a host name, use the
InetGetUrlHostName function to extract the host name from the URL. You can then provide the
host name to this function to obtain its IP address.

If the lpszHostName parameter specifies a valid IPv4 or IPv6 address string instead of a host
name, this function will return a copy of that IP address in the buffer provided by the caller. This

allows the function to be used in cases where a user may input either a host name or IP address.
To determine if the IP address has a corresponding host name, use the InetGetHostName
function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetFormatAddress, InetGetAddress, InetGetHostAddress, InetGetHostName, InetGetUrlHostName,
InetNormalizeHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetWrite Function

INT WINAPI InetWrite(
 SOCKET hSocket,
 LPBYTE lpBuffer,
 INT cbBuffer
);

The InetWrite function sends the specified number of bytes to the remote host.

Parameters
hSocket

The socket handle.

lpBuffer

The pointer to the buffer which contains the data that is to be sent to the remote host.

cbBuffer

The number of bytes to send from the specified buffer.

Return Value
If the function succeeds, the return value is the number of bytes actually written. If the function
fails, the return value is INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
The return value may be less than the number of bytes specified by the cbBuffer parameter. In this
case, the data has been partially written and it is the responsibility of the application to send the
remaining data at some later point. For non-blocking connections, the program must wait for the
INET_EVENT_WRITE asynchronous notification message before it resumes sending data.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetFlush, InetRead, InetReadEx, InetWriteEx

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetWriteEx Function

INT WINAPI InetWriteEx(
 SOCKET hSocket,
 LPVOID lpvBuffer,
 INT cbBuffer,
 DWORD dwReserved,
 LPINTERNET_ADDRESS lpRemoteAddress,
 UINT nRemotePort
);

The InetWriteEx function sends the specified number of bytes to the remote host.

Parameters
hSocket

The socket handle.

lpvBuffer

The pointer to the buffer which contains the data that is to be sent to the remote host.

cbBuffer

The number of bytes to send from the specified buffer.

dwReserved

Reserved parameter. This value must always be zero.

lpRemoteAddress

Pointer to an INTERNET_ADDRESS structure that specifies the address of the remote host that is
to receive the data being written. For TCP stream sockets, this parameter must always be NULL
or specify the same address that was used to establish the connection. For UDP datagram
sockets, this may specify any valid IP address.

nRemotePort

The port number of the remote host that is to receive the data being written. For TCP stream
sockets, this value must always be zero, or specify the same port number that was used to
establish the connection. For UDP datagram sockets, this may specify any valid port number.

Return Value
If the function succeeds, the return value is the number of bytes actually written. If the function
fails, the return value is INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
The return value may be less than the number of bytes specified by the cbBuffer parameter. In this
case, the data has been partially written and it is the responsibility of the application to send the
remaining data at some later point. For non-blocking connections, the program must wait for the
INET_EVENT_WRITE asynchronous notification message before it resumes sending data.

This function extends the InetWrite function to additional information about the destination IP
address and port number for the data being written. For a client TCP connection, the IP address
and remote port must be the same values that were used to establish the connection. When
writing on a UDP socket, this is the IP address and remote port of the peer that will receive the
datagram. This information can be used in conjunction with the InetReadEx function to send a
datagram back to that host.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetFlush, InetRead, InetReadEx, InetWrite, INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetWriteLine Function

BOOL WINAPI InetWriteLine(
 SOCKET hSocket,
 LPCTSTR lpszBuffer,
 LPINT lpnLength
);

The InetWriteLine function sends a line of text to the remote host, terminated by a carriage-
return and linefeed.

Parameters
hSocket

The socket handle. The socket must reference a stream socket, not a datagram or raw socket. If
the socket type is not valid, the function will return an error.

lpszBuffer

The pointer to a string buffer which contains the data that will be sent to the remote host. All
characters up to, but not including, the terminating null character will be written to the socket.
The data will always be terminated with a carriage-return and linefeed control character
sequence. If this parameter points to an empty string or NULL pointer, then a only a carriage-
return and linefeed are written to the socket.

lpnLength

A pointer to an integer value which will contain the number of characters written to the socket,
including the carriage-return and linefeed sequence. If this information is not required, a NULL
pointer may be specified.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call InetGetLastError.

Remarks
The InetWriteLine function writes a line of text to the remote host and terminates the line with a
carriage-return and linefeed control character sequence. Unlike the InetWrite function which
writes arbitrary bytes of data to the socket, this function is specifically designed to write a single
line of text data from a string.

If the lpszBuffer string is terminated with a linefeed (LF) or carriage return (CR) character, it will be
automatically converted to a standard CRLF end-of-line sequence. Because the string will be sent
with a terminating CRLF sequence, the value returned in the lpnLength parameter will typically be
larger than the original string length (reflecting the additional CR and LF characters), unless the
string was already terminated with CRLF.

There are some limitations when using InetWriteLine. The function should only be used to send
text, never binary data. In particular, the function will discard nulls and append linefeed and
carriage return control characters to the data stream. The Unicode version of this function will
accept a Unicode string, however this function does not support writing raw Unicode data to the
socket. Unicode strings will be automatically converted to UTF-8 encoding using the
WideCharToMultiByte function and then written to the socket as a stream of bytes.

This function will force the thread to block until the complete line of text has been written, the
write operation times out or the remote host aborts the connection. If this function is called with

asynchronous events enabled, it will automatically switch the socket into a blocking mode, send
the data and then restore the socket to asynchronous operation. If another socket operation is
attempted while InetWriteLine is blocked sending data to the remote host, an error will occur. It
is recommended that this function only be used with blocking (synchronous) socket connections; if
the application needs to establish multiple simultaneous connections, it should create worker
threads to manage each connection.

The InetWrite and InetWriteLine function calls can be safely intermixed.

Unlike the InetWrite function, it is possible for data to have been written to the socket if the
return value is zero. For example, if a timeout occurs while the function is waiting to send more
data to the remote host, it will return zero; however, some data may have already been written
prior to the error condition. If this is the case, the lpnLength argument will specify the number of
characters actually written up to that point.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetIsWritable, InetRead, InetReadLine, InetWrite

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetWriteStream Function

BOOL WINAPI InetWriteStream(
 SOCKET hSocket,
 LPVOID lpvBuffer,
 LPDWORD lpdwLength,
 DWORD dwOptions
);

The InetWriteStream function writes data from the stream buffer to the specified socket.

Parameters
hSocket

The socket handle. The socket must reference a stream socket, not a datagram or raw socket. If
the socket type is not valid, the function will return an error.

lpvBuffer

Pointer to the buffer that contains or references the data to be written to the socket. The actual
argument depends on the value of the dwOptions parameter which specifies how the data
stream will be accessed.

lpdwLength

A pointer to an unsigned integer value which specifies the size of the buffer and contains the
number of bytes written when the function returns. This argument should should always point
to an initialized value. If the lpvBuffer argument specifies a memory buffer or global memory
handle, then this argument cannot point to an initialized value of zero.

dwOptions

An unsigned integer value which specifies the stream buffer type to be used when writing the
data stream to the socket. One of the following stream types may be specified:

Constant Description

INET_STREAM_DEFAULT The default stream buffer type is determined by
the value passed as the lpvBuffer parameter. If the
argument specifies a a global memory handle,
then the function will write the data referenced by
that handle; otherwise, the function will consider
the parameter a pointer to a block of memory
which contains data to be written. In most cases, it
is recommended that an application explicitly
specify the stream buffer type rather than using the
default value.

INET_STREAM_MEMORY The lpvBuffer argument specifies a pointer to a
block of memory which contains the data to be
written to the socket. If this stream buffer type is
used, the lpdwLength argument must point to an
unsigned integer which has been initialized with
the size of the buffer.

INET_STREAM_HGLOBAL The lpvBuffer argument specifies a global memory
handle that references the data to be written to the
socket. The handle must have been created by a

call to the GlobalAlloc or GlobalReAlloc function. If
this stream buffer type is used, the lpdwLength
argument must point to an unsigned integer which
has been initialized with the size of the buffer.

INET_STREAM_HANDLE The lpvBuffer argument specifies a Windows
handle to an open file, console or pipe. This should
be the same handle value returned by the
CreateFile function in the Windows API. The data
read using the ReadFile function with this handle
will be written to the socket.

INET_STREAM_SOCKET The lpvBuffer argument specifies a socket handle.
The data read from the socket specified by this
handle will be written to the socket specified by the
hSocket parameter. The socket handle passed to
this function must have been created by this
library; if it is a socket created by an third-party
library or directly by the Windows Sockets API, you
should either attach the socket using the
InetAttachSocket function or use the
INET_STREAM_HANDLE stream buffer type instead.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value
is zero. To get extended error information, call InetGetLastError.

Remarks
The InetWriteStream function enables an application to write an arbitrarily large stream
of data from memory or a file to the specified socket. Unlike the InetWrite function,
which may not write all of the data in a single function call, InetWriteStream will only
return when all of the data has been written or an error occurs.

This function will force the thread to block until the operation completes. If this function is
called with asynchronous events enabled, it will automatically switch the socket into a
blocking mode, write the data stream and then restore the socket to asynchronous
operation when it has finished. If another socket operation is attempted while
InetWriteStream is blocked sending data to the remote host, an error will occur. It is
recommended that this function only be used with blocking (synchronous) socket
connections; if the application needs to establish multiple simultaneous connections, it
should create worker threads to manage each connection.

It is possible for some data to have been written even if the function returns a value of
zero. Applications should also check the value of the lpdwLength argument to determine
if any data was sent. For example, if a timeout occurs while the function is waiting to write
more data, it will return zero; however, some data may have already been written to the
socket prior to the error condition.

Because InetWriteStream can potentially cause the application to block for long periods
of time as the data stream is being written, the function will periodically generate
INET_EVENT_PROGRESS events. An application can register an event handler using the
InetRegisterEvent function, and can obtain information about the current operation by
calling the InetGetStreamInfo function.

Example
HANDLE hFile;
DWORD dwLength;

hFile = CreateFile(lpszFileName,
 GENERIC_READ,
 FILE_SHARE_READ,
 NULL,
 OPEN_EXISTING,
 FILE_FLAG_SEQUENTIAL_SCAN,
 NULL);

if (hFile == INVALID_HANDLE_VALUE)
 return;

dwLength = GetFileSize(hFile, NULL);

if (dwLength > 0)
{
 BOOL bResult = InetWriteStream(
 hSocket,
 hFile,
 &dwLength,
 INET_STREAM_HANDLE);
}

CloseHandle(hFile);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetStreamInfo, InetRead, InetReadLine, InetReadStream, InetStoreStream, InetWrite,
InetWriteLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SocketWrench Data Structures

INETSTREAMINFO
INITDATA
INTERNET_ADDRESS
SECURITYCREDENTIALS
SECURITYINFO

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 INETSTREAMINFO Structure

This structure contains information about the data stream being currently read or written.

typedef struct _INETSTREAMINFO
{
 DWORD dwStreamThread;
 DWORD dwStreamSize;
 DWORD dwStreamCopied;
 DWORD dwStreamMode;
 DWORD dwStreamError;
 DWORD dwBytesPerSecond;
 DWORD dwTimeElapsed;
 DWORD dwTimeEstimated;
} INETSTREAMINFO, *LPINETSTREAMINFO;

Members
dwStreamThread

Specifies the numeric ID for the thread that created the socket.

dwStreamSize

The maximum number of bytes that will be read or written. This is the same value as the buffer
length specified by the caller, and may be zero which indicates that no maximum size was
specified. Note that if this value is zero, the application will be unable to calculate a completion
percentage or estimate the amount of time for the operation to complete.

dwStreamCopied

The total number of bytes that have been copied to or from the stream buffer.

dwStreamMode

A numeric value which specifies the stream operation that is current being performed. It may be
one of the following values:

Constant Description

INET_STREAM_READ Data is being read from the socket and stored in the specified
stream buffer.

INET_STREAM_WRITE Data is being written from the specified stream buffer to the
socket.

dwStreamError

The last error that occurred when reading or writing the data stream. If no error has occurred,
this value will be zero.

dwBytesPerSecond

The average number of bytes that have been copied per second.

dwTimeElapsed

The number of seconds that have elapsed since the file transfer started.

dwTimeEstimated

The estimated number of seconds until the operation is completed. This is based on the
average number of bytes transferred per second and requires that a maximum stream buffer
size be specified by the caller.

Requirements

Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h

See Also
InetReadStream, InetStoreStream, InetWriteStream

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 INITDATA Structure

This structure contains information about the SocketTools library when the initialization function
returns.

typedef struct _INITDATA
{
 DWORD dwSize;
 DWORD dwVersionMajor;
 DWORD dwVersionMinor;
 DWORD dwVersionBuild;
 DWORD dwOptions;
 DWORD_PTR dwReserved1;
 DWORD_PTR dwReserved2;
 TCHAR szDescription[128];
} INITDATA, *LPINITDATA;

Members
dwSize

Size of this structure. This structure member must be set to the size of the structure prior to
calling the initialization function. Failure to do so will cause the function to fail.

dwVersionMajor

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the major version number for the library.

dwVersionMinor

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the minor version number for the library.

dwVersionBuild

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the build number for the library.

dwOptions

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

dwReserved1

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

dwReserved2

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

szDescription

A null terminated string which describes the library.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 INTERNET_ADDRESS Structure

This structure represents a numeric IPv4 or IPv6 address in network byte order.

typedef struct _INTERNET_ADDRESS
{
 INT ipFamily;
 BYTE ipNumber[16];
} INTERNET_ADDRESS, *LPINTERNET_ADDRESS;

Members
ipFamily

An integer which identifies the type of IP address. It will be one of the following values:

Constant Description

INET_ADDRESS_UNKNOWN The address has not been specified or the bytes in the
ipNumber array does not represent a valid address.
Functions which populate this structure will use this value
to indicate that the address cannot be determined.

INET_ADDRESS_IPV4 Specifies that the address is in IPv4 format. The first four
bytes of the ipNumber array are significant and contains
the IP address. The remaining bytes are not significant
and an application should not depend on them having
any particular value, including zero.

INET_ADDRESS_IPV6 Specifies that the address is in IPv6 format. All bytes in
the ipNumber array are significant. Note that it is
possible for an IPv6 address to actually represent an IPv4
address. This is indicated by the first 10 bytes of the
address being zero.

ipNumber

A byte array which contains the numeric form of the IP address. This array is large enough to
store both IPv4 (32 bit) and IPv6 (128 bit) addresses. The values are stored in network byte
order.

Remarks
The INTERNET_ADDRESS structure is used by some functions to represent an Internet address in
a binary format that is compatible with both IPv4 and IPv6 addresses. Applications that use this
structure should consider it to be opaque, and should not modify the contents of the structure
directly.

For compatibility with legacy applications that expect an IP address to be 32 bits and stored in an
unsigned integer, you can copy the first four bytes of the ipNumber array using the
CopyMemory function or equivalent. Note that if this is done, your application should always
check the ipFamily member first to make sure that it is actually an IPv4 address.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SECURITYCREDENTIALS Structure

The SECURITYCREDENTIALS structure specifies the information needed by the library to specify
additional security credentials, such as a client certificate or private key, when establishing a secure
connection.

typedef struct _SECURITYCREDENTIALS
{
 DWORD dwSize;
 DWORD dwProtocol;
 DWORD dwOptions;
 DWORD dwReserved;
 LPCTSTR lpszHostName;
 LPCTSTR lpszUserName;
 LPCTSTR lpszPassword;
 LPCTSTR lpszCertStore;
 LPCTSTR lpszCertName;
 LPCTSTR lpszKeyFile;
} SECURITYCREDENTIALS, *LPSECURITYCREDENTIALS;

Members
dwSize

Size of this structure. If the structure is being allocated dynamically, this member must be set to
the size of the structure and all other unused structure members must be initialized to a value of
zero or NULL.

dwProtocol

A bitmask of supported security protocols. The value of this structure member is constructed by
using a bitwise operator with any of the following values:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The
correct protocol is automatically selected, based on

what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.
This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is
supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

dwOptions

A value which specifies one or options. This member is constructed by using a bitwise operator
with any of the following values:

Constant Description

CREDENTIAL_STORE_CURRENT_USER The library will attempt to open a store for
the current user using the certificate store
name provided in this structure. If no options
are specified, then this is the default
behavior.

CREDENTIAL_STORE_LOCAL_MACHINE The library will attempt to open a local
machine store using the certificate store

name provided in this structure. If this option
is specified, the library will always search for a
local machine store before searching for the
store by that name for the current user.

CREDENTIAL_STORE_FILENAME The certificate store name is a file that
contains the certificate and private key that
will be used.

dwReserved

This structure member is reserved for future use and should always be initialized to zero.

lpszHostName

A pointer to a null terminated string which specifies the hostname that will be used when
validating the server certificate. If this member is NULL, then the server certificate will be
validated against the hostname used to establish the connection.

lpszUserName

A pointer to a null terminated string which identifies the owner of client certificate. Currently this
member is not used by the library and should always be initialized as a NULL pointer.

lpszPassword

A pointer to a null terminated string which specifies the password needed to access the
certificate. Currently this member is only used if the CREDENTIAL_STORE_FILENAME option has
been specified. If there is no password associated with the certificate, then this member should
be initialized as a NULL pointer.

lpszCertStore

A pointer to a null terminated string which specifies the name of the certificate store to open. A
certificate store is a collection of certificates and their private keys, typically organized by how
they are used. If this value is NULL or points to an empty string, the default certificate store "MY"
will be used.

Store
Name

Description

CA
Certification authority certificates. These are certificates that are issued by entities
which are entrusted to issue certificates to other individuals or organizations.
Companies such as VeriSign and Thawte act as certification authorities.

MY

Personal certificates and their associated private keys for the current user. This
store typically holds the client certificates used to establish a user's credentials.
This corresponds to the "Personal" store that is displayed by the certificate
manager utility and is the default store used by the library.

ROOT
Certificates that have been self-signed by a certificate authority. Root certificates
for a number of different certification authorities such as VeriSign and Thawte are
installed as part of the operating system and periodically updated by Microsoft.

lpszCertName

A pointer to a null terminated string which specifies the name of the certificate to use. The
library will first search the certificate store for a certificate with a matching "friendly name"; this is
a name for the certificate that is assigned by the user. Note that the name must match
completely, but the comparison is not case sensitive. If no matching certificate is found, the
library will then attempt to find a certificate that has a matching common name (also called the
certificate subject). This comparison is less stringent, and the first partial match will be returned.

If this second search fails, the library will return an error indicating that the certificate could not
be found. If the SECURITY_PROTOCOL_SSH protocol has been specified, this member should
be NULL.

lpszKeyFile

A pointer to a null terminated string which specifies the name of the file which contains the
private key required to establish the connection. This member is only used for SSH connections
and should always be NULL when establishing a secure connection using SSL or TLS.

Remarks
A client application only needs to create this structure if the server requires that the client provide
a certificate as part of the process of negotiating the secure session. If a certificate is required,
note that it must have a private key associated with it. Attempting to use a certificate that does not
have a private key will result in an error during the connection process indicating that the client
credentials could not be established.

If you are using a local certificate store, with the certificate and private key stored in the registry,
you can explicitly specify whether the certificate store for the current user or the local machine (all
users) should be used. This is done by prefixing the certificate store name with "HKCU:" for the
current user, or "HKLM:" for the local machine. For example, a certificate store name of
"HKLM:MY" would specify the personal certificate store for the local machine, rather than the
current user. If neither prefix is specified, then it will default to the certificate store for the current
user. You can manage these certificates using the CertMgr.msc Microsoft Management Console
(MMC) snap-in.

It is possible to load the certificate from a file rather than from current user's certificate store. The
dwOptions member should be set to CREDENTIAL_STORE_FILENAME and the lpszCertStore
member should specify the name of the file that contains the certificate and its private key. The file
must be in Private Information Exchange (PFX) format, also known as PKCS #12. These certificate
files typically have an extension of .pfx or .p12. Note that if a password was specified when the
certificate file was created, it must be provided in the lpszPassword member or the library will be
unable to access the certificate.

Note that the lpszUserName and lpszPassword members are values which are used to access the
certificate store or private key file. They are not the credentials which are used when establishing
the connection with the remote host or authenticating the client session.

The TLS 1.1 and TLS 1.2 protocols are only supported on Windows 7, Windows Server 2008 R2
and later versions of the platform. If these options are specified and the application is running on
Windows XP or Windows Vista, the protocol version will be downgraded to TLS 1.0 for backwards
compatibility with those platforms.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SECURITYINFO Structure

This structure contains information about a secure connection that has been established.

typedef struct _SECURITYINFO
{
 DWORD dwSize;
 DWORD dwProtocol;
 DWORD dwCipher;
 DWORD dwCipherStrength;
 DWORD dwHash;
 DWORD dwHashStrength;
 DWORD dwKeyExchange;
 DWORD dwCertStatus;
 SYSTEMTIME stCertIssued;
 SYSTEMTIME stCertExpires;
 LPCTSTR lpszCertIssuer;
 LPCTSTR lpszCertSubject;
 LPCTSTR lpszFingerprint;
} SECURITYINFO, *LPSECURITYINFO;

Members
dwSize

Specifies the size of the data structure. This member must always be initialized to
sizeof(SECURITYINFO) prior to passing the address of this structure to the function. Note that
if this member is not initialized, an error will be returned indicating that an invalid parameter has
been passed to the function.

dwProtocol

A numeric value which specifies the protocol that was selected to establish the secure
connection. One of the following values will be returned:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The

correct protocol is automatically selected, based on
what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.
This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is
supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

dwCipher

A numeric value which specifies the cipher that was selected when establishing the secure
connection. One of the following values will be returned:

Constant Description

SECURITY_CIPHER_RC2 The RC2 block cipher was selected. This is a variable
key length cipher which supports keys between 40 and
128 bits, in 8-bit increments.

SECURITY_CIPHER_RC4 The RC4 stream cipher was selected. This is a variable
key length cipher which supports keys between 40 and
128 bits, in 8-bit increments.

SECURITY_CIPHER_RC5 The RC5 block cipher was selected. This is a variable
key length cipher which supports keys up to 2040 bits,
in 8-bit increments.

SECURITY_CIPHER_DES The DES (Data Encryption Standard) block cipher was
selected. This is a fixed key length cipher, using 56-bit
keys.

SECURITY_CIPHER_DES3 The Triple DES block cipher was selected. This cipher
encrypts the data three times using different keys,
effectively providing a 168-bit length key.

SECURITY_CIPHER_DESX A variant of the DES block cipher which XORs an extra
64-bits of the key before and after the plaintext has
been encrypted, increasing the key size to 184 bits.

SECURITY_CIPHER_AES The Advanced Encryption Standard cipher (also known
as the Rijndael cipher) is a fixed block size cipher which
use a key size of 128, 192 or 256 bits. This cipher is
supported on Windows XP SP3 and later versions of
the operating system.

SECURITY_CIPHER_SKIPJACK The Skipjack block cipher was selected. This is a fixed
key length cipher, using 80-bit keys.

SECURITY_CIPHER_BLOWFISH The Blowfish block cipher was selected. This is a
variable key length cipher up to 448 bits, using a 64-bit
block size.

dwCipherStrength

A numeric value which specifies the strength (the length of the cipher key in bits) of the cipher
that was selected. Typically this value will be 128 or 256. 40-bit and 56-bit key lengths are
considered weak encryption, and subject to brute force attacks. 128-bit and 256-bit key lengths
are considered to be secure, and are the recommended key length for secure communications.

dwHash

A numeric value which specifies the hash algorithm which was selected. One of the following
values will be returned:

Constant Description

SECURITY_HASH_MD5 The MD5 algorithm was selected. Its use has been
deprecated and is no longer considered to be
cryptographically secure.

SECURITY_HASH_SHA1 The SHA-1 algorithm was selected. Its use has been
deprecated and is no longer considered to be
cryptographically secure.

SECURITY_HASH_SHA256 The SHA-256 algorithm was selected.

SECURITY_HASH_SHA384 The SHA-384 algorithm was selected.

SECURITY_HASH_SHA512 The SHA-512 algorithm was selected.

dwHashStrength

A numeric value which specifies the strength (the length in bits) of the message digest that was

selected.

dwKeyExchange

A numeric value which specifies the key exchange algorithm which was selected. One of the
following values will be returned:

Constant Description

SECURITY_KEYEX_RSA The RSA public key algorithm was selected.

SECURITY_KEYEX_KEA The Key Exchange Algorithm (KEA) was selected. This is an
improved version of the Diffie-Hellman public key algorithm.

SECURITY_KEYEX_DH The Diffie-Hellman key exchange algorithm was selected.

SECURITY_KEYEX_ECDH The Elliptic Curve Diffie-Hellman key exchange algorithm was
selected. This is a variant of the Diffie-Hellman algorithm
which uses elliptic curve cryptography. This key exchange
algorithm is only supported on Windows XP SP3 and later
versions of the operating system.

dwCertStatus

A numeric value which specifies the status of the certificate returned by the secure server. This
member only has meaning for connections using the SSL or TLS protocols. One of the following
values will be returned:

Constant Description

SECURITY_CERTIFICATE_VALID The certificate is valid.

SECURITY_CERTIFICATE_NOMATCH The certificate is valid, but the domain name
does not match the common name in the
certificate.

SECURITY_CERTIFICATE_EXPIRED The certificate is valid, but has expired.

SECURITY_CERTIFICATE_REVOKED The certificate has been revoked and is no
longer valid.

SECURITY_CERTIFICATE_UNTRUSTED The certificate or certificate authority is not
trusted on the local system.

SECURITY_CERTIFICATE_INVALID The certificate is invalid. This typically indicates
that the internal structure of the certificate has
been damaged.

stCertIssued

A structure which contains the date and time that the certificate was issued by the certificate
authority. If the issue date cannot be determined for the certificate, the SYSTEMTIME structure
members will have zero values. This member only has meaning for connections using the SSL or
TLS protocols.

stCertExpires

A structure which contains the date and time that the certificate expires. If the expiration date
cannot be determined for the certificate, the SYSTEMTIME structure members will have zero
values. This member only has meaning for connections using the SSL or TLS protocols.

lpszCertIssuer

A pointer to a string which contains information about the organization that issued the
certificate. This string consists of one or more comma-separated tokens. Each token consists of
an identifier, followed by an equal sign and a value. If the certificate issuer could not be
determined, this member may be NULL. This member only has meaning for connections using
the SSL or TLS protocols.

lpszCertSubject

A pointer to a string which contains information about the organization that the certificate was
issued to. This string consists of one or more comma-separated tokens. Each token consists of
an identifier, followed by an equal sign and a value. If the certificate subject could not be
determined, this member may be NULL. This member only has meaning for connections using
the SSL or TLS protocols.

lpszFingerprint

A pointer to a string which contains a sequence of hexadecimal values that uniquely identify the
server. This member is only used when a connection has been established using the Secure
Shell (SSH) protocol.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SocketWrench Library Error Codes

Value Constant Description

0x80042711 ST_ERROR_NOT_HANDLE_OWNER Handle not owned by the current thread

0x80042712 ST_ERROR_FILE_NOT_FOUND The specified file or directory does not exist

0x80042713 ST_ERROR_FILE_NOT_CREATED The specified file could not be created

0x80042714 ST_ERROR_OPERATION_CANCELED The blocking operation has been canceled

0x80042715 ST_ERROR_INVALID_FILE_TYPE The specified file is a block or character
device, not a regular file

0x80042716 ST_ERROR_INVALID_DEVICE The specified device or address does not
exist

0x80042717 ST_ERROR_TOO_MANY_PARAMETERS The maximum number of function
parameters has been exceeded

0x80042718 ST_ERROR_INVALID_FILE_NAME The specified file name contains invalid
characters or is too long

0x80042719 ST_ERROR_INVALID_FILE_HANDLE Invalid file handle passed to function

0x8004271A ST_ERROR_FILE_READ_FAILED Unable to read data from the specified file

0x8004271B ST_ERROR_FILE_WRITE_FAILED Unable to write data to the specified file

0x8004271C ST_ERROR_OUT_OF_MEMORY Out of memory

0x8004271D ST_ERROR_ACCESS_DENIED Access denied

0x8004271E ST_ERROR_INVALID_PARAMETER Invalid argument passed to function

0x8004271F ST_ERROR_CLIPBOARD_UNAVAILABLE The system clipboard is currently unavailable

0x80042720 ST_ERROR_CLIPBOARD_EMPTY The system clipboard is empty or does not
contain any text data

0x80042721 ST_ERROR_FILE_EMPTY The specified file does not contain any data

0x80042722 ST_ERROR_FILE_EXISTS The specified file already exists

0x80042723 ST_ERROR_END_OF_FILE End of file

0x80042724 ST_ERROR_DEVICE_NOT_FOUND The specified device could not be found

0x80042725 ST_ERROR_DIRECTORY_NOT_FOUND The specified directory could not be found

0x80042726 ST_ERROR_INVALID_BUFFER Invalid memory address passed to function

0x80042728 ST_ERROR_NO_HANDLES No more handles available to this process

0x80042733 ST_ERROR_OPERATION_WOULD_BLOCK The specified operation would block the
current thread

0x80042734 ST_ERROR_OPERATION_IN_PROGRESS A blocking operation is currently in progress

0x80042735 ST_ERROR_ALREADY_IN_PROGRESS The specified operation is already in progress

0x80042736 ST_ERROR_INVALID_HANDLE Invalid handle passed to function

0x80042737 ST_ERROR_INVALID_ADDRESS Invalid network address specified

0x80042738 ST_ERROR_INVALID_SIZE Datagram is too large to fit in specified buffer

0x80042739 ST_ERROR_INVALID_PROTOCOL Invalid network protocol specified

0x8004273A ST_ERROR_PROTOCOL_NOT_AVAILABLE The specified network protocol is not
available

0x8004273B ST_ERROR_PROTOCOL_NOT_SUPPORTED The specified protocol is not supported

0x8004273C ST_ERROR_SOCKET_NOT_SUPPORTED The specified socket type is not supported

0x8004273D ST_ERROR_INVALID_OPTION The specified option is invalid

0x8004273E ST_ERROR_PROTOCOL_FAMILY Specified protocol family is not supported

0x8004273F ST_ERROR_PROTOCOL_ADDRESS The specified address is invalid for this
protocol family

0x80042740 ST_ERROR_ADDRESS_IN_USE The specified address is in use by another
process

0x80042741 ST_ERROR_ADDRESS_UNAVAILABLE The specified address cannot be assigned

0x80042742 ST_ERROR_NETWORK_UNAVAILABLE The networking subsystem is unavailable

0x80042743 ST_ERROR_NETWORK_UNREACHABLE The specified network is unreachable

0x80042744 ST_ERROR_NETWORK_RESET Network dropped connection on remote
reset

0x80042745 ST_ERROR_CONNECTION_ABORTED Connection was aborted due to timeout or
other failure

0x80042746 ST_ERROR_CONNECTION_RESET Connection was reset by remote network

0x80042747 ST_ERROR_OUT_OF_BUFFERS No buffer space is available

0x80042748 ST_ERROR_ALREADY_CONNECTED Connection already established with remote
host

0x80042749 ST_ERROR_NOT_CONNECTED No connection established with remote host

0x8004274A ST_ERROR_CONNECTION_SHUTDOWN Unable to send or receive data after
connection shutdown

0x8004274C ST_ERROR_OPERATION_TIMEOUT The specified operation has timed out

0x8004274D ST_ERROR_CONNECTION_REFUSED The connection has been refused by the
remote host

0x80042750 ST_ERROR_HOST_UNAVAILABLE The specified host is unavailable

0x80042751 ST_ERROR_HOST_UNREACHABLE Remote host is unreachable

0x80042753 ST_ERROR_TOO_MANY_PROCESSES Too many processes are using the
networking subsystem

0x8004276B ST_ERROR_NETWORK_NOT_READY Network subsystem is not ready for
communication

0x8004276C ST_ERROR_INVALID_VERSION This version of the operating system is not
supported

0x8004276D ST_ERROR_NETWORK_NOT_INITIALIZED The networking subsystem has not been
initialized

0x80042775 ST_ERROR_REMOTE_SHUTDOWN The remote host has initiated a graceful
shutdown sequence

0x80042AF9 ST_ERROR_INVALID_HOSTNAME The specified hostname is invalid or could
not be resolved

0x80042AFA ST_ERROR_HOSTNAME_NOT_FOUND The specified hostname could not be found

0x80042AFB ST_ERROR_HOSTNAME_REFUSED Unable to resolve hostname, request refused

0x80042AFC ST_ERROR_HOSTNAME_NOT_RESOLVED Unable to resolve hostname, no address for
specified host

0x80042EE1 ST_ERROR_INVALID_LICENSE The license for this product is invalid

0x80042EE2 ST_ERROR_PRODUCT_NOT_LICENSED This product is not licensed to perform this
operation

0x80042EE3 ST_ERROR_NOT_IMPLEMENTED This function has not been implemented on
this platform

0x80042EE4 ST_ERROR_UNKNOWN_LOCALHOST Unable to determine local host name

0x80042EE5 ST_ERROR_INVALID_HOSTADDRESS Invalid host address specified

0x80042EE6 ST_ERROR_INVALID_SERVICE_PORT Invalid service port number specified

0x80042EE7 ST_ERROR_INVALID_SERVICE_NAME Invalid or unknown service name specified

0x80042EE8 ST_ERROR_INVALID_EVENTID Invalid event identifier specified

0x80042EE9 ST_ERROR_OPERATION_NOT_BLOCKING No blocking operation in progress on this
socket

0x80042F45 ST_ERROR_SECURITY_NOT_INITIALIZED Unable to initialize security interface for this
process

0x80042F46 ST_ERROR_SECURITY_CONTEXT Unable to establish security context for this
session

0x80042F47 ST_ERROR_SECURITY_CREDENTIALS Unable to open client certificate store or
establish client credentials

0x80042F48 ST_ERROR_SECURITY_CERTIFICATE Unable to validate the certificate chain for
this session

0x80042F49 ST_ERROR_SECURITY_DECRYPTION Unable to decrypt data stream

0x80042F4A ST_ERROR_SECURITY_ENCRYPTION Unable to encrypt data stream

0x80043031 ST_ERROR_MAXIMUM_CONNECTIONS The maximum number of client connections
exceeded

0x80043032 ST_ERROR_THREAD_CREATION_FAILED Unable to create a new thread for the current
process

0x80043033 ST_ERROR_INVALID_THREAD_HANDLE The specified thread handle is no longer valid

0x80043034 ST_ERROR_THREAD_TERMINATED The specified thread has been terminated

0x80043035 ST_ERROR_THREAD_DEADLOCK The operation would result in the current

thread becoming deadlocked

0x80043036 ST_ERROR_INVALID_CLIENT_MONIKER The specified moniker is not associated with
any client session

0x80043037 ST_ERROR_CLIENT_MONIKER_EXISTS The specified moniker has been assigned to
another client session

0x80043038 ST_ERROR_SERVER_INACTIVE The specified server is not listening for client
connections

0x80043039 ST_ERROR_SERVER_SUSPENDED The specified server is suspended and not
accepting client connections

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

